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The material composition of nuclear fuel changes constantly due to 
nuclides transforming to other nuclides via neutron-induced 
transmutation reactions and spontaneous radioactive decay. The 
objective of burnup calculations is to simulate these changes over time. 
They are formulated around two basic equations in reactor physics: 
neutron transport criticality equation and burnup equations. This thesis 
considers the numerical solution of burnup equations based on 
computing the burnup matrix exponential, and the uncertainty analysis 
of neutron transport criticality equation based on perturbation theory.

In this thesis, the mathematical properties of burnup matrices are 
studied and the Chebyshev rational approximation method (CRAM) is 
proposed as a novel method for solving the burnup equations. The 
results suggest that the proposed approach is capable of providing a 
robust and accurate solution to the burnup equations with a very short 
computation time. Secondly, the propagation of neutron interaction 
data uncertainty through the criticality equation is studied on a fuel 
assembly level. The considered approach is deterministic and utilizes 
the adjoint system of the criticality equation, which allows propagating 
these uncertainties in an efficient manner. 

Numerical methods  
for nuclear fuel  
burnup calculations

Maria Pusa



VTT Technical Research Centre of Finland is a globally networked 
multitechnological contract research organization. VTT provides high-end technology 
solutions, research and innovation services. We enhance our customers’ competitiveness, 
thereby creating prerequisites for society’s sustainable development, employment, and 
wellbeing.

Turnover:  EUR 300 million  
Personnel:  3,200 

VTT publications

VTT employees publish their research results in Finnish and foreign scientific journals, trade 
periodicals and publication series, in books, in conference papers, in patents and in VTT’s 
own publication series. The VTT publication series are VTT Visions, VTT Science, VTT 
Technology and VTT Research Highlights. About 100 high-quality scientific and profes-
sional publications are released in these series each year. All the publications are released 
in electronic format and most of them also in print.   

VTT Visions
This series contains future visions and foresights on technological, societal and business 
topics that VTT considers important. It is aimed primarily at decision-makers and experts 
in companies and in public administration. 

VTT Science
This series showcases VTT’s scientific expertise and features doctoral dissertations and 
other peer-reviewed publications. It is aimed primarily at researchers and the scientific 
community.

VTT Technology
This series features the outcomes of public research projects, technology and market 
reviews, literature reviews, manuals and papers from conferences organised by VTT. It is 
aimed at professionals, developers and practical users.

VTT Research Highlights
This series presents summaries of recent research results, solutions and impacts in 
selected VTT research areas. Its target group consists of customers, decision-makers and 
collaborators. 



 

 

VTT SCIENCE 32 

Numerical methods for nuclear 
fuel burnup calculations 
 
 

Maria Pusa 

Thesis for the degree of Doctor of Science in Technology to be presented 
with due permission for public examination and criticism in Auditorium N at 
Aalto University (Otakaari 1 M, Espoo, Finland), on the 24th of May, 2013, 
at 12 noon. 

 



 

 

ISBN 978-951-38-7999-0 (Soft back ed.) 
ISBN 978-951-38-8000-2 (URL: http://www.vtt.fi/publications/index.jsp) 

VTT Science 32 

ISSN-L 2242-119X 
ISSN 2242-119X (Print) 
ISSN 2242-1203 (Online) 

Copyright © VTT 2013 

 

JULKAISIJA – UTGIVARE – PUBLISHER 

VTT 
PL 1000 (Tekniikantie 4 A, Espoo) 
02044 VTT 
Puh. 020 722 111, faksi 020 722 7001 

VTT 
PB 1000 (Teknikvägen 4 A, Esbo) 
FI-02044 VTT 
Tfn. +358 20 722 111, telefax +358 20 722 7001 

VTT Technical Research Centre of Finland 
P.O. Box 1000 (Tekniikantie 4 A, Espoo) 
FI-02044 VTT, Finland 
Tel. +358 20 722 111, fax +358 20 722 7001 

 

Kopijyvä Oy, Kuopio 2013 



Numerical methods for nuclear fuel burnup calculations

Maria Pusa. Espoo 2013. VTT Science 32. 86 p. + app. 78 p.

Abstract
The material composition of nuclear fuel changes constantly due to nuclides trans-
forming to other nuclides via neutron-induced transmutation reactions and sponta-
neous radioactive decay. The objective of burnup calculations is to simulate these
changes over time. This thesis considers two essential topics of burnup calcula-
tions: the numerical solution of burnup equations based on computing the burnup
matrix exponential, and the uncertainty analysis of neutron transport criticality equa-
tion based on perturbation theory.

The burnup equations govern the changes in nuclide concentrations over time.
They form a system of first order differential equations that can be formally solved by
computing the matrix exponential of the burnup matrix. Due to the dramatic variation
in the half-lives of different nuclides, the system is extremely stiff and the problem
is complicated by vast variations in the time steps used in burnup calculations. In
this thesis, the mathematical properties of burnup matrices are studied. It is de-
duced that their eigenvalues are generally confined to a region near the negative
real axis. Rational approximations that are accurate near the negative real axis, and
the Chebyshev rational approximation method (CRAM) in particular, are proposed as
a novel method for solving the burnup equations. The results suggest that the pro-
posed approach is capable of providing a robust and accurate solution to the burnup
equations with a very short computation time.

When a mathematical model contains uncertain parameters, this uncertainty is
propagated to responses dependent on the model. This thesis studies the propaga-
tion of neutron interaction data uncertainty through the criticality equation on a fuel
assembly level. The considered approach is based on perturbation theory, which
allows computing the sensitivity profiles of a response with respect to any number
of parameters in an efficient manner by solving an adjoint system in addition to the
original forward problem. The uncertainty related to these parameters can then be
propagated deterministically to the response by linearizing the response.

Keywords burnup equations, Chebyshev rational approximation, CRAM, matrix exponential,
sensitivity analysis, uncertainty analysis
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1. Introduction

1.1 Background

In an operating nuclear reactor, the material composition of a nuclear fuel changes
constantly. In nuclear fission, the original nucleus splits into lighter nuclides, releas-
ing secondary particles and energy. In addition, nuclides transform to other nuclides
through other neutron-induced transmutation reactions and spontaneous radioactive
decay. The radioactive decay process continues even when nuclear fuel is removed
from the reactor.

In many applications, it is essential to be able to predict the changes in the nuclear
fuel composition. For example, the safety and economy of a reactor core loading
depend heavily on the changes in nuclide concentrations and how these changes are
compensated for. This is relevant when designing new reactor concepts and when
optimizing the reactor core loading of existing reactors alike. Also, it is important to
assess the material decomposition of spent fuel after removing it from the reactor
and at any time afterwards. Final deposition applications necessitate predicting the
nuclide concentrations at time steps of the order of thousands of years.

In practice, the changes in nuclear fuel material composition are evaluated by
dedicated burnup calculation codes. Unfortunately, it is extremely difficult to simulate
the problem in the true time-dependent form, due to the coupling between nuclide
concentrations and neutron density distribution—the transmutation rates of neutron-
induced reactions depend on the neutron density distribution in the system, and the
neutron density distribution, on the other hand, is strongly dependent on the isotopic
compositions of the fissile material.

Burnup calculations are based upon the assumption that nuclide concentrations
can be assumed constant when solving the neutron density distribution. They are
formulated around two central equations in reactor physics, which are the neutron
transport equation and the burnup equations. The neutron transport equation is es-
sentially a balance equation for the neutron density. In burnup calculations, it is
modeled as a time-independent eigenvalue problem, called the criticality equation,
in which case the solution comprises of neutron density distribution and the multi-
plication factor, which characterizes the time dependence of the system. Based on
the neutron density distribution solution, it is possible to compute the rates at which
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1. Introduction

nuclides transform to other nuclides. These reaction rates can be used to form the
burnup equations, which govern the changes in nuclide concentrations over time.
Burnup calculations form a cyclic process, where the system is modeled forward
in time by solving the criticality equation and the burnup equations in a sequential
manner.

1.2 Research objectives

Due to the special demands related to the target of application, it is crucial that the
computational methods related to burnup calculations are constantly developed and
refined, and that their accuracy and efficiency are improved. In addition, uncertainty
analysis methods are needed for evaluating the reliability of the calculation results.

1.2.1 Numerical solution of burnup equations

There are generally various numerical methods for solving the neutron transport
equation. However, notably little interest and research effort has been previously
shown towards the solution of burnup equations. The burnup equations form a sys-
tem of first order differential equations, which can be formally solved by computing
the matrix exponential of the burnup matrix. Since the half-lives of different nuclides
vary dramatically, the system is extremely stiff. It is also difficult that the time steps
used in burnup calculations generally vary from less than a day at the beginning
of the irradiation cycle to a few hundred days at the end. For these reasons, the
computation of the matrix exponential has been previously considered impossible
for the full burnup system. Instead, simplified burnup chains have been used, or the
most short-lived nuclides have been treated separately when computing a matrix
exponential solution.

The focus of this thesis was to examine if it is possible to solve a detailed burnup
system containing over a thousand nuclides by a single matrix exponential method.
The motivation for this was the development of the burnup calculation routines in the
Serpent Monte Carlo reactor physics code developed at VTT. 1

In this thesis, the mathematical properties of burnup matrices are studied sys-
tematically for the first time. It turns out that the eigenvalues of burnup matrices are
confined to a region near the negative real axis and that they are connected with the
class of M-matrices. These properties can be utilized in solving the burnup equations
by employing rational approximations that are accurate near the negative real axis.
The Chebyshev rational approximation method (CRAM), defined as the best rational
approximation on the negative real axis, is proposed as a novel method for solv-
ing the burnup equations. In addition, rational approximation based on quadrature
formulas derived from complex contour integrals is proposed. The proposed meth-
ods are compared to established numerical methods and highly accurate reference
solutions.

1A complete and up-to-date description of the Serpent code is found at the project website.
(http://montecarlo.vtt.fi)
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1. Introduction

1.2.2 Propagation of uncertainty through criticality equation

In addition to numerical error, the reliability of calculation results is affected by un-
certain parameter values utilized in the computations. In particular, reactor physics
calculations employ large nuclear data libraries containing the interaction data be-
tween neutrons and nuclei. These nuclear data libraries are believed to be one of the
most significant sources of uncertainty in all reactor physics calculations, including
burnup calculations. In order to evaluate the reliability of the calculation results, this
parameter uncertainty needs to be propagated through the calculations. Since the
libraries typically contain at least tens of thousands of uncertain parameters, calcu-
lation times often inhibit the use of statistical approaches in practical applications.

In this thesis, uncertainty analysis is applied to the criticality equation, which is
one of the two equations that are solved sequentially during burnup calculations.
The considered uncertainty analysis method is based on perturbation theory, which
allows efficiently propagating the uncertainty related to a nuclear data library to the
response of interest by solving an adjoint system in addition to the original forward
problem. The described work was done in a context other than burnup calcula-
tions, but it forms a theoretical background for propagating nuclear data uncertainty
through the criticality equation to parameters needed in burnup equations.

13





2. Burnup calculations

The objective of burnup calculations is to simulate the long-term time behavior of
a nuclear reactor. The neutronic properties of nuclear fuel depend strongly on the
isotopic composition of the fissile materials. In an operating reactor, these material
compositions change constantly due to neutron-induced reactions and spontaneous
radioactive decay. The rates of the former reactions depend on the neutron den-
sity distribution in the system. Unfortunately, it is not possible to solve the coupled
problem for neutron density distribution and nuclide concentrations in a truly time-
dependent form, and approximations are required.

Burnup calculations are based on the assumption that the neutron density dis-
tribution and the changes in the nuclide concentrations can be solved sequentially
in a cyclic manner by alternating the two computation steps, and using results from
the previous step. During the first step, the neutron density distribution is computed
assuming that the nuclide concentrations are fixed. This requires solving the neu-
tron transport equation, which is essentially a balance equation for neutrons. Based
on the neutron density distribution, the rates of the neutron-induced reactions can
be computed. During the second step, the changes in the nuclide concentrations
are solved from the burnup equations assuming constant reaction rates. This cal-
culational strategy can be further refined by means of predictor–corrector methods,
which aim at predicting the most representative averages for the reaction rates ap-
proximated as constants during the solution of burnup equations. 2 The following
subsections introduce the two basic equations—the criticality equation and the bur-
nup equations—on which burnup calculations are based.

2.1 Neutron transport and criticality equation

The neutron transport equation is a balance equation for the neutron density distribu-
tion N(r , Ω, E, t), defined in a six-dimensional phase space as the expected number
of neutrons in a volume dV about the point r , traveling in the cone of directions dΩ
about the direction Ω, with energies in the interval [E, E + dE] at the time instant t.
In nuclear reactors, neutron–neutron interactions can be neglected, and the neutron

2The use of predictor–corrector methods does not affect the solution of the criticality equation nor the
burnup equations.
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2. Burnup calculations

density distribution depends solely on the interactions between neutrons and matter.
The interaction probabilities between neutrons and matter are described by quan-

tities called neutron cross-sections. These probabilities depend on the target nu-
cleus, the type of the interaction, and the energy of the neutron. The microscopic
cross-section σi,x(E) characterizes the probability that a neutron with energy E inter-
acts with nuclide i through reaction x. It has the dimensions of area and it can be
interpreted as the effective cross-sectional area per nucleus seen by a neutron. The
macroscopic cross-section is defined as the microscopic cross-section multiplied by
nuclide density. In a medium consisting of several nuclides, the macroscopic cross-
section for reaction x may be written

Σx(r , E) =
n∑

i=1

ni (r)σi,x(E) , (2.1)

where ni denotes the concentration of nuclide i. A macroscopic cross-section can
be interpreted physically as the interaction probability per path length traversed by a
neutron.

There are various reactions through which neutrons and nuclides may interact.
These reactions can be divided into fission, capture and scattering reactions. Cap-
ture reactions include all of the reactions, where no secondary neutrons are emitted.
It is customary to include both fission and capture reactions in absorption. The total
cross-section Σt(r , E) corresponds to the probability of any type of reaction.

In scattering reactions, it is necessary to specify the probability distributions for
the energy and direction of the scattered neutron. The differential scattering cross-
section

Σs(r , E → E′, Ω · Ω′)
corresponds to the probability that the scattered neutron will have the direction Ω′ and
energy E′. Scattering collisions can be divided into elastic and inelastic reactions.
The latter may result in the emission of multiple secondary neutrons.

In fission, it can be approximated that secondary neutrons are produced isotrop-
ically and that their energy spectrum is independent of the energy of the neutron
causing the fission. Therefore, only two additional quantities need to be specified in
addition to the fission cross-section Σf(r , E). These quantities are the mean number
of fission neutrons produced in a fission caused by a neutron with energy E, denoted
by ν(E), and the fission neutron energy spectrum, denoted by χ(E).

Neutron transport problems are most often formulated in terms of the neutron flux
Φ, which is defined

Φ(r , Ω, E, t) = v N(r , Ω, E, t) ,
where v is the neutron velocity. The scalar flux is obtained by integrating the angular
flux Φ over all directions:

ϕ(r , E) =
∫

dΩ Φ(r , Ω, E) . (2.2)

The time-dependent transport equation for the neutron flux can now be written
1
v
∂Φ

∂t + Ω · ∇rΦ + ΣtΦ =
∫

dE′
∫

dΩ′ Σ′
s Φ

′ + χ(E)
4π

∫
dE′ ν(E′)Σ′

f ϕ
′ , (2.3)
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2. Burnup calculations

where

• Φ = Φ(r , Ω, E, t)

• Φ′ = Φ(r , Ω′, E′, t)

• ϕ′ = ϕ(r , E′)

• Σt = Σt(r , E)

• Σ′
s = Σs(r , E′ → E, Ω′ · Ω)

• Σ′
f = Σf(r , E′)

Equation (2.3) can be written in operator form as

1
v
∂Φ

∂t + AΦ = BΦ , (2.4)

where AΦ includes all terms, except for the time derivative and the fission source
term BΦ.

In most cases the time-dependence of the neutron transport equation is not
treated explicitly, but the problem is solved as a criticality eigenvalue problem. Phys-
ically it is clear that by adjusting the number of fission neutrons emitted, it is possible
to obtain a system in which the rate of neutron production is equal to the losses
by absorption and leakage. Therefore, Eq. (2.3) can be written as an eigenvalue
problem called the criticality equation

AΦ = 1
k BΦ , (2.5)

to which a non-negative solution is guaranteed to exist, corresponding to the largest
eigenvalue k. This eigenvalue is called the multiplication factor and it characterizes
the time behavior of the system. If k > 1, the neutron flux will increase with time,
and the system is called supercritical. The case k = 1 corresponds to a truly time-
independent solution, in which case the system is called critical. Finally, if k < 1,
the neutron flux will decrease with time, and the system is called subcritical. Since
Eq. (2.5) is homogeneous, it allows an arbitrary normalization of the solution. In
burnup calculations the flux solution is typically normalized to coincide with the power
of the system.

There exists a variety of computational methods for solving the criticality equa-
tion and they can be divided into deterministic methods and Monte Carlo simulation.
Traditionally, burnup calculations have been performed in two dimensions using de-
terministic methods. A review of the different methods falls outside the scope of this
thesis, but practically all deterministic methods use similar strategies for dealing with
the energy and angular dependence of the criticality equation, and these techniques
are explained briefly in the following.

The angular dependence of the scattering source in Eq. (2.5) is most often han-
dled by expanding it as a truncated series of spherical harmonics. In this case, the
truncation order zero corresponds to isotropic scattering. After this, there are two
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2. Burnup calculations

established practices to deal with the angular dependence of the neutron flux. In the
discrete ordinates method, the criticality equation is evaluated and solved in discrete
angular directions {Ωj}N

j=1. In the spherical harmonics method, on the other hand,
the angular flux is expanded as a truncated series of spherical harmonics.

The energy discretization procedure is virtually always based on the multi-group
approximation. In this approach, the considered energy interval [Emin, Emax] is di-
vided into groups, [Eg, Eg−1], g = 1, ... , G, with E0 = Emax and EG = Emin. After
expanding the scattering source in the base of spherical harmonics, the multi-group
criticality equation for group g may be obtained by integrating Eq. (2.5) over the in-
terval [Eg, Eg−1]. Assuming isotropic scattering, this leads to a system of the form

Ω · ∇Φg(r , Ω) + ΣgΦg(r , Ω)

= 1
4π

G∑
h=1

Σh→g
s ϕh(r) + χg

4πk

G∑
h=1

ν̄ Σh
f ϕ

h(r) , g = 1, ... , G , (2.6)

where the multi-group quantities are defined as

Σg(r) =
∫

g Σ(r , E)ϕ(r , E) dE∫
g ϕ(r , E) dE , (2.7)

Σg′→g
s (r) =

∫
g′
∫

g Σs(r , E′ → E)ϕ(r , E′) dE′ dE∫
g′ ϕ(r , E′) dE′ , (2.8)

χg =
∫

g
χ(E) dE , (2.9)

and the multi-group flux as

Φg(r , Ω) =
∫

g
Φ(r , Ω, E) dE . (2.10)

Of course, solving the multi-group flux from Eq. (2.6) requires that the multi-group
cross-sections are known. In practice, this requires computing the multi-group cross-
sections approximatively before the actual transport calculation in the true geome-
try has been carried out. Depending on the number of energy groups used in the
transport calculation, this may require a series of calculations based on different
computational strategies.

The Monte Carlo method is a stochastic solution scheme, in which the random
walk of individual neutrons is simulated by drawing samples from probability distribu-
tions. In a simple Monte Carlo simulation, neutrons are tracked through geometries
by sampling their free path lengths. If the sampled free path length does not cross
material boundaries, it determines the next collision site for the neutron. In this case,
also the interaction nuclide and type are sampled from appropriate probability distri-
butions. The interaction between the neutron and the nuclide can either be an ab-
sorption or a scattering reaction. If the neutron is absorbed, its history is terminated.
In case of a scattering reaction, the energy and direction of the scattered neutron
are sampled from appropriate distributions. When a material boundary is crossed,
the simulation proceeds by sampling a new free path length in the entered material,
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2. Burnup calculations

starting from the boundary. The history of a neutron consists of these tracks from
the initial emission to the final absorption or escape from the system. The simulation
results can then be used to compute statistical estimates for reaction rates and other
quantities of interest, without the need to explicitly solve the flux distribution. The
main advantage of the Monte Carlo approach is that it can easily deal with complex
three dimensional geometries. It is also useful that the latest available knowledge on
neutron interactions can readily be utilized in Monte Carlo calculations. The draw-
back of the method, on the other hand, is the high computational cost, which often
becomes a practical limitation.

2.2 Burnup equations

Burnup equations describe the changes in the concentrations of the nuclides con-
sidered in a burnup calculation. They form a system of first order linear differential
equations that can be written

n′
i (t) = −ri ni (t) +

∑
j ̸=i

rj→i nj (t) , ni (0) = ni
0 , i = 1 ... , n , (2.11)

where ri is the total rate density at which nuclide i is transformed to other nuclides,
rj→i is the rate density at which nuclide j ̸= i is transformed to nuclide i, and ni

0 is the
initial concentration of nuclide i. Equation (2.11) can be written in matrix form as

n′ = An , n(0) = n0 , (2.12)

where A ∈ Rn×n is called the burnup matrix and n ∈ Rn is the nuclide concentration
vector. The diagonal elements aii = −ri of the burnup matrix correspond to the total
loss rates, and the off-diagonal elements aij = rj→i to the production rates.

Nuclides can transform to other nuclides through neutron-induced reactions and
spontaneous radioactive decay. As previously explained, burnup equations are
formed based on the assumption that the reaction rates of the neutron-induced reac-
tions can be approximated as fixed constants. After solving the neutron flux, the rate
for a particular neutron reaction can be computed by integrating the flux multiplied
by the corresponding microscopic cross-section over space and energy.

Let us first consider reactions other than fission, and let σji denote the microscopic
cross-section for the neutron reactions that transform nuclide j to nuclide i. The
corresponding average transmutation rate density can be computed as

V−1
∫ Emax

Emin

dE
∫

V
dV σji (E)ϕ(r , E) = σij ϕ , (2.13)

where

σji =
∫ Emax

Emin
dE

∫
V dV σji (E)ϕ(r , E)∫ Emax

Emin
dE

∫
V dVϕ(r , E)

(2.14)

and
ϕ = V−1

∫ Emax

Emin

dE
∫

V
dV ϕ(r , E) (2.15)
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2. Burnup calculations

Figure 2.1. Independent fission product yields for 235U.

is the energy and region averaged flux, normalized to coincide with the power of the
system.

In the case of fission, the transmutation rate j → i can written

V−1
∫ Emax

Emin

dE
∫

V
dV γji (E)σj,f(r , E)ϕ(r , E) = γji σj,f ϕ , (2.16)

where γji is the yield of the fission product nuclide i.
In addition to neutron reactions, nuclides can transform to other nuclides via spon-

taneous radioactive decay. Let λji denote the decay constant corresponding to ra-
dioactive decay j → i. The total rate at which nuclide j is transformed to nuclide i
can now be written

rj→i = σjiϕ + γjiσj,fϕ + λji , (2.17)
and the total loss rate correspondingly

rj =
∑
k ̸=j

σjk + σj,f +
∑
k ̸=j

λjk . (2.18)

Let Z denote the atomic number and A the mass number of a nuclide. Table 2.1
lists the most relevant decay and neutron-induced reactions in burnup calculations.
Figure 2.1 shows a plot of the fission product yields for 235U.

When forming the burnup equations, it is possible to take into account the pro-
duction of by-product nuclides. In this case, for example, the reaction rate for each
(n, p) reaction contributes to the production rate of 1H. Traditionally, the production
of nuclides as by-products has been ignored [1, 2]. Therefore, the term augmented
burnup matrix will be used to refer to the case, where the production of by-product
nuclides has been taken into account when constructing the burnup matrix.
Definition 2.2.1 (Augmented burnup matrix). A burnup matrix A ∈ Rn×n is called
augmented, when it has been constructed such that the reactions, in which by-
products are emitted, also contribute to the production rates of the by-product nu-
clides.
In the absence of neutron irradiation, nuclides transform only through radioactive
decay, and the burnup equations reduce to decay equations. In this case, the burnup
matrix is called a decay matrix.
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2. Burnup calculations

Table 2.1. The most relevant decay and neutron-induced reactions in burnup calcu-
lations for a nuclide with atomic number Z and mass number A.

Mode of decay Daughter nuclide By-product nuclide

α decay (Z − 2, A − 4) 4He
Proton emission (Z − 1, A − 1) 1H

Neutron emission (Z , A − 1) -
β− decay (Z + 1, A) -
β+ decay (Z − 1, A) -

(n, 2n) (Z , A − 1) -
(n, 3n) (Z , A − 2) -
(n, 4n) (Z , A − 3) -
(n, γ) (Z , A + 1) -
(n, p) (Z − 1, A) 1H
(n, d) (Z − 1, A − 1) 2H
(n, t) (Z − 1, A − 2) 3H

(n,3He) (Z − 2, A − 2) 3He
(n,α) (Z − 2, A − 3) 4He

Fission fission product nuclides -
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3. Matrix exponential solution of burnup
equations

The burnup equations according to Eq. (2.12) can be formally solved by the matrix
exponential method yielding the simple solution

n(t) = eAt n0 , (3.1)

where the exponential of the matrix At can be defined as the power series expression

eAt =
∞∑
k=0

1
k! (At)k , (3.2)

with the additional definition A0 = I. There are generally various numerical meth-
ods for computing the matrix exponential. However, the suitability of a particular
method depends substantially on the characteristics of the problem at hand. The
mathematical properties of (augmented) burnup matrices are studied systematically
in Section 3.1. The characteristics and numerical computation of the burnup matrix
exponential are then considered in Section 3.2. Rational approximations accurate
near the negative real axis are proposed as a novel method for solving the burnup
equations and this framework is considered in Section 3.3.

3.1 Mathematical properties of burnup matrices

In order to select a well-suited method for computing the matrix exponential solution,
it is necessary to consider the mathematical characteristics of burnup matrices.

First of all, burnup matrices are relatively large and sparse. The total number
of nuclides depends both on the employed nuclear data library and the criterion for
selecting the nuclides. The evaluated nuclear data library JEFF-3.1 [3], for example,
contains neutron interaction data for 381 nuclides and decay data for 3852 nuclides.
The nuclides to be considered in a burnup calculation are chosen based on the
transmutation chains originating from the initial nuclides, possibly accompanied with
a probabilistic criterion, the resulting total number of nuclides typically being between
1200 and 1700.
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3. Matrix exponential solution of burnup equations
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Figure 3.1. Sparsity pattern of an augmented burnup matrix corresponding to a sys-
tem with 1606 nuclides.

When constructing the burnup matrix, the nuclides can be indexed arbitrarily. The
burnup matrix becomes nearly upper triangular if the nuclides are indexed in an as-
cending order with respect to their ZAI index, defined as ZAI = 10 000 Z + 10 A + I,
where Z is the atomic number, A is the mass number of the nuclide and I is the iso-
meric state number. In this case, the non-zero elements are concentrated around
the diagonal, and fission product distributions on the right hand side. The matrix ele-
ments below the diagonal correspond to reactions where the ZAI index increases, the
only considered reactions being β− decay and the (n, γ) reaction. Figure 3.1 shows
the sparsity pattern of a typical burnup matrix for a system with 1606 nuclides. The
matrix elements on the first subdiagonal correspond to the (n, γ) reaction, in which
the mass number of the nuclide increases by one. The non-zeros below the first
subdiagonal, on the other hand, correspond to β− decay with each arc correspond-
ing to the isotopes of a single element. The sparsity pattern follows from that β−

decay generally occurs in neutron-rich nuclides only. Empty columns in the matrix
correspond to nuclides which are stable and do not elicit any neutron reactions.

As explained in Section 2.2, the diagonal elements of the burnup matrix are non-
positive, and the element −aii characterizes the total rate at which nuclide i is trans-
formed to other nuclides. The off-diagonal elements, on the other hand, are non-
negative, and the element aij describes the rate by which nuclide j is transformed to
nuclide i. This simple sign pattern connects the burnup matrices with the class of
Z -matrices.
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3. Matrix exponential solution of burnup equations

Definition 3.1.1. A matrix Z ∈ Rn×n is called a Z -matrix if its off-diagonal elements
are non-positive, i.e. zij ≤ 0 for i ̸= j. The class of Z -matrices is denoted by

Zn = {Z ∈ Rn| zij ≤ 0, i ̸= j} . (3.3)

Based on this definition, it is evident that the negatives of burnup matrices belong
to Z -matrices. This observation is interesting, because it suggests connections with
the theory of non-negative matrices. Especially, every Z ∈ Zn can be expressed in
the form

Z = sI − B , s > 0 , B ≥ 0 , (3.4)

where B ≥ 0 denotes Bij ≥ 0 for i, j = 1, ... , n. This is further discussed in Sec-
tion 3.1.2, where the spectral properties of burnup matrices are considered.

Nuclides may transform to other nuclides through spontaneous radioactive decay
and neutron-induced reactions. The measured nuclide half-lives corresponding to
radioactive decay can vary from 10−24 seconds to billions of years, which introduces
elements of both extremely small and large magnitude to the burnup matrix, making
the system numerically extremely stiff. The highly unstable nuclides, whose decay
constants can be of the order of 1021 s−1, are numerically the most difficult. An ex-
ample of such nuclide is the boron isotope 7B, which decays to the beryllium isotope
6Be by proton emission with a half-live of the order of 10−22 s. Since

∥A∥1 ≥ max
i,j

|aij | ,

this reaction alone increases the burnup matrix norm to be at least of the order of
1021.

The magnitudes of neutron-induced reaction rates vary significantly less. In accor-
dance with Eqs. (2.13) and (2.16), their values are bounded by the maximum values
of the cross-sections and the normalization of the neutron flux by power. One of the
largest known cross-sections is the capture cross-section of 135Xe, whose maximum
value is of the order of 10−16 cm2. The highest ever measured neutron fluxes are
of the order ∼ 1016/(cm2 s), the record being ∼ 3 × 1016 neutrons/(cm2 s) achieved
in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Therefore, the
magnitudes of neutron-induced reactions can be conservatively bounded from above
by unity in reactor conditions.

To illustrate the extensive variations in the decay and transmutation rates, Fig. 3.2
shows a plot of the absolute values of a 1606 × 1606 augmented burnup matrix.
Figure 3.3 is a close-up from Fig. 3.2, showing A(1 : 36, 1 : 30) and corresponding to
the 36 lightest nuclides, ranging from the hydrogen isotope 1H to the oxygen isotope
18O.
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Figure 3.2. A plot illustrating the (10-base) logarithmic variations in the absolute
values of burnup matrix elements for a test case with 1606 nuclides.
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Figure 3.3. A close-up of the matrix in Fig. 3.2 corresponding to the 36 lightest
nuclides ranging from 1H to 18O.
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3. Matrix exponential solution of burnup equations

3.1.1 Graph-theoretical approach

Some insight into the numerical properties of burnup matrices can be gained by
considering their graphs. In this context, the column and row indices of A are referred
to as vertices. When aij ̸= 0, there exists an edge from vertex i to vertex j, and the
notation i → j is used. A path of length m from node i to node k is defined as
a sequence of non-zero vertices [i = i1, i2, i3 ... , im, im+1 = k], such that in → in+1 for
n = 1, ... , m+1. The physical interpretation for this is that there exists a transmutation
path of length m from nuclide k to nuclide i.

A graph is called acyclic, if the paths related to it do not form closed cycles. In
this case, the vertices can be ordered topologically, meaning that if i → j, the vertex
i appears before j in the ordering. An acyclic graph corresponds to a matrix that
can be permuted to lower triangular form. When a graph is not acyclic, it can be
divided into strongly connected components (SCCs). A strongly connected compo-
nent is defined as a set of vertices, for which there exists a path from each vertex
to every other vertex. After dividing a graph into strongly connected components,
these components can be ordered topologically in the same manner as the vertices
of an acyclic graph, after which the corresponding systems of differential equations
can be solved independently in this order. This corresponds to permuting the matrix
to lower block triangular form with irreducible diagonal blocks.

In the case of a burnup matrix, a strongly connected component corresponds to
a set of nuclides for which there exists a transmutation path from every nuclide to
every other nuclide. In this context, it should be noted that measured nuclear data
does not exist for all reactions that are unlikely but possible in theory. The consid-
erations in this section are based on evaluated nuclear data libraries and the library
JEFF-3.1 [3] in particular. Some general conclusions can be drawn from studying
the transmutation paths of nuclides. First of all, the only reactions increasing the ZAI
index are the (n, γ) reaction and β− decay. Therefore, a closed cycle must neces-
sarily contain at least one of these reactions. Nuclides that do not undergo either of
these reactions, form SCCs whose size is one. It can also be deduced that fissile
nuclides and fission product nuclides belong to different SCCs, since transmutation
paths from fission products to fissile nuclides are extremely unlikely under reactor
conditions. 3

Interestingly, the nuclides produced as by-products, i.e. 1H, 2H, 3H, 3He and 4He,
always form a sink in the augmented burnup matrix, meaning that there is no out-
bound edge from this set of vertices. This is due to the fact that these nuclides do
not elicit any reactions that would produce nuclides outside this group. The nuclide
4He is stable and elicits no neutron reactions corresponding to a zero column in the
burnup matrix, whereas the rest of the by-product nuclides form a single SCC.

Let us again consider the augmented burnup matrix plotted in Figures 3.1 and
3.2. This matrix corresponds to a burnup system with 1606 nuclides, ranging from

3Interestingly, these paths are theoretically possible if data based on nuclear models rather than mea-
surements is considered. For example, the nuclear data library TENDL-2011 [4] produced with the nuclear
reaction program Talys [4] contains data that enables paths from fission products to fissile nuclides. However,
since these transmutation paths are extremely unlikely, they are not further considered here.
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Figure 3.4. Burnup matrix permuted to lower block triangular form. The diagonal
blocks with size greater than one have been plotted with magenta, red, green or
cyan. For the three largest blocks, the nuclides with the smallest and the greatest
ZAI indices in the SCC have been indicated.

1H to 245Cm when ordered according to their ZAI index. For this matrix, the number of
SCCs is 896. However, only twelve of these components include more than a single
nuclide. The source SCC, i.e. a SCC without any inbound edges, consists 83 nuclides
ranging from 222Fr to 245Cm. The largest SCC comprises 463 nuclides ranging from
69Cu to 159Dy. Figure 3.4 depicts the SCCs of the test case burnup matrix by showing
a plot of the matrix permuted to block lower triangular form.

3.1.2 Spectrum

Real parts of eigenvalues

When considering the spectral properties of burnup matrices, it is important to dis-
tinguish between classically defined and augmented burnup matrices. In the case
of conventional burnup matrices, the number of nuclides does not increase in all
reactions except fission. As explained in Section 3.1.1, there are generally no trans-
mutation chains from fission product nuclides to fissile nuclides. Therefore, the con-
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3. Matrix exponential solution of burnup equations

Table 3.1. Possible decay and neutron reactions for the by-product nuclides.

Nuclide Possible reactions
1H (n,γ)
2H (n,γ) (n,2n)
3H β− (n,2n)

3He (n,p) (n,d) (n,t)
4He

centrations of all nuclides must remain bounded at all times [I]. In this case, the
following theorem ([5], p. 165) gives a useful characterization of the real parts of the
burnup matrix eigenvalues.

Theorem 3.1.2. Every solution n of system (2.12) remains bounded as t → ∞ if
and only if the following holds

(i) Re (λ) ≤ 0 ∀ λ ∈ Λ(A)

(ii) Every λ ∈ Λ(A) with Re (λ) = 0 is a semisimple eigenvalue, i.e. the geometric
and algebraic multiplicities agree.

Here Λ(A) denotes the set of the eigenvalues of A.

However, the situation changes slightly for the augmented burnup matrix. In this
case, the number of nuclides increases in all reactions that produce a by-product
nuclide in addition to the daughter nuclide. In this context, it is not evident that all
nuclide concentrations remain bounded as t → ∞. This follows from that neutrons
are not assumed to be part of the burnup system but they are supposed to be added
constantly to the system. However, as discussed in Section 3.1.1, the only nuclides
produced as by-products are 1H, 2H, 3H, 3He and 4He. The vertices corresponding
to these nuclides always form a sink in the burnup matrix graph. It follows that no
nuclides are produced from these nuclides, and that the concentrations of all nuclides
except for these by-product nuclides must remain bounded at all times.

Fortunately, the eigenvalues related to the by-product nuclides can be separated
from the rest of the eigenvalues of the augmented burnup matrix, remembering that
the spectrum of a block triangular matrix is the union of the spectra of the diagonal
blocks, i.e.

Λ(A) =
∪

j

Λ(Ajj ) , (3.5)

where Ajj are the irreducible diagonal blocks. Here each diagonal block corresponds
to the set of nuclides forming a SCC. Therefore, it can be concluded that Theo-
rem 3.1.2 applies to all eigenvalues of an augmented burnup matrix except for the
ones related to the diagonal block corresponding to the nuclides 1H, 2H, 3H and
3He. This submatrix, denoted by Ã ∈ R4×4, and its spectrum are considered in the
following.

Table 3.1 lists the reactions that are possible for the by-product nuclides. From
the perspective of eigenvalues, it is noteworthy that 3He elicits (n, p), (n, d), and (n, t)
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3. Matrix exponential solution of burnup equations

Figure 3.5. Nuclide concentrations corresponding the solution of x ′ = Ãx.

reactions (in this case, (n, p) and (n, t) are actually the same reaction) producing
either one 3H and one 1H nuclide or two 2H nuclides Therefore, the number of nu-
clides increases in both of these reactions. As can be seen from Table 3.1, there
are transmutation paths from 1H, 2H and 3H to 3He, meaning that also the number of
3He nuclides increases as a function of time. Considering this, it is evident that the
nuclide concentrations of the by-product nuclides grow unboundedly when t → ∞.
This clearly unphysical behavior stems from the assumption of constant rates for the
neutron-induced reactions during the burnup step. According to this assumption,
neutrons are added to the system constantly and, in the β− decay of 3H to 3He, neu-
trons are converted to protons, increasing the amount of matter as a function of time.
Therefore, the eigenvalues related to Ã can have positive real parts.

In reality, of course, all nuclide concentrations remain bounded at all times. There-
fore, the dynamical behavior of the subsystem x ′ = Ãx reflects the validity of the
assumption of constant reaction rates during the burnup step. Therefore, λt ≫ 1
for any λ ∈ Λ(Ã) would indicate the invalidity of this assumption for the time step t.
Figure 3.5 shows the nuclide concentrations as a function of time for a PWR pin-cell
test problem. In this test case, Ã has a single positive eigenvalue which is of the
order of 10−12. It can be seen from this figure that the nuclide concentrations begin
to increase unrealistically when λt → 1. It should also be noted that although the
rate for the β− decay is constant, the magnitudes of the neutron reactions are ulti-
mately determined by the normalization of the neutron flux by power. Increasing the
power by a factor of 10 000, for example, increases the sole positive eigenvalue from
the order of 10−12 only to the order of 10−10. This extreme example illustrates that
the theoretical mathematical instability of this subsystem does not pose a problem
in practice.

Imaginary parts of eigenvalues

The characterization of the imaginary parts of the burnup eigenvalues is more diffi-
cult. It is again useful to consider the SCCs separately. It is evident, that the eigenval-
ues corresponding to SCCs consisting of a single vertex coincide with the respective
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3. Matrix exponential solution of burnup equations

diagonal elements of the matrix.
From a physical standpoint, the imaginary part ω of an eigenvalue corresponds

to an oscillation with period T = 2π/ω. Some insight on the interactions’ underlying
oscillatory behavior can be gained by considering a small system that can be solved
analytically. First of all, it is easy to show that a system consisting of two nuclides
cannot have non-real eigenvalues. Therefore, the following closed-cycle system con-
sisting of three nuclides can be regarded as a model problem in this context:

n′
1

n′
2

n′
3

 =


−µ1 0 µ3

µ1 −µ2 0

0 µ2 −µ3




n1

n2

n3

 . (3.6)

For this system, a necessary condition for the existence of a non-real eigenvalue is
that the constants µi satisfy

√
µ1 −

√
µ2 <

√
µ3 <

√
µ1 + √

µ2 . (3.7)

Furthermore, the absolute value of the imaginary part ω attains its maximum value

ωmax = √
µ1µ2 (3.8)

when µ3 = µ1 + µ2. When µ1 ≫ µ2, the left-hand and right-hand sides of the in-
equality (3.7) approach √

µ1, and µ3 must be arbitrarily close to µ1 in order to induce
a complex eigenvalue. Assuming, for example, µ1 ∼ 10−2 and µ2 ∼ 10−8, the
first 4 decimals of µ1 and µ3 must coincide in order for this system to have non-real
eigenvalues.

The principles related to this model problem can be generalized to more complex
closed-cycle systems. Non-real eigenvalues are most likely to occur, when the rates
of the reactions forming a closed cycle are of the same magnitude. When some of
the reactions are significantly more likely than others, they can be considered instant.
Physically, it is intuitive that the imaginary parts must be of the same order as the
rates for the least likely reactions in the cycle.

As discussed in the beginning of Section 3.1, the values of the decay constants
vary extensively, whereas the rates for neutron reactions are relatively slow. In a
thermal reactor operating at full power, most of the transmutation coefficients are of
order ≤ 10−8 s−1. In a fast reactor, the flux is higher but most of the neutron reactions
are less likely, which results in most of the reaction rates being even smaller than in
a thermal reactor. Based on computing the eigenvalues for a wide range of burnup
matrices, it seems that they are generally confined to a region near the negative
real axis. For every burnup matrix that we have considered, this has also been the
case. When the power level is decreased, the transmutation coefficients become
smaller. In this case the absolute values of the imaginary parts of the eigenvalues
decrease as well. It seems that the oscillations are most likely to occur for reduced
power cases where the greatest transmutation coefficients are of order ≤ 10−12. In
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general, the eigenvalues of the burnup matrix appear to remain bounded near the
negative real axis in all conceivable burnup calculation cases with imaginary parts
at the most of the order of 10−8.

It was stated previously that the negatives of burnup matrices belong to Z -
matrices. This property can be exploited in deriving a wedge condition for the burnup
matrix eigenvalues. Let Z ∈ Zn, in which case we can write Z = sI − B with s > 0
and B ≥ 0. Since B ≥ 0, it follows from the Perron–Frobenius theorem that B has
a real eigenvalue λ ≥ 0 such that |µ| ≤ λ ∀ µ ∈ Λ(B). Therefore, λ corresponds to
the spectral radius of B, denoted by ρ(B).

Definition 3.1.3 (M-matrix). Let Z ∈ Zn so that it can be written in the form Z = sI−B
with s > 0 and B ≥ 0. If s ≥ ρ(B), Z is called an M-matrix. If s = ρ(B), the M-matrix
is singular, and if s > ρ(B), it is non-singular.

M-matrices can be characterized by various equivalent properties (see Theorem 2.3
in [6]), of which the following three are of special interest:

Theorem 3.1.4. Let A ∈ Zn Then the following properties are equivalent

1. A is an M-matrix

2. A + εI is a non-singular M-matrix for any ε > 0

3. Every eigenvalue of the matrix A has a non-negative real part

From the third property we directly obtain the following theorem.

Theorem 3.1.5. The negatives of (conventional) burnup matrices belong to the class
of M-matrices.

The connection between burnup matrices and M-matrices is interesting because it
gives a wedge condition to the non-real eigenvalues of burnup matrices.

Theorem 3.1.6 (Eigenvalues of singular M-matrix). Let M ∈ Rn×n be a singular
M-matrix with n ≥ 2. Then its eigenvalues are confined to the closed wedge

W n =
{

z = reiθ | r > 0 , |θ| ≤ π

2 − π

n

}
. (3.9)

Proof. It has been proven that the eigenvalues of non-singular M-matrices belong
to the open wedge

Wn =
{

z = reiθ | r > 0 , |θ| < π

2 − π

n

}
(3.10)

if n > 2 and in (0,∞) if n = 2 [7]. Based on property 2 in Theorem 3.1.4, for any
ε > 0, the matrix M+εI is a non-singular M-matrix whose eigenvalues are confined to
the region Wn. However, since the eigenvalues of a matrix depend continuously on
the matrix, it follows that the eigenvalues of the singular matrix M must be confined
to the wedge W n.
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Notice that Theorem 3.1.6 can also be applied to the irreducible diagonal blocks
corresponding to the SCCs of a burnup matrix. In this case, the wedge Wn can be
narrowed to correspond to the size of the largest SCC of the matrix. When consid-
ering augmented burnup matrices, it is evident that all diagonal blocks—apart from
the one corresponding to the by-product nuclides—are M-matrices to which these
wedge conditions can be applied. The block matrix Ã ∈ R4×4 corresponding to the
by-product nuclides may have eigenvalues with a positive real part. However, any
of its 2 × 2 principal submatrix is an M-matrix. This can be attributed to the fact that
removing any two nuclides from the respective burnup chain cuts off the feedback
mechanism necessary for the nuclide concentrations to increase as a function of
time. Therefore, we can identify Ã with the following class of matrices [8]:

Definition 3.1.7. A ∈ Lk
0 if and only if A is a Z -matrix and each k × k principal

sub-matrix of A is an M-matrix, but there is at least one (k + 1) × (k + 1) principal
sub-matrix that is not an M-matrix.

Based on this definition, −Ã ∈ Ln−2
0 = L2

0. From [8] we now obtain the following
characterization: Ã has exactly one eigenvalue on the positive real axis with all the
other eigenvalues having non-positive real parts.

We can now summarize the estimates obtained for the eigenvalues of augmented
burnup matrices:

Theorem 3.1.8. (Eigenvalues of augmented burnup matrices) Let A ∈ Rn×n be an
augmented burnup matrix. If n = 2,

Λ(A) ⊂ (−∞, 0] .

Otherwise, if the nuclides 1H, 2H, 3H, and 3He are included to the burnup system,
A has four eigenvalues corresponding to them. Exactly one of these eigenvalues
is real-valued and positive, while the other three eigenvalues have non-positive real
parts. The remaining eigenvalues of A are confined to the wedge

Wn =
{

z = reiθ ∣∣ r > 0 , |θ| ≥ π

2 + π

n

}
(3.11)

around the negative real axis.

Figure 3.6 shows an example of the spectrum of an augmented burnup matrix for a
system with 1606 nuclides. This is the same matrix that was plotted in Figures 3.1
and 3.2. Figure 3.7 shows a close-up from Figure 3.6 together with the wedge esti-
mate from Theorem 3.1.8.

Eigenvalue decomposition

A matrix A ∈ Rn×n is called diagonalizable, if it has the eigenvalue decomposition

A = T Λ T−1 , (3.12)

where Λ is a diagonal matrix containing the eigenvalues of A, and T is an invertible
matrix containing the respective eigenvectors. Therefore, in order for the matrix A
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Figure 3.6. Plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} of an aug-
mented burnup matrix A for a system with 1606 nuclides. In addition, the matrix has
a single positive eigenvalue z+ ≈ 4.15 × 10−12 and zero as a 29-fold eigenvalue.

Figure 3.7. Close-up of the eigenvalues plotted in Fig. 3.6 near the origin, together
with the wedge estimate from Theorem 3.1.8.

to be diagonalizable, it must have n linearly independent eigenvectors that span the
space Cn. This happens especially if the matrix has n distinct eigenvalues.

If a nuclide is stable and does not elicit any neutron reactions, it always induces
a zero eigenvalue to the burnup matrix. For this reason, burnup matrices are nearly
always singular with zero as a multiple eigenvalue. However, according to Theo-
rem 3.1.2, the eigenvalue zero is semi-simple meaning that its geometric and alge-
braic multiplicities agree. Therefore, in order for a burnup matrix to be defective, it
should have a non-zero eigenvalue, whose geometric multiplicity is smaller than its
algebraic multiplicity.

For a single nuclide forming a SCC of unit size, the respective eigenvalue coincides
with its removal rate. When considering a SCC consisting of several nuclides, an
eigenvalue can no longer be connected with a particular nuclide but they all represent
the set of nuclides and their effective removal rates taking the feedback mechanisms
(i.e. closed cycles) into consideration. Since the decay and transmutation constants
of different nuclides are never precisely equal, a repeated non-zero eigenvalue is
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3. Matrix exponential solution of burnup equations

theoretically extremely unlikely. Therefore, burnup matrices should ideally be diago-
nalizable with zero as the only multiple eigenvalue. Nonetheless, as recently noted
in [9], the half-lives of some short-lived nuclides have not been measured accurately,
which results in identical estimates for some of them. 4 This imprecision of the decay
data may cause a burnup matrix to have multiple eigenvalues in practise. In addition
to these multiple eigenvalues resulting from inaccurate decay data, burnup matrices
typically have many nearly confluent eigenvalues, which complicates their numerical
computation. 5

In some cases, the condition of an eigenvalue problem may be a sign of that
the eigenvalues are not meaningful, and the pseudospectra of the matrix should be
studied instead [10]. The ε-pseudospectrum σε(A) of A is defined as the set z ∈ C
such that

∥ (zI − A)−1 ∥ > 1/ε , (3.13)

where the matrix (zI−A)−1 is called the resolvent of A at z. In the previous definition,
it is assumed that ∥ (zI − A)−1 ∥ = ∞ when z ∈ Λ(A) so that the spectrum of A is
contained in the ε-pseudospectrum for every ε > 0. It can be shown that when
matrix A is perturbed by a matrix E such that ∥E∥ < ε, the eigenvalues of A + E are
confined to σε(A) [10]. Therefore, the ε-pseudospectrum characterizes the sensitivity
of the eigenvalue problem to perturbations.

When computing the eigenvalues of a burnup matrix, problems are typically faced
due to the algorithm not being able to distinguish between the nearly confluent eigen-
values. Also, round-off errors may induce small positive eigenvalues, which are
clearly nonphysical. From a practical point of view, these errors are not acceptable
since they change the character of the problem. However, the absolute magnitudes
of the errors are generally of the order of the arithmetic precision used in the compu-
tation, suggesting that the eigenvalue problem is not especially sensitive to perturba-
tions. The study of the pseudospectra of burnup matrices supports this conclusion.
Figure 3.8 shows the boundaries of the 2-norm ε-pseudospectra for a burnup matrix
that was formed by selecting only the most important actinides and fission products,
totalling in 219 nuclides. The norm of the respective burnup matrix is of the order of
10−4. It can be seen from Fig. 3.8 that at distance δ from the eigenvalues, the norm
∥ (zI − A)−1 ∥ is of the order of δ−1.

3.2 Matrix exponential

3.2.1 Definitions of matrix functions

There are many equivalent ways to define the matrix exponential eAt in addition to the
power series definition of Eq. (3.2). In this context, it is useful to consider definitions
for general matrix functions first. Two definitions of particular interest are presented

4It should be noted that in [9] the focus is on the identical eigenvalues resulting from linearizing the closed
cycles in the burnup chain rather than identical eigenvalues of burnup matrices.

5The computation of the eigenvalues becomes significantly better-conditioned if the SCCs of the matrix
are formed first and the eigenvalues are then computed for each diagonal block corresponding a SCC.
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Figure 3.8. Pseudospectra of a small burnup matrix corresponding to a system with
219 nuclides. The outer boundaries of σε(A) are plotted for selected values between
ε = 10−5 and ε = 10−3. The eigenvalues of the matrix are marked with black dots.
The plot was computed with the Eigtool package for Matlab [11].

here—the definition based on Jordan canonical form, and the definition based on
the Cauchy integral formula.

It is well-known that any matrix A ∈ Cn×n can be written in the Jordan canonical
form

A = T J T−1 , (3.14)
where J is a diagonal block matrix

J = diag
[
Jm1 (λ1), ... , Jmp (λp)

]
and λ1, ... ,λp are eigenvalues of A. The matrix J is unique up to the order of the
diagonal blocks, whereas the transformation matrix T is in general not unique. The
diagonal blocks are of the form

Jmj (λj ) =



λj 1 0 · · · 0

λj 1
. . .

...

λj
. . . 0

0
. . . 1

λj


= λj I + Smj ∈ Cmj×mj (3.15)

with
∑p

j=1 mj = n. The number of Jordan blocks corresponding to λj is equal to the
number of linearly independent eigenvectors related to that eigenvalue. Let Ij denote
the index of λj , defined as the size of the largest Jordan block corresponding to λj .
In order to define the matrix function f (At) based on Jordan canonical form, we need
the following definition [12].

Definition 3.2.1. A function f is defined on the spectrum of At if the values

f (i)(tλj ) , i = 0 ... , Ij − 1 , j = 1, ... , s (3.16)

exist. Here {λ1, ... ,λs} are the distinct eigenvalues of A.
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We can now formulate the following definition for the matrix function f (At).

Definition 3.2.2. Let the function f be defined on the spectrum of At ∈ Cn×n and let
A = T J T−1 denote the Jordan decomposition of A. Then

f (At) = T diag
[
f (Jm1 (tλ1)), · · · , f (Jmp (tλp))

]
T−1 , (3.17)

where

f
(
Jmj (tλj )

)
=

mj−1∑
ν=0

f (ν)(tλj)
ν! Sν

mj . (3.18)

Notice that when the matrix A is diagonalizable, the Jordan decomposition reduces
to the eigenvalue decomposition and f (At) can be computed simply as

f (At) = T f (Λt) T−1 . (3.19)

Definition 3.2.2 and Eq. (3.19) are useful because they directly show the connection
between the eigenvalues and the exponential of a matrix. It should be noticed that
since the exponential function is analytic everywhere in the complex plane, the matrix
function eAt is defined for all At ∈ Cn×n.

Another interesting definition for the matrix function f (At) is based on a general-
ization of the Cauchy integral theorem.

Definition 3.2.3. Let A ∈ Cn×n and let f be analytic inside the closed contour Γ that
winds once around the spectrum of At. Then

f (At) = 1
2πi

∫
Γ

f (z) (zI − At)−1 dz . (3.20)

In the previous definition, the resolvent of At can be written in the form

(zI − At)−1 = B(z)
det (zI − At) , (3.21)

where
B(z) = zn−1B0 + zn−2B1 + ... + zBn−2 + Bn−1 (3.22)

with B0, B1, ... , Bn−1 matrices with constant elements [13].

3.2.2 Application to burnup matrices

Some interesting properties of the burnup matrix exponential E(t) = eAt can be de-
duced based on physical considerations. First of all, for each value of t, the element
Eij (t) characterizes the contribution from nuclide j to nuclide i during time step t.
Therefore, it is clear that all elements of E(t) must be non-negative at all times. In-
terestingly, this same conclusion follows directly from the fact that the negatives of
(augmented) burnup matrices are Z -matrices. The following theorem is from [12]:

Theorem 3.2.4. eAt ≥ 0 for all t ≥ 0 if and only if −A is a Z -matrix.
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Figure 3.9. Plot of the matrix elements E = eAt with t ≈ 8.64 × 105 s on a loga-
rithmic scale. The matrix E was computed with Matlab’s Symbolic toolbox using
high-precision arithmetics.

Due to the previous theorem, the negatives of Z -matrices are sometimes called es-
sentially non-negative. Figure 3.9 shows a plot of the matrix exponential for an aug-
mented burnup system with 1606 nuclides. Notice that a zero element Eij = 0 in the
figure means that there is no transmutation path from nuclide j to nuclide i. Espe-
cially, the rows 2, ... , 6 corresponding to the by-product nuclides have zero elements,
since no nuclides are produced from these nuclides. It can also be seen from the fig-
ure that the elements with the greatest magnitude are gathered around the diagonal.
This in accordance with the reasoning that the longer and more complex a partic-
ular transmutation path, the less likely it is to contribute to the respective nuclide
concentration.

In some cases, it is useful to consider the norm ∥eAt∥ as a function of time. For
non-normal matrices, it is possible that the transient behavior of the system differs
from the behavior at t → ∞. The following theorem from [10] gives a useful relation-
ship between eAt and the resolvent (zI − A)−1.

Theorem 3.2.5. Let A ∈ Cn×n and let ω ∈ R and M ≥ 1 be such that

∥eAt∥ ≤ Meωt ∀ t ≥ 0 . (3.23)
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For any z ∈ C with Re z > ω in the resolvent set of A it holds

(zI − A)−1 =
∫ ∞

0
e−zsesA ds , (3.24)

and
∥ (zI − A)−1 ∥ ≤ M

Re z − ω
. (3.25)

In the case of conventional burnup matrices, the number of nuclides increases only
through fission. As explained in Section 3.1.1, there are generally no transmutation
paths from fission product nuclides back to fissionable nuclides. Therefore, the total
number of nuclides in the system is bounded. The element Eij (t) of E(t) = eAt is equal
to the concentration of nuclide i at time t, assuming nuclide j is the only nuclide
with a non-zero initial concentration and that this concentration is equal to unity.
The column sum,

∑n
i=1 Eij (t), on the other hand, corresponds to the total number of

nuclides in the system at time t, assuming an initial condition consisting of a single
nuclide j. The norm ∥eAt∥1 is defined as the maximum absolute column sum of the
matrix. Therefore, we can state that

∥eAt∥1 ≤ C , (3.26)

where C is a constant equal to the maximum number of nuclides that can result from
an initial state consisting of a single nuclide. In practise, there are always reactions
competing with fission, for which reason the previous inequality holds for C smaller
than the maximum number of fission product nuclides. However, C can always be
chosen as the maximum number of nuclides produced in a fission.

Based on Theorem 3.2.5, we now obtain the following bound for the resolvent in
1-norm:

Theorem 3.2.6. Let A ∈ Rn×n be a (conventional) burnup matrix. Then for any
Re z > 0

∥ (zI − A)−1 ∥1 ≤ C
Re z . (3.27)

3.2.3 Numerical computation

In general, there are various numerical methods for computing the matrix exponen-
tial. However, the suitability of a particular method depends on the characteristics
of the problem under consideration. When considering the efficiency of a particular
method, there are a few cases that should be distinguished. First of all, computing
eAt for a single value of t is different from computing it for several values of t. Also,
the case where the full matrix eAt is required differs from the case where only the
action of the matrix exponential on a vector is needed, i.e. eAt y for some y ∈ Rn.

In burnup calculations, the objective is generally to compute the nuclide concen-
trations at time step t, i.e. the product eAt n0 for a single value of t and a single nuclide
initial concentration vector n0. The full matrix exponential is occasionally needed in
special applications, where it is important to know the contributions from individual
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nuclides. As mentioned previously, the time steps used in burnup calculations typi-
cally vary from a few days at the beginning of the irradiation cycle to a few hundred
days at the end. When considering nuclear fuel outside the reactor, the burnup equa-
tions reduce to equations describing radio-active decay, and the time steps can in
principle extend to thousands of years.

Due to the extensive variations in the magnitudes of the burnup matrix elements,
the computation of matrix exponential has previously been considered infeasible for
entire burnup systems. Instead, simplified burnup chains have been used, or the
most short-lived nuclides have been treated separately when computing a matrix
exponential solution. For example, in the ORIGEN [14] code, the matrix exponential
is computed with the truncated Taylor series method with scaling and squaring, after
excluding short-lived nuclides from the burnup matrix to be treated separately. In
the AEGIS code, a Krylov subspace method is applied to a simplified burnup chain
with 221 nuclides, in which case the burnup matrix norm is of the order of 10−2 [15].
These frameworks are considered briefly in the following.

Truncated Taylor series is perhaps the most obvious numerical method for com-
puting the matrix exponential. The main limitation of this approach is related to round-
off errors. In some cases, even increasing the number of terms does not improve
accuracy due to the accuracy limitations in the computer arithmetics. The applica-
bility range of the method can be extended by the method of scaling and squaring,
which is based on the identity

eAt =
(

eAt/m
)m

, (3.28)

where m can be taken as a power of two, m = 2k , so that the norm ∥A/m∥ becomes
sufficiently small. In this context is should be pointed out that the method of scaling
and squaring is only applicable to computing the full matrix eAt and it cannot be
applied, when only the vector eAty is desired. 6 Unfortunately, the squaring phase
of the scaling and squaring method may lead to a loss of accuracy due to round-off
errors in the canceling of large elements [16]. In ORIGEN [14], the fastest transitions
are removed from the burnup system in order for the matrix norm to meet the criterion

min {∥At∥1, ∥At∥∞} < −2 log (0.001) ≈ 13.8155

before the computation of the matrix exponential. This corresponds to removing
nuclides i for which eaii t < 0.001 [14].

In Krylov methods, the computation of the product eAtn0 is made more affordable
by projecting the matrix A to a lower-dimensional Krylov subspace. The projection
can be carried out with the Arnoldi iteration, which results in m iteration steps to the
partial Hessenberg reduction

A Qm = Qm Hm + hm+1,m qm+1 eT
m , (3.29)

6When computing eAty , the norm of At can only be reduced by dividing the time step t into smaller sub-
steps and by repeating the computation for each sub-step.
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where Qm ∈ Rn×m is orthogonal, Hm ∈ Rm×m is a Hessenberg matrix, and m < n.
The matrix exponential solution can then be approximated as

eAtn0 ≈ ∥n0∥Qm eHmte1 , (3.30)

where the product eHm te1 for the small and dense matrix Hm can be computed by
any suitable algorithm. The eigenvalues of Hm, called the Ritz values, are typically
close to the eigenvalues of A near the edge of the spectrum. The accuracy of the
Krylov approximation may be compromised if these extreme eigenvalues are not
representative of the original problem, which clearly is the case with burnup matrices.
Besides, Krylov subspace methods are generally motivated by the original problem
being too large to be solved directly, the typical applications including matrices arising
from the discretization of a differential equation. In this context, burnup matrices can
be regarded relatively small considering that polynomial or rational approximations
can easily be applied directly to them. Therefore, the solution of burnup equations
falls out of the scope of the application area of Krylov subspace methods.

The methods described above have been previously used for solving the burnup
equations. In addition to these, another method worth mentioning is the rational
Padé approximation of the exponential function. Padé approximation with scaling
and squaring can be considered the most established matrix exponential method,
and it is the method implemented in Matlab’s matrix exponential function expm [17].
The (k, m) Padé approximant of the exponential function is defined as the rational
function rkm(x) = pkm(x)/qkm(x) such that

pkm =
k∑

j=0

(k + m − j)! k!
(k + m)! (k − j)!

x j

j! (3.31)

and

qkm =
m∑

j=0

(k + m − j)! m!
(k + m)! (m − j)!

(−x)j

j! . (3.32)

This approximation can be shown to fit the exponential function ex to the order (m+n)
at the origin, i.e. (

d j rkm(x)
dx j

)
x=0

= 1 , j = 0, 1, ... , m + n . (3.33)

The accuracy of the approximant is restricted near the origin, and for this reason
it is generally applied together with the method of scaling and squaring. When the
matrix A is not diagonalizable and the matrix exponential is defined based on the
Jordan decomposition according to Eq. (3.2.2), it is advantageous that the accuracy
of the Padé approximation extends to the derivatives in the vicinity of the origin.
However, without scaling and squaring the method yields poor results for matrices
with eigenvalues far from the origin, and therefore this approach is not well-suited
for solving the burnup equations, where the matrix norm is large and only the vector
eAt n0 is desired.
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3.3 Solution based on rational approximations near the negative real
axis

The matrix exponential can be computed based on a rational function r(z) that is
known to be a good approximation to the function ez in some region in the complex
plane C. According to Definition 3.2.3, the matrix exponential can be defined as a
contour integral, with the integration path winding around the spectrum of the matrix.
Therefore, calculating eAt is essentially equivalent to evaluating contour integrals of
the form

(eAt)kl = 1
2πi

∫
Γ

ezRkl(z) dz , (3.34)

where R = (zI − At)−1, Rkl = O(1) when z → −∞, and the singularities of Rkl

are the eigenvalues of At. Since the eigenvalues of (augmented) burnup matrices
are confined to a region near the negative real axis, the integration contour can be
extended to a parabolic or hyperbolic shape in the left complex plane. Because the
integrand will decrease exponentially, these contour integrals can be approximated
efficiently using quadrature formulas [18]. Interestingly, the quadrature formulas can
be associated with rational functions, whose poles and residues are the nodes and
weights of the numerical integration formula, respectively [18]. In addition, every
rational function can be correspondingly interpreted as a quadrature formula applied
to a contour integral in the left complex plane. This interpretation gives the following
expression for the approximation error [18]:

I − IN = 1
2πi

∫
Γ′

(
ez − r(z)

)
Rkl(z) dz , (3.35)

where Γ
′ is a contour that extends from −∞ towards the origin, encircles the origin

while remaining to the left of the poles of r, and then extends back to −∞ without
crossing the negative real axis at any point.

In Eq. (3.35), IN denotes the integral of Eq. (3.34) approximated by some quadra-
ture rule with N points. When deriving Eq. (3.35), the integration contour Γ is as-
sumed to encircle the eigenvalues of At. Therefore, the accuracy of the rational
approximation may suffer a break-down if the eigenvalues of At fall outside the con-
tour defined by the poles of the rational function. Interestingly, this phenomenon is
not visible when only Definition 3.2.2 is considered.

The framework based on Cauchy integral formula has been considered in detail
in the context of burnup equations [I, II]. This has drawn attention to the non-real
eigenvalues of burnup matrices. Especially, the accuracy of a rational approximation
optimal on the negative real axis is expected to be affected by the magnitudes of the
eigenvalues’ imaginary parts. Also, the method may suffer a break-down if some of
the eigenvalues fall outside the integration contour implicitly defined by the rational
approximation.
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3.3.1 Partial fraction decomposition form

When approximating the matrix exponential, it is usually advantageous to employ
the partial fraction decomposition (PFD) form of the rational function. Let πk,l denote
the set of rational functions rk,l(x) = pk(x)/ql(x), where pk is a polynomial of order k
and qk is a polynomial of order l. For a rational function rk,k with simple poles, the
partial fraction decomposition is of the form

rk,k(z) = α0 +
k∑

j=1

αj

z − θj
, (3.36)

where α0 is the limit of the function rk,k at infinity, and αj are the residues at the poles
θj :

αj = pk(θj )
q′

k(θj )
. (3.37)

Also, rational functions in πk−1,k that have simple poles can be written in this form
with α0 = 0.

When the coefficients of rk,k are real, its poles form conjugate pairs, so that the
computational cost can be reduced to half for a real variable x:

rk,k(x) = α0 + 2 Re

 k/2∑
j=1

αj

x − θj

 (3.38)

and for a real matrix A ∈ Rn×n, the rational function may be computed as

rk,k(At)n0 = α0n0 + 2 Re

 k/2∑
j=1

αj (At − θj I)−1n0

 . (3.39)

It can be seen from Eq. (3.39) that computing a rational approximation rk,k(At) re-
quires solving k/2 linear systems.

When no nuclides are excluded from the burnup computation, the dimensions
of the burnup matrix are generally between 1200 and 1700, making the linear sys-
tems relatively large. The numerical characteristics of burnup matrices, discussed
in Section 3.1, may compromise the accuracy of widely used iterative solvers, many
of which are based on Krylov subspace techniques whose convergence is ultimately
related to the spectral properties of the matrix at hand. Luckily, the nearly upper tri-
angular sparsity pattern of burnup matrices, depicted in Fig. 3.1 for example, can be
utilized by employing a direct method. A method based on sparse Gaussian elim-
ination has been implemented to the reactor physics code Serpent. The suitability
and characteristics of this method in the context of burnup equations are analyzed
in detail in [IV].

3.3.2 Chebyshev rational approximation method (CRAM)

In Chebyshev Rational Approximation Method (CRAM), the rational function r̂(z) is
chosen as the best rational approximation of the exponential function on the negative
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Figure 3.10. Plot of log10 |ez − r̂16,16(z)| illustrating the accuracy of CRAM of order
16 in the complex plane. The poles of r̂16,16 have been marked with black asterisks.

real axis R−. Let π denote the set of rational functions rk,k(x) = pk(x)/qk(x), where
pk and qk are polynomials of order k. The CRAM approximation of order k is defined
as the unique rational function r̂k,k = p̂k(x)/q̂k(x) satisfying

ε̂k,k ≡ sup
x∈R−

|r̂k,k(x) − ex | = inf
rk,k∈πk,k

{
sup

x∈R−

|rk,k(x) − ex |

}
. (3.40)

The asymptotic convergence of this approximation on the negative real axis is re-
markably fast, with the convergence rateO(H−k), where H = 9.289 025 49 ... is called
the Halphen constant [19]. It was recently discovered by Stahl and Schmelzer [20]
that this convergence extends to compact subsets on the complex plane and also to
Hankel contours in C \R−, i.e. to contours that extend from −∞ around the origin
clockwise back to −∞ without crossing the negative real axis. Figure 3.10 illustrates
the accuracy of CRAM of order 16 in the left complex plane. It should be noticed that
the accuracy of the approximation is not confined merely to the negative real axis,
but extends to a wide region near it. Also, the function is relatively flat in the direction
of the imaginary axis.

On the negative real axis, the deviation between the approximation r̂k,k and the
exponential function equioscillates between −ε̂k,k and ε̂k,k . As x → −∞, the ex-
ponential function tends to zero, whereas CRAM of order k stabilizes to ε̂k,k . This
is illustrated in Figure 3.11 which shows a plot of r̂16,16 on the negative real axis.
Therefore, as x → −∞, the relative accuracy of r̂k,k deteriorates. This is illustrated
in Figure 3.12, which shows the relative error of CRAM of order 16 on the negative

44



3. Matrix exponential solution of burnup equations

Figure 3.11. Plot of r̂16,16(x) on the negative real axis.

Figure 3.12. Plot of |ex − r̂16,16(x)| e−x illustrating the relative accuracy of CRAM of
order 16 on the negative real axis.

real axis. In this context, it should be mentioned that it is generally impossible to
derive best approximations with respect to relative error.

The main difficulty in using CRAM is determining the coefficients of the rational
function for a given k. In principle, the polynomial coefficients of p̂k and q̂k can be
computed with Remez-type methods, but this requires delicate algorithms combined
with high-precision arithmetics. Fortunately, these coefficients have been computed
to a high accuracy by Carpenter et al. for approximation orders k = 0, 1, ... , 30, and
they are provided in [21]. Although the PFD coefficients can in principle be computed
from the polynomial coefficients, the computation of the polynomial roots may be ill-
conditioned and requires great care. The PFD coefficients for approximation orders
10 and 14 have been provided in [22], and the given coefficients for k = 14 have
been used in several applications, including the matrix exponential computing pack-
age EXPOKIT [23]. However, it was recently observed that the coefficients reported
in [22] contain errors and do not correspond to the true best approximation [II]. Af-
ter discovering the erroneous behavior induced by the coefficients from [22], partial
fraction coefficients for approximation orders k = 14 and k = 16 were computed from
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the polynomial coefficients provided in [21] and subsequently reported in [II] and [III].
The application of CRAM to computing the matrix exponential was originally made

famous by Cody, Meinardus, and Varga in 1969 in the context of rational approxima-
tion of e−x on [ 0, ∞), and it was recently resurfaced by Trefethen, Weideman, and
Schmelzer [18]. The application of CRAM to burnup equations was first considered
in [I] and [II] and it was later compared to other depletion algorithms in [24]. The
main conclusions are briefly summarized here. Overall, CRAM has been shown to
give a robust and accurate solution to burnup equations with high computational effi-
ciency. In contrast to other matrix exponential methods considered previously, CRAM
can be applied to large burnup problems containing over thousand nuclides and with
the matrix norm being of the order of 1021. In this context, CRAM has been demon-
strated to allow time steps of the order of 107 s, which can be considered to be the
maximum feasible time step in burnup calculations. The convergence rate of CRAM,
when applied to burnup equations, has been close to the asymptotic convergence
rate on the negative real axis. [II]

It has been observed that the accuracy of CRAM depends relatively little on the
characteristics of the problem at hand, such as the nuclear fuel or the neutron spec-
trum in the system [24]. However, it has been noticed that CRAM gives less accurate
results for fresh fuel cases compared to depleted fuel cases [24]. It has been sug-
gested that the reduced relative accuracy is related to the longer and more complex
burnup chains being computed less accurately with CRAM [24]. When the fuel is
fresh, only a few elements of n0 are nonzero, and all the nuclides are produced
solely from these initial nuclides. For a large part of nuclides, this means both long
and complex transmutation chains being emphasized in the result. This reasoning
was later supported based on computing the full matrix r̂16,16(At) explicitly [II].

As discussed in Section 3.1.2, burnup matrices are generally diagonalizable, al-
though the imprecision of decay data may compromise this property in some cases.
It is nonetheless fruitful to study the approximation error of CRAM from this perspec-
tive. Assuming a diagonal decomposition according to Eq. (3.19), we obtain the
following expression for the approximation error of CRAM of order k, when applied to
burnup equations:

εk,k(t) = T
(

eΛt − r̂k,k(Λt)
)
β , (3.41)

where β = T−1n0. Let us consider this error as a function of time. When the eigen-
values of A are located strictly on the negative real axis, the elements of εk,k are
expected to oscillate until r̂k,k(λj t) has stabilized to ε̂k,k for all the eigenvalues λj .
Otherwise, as t increases, the non-real eigenvalues of At shift along lines, whose
slopes are determined by the ratio of their real and imaginary parts. In theory, the
error according to Eq. (3.41) may increase as a function of time if the eigenvalues
shift to a region where the accuracy of the approximation r̂k,k is notably worse than
on the negative real axis. In particular, in accordance with Definition 3.2.3, the ap-
proximation error increases significantly when the contour implicitly defined by the
rational approximation is crossed. However, based on discussion in Section 3.1.2,
this scenario seems highly unlikely. Therefore, it can be deduced that the absolute
error related to a CRAM solution to burnup equations is not expected to increase as
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3. Matrix exponential solution of burnup equations

a function of time.
If the burnup matrix is not diagonalizable due to a multiple eigenvalue λ̃ with index

l, the error related to this eigenvalue can be traced back to the deviation between
the exponential function and the derivatives r̂k,k(λ̃), r̂ ′k,k(λ̃), ... , r̂ (l−1)

k,k (λ̃). However, the
previous reasoning still applies in the sense that the absolute approximation error is
not expected to increase as a function of time.

We are usually interested in the relative accuracy of the solution, i.e. we want
to know how many of its digits are correct. Based on previous discussion, the ab-
solute error of the solution is not expected to increase, but oscillate as a function of
time. Therefore, the time behavior of the relative error depends mainly on the nuclide
concentration ni(t). It is clear that if a nuclide concentration diminishes significantly
during the time step considered, the relative accuracy of the CRAM solution may be
compromised.

To further study the accuracy of CRAM in the context of burnup equations, CRAM
of order 16 was applied to two test cases, which are considered in the following. The
first test case considers a small burnup system, which allows the approximation error
to be analyzed in more detail. The second test case considers a decay system, i.e.
burnup equations in the absence of neutron irradiation.

Application to a small test problem

In this section CRAM is applied to a small burnup system, which was formed by
selecting the 36 lightest nuclides (from 1H to 18O) from the burnup chain of 1606
nuclides corresponding to a PWR pin-cell with fuel irradiated to 0.1 MWd/kgU burnup.
The corresponding burnup matrix is shown in Fig. 3.3. For this test case, the burnup
matrix norm is of the order of 1021, the shortest transition being the decay of of 7B
whose half-life is of the order of 10−24 seconds.

The spectrum of this small test case matrix captures well the relevant properties
of burnup matrices. The matrix has a single positive eigenvalue, z+ ≈ 4.15× 10−12,
and zero as a threefold eigenvalue. The rest of the eigenvalues are plotted in Fig-
ure 3.13. The two eigenvalues with non-zero imaginary parts are related to the sub-
matrix Ã ∈ R4×4 corresponding to the by-product nuclides 1H, 2H, 3H, and 3He. In
accordance with Theorem 3.1.8, the eigenvalue zero is semisimple and the matrix
is diagonalizable.

The exponential of the burnup matrix is depicted in Fig. 3.14, and the relative error
of CRAM of order 16 applied to the same matrix is shown in Fig. 3.15 on a logarithmic
scale. It can be seen from Fig. 3.15 that the approximation is very accurate for
almost all matrix elements. The three greatest errors, (D23,23 ≈ 2.44×10−1, D18,18 ≈
4.11 × 10−2 and D23,18 ≈ 3.76 × 10−4), plotted in red, correspond to nuclides 12Be
(index 23) and 12B (index 18) that are both short-lived, with half-lives of the order of
milliseconds.

In this test case, the nuclide 12B is not formed from any other nuclide and it forms
its own strongly connected component. The relative accuracy of the matrix element
Ê18,18 is determined solely by the relative accuracy of r̂16,16 at the corresponding
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Figure 3.13. A plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} for the
test case with 36 nuclides. In addition, the matrix has a single positive eigenvalue,
z+ ≈ 4.15 × 10−12, and zero as a threefold eigenvalue.

eigenvalue z1 = A18,18 ≈ −32.5. The nuclide 12Be forms a SCC with 6 other nuclides,
and the matrix element E23,18 is a linear combination of eight different modes, 7 of
them corresponding to the SCC, and one to the decay of 12B to 12Be. When consid-
ering the element E23,18, the eigenvalues corresponding to the transition 12B→12Be
and the effective removal rate of the nuclide are the most important. Therefore, the
accuracy of the Ê23,18 is dominated by the relative accuracy of r̂16,16 at these two
eigenvalues z1 ≈ −32.5 and z2 ≈ −34.3. The same reasoning applies to the el-
ement Ê23,23, for which the most significant mode corresponds to the eigenvalue
z2 ≈ −34.3.

As can be seen from Figs. 3.14 and 3.15, there is a clear trend in that the relative
errors tend to be greater for the matrix elements with smaller values. However, even
arbitrarily small matrix elements can be captured with amazing accuracy by CRAM, if
the relative accuracy of the approximation is good at the eigenvalues corresponding
to the relevant modes. For example, the matrix element E17,23 ≈ 1.73 × 10−69 is
computed to 8 correct digits with CRAM of order 16. The index 17 corresponds to the
nuclide 10Be which belongs to the same SCC as 12Be. For this matrix element, the
most significant modes correspond to eigenvalues z ∈ [−10−13,−10−14].

Figure 3.16 shows the test case nuclide concentrations and Fig. 3.17 the respec-
tive approximation error of r̂16,16 as a function of time between 10 s and 1012 s
≈ 32 000 years. The reference solutions were computed with Matlab’s Symbolic
Toolbox using high-precision arithmetics. As can be seen from the the figure, for
t ∈ [10, 1010] s, the approximation error is the greatest for nuclides, whose concen-
trations diminish the most rapidly. The trend that these errors begin to diminish for
time steps greater than 106 s is explained by the fact that after this time the respective
nuclide concentrations begin to increase as a function of time. It should be pointed
out that the concentration of 12Be falls to zero so rapidly that its concentration and
the respective approximation error were not included in the plots. It is interesting that
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Figure 3.14. Plot of the matrix elements E = eA on a logarithmic scale. The matrix
E was computed with Matlab’s Symbolic Toolbox with high-precision arithmetics.

Figure 3.15. Relative error of CRAM of order 16 when applied to the burnup matrix
corresponding the test case with 36 nuclides, i.e. plot of matrix D defined as Dij =

log10

(
Eij (1)−Êi,j (1)

Eij (1)

)
, where Ê = r̂16,16(A).
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Figure 3.16. Nuclide concentrations corresponding the small test case with 36 nu-
clides.

Figure 3.17. The relative errors of CRAM solution of order 16 for the nuclide con-
centrations corresponding to the small test case with 36 nuclides.

although the approximation error is comparatively large for the matrix element Ê18,23,
corresponding the transition 12Be→12B, the error is much smaller for the concentra-
tion of 12B. This is due to the accuracy of the solution being dominated by the matrix
elements corresponding to the greatest initial nuclide densities. When t → 1012 s,
z+t → 1, and the accuracy of the approximation begins to deteriorate for the by-
product nuclides 1H, 2H, 3H, and 3He corresponding to the positive eigenvalue z+.
This results from the accuracy of r̂16,16 quickly deteriorating on the positive real axis.

The test case nuclide concentrations and the approximation error of CRAM of order
16 for time steps between t = 1012 s ≈ 32 000 years and t = 1020 s ≈ 3.2×1012 years
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are shown in Figures 3.20 and 3.21. Time steps of this magnitude are clearly not
feasible in burnup calculations, but they are considered here to further study the
characteristics of the approximation. As can be seen from Figure 3.20, the con-
centrations of the by-product nuclides begin to increase very rapidly for time steps
greater than 1012 s. This increase is not captured by the CRAM approximation that
virtually breaks down on the positive real axis. Therefore, the relative error of the by-
product nuclide concentrations quickly stabilizes to unity. For time steps greater than
1014 s, these concentrations are rounded off to infinity in computer arithmetics, after
which the respective relative errors are no longer well-defined. Large oscillations in
the error curves after t = 1015 s ≈ 7.6 × 108 years are explained by the oscillation
of r̂16,16 around the negative real axis. The stabilized nuclide concentrations, plotted
in green and blue, correspond to 12C and 18O, which do not elicit any neutron nor
decay reactions based on the data used in the test case.

Application to a decay system

In the absence of neutron irradiation, nuclides transform to other nuclides merely
through radioactive decay and the burnup equations reduce to decay equations. The
decay paths do not form closed cycles and therefore the decay matrix can be per-
muted to upper triangular form. It follows that the eigenvalues of decay matrices
are known to be strictly confined to the negative real axis. The lack of closed loops
causes a great part of the nuclide concentrations to diminish rapidly in comparison
to burnup cases. Based on the previous discussion, this is expected to affect the
relative accuracy of the CRAM solution.

In this section, CRAM is applied to a decay system consisting of 1531 nuclides.
Compared to the burnup cases considered previously, the decay matrix is signifi-
cantly sparser. Figure 3.20 shows the nuclide concentrations of the test case ac-
tinides as a function of time. The reference solutions were computed with Matlab’s
Symbolic Toolbox using high-precision arithmetics. As can be seen from the figure,
several of the nuclide concentrations fall quickly to zero after the time step t ∼ 104 s,
and this trend becomes stronger as t increases. Figure 3.21 shows the relative error
of CRAM of order 16 for the respective nuclide concentrations. By comparing these
figures, it is evident that the relative accuracy of the CRAM solution deteriorates as
the nuclide concentrations diminish.

Let us consider the approximation error of CRAM as a function of time assuming
the diagonalizability of the decay matrix in which case the error satisfies Eq. (3.41).
As explained previously, the CRAM approximation of order k approaches ε̂k,k as x →
−∞, whereas the exponential function falls to zero. If a nuclide concentration ni (t)
diminishes drastically during the time step t, it can be anticipated that −λj t ≫ 1 for all
the relevant eigenvalues. In this case, it can be approximated eλj t − r̂16,16(λj t) ≈ ε̂k,k

for all these eigenvalues (see also Figure 3.12), and the following estimate can be
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3. Matrix exponential solution of burnup equations

Figure 3.18. Nuclide concentrations corresponding the small test case with 36 nu-
clides for time steps greater than t = 1012 s.

Figure 3.19. The relative errors of CRAM solution of order 16 for the nuclide concen-
trations corresponding to the small test case with 36 nuclides for time steps greater
than t = 1012 s.

derived for the approximation error:

εi(t)
ni (t)

=
|
∑n

j=1 Tij
(
eλj t − r̂k,k(λj t)

)
βj |

ni (t)

=
|
∑n

j=1
∑n

m=1 Tij
(
eλj t − r̂k,k(λj t)

)
T−1

jm nm(0)|
ni (t)

≈
| − ε̂k,k

∑n
m=1

∑n
j=1 Tij T−1

jm nm(0)|
ni (t)

= ε̂k,k
ni (0)
ni(t)

. (3.42)

Equation (3.42) suggests that the relative accuracy of the CRAM solution deteriorates
significantly if ni (t) becomes smaller than ε̂k,k ni (0). In other words, the value ε̂k,k im-
plicitly defines a numerical cut-off for the results. Therefore, concentrations n̂i (t)
smaller than ε̂k,k nj (0) (as given by CRAM of order k) should be treated as zero. How-
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Figure 3.20. Concentrations of the actinides corresponding the decay system test
case with 1531 nuclides.

Figure 3.21. Relative error of the CRAM of order 16 solution for the actinides corre-
sponding the decay system test case with 1531 nuclides.

ever, it should be emphasized that CRAM may also yield a reduced relative accuracy
for the solution in other situations. Nonetheless, it is clear that nuclide concentra-
tions smaller than ε̂k,k nj (0) have a poor relative accuracy when computed with CRAM
of order k.

Figure 3.22 shows the nuclide concentrations for the time step t = 107 s ≈
116 days, together with the concentrations given by CRAM of order 16. At this time,
1007 of the 1531 nuclides have concentrations smaller than ε̂16,16 times their initial
concentrations. Let n̂ denote the solution given by CRAM of order 16. It can be clearly
seen from the figure that the values of n̂j saturate to ε̂16,16nj (0) when the reference
solution nj becomes smaller than this value.

Compared to the burnup cases considered previously in [I, II] and in [24], CRAM
yields significantly less accurate results for this decay system. This clearly results
from the nuclide concentrations diminishing faster than in burnup cases, where the
nuclide chains contain more closed cycles. This supports the conclusion that the
non-real eigenvalues of burnup matrices are not as relevant to the accuracy of CRAM
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Figure 3.22. Test case nuclide concentrations for the time step t = 107 s given by a
highly accurate reference solution and CRAM of order 16.

after all. Furthermore, CRAM should be used with caution in conjunction with decay
systems. It should also be noted that the decay equations can be solved analytically
by the linear chain method [25, 26]. In the development version of Serpent 2, the
analytical method is used by default in the absence of neutron irradiation. Of course,
problems can be encountered in reduced power cases, where an analytical solution
cannot be found, but the nuclide concentrations diminish rather rapidly due to the
neutron reactions being unlikely. In these applications, the length of the time step
should be kept sufficiently small in order to guarantee the accuracy of the solution.

3.3.3 Rational approximations from contour integrals

As explained previously, the burnup matrix exponential can be defined as an inte-
gral along a contour with, for example, a parabolic or hyperbolic shape in the left
complex plane. Because the integrand will decrease exponentially, these contour
integrals can be approximated efficiently using quadrature formulas. These quadra-
ture formulas can furthermore be interpreted as rational approximations that can be
used to approximate the matrix exponential, the poles and residues of the function
being the nodes and weights of the numerical integration formula [18]. This approach
was first applied to the solution of burnup equations in [II].

As discussed previously, the application of these numerical integration schemes
requires that the singularities of the integrand lie inside the contour. Therefore, the
respective rational approximation is expected to give poorer results when the eigen-
values of At fall outside the contour. This phenomenon is studied more closely in
the context of burnup equations in the following subsection.
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Figure 3.23. A plot of log10 |r31,32(z) − ez| in the complex plane. The 32 quadrature
points (i.e. poles of r31,32) have been marked with black dots in the plot.

Application to a test problem with 219 nuclides

In this section, a quadrature-based rational approximation is applied to a small bur-
nup test case formed by selecting only the most important actinides and fission prod-
ucts, totalling in 219 nuclides. The test case represents a PWR pin-cell lattice in which
the fuel has been irradiated to 25 MWd/kgU burnup. The chosen rational approxi-
mation is based on the following contour, suggested by Weideman [27] and later
considered in [II]:

ϕ : R → C , ϕ(x) = N(0.1309 − 0.1149 x2 + i 0.2500 x) . (3.43)

This contour is asymptotically optimal with the convergence rate of O(2.85−N), when
singularities are located on the negative real axis. In this study, N = 32 quadrature
points were chosen, which resulted in the rational function r31,32 ∈ π31,32. The ap-
proximation error related to this rational function is shown in Figure 3.23.

The spectrum of the (conventional) burnup matrix corresponding to this test case
is plotted in Figure 3.24. The burnup matrix has four pairs of eigenvalues with non-
zero imaginary parts, the smallest of them being of the order of 10−13 and the largest
of the order of 10−8. As t increases, the eigenvalues of At shift along lines, whose
slopes are determined by the ratio of their real and imaginary parts. This is illustrated
in Figure 3.25, which shows the lines corresponding to the four complex eigenvalues
of A together with the parabolic contour for N = 32. As can be seen from the figure,
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Figure 3.24. A plot of the eigenvalues z ∈ {z ∈ C | z ∈ Λ(A), Re z < 0} for the test
case with 219 nuclides. In addition, the matrix has zero as a twofold eigenvalue.

Figure 3.25. A plot of the lines z = λt (dashed line) for the four complex eigenvalues
λ ∈ Λ(A) and the parabolic contour of Eq. (3.43) (solid line) for N = 32.

two of the eigenvalues cross the contour when t is of the order of 109 s≈ 32 years
and one when t is of the order of 1011 s ≈ 3200 years. The eigenvalue with the
smallest imaginary part crosses the contour when t ∼ 1013 s ≈ 0.32 million years.

Figure 3.26 shows the matrix exponential eAt and the relative error related to
r31,32(At) for t = 108 s ≈ 3.2 years, and Figure 3.27 the mean and maximum rel-
ative errors of the nuclide concentrations as a function of time. The error begins
to increase notably when t → 1011 s. Figure 3.28 shows the relative errors plotted
against the reference nuclide concentrations for the values t ∼ 108 s and t ∼ 1011 s.
Based on this figure, it appears that the increase in the relative error is again due to
some of the nuclide concentrations tending to zero when t → ∞. The impact of the
eigenvalues shifting over the integration contour could not be detected by studying
the error related to the elements of the matrix r31,32(At) at different time steps.

The fact that the complex eigenvalues are not manifested in the accuracy of the
solution can be explained by investigating the rational approximation more closely.
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(a)

(b)

Figure 3.26. Plot of (a) the matrix elements E = eAt , and (b) the relative error related
to r32,31(At) for t = 108 s ≈ 3.2 years on a logarithmic scale.
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Figure 3.27. Mean and maximum relative errors of the quadrature-based solution
as a function of time for the small test case with 219 nuclides.

Figure 3.28. Plot of the relative error of the quadrature-based solution for time steps
t ≈ 108 s and t ≈ 1011 s for the small test case with 219 nuclides.

In accordance with Definition 3.2.3, it is clear that the integral along the contour of
Eq. (3.43) no longer represents the matrix exponential, if some of the eigenvalues
are located outside the contour. However, after applying the quadrature rule, the part
of the contour extending beyond the quadrature points becomes irrelevant. There-
fore, if the eigenvalues lying outside the contour are located far from the quadrature
points (in the direction of the negative real axis), they are not expected to affect the
accuracy of the solution. It can also be seen from Figure 3.23 that the accuracy of
the approximation diminishes rapidly outside the contour near the quadrature points.
However, on the left of the quadrature points the error function is basically flat. In
this test case, the eigenvalues of At fall outside the contour of Eq. (3.43) so far from
the quadrature points that it is clear that this is not significant to the accuracy of the
solution.

When the approximation order is increased, the part of the contour spanned by
the quadrature points becomes greater. However, also the contour becomes broader
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according to Eq. (3.43). For this test case, there is actually no approximation order
for which the eigenvalues cross the contour in the part spanned by the respective
quadrature points. It follows that the quadrature-based method does not break down
due to the complex eigenvalues at any time step. However, as discussed previously,
the relative accuracy of the solution diminishes as t increases. The complex eigen-
values of this small burnup matrix are very representative of the spectrum of burnup
matrices in general. Therefore, this study supports the previous observation of the
complex eigenvalues with small imaginary parts not being relevant to the accuracy
of the quadrature-based solution in the context of burnup equations [II].
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4. Perturbation theory based sensitivity and
uncertainty analysis applied to criticality
equation

When uncertain parameters are utilized in computations, also the calculation re-
sults contain uncertainty. In order to estimate the reliability of these calculations, it
is necessary to develop uncertainty analysis methods enabling the propagation of
parameter uncertainty through the calculations.

In recent years, the interest towards sensitivity and uncertainty analysis has in-
creased notably in the field of nuclear engineering. In 2006, the OECD/NEA expert
group on Uncertainty Analysis in Modelling decided to prepare a benchmark titled
Uncertainty Analysis in Best-Estimate Modelling (UAM) for Design, Operation and
Safety Analysis of LWRs [28] to establish the current state and needs of sensitivity
and uncertainty analysis. The goal of the benchmark is to propagate uncertainty
through all stages of coupled neutronics/thermal hydraulics calculations. The im-
precision of neutron interaction data is likely one of the most significant sources of
uncertainty in these calculations, and therefore the propagation of this uncertainty is
considered to be the main priority at the moment. As a first step, this requires de-
veloping sensitivity and uncertainty analysis methods for fuel assembly codes that
are used to produce homogenized data for coupled neutronics/thermal-hydraulics
calculations.

This chapter describes the implementation of uncertainty analysis capability to the
fuel assembly burnup calculation code CASMO-4 [29] in the context of the UAM bench-
mark. The developed uncertainty analysis methodology is deterministic, meaning
that the uncertainties are computed based on the sensitivity profiles and covariance
matrices for the uncertain nuclear data parameters. Sensitivity analysis studies the
changes in system responses due to perturbations in the parameters. Perturba-
tion theory provides an efficient technique to compute sensitivity profiles by utiliz-
ing the adjoint system of the original forward problem. At the time of launching the
benchmark, the generally employed reactor physics codes did not have uncertainty
analysis capabilities, and the modified CASMO-4 was one of the first fuel assembly
programs that enabled sensitivity and uncertainty analysis based on perturbation
theory.
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4.1 Background for sensitivity and uncertainty analysis

Let us consider a mathematical model containing uncertain parameters. The objec-
tive of uncertainty analysis is to estimate how the uncertainty in these parameters is
propagated to a response dependent on the solution of the problem under consid-
eration. In this thesis the considered mathematical model is the neutron transport
eigenvalue problem called the criticality equation, i.e. Eq. (2.5), which can be written
in operator form as

AΦ = 1
k BΦ , (4.1)

where Φ ∈ HΦ is the neutron flux, HΦ is a Hilbert space, and k is the multiplication
factor. The uncertain parameters consist of neutron cross-section data and they are
denoted by the vector σ ∈ Eσ, where Eσ is a normed linear space. It should be
noted that both the continuous-energy criticality equation and the various systems
derived from it in numerical computations can be written in the form of Eq. (4.1). For
continuous-energy criticality equation, the Hilbert space under consideration is L2.
The considered responses are the critical eigenvalue k and ratios of the form

R(e) = ⟨Φ, Σ1⟩
⟨Φ, Σ2⟩

, (4.2)

where Σ1, Σ2 ∈ HΦ. Therefore, only functional responses are considered in this
thesis. For example, few-group cross-sections homogenized over a geometry can
be written in the form of Eq. (4.2).

The uncertainty of the parameters σ should be understood in terms of the
Bayesian probability interpretation [30]. In this framework, probability is defined as a
subjective measure that characterizes the plausibility of various hypotheses. When
estimating parameters, all knowledge about a parameter σj is assumed to be incor-
porated into its marginal probability distribution p(σj). This distribution is defined so
that the integral

∫ b
a p(σj ) dσj corresponds to the (Bayesian) probability that the value

of σj belongs to the interval [a, b]. The distribution p(σ) can then be used to form
an estimate σ̂ for the parameters and their associated uncertainties. In most cases
either the mean value or the mode are chosen as σ̂. Typically, the variance of the dis-
tribution is chosen to give a numerical value to the related uncertainty. When several
parameters are considered simultaneously, the probability distribution under consid-
eration is their joint distribution p(σ), and the covariance matrix of this distribution
may be chosen as the descriptive statistic for the uncertainty.

In Bayesian formalism, the outcome of the uncertainty analysis should ideally be
the full posterior distribution p(R) for the response vector R ∈ RJ . However, deter-
mining p(R) analytically is usually not feasible, and therefore approximations need to
be made. Uncertainty analysis methods can be divided into statistical and determin-
istic methods according to the chosen strategy. In statistical methods, the values of
the uncertain parameters are sampled from their probability distribution, after which
these values are used to compute a set of values for the responses. In this manner,
the distribution p(R) is simulated point-wise. In deterministic uncertainty analysis,
the objective is not to form the entire distribution p(R), but to compute an estimate
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Figure 4.1. The self-shielded 40-group fission cross-section of 235U for a BWR fuel
assembly test problem.

for the covariance matrix Cov [R], after which the distribution can be assumed to be
Gaussian. Most often this is based on the linearization of the responses with re-
spect to the uncertain parameters. This requires computing the local sensitivities of
the responses at the parameters’ best-estimate values.

The local sensitivity of response R is defined as the directional derivative in the
direction of the perturbation δσ. When considering the continuous-energy eigen-
value problem, the cross-sections are functions of energy and location, and the
appropriate derivative is the functional directional derivative called the Gâteaux-
variation [31]. It follows that the sensitivity of R with respect to the perturbation
h = [δΦ, δσ] ∈ D = HΦ × Eσ at the point ê = [Φ̂, σ̂] ∈ D may be defined as:

δR(ê; h) = lim
t→0

R(ê + th) − R(ê)
t . (4.3)

The local relative sensitivity is defined as S(ê; h) = δR(ê; h)/R(ê), respectively.
The objective of sensitivity analysis is to compute these derivatives with respect

to all uncertain parameters in the mathematical model. When solving the criticality
equation, the utilized nuclear data typically contains tens of thousands of uncertain
parameters. Since neutron cross-sections are functions of energy and position, the
local sensitivities need to be computed with respect to cross-section values at each
energy and mesh point in the calculation. In reactor physics applications, the num-
ber of responses is typically small compared to the number of uncertain parameters.
For example, the fuel assembly burnup calculation program CASMO-4 [29], utilized
in this work, computes by default a few dozen responses that are passed on to sub-
sequent codes simulating the full core. These responses include the following as-
sembly homogenized two-group cross-sections: transport, absorption, production,
fission, scattering and κ-fission. The two-group homogenized cross-sections can be
written in the form of Eq. (4.2) and they have been considered as responses in this
thesis. To illustrate the uncertainty related to nuclear data parameters, Figure 4.1
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Figure 4.2. The relative covariance matrix of the 235U fission cross-section taken
from the SCALE 6.1 covariance library and modified to the 40 energy group structure
of CASMO-4.

shows the 40-group fission cross-section of 235U for a BWR fuel assembly test prob-
lem as computed with CASMO-4. The corresponding multi-group covariance matrix
is shown in Figure 4.2.

The large number of uncertain parameters in reactor physics applications usually
inhibits statistical uncertainty analysis in practise. Fortunately, the sensitivities can
be computed deterministically in an efficient manner by exploiting the adjoint of the
eigenvalue problem. This framework, referred to as perturbation theory in the context
of reactor physics, is considered in Section 4.2.

After computing the sensitivities and linearizing the response vector, R ≈ R(σ̂) +
Sσ, where S ∈ RJ×K is the sensitivity matrix containing the derivatives with respect
to all considered uncertain parameters, the covariance matrix of the response can
be simply computed using the identity

Cov [R] ≈ Cov [R(σ̂) + Sσ] = S Cov [σ] ST (4.4)

known as the first-order uncertainty propagation formula or the Sandwich rule. It is
noteworthy that in the case where R depends linearly on the parameters and p(σ) is
a Gaussian distribution, the Sandwich rule yields the exact posterior distribution, i.e.

η = c + Sσ ∼ N( c + Sσ̂, S Cov [σ] ST ) , (4.5)

where c ∈ RK is a constant vector.
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4.2 Perturbation theory

The objective of sensitivity analysis is to compute the derivatives of system re-
sponses with respect to all uncertain parameters in the mathematical model. In
perturbation theory, these derivatives are computed in an efficient manner by uti-
lizing the adjoint system of the original forward problem. This approach was first
considered in reactor analysis in [32,33].

Consider the eigenvalue system given by Eq. (4.1). When the parameters σ are
perturbed, also the solution Φ changes, and therefore the computation of the sen-
sitivity δR(ê; h) according to Eq. (4.3) requires that the perturbation δΦ is known.
In principle, δΦ can be computed to first order from the following forward sensitivity
system:

δA(ê; h) = − 1
k2 δk(ê; h) BΦ + 1

k δB(ê; h)

⇔ A′
σ(ê) δσ + A(ê) δΦ = − 1

k2 δk(ê; h) BΦ + 1
k B′

σ(ê) δσ + 1
k B(ê) δΦ , (4.6)

which can be derived by taking the Gâteaux variation of system (4.1) with respect
to a perturbation h on both sides. However, when computing several sensitivities,
this approach would require the repetitive solving of Eq. (4.6). The adjoint system of
Eq. (4.1) is defined as the system that satisfies the following relation: 7⟨

AΦ − 1
k BΦ, Ψ

⟩
=
⟨

Φ, A∗Ψ − 1
k B∗Ψ

⟩
, (4.7)

where the brackets ⟨·, ·⟩ denote an inner product. When considering the continuous-
energy criticality equation, it is customary to employ the L2 inner product [34, 35].
The solution to the adjoint problem(

A∗ − 1
k B∗

)
Ψ = 0 (4.8)

is called the fundamental adjoint. Physically, the solution to this system can be in-
terpreted to represent the average contribution, i.e. importance of a neutron to the
multiplication factor. Interestingly, the adjoint system of Eq. (4.8) can be derived
solely based on this physical interpretation [36].

By utilizing Eqs. (4.7) and (4.8), it is straightforward to obtain the following expres-
sion for the relative sensitivity of the multiplication factor with respect to a perturbation
δσ (For derivation, see e.g. [37] or [V]):

δk(ê; h)
k = −

⟨
(A′

σ(σ̂)Φ − 1
k B′

σ(σ̂)Φ) δσ, Ψ
⟩⟨ 1

k BΦ, Ψ
⟩ . (4.9)

Sensitivity analysis of the critical eigenvalue based on Eq. (4.9) is known as classical
perturbation theory in reactor physics.

7In some cases the adjoint relation needs to be written in the form
⟨
AΦ − 1

k BΦ, Ψ
⟩

=
⟨
Φ, A∗Ψ −

1
k B∗Ψ

⟩
+
[
P(Ψ, Φ)

]
x∈∂Ω

, where
[
P(Ψ, Φ)

]
x∈∂Ω

is a bilinear form associated with the system. We will only
consider cases where it is straightforward to force this term to vanish.
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For responses of the form of Eq. (4.2), the generalized adjoint can be defined as
the solution to the following inhomogeneous system(

A∗ − 1
k B∗

)
Γ = ∇ΦR

R , (4.10)

where ∇ΦR is the Fréchet derivative of R, also called the gradient. The general-
ized adjoint Γ (r , Ω, E) can be physically interpreted as the average contribution of
an additional neutron at the phase space point [r , Ω, E] to the response under con-
sideration. It is noteworthy that when considering the generalized adjoint problem,
the eigenvalue k is fixed to correspond to the solution of Eq. (4.1), and the operator
A∗− 1

k B∗ is singular. Therefore, in order for the solution Γ to exist, the gradient ∇ΦR
needs to be orthogonal to the forward solution

⟨∇ΦR, Φ⟩ = 0 . (4.11)

Responses satisfying Eq. (4.11) are called allowable for generalized perturbation
theory [37]. It is easy to show that for responses of the form of Eq. (4.2), the relative
gradient becomes

∇ΦR
R = Σ1

⟨Φ, Σ1⟩
− Σ2

⟨Φ, Σ2⟩
. (4.12)

and that Eq. (4.11) is satisfied. Also, when a solution Γ0 to Eq. (4.10) exists, there
exists an infinite amount of solutions of the form

Γ = Γ0 + aΨ , a ∈ R . (4.13)

In this case, it is possible to choose a solution orthogonal to the (forward) fission
source. This particular solution can be written

Γp = Γ0 −
⟨Γ0, BΦ⟩
⟨Ψ, BΦ⟩ Ψ

= Γ0 −
⟨B∗Γ0, Φ⟩
⟨B∗Ψ, Φ⟩ Ψ . (4.14)

Based on Eqs. (4.10), (4.7), (4.6) and (4.14), the following expression can be derived
for the relative sensitivity of the response R with respect to a perturbation δσ [VI]:

δR(ê, h)
R = R′

σ(ê) δσ
R −

⟨
Γp,

(
A′

σ(σ̂)Φ − 1
k B′

σ(σ̂)Φ
)
δσ

⟩
Φ

. (4.15)

Sensitivity analysis based on this equation is known as generalized perturbation the-
ory in reactor physics

4.2.1 Numerical computation

In practice, the criticality equation and the corresponding adjoint equations are
solved numerically, which introduces some complications in the perturbation theory
formalism. Ideally, the discretizations should be performed in a consistent manner,
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so that the respective adjoint relations are satisfied at all stages of the computa-
tion [31]. However, as discussed in more detail in [V], this is usually infeasible in
reactor physics calculations and therefore it is customary to take the eigenvalue prob-
lem discretized with respect to energy and direction as the starting point for sensitivity
analysis.

Assuming isotropic scattering and the discrete ordinates approximation for angu-
lar dependence, the forward problem becomes

Ωm · ∇Φg(r , Ωm) + Σg Φg(r , Ωm)

= 1
4π

G∑
h=1

Σh→g
s ϕh(r) + χg

4πk

G∑
h=1

ν Σh
f ϕ

h(r) , g = 1, ... , G , (4.16)

where {Ωm}M
m=1 are the considered angular directions, and the scalar flux is approx-

imated by the quadrature formula

ϕh(r) =
M∑

m=1

ωm Φh(r , Ωm) . (4.17)

Equation (4.16) follows from Eq. (2.6) after the discrete ordinates approximation.
In fuel assembly calculations, the boundary conditions are usually assumed to be
reflective to simulate an infinite lattice, i.e.

Φ(r , Ωm, E) = Φ(r , Ω′
m, E) , r ∈ Γ , Ωm · n < 0 , (4.18)

where Ωm = Ω′
m − 2(n · Ω′

m) n is the reflection direction.
In order to form the adjoint system of Eq. (4.16), the corresponding inner product

needs to be defined. As mentioned previously, the continuous energy eigenvalue
problem is typically considered in the space L2. The inner product corresponding to
the discretization employed in Eq. (4.16) can be defined in a consistent manner as

⟨Φ, Ψ⟩ =
G∑

g=1

M∑
m=1

ωm

∫
D

d3r Φg(r , Ωm) Ψg(r , Ωm) . (4.19)

It is now straightforward to show that the following system

−Ωm · ∇Ψg(r , Ωm) + Σg Ψg(r , Ωm)

= 1
4π

G∑
h=1

Σg→h
s ψh(r) + ν Σg

f
4πk

G∑
h=1

χh ψ
h(r) , g = 1, ... , G (4.20)

with the boundary conditions

Ψ(r , Ωm, E) = Ψ(r , Ω′
m, E) , r ∈ Γ , Ωm · n > 0 (4.21)

satisfies the adjoint relation of Eq. (4.7) with respect to the inner product defined by
Eq. (4.19).
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The generalized adjoint problem for a response of the form of Eq. (4.2) can be
written, respectively

−Ωm · ∇Γg(r , Ωm) + Σg Γg(r , Ωm) = 1
4π

G∑
h=1

Σg→h
s γh(r) +

+ ν Σg
f

4πk

G∑
h=1

χh γ
h(r) + Σg

1(r)
⟨Φ, Σ1⟩

−
Σg

2(r)
⟨Φ, Σ2⟩

, g = 1, ... , G , (4.22)

where the generalized adjoint scalar flux in has been denoted by γh(r).
The numerical solution of the fundamental adjoint from Eq. (4.20) has been

considered in [V], and the computation of the generalized adjoint functions from
Eq. (4.22) in [VI]. In both cases, it is advantageous that the adjoint systems are
of the same form as the forward problem, which can be utilized in numerical com-
putations. After computing the necessary adjoint functions, the sensitivities can be
computed according to Eqs. (4.9) and (4.15). In this context, it is customary to further
discretize the inner product of Eq. (4.19) as

⟨Φ, Ψ⟩ ≈
I∑

i=1

G∑
g=1

M∑
m=1

ωm Vi Φ
g,i,m

Ψ
g,i,m , (4.23)

where i denotes the mesh index and Φ
g,i,m and Ψ

g,i,m denote the average fluxes.

4.3 Application to CASMO-4

CASMO-4 is a two-dimensional fuel assembly burnup calculation program developed
by Studsvik Scandpower [29]. It can be used for burnup calculations on boiling wa-
ter reactor (BWR) and pressurized water reactor (PWR) pin cells or assemblies. The
main purpose of fuel assembly transport calculations is to obtain the detailed neu-
tron flux in the system, and to use this flux to compute homogenized parameters,
which can then be passed on to the following full core computations. Because the
properties of the fuel assemblies do not change sharply in the axial direction for the
most part, it is generally sufficient to perform these computations in two dimensions.
The boundary conditions of fuel assemblies are usually assumed to be reflective in
order to represent the model as an infinite lattice.

In the 2-D transport calculation module of CASMO-4, Eq. (4.16) is solved with the
method of characteristics [38]. The transport calculation is performed in the true het-
erogeneous geometry of the assembly, but the number of energy groups is typically
reduced before the computation. The cross-section libraries of CASMO-4 contain 70
energy groups (14 fast groups, 13 resonance groups, and 43 thermal groups) and
they include the following cross-sections: absorption, fission, production, scattering
and total. After computing the macroscopic cross-sections based on microscopic
cross-sections and the nuclide densities for the assembly under consideration, the
cross-sections of the important resonance absorbers are self-shielded based on tab-
ulated effective resonance integrals. In the following micro group calculation, the
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Figure 4.3. Outline of the CASMO-4 calculations.

detailed flux is solved for each pin cell type in the assembly by the method of colli-
sion probabilities, and the flux is used to homogenize the pin cells. These steps are
followed by the macro group calculation, where the flux spectra is solved over the
assembly using the homogenized pin cells and the response matrix method. The
macro group calculation is performed using 40 energy groups by default. The flux
spectra obtained from this computation are used to collapse the energy groups to
the final group structure used in the 2-D transport calculation.

The implementation of perturbation theory according to the principles presented
in Section 4.2.1 required modifications to several modules of CASMO-4. Figure 4.3
shows the flow diagram of the modified code. In order to be able to compute the
sensitivities with respect to nuclide-specific cross-sections, they needed to be stored
and collapsed to the energy group structure used in the 2-D transport calculation. It
was decided to keep 40 energy groups in the transport calculation in order to obtain
sufficiently detailed sensitivity profiles.

The solution of the fundamental adjoint and the generalized adjoint functions
corresponding to the homogenized two-group cross-sections were implemented to
the 2-D transport calculation module according to the guidelines presented in [V]
and [VI]. After computing the necessary adjoint functions, the sensitivities of the
multiplication factor and system responses are computed according to perturbation
theory. The sensitivities are computed with respect to fission spectrum χ, the aver-
age number of fission neutrons ν, and the multi-group cross-sections present in the
nuclear data library of CASMO-4.

In order to enable uncertainty analysis, the covariance matrices from
ZZ-SCALE6.0/COVA-44G [39] were processed for compatibility with CASMO-4. The
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Table 4.1. Parameters for which there exists covariance data in the SCALE library.

Parameter MT number

σt 1
σe 2
σi 4

σn,2n 16
σf 18
σγ 102
σn,p 103
σn,d 104
σn,t 105
σn,He 106
σn,α 107
ν 456
χ 1018

library is based on evaluations from various sources (including ENDF/B-VII, ENDF/B-
VI, JENDL-3.1) and approximate covariance data. The covariances in the library are
given in relative terms, and therefore the library is intended to be used with all cross-
section libraries, including the ones that are inconsistent with the evaluations. While
this is not strictly correct, it is considered to be acceptable due to the scarcity of com-
prehensive covariance data, among other reasons [40]. In the covariance library, the
available covariance matrices are given in a 40-group structure for the parameters
listed in Table 4.1. It should be emphasized that there is no covariance data for the
group-to-group transfer cross-sections.

The covariance matrices from ZZ-SCALE6.0/COVA-44G were first transformed to
the 40-group structure used in the 2-D transport calculation. The employed proce-
dure, based on simple mathematical techniques, is described in detail in [V]. The
use of the Sandwich rule for uncertainty analysis necessitates that the sensitivities
and covariance matrices are formed with respect to the same parameters. There-
fore, a problem was faced due to the covariance matrices being given for individual
capture and scattering reactions, whereas the cross-section libraries of CASMO-4
only contain data for the total capture and scattering reactions. The cross-section
model used in CASMO-4 is characteristic for several fuel assembly codes [41–43] and
this issue affects the uncertainty analysis irrespective of the method used, whether
deterministic or statistical. As a solution to this discrepancy, a technique for combin-
ing the covariance matrices of the individual subreactions was devised [V]. Since
the relationships between the total and individual capture and scattering reactions
are linear, the covariance matrices corresponding to the total capture and scattering
reactions can be computed with the Sandwich rule without introducing any approx-
imation. However, the sensitivity profiles with respect to the individual and the total
scattering cross-sections cannot be defined in a consistent manner, and this pro-
duces some systematic differences to the results. This is explained in the following.

As mentioned previously, there is no cross-section data for the transfer cross-

70



4. Perturbation theory based sensitivity and uncertainty analysis applied to
criticality equation

sections σh→g,j
x but only for σg,j

x =
∑G

h=1 σ
g→h,j
x , where x refers to a scattering reaction

(e.g., elastic, inelastic) and j is the nuclide index. Therefore, in order to use the
scattering covariance data, the sensitivity profiles should be computed with respect
to σg,j

x . Because of the scattering source term in Eq. (4.16), however, the derivative
with respect to σg,j

x is not mathematically well-defined without additional constraints.
Typically it is assumed that the probabilities of transfers to various groups are fixed,
i.e.

σg→h,j
x = σg,j

x pg→h,j
x , (4.24)

where pg→h
x is the proportion of neutrons scattered from energy group g to energy

group h, which is assumed to remain fixed, even if the scattering cross-section σg,j
x

is perturbed [44]. Based on this assumption, the scattering source in Eq. (4.16) can
be written

Sg = 1
4π

G∑
h=1

Σh→g
s ϕh = 1

4π
∑

x

∑
j

N j
G∑

h=1

σh,j
x ph→g

x ϕh , (4.25)

where the summations over x include all scattering reactions. After this assumption,
the derivative with respect to σg,j

x is well-defined and can be computed as usual. How-
ever, the sensitivity with respect to the total scattering cross-section σj

s =
∑

x σ
j
x is

not well-defined, if the constraint (4.24) is enforced. In order to define this sensitivity,
fixed transfer rates must be assumed for the total scattering cross-section. Since the
two assumptions required to compute the individual and total scattering sensitivities
are inconsistent, the chain rule of derivation does not apply to them, and, for exam-
ple, although σg,j

s = σg,j
e + σg,j

i holds, dR
dσg,j

e
̸= dR

dσg,j
s

dσg,j
s

dσg,j
e

. Since the assumption of fixed
transfer rates for the total scattering is clearly stricter than Eq. (4.24), the method-
ology employed in CASMO-4 typically produces smaller uncertainties, when multiple
scattering reactions are present [V,VI]. However, it should be kept in mind that both
of these approaches are in fact based on simplifications of the true problem, and are
likely to underestimate the uncertainty related to scattering cross-sections.
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This chapter summarizes the main results of the publications included in this thesis.

5.1 Publication I: Computing the matrix exponential in burnup
calculations

Burnup equations describe the changes in the nuclide concentrations due to radioac-
tive decay and neutron-induced transmutation reactions. They form a system of first
order linear differential equations that can in principle be solved by computing the
burnup matrix exponential. Due to the decay and transmutation constants of the
nuclides varying extensively, the system is extremely stiff, which complicates the nu-
merical computation of the matrix exponential solution. The short-lived nuclides are
especially problematic, inducing eigenvalues of extremely large magnitude, and can
lead to the burnup matrix norm being of the order of 1021. These difficulties have
traditionally been solved by using simplified burnup chains or by treating the most
short-lived nuclides separately, when computing a matrix exponential solution.

In this paper, this problem is approached for the first time by studying the spectral
properties of burnup matrices. Based on physical constraints related to the problem,
the eigenvalues of burnup matrices can be deduced to be generally confined to a
region near the negative real axis. The established matrix exponential methods for
solving the burnup equations are introduced and their suitability is discussed from
this perspective. Based on the eigenvalues being located near the negative real
axis, the Chebyshev rational approximation method (CRAM) is proposed as a novel
method for solving the burnup equations. CRAM can be characterized as the best
rational approximation on the negative real axis and it is highly accurate in the region
where the burnup matrix eigenvalues are located.

The introduced matrix exponential methods are applied to two test cases rep-
resenting an infinite pressurized water reactor pin-cell lattice. In addition, the test
cases are solved with the semi-analytical linear chain method, in which the compli-
cated transmutation chains are resolved into a set of linear sub-chains that can be
solved analytically. The first test case was designed to be well-behaved in terms
of the burnup matrix size and norm, whereas the second test case corresponds to
a full burnup system with over a thousand nuclides with rather extreme numerical
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characteristics. In the first test case, all matrix exponential methods gave consis-
tent results. In the second test case, however, all other matrix exponential methods
suffered a breakdown, whereas the results obtained with CRAM remained consistent
with those given by the linear chain method to the same degree as in the first test
case. In terms of computational efficiency, CRAM clearly outperformed all the other
methods. The results suggest that CRAM is a very promising method for solving the
burnup equations with a low computational cost.

5.2 Publication II: Rational approximations to the matrix exponential
in burnup calculations

The topic of the paper is solving the burnup equations using dedicated rational ap-
proximations accurate near the negative real axis. The burnup equations describe
the changes in nuclide concentrations due to radioactive decay and neutron-induced
transmutation reactions. They form a system of first order linear differential equa-
tions which is extremely stiff due to the decay constants of the nuclides varying ex-
tensively. In Publication [I], it was discovered that although the numerical properties
of burnup matrices are otherwise rather difficult, their eigenvalues are generally con-
fined to a region near the negative real axis. This observation prompted proposing
the Chebyshev rational approximation method (CRAM) as a novel method for solving
the burnup equations.

In this paper, two different types of rational approximation are considered for com-
puting the exponential of a burnup matrix. The previously introduced CRAM, which
can be characterized as the best rational approximation on the negative real axis, is
analyzed in more detail. In addition, a method based on quadrature rules applied to
a contour integral around the negative real axis is proposed. The motivation for intro-
ducing the latter method is that the computation of higher order CRAM approximations
can become rather involved. In the quadrature-based approach, the approximation
order can easily be adjusted to suit the needs for accuracy or efficiency. Further-
more, it was discovered that the previous literature values for coefficients of CRAM
of order 14 contain errors, and result in relative accuracy two orders of magnitude
poorer than expected by theory. To rectify this, new partial fraction decomposition
coefficients for CRAM of order 14 and 16 were computed based on polynomial coef-
ficients given in literature and provided in this paper.

The accuracy and convergence of both methods are studied and they are tested
against highly accurate reference solutions computed with high-precision arith-
metics. The sources of approximation error are analyzed and the previously ob-
served difference in resulting accuracy for fresh and depleted fuel is explained.
Based on the study, both methods appear to yield convergence rates close to the
respective asymptotic convergence rates on the negative real axis when applied to
burnup equations. In addition, the test cases indicate that both methods are capable
of providing a very accurate and robust solution to the burnup equations.
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5.3 Publication III: Correction to partial fraction decomposition
coefficients for Chebyshev rational approximation on the
negative real axis

The purpose of this note is to provide correct partial fraction decomposition (PFD)
coefficients for the Chebyshev rational approximation method (CRAM) of order 14
and 16 on the negative real axis. The note was prompted by the observation that
the literature values given previously for approximation order 14 by Gallopoulos and
Saad in [22] are erroneous.

CRAM of order k can be characterized as the rational function yielding the smallest
maximum deviation between the exponential function and any rational function of the
same degree on the entire negative real axis. The asymptotic convergence rate of
CRAM is remarkably fast, and it can be a viable method for computing the matrix
exponential for matrices with eigenvalues in the vicinity of the negative real axis.

The main difficulty in using CRAM for computing the matrix exponential is deter-
mining the coefficients of the rational function for a given approximation order. For
higher approximation orders the computation of the coefficients becomes rather in-
volved and requires delicate algorithms combined with high-precision arithmetics. In
addition, it is generally advantageous to employ the rational function in its PFD form
which requires computing its poles, residues and limit at Re z → −∞.

The PFD coefficients for CRAM of order 14 have been previously provided in lit-
erature, and therefore they have been used in several applications. In [II], these
coefficients were discovered to contain errors that resulted in 102 times poorer accu-
racy than expected by theory. In this note, the correct PFD coefficients are provided
for approximation orders 14 and 16. The correct coefficients were computed based
on literature values for the polynomial coefficients of the respective rational functions.
The theory for computing the PFD coefficients from the polynomial is reviewed and
the employed computational procedure is described. The approximation accuracy
resulting from erroneous poles and residues is analyzed.

5.4 Publication IV: Solving linear systems with sparse Gaussian
elimination in the Chebyshev rational approximation
method (CRAM)

The topic of this paper is the solving of the linear systems arising when comput-
ing the matrix exponential solution to burnup equations with the Chebyshev rational
approximation method (CRAM). The burnup matrices have difficult numerical char-
acteristics that may compromise the accuracy of some iterative methods used for
solving the linear systems. In this paper, a direct method is considered to overcome
this difficulty.

The numerical properties of burnup matrices are reviewed. The proposed di-
rect method is based on sparse Gaussian elimination in which the sparsity pattern
of the resulting upper triangular matrix is determined before the numerical elimina-
tion phase. The stability of Gaussian elimination is discussed and, based on the
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properties of burnup matrices, it is shown that the proposed method is well-suited
for solving the linear systems. Suitable algorithms are presented for computing the
symbolic factorization and numerical elimination. The accuracy and efficiency of the
described technique are demonstrated by computing the CRAM approximations for
a large test case with over 1600 nuclides.

5.5 Publication V: Incorporating sensitivity and uncertainty
analysis to a lattice physics code with application to CASMO-4

The topic of this paper is the implementation of classical perturbation theory based
sensitivity and uncertainty analysis features to the fuel assembly burnup calculation
program CASMO-4 in the context of the UAM benchmark [28], whose first stage aims
at propagating the uncertainty related to nuclear data through fuel assembly calcu-
lations. The benchmark was prepared in 2006 to establish the current state and
needs of sensitivity and uncertainty analysis, with the ultimate goal of being able to
propagate uncertainty through all stages in a coupled neutronics/thermal hydraulics
calculation. At that time, the generally employed reactor physics codes did not have
uncertainty analysis capabilities, and the modified CASMO-4 was one of the first fuel
assembly programs that enabled sensitivity and uncertainty analysis based on per-
turbation theory.

Classical perturbation theory studies the changes in the multiplication factor due
to perturbations in system parameters. In this framework, the critical eigenvalue
sensitivities to uncertain nuclear data parameters are computed efficiently by utiliz-
ing the adjoint system of the eigenvalue problem. After computing the sensitivities,
the uncertainty related to these parameters can be propagated deterministically to
the multiplication factor. Both the theoretical background as well as practical consid-
erations for implementing classical perturbation theory to a reactor physics code are
reviewed and discussed in detail in the paper.

In the process of modifying CASMO-4, a problem was faced due to the incom-
patibility of the cross-section models between the covariance libraries and the code
itself. In this paper, a technique for overcoming this difficulty by combining the covari-
ance matrices is proposed. The sensitivities can then be computed with respect to
the combined reactions. The proposed technique accurately combines the capture
reactions in a consistent manner, but results in systematic differences for the scatter-
ing reactions. The issue is analyzed and the difference is explained by incompatible
constraints in the two calculation strategies.

Numerical results are presented for two of the benchmarks fuel pin-cell test prob-
lems representing a PWR and a GEN-III core with MOX fuel, and the results are com-
pared against TSUNAMI-1D. The comparison supports the observations made on the
developed methodology, i.e. the results are consistent except for scattering reactions,
where systematic differences appear in cases with multiple scattering reactions.
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5.6 Publication VI: Perturbation-theory-based sensitivity and
uncertainty analysis with CASMO-4

This paper considers the implementation of generalized perturbation theory based
sensitivity and uncertainty capability to the fuel assembly burnup calculation pro-
gram CASMO-4. The motivation for the described work has been the participation
in the UAM benchmark [28]. Initially, classical perturbation theory was implemented
to CASMO-4, which allowed the sensitivity analysis with respect to the multiplication
factor. This work was reported in [V].

Generalized perturbation theory studies the changes in responses that can be
represented as reaction rate ratios. For each response, the computation of the sen-
sitivity profiles with respect to all parameters of interest requires solving one gener-
alized adjoint system. This is computationally efficient, when the number of param-
eters is large, as is the case in reactor physics applications. After computing the
sensitivity profiles, the uncertainty related to nuclear data can be propagated deter-
ministically to the response under consideration by approximating the relationship
between the parameters and the response to be linear.

The mathematical background as well as the physical interpretation of the gener-
alized adjoint solutions are reviewed in the paper, and practical guidelines are given
for modifying a deterministic transport code to solve the generalized adjoint systems
needed in sensitivity analysis. The theory for computing the sensitivity profiles is
presented both from the perspective of function space analysis and numerical com-
putations.

Numerical results are presented for a lattice physics test problem in the bench-
mark, and they are compared to the results given by the TSUNAMI-2D sequence in
SCALE 6.1. Two-group homogenized cross-sections are considered as responses
in the generalized perturbation theory framework. The results are in accordance
with theoretical considerations. In particular, they are consistent for the thermal re-
sponses, whereas some systematic differences are observed for fast responses.
These differences are explained by the incompatible constraints in defining the sen-
sitivities, an issue which was analyzed in detail in [V].
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The objective of burnup calculations is to simulate the changes in the composition
of nuclear fuel over time. Due to safety considerations related to the target of appli-
cation, it is important that the applied calculation methods are constantly improved.
In addition, uncertainty analysis methods are needed for evaluating the reliability of
the calculation results.

Burnup calculations are built upon solving the neutron transport criticality equation
and burnup equations sequentially in a cyclic manner. This thesis focused on two
areas essential for burnup calculations: the numerical solution of burnup equations
based on computing the burnup matrix exponential and the uncertainty analysis of
the criticality equation based on perturbation theory.

Matrix exponential solution of burnup equations

The burnup equations govern the changes in nuclide concentrations over time. They
form a system of first order differential equations, which can be formally solved by
computing the matrix exponential of the burnup matrix. Due to the dramatic variation
in the half-lives of different nuclides, the system is extremely stiff, and the problem is
complicated by the vast range of time steps used in burnup calculations. Because
of these characteristics, the computation of the burnup matrix exponential has been
previously considered impossible for the full burnup system. Instead, simplified bur-
nup chains have been used, or the most short-lived nuclides have been treated sep-
arately when computing a matrix exponential solution.

In Publication [I], the spectral properties of burnup matrices were studied for the
first time. It was reasoned that although the magnitudes of the eigenvalues of burnup
matrices vary extensively, they are generally confined to a region near the negative
real axis. The observation was based on considering the physical constraints related
to burnup equations and studying the strongly connected components of the burnup
matrix graph.

In Chapter 3.1 of this thesis, the mathematical properties of burnup matrices were
further studied. Firstly, the negatives of burnup matrices were identified to belong
to the class of Z -matrices, which guarantees the non-negativity of the burnup ma-
trix exponential, for example. To further study the eigenvalues, burnup matrices were
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categorized into conventional and augmented burnup matrices based on whether the
production of by-product nuclides was taken into account when constructing them.
The negatives of conventional burnup matrices were then recognized as M-matrices,
which gave a wedge condition to their spectrum around the negative real axis. Aug-
mented burnup matrices, on the other hand, can be permuted to block triangular
form, with the eigenvalues of the matrix comprising of the eigenvalues of the di-
agonal blocks. Apart from the block corresponding to the by-product nuclides, the
diagonal blocks were shown to be M-matrices. The block corresponding to the by-
product nuclides was identified with the matrix class L2

0, meaning that it has a single
positive eigenvalue.

The observation about the burnup matrix eigenvalues being located near the neg-
ative real axis prompted proposing rational approximations that are accurate on the
negative real axis for solving the burnup equations [I,II]. In Publication [I], the Cheby-
shev rational approximation method (CRAM), which can also be characterized as
the best rational approximation on the negative real axis, was introduced with very
promising results. In contrast to other matrix exponential methods considered previ-
ously, CRAM was demonstrated to be applicable to large burnup problems containing
over a thousand nuclides and with a matrix norm of the order of 1021. In addition,
CRAM was shown to allow time steps of the order of 107 s, which can be considered
the maximum feasible time step in burnup calculations. Based on these results,
CRAM was implemented to the reactor physics code Serpent developed at VTT. In
addition to CRAM, rational approximations based on quadrature rules applied to con-
tour integrals around the negative real axis were suggested as an alternative solution
method [II]. This approach has the advantage that the order of approximation can
be easily adjusted.

The accuracy and convergence of CRAM were further studied in [II] by comparing
the results against highly accurate reference solutions computed with high-precision
accuracy. The results supported the assessment of CRAM being capable of pro-
viding a very accurate and robust solution to the burnup equations at a very low
computational cost.

The application of CRAM requires determining the partial fraction decomposition
coefficients (PFD) of the rational function for a given approximation order. Unfor-
tunately, the computation of these coefficients is difficult and requires delicate al-
gorithms combined with high-precision accuracy. The PFD coefficients for CRAM of
order 14 have been previously provided in literature, and have therefore been used in
several applications. In Publication [II], these coefficients were discovered to contain
errors that resulted in 102 times poorer accuracy than expected by theory. The cor-
rect PFD coefficients for approximation order 14 and 16 were then computed based
on literature values for the polynomial coefficients of the respective rational functions.
These coefficients were first reported in [II] and later in [III] with a more detailed de-
scription and an analysis of the approximation accuracy deterioration resulting from
the erroneous coefficients.

In practise, the application of CRAM to solving the burnup equations requires a
linear solver in addition to the PFD coefficients. Due to the difficult numerical char-
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acteristics of burnup matrices, the accuracy of some iterative solution methods may
be compromised. In [IV] a direct method based on sparse Gaussian elimination was
considered. It was demonstrated that the characteristics of burnup matrices allow
using Gaussian elimination without pivoting, which enables computing the symbolic
LU factorization of the matrix before starting the numerical elimination phase. Due
to the sparsity pattern of burnup matrices, the linear systems arising during CRAM
can be solved both efficiently and accurately with this approach [IV].

Uncertainty analysis of the criticality equation based on perturbation theory

When uncertain parameters are utilized in a computation, the calculation results also
contain uncertainty. The imprecision of neutron interaction data is considered to be
one of the most significant sources of uncertainty in all reactor physics calculations,
including burnup calculations.

In this thesis, uncertainty analysis was applied to the criticality equation on a fuel
assembly level. The motivation for this work was participating in the UAM bench-
mark [28] whose goal is to propagate the uncertainty in the nuclear data through a
coupled neutronics/thermal-hydraulics calculation. The first phase of the benchmark
aims at propagating uncertainty through fuel assembly calculations, which are used
to produce homogenized data for the following coupled calculations. The objective
of the first phase can be considered ambitious, since the generally used fuel assem-
bly codes did not have uncertainty analysis capabilities when the benchmark was
started.

Due to vast number of uncertain nuclear data in fuel assembly calculations, per-
turbation theory was chosen as the framework for the uncertainty analysis. The fuel
assembly burnup calculation code CASMO-4 [29] was chosen as the development
platform. Perturbation theory allows computing the sensitivity profiles of a response
with respect to any number of parameters in an efficient manner by solving an adjoint
system in addition to the original forward problem. The uncertainty related to these
parameters can then be propagated deterministically by linearizing the response.

Initially, classical perturbation theory was implemented to CASMO-4, which en-
abled the uncertainty analysis of the multiplication factor [V]. In the process of
modifying CASMO-4, a problem was faced due to the incompatibility of the cross-
section models between the covariance libraries containing the neutron interaction
uncertainty data and the code itself. In publication [V], a technique for overcoming
this issue by combining the covariance matrices was devised. The proposed ap-
proach accurately combines the capture reactions whereas it results in systematic
differences for the scattering reactions. The issue was analyzed and the difference
was explained by the incompatible constraints implicitly assumed in the two calcu-
lation strategies [V]. The uncertainty analysis methodology was later extended to
responses that can be represented as reaction rate ratios [VI]. This framework is
called generalized perturbation theory and it was applied to two-group homogenized
cross-sections.
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