
9HSTFMG*aejcaf+ 

ISBN 978-952-60-4920-5 
ISBN 978-952-60-4921-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Micro- and Nanosciences 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 173

/2
012 

 

A
apo L

ankinen 
Synchrotron X

-R
ay D

iffraction T
opography of Sem

iconductor H
eterostructures 

A
alto

 U
n
ive

rsity 

Department of Micro- and Nanosciences 

Synchrotron X-Ray 
Diffraction Topography 
of Semiconductor 
Heterostructures 

Aapo Lankinen 

~qz

~qy

[0
1
1
]

[0
1
1̄][0

1̄
1̄
]

[0
1̄
1]

DOCTORAL 
DISSERTATIONS 

















Preface

“Jokainen tsäänssi on mahdollisuus!” – Matti Nykänen
(Every chance is an opportunity)

The work presented in this thesis was carried out in Optoelectronics Labora-
tory, in Laboratory of Micro and Nanosciences, and in Department of Micro and
Nanosciences at Helsinki University of Technology and Aalto University School
of Electrical Engineering between 2003 and 2012. I want to express my sincere
gratitude to Professor Harri Lipsanen for supervising this thesis, and for the op-
portunity to work on such interesting field as material science is. I am deeply
grateful and indebted to the advisor of this thesis, Prof. Turkka O. Tuomi for
his invaluable suggestions and insightful advice concerning synchrotron sciences
and this thesis. I would also like to thank Professor Tuomi for the numerous in-
sightful discussions we have had, and for the continued support during the rather
long while this thesis was slowly progressing. I thank Dr. Markku Sopanen for
the valuable advice and amicable help concerning this thesis.

I will gladly take the opportunity here to thank Dr. Antti Säynätjoki, M.Sc. Pasi
Kostamo, Dr. Lauri Knuuttila, Dr. Outi Reentilä, Dr. Marco Mattila, Dr. Jaakko
Sormunen, M.Sc. Päivi Mattila, Dr. Sami Suihkonen, M.Sc. Olli Svensk, Dr. Juha
Riikonen, Dr. Sanna Yliniemi, Dr. Teemu Lang, and Dr. Karri Varis for the swift
co-operation in the laboratory and on the field, and for being good people. Hey,
let’s go and have a beer together some of these days!

I want to also thank Professor Patrick McNally of the Dublin City University, Dr.
Andreas Danilewsky of the University of Freiburg, and Dr. Carsten Paulmann of
the University of Hamburg for precious bits of information and science, as well
as for the many insightful debates we have had.

I want to express my gratitude to my parents Heikki and Terttu, and to my dear
sister Vilja for their love and support. Finally, I thank my dear partner Dr. Annika
for all the love and understanding!

Helsinki, November 2012 Aapo Lankinen

vii



Contents

Preface vii

Contents viii

List of Publications x

Author’s contribution xi

List of Abbreviations xii

List of Symbols xiii

1 Introduction 1

2 Experimental Techniques 3
2.1 X-Ray Diffractometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 High-Resolution X-ray Diffractometry . . . . . . . . . . . . . 4
2.1.2 Real and Reciprocal Lattices . . . . . . . . . . . . . . . . . . . 6
2.1.3 Miller Indices and Lattice Spacing . . . . . . . . . . . . . . . 7
2.1.4 Structure Factor and Forbidden Reflections . . . . . . . . . . 8
2.1.5 Ewald Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Reciprocal Space Maps . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Synchrotron Radiation X-Ray Topography . . . . . . . . . . . . . . . 14
2.2.1 Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Laue Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Topographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.4 Transmission Topography . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Back-reflection Topography . . . . . . . . . . . . . . . . . . . 23
2.2.6 Grazing Incidence Topography . . . . . . . . . . . . . . . . . 25

3 Defect Image Contrast in Topographs 27
3.1 Threading Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Burgers Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Edge Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Screw Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Mixed Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Extinction contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6.1 Direct image contrast . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.2 Dynamical contrast . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6.3 Intermediate Contrast . . . . . . . . . . . . . . . . . . . . . . . 34

viii



3.7 Orientation Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Stereo Pair Topographs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Precipitate and Void Image Contrast . . . . . . . . . . . . . . . . . . 38
3.10 Grain Boundary Image Contrast . . . . . . . . . . . . . . . . . . . . . 39

4 Thin Epitaxial Films 41
4.1 Misfit Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Critical Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Defects in Heterostructures 47
5.1 Doped Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Dilute Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Two-layer Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Multilayer Heterostructures . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Pyramidical Epitaxial Hillocks . . . . . . . . . . . . . . . . . . . . . . 49

References 50

ix



List of Publications

This thesis consists of an overview and of the following publications, which are
referred to in the text by their Roman numerals.

I A. Lankinen, T. Tuomi, J. Riikonen, L. Knuuttila, H. Lipsanen, M. Sopa-
nen, A. Danilewsky, P.J. McNally, L. O’Reilly, Y. Zhilyaev, L. Fedorov,
H. Sipilä, S. Vaijärvi, R. Simon, D. Lumb and A. Owens, Synchrotron X-
ray topographic study of dislocations and stacking faults in InAs, Journal
of Crystal Growth 283 (2005) 320–327.

II L. Knuuttila, A. Lankinen, J. Likonen, H. Lipsanen, X. Lu, P. Mc-
Nally, J. Riikonen and T. Tuomi, Low Temperature Growth GaAs on Ge,
Japanese Journal of Applied Physics 44 (2005) 7777–7784.

III A. Lankinen, T. Tuomi, M. Karilahti, Z.R. Zytkiewicz, J.Z. Domagala,
P.J. McNally, Y-T. Sun, F. Olsson and S. Lourdudoss, Crystal Defects and
Strain of Epitaxial InP Layers Laterally Overgrown on Si, Crystal Growth
& Design 6 (2006) 1096–1100.

IV A. Lankinen, L. Knuuttila, T. Tuomi, P. Kostamo, A. Säynätjoki, J. Riiko-
nen, H. Lipsanen, P. J. McNally, X. Lu, H. Sipilä, S. Vaijärvi and D. Lumb,
Synchrotron X-ray topography study of defects in epitaxial GaAs on high-
quality Ge, Nuclear Instruments and Methods in Physics Research A 563
(2006) 62–65.

V O. Reentilä, A. Lankinen, M. Mattila, A. Säynätjoki, T.O. Tuomi, H. Lip-
sanen, L. O’Reilly and P.J. McNally, In-situ optical reflectance and syn-
chrotron X-ray topography study of defects in epitaxial dilute GaAsN on
GaAs, Journal of Materials Science: Materials in Electronics 19 (2008)
137–142.

VI A. Lankinen, T. Lang, S. Suihkonen, O. Svensk, A. Säynätjoki,
T.O. Tuomi, P.J. McNally, M. Odnoblyudov, V. Bougrov, A.N. Danilewsky,
P. Bergman and R. Simon, Dislocations at the interface between sap-
phire and GaN, Journal of Materials Science: Materials in Electronics
19 (2008) 143–148.

VII A. Säynätjoki, T.O. Tuomi, A. Lankinen, P.J. McNally, A. Danilewsky,
Y. Zhilyaev and L. Fedorov, Dislocations of GaAs p-i-n diodes grown by

x



hydride vapour phase epitaxy, Journal of Materials Science: Materials in
Electronics 19 (2008) 149–154.

VIII P. Kostamo, A. Lankinen, A. Säynätjoki, H. Lipsanen, T.O. Tuomi,
Y. Zhilyaev, L. Fedorov and T. Orlova, Synchrotron X-Ray topography and
electrical characterization of epitaxial GaAs p-i-n structures, Nuclear In-
struments and Methods in Physics Research A 591 (2008) 192–195.

IX A. Lankinen, L. Knuuttila, P. Kostamo, T.O. Tuomi, H. Lipsanen, P.J. Mc-
Nally and L. O’Reilly, Synchrotron topography and X-ray diffraction study
of GaInP layers grown on GaAs/Ge, Journal of Crystal Growth 311
(2009) 4619–4627.

Author’s contribution

The author of this thesis wrote the manuscripts for Publications I, III, IV, VI, and
IX, and parts of the manuscripts for Publications V and VIII. The author designed
the measurements in Publications I, III, IV, VI, and IX, and designed the measure-
ments with co-authors for Publication V and VII.

The author recorded the synchrotron topographs for Publications I, V, VI, and
IX, recorded about half of the topographs for Publication IV, and participated in
recording the topographs with the co-authors in Publications II, VII, and VIII. The
author analyzed the topographs and Laue patterns for Publication I, III, IV, V, VI,
and IX, and participated in the analysis with the co-authors for Publications II,
VII, and VIII.

The author performed the XRD, HR-XRD and reciprocal space maps measure-
ments for Publications III and IX, and made half of the HR-XRD measurements
for Publication V. The author analyzed the XRD, HR-XRD and reciprocal space
map data for Publications III and IX, and made the analysis together with the
a co-author for Publication V. The author made the �g · �b = 0 dislocation type
analysis for Publications I, V, and IX, and made the critical thickness analysis for
Publications V and IX. The author analyzed the structure of the crystalline InP
pyramids in Publication IX.

xi



List of Abbreviations

Abbreviation Meaning
ANKA Angstromquelle Karlsruhe, a synchrotron facility
CCD Charge-coupled device, detector in cameras
DESY Deutsches Elektronen-Synchrotron, a synchrotron facility

DORIS III Double Ring Store III, a synchrotron storage ring in DESY
ELO Epitaxial lateral overgrowth

FWHM Full width half maximum
HASYLAB Hamburger Synchrotronstrahlungslabor
HR-XRD High resolution X-ray diffraction
HVPE Hydride vapor phase epitaxy
LPE Liquid phase epitaxy
MBE Molecular beam epitaxy
MD Misfit dislocation

MOVPE Metal-organic vapor phase epitaxy
RSM Reciprocal space map
RT Room temperature
SPE Solid phase epitaxy

SR-XRT Synchrotron radiation X-ray topography
VPE Vapor phase epitaxy
XRD X-ray diffraction

xii



List of Symbols

Symbol Meaning
a Lattice constant of a cubic crystal

af , as Thin film and substrate lattice constants
�a1, �a2, �a3 Lattice base vectors in three dimensions
�b Burgers vector, i.e. a measure of lattice displacement
c Speed of light in vacuum
d Lattice spacing of atom planes in a crystal
E Electron or positron total energy in a synchrotron

f =Δa/a Relative lattice mismatch of a thin film to a substrate
fn Atomic scattering factor

Fhkl Structure factor of diffraction hkl from a unit cell
F ′′
0 Zeroth order of the imaginary part of the structure factor

F ′′
g Fourier coefficient of order |�g| of the imaginary part

of the structure factor
�g Diffraction vector
h Thin film thickness
hc Thin film critical thickness, calculated or measured

h, k, l Miller indices of a crystal plane, always integers
ħh Planck’s constant h divided by 2π
I Synchrotron X-ray radiation energy per positron or electron
Ic Electron or positron current of a synchrotron
�k′,�k Incident and diffracted X-ray beams, respectively

K1/3(ξ) Modified Bessel function of the 2nd kind, fractional order 1/3
K2/3(ξ) Modified Bessel function of the 2nd kind, fractional order 2/3
�� Dislocation line direction
L Source-to-sample distance in synchrotron topography

m0 Electron or positron rest mass
mrad milliradian, 10−3 radians

Nu Number of atoms in the unit cell of a crystal
N Atomic number density of a crystal, N = Nu/Vu

n Order of the diffraction
�n Sample surface normal
q Elemental charge

�q1, �q2, �q3 General reciprocal lattice base vectors
�qx , �qy , �qz Reciprocal lattice base vectors of the cubic lattice

rF , r0 Spatial resolution of X-ray sensitive film or other detector
rx , rz Horizontal and vertical resolutions of a synchrotron experiment

List continues on next page.

xiii



S Lattice plane of a crystal
�s Normal vector of the lattice plane
t Sample thickness
�u Misfit dislocation line direction

u, v, w Coordinates in real space for lattice base vectors �a1, �a2, �a3
Vu Volume of the unit cell of a crystal, Vu = �a1 · (�a2× �a3)
x Sample-to-detector distance in synchrotron topography
z Penetration depth of X-rays
Z Atomic number of an element
Å Ångström, 10−10 m
αb Angle between Burgers vector �b and dislocation line �u
αc Critical incident angle for total X-ray reflection
αltc Linear thermal expansion coefficient of a material
γ Relativistic Lorentz factor, γ= (1− v2/c2)−1/2

Γ Parameterized term in the critical thickness equation
ε0 Permittivity of vacuum
ε0 Ratio of the the imaginary structure factor parts F ′′

g and F ′′
0

εx , εy Horizontal and vertical emittances of a synchrotron
ζ Attenuation length of X-rays

θ , θhkl Bragg angle
2θ Diffraction angle, i.e. twice the Bragg angle
ϑ Angle between the synchrotron plane and the X-rays

λ, λhkl X-ray wavelength
λb Angle between Burgers vector �b and vector �u× �n
μ0 Average linear X-ray attenuation coefficient of a sample

at X-ray wavelength λ
ν Poisson ratio
ξ Parameter in the synchrotron radiation flux equation
ρ Instantaneous synchrotron orbit radius

σx , σz Standard deviations of the spatial distribution
of synchrotron radiation particle orbits

Σx , Σz FWHM spatial sizes of the synchrotron particle orbits
φ Angle of rotation about surface normal, i.e. azimuthal angle
Φ Synchrotron X-ray photon flux
ψ Tilt angle in a plane perpendicular to the diffraction plane

and sample surface
ω Angle between the incident X-ray beam and sample surface
ωs The angular frequency of the X-rays of a synchrotron
Ωs The solid angle of the radiation cone of a synchrotron
Ω Parameterized term in the critical thickness equation

xiv



1 Introduction

In this thesis defects in crystal heterostructures consisting of group IV elemental
semiconductors and III/V compound semiconductors were studied by means of
synchrotron radiation X-ray topography (SR-XRT) and X-ray diffraction (XRD).
The sample crystals include epitaxial structures with highly doped layers, dilute-
layer heterostructures, two-layer heterostructures, and multilayer heterostruc-
tures. Crystals are pieces of solid material, whose constituent atoms or molecules
are arranged in a periodic pattern in all the three spatial dimensions. The mod-
ern word “crystal” is derived from the Greek word κρυσταλλoξ (krustallos, ice)
[1]. The rigid arrangement of the constituents is the key property of crystals,
which possess both orientational and translational symmetry of crystal lattice po-
sitions over their whole volume. There are 7 possible crystal systems, which are
sub-classed into 14 distinct Bravais lattices that contain the 230 crystallographic
space groups of the three-dimensional space [2]. All true crystals are members of
exactly one of these crystal systems and groups, but in practice the Bravais lattice
type is often sufficient for categorizing different crystals. The Bravais lattices are
built by repeating small parallelepipeds through space. The parallelepipeds are
called the unit cells, which typically contain only a few atoms in the case of the
inorganic crystals. An additional class of materials called quasicrystals has been
discovered [3], but because the quasicrystals do not possess true long-range pe-
riodicity or exact rotational symmetry, they do not fulfill the classical definition
of a crystal, despite their crystal-like properties caused by localized symmetries
and long-range order.

The semiconductor samples studied in this work are all true crystals, and they
belong to the cubic and hexagonal crystal systems. The epitaxial compound semi-
conductors analyzed in Publications I–V and VII–IX are GaAs, GaAsN, InAs, InP,
and GaInP, which all crystallize into the zincblende lattice. Figure 1.1 a) is an il-
lustration of the zincblende unit cell having two elements labeled A and B. The
substrate crystals of the samples of Publications II–IV and IX are Si and Ge, which
crystallize into the diamond lattice. The diamond lattice has the same atom po-
sitions as the zincblende lattice, but instead of two distinct elements it has only
one atom species. One of the articles, Publication VI, discusses crystal quality of
GaN films grown on sapphire, on which GaN always crystallizes in the hexagonal
wurtzite lattice. Beside the wurtzite lattice, GaN crystals may grow in the cubic
phase, but the wurtzite form is more common. The hexagonal wurtzite lattice is
illustrated in Fig. 1.1 b).
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Figure 1.1: a) Zincblende unit cell consists of 8 atoms of 2 elements, here labeled A1–A4

and B1–B4. b) Hexagonal wurtzite cell consists of 12 atoms of 2 elements, here labeled

C1–C6 and D1–D6. In both a) and b) the nearest neighbors are connected with thick lines.

Also, the atoms belonging to the neighboring cells are drawn translucent and indicated

with bracketed labels.

Monocrystals, i.e. single crystals, are solid pieces of matter having their whole
volume repeating the same pattern of atoms. The size of crystals vary consid-
erably, and the biggest monocrystals may measure several meters. All samples
studied in Publications I–IX were monocrystals, except the InP epitaxial lateral
overgrowth (ELO) structures of Publication III, which had small-angle crystal
boundaries, and they could thus be labeled either mono- or polycrystals depend-
ing on a matter of opinion. Polycrystals consist of small crystallites that are in-
terconnected through crystal boundaries. The crystallite boundaries contain a
large number of dislocations, which are the result of connecting two lattices with
adverse orientation on the boundary. The size and orientation of the crystallites
in the polycrystalline matter may vary considerably depending on the composi-
tion and growth conditions of the crystallites. A sample having crystallites ori-
ented almost similarly, so that the angles between the crystallite lattices are very
small, may in extreme cases be somewhere half-way between mono- and poly-
crystalline. Such a sample could be a polycrystal with unusually small boundary
angles, or simply a monocrystal with numerous dislocations in a specific pattern.
Notwithstanding the ambiguous transition from monocrystals to polycrystals, the
size of the crystallites in a polycrystalline matter can be anything between few
tens of nanometers to few millimeters, after which the crystallites would typically
be called small monocrystals.
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2 Experimental Techniques

2.1 X-Ray Diffractometry

After the initial discovery of X-rays by W.C. Röntgen in 1895, the X-rays were
immediately used for recording absorption images on photographic plates [4]. A
few years later, X-Ray diffraction by crystals was first discovered by W. Friedrich,
P. Knipping, and M. von Laue [5, 6, 7]. The discovery of a physical law con-
necting the X-ray wavelength and the reflection angle in the X-ray diffraction by
W. L. Bragg [8] opened up the possibility to study the exact coordination of the
atoms in crystals, which rapidly developed into the field of X-ray crystallography
of minerals and other crystals.

In the geometrical optics of X-ray diffraction the diffracting crystal is described as
a set of parallel planes of atom layers separated by a constant distance d, which
is called the lattice plane spacing. The X-rays are modeled by using conventional
ray optics, assuming partial reflection of the X-rays of the incident plane wave
from the atom planes. Like any two distinct lines in the three dimensional space,
the incident and diffracted X-ray beams determine a plane, which is called the
diffraction plane. Depending on the geometrical distance, the diffracted X-rays
either strengthen or dampen when they interact with each other by interference.
Then, Bragg’s law of diffraction [8]

nλ = 2d sinθ (2.1)

is a direct consequence of the geometrical ray optics, and the requisite path dif-
ference enabling the constructive interference between the diffracted X-rays, as
shown in the drawing of Fig. 2.1. The geometrical path differences in Bragg
diffraction depend only on the lattice spacing d and diffraction angle θ . There-
fore, Bragg’s law is usually used for determining the atomic spacing d from the
known X-ray wavelength λ and the Bragg angle θ , which is half of the measured
diffraction angle 2θ .

The X-ray diffractometry (XRD) in Publications II, III, V, and IX was made with
Philips X’Pert Pro diffractometer using normal resolution and high-resolution ge-
ometries. The X’Pert Pro diffractometer utilizes the characteristic radiation of the
K absorption edge of the copper target inside the X-ray tube. When bombarded
with electrons having 10–50 keV of kinetic energy, the copper target releases

3
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Figure 2.1: The geometrical optics of the Bragg X-ray diffraction from lattice planes with

spacing d. The diffraction plane coincides the plane of the drawing. The incident �k′n and

the diffracted �kn X-ray vectors of the respective plane waves have a path difference that is

an integer multiple of Δx . Thus, Δx = 2d sin(θ ) must equal nλ for some positive integer n
in order to constructive interference to be possible.

X-ray radiation, which has three main components, the Cu-Kα1, Cu-Kα2 and Cu-
Kβ characteristic X-ray peaks. The normal-resolution mode of the diffractometer
has a nickel plate for filtering out the Cu-Kβ X-ray radiation, so that both of the
Cu-Kα maxima remain in the X-ray spectrum. In the high-resolution mode the
four-crystal Ge-220 monochromator blocks everything but the Cu-Kα1 radiation
in order to achieve the maximum spectral resolution.

2.1.1 High-Resolution X-ray Diffractometry

High-resolution X-ray diffractometry (HR-XRD) can be used for accurate determi-
nation of the lattice parameters and the crystal quality of semiconductor crystals,
if the normal-resolution mode of a diffractometer is not adequate. The X’Pert
Pro diffractometer, which was used for collecting the HR-XRD data of Publica-
tions II, III, V, and IX, has a four-crystal Ge-220 monochromator for maximum
spectral and spatial accuracy of the incident X-ray beam. After the X-rays pass
through the monochromator, they diffract from the sample surface. Before the
X-rays reach the point detector, they must be once more diffracted at the analyzer
crystal, which improves the angular detection accuracy. Together the monochro-

4
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Figure 2.2: A schematic drawing of a HR-XRD setup showing the angles adjustable with

the goniometer, i.e. diffraction angle 2θ , incident X-ray angle ω, azimuthal sample rotation

angle φ, and the tilt angle ψ.

mator crystals, the sample and the analyzer crystal are called the triple-axis sys-
tem, which enables an angular resolution of about 12 arcseconds for the X’Pert
Pro. Figure 2.2 shows a schematic representation of the triple-axis HR-XRD setup
utilized in data collection for Publications II, III, V, and IX.

An able X-ray diffractometer has a system of goniometers that can independently
rotate the sample crystal about the incident X-ray angle ω axis, the azimuthal
sample rotation angle φ axis, and the tilt angle ψ axis. The detector can also
be rotated about an axis perpendicular to the diffraction plane, so that the de-
tector angle corresponding to the diffraction angle 2θ may be arbitrarily chosen.
Probably the most common measurement type for a traditional XRD system is
the rocking curve scan, which is performed by increasing ω while keeping the
detector at the center of the expected diffraction angle 2θhkl . The rocking curve
scan yields information about the orientation variation of the scanned crystal
planes related to the diffraction hkl within the diffraction plane. Another com-
mon measurement, especially for HR-XRD, is the ω–2θ scan, where ω and θ are
increased by equal amounts during the scan, which makes the diffraction angle
2θ to change with twice the angular velocity in respect to the incident X-ray angle
ω. Before the ω–2θ scan can proceed, the angles φ and ψ, as well as the offset
angle betweenω and θ should be aligned into suitable starting positions, usually
by finding the highest possible detected X-ray intensity peak by performing test
scans for each of the angular axes. Even though ω and 2θ are moved, the offset
between ω and θ , as well the angles φ and ψ are kept constant during the scan.

5



After the initialization has been completed, i.e. the X-ray peak has been found,
the angular space around the peak is scanned. This procedure yields an X-ray
diffraction curve, which reveals information about the lattice strain and orienta-
tion with respect to the lattice planes corresponding to the diffraction indices hkl
of the scan.

The good angular accuracy of the HR-XRD also necessitates excellent crystal qual-
ity of the measured samples, because the four-crystal monochromator reduces
the incident X-ray intensity to about one tenth of the normal-resolution mode
intensity to begin with, and furthermore the HR-XRD geometry is far more sensi-
tive to any imperfections in the crystal lattice of the sample. Thus, in all but the
highest-quality crystals the normal-resolution XRD mode has to be used in order
to record enough diffracted intensity under practical measurement time frames.
Normal-resolution XRD was used extensively in Publications III and IX in order to
collect data from small crystallites having relatively imperfect lattices and small
volumes.

2.1.2 Real and Reciprocal Lattices

Because the crystal lattice can be constructed by repeating copies of the unit cells
without leaving any empty space between the adjacent cells, the positions of
the cell corners are always reachable with integer multiples of the unit cell edge
lengths, if the path is traveled along the cell edges. Thus, it is straightforward
to define lattice unit vectors �a1, �a2, and �a3 spawning from a single corner of the
unit cell, and having the length of and extending along the three corresponding
unit cell edges. Using the lattice unit vectors as a basis, the corners of all the
cells in the lattice fall on integer coordinates �r = u�a1 + v�a2 + w�a3, where u,
v, and w are integers. Thus, the unit vectors �a1, �a2, and �a3 of a crystal lattice
are defined by the translational symmetry of the lattice itself, and they must be
linearly independent vectors, which could translate the geometrical lattice onto
itself in the three-dimensional space.

When X-ray diffraction problems are analyzed, it is convenient to define reciprocal
lattice unit vectors �q1, �q2, and �q3, in addition to the real-space lattice unit vectors.
The definitions of the reciprocal lattice unit vectors are based on the real-space
unit vectors �a1, �a2, and �a3 of the crystal lattice, and the reciprocal unit vectors

6



can be written as [9, p. 491]

�q1 =
1

Vu

�
�a2× �a3�

�q2 =
1

Vu

�
�a3× �a1�

�q3 =
1

Vu

�
�a1× �a2� ,

(2.2)

where the unit cell volume Vu = �a1·(�a2×�a3). The reciprocal rule that �an·�qm = 1 if
and only if n = m, and zero otherwise, follows directly from the definition (2.2).
For the cubic lattices the reciprocal unit vectors are parallel to the real-space
lattice unit vectors, but the same is not necessarily true for other types of lattices.
For example, the hexagonal lattices have �an and �bn parallel only for n = 3, but
not for n = 1 or n = 2.

2.1.3 Miller Indices and Lattice Spacing

The lattice spacing d, which is measurable by XRD, can be connected to the
lattice constant a of the crystal by equations based on the lattice geometry. These
equations contain integers describing the orientation of a plane within a lattice.
The integers are called Miller indices, and they are related to the reciprocal lattice
unit vectors �q1, �q2, and �q3. Miller indices can be used with the parentheses for the
crystal planes (hkl), with the braces for the symmetrically equivalent set of the
crystal planes {hkl}, with the square brackets for the crystal directions [hkl], with
the angle brackets for the symmetrically equivalent set of the crystal directions
〈hkl〉, and without brackets for the diffractions hkl. Then, Miller indices (hkl)
describe a crystal plane S in the lattice by its normal vector �s with a simple
relation �s = h�q1 + k�q2 + l�q3 using the reciprocal vectors. For the cubic lattices,
the connection between Miller indices of a diffraction hkl, lattice spacings d and
lattice constant a depend on the lattice geometry by

d =
a�

h2+ k2+ l2
, a = |�a1|= |�a2|= |�a3| . (2.3)

The hexagonal lattice has two distinct lattice constants a and c, of which a is the
hexagon edge length and c is the spacing between the hexagonal sheets. The

7



equation for lattice spacing d in hexagonal lattice is

1

d2
=

1

a2

�
4

3
(h2+ hk+ k2) +

l2a2

c2

�
, a = |�a1|= |�a2|, c = |�a3| . (2.4)

Because the Miller indices hkl in the X-ray diffractometry of the inorganic semi-
conductor crystals are all bound to be small integers, they can be often deter-
mined if the lattice spacing d is known exactly, and the lattice constant a is
known approximately. This analysis was done for the InP pyramidical hillocks
in Publication IX by assuming that the lattice constant a would be fairly close to
that of Ge. The aim was to ascertain that the measured diffraction peaks were
from the {111} crystal planes of the InP pyramidical hillocks, and not from some
other unidentified crystal planes {hkl}.

2.1.4 Structure Factor and Forbidden Reflections

Crystals having the simple cubic lattice structure can diffract X-rays from any of
their crystal planes for which the Bragg condition is met. However, this is not
generally true for all of the lattice structures, most of which have so-called for-
bidden reflections, which do not produce diffracted intensity even if the Bragg
condition is met. The intensity of the diffracted X-ray beam depends on a prop-
erty of the crystal called the structure factor Fhkl . The amplitude of the electric
field of the X-ray beam diffracted from a crystal is proportional to |Fhkl |, so that
the diffracted X-ray beam intensity is proportional to |Fhkl |2 in Bragg diffraction
[10, p. 29]. The structure factor is defined by

Fhkl =
Nu∑

n=1

fne
2πi
λ (�k−�k′)·�rn

=
Nu∑

n=1

fne2πi(h�q1+k�q2+l�q3)·(un�a1+vn�a2+wn�a3)

=
Nu∑

n=1

fne2πi(hun+kvn+lwn) ,

(2.5)

where hkl are the Miller indices of the diffraction, fn are the atomic scattering
factors, and un, vn, and wn are the fractional coordinates of each of the Nu atoms
in the crystal’s unit cell [9, p. 117]. The fractional coordinates range from zero
to unity, and the atomic scattering factors fn depend on the species of the atom
n in the unit cell. In a given lattice, the terms of the sum in equation (2.5) may
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Table 2.1: The squared structure factors of the diamond, zincblende [10, p. 34], and

wurtzite lattices. The wurtzite structure factors are calculated using the data from [10]
and [12]. In the Miller indice rules, n and m are any integers fulfilling the conditions, and

zero is considered to be an even number. The atomic scattering factors fA and fB refer to

the two constituent atom species in the zincblende and wurtzite lattices.

Rule for the Squared structure
Lattice Miller indices hkl factor F2

hkl Remarks
Diamond h+ k+ l = 4n, all even 64 f 2 Largest

h+ k+ l �= 4n, all even 0 Forbidden
hkl all odd 32 f 2

hkl mixed 0 Forbidden
Zincblende h+ k+ l = 4n, all even 16( fA+ fB)2 Largest

h+ k+ l �= 4n, all even 16( fA− fB)2 Weak
hkl all odd 16( f 2A + f 2B )
hkl mixed 0 Forbidden

Wurtzite h+ 2k = 3n, l = 8m 4( fA+ fB)2 Largest
h+ 2k = 3n, l = 4m+ 2 4( f 2A + f 2B )
h+ 2k = 3n, l = 8m+ 4 4( fA− fB)2 Weak
h+ 2k = 3n, l odd 0 Forbidden
h+ 2k �= 3n, l = 8m ( fA+ fB)2

h+ 2k �= 3n, l = 4m+ 2 f 2A + f 2B
h+ 2k �= 3n, l = 8m+ 4 ( fA− fB)2 Weak
h+ 2k �= 3n, l = 8m± 1 3( f 2A − 1�

2
fA fB + f 2B )

h+ 2k �= 3n, l = 8m+ 4± 1 3( f 2A +
1�
2

fA fB + f 2B )

cancel each other out for some diffractions hkl, in which case Fhkl = 0. Thus,
the diffraction intensity would be zero, and no diffraction would actually occur.
Such diffractions hkl are called forbidden reflections, because there would be no
diffracted intensity even if the Bragg condition (2.1) was fulfilled for the partic-
ular diffraction. The exact values for the squared structure factors applicable to
the materials studied in this work are listed in Table 2.1.

Silicon (Publication III) and germanium (Publications II, IV and IX) have the
diamond lattice structures, for which all of the diffractions are forbidden expect
those either having all the Miller indices hkl odd, or alternatively, all hkl even and
their sum divisible by four. Almost the same rule for forbidden reflections is valid
for the zincblende lattice structure of III-V compound semiconductors InAs, InP,
GaAs and GaInP, which were topographed in Publications I, II, III, IV, V, VII, VIII
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and IX. However, in addition to the diamond lattice reflections, the zincblende
lattice shows weak diffractions for reflections having all hkl even and h+k+ l+2
divisible by four [9]. Figure 1.1 a) shows the atom positions in zincblende lattice
unit cell. GaN studied in Publication VI has the hexagonal wurtzite lattice, a
schematic drawing of which is in Fig. 1.1 b). The hexagonal cell is not the unit
cell of the wurtzite lattice [11], but helps visualizing the hexagonal symmetry
of the lattice. As shown in Table 2.1, all reflections are allowed in the wurtzite
lattice, except those that have h+ 2k divisible by 3 and l odd. However, those
of the allowed reflections that have l = 8m+ 4 for some integer m are weak, i.e.
they would be forbidden if the lattice consisted of only one atom species.

2.1.5 Ewald Sphere

Figure 2.3 shows a schematic drawing of the cross-section of the Ewald sphere
for 040 diffraction, which is a reflection commonly used in XRD measurements.
The Ewald sphere is constructed in the reciprocal space, and it is centered at the
origin of the equal-length incident �k′ and diffracted �k reciprocal X-ray beam vec-
tors. The diffraction vector �g = �k −�k′ connects the reciprocal origo 000 to the
reciprocal lattice point hkl of the diffraction, and both of the diffraction vector
endpoints lie on the surface of the Ewald sphere. In crystallography, the lengths
of the X-ray beam vectors and thus the radius of the Ewald sphere are usually
chosen to be |�k| = |�k′| = 1/λ, i.e. the reciprocal of the X-ray wavelength, as is
the case here, but occasionally it is scaled by a factor of 2π for mathematical
convenience [13, 78]. In order to X-ray diffraction to be possible, the diffraction
vector �g endpoints must coincide with reciprocal space points having integer co-
ordinates, but there is no such requirement for the Ewald sphere center. Because
|�k| = |�k′|, the vectors �k, �k′, and �g form an isosceles triangle inside the Ewald
sphere. Using the Ewald sphere construction in Fig. 2.3, the equation for the
X-ray diffraction simplifies to

�k−�k′ = h�q1+ k�q2+ l�q3, (2.6)

from which the Bragg’s law (2.1) can be directly derived.

The Ewald sphere construction is particularly useful in the wide-spectrum SR-XRT
case, as shown in the schematic drawing of Fig. 2.4, where several diffractions �gn

(n = 1 to 8) with distinct X-ray wavelengths λn correspond to the Ewald spheres
having different radii. The number of the possible diffractions is limited by the
width of the available spectrum, which is indicated by the limiting wavelengths
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Figure 2.3: Schematic drawing of l = 0 cross-section of the Ewald sphere in the recip-

rocal space. The drawing corresponds to the single-wavelength XRD geometry with 040

diffraction from a cubic crystal. The diffraction vector �g is determined by the incident X-ray

vector �k′ and diffracted X-ray vector �k so that �g = �k−�k′ and |�k| = |�k′| = λ−1. Dashed vector
�k′ and the dashed horizontal line represent the incident X-ray beam and the crystal surface

assumed to be parallel to the diffracting planes, i.e. the real-space (xz-plane), in respect to

the diffracted beam �k.

λa and λb in the figure. In the wide-spectrum Laue case the crystal diffracts all
of the allowed diffractions that have their reciprocal lattice points hkl between
the limiting spherical surfaces, only some of which are shown in Fig. 2.4. The
parallel diffraction vectors �gn of the 200, 400, 600, and 800 diffractions also
have parallel �kn-vectors for n = 1 to 4, which means that the diffracted beams
h00 overlap and go into exactly the same direction. However, diffractions 200
and 400 are either forbidden or weak in the diamond and zincblende lattices,
respectively, so that the total intensity of the diffractions h00 may mainly consist
of the diffractions 400 and 800. The hh0 type reflections 220, 440, and 660 are
similarly headed to common direction, but none of them are forbidden in the
diamond and zincblende lattices. The diffractions �gn (n = 1 to 7) are backward-
diffracted, i.e. the angle between vectors �k′n and �kn is larger than 90

◦. The only
forward-diffracted beam shown in Fig. 2.4 is the forbidden reflection 140, for
which the angle between �k′8 and �k8 is clearly less than 90◦.
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Figure 2.4: Schematic drawing of l = 0 cross-section of the Ewald spheres in the recipro-

cal space. The drawing corresponds to the Laue geometry with continuous X-ray spectrum

with wavelengths between λa and λb, which is applicable for the synchrotron X-ray to-

pography case. Each of the diffraction vectors �gn are determined by the parallel incident

X-ray vectors �k′n of wavelength λn and the diffracted X-ray vectors �kn so that �gn = �kn −�k′n.

The diffractions plotted with dashed lines are forbidden in the diamond lattice, and either

forbidden (140) or weak (200 and 600) in the zincblende lattice.

2.1.6 Reciprocal Space Maps

Reciprocal space maps (RSM) of Publications II and IX were measured in the HR-
XRD-mode of the diffractometer, even though they could have been measured
in XRD-mode, albeit with considerably worse accuracy. RSMs are measured by
scanning a series of ω–2θ curves, where the offset between the incident X-ray
angle ω and the Bragg angle θ is varied between the scans. Thus, any small vari-
ations in the lattice constant or lattice orientation of the sample crystal produce
measurable intensity for their respective ω,θ values. These intensity values in
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Figure 2.5: Asymmetrical 224 reciprocal space map of strained Si on relaxed SiGe buffer

on Si substrate measured by the author, and previously published in [14]. Reciprocal coor-

dinates qx y and qz correspond to components 220 and 004, respectively.

ω,θ space are further mapped to reciprocal space by assuming that changes in
lattice orientation are negligible, i.e. that all intensity changes in ω and θ are
related to changes in lattice constants along principal crystal axes rather than in
lattice orientation. Provided that the assumption is valid, it is possible to calcu-
late the diffracted intensity on the Ewald sphere in the reciprocal space, and map
the data to reciprocal space coordinates qx , qy , and qz, which correspond to the
reciprocal unit vectors �q1, �q2, and �q3 of the cubic lattice. The RSM thus shows the
strain-induced variations in the lattice constants along the reciprocal axes of the
measured diffraction plane (hkl), where h, k, l are the Miller indices. In practice,
the RSMs are measured either at a symmetrical diffraction geometry (e.g. 004
diffraction in the cubic lattices), or at an asymmetrical diffraction geometry (e.g
224 diffraction in the cubic lattices). The asymmetric geometry is beneficial if lat-
tice relaxation is to be expected, because using an asymmetric geometry one of
the reciprocal axes lies along the sample surface, i.e. on the relaxation direction.
Figure 2.5 shows an asymmetrical 224 RSM measured from a sample having a
12 nm thick strained Si on relaxed SiGe buffer on Si substrate [14]. The RSM
has two main diffraction peaks, these are produced by the Si substrate and the
fully relaxed SiGe buffer. The faintly visible very thin strained Si layer is clearly
completely strained with no relaxation, because it has the same qx y coordinate
as the SiGe layer it is grown on.
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2.2 Synchrotron Radiation X-Ray Topography

2.2.1 Synchrotron Radiation

Synchrotrons produce wide spectrum of radiation by utilizing Bremsstrahlung,
which is electromagnetic radiation produced by accelerating charged particles. In
synchrotrons, electrons or positrons are accelerated to near light speed in vacuum
and put into a large storage ring, where the direction of the charged particle
beam is altered by bending magnets, so that the path of the charged particles
forms a closed ring. Synchrotron radiation can be extracted and utilized by the
bending magnets and insertion devices: wigglers or undulators. Figure 2.6 shows
an illustration of a synchrotron radiation source, where bending magnets are
used as X-ray sources at the storage ring. In the illustrated source there is a linear
accelerator sourcing the synchrotron with fast charged particles, either electrons
or positrons. The synchrotron further accelerates the charged particles, which
are then transferred to the storage ring during injection. Injection of the charged
particles into the storage ring may halt the normal operation of the synchrotron
radiation source, because the orbits of the charged particles are disturbed and
the quality of the beam collimation drops, and the beam shutters are usually
closed for safety reasons. The charged particles continue to orbit the storage
ring for a few hours, during which time their Bremsstrahlung at the bending
magnets or insertion devices can be exploited as an X-ray source. When a path
of fast electrons (or positrons) is turned in a bending magnet or an insertion
device inside the synchrotron, an intense beam of wide-spectrum electromagnetic
radiation emerges due to the normal component of the electron acceleration. If
the particles are fast enough, the frequency of the photon radiation may reach
the X-ray or γ-ray parts of the electromagnetic spectrum. The bending magnets of
large synchrotrons produce wide electromagnetic spectra ranging from infrared
radiation through light and ultraviolet UV radiation into X-rays, and consequently
the radiation is called wide-spectrum radiation or white beam radiation.

Most of the synchrotron radiation X-ray topography (SR-XRT) experiments of
Publications I–IX were made at the topography station F1 of the Hamburger
Synchrotronstrahlungslabor am Deutsches Elektronen-Synchrotron (HASYLAB-
DESY) in Hamburg [17], with the rest made at the topography beamline of
Angstromquelle Karlsruhe (ANKA) at Forschungszentrum Karlsruhe [18, 19].
The DESY synchrotron radiation source is operated according to the principle
outlined in the schematic illustration of Fig. 2.6. The X-ray photon flux Φ of a
synchrotron is measured with its spectral brightness, which takes into account
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Figure 2.6: An illustration of a synchrotron radiation source with four of the bending

magnets used as insertion devices A–D, each having corresponding experimental stations.

the synchrotron X-ray photon beam emittances εx and εy , and which has a
unit photons/s ×mm−2mrad−2(0.1 % Bandwidth)−1 [20]. The spectral bright-
ness of HASYLAB-DESY F1/Topography beamline at typical synchrotron storage
ring beam current of 140 mA is shown in Fig. 2.7, where the maximum spec-
tral brightness is ≈ 5 × 1013 photons/s ×mm−2mrad−2(0.1 % Bandwidth)−1 at
the critical photon energy 16 keV of the DORIS III storage ring bending magnets.
Spectral brightnesses of modern 3rd-generation storage ring insertion devices are
in the range of 1019−1022 photons/s×mm−2mrad−2(0.1 % Bandwidth)−1, which
is too large a spectral brightness for X-ray topography.

The DORIS III synchrotron storage ring bending magnet spectral brightness curves
in Fig. 2.7 are calculated from

d2I
dωsdΩs

=
q2

12π3ε0c

�ωsρ

c

	2
 1

γ2
+ ϑ2

�2
�
K2
2/3(ξ) +

ϑ2

1/γ2+ ϑ2
K2
1/3(ξ)

�
(2.7)

ξ=
ωsρ

3c



1

γ2
+ ϑ2

�3/2

and γ=
E

m0c2
[21], (2.8)
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Figure 2.7: X-ray spectral brightnesses of DESY DORIS III bending magnet source at

F1/Topography station on various vertical positions. The vertical distance is measured

from the center of the synchrotron plane inside the Laue-camera positioned 37 m away

from the source [15]. The positron current is 140 mA at 4.45 GeV positron energy. The

curves are calculated from DESY parameters [16] using equations (2.7) and (2.8).

where I is the X-ray radiation energy per positron, ωs the angular frequency of
the X-rays, Ωs the solid angle of the radiation cone, q the elementary charge,
ε0 the vacuum permittivity, c the speed of light in vacuum, γ the relativistic
factor, ρ the instantaneous synchrotron orbit radius, ϑ the angle between the
synchrotron plane and the X-rays, E the positron energy at DORIS III, and m0 the
positron rest mass. K2/3(ξ) and K1/3(ξ) are the modified Bessel functions. From
the energy per bandwidth dI/dωs it is possible to calculate the X-ray photon flux
per 0.1 % bandwidth Φ = (10−3/ħh)× (dI/dωs)× (Ic/q), where Ic is the positron
current of the synchrotron [22]. Finally, the spectral brightness can be calculated
from the X-ray photon flux Φ by dividing it with the product of the horizontal and
vertical photon beam emittances εx and εy , which are characteristic properties of
a synchrotron [21].
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2.2.2 Laue Patterns

If a crystal is exposed to the white beam radiation, the Bragg diffraction condi-
tion of equation (2.1) is fulfilled for all of the crystal planes (hkl) that are hit by
the beam. The white beam spectrum contains, among others, the correct Bragg
wavelength λhkl for the Bragg angle θhkl between any lattice plane (hkl) and the
incident beam, so that an X-ray beam having a wavelength of λhkl is diffracted.
Therefore, multiple diffracting beams having distinct wavelengths λhkl are pro-
duced by a single incident white beam. The diffracted X-ray beams diverge to
various diffraction directions �g depending on the lattice structure and orienta-
tion of the crystal. The geometrical projection of diffraction vector �g end points
on a plane is called the Laue pattern after the German physicist Max von Laue.
Laue patterns can be experimentally produced by irradiating crystals, preferably
monocrystals, and simultaneously exposing X-ray sensitive films or photographic
plates to the diffracted X-ray beams. The first Laue patterns were recorded by
M. Von Laue et al by utilizing the continuous part of the X-ray spectrum of an
X-ray tube [5]. If the monocrystal is of sufficient quality, a Laue pattern is seen
as a set of dark spots on the exposed film. The basis of the original Laue method
has survived in scientific use to the present day, albeit only when used with the
more powerful synchrotron X-ray sources. An individual spot in the Laue pat-
tern is called an X-ray topograph. The topographs are roughly the same size
as the cross-section of the incident beam, but the spots may be elongated for
geometrical reasons. The positions of the topographs in a Laue pattern can be
straightforwardly calculated using simple vector geometry by assuming mirror-
like reflections from the crystal planes. By measuring the topograph positions
on the film it is possible to determine the crystal orientation, and calculate the
Bragg angles θhkl from the geometry, and then combine the lattice spacings from
equations (2.3) or (2.4) with Bragg’s law (2.1) to find the X-ray wavelengths
and energies of each topograph. Figure 2.8 shows a Laue pattern of topographs
recorded by the author using synchrotron radiation. The Laue pattern was in-
dexed with a computer program, which calculates the X-ray energies and Miller
indices hkl of the topographs by using the explained method.

For a given X-ray wavelength fulfilling the Bragg diffraction condition, there may
also be other X-ray wavelengths diffracting at exactly the same Laue geometry.
These distinct diffractions occur at harmonic X-ray frequencies, which are integer
multiples of the the base frequency. The Miller indices corresponding to the har-
monic frequencies are also integer multiplies of the smallest possible choice of
the Miller indices describing the diffracting crystal plane. The occurence of har-
monic diffractions in cubic reciprocal space is shown schematically in Fig. 2.4,
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Figure 2.8: Laue pattern of large-area transmission topographs recorded from a GaAs

crystal. The sample was rotated 8.5◦ about the horizontal axis by tilting the sample holder.

Simulated Laue spots are overlaid onto the pattern together with the related Miller indices

of the smallest allowed diffractions. Also, the corresponding diffraction energies are calcu-

lated. (Recorded in HASYLAB, Feb 2007, film 215)

where some of the harmonic diffractions of type h00 and hk0 (h= k) are shown.
In practice, a topograph recorded on X-ray film may consist of overlapping im-
ages produced by subsequent harmonic X-ray frequencies, but in some cases only
one harmonic frequency is dominant and produces a strictly monochromatic to-
pograph. The transmission topographs recorded from {331} InAs crystal planes
and printed in Publication I are such monochromatic topographs.
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2.2.3 Topographs

There are several possible detection techniques available for Laue patterns and
the topographs: scintillation screen optics, storage phosphor image plate sys-
tems, structured scintillation screen optics, directly excited charge-coupled de-
vices (CCD), and specially crafted photocathode video cameras [23, 24]. The
spatial resolution of X-ray sensitive high-resolution films rF � 1 μm has been su-
perior to the other detection techniques having r0 > 1 μm [23], which has been
the driving reason to only use high-resolution film as a synchrotron radiation
X-ray topography (SR-XRT) detector. However, recent developments in scintil-
lator detector cameras have produced topographs comparable to those on high-
resolution film [25]. Thus, high-quality SR-XRT topographs are generally either
recorded on high-resolution X-ray film [17, 26], or produced with a combination
of a scintillator and a digital CCD detector [25]. All topographs in Publications I–
IX were recorded on high-resolution Slavich VRP-M holographic X-ray sensitive
films, and subsequently enlarged with optical microscope.

Provided that the resolution of the detector is adequate, the geometric resolution
depends on the source-to-sample distance L, the sample-to-detector distance x ,
and the size of the source. For the DORIS III synchrotron bending magnets the
standard deviations of spatial distributions around the central positron orbit are
σx = 1.0 mm and σz = 0.3 mm, which corresponds to FWHM sizes Σx = 2.4 mm
and Σz = 0.71 mm. Thus, the horizontal and vertical geometrical resolutions,
both defined by r = x

L
Σ, are rx ≈ 4 μm and rz ≈ 1 μm for the DORIS III bending

magnet at the F1 Topography station. The F1 Topography station sample-to-
detector and source-to-sample distances are x ≈ 60 mm and L ≈ 37 m, respec-
tively [15].

The high irradiance of the synchrotron radiation allows for exposure times of
minutes or seconds [27], which is far shorter than the several days or hours
required in conventional X-ray topography on high-resolution holographic X-ray
sensitive film [28]. Another advantage of synchrotron radiation is the small spa-
tial size of the source and very high degree of collimation of the X-ray beam. The
high degree of collimation enables the use of long source-to-sample distances
without significant angular divergence or decrease in X-ray intensity. The source-
to-sample distances in synchrotron topography can be tens of meters, which can
be exploited by increasing the sample-to-film distance to over 10 cm without loss
of geometrical resolution affecting the overall resolution. Resolution of X-ray
tube topography is always limited by the geometrical resolution, which neces-
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Figure 2.9: A schematic representation of a typical setup used in the synchrotron radia-

tion X-ray transmission topography geometry.

sitates sample-to-film distances of less than 1 cm. Thus, complicated sample
mounting setups with cryogenic vacuum devices or other apparatuses are far
easier to implement in SR-XRT than in conventional topography.

2.2.4 Transmission Topography

The few distinct measurement configurations available in SR-XRT are mainly clas-
sified by the measurement geometry. In transmission topography the film is put
behind the sample crystal, so that all the X-ray radiation recorded on the film
must have traveled through the sample. Thus, the X-ray penetration depth in
transmission topography is equal to the thickness of the sample, and therefore
transmission topography provides information about the full volume of the im-
aged area within the sample. Figure 2.9 is a schematic representation of a typical
transmission topography setup. The setup consists of a sample holder with an
X-ray hole, a sample crystal, a film holder and the X-ray film. In front of the
film there is a beam stopper made of lead for preventing potential damage to the
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Figure 2.10: 113̄ large-area transmission topograph of a highly As-doped silicon wafer

showing dislocation belts and threading dislocations. Diffraction vector �g projection and

some crystal directions along the sample surface are indicated.

film inflicted by the direct beam. The X-rays travel through the sample, wherein
some of the X-ray wavelengths are diffracted into various directions and form the
topographs onto the film. Because the diffractions happen at specific low-index
atom planes of the crystal, the distribution of the topographs reflects the same
symmetry that the crystal has. However, due to the geometrical projection of the
diffracted directions, it is not always easy to immediately recognize what kind of
crystal geometry a given Laue picture has. Figure 2.8 shows a Laue pattern of
large-area transmission topographs recorded from a GaAs crystal, with simulated
Laue-spots, Miller’s indices, and X-ray energies overlaid on top of the image.

The transmission geometry is further subdivided into large-area transmission to-
pography and transmission section topography. The beam size in large-area trans-
mission topography is several square millimeters, and the shape of the beam is
often close to a square or a rectangle, even though circular, elliptical or other
beam shapes can readily be used. Large-area transmission topography is espe-
cially suited for studying crystal wafers of electronic materials known to have
only few dislocations (i.e. 0 . . . 104 cm−2, such as GaAs substrates [29, 30], and
InSb substrates [31], and InAs substrates (Publication I). The advantage of the
large-area transmission SR-XRT geometry are the facts that it is nondestructive
to the samples, and that it can, in principle, image all the dislocations inside
the bulk of the sample. Figure 2.10 shows a large-area transmission topograph
displaying numerous dislocations, which are almost all aligned to belts bor-
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Figure 2.11: 311 transmission section topograph of an InP ELO layer on Si sample of

Publication III. The substrate lattice displays clear Pendellösung fringes. Strain fields in

the Si substrate S, ELO layers E, an empty growth window W , and diffraction vector �g
projection are indicated.

dered by {110} crystal planes. Due to the relatively low dislocation density of
≈ 5 × 103 dislocations/cm2 and almost macroscopic size of the ordered struc-
tures of dislocations in the sample, it would be almost impossible to discover the
belt structure with any other method than large-area SR-XRT.

In the transmission section topography the cross-section of the X-ray beam is con-
fined to an almost linear shape by inserting a narrow slit in front of the beam.
Notwithstanding the addition of the slit, the geometry in transmission section
topography is exactly the same as in large-area transmission topography. The
horizontal width of the beam can be several millimeters, but the vertical beam
thickness is limited to few tens of micrometers. The incident X-rays interact with
the crystal only within a narrow section of the sample due to the shape of the in-
cident beam. The reduction of the beam area also significantly reduces the total
diffracted X-ray energy, so that the exposure time required in transmission sec-
tion X-ray topography for a given sample is roughly tens of times longer than the
same sample would require in large-area geometry. Transmission section SR-XRT
geometry was used in Publications III, VI, VII and IX. Specifically, section topog-
raphy was used to study the strain fields induced by the epitaxial features into
the Si and Ge substrate wafers In Publications III and IX, respectively. Figure 2.11
shows a 311 transmission section topograph of an InP ELO on Si sample of Pub-
lication III. The topograph shows clear Pendellösung fringes in the Si substrate,
but the fringes are deformed around the ELO growth windows due to the large
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Figure 2.12: A schematic drawing of the setup used in synchrotron radiation X-ray back-

reflection topography geometry.

strain fields caused by the ELO structures. Similar strain field effects studied by
transmission section SR-XRT have been reported for metallization-induced strain
[32, 33], and for the strain induced by laser micro-machining [34]. Publica-
tions VI and VII use transmission section SR-XRT for studying the epitaxial layer
quality, GaN on sapphire and doped GaAs on GaAs, respectively.

2.2.5 Back-reflection Topography

Back-reflection geometry allows the recording of the X-ray reflections that are
diffracted back from the sample surface (Fig. 2.12). In back-reflection SR-XRT
the majority of diffracted X-rays do not penetrate the sample deeper than few
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tens of micrometers. The downside of large-area back-reflection topography is
an undesired background intensity on the topograph, which is produced by X-ray
fluorescence emitted from the sample surface. Generally, heavier elements pro-
duce more X-ray fluorescence. The total amount of the background fluorescence
is also proportional to the total radiant power of the incoming X-rays hitting the
crystal surface, which often limits the practical beam size to 1× 1 mm2 or less.

The average X-ray penetration depth of back-reflection SR-XRT depends on the
material and orientation of the crystal, the diffraction vector �g and the Miller
indices hkl. The X-ray intensity I in the crystal decreases exponentially by

I = I0 exp−μ0z, (2.9)

where I0 is the original X-ray intensity, μ0 is the average linear attenuation co-
efficient of the material at X-ray wavelength λhkl , and z is the depth. The back-
reflected X-ray intensity of a topograph recorded from the depth of the attenua-
tion length ζ = 1/μ0 is less than I0 exp(−2μ0ζ) = I0 exp(−2) = 0.135× I0, i.e.
13.5 % of the intensity diffracted from the immediate surface. The attenuation
length ζ is therefore a reasonable practical limit for the depth beyond which no
significant contrast will be observed in the topograph, and can be considered the
X-ray penetration depth in the back-reflection topography.

The average linear attenuation coefficient μ0 depends heavily on the X-ray wave-
length λhkl of the diffraction hkl. Because the Bragg angle θ can be straightfor-
wardly measured from the likely-known crystal orientation and the diffraction
vector �g projection, it is feasible to calculate the Miller indices from the Laue
pattern, and calculate the lattice spacings from (2.3) or (2.4) for known lattice
constant a. Inserting the lattice spacing d and Bragg angle θ into Bragg’s law
(2.1), the X-ray wavelength λhkl and thus the average linear attenuation coeffi-
cient μ0 and the penetration depth ζ can be calculated for any diffraction hkl.
However, there are usually a number of allowed Miller indices hkl with integer
proportions having the same diffraction geometry but distinct X-ray wavelengths,
so that a back-reflection topograph may actually consist of a number of diffrac-
tions with different penetration depths. The outlined technique for determining
the penetration depth of X-rays for given diffraction hkl was used in Publication I,
where a back-reflection topograph was found to image mainly the epitaxial layer
and not the substrate, due to the modest penetration depth.

Back-reflection section topography has the same main characteristics as the trans-
mission section topography, i.e. the X-ray beam is confined to a narrow line hav-
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Figure 2.13: A schematic drawing of the setup used in synchrotron radiation X-ray

grazing-incidence topography geometry.

ing a width of few tens of micrometers. Exposure times in the back-reflection
section topography geometry are again about ten times longer than in the back-
reflection large-area geometry. Back-reflection section topography was used in
Publications II–IV. The section topographs recorded from ELO growth window
openings of the samples of Publication III displayed high strain fields on the win-
dow edges, which would have been difficult to discover with other methods.

2.2.6 Grazing Incidence Topography

Grazing incidence X-ray topography is a variation of the back-reflection tech-
nique, but with the sample tilted so that the angle between the incident syn-
chrotron X-ray beam and the sample surface is small. Figure 2.13 shows a
schematic drawing of the sample and film positions relative to the X-ray beam in
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grazing incidence topography geometry. Grazing-incidence geometry was used
in Publication VII for imaging highly doped epitaxial GaAs layers on GaAs. A
relatively large area on the sample surface can be irradiated even with a narrow
beam, if the incident X-ray angle is less than 10◦. However, if the incident X-
ray angle ω is less than the critical angle αc ≈ λ(1/2πN Zre)1/2, a total reflection
occurs, in which case the X-rays typically penetrate the sample only about 50 Å
before reflection [35, 36]. Critical angles are rather small for X-ray photons used
in diffraction, e.g. silicon (100) αc(Si) = 0.22◦ for 8 keV X-rays. In most cases it
would not be reasonable to collect data from such a small volume of the sample
as would result from 50 Å penetration depth. However, when the incident angle
is small, yet larger than αc, the recorded X-ray topographs still tend to image
features from the immediate crystal surface. This is because the X-ray photons
penetrate the crystal at an angle, albeit larger than αc, but small enough to make
the X-ray photon momentum vector surface normal component small. Typical X-
ray penetration depth in grazing incidence geometry with ω > αc is in the order
of few μm [36], and it can be increased by increasing ω, which makes grazing
incidence geometry with αc <ω< 10◦ a practical method for SR-XRT.
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3 Defect Image Contrast in Topographs

3.1 Threading Dislocations

Threading dislocations are the most common line defects in crystals [37]. A thread-
ing dislocation is a one-dimensional structure consisting of imperfect ordering of
atoms within the lattice, and it manifests itself as a one-dimensional chain of
flawed packing of the atoms, continuing from atom to atom until it forms a loop
or terminates at a crystal interface. The imperfect ordering of the atoms around a
dislocation cannot be easily resolved, because practically all of the atoms around
the dislocation core would need to be relocated simultaneously, and the ener-
getic cost for that to happen is almost always too high. If only some portion of
the atoms around the dislocation core would be moved to their correct lattice
sites, the relocated atoms would simply force some of their neighboring atoms
out of the lattice sites due to geometrical and preferred interatomic bonding
length reasons, which would result in dislocation movement instead of disloca-
tion annihilation. Because of their persistence, the threading dislocations have
some properties that are similar to solid objects, namely they can move around
and bend within the crystal lattice, and they cannot disappear or change with-
out dislocation recombination or annihilation [38]. The dislocation movement
is made possible by dislocation gliding [39], a process where the atoms change
places a few at a time, and as a result the dislocation can move but not anni-
hilate. As the threading dislocations are merely defects in the normal order of
the lattice, they cannot exist without the lattice, and they necessarily either have
endpoints on the crystal surface or form closed loops. The number of disloca-
tions in a lattice can increase by dislocation multiplication caused by dislocation
sourcing. One of the earliest discovered dislocation sourcing mechanism was the
generation of the Frank-Read dislocation loops emerging from the Frank-Read
sources [38, 39, 40, 41, 42].

3.2 Burgers Vector

Burgers vector �b is used to describe the magnitude and direction of the lattice dis-
tortion caused by a dislocation [43]. Whenever there is a dislocation in the lat-
tice, the lattice becomes distorted, and any closed lattice unit vector path around
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the dislocation core has a discontinuity �b, which is the Burgers vector. Burgers
vector �b is a measure for the discontinuity of the lattice at the immediate environ-
ment of the dislocations, and the magnitude of the Burgers vector is measured in
lattice units along a path around the dislocation core the Burgers vector belongs
to. Figures 3.1 and 3.2 show illustrations of different dislocations having Burgers
vector magnitudes of one lattice unit each, but the discontinuities (i.e. Burgers
vectors �b) point into different directions compared to the dislocation line direc-
tion �� in each of the lattices. The magnitude and direction of the Burgers vector
stays constant along the dislocation line due to the same energetic and geometric
reasons that prevent spontaneous dislocation annihilation without excess energy.
The Burgers vector is also constant during dislocation gliding, and generally only
changes when two or more dislocations combine. The dislocations in crystals are
usually labeled after their Burgers vector and slip plane, which is a plane along
which the dislocations can easily glide. The slip planes are usually the lattice
planes with the highest atom packing density, and in the diamond and zincblende
lattices they are the {111} planes. A dislocation with slip distance a/

�
2, Burgers

vector �b = a/2[110], and {111} slip planes would be written as a/2〈110〉{111}.
Such dislocations labeled as a/2〈110〉{111} were found in Publications I, II, IV, V,
VII, and IX.

3.3 Edge Dislocations

A pure edge dislocation has its Burgers vector �b exactly perpendicular to the dislo-
cation line ��. Figure 3.1 shows a schematic representation of an edge dislocation
with Burgers vector length |�b| of 1 lattice unit. When a lattice has an edge dis-
location, there is an extraneous half-plane of atoms within the lattice, and this
superfluous half-plane terminates at the half-plane edge, which is the dislocation
core. The shaded row of the lattice unit cells in Fig. 3.1 indicates the extraneous
half-plane, which in a full lattice would continue indefinitely to the left, away
from the dislocation core. Pure edge dislocations of type a/2〈110〉{111} were
found in InAs in Publication I.
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Figure 3.1: An illustration of an edge dislocation in a lattice of equal-sized cubes, where

the Burgers vector length |�b| equals the edge length a of the cubes. The cubes in the figure

could represent the unit cells of a real cubic crystal. The extraneous half-plane of unit cells

is indicated by shading, and the dislocation line direction by vector ��.

3.4 Screw Dislocations

A pure screw dislocation resembles a screw or a spiral staircase running about
the dislocation core line at the center [39]. The Burgers vector �b of the screw
dislocation is parallel with the dislocation line. Figure 3.2 shows a schematic
representation of a screw dislocation with Burgers vector length of 1 lattice unit.
If the Burgers vector magnitude |�b| of a screw dislocation is very large, there
may form a small line-like void around the dislocation core. These void cores
are usually called micropipes or nanopipes, and they are often found in hexagonal
crystals, like the wurtzite GaN or wurtzite SiC [44, 45]. No micropipes were
detected in the GaN samples of Publication VI, but regular pure screw dislocations
of type a/2〈110〉{111} were found in InAs in Publication VII.

29



��

�b

a

a
a

Figure 3.2: An illustration of a screw dislocation in a lattice of equal-sized cubes, where

the Burgers vector length |�b| equals the edge length a of the cubes. The cubes in the

figure could represent the unit cells of a real cubic crystal. The dislocation line direction is

indicated by vector ��.

3.5 Mixed Dislocations

Mixed dislocations are dislocations that contain both the edge and screw com-
ponents. Most threading dislocations in real crystals follow a curved path and
are therefore mixed. A dislocation following a curved path may actually change
its type, because the dislocation line direction �� changes along the path, but the
Burgers vector �b must stay constant. If at some point at the mixed dislocation
arc �� and �b happen to be perpendicular, i.e. �b ·��= 0, that small part of the dislo-
cation is actually pure edge type. If the dislocation line is curved enough, there
may also exist some other point or points at the dislocation arc where �� and �b
are parallel, i.e. |�b×��| = 0, implying pure screw type at those points. However,
between these points the dislocation arc must be of the mixed type. Perhaps
the most common dislocation type in the diamond and zincblende lattices is the
60◦〈110〉{111} mixed dislocation [46]. Mixed 60◦〈110〉{111} dislocations were
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observed in Publications II, IV, V and IX.

3.6 Extinction contrast

Dislocations produce image contrast in the X-ray topographs because the strain
fields around the dislocation cores distort the lattice, which causes perturbations
in the diffraction near the dislocation cores. The actual discontinuity at the dis-
location core is very small, typically only a few ångströms wide. Because of the
small size of the dislocation core itself, it does not produce any detectable con-
trast in the topographs. The visible dislocation images are actually the images of
the strain fields formed around the dislocation cores in the crystal lattice. This
kind of dislocation image contrast is called the extinction contrast, and it can be
further subdivided into the direct image contrast, the dynamical contrast and the
intermediate contrast [47].

3.6.1 Direct image contrast

If dislocation strain fields produce extinction contrast in low-absorption condi-
tions, then the resulting topographs are called direct images with direct image
contrast, which is also called diffraction contrast. [47]. When a polychromatic
synchrotron X-ray beam travels through the lattice of a sample crystal, only one
wavelength of X-rays is diffracted for given Miller indices hkl, because only that
wavelength fulfills the Bragg condition for the indices hkl. The X-rays having the
correct Bragg wavelength diffract multiple times inside the crystal, where their
energy is distributed within the Borrmann triangle, which reduces the observed
intensity on the topographs, because the original X-ray intensity on an incident
beam path is spread onto multiple paths before the X-rays finally exit the Bor-
rmann triangle and the crystal. Most of the X-ray wavelengths are not diffracted
and thus go through the crystal in a single path without being diffracted. How-
ever, in real crystals where dislocations and other defects are practically always
present, the strain fields around the dislocation cores bend the lattice locally,
which slightly alters the angles of the Bragg condition just around the disloca-
tion core. The small difference in the Bragg condition is enough to cause a close
but distinct wavelength to be diffracted, instead of the characteristic wavelength
diffracted in the undisturbed parts of the crystal lattice. But because the X-ray
wavelength diffracted from the dislocation strain field is generally not diffracted
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in the main volume of the crystal, the X-rays diffracted from the dislocation-bend
lattice follow practically a single path through the crystal, and therefore exit the
crystal as a more intense beam than the normally diffracted X-rays that are spread
over the Borrmann triangle. Thus, in direct images the dislocations always pro-
duce more contrast than the near-perfect lattice around them [48]. In practice,
the direct image synchrotron X-ray topographs have dark gray or black defect
images on a lighter gray background.

Whether a particular experiment happens under low or high absorption condi-
tions can be determined by the quantity μ0 t, which is the product of the aver-
age linear attenuation coefficient μ0 and crystal thickness t, and is therefore the
negated natural logarithm of the total attenuation exp(−μ0 t). For direct images,
i.e. low attenuation, μ0 t is necessarily quite small, because too heavy absorp-
tion would lead to impractically long exposure times. Generally, limit μ0 t < 1
is often given for direct images [47], but this should only be employed as a
guidance, because the practical limit varies with measurement geometry, diffrac-
tion conditions, and even between superficially similar samples. Direct images,
among another contrast types, were still observed for μ0 t = 2.8 in 1̄5̄1 and 15̄1
large-area transmission topographs of Publication I, which is likely caused by the
reduction of the Borrmann effect for odd-ordered reflections in the zincblende
lattice. Indeed, a more accurate analysis by A.R. Lang shows that the X-ray at-
tenuation in crystals depends on the ratio of the imaginary parts of the structure
factors ε0 = F ′′

g /F ′′
0 , so that the total attenuation depends strictly speaking on the

quantity ε0μ0 t rather than only on μ0 t [49]. ε0 is close to unity for even-ordered
reflections in diamond or zincblende lattice, but is reduced for the odd-ordered
reflections [49], which decreases the absorption and may cause direct image
contrast.

The dislocation images can sometimes disappear in some topographs of the X-
ray film, while still being visible on the others. This is caused by the dislocation
contrast disappearance, which depends on the diffraction vector �g, the Burgers
vector �b and the dislocation line direction ��. The disappearance conditions are
different for different dislocation types, so that the screw dislocation images dis-
appear if �g ·�b = 0, but the edge dislocation images only disappear if both �g ·�b = 0
and �g · (�b ×��) = 0 [13, p. 199] [50]. Mixed dislocations by definition always
have both the screw and edge components, and subsequently the contrast dis-
appearance criterions for the mixed dislocations are the same as for the edge
dislocations. The partial contrast disappearance for edge and mixed dislocations
may occur, if �g · �b = 0 and �g · (�b ×��) 	= 0, in which case the topograph would
show only a faint contrast for the dislocations [13].
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3.6.2 Dynamical contrast

The dynamical theory of diffraction takes the intensity exchange within the crystal
fully into account [51]. These dynamical diffraction effects are based on interfer-
ence and absorption inside the crystal between two incoming and two diffracted
wavefields. The images of dislocations and other defects in dynamical contrast
topographs may be both lighter or darker than background, and various inter-
ference effects are possible. However, dynamical contrast can only be observed
in near-perfect crystals, because lattice defects tend to destroy the interference
patterns, which results in extinction contrast. Dynamical X-ray diffraction im-
ages of dislocations in nearly perfect crystals are often light gray or white lines
on dark background, because the local disturbance of the X-ray wavefront by
the dislocation strain field destroys the exact Bragg condition of the wavefield
near the dislocation core, which prevents the wavefield from forward-diffracting,
and it will be absorbed instead. Because of this diffraction-shadowing effect the
dynamical images were originally called extinction shadows [52].

Transmission section topography performed on near-perfect crystals often yields
Pendellösung fringes on the topograph. Pendellösung fringes are contrast fringes
where lighter and darker contrast stripes alternate on the topograph. The fringes
are caused by interference effects of the diffracted wavefronts, and the phe-
nomenon can be fully modeled with the dynamical theory of diffraction. Ef-
ficient calculation models for computer simulation of the Pendellösung fringes
and other dynamical contrast effects have been developed in the past [53, 54].
Pendellösung fringes are often found in topographs of Si wafers due to the gen-
erally excellent quality of modern Si substrates, which is the case in one of the
transmission section topographs of Si substrates in Publication III, where Pendel-
lösung fringes can be seen clearly. The 311 transmission section topograph of an
InP ELO layer on Si sample from Publication III is reproduced in Fig. 2.11.

If absorption of the crystal is too strong in transmission topography geometry,
there will be no observable direct contrast in the X-ray detector, because the
crystal itself absorbs all the diffracted X-ray energy. As the observed contrast de-
pends on detector sensitivity, exposure time, and X-ray beam energy, there is no
exact limit for complete attenuation, but μ0 t > 6 has been considered as a prac-
tical limit of attenuation for extinction contrast [48, 47]. However, exceeding
the practical limit for μ0 t does not necessarily mean that topographs cannot be
recorded in transmission geometry. In case the sample is a near-perfect single
crystal, the X-rays may undergo anomalous transmission, which is also called the
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Borrmann effect [51]. If anomalous transmission, which can be modeled by the
dynamical theory of diffraction, occurs in the sample crystal, dynamical image
contrast can be produced even if the absorption is so large that no contrast would
normally be expected [51]. Anomalous transmission is caused by the interfer-
ence of the two incident and the two diffracted wavefields, where the wavefield
having its antinodes at lattice sites is greatly attenuated, but the other wave-
field having its nodes at lattice planes undergoes only a slight attenuation [51].
Consequently, the contrast in anomalous transmission topographs is dynamical,
i.e. the defect images have lighter contrast against the darker background of the
perfect lattice.

3.6.3 Intermediate Contrast

If absorption is close to the limit between extinction contrast and dynamical con-
trast (i.e. 1 < μ0 t < 6), it is possible that the topographs show intermediate con-
trast, where parts of the image are formed by kinematical contrast and other parts
by dynamical contrast. Some of the defect images in such topographs are lighter
and some darker than the background. Dislocation contrast disappearance cri-
terions for dynamical contrast (and thus for intermediate contrast) are the same
as they are for the extinction case, i.e. dynamical images of screw dislocations
disappear if �g · �b = 0, and dynamical images of edge dislocations disappear if
both �g ·�b = 0 and �g · (�b×��) = 0 [13, p. 199].

3.7 Orientation Contrast

Contrast in topographs can also be caused by variations in lattice orientation.
Spatially different parts of the lattice may have different orientations, either by
macroscopic bending of the crystal or through grain boundaries. Also, in the case
of thin films of heterostructure semiconductors, the epitaxial layer may grow
tilted due to lattice mismatch f = Δa/a = (af − as)/as caused by the differ-
ence between the epitaxial thin film lattice constant af and the substrate lat-
tice constant as [55]. Such tilted epitaxial layers were observed in GaAs on Ge
heterostructures (Publications II and IV), in GaN on sapphire heterostructures
(Publication VI), and in GaInP on GaAs buffer layer on Ge (Publication IX).
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If two or more areas of the crystal have different orientations, the respective
diffracting crystal planes of the areas are also at an angle, and thus diffract dis-
tinct wavelengths to distinct directions, which results in rotational orientation
contrast. Rotational orientation contrast usually produces both darker and lighter
areas on the film, because the total diffracted intensity is not altered much, but
the distribution of the intensity on the topograph changes. Generally, the image
of the part of the crystal having the different lattice orientation is displaced on
the topograph in respect to the image of the main crystal volume. Depending
on the direction of the angular difference, the displaced image partially overlaps
the image of the main crystal, which leads to dark contrast on the overlapping
area. On the other hand, on the opposite side of the displaced image there is an
area that receives no intensity from the main crystal volume nor the differently
oriented part of the crystal, which results in lighter contrast on that area.

Rotational orientation contrast does not depend on the Miller indices hkl of the
diffraction in any way. However, strain-induced orientational contrast, which is
caused by lattice deformation by strain, is only observed in cases where the
diffraction vector �g is not parallel nor perpendicular to the relevant strain com-
ponent [55]. Figure 3.3 shows schematic representations of effects of strain and
orientation changes to X-ray angles. Distinct contrast changes possibly visible in
topographs include Figure 3.3 a) strain-induced asymmetric, b) strain-induced
symmetric, c) rotational asymmetric, and d) rotational symmetric. By compar-
ing several topographs with different Miller indices on the same X-ray film, it is
generally possible to deduce whether the contrast changes are caused by strain,
orientation changes, or their combination. Such comparison has been done in
Publication III for lateral epitaxially overgrown InP structures on Si.

The SR-XRT has proven to be an able tool for studying the strain, crystal quality
and lattice orientation of the epitaxial lateral overgrowth (ELO) layers [56]. In
Publication III the InP ELO epitaxial stripes were shown to have both the rota-
tional orientation contrast caused by the growth tilt, and also the strain-induced
orientation contrast caused by the residual strain from the epitaxial process. The
occurrence of both the rotational and strain-induced orientation contrasts to-
gether is to be expected in the highly strained epitaxial layers due to the growth
tilt effect [55]. Indeed, similar occurrences were observed in the GaN thin films
on sapphire of Publication VI, and the GaInP on GaAs buffer layers on Ge het-
erostructures of Publication IX, which both exhibited considerable strain. The
orientation contrast of the X-ray topography, be it rotational or strain-induced,
is fully visible in the white beam topography only, because the different lattice
orientations diffract different X-ray wavelengths. In practice, the topography sys-
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Figure 3.3: X-ray diffraction affected by orientation and strain. a) The lattice strain

without the lattice rotation modifies the X-ray angles for the asymmetric diffraction, b) the

lattice strain without the lattice rotation does not change the X-ray angles for the symmetric

diffraction, c) the lattice rotation without the lattice strain modifies the X-ray angles for

the asymmetric diffraction, and d) the lattice rotation without the lattice strain modifies

the X-ray angles for the symmetric diffraction. The undisturbed lattice planes and the

corresponding diffracted beams are drawn with dashed lines, whereas the strained and

rotated lattice planes and the corresponding diffracted beams are drawn with solid lines.

Wide enough X-ray spectrum of the source is assumed, so that diffractions may occur with

different Bragg angles θ and wavelengths λ.
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tems utilizing highly monochromatic characteristic X-ray radiation, such as Lang
cameras, only show one of the different orientations at the time, even though
there is usually only a minute difference in the wavelengths. On the other hand,
SR-XRT is particularly well-suited for samples having strong orientational con-
trast due to the wide and uniform spectrum of the synchrotron radiation. How-
ever, under extreme lattice strain double diffraction may occur within the lattice,
which produces additional white and black contrast lines onto the topograph
[57], thus further complicating the interpretation of the topographs.

3.8 Stereo Pair Topographs

In the large-area geometries, it is possible to obtain stereo pair topographs by
selecting two topographs from the same exposure and combining them into the
same stereoscopic image. The two topographs must have reasonably similar at-
tenuation lengths, and their diffraction vectors �g should form a suitable projec-
tion geometry, because the attenuation lengths and the diffraction vectors di-
rectly determine the viewing depth and viewing angles of the stereo pair. The
stereo pair topographs can be made both in the transmission and back-reflection
geometries [58].

In practice, useful stereo pairs can be found by looking at every topograph on
the film, and choosing a pair with adequately similar visual properties. From a
well-selected stereo pair it is possible to deduce depth information about the de-
fects, such as the three-dimensional paths of the dislocations. The stereo pair to-
pographs are particularly useful for imaging epitaxial multilayer samples, where
the depth information can be exploited in order to find out how the dislocations
interact with the layer interfaces. Figure 3.4 shows a stereo pair of the 1̄5̄1 and
15̄1 large-area transmission topographs of an InAs sample of Publication I. By
crossing one’s eyes and focusing each eye to the picture on the opposite side of
the eye, it is possible to see the dislocation images stereoscopically without any
extra instruments.
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�g �g

1000 μm

Figure 3.4: Stereo pair of 1̄5̄1 (left) and 15̄1 (right) large-area transmission topographs

of an InAs sample of Publication I. The features in the topograph are images of threading

dislocations, the density of which is ≈ 2× 103 cm−2. Diffraction vector �g projections are

indicated.

3.9 Precipitate and Void Image Contrast

In addition to the dislocations, also other defects cause strain in the crystals. In
some cases, the strain fields caused by the precipitates and voids in the crystal
may cause visible contrast in the topographs. Generally, the strain fields caused
by the point defects are more spherically symmetric the farther away from the
point defect the strain fields are observed. Because the precipitates and voids
are usually very small, their strain fields can be approximated to be spherically
symmetric. The core strain is tensile in the voids, but the precipitates most often
have compressive strain in their cores, although tensile strain for the precipitate
cores is also possible. The contrast in the topographs depends on the type of
the strain, which makes it often possible to deduce whether a given strain field
contrast in the topograph is caused by a precipitate or a void.

A spherically symmetric strain field of a crystal defect causes dynamical topo-
graph image contrast consistÃ�ng of two half-discs, one of which is dark and
the other light [48]. If the strain field is compressive in the core, i.e. in the case
of a precipitate, the dark half-disc is on the positive side and the light half-disc on
the negative side of the diffraction vector �g projection [48]. Consequently, if the
strain field is tensile, the light half-disc is on the positive and the dark half-disc on
the negative side. Enlargements of the large area transmission topographs show-
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a) �g b)
�g

c) �g d) �g

100 μm

Figure 3.5: Enlargements of a) 5̄1̄1, b) 5̄11, c) 511, and d) 531 large area topographs

showing the same precipitate in a thin 210 nm GaAs film on Ge substrate. The contrast

pattern of the precipitate follows the indicated diffraction vector �g projection.

ing such contrast differences were analyzed in Publication IV. Figures 3.5 a)–d)
are reprinted from the publication, and the images are indicative of the radially
symmetric precipitate strain field with mainly compressive strain around its core,
although the strain very close to the core appears to be very small and possibly
even tensile, as evidenced by the faint opposite color half-disks in the center of
the main precipitate image.

3.10 Grain Boundary Image Contrast

Polycrystalline matter consisting of grains, i.e. individual crystallites, can be stud-
ied by the SR-XRT provided that the grains are sufficiently large. Generally, if
the individual grains are larger than about 10 μm they may be resolvable in
the high-resolution synchrotron topographs, which have the maximum practi-
cal spatial resolution of about 1 μm [25]. In any case, the larger grains offer
more information about the crystals, because the internal strain within the small
grains is usually so high that the contrast produced by the other defects present
is overshadowed by the grain boundary contrast. The polycrystal grains having
large-angle grain boundaries generally show clear orientation contrast, so that
the grain images in the topographs fragmentate to a set of distinct images, the
spacing between which depends on the grain angles and the exposure geometry.
For some grain angles and topography geometries the grain images can be over-
lapped, in which case it may be difficult to determine the grain that has caused a
given feature on the film.
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Inbetween the true single crystals and the polycrystalline matter there exists a
class of materials that are not exactly neither, but have properties of both. The
small-angle granular crystals consist of the small-angle grains bordered by the
dislocation chain boundaries, so that the lattice of the individual crystallites are
almost in the same lattice, but not exactly [59, 60]. The dislocations forming the
small-angle grain boundaries may or may not resolve to individual dislocations in
the synchrotron X-ray topographs, depending on the inter-dislocation distances,
and thus on the grain boundary angles. The InP ELO layers of Publication III
have small-angle crystal boundaries with maximum tilt angle of 0.06◦ between
the crystallites, and they must therefore be considered as small-angle granular
crystals, which can be classified either as mono- or polycrystals depending on the
classification criteria.
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4 Thin Epitaxial Films

Semiconductor devices are most often built on polished monocrystal substrate
surfaces, i.e. crystal wafers. There are two main strategies used for producing
the semiconductor devices on the crystal wafers, the first is the diffusion or im-
plantation of the dopant atoms of different elements into the substrate, and the
second is the epitaxy of thin film device layers on the substrate. In contrast to the
implantation methods, the epitaxial growth of the thin films does not damage the
substrate crystal. However, if the epitaxial film is too thick, the differences in the
lattice constants and the thermal expansion coefficients between the substrate
and the epitaxial film may result in formation of crystal defects caused by the
strain. Thus, most of the epitaxial films used in the semiconductor devices are
relatively thin.

The epitaxy processes are based on the deposition of new atoms on the lattice
sites on top of the previously grown atom layers. The liquid phase epitaxy (LPE)
process was the first viable epitaxy method used in the semiconductor indus-
try. In addition to the LPE, the vapor phase epitaxy (VPE) methods, such as the
metal-organic vapor phase epitaxy (MOVPE) and the hydride vapor phase epitaxy
(HVPE), the molecular beam epitaxy (MBE), and the solid phase epitaxy (SPE)
are all used in the modern semiconductor processes. Even though the different
growth processes differ significantly in their source material delivery and other
details, the growth methods themselves do not primarily define the lattice strain,
which rather depends on the differences in the lattice constants and thermal ex-
pansion. Thus, when determining the maximum theoretical thickness of a thin
epitaxial film on a thick crystal substrate, the exact type of the epitaxial method
often does not need to be taken into account.

4.1 Misfit Dislocations

In principle, the experimental determination of the thin film critical thickness
should be done by the direct observation of the formation of the misfit disloca-
tions (MD). However, most of the in situ measurement apparatuses are ill-suited
for detecting a small number of MDs on the epitaxial film. As a result, the relax-
ation of the epitaxial thin film may be experimentally observed much later than
immediately after exceeding the critical thickness. Direct ex situ observation of
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the individual MDs is possible with SR-XRT. The misfit dislocations in the thin
epitaxial films reduce the epitaxial stress of the film. Each new MD relaxes the
stress, but only by a very small amount when compared to the total stress in
the layer. If the epitaxial process is continued beyond the critical thickness, the
increased stress rapidly produces a great number of MDs. These MDs generally
form a misfit dislocation network, where the MDs are aligned on the crystallo-
graphically preferred orientations. If epitaxial growth is performed on the {100}
planes of the diamond or zincblende crystals, the preferred MD line directions ��
lie along the 〈110〉 directions on the epitaxial surface.

The misfit dislocations can be of the edge, screw or, mixed types, depending on
the crystal lattice, the surface orientation of the epitaxial plane, and the type of
the epitaxial structure. Perhaps the most common type of MDs in group IV dia-
mond and group III-V zincblende lattice semiconductors are the 60◦〈110〉{111}
mixed dislocations [61, 62, 46], which have a 60◦angle between their dislocation
lines �� and Burgers vectors �b, although the pure edge dislocations are also pos-
sible [63]. MDs in the homoepitaxy of the strongly doped epitaxial layers were
observed in Publications I, VII and VIII. In the heteroepitaxy, where MDs are more
common, MD networks were found and characterized in Publications II, IV, V, and
IX, of which Publication V discussed MDs in the dilute heteroepitaxy. Most of the
observed MDs were mixed 60◦〈110〉{111} dislocations, but in Publication I pure
edge MDs in InAs were found, and in Publication VII somewhat rare interfacial
pure screw MDs in GaAs were found.

4.2 Critical Thickness

It is almost always desirable, that the epitaxial growth of atom layers on single
crystal substrates will result in the new atoms to be positioned in the lattice sites
of the original crystal lattice. This is generally true in the homoepitaxy as well as
in the heteroepitaxy, for which there is a possibility of distinct lattice constants
of the epitaxial layer and the substrate crystal. If the lattice constants of the
layers do not differ too greatly, the epitaxial layer atoms may still occupy the
correct lattice sites of the substrate crystal, but an extra amount of strain energy
builds up for every atom that is not in the equilibrium distance of its neighbors.
The epitaxial layer strain may be either compressive or tensile along the relevant
crystal axes within the layer surface. Because all of the known group IV and III-
V semiconductor crystals have Poisson’s ratio ν greater than 0 but less than 0.5
[11], the strain in the epitaxial layer surface normal direction has the opposite
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sign to the strain in the epitaxial layer surface directions.

For the semiconductor alloys consisting of a combination of three or more dis-
tinct elements, e.g. Ga1−x InxP, the lattice constant of the ternary alloy can be
approximated by Vegard’s law [64]

a(A1−xBxC) = (1− x)a(AC) + xa(BC), (4.1)

which is the linear combination of the lattice constants a of the constituent binary
alloys AC and BC weighted by their relative proportion in the alloy.

The buildup of the epitaxial layer stress is governed by the lattice constant dif-
ference and the layer thickness. Eventually, if the epitaxial layer is grown thick
enough, the stress energy grows large enough for the stress-induced crystal de-
fects to appear. The thickness at which the stress begins to relax by the de-
fects is called the critical thickness of the thin film. In addition to the epitaxial
layer thickness and the lattice constant differences, the critical thickness also
depends on the temperature differences and overall mechanical qualities of the
thin film. Moreover, any external strain may play a significant role in practi-
cal situations. Notwithstanding the external strain and the mechanical quality
issues, it is possible to derive equations for the stress buildup as a function of
the epitaxial layer thickness, and compare the value to the formation energy
for the formation of the known strain-relaxing dislocation types. This was first
done by Matthews, Mader and Light who showed that by utilizing the mechan-
ical equilibrium theory for minimizing the total energy of the strained epitaxial
layer structure and assuming a periodic array of MDs having a known disloca-
tion energy, it is possible to predict the critical layer thickness hc for a given
MD type [65]. Matthews and Blakeslee enhanced and further established the
validity of the Matthews-Blakeslee model in a series of articles [66, 67, 68] in
Journal of Crystal Growth. Over the years, the mechanical equilibrium theory for
calculating the critical thicknesses hc of the thin films has been generally found
to reasonably agree with the experimental results [69], even though there have
been various hypotheses about the dislocation energies and other terms in the
equations involved [65, 66, 67, 70, 71, 72, 73, 74]. The equations for the critical
thickness hc derived from the equilibrium theory are generally of the form

hc ≈ |�b|
Ω| f |

�
1− ν cos2αb

(1+ ν) cosλb

��
ln


hc

b

�
+Γ



, (4.2)

in which ν is the substrate Poisson ratio, f =Δa/a is the lattice mismatch, |�b| is
the slip distance for the MDs i.e. the Burgers vector magnitude, αb = �(�u,�b) is
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the angle between the MD line direction �u and the MD Burgers vector �b, and the
angle λb = �(�b,�u× �n), where �n is the sample surface normal [65]. The Poisson
ratios of III-V semiconductors are reasonably close to ν ≈ 0.333 [11], and the
misfit relaxation normally happens by 60◦ a

2
〈101〉{111} MDs, which corresponds

to values |�b| = a/
�
2 and cosαb = cosλb =

1
2
. Ω and Γ are parameters related

to the tension inflicted by the MD lines, and they differ between authors. In
[70] Matthews assumed pure edge dislocations and used Ω = 8π and Γ = 1.
For the more general case Matthews, Mader and Light give values Ω = 8π and
Γ = 0 in [65] for single epitaxial layers, which is interestingly the same as used
by Fischer, Kühne and Richter using another approach for the equilibrium theory
[71]. However, Fischer et al. derived an extra term

|�b| cosλb

2| f | (4.3)

directly added to the right side of equation (4.2) [71]. Based on the differ-
ent assumptions about the dislocation energies, Houghton derives Ω = 8π, but
Γ = ln(4) ≈ 1.39 [73]. Paul suggests Ω = 2π and Γ = 1 [75], which are also
the values given by Matthews and Blakeslee for multilayer structures [66, 67].
Calculations made by Rockett yield Ω = 4π, when taking into account various
dislocation interactions [74]. Generally, values Ω = 2π, 4π and 8π can be found
in the literature, and Ω is the parameter giving the largest effect on the critical
thickness calculation.

Regardless of the model used for the calculation of the thin film critical thick-
nesses, the effects of the temperature variations must be taken into account due
to the relatively high growth temperatures of the single crystal thin films. The
lattice mismatch f in heterostructures depends on the temperature because the
linear thermal expansion coefficients αltc is usually different for different semi-
conductor crystals. It is thus necessary to consider the critical thickness hc for
the largest strain f within the temperature ranging from room temperature to
the heterostructure growth temperature. Due to the thermal strain there often
is a perfect lattice match for the heterostructures only at a specific temperature.
Over a larger temperature range, there is rather a maximum of the attainable
critical thickness hc of heterostructures, as shown in Publication IX, where the
experimental results for the samples A and B are compared to the calculated crit-
ical thicknesses. The samples studied in Publication IX consisted of GaInP thin
films grown at 610 ◦C on GaAs buffer layer on Ge substrates. The sample proper-
ties are listed in Table 4.1, and it should be noted that only sample B contained
misfit dislocations. The experimental data demand that for an accurate critical
thickness model sample A should lie slightly below the realistically simulated hc
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Table 4.1: Properties of samples A and B of Publication IX. Ga1−x InxP lattice mismatches

to Ge f =Δa/a = (aGe− a0)/a0 (a0 is the stress-free bulk lattice parameter of the Ga1−x InxP

epitaxial layer) at room temperature (RT) are calculated from the measured lattice spac-

ings, whereas at 610◦C they have been extrapolated using RT linear thermal expansion

coefficients αltc from [76, 77] and lattice constants from [78, 79, 80].

sample A sample B
GaAs buffer thickness (μm) 0.23 0.24
Ga1−x InxP thickness h (μm) 1.0 1.0
Ga1−x InxP In content x 0.5005 0.4906
f =Δa/a0 for Ga1−x InxP
at RT −3.5× 10−4 +3.8× 10−4
at 610 ◦C +3.6× 10−4 +10.9× 10−4
Calculated hc for Ga1−x InxP (μm)
at RT 2.43 2.22
at 610 ◦C 2.36 0.68

curve, provided that the simulated curve would take into account the tempera-
ture difference between the growth temperature at 610 ◦C and room tempera-
ture. Choosing Ω = 2π, Γ = 1 and utilizing the lattice mismatches f = Δa/a
from Table 4.1 at RT, equation (4.2) gives the critical thicknesses of hc ≈ 2.43 μm
for sample A and hc ≈ 2.22 μm for sample B, which are both well above the ac-
tual 1 μm Ga1−x InxP epitaxial layer thicknesses. However, using the lattice mis-
matches f at the growth temperature 610 ◦C from Table 4.1, the critical thickness
for sample A (hc ≈ 2.36 μm) is still much larger than the actual epitaxial layer
thickness, but the critical thickness of sample B reduces to hc ≈ 0.68 μm, which
is less than the actual Ga1−x InxP layer thickness of 1 μm. Thus, the results of
the Matthews-Blakeslee model with Ω = 2π and Γ = 1 agree rather well with
the observed MD structure on the samples, provided that the effect of the growth
temperature and the distinct linear thermal expansion coefficients αltc are taken
into account. The critical thickness curves with the thermal effects of cooling
down from the growth temperature to RT are plotted in Fig. 4.1.

As pointed out, sample A is below the hc curve in Fig. 4.1 only for the values
Ω = 2π and Γ = 1 in equation (4.2) as suggested by Paul for the single epitaxial
layers [75] and Matthews and Blakeslee for the multilayer structures [66, 67].
This is interesting, because according to [66] Ω = 2π should only be valid for
the repeating multilayer structures, and Paul in [75] does not substantiate in
detail the reason for selecting Ω = 2π. One possible explanation for the larger
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Figure 4.1: Simulated critical thicknesses of the Ga1−x InxP on Ge structure of Publica-

tion IX. The critical thicknesses are plotted as a function of In content x , as calculated by

combining simple linear thermal expansion and the theoretical models for critical thickness

suggested by Paul [75], Fischer et al. [71], Matthews et al. [65], and Matthews (assuming

relaxation through pure edge dislocations) [70]. Vertical dotted lines indicate In contents

xRT of the Ga1−x InxP lattice matched to Ge at room temperature and xmax of the maximum

attainable critical thickness within the full temperature range. Only sample B actually con-

tains misfit dislocations.

than expected critical thickness observed in sample A could be the epitaxial layer
growth tilt releasing some of the strain due to geometrical reasons [55]. An-
other explanation could be the lack of the threading dislocations in Ge substrates
and GaAs buffer layers, because the threading dislocations normally act as the
sources for the MD formation in the Matthews-Blakeslee model. However, in the
GaInP/GaAs/Ge structures it is likely that the hillocks in the GaInP layer could
act as the MD sources, but they may also restrict the free movement of the MD
ends. In the original Matthews-Blakeslee model the both sides of the MD elon-
gate, as the threading dislocations in the both ends of the MD can glide [70].
Regardless of the parameter Ω in equation (4.2), the Matthews-Blakeslee model
appears to explain rather well the fact that there are MDs in sample B but not in
sample A, provided that the linear thermal expansion coefficients αltc are taken
into account.
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5 Defects in Heterostructures

5.1 Doped Interfaces

Structures consisting of undoped and highly doped layers are considered ho-
mostructures, but they may exhibit characteristics that are similar to heterostruc-
tures due to the lattice mismatch caused by the dopant atoms. Publication I
discusses defects in InAs n-i structures, where the n-layers were highly doped
InAs and the intrinsic i-layer was undoped InAs. A misfit dislocation network
was detected in one of the samples, where a 10 μm thick intrinsic epitaxial layer
was grown on a relatively highly doped InAs substrate. In addition to the MD
network all the InAs samples had circular arc threading dislocations, the density
of which was ≈ 2000 cm−2. Publications VII and VIII discuss GaAs p-i-n struc-
tures intended to be used in X-ray detector applications. In these publications the
occurrence of MDs in highly doped layered homostructures was again confirmed,
and the detrimental effect of the MDs to the electrical properties of the compo-
nents was demonstrated in publication VIII. Some of the MDs seen in the samples
of Publication VII were relatively rare pure screw MDs of type |�b|〈110〉{111} with
unknown Burgers vector magnitude, and it was found that the MDs originated
from the endpoints of the threading dislocations residing in the bulk of the sam-
ple.

5.2 Dilute Heterostructures

Dilute heterostructures are semiconductor crystals having an additional minute
amounts of an additional species of element added to the base crystal. The frac-
tion of the atoms of the diluting element is much larger than in conventional
doping, but not enough to completely change the crystal structure of the origi-
nal semiconductor material, which would warrant a completely new compound
semiconductor. Typically, dilute heterostructures have a few percentage of the
additional matter, so that e.g. GaAs1−zNz may contain nitrogen up to 5 % (i.e.
z < 0.05). In respect to lattice constant mismatches dilute heterostructures such
as GaAsN on GaAs are an intermediate step between highly doped homostruc-
tures and true heterostructures. Defects of dilute GaAsN with ≈ 0.85% N content
grown on GaAs by MOVPE are studied in Publication V. Topographs recorded
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from four samples show that the critical thickness of such structures is about
0.5 μm, after which the MD formation begins.

5.3 Two-layer Heterostructures

True heterostructures are semiconductor crystals consisting of layers, where the
layers are made of distinct materials, but together form a single common crystal
structure. The individual layers in such structures may be elemental semiconduc-
tors or compound semiconductors, and they may additionally have been doped
or diluted. True heterostructures are often the most difficult form of epitaxy,
because problems arise from lattice mismatch, thermal expansion, material dif-
fusion, and formation of anti-phase domains (APD). Publications II, III, IV, VI &
IX discuss defects in true heterostructures consisting of an epitaxial layer and a
substrate. Growth procedures of GaAs on Ge heterostructures are discussed in
Publication II, where growth of thin APD-free GaAs layers grown on commercial
Ge substrates is demonstrated. The quality of the GaAs epitaxial layers is studied
in Publication IV, which is a SR-XRT topography study of the MOVPE-grown GaAs
layers and the Ge substrates, and the formation of MDs in GaAs layers grown over
the critical thickness was seen as expected. A large lattice mismatch between Si
and InP in the samples of Publication III causes significant problems in epitaxy,
which was partly overcome by using epitaxial lateral overgrowth (ELO) tech-
nique. Small-angle grain boundaries and other defects of the ELO InP layers on
the Si substrate were studied by means of SR-XRT, XRD, and HR-XRD, and it was
found that the maximum grain boundary angle was about 0.06◦. Similar very
small-angle boundaries of crystallites were found in epitaxial GaN on sapphire
samples imaged by SR-XRT in Publication VI. The crystallite boundary tilt angles
where so small, that the GaN thin film could in fact be considered to be single
crystalline. In addition to the GaN thin film results, a cellular network of highly
strained boundaries of ≈ 30 μm cells was observed on the sapphire substrate.
The strain-cells are inflicted to the substrate by the epitaxial GaN layer.

5.4 Multilayer Heterostructures

Multilayer heterostructures are heterostructures containing more than two layers
of different compositions. GaInP thin film on GaAs buffer on Ge substrate multi-
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layer heterostructures and their defects are discussed in publication IX, where SR-
XRT, XRD, and HR-XRD were used to collect information about the heterostruc-
ture crystals. The GaAs buffer on Ge substrate part of this multilayer heterostruc-
ture is effectively discussed in publications II and IV, for which the GaInP on GaAs
on Ge layer structure is the natural extension of. MD formation on the GaInP on
GaAs on Ge structure was extensively studied. Thermal expansion effects were
added to the Matthews-Blakeslee critical thickness model, which proved out to be
essential for explaining the observed MD formation behavior. The most striking
feature observed in the topographs of publication IX are the truncated InP pyra-
mids on the GaInP layer. These truncated pyramids are spontaneously formed
during the MOVPE growth process of the GaInP layer.

5.5 Pyramidical Epitaxial Hillocks

The formation of pyramidical epitaxial hillocks on GaInP thin films grown on
GaAs have been known for some time [81, 82], and not surprisingly, similar
hillocks were found on GaInP on GaAs buffer on Ge heterostructures of Publi-
cation IX. Because the hillocks have clearly defined rigorous shapes, and they
are equidimensional and grown into the same orientation, it is rather straight-
forward to conclude that they are crystallites with relatively well-defined prop-
erties. Growth techniques avoiding the formation of the hillocks on GaInP have
been developed based on phosphine modulation during growth [83], but they
still pose a significant problem for more straightforward growth methods. Never-
theless, their exact crystal structure had not been previously discovered despite
efforts [81, 84, 85, 86, 87], but the XRD measurements of Publication IX revealed
that the pyramid hillocks are made of crystalline InP, and are each formed by at
least ten distinct crystal grains grown together into a rigorously defined structure.
GaInP layers on GaAs have another type of surface defects, the so-called arrow
defects, which are arrow-shaped formations on the GaInP layer that are consider-
ably flatter than the pyramid hillocks [87, 88]. These arrow defects were notably
completely absent from the GaInP layers on GaAs buffers on Ge of Publication IX.
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