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implemented by the author has already been 
used in several public trials and 
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Abstract 
  
Processor hardware support for security dates back to the 1970s, and such features were then 

primarily used for hardening operating systems. This idea has re-emerged as hardware security 
features in contemporary cost-efficient mobile processors. These support specific operating-
system functionality such as communication stack isolation and identity binding, which are 
needed on mobile devices to satisfy regulatory requirements for e.g. cellular phones. 

  
This thesis builds on these hardware security features to implement a generic trusted 

execution environment (TEE) that can be used for a larger variety of applications. We present 
software building blocks and infrastructure for isolated trustworthy execution on these 
hardware environments. The goal is to achieve the same level of isolation as in smart cards or 
trusted platform modules implemented as separate integrated circuits. The thesis contributes 
to the state of the art in several ways: We present mechanisms for isolated piecemeal execution 
of code and processing of data in these very memory-constrained hardware environments. 
Isolation, freshness and data commit guarantees are provided by cryptographic means. We 
present security proofs for selected cryptographic primitives used in this hardware context. 
The thesis also improves on the integrity guarantees of contemporary processor support by 
implementing rollback protection even when the device is powered down. This is done by 
combining the security functionality of the processor with auxilliary hardware and firmware 
logic. We advance the understanding of trusted execution by describing a minimal set of 
hardware trust roots needed to implement an engine for isolated execution. 

  
Ideally, advancement of computer science can be translated into implementable designs with 

real-world impact. The mechanims presented in this thesis were implemented and deployed in 
the On-board Credentials (ObC) architecture, and partly standardized as features for the 
Mobile Trusted Module (MTM). These technologies enable implementation of isolated 
execution at significant cost savings compared to the deployment of discrete hardware 
components. The MTM specification, co-designed by the author, is the first global security  
standard that provides an adaptation to processor hardware mechanisms for isolated 
execution. The TEE part of On-board Credentials, designed and implemented by the author, is 
deployed in more than 100 million devices in the field, and has already been used in several 
public trials and demonstrations of end-user applications. Both ObC and MTM rely on the 
results of this thesis research. 
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Sammandrag 
Processorstöd för säkerhet introducerades på 1970-talet, främst för att förbättra 

operativsystemens intergritet. Med de öppna PC-plattformernas genombrott försvann dessa 
mekanismer för några tiotal år, men motsvarande mekanismer togs åter i bruk för omkring tio 
år sedan i mobila hårdvaruplattformer, nu främst för att garantera protokollintegritet för 
kommunikation och för att binda upp den mobila hårdvarans identitet - typiska villkor för att 
kunna erhålla t.ex. radiolicens för en mobiltelefon. 

  
Denna avhandling bygger från dessa existerande hårdvarumekanismer och presenterar 

programvarubyggstenar för att kunna implementera säker, isolerad tolkning av programvara 
i en arkitektur som externt motsvarar en diskret hårdvarukomponent såsom t.ex. ett smartkort. 
Avhandlingen bidrar till den senaste kunskapen från många infallsvinklar. Den presenterar 
mekanismer för isolerad tolkning av programvara och associerad data i stycken i dessa högst 
begränsade omgivningar, där garantierna för isolation, versionshantering och dataflöde måste 
byggas upp med kryptografiska metoder. Avhandlingen bidrar också med säkerhetsbevis för 
valda kryptografiska algoritmer i denna omgivning. Vi förbättrar nivån av off-line integritet 
med att presentera en lösning där det säkra processorstödet kombineras med extern, diskret 
logik för att säkra mot rollback. Avhandlingen presenterar även en minimal uppsättning av 
säkerhetsfundament  som en processor måste stöda i hårdvara för att isolerad tolkning skall 
kunna implementeras. Den beskriver också två arkitekturer som uppbyggts baserat på de 
byggstenar som presenteras i denna avhandling, och vilka var för sig erbjuder gränssnitt för 
mobilapplikationer och i sista hand användare. 

  
Sin största verkan får datavetenskapen när den ibruktas medelst implementationer. 

Byggstenarna som presenteras i denna avhandling möjliggör isolerad programvarutolkning till 
en betydligt lägre kostnad än vad som är möjligt med diskret hårvara, t.ex. smartkort. 
Författaren har aktivt bidragit till standarden Mobile Trusted Module (MTM) - den första 
globala säkerhetsstandarden som definierar och möjliggör en adaptering baserad på isolation 
byggd utgående från processorer med säkerhetsfunktioner. Säkerhetskärnan i OnBoard 
Credentials arkitekturen, som planerats och implementerats av författaren, finns tillgänglig i 
över 100 miljoner mobiltelefoner, och har redan använts i flera publika forskningsprojekt och 
demonstrationer. Båda dessa arkitekturer baserar sig på metodologi och även programvara som 
härrör sig från denna avhandling. 
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Chapter 3

Introduction

3.1 Background

Since the introduction of stored-program computing devices (Turing / Eckert
/ Mauchly machines) in the 1940s, computers are amalgams of hardware and
software. They can either be embedded devices that perform a predefined
task defined by pre-loaded software (firmware), or general-purpose comput-
ers that execute any program loaded onto them. The distinction between
embedded and general purpose computers has, however, become increasingly
blurred. General-purpose computing hardware is today commonly used also
in the embedded domain and software upgrades are typically the norm also for
embedded devices. Mobile phones are a good example where a whole indus-
try in essence has moved from manufacturing embedded devices to building
general purpose computers.

Platform security is one property that is affected by this overall transition
in computing. Application download in combination with the introduction
of local and wide area networking to consumer devices makes the reliance on
perimeter security on the device insufficient. The current need for reactive
mechanisms like virus checkers in PCs and mobile phones is by itself proof
that the perimeter of contemporary devices is already too complex to properly
secure. We see this as attacks infecting the system over networking protocols,
through the kernel system call interface, or viruses spreading between devices
using USB sticks or MMC cards.

As a reaction to this trend, hardware manufacturers have added security
functionality to their processors to enable the implementation of more se-
cure software systems. With contemporary processor and chipset hardware,
manufacturers can do more than solely trust that the software is not tam-
pered with and running properly. Hardware mechanisms can validate soft-
ware properties and sometimes even enforce a device shutdown in case, for
example, a divergence from an approved software configuration is measured.
Non-volatile device secrets and external trust roots can be stored on memory
within the processor chip itself making them less vulnerable against off-line
attacks that target hard drives or flash memory. Memory management units
together with new registers implement security domain separation as well as
new access control primitives like the no-execute bit for memory pages. In
this work we will call such trusted hardware Processor Secure Environ-
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ments (PSE). The primary motivation for introducing these new primitives is
a better, i.e. smaller implementation of the so called trusted computing base
(TCB) in the computing device: The trusted computing base of a computer
system is the totality of protection mechanisms within it, including hardware,
firmware and software, the combination of which is responsible for enforcing
a computer security policy[27].

When we break down the definition of TCB further, we can identify certain
functionality, so called Roots-of-Trust (RoT), which typically consist of some
minimal hardware and software support enabling a specific security feature.
One example is “root of trust for measurement” that stipulates that given an
immutable value (a key or a reference hash) in hardware and an immutable
processor bootstrap code containing a cryptographic hash algorithm we can
launch a TCB or any software whose integrity is ascertained by virtue of
applying the hash algorithm to the TCB that boots up and comparing the
result of the algorithm against the stored reference. A number of RoTs can
be identified, and the TCB is the computing base that performs its intended
actions for protecting the system under the governance of all necessary RoTs.

To clarify the need for RoTs, we may refer to communication security and
consider the so called Dolev-Yao attacker model[28]. In this model the at-
tacker is considered “all-powerful”, i.e. the attacker is free to delete, reorder,
modify or add any messages or message parameters during transmission be-
tween the communicating endpoints. A TCB is a subset of hardware and soft-
ware within a device, and an endpoint by itself in the Dolev-Yao. Therefore,
the Dolev-Yao attack model can now also be applied within a single device,
where one mostly untrusted device can contain several TCB endpoints that
need to communicate with each other1. The definition of RoTs allows us to
explore attack surfaces at an even higher resolution, i.e., the attack point may
now even include interfaces between parts of the TCB that might be assumed
to be trusted only at certain times of the device lifecycle. These points in
time can be manufacturing time or early in the device boot sequence. RoT
functions may also be physically separated from the device and only logically
tied to the TCB by cryptographic means.

A security property that lies in the heart of this thesis is isolation. Logi-
cally this is a simple concept, but one that often is very difficult to achieve.
Lampson identified this issue as early as 1973[56], and early computer archi-
tectures like Multics[15] and Cambridge CAP[96] did address isolation with
hardware features that implemented capabilities. Salzer and Schroeder sum-
marized such hardware “technical underpinnings” of computer protection in
1975[78] and listed the constraining of memory access based on a privilege bit
as a fundamental building block of isolated virtual machines. After 35 years
this statement is still an accurate assessment.

Today, we also see full hardware isolation used as part of computing de-
vices deployed for security-critical operations. The most widespread category
is the smart card, used as a token for subscriber identity in mobile networks,
as credit card security element and for a vast variety of different authenti-
cation needs for physical or networked access. The smart cards generally

1Even if not expressed as a Dolev-Yao setup, the existence of secure sessions in Trusted
Platform Modules[94] or GlobalPlatform smart cards[40] point to the assumption that these
standardized, embeddable secure environments are designed to operate in devices with
other, additional trusted session endpoints.
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adhere to the ISO-7816 suite of standards. For wireless near-field communi-
cation (NFC) smart cards the relevant interface specification is ISO-14443.
Smart cards are programmable, either by proprietary means or by using the
JavaCard programming environment. Another example of a device deployed
for isolation is the “classic” IBM-4758 cryptographic co-processor[82] (now
replaced with the CEX3C/4765 model) extensively used in banking applica-
tions. These co-processors are in essence computers with non-volatile storage
isolated in a tamper-resistant housing. Both smart cards and cryptographic
co-processors are generally certified to Common Criteria security levels and
implement protection against physical tampering. Essential to the security
of these elements is also the provisioning aspect. In a baseline provisioning
solution, only programs signed by the owner of the card or co-processor are
installable on them. Typically also a security context between the card or
co-processor and external servers can be set up to remotely provision external
secrets to the code installed into the isolated element.

For computing elements like smart cards and cryptographic co-processors,
one distinction that is relevant for security is whether they are physically af-
fixed to a host computing platform or not. Removable smart cards are the
norm when the element is used for end user authentication. However, trusted
platform modules (TPMs), specified by Trusted Computing Group[94], are
isolated elements with the distinct requirement that they are physically af-
fixed to the computing platform. By adding a set of additional trust roots
and functionalities, provided by the host platform and external to the iso-
lated element, security services like remote attestation of the software and
hardware state of the host platform can be achieved by the combination of
the isolated computing element and the few added trust roots.

Only non-removable isolated elements, i.e., ones embedded into the host
computing device, are considered in this thesis. Also, the emphasis will be
on leveraging and extending PSE environments to achieve isolation proper-
ties corresponding to those of physically isolated environments like embedded
smart cards and cryptographic co-processors.

3.2 The cost of environments realizing a trusted
execution environment

Adding security to a computing device induces cost in several ways. If the
security component is implemented in hardware, there is a design or purchase,
as well as a real estate cost related to the chip on which the security mech-
anisms have been implemented. If some security mechanisms are to be used
only rarely, it makes sense to apply them by making use of computing infras-
tructure already deployed for some more frequent activity like running the
operating system and applications. The monetary cost of security consists of
a fixed, up-front development cost as well as variable cost accumulating during
deployment, where the end customer will have to pay for any extra hardware
embedded into the device. In mass-produced devices, the variable cost is al-
ways the dominant concern. In addition to the cost of physical hardware, also
unit costs related to manufacturing, testing and care (warranty service) can
significantly add up, especially if the implemented security design does not
account for these issues.
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Figure 3.1: Secure environment cost

Energy consumption is a cost that is especially prominent in battery-operated
devices and very noticeable to the end user. For security functionality, the
energy cost category can be split into computational cost, memory cost and,
for radio devices, also the communication cost. Any computation will con-
sume energy, and the resource requirements of security algorithms are often
significant compared to normal processing load in a mobile device. The en-
ergy consumption of volatile memory, if it needs to be permanently allocated
to some security processing, is also easily of the same order of magnitude as
the radio communication cost.

Indirect costs of stand-alone hardware secure elements embedded into the
host device are the cost of communication and the usability cost induced by
lower clock speeds in the separate secure element. As security functionality
for consumer devices typically is only a supporting sales argument rather than
the primary feature, we see that smart cards and trusted platform modules as
a rule are designed to minimize monetary cost rather than performance[80].
The communication channels to these embeddable elements are serial chan-
nels, and their clock frequencies and computing speeds are low compared to
the main CPUs of the computer and mobile phones. As a result, secure com-
putation using embedded hardware is several orders of magnitude slower than
the same logic executed with the full speed of the host processor.

The pricing of secure environments is mainly based on the fixed and variable
production costs of the element itself, but also takes into account costs related
to business risks, localized certification, regulatory needs, etc. Thus even
rough monetary cost figures are hard to state in a fully objective manner.
However, to put the work of this thesis into perspective, Figure 3.1 outlines
the relative price points of technologies that are discussed and referred to in
this work. The PSE, i.e., the hardware security functionality that allows the
manufacturer to add software and construct a trusted execution environment,
adds up to 10 cents to the processor cost. A programmable smart card chip
with a cryptographic engine costs from a few Euros to ten Euros depending
on production volume and performance. Programmable hardware security
modules that attach to servers as add-on cards are typically worth 1000 Euros
or more.

The cost reasons listed above are all significant motivating factors for why
separated isolated secure elements have not gained widespread acceptance
especially in mobile phones2. Instead, as mentioned earlier, trusted execution
has been realized as adjunct functionality in the main CPUs and ASICs. In the
next chapter we will systematically examine this functionality in more detail,

2In contrast to the mobile ecosystems, TPMs, which as a rule are separate discrete
components, are widely deployed in business laptops.
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and motivate its purpose as a hardware base for achieving isolation and other
building blocks needed when implementing trusted software environments.

3.3 Outline of the thesis

This thesis is structured as follows. After this introduction, technological
foundations on which trusted execution can be built are presented in Chapter
4. An attacker model relevant for the context is defined in Chapter 5. Related
academic work and technologies are overviewed in Chapter 6. With reference
to the attacker model, goals and requirements for a TEE environment are
presented in Chapter 7.

After providing the necessary background, in Chapter 8 we define the spe-
cific goals addressed by this thesis. The chapter first provides the general goal
and then in a more fine-grained manner lists research questions solved by the
academic publications that support the thesis.

The practical realizations of the thesis concepts are presented in Chapter
9. Three main software architectures have been built around the academic
contributions — the On-board Credentials programmable TEE architecture,
a TEE instantiation of the Mobile Trusted Module specification and a roll-
back protection architecture with an external non-volatile memory connected
to the TEE. Additionally, a public transport ticketing solution is presented
as one application example that leverages the contributions of this thesis.
The chapter concludes with a description of the real-world impact of these
architectures.

Future work on the general topics addressed by this thesis is considered
in Chapter 10. Chapter 11 concludes the extended thesis abstract, and the
original research publications follow. They are ordered starting from publica-
tions related to hardware and trust roots and ending with architecture- and
application related research publications.
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Chapter 4

Trusted Execution

This chapter provides an overview of hardware and low-level security features,
some of them RoTs, which are design options for constructing Trusted Exe-
cution Environments (TEE). We follow the Global Platform[40] terminology
and define a TEE as the combination of a hardware platform that provides
isolation and a software and operating system residing within the security do-
main defined by that hardware that is capable of running programs launched
into that environment. With this definition also physically isolated smart
cards become viable instantiations of a TEE, but we do not explore such im-
plementations further. Instead we concentrate on presenting designs where
isolation and other security functions are constructed out of special process-
ing resources and security functions available in the very same processor that
also serves normal OS and application execution. The PSE constitutes these
hardware features in a mobile processor. When a Trusted Operating System
or some other scheduling solution is run under the protection of the PSE,
the software also supports provisioning and a cryptographic API, and is given
access to device secrets and trust roots, then the combination is called a TEE.

Figure 4.1 provides an abstract overview of a TEE implemented with one
type of common PSE. The processor core hardware provides extra register
banks for a new, secure processor context, a “secure world”. Memory isola-
tion is provided by an extension to the memory management unit (MMU)
or the memory protection unit (MPU). This extension makes access to some
predefined memory pages conditional to the processor being in the secure
context. Some non-volatile persistent (ROM) memory is in practice needed
for booting the core and possibly for software checks related to entering the
secure processing context. If secure boot is implemented as part of the TEE,
an internal immutable cryptographic algorithm is also needed.

In addition to the isolation property provided by the hardware PSE, the
following features will further characterize the software and persistent data
that constitutes the TEE:

1. Secret(s): Trusted applications that operate in a TEE isolation do-
main should have exclusive access to derivatives of device secrets, pro-
visioned by the chip manufacturer, device integrator or operator. These
provisioned secrets must not be visible to untrusted code, such as the
operating system or its applications.
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Figure 4.1: Trusted Execution Environments

2. Cryptographic API: Basic cryptographic primitives are available to
the trusted applications in the form of libraries or other interfaces, and
the cryptographic operations are run within the same isolation domain
as the calling program.

3. I/O: Untrusted code (like applications in the operating system), as well
as other trusted applications running in another isolation domain within
the TEE, must be able to provide parameters to a trusted application,
and to receive computation results from it. There must be a way to
select and activate a trusted application.

4. Provisioning of code: The TEE environment should be configurable,
i.e., trusted applications must be uploadable from the OS or from a
device-external entity into the TEE.

5. Provisioning of secrets: If secrets are provisioned, they should also
be bound to a specific trusted application or a set of such applications.

6. Code lifecycle management: Code versioning and updates should
be possible, under the constraints of the code issuer policy and issuer
control enforced by the owner of the TEE. This management should
account for the identity of the trusted application, and secrets already
provisioned to it.

7. Randomness1: Due to the nature of most cryptographic primitives,
the isolation domain provided by the TEE in practice needs exclusive
access to a source of random bits.

1Strictly speaking, randomness can often be replaced by counters or authenticated time.
Also, the services outlined next can be implemented by a remotely seeded pseudorandom
number generator.
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The hardware “building blocks” of a PSE, i.e., trust roots, the isolation
property and basic security services like secure boot can be implemented in
a variety of ways. The rest of this chapter explores these features in greater
detail and, where relevant, lists the most widely used architecture options.

4.1 Immutable data

For the purpose of uniquely identifying external trust roots as being relevant
for a specific device, and to bind other assigned device identities to the same,
the physical silicon chip that also hosts the processing core, needs to include
a small amount of immutable, unique data such as a serial number. This data
is chip-specific, and thus cannot be gated, i.e., defined as part of the digital
design. Instead, e-fuses, a technology that originates from IBM[55], provides
a mechanism by which immutable data for a chip can be programmed either
at the chip factory, or at the time the integrator assembles a device around the
chip. E-fuses are typically embedded into the silicon layers of the chip, and
the unauthorized reading of the data written to them requires professional
hardware that often destroys the chip in the process.

Whereas the chip identifier is unique to every chip, an external trust root
binding, such as the public key hash of an external certification authority,
typically is shared across a batch of chips. Still, this binding is typically
stored in the same e-fuse bank as the chip identifier. This is because the trust
root binding typically is integrator- and not chip manufacturer specific, and
therefore it still does not make sense to include this value in the digital design
even though large batches of chips do share the same binding value.

In addition, to support secure boot, an ASIC needs to include some amount
of immutable program code that bootstraps execution on the main processing
core (the CPU) and further steps in the boot chain. In mobile devices, this
immutable code typically resides in read-only (ROM) memory on the ASIC
itself. In PC technology, a dedicated external memory chip, the Basic In-
put Output System (BIOS) is traditionally used as the root of the booting
process. The immutability of that code was identified as crucial for system
security as early as in 1996[23]. Interestingly enough, the first BIOS virus,
the Chernobyl/CIH, appeared already in 1998 to underline the urgency of the
statement.

4.2 Secure boot

A fundamental building block for providing integrity for a TEE is secure boot.
This process implies cascading verification of the code that is executed in the
system.

The fundament of cascading measurements is well explained by the principle
of measuring before executing: Assume that all executing code, before being
launched, is measured by some other code launched earlier in the boot process.
Also assume that these measurements are sent to and are internally stored
by an isolated environment. Then any malware being executed as part of the
boot sequence can at most affect the measurements that are collected after it
has been launched, since those are the measurements it can modify. I.e., it
cannot destroy or modify the audit trail leading up to, and including the
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measurement of itself2.
This measurement aggregation in an integrity-protected environment sep-

arate from the security domain where the execution happens is called au-
thenticated boot, and this is the primary booting principle considered in TCG
specifications[94]. Authenticated boot can a posteriori provide reliable re-
mote attestation of the boot sequence, but typically does not terminate in
case unknown code is measured and launched during boot.

Secure boot is in some sense a simpler version of the same principle. In
secure boot each piece of executed code measures the next code to be launched
and compares it to a trusted reference value, which may be hardcoded or
signed. The boot process is terminated if the measurement does not match
the reference value. No unmeasured code will ever be launched on the system
provided that the first piece of code that the device boots (which performs the
first reference comparison and termination decision) is immutable as discussed
in Subsection 4.1. Secure boot does not require a separate isolated domain for
the boot-up, since theoretically a secure domain is constructed as the device
boots up.

Rollback protection for updates of components that are part of the secure
boot sequence is needed to maintain the level of device security over the device
deployment lifetime. We return to this topic in Sections 5 and 6.2.

4.3 Tamper-resistant device secrets

Immutable device secrets can be maintained alongside identifiers and trust
roots in the immutable store inside the ASIC. A device secret in essence is
a non-volatile device-specific random number, possibly generated during chip
or device manufacturing. The secret itself and any code that uses the secret
needs to reside and operate in a tamper-resistant environment to contain the
information flow that eventually may reveal the secret to an attacker. A
device secret also needs to be immutable, since the device for many use cases
needs to use the same secret across boots, for example if the key is used for
local secure storage or authentication to remote parties. A single root secret
can be diversified into a whole set of mutually independent derived secret keys
to cater for different device secret needs.

Clearly, the protection of this tamper-resistant secret becomes crucial for
the security of the device - it will be the single point of failure for most of
the security architecture built around it 3. Thus, the protection of the de-
vice secret against reverse-engineering needs to be performed on many levels.
Possible attacks include deployment of rootkits, side channel monitoring (like
timing operations and memory usage), hardware attacks such as probing the
memory bus between the processor and the RAM memory and also physical
forms of side-channel attacks like power-level monitoring and magnetic or ra-
dio emissions. Recent attacks against the TLS protocol[5] [29] show that such

2When the audit trail includes only executable code then some attacks can still be
applied. Associated boot data like configuration data in combination with an exploitable
stack in the boot code may use attack mechanisms like return-oriented programming[18] to
inject the system with malware that in principle is not visible in the audit trail.

3A related technology is physically unclonable functions (PUF)[38], the use of which
may alleviate some issues with hardware attacks against the secret. However, at present
PUFs are not available as part of mass-produced chip designs.
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attacks are feasible also in real-world deployments.
The attacker model provided in chapter 5 provides one categorization of

threats associated with the protection of TEE secrets.

4.4 Isolation for TEEs

The isolation of execution inside the TEE can be arranged in a variety of ways.
The solutions will have different cost, security and also performance proper-
ties. The most commonly used and researched alternatives are presented in
the list below.

1. Secure boot and virtualization: This approach builds on the isola-
tion principles of an operating system: By leveraging normal processor
memory management and processing contexts, the primary, securely
booted component can reserve for itself the privileged computing con-
texts, and protect its memory pages against other software running at
lower context levels. Whereas contemporary operating systems typi-
cally are too complex to be considered secure (to constitute the Trusted
Computing Base), large operating systems can be replaced by small mi-
crokernels or hypervisors, the code of which possibly can be validated or
at least examined in terms of platform security. In this architecture, the
legacy operating systems are run virtualized or para-virtualized under
the control of this security kernel. This setup does not protect against
simple hardware attack. Also, as a consequence of the virtualized OS
typically running in a user processor context, since the hypervisor oc-
cupies the privileged context, the OS may face challenges to protect
its own kernel boundary towards its applications. Programs run un-
der this isolation can run at full processing speed, and memory size is
not a serious constraint. TCG/DRTM[43] provides in some Intel and
AMD processors a hardware-assisted option to setup the TCB for a se-
cure kernel (so called late-launch) also after a possibly insecure OS boot
sequence has completed.

2. New processing contexts with dedicated memory areas: Se-
curity architectures like TI MShield[13] and ARM TrustZone[8][9] add
several sets of new processing contexts for the explicit use of construct-
ing security domains in the beginning of the boot sequence. Here, a
launched OS can still make use of the standard processing contexts like
privileged mode, interrupt context and user space, and remain unaf-
fected by the presence of the trusted OS occupying some higher-security
context. This is different from the more stringent, and hard to achieve
property where the presence of a trusted OS cannot be detemrined by
the launched OS. If the trusted OS reserves for itself (with the assistance
of the memory management unit) some ROM and RAM memory that
reside on the main ASIC itself, then an isolated domain has been con-
structed that also is protected against simple hardware attacks. With
this architecture, processing still runs at full CPU clock speeds, but
volatile memory is limited to the ”onboard” RAM, at least for execu-
tion that needs to be protected against hardware attacks.

3. For completeness, full hardware isolation needs to be reconsidered
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in this context. Here the isolation is defined by a discrete chip soldered
onto the motherboard. These embedded secure elements (eSE) can be
highly secure in that they can provide tamper-resistance and even side-
channel attack protection as part of their digital design. However, their
memory is constrained and no direct memory access to system memory
is typically available. An eSE is by itself not enough to construct de-
vice secure boot, it requires additional architectural assistance from the
platform, like the ability to control the first instructions that execute on
the main processor. As a rule eSEs also compute at slower clock speeds
than the main processor.

4. Processor mode with temporary isolated memory: The main
example in this category is the Flicker architecture[63] that leverages
the late-launch property of Intel and AMD chipsets. The setup is in-
teresting: Although the isolated environment does not have run-time,
dedicated memory and therefore cannot persistently hold any device se-
crets, the late-launched environment leverages a TPM (a separate dis-
crete chip) for secure storage in a manner where the code image to
be executed in the temporary isolated environment will constitute the
access control attribute for the storage. The launched isolated code
gaining access to the storage can for a limited time use on-chip MMU
caches as its main memory, therefore remaining resilient to memory bus
probing 4. In short, this hybrid environment shares many of the prop-
erties of the environments listed above under “New processing contexts
and dedicated memories”.

Some of the architectures above do not protect against simple hardware
attacks, like eavesdropping the memory bus interface. However, one layout
option used in mobile devices is to stack the processor and the memory to
save real estate. Here the processing unit and its main memory are packaged
together within the same plastic package, and the memory bus connectors can
be placed in a way that accessing them by only peeling off the covering plastic
is not feasible. In this case the simple memory bus access with such hardware
becomes significantly more difficult, and the relative difficulty between access-
ing RAM/ROM memories inside the ASIC and accessing the main memory
dilutes.

E.g., as described in the context of Aegis[88], another approach for improv-
ing memory protection is to add memory-page encryption on the hardware
level, i.e., to the memory management unit. With this design we can use a
key randomly generated at each boot to encrypt or decrypt all data written
to and read from the volatile memory[89]. Eventually this approach may be-
come practically feasible, like disk encryption has become today, but for now
the challenges of arranging fast enough operation for encrypting the mem-
ory pages with necessary integrity and rollback protection[37][22] has not yet
brought designs into widespread commercial use.

In this thesis, we base our TEE contribution on the isolation model 2 de-
scribed above, except for publication P5 that uses model 4.

4This architecture also exposes a new hardware attack surface — the connection between
the main CPU and the TPM opens up to eavesdropping or modification

15



Chapter 5

Attacker model

For TEEs, the details of the attacker model will depend on how trusted ex-
ecution is set up in terms of hardware and software protection. Inside the
device, the well established Dolev-Yao attacker model[28] used in the proto-
col and networking community can be applied between interacting hardware
components rather than between interacting devices. When examining TEEs
we can approach the attack surface in terms of what security property may
be breached, but also of significant relevance is how the attack is achieved.
This section reviews both aspects.

At least the following attack types are relevant for TEEs implemented with
a PSE in the main processor:

1. Loss of secrets: As a TEE ultimately is used to guard and process
secret information the confidentiality protection is one of its paramount
goals. In TEEs, eavesdropping applies not only to pure data, like an
attacker getting hold of cryptographic key material, but may also target
algorithm flow information leakage. TEE computation may happen in
an environment where extensive scheduling and virtual memory caching
to insecure memory occurs. Even if the caching is encrypted, the mon-
itoring of insecure memory contents can to an adversary provide signif-
icant information about algorithm flow, and even indirect information
usable to reveal secret key material.

2. Modification: Integrity is the other fundamental property that many
of the security services in a TEE are built to maintain. These modifi-
cation threats do not only apply to data but also to the boot sequence
(secure boot) and the integrity of results returned from a TEE to trusted
UIs and external (trusted) communication channels. Replay and splic-
ing are important subtypes of modification attacks.

3. Replay and rollback protection: Wherever caching of information
takes place, whether stored in a database or as an encrypted virtual
memory page, state protection is needed. That is, when taking in previ-
ously cached information, a TEE should have assurance of the fact that
the retrieved information is current and not an old version of the same
data.

4. Data context consistency: When considering virtual memory, the
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ordering or mapping of information across memory pages can be rele-
vant. A splicing attack returns a data element in the wrong context or
in the wrong order, and any caching system should include protection
against such attacks.

5. Denial-of-service: Denial of service is the activity of blocking access
to or causing the target TEE to stop servicing legitimate requests. By
designing software TEE architectures to be amenable to backup and
restore mechanisms, the impact of DoS attacks can be minimized.

Many forms of attacks can be used against a TEE, operating inside a device,
to breach one of the security properties mentioned above. The following list
provides one categorization of attack mechanisms.

1. Brute-force and injection attacks: These attacks are typical forms
of leveraging software weaknesses to mount a software attack. A pro-
gram or virus can look for implementation weaknesses by bombard-
ing the interface of the TEE or trusted applications with fuzzed input
and examine return parameters for information leakage. Randomized
fuzzing may also trigger a software flaw inside the TEE that lowers the
protection boundaries maintained by it. More advanced versions these
attacks may inject data causing errors, as error-state security is often
less thoroughly tested and analyzed than the default software path.
Stack-smashing and buffer overflow attacks are well known in the soft-
ware community. Such concrete attacks can be deployed e.g. based on
information gathered by brute-force fuzzing.

2. Side-channel attacks: These are indirect attacks whereby a measure-
ment of an external property reveals information of the internal state
of TEE execution. Such properties include hardware attributes like
consumed time and energy, or software ones like the size and value of
encrypted data produced by and later retrieved from the TEE. Multi-
threaded processors with parallel execution pipelines and different levels
of memory cache table lookup buffers (TLBs) further add a multitude
of properties that potentially may cause information leakage[95]. Side-
channel attacks can be divided into hardware- and software-originated
ones. Countermeasures to these attacks are a research topic by itself,
see e.g., [99].

3. Covert channels: In case TEE functionality intentionally leaks or
distributes secrets or other sensitive data to an external party, this is
a covert channel. Third-party compliance and certification procedures
mitigate this risk for the consumer. The same concerns do apply to
trusted applications as well.

4. Offline attacks: This class of attacks refers to the reading or modifi-
cation of the persistent memory of a device when the device itself is in a
powered-down state. An attacker may modify system code that is part
of the boot sequence of the device or change configuration parameters
read by launched programs. Sensitive user data can be attacked. Espe-
cially relevant for the TEE discussion are state rollback attacks, which
can be considered a special case in this category.
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5. Supply chain attacks: The manufacturing and secure imprinting of
the device is critical for the security level that can be reached in terms of
platform security over the whole device lifetime. During manufacturing,
security contexts between the manufacturer and the device are set up
to later protect functions like firmware updates, device service, operator
binding and TEE code provisioning. An attacker resident in a manu-
facturing facility might modify data provisioned to a device or record
information that enables him to replace or circumvent device trust roots
used after device deployment.

6. Software attacks: From the perspective of the TEE, the main oper-
ating system and its applications are vulnerable to attacks. This means
that a TEE can only to a very limited degree trust operation invocations
or data input provided to it by this environment. Also, in the absence
of non-volatile read-write storage or large volatile memory resources, a
TEE must often cache both persistent and temporary data outside its
own memory domain into memory controlled by this insecure environ-
ment. So both TEE input, output and context is potentially subject
to software attackers in the form of root kits, viruses or even the users’
own attempts to circumvent TEE protections. Also the executable code
for the trusted applications is often available to code running in the
privileged domain.

7. Simple hardware attacks: In typical computing architectures there
are a number of hardware attacks that are straight-forward to execute
and often leave little or no traces after the attack has been executed.
These are attacks that can be executed by so called “clever outsiders”[7]
without expensive equipment. External devices can often modify mem-
ory or trigger the processor core through interrupts (IRQs), direct mem-
ory access (DMA) and debugging interfaces (JTAG). In case the random
access memory (RAM) is physically separate from the core processor,
memory bus eavesdropping and content modification on the memory in-
terface is a relatively easy and non-intrusive undertaking. By personal
communication we learned as early as 2006 that telephone SIM locks
were broken by using temporary memory bus probing. Attacks against
the TPM, where grounding a (reset) pin[50] causes loss of run-time
state, and attacking the LPC bus to modify TPM traffic like DRTM
measurements[48] can also be considered a simple hardware attack.

8. Complex hardware attacks: Since main ASIC rarely are designed
to be tamper-proof, they can be attacked by probing, i.e., drilling holes
in the ASIC to access internal communication buses or processor debug
connectors. If an ASIC can be destroyed, then its contents can be re-
vealed by peeling the silicon and examining it layer by layer[92]. These
attacks are expensive to mount but cost-effective if many devices share
a common secret that is written into the E-fuses on the ASIC. Archi-
tectures considered in this thesis do follow the guideline to never share
master keys between large sets of devices.

Many of the attack types listed above leverage weaknesses in the implemen-
tation of TEE code. It is hard to overstate the importance of code correctness
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when implementing any critical resource. Section 9.1.2 and publication P4
contribute to this aspect of TEE security.
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Chapter 6

Related work and
technologies

This section outlines technologies and research work that relates to the pub-
lications attached to this thesis. Academic work is referenced where available
and appropriate, but some fundamentals are architectures brought to use by
companies without publications in the traditional open innovation model —
in such cases other references are cited.

6.1 Secure virtual memory

Temporarily caching information is vital for environments with constrained
memory resources. Already in the 90s Blum & al.[17] set the foundation by
providing proof that integrity of various data structures can be maintained
in an environment with a small amount of trusted memory and a larger un-
trusted storage. In this model, only the active part of the data structure,
i.e., the piece that is currently being operated on, is kept in the secure envi-
ronment. The rest of the data structure resides in untrusted memory where
it will have to be appropriately protected against eavesdropping, rollback and
re-placement within the data structure. Blum & al. abstractly prove that
such a construction can be made secure at least for data structures such as
stacks, FIFOs and memory pages. The main mechanism for providing the
integrity guarantee for variable sized data structures is a distributed tree
structure, typically some form of Merkle tree[64]. To turn the proofs and
mechanisms into practice, much more research has been published targeting
both hardware and software implementations, especially for protecting virtual
memory. Gassend & al.[37] argue that by implementing the prover as part of
a processor cache efficiency can be achieved. E.g., Suh & al.[89] optimize the
integrity check calculation with multi-set hashes, targeting the special case
where the integrity of a set of memory reads can be validated after all reads
have been completed. Elbaz & al.[33] provide a recent survey of many aca-
demic approaches for implementing secure virtual memory. However, none of
these mechanisms have yet been applied to commercial processors, thus they
are not available with TEE hardware architectures on the market today. One
likely reason is that on-line checking in this context (limited secure memory)
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cannot be done in linear time (Dwork & al.[30]), which makes its real-world
implementation challenging. There is also some published research for pro-
tecting virtual memory management in software[73], but these are OS-specific
solutions poorly adaptable to TEE environments.

6.2 Non-volatile state

Securing the non-volatile state of a device TEE over boot cycles is a cost
consideration — adding flash memory into the security domain of a TEE on
an SoC is expensive. This issue was identified by Suh[88], who does not have
a solution for the problem, except for using an external trusted third party
to maintain the device’s non-volatile state. This approach is acceptable for
devices with permanent network access and for all use cases that only need
security after boot-up. However, for operations related to secure boot, for
rollback protection of device bootloader updates, relying on a device-external
resource is not a satisfactory solution. Schellekens & al.[79] identify this issue,
and propose to include a memory with authenticated communication in the
device. They however omit to consider how the security context between the
TEE and the authentication is set up and how the life-cycle management like
testing, repairs, and replacement of the memory can be arranged.

Research that proposes to include non-volatile memory on the SoC chip it-
self also exists. In fact, already in 2004, Raszka & al.[76] propose a hardware
design for embedding flash memory onto the ASIC for the explicit use of secu-
rity applications. Zhao & al.[98] have presented a non-volatile magnetic flip-
flop that holds state across boot cycles, and thereby can serve as non-volatile
secure storage. One-time programmable E-fuse technology[55] is the primary
non-volatile storage mechanism on SoC processors today. Like physically un-
clonable functions[38][87], this technology is ill-suited for changing data, since
it is one-time programmable. Still, it can be used to implement counters by
burning one fuse at a time provided that a SoC chip holds a large enough
set of fuses. This use of fuses is foreseen in the MTMv1 specification[67], see
section9.2.

6.3 Cryptographic co-processors and smart cards

The need for isolation of computing in servers and client devices coincides
with the emergence of internet as a global communication network and with
the increased digitalization and computerization of financial sector. This took
place, especially in Europe, in the 1980s and onward. The IBM 4758 crypto
co-processor[82] card, and its successors have been one of the most used iso-
lation environments for certification authorities, banking servers and factory
networks around the world, wherever so-called hardware security modules
(HSMs) have been needed.

6.4 Smart cards

A smart card is a tamper-resistant computer in the housing of a credit card.
The first smart cards with an embedded processor emerged in the late 1970s[74].
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By the late 80s the standardization of the form factor and its wired communi-
cations interface were well underway, and the first cards with RSA capability
emerged. The dominant standard for smart cards is the ISO-7816 suite of
standards, which covers everything from the physical characteristics of the in-
terface to file organization on the card and protocols for host communication
with the card.

The tamper resistance of smart cards has been evolving since the 90s. The
first “cautionary note” by Anderson[7] outlined attack opportunities against
smart cards as early as 1996, and over the years much work has been published
on executing and preventing side-channel (power analysis) attacks on smart
cards (see e.g., [65]).

In the 1990s the mass deployment of smart card technology started, driven
by GSM mobile networks where smart cards are used as subscriber identity
modules (SIMs). With the advent of programmable, multi-application smart
card technology in the late 90s[25] with environments like MultOS[20] and
JavaCard[19], the high end smart cards essentially turned into secure envi-
ronments, with threat models very similar to those considered with crypto co-
processors[75]. Today, smart cards are also extensively used as identification
modules for the financial sector, and the security ecosystem for smart cards
is largely specified and standardized in the Global Platform Consortium[40],
which also has task forces for mobile device technology and on-chip hardware
architectures.

Today, most deployed smart cards are removable, i.e., they communicate
with a host device through an external or internal smart card reader over wired
or wireless protocols. These cards are not in scope for this thesis. However,
especially for payment and ticketing applications in the wireless context, there
is a small population of mobile phones that include embedded smartcards
in their hardware, turning the mobile phone into a “smart card” with user
interface and communication capabilities. From a hardware perspective, also
TPMs[94] can be considered to be smart cards, albeit adhering to different
interface specifications and protocols.

Several application standards for smart cards are also important for under-
standing the state of the art. The EMV payment card standards by Visa,
MasterCard and Europay[36] for credit card payments emerged already in
1996, and credit cards with EMV are becoming commonplace today all over
the world. Also the contactless variant of EMV[34] is widely used today, espe-
cially for small-value payments. For smart card application development and
especially their remote provisioning, the Global Platform[40] specifications
are the de-facto reference. Other significant smart card application stan-
dards are the network identification modules (SIM, UICC) by ETSI/3GPP.
For TEE-like operation, the smart card industry in many cases still does not
provide unconditional isolation between programs provisioned onto the card.
The problem to overcome is that the original JavaCard language specifica-
tion leaves the bytecode verification to an external trusted party rather than
executing that process on the card itself. This is a recognized problem in
the academic community, and several solutions for making on-card bytecode
verification possible (e.g., [57]) have been proposed.

22



6.5 TPM

The TPM chip[94], specified by the Trusted Computing Group (TCG)[93],
has been successfully deployed to hundreds of millions of laptops and PCs to
date. The technology was in the early days around 2003 known by the name
TCPA (Trusted Computing Platform Alliance), or by the project (and team)
names in Microsoft, “Palladium”, or “Next Generation Secure Computing
Base”. The effort that originally was initiated by the big players in the PC
ecosystem: Intel, IBM, HP, AMD and Microsoft, can today be considered a
global effort to bring trusted computing, especially a hardware root of trust,
into the personal computing ecosystem. The original target scope, PCs and
laptops, has been extended to include servers, network equipment, tablets as
well as mobile phones. To date, the TPM1.2 chip can be used as a hardware
trust root for Microsoft Bitlocker. Google Chrome OS for netbooks requires
the presence of TPM1.2 for its platform security. A similar requirement is
present for the forthcoming Microsoft Windows 8[83].

TPMs are typically stand-alone discrete chips that provide a set of security
functions for the operating system and its applications. The TPM interface is
a set of functional APIs for security services carried out in isolation, i.e., inside
a TCB. These security services include functions for RSA key generation and
subsequent key use for signing and decryption, as well as for secure storage
— functions that one could expect e.g., to be available in a smart card. What
sets the TPM interface apart from the one of an embedded smart card, is
that TPM in its interface leverages the fact that the device TCB is bound
to a specific device, and is not, by specification, removable. For this, the
TPM defines a volatile set of cryptographic aggregators, the so called plat-
form configuration registers (PCRs). With only a minimal securely booting
component in the host computer, the so called Root of Trust for Measure-
ment (RTM), the envisioned boot sequence of a TPM-enabled device is that
the minimal secure boot (which in a PC may be some memory blocks in the
BIOS), will measure (cryptographically hash) the next platform code to be
booted, and send that measurement to the PCRs. By following this “measure
before executing” principle, it is straight-forward to determine what trusted
code has been booted on the device, or put another way, as long as the mea-
surements sent to the PCRs are known to represent a well-known secure state,
trustworthiness of the end configuration is maintained. This authenticated
boot is straight-forward, but does not well accommodate mixed provenance
software stacks as part of the boot sequence - a problem addressed by the
Mobile Trusted Module (Section 9.2) and publication P1.

Based on the PCR values collected at each boot, platform binding can
be achieved: The TPM interface allows for key usage or retrieval from storage
to be bound to the PCR values, i.e., the key operations will only be allowed
if the PCR values are the ones listed in the binding associated with the key.
Ergo, the keys are only usable if the device was booted into a secure state.
Since the boot sequence was never aborted if a “wrong” measurement was
encountered, this way of booting the platform is called authenticated boot as
was described in Section 4.2.The PCR values are also leveraged in the service
of remote attestation, i.e., where TPM signs a challenge and the current
values of the set of PCRs with a certified key. The attestation can be parsed
and validated by a relying party, which now can determine something about
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the current state of the booted client platform. Finally, also data can be
bound to a given PCR state, to be released (decrypted) again only when the
very same TPM’s PCRs reach that state. This process is called data sealing
and unsealing

The TPM technology has induced a large body of research publications in
the field of trusted computing. Directly relevant to this thesis are publications
that relate to MTM and the adaption of TPM to PSE environments.

In 2007 Constan & al.[21] defined the notion of a programmable environ-
ment — the “trusted execution module” (TEM), which could be used to im-
plement TPM features. The same year publication P3 was published, Kur-
sawe & al. looked at the implementation of “microTPMs” using the TEM
paradigm, and introduced an implementation based on disembedding, i.e., one
that executed the TPM logic in parts due to trusted environment size con-
straints. The first published work on MTM implementation was by Zhang &
al.[97], who implemented MTMs within an OS with SELinux[61]. In addition
to P3, Dietrich and Winter look at MTM disembedding[26] with a Java in-
terface and a mobile phone secure element — very much in the TEM model.
England and Thariq[35] consider “programmable TPMs” in another context
— where a physical TPM is “coupled” with a smart card. In this setting the
TPM especially can provide smart card applications with platform state, a
feature not otherwise available in the smart card ecosystem.

6.6 NFC

The Near-Field Communication (NFC) industry consortium was formed to
standardize technology for tags supporting Wireless Radio Frequency Iden-
tification (RFID). In practice, the standard today covers several short-range
radio technologies as well as many use cases, ranging from the aforementioned
identity tags all the way to device-to-device (i.e., phone-to-phone) communi-
cation. The communication distance for NFC devices falls into the range of
centimeters and the communication paradigm is often compared to a “touch”.
Communication speeds start from below 100kbps and are at best approaching
1Mbps, i.e., NFC is by modern communication standards quite slow.

The communication specifications are found in ISO / IEC 18092 [45] and
ISO / IEC 21481 [46]. The NFC forum1, provides compliance testing and
additional standards for NFC use. NFC devices support one or several of
so called Type A, Type B and Felica encoding, modulation and transmission
schemes. Felica is used mostly in Japan and has a nominal transmission speed
of 424 kbps whereas types A and B are the norm in Europe and north America
(106/212 kbps). In practice, compatibility between tag readers, tags and
phones is unfortunately often only found at the lowest common denominator
at 106kbps. Additionally, the throughput on higher protocol layers remains
significantly lower due to protocol overhead — again a typical situation with
wireless communication standards.

An NFC device can be passive, i.e., wirelessly taking energy for its com-
putation from an electromagnetic field produced by its peer. Passive devices
are either memory tags or contact-less smart cards specified in ISO / IEC
14443. Active NFC devices (with their own power) can operate as readers in

1www.nfc-forum.org
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so called card reader / writer mode when they communicate with a passive
device, or in peer-to-peer mode when they target another active device. Some
active devices also operate in so called in card-emulation mode, where the
active device “emulates” a passive device. Contactless smart cards use the
same ISO / IEC 7816-x base command set as their wired counterparts.

The lower layers of NFC include no communication security primitives. It
is also well known that NFC technology is susceptible to both eavesdropping
and relaying attacks[24], despite the fact that NFC is a very short-range radio
technology. An review and taxonomy of the security threats for the baseline
NFC technology can be found in[60].

NFC technology is today becoming commonly available in mobile phones.
Although not yet deployed to low-end models, a list maintained by NFC fo-
rum2 is quickly approaching 100 device models from all major mobile phone
manufacturers. This evolution is significant for platform security, since many
of the major use cases envisioned for NFC are services with high security re-
quirements. Examples include payment, ticketing and physical access control.

6.7 Secure hardware

The evolution of hardware PSEs that forms the basis of a TEE has been
driven by commercial companies. In this subsection, brief introductions to
the most commonly deployed PSEs are given in addition to presenting Aegis
— one prominent research contribution that has been published in this area.

6.7.1 Texas Instruments M-Shield

One of the first commercial on-chip secure environments is the result of a
collaboration between Nokia and Texas Instruments[90][53] in the early years
of the 2000s, resulting in a hardware solution minted M-Shield[13]. In early
versions of this architecture, the security monitor — a hardware logic external
to the ARM processing core but internal to the chip was triggered by executing
an secure mode entry ROM program, and the isolation was managed by the
security monitor directly controlling some of the memory address bus lines in
the ASIC. When the secure mode was entered, addressing on-chip memory and
e-fuses was possible, otherwise not. The HW security system also included a
security watchdog timer, a hardware random number generator (RNG) and a
few other hardware primitives. The software part of the solution consisted of
the monitoring entry code. Its purpose was to ascertain that on secure mode
entry the caches were flushed and virtual memory and interrupts disengaged,
to protect against unintentional information leakage.

The M-Shield trademark still lives on today as a Texas Instruments sys-
tems offering, but the hardware fundament is now based on ARM TrustZone,
described next.

6.7.2 ARM TrustZone

The main PSE architecture in use today, especially in mobile device proces-
sors, is ARM TrustZone (ARM-TZ), which has been available as a processing

2A list of NFC-enabled phones can be found at http://www.nfcworld.com/nfc-phones-
list/
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core option in ARM-enabled processors since the ARM-1176J-S[8] was re-
leased. In terms of functionality ARM-TZ[8][9] is very similar to M-Shield,
but as the system is integrated within the processor core itself, it is signif-
icantly more powerful. In addition to the regular register and processing
contexts (user-space, kernel mode, interrupts), the TZ adds a second set of
contexts, that ARM documentation calls “Secure World”. As a bridge be-
tween the baseline register set (the “Insecure World”) and the secure world,
one more processing context, the monitor mode, is introduced. The role of the
monitor mode code, entered by the caller triggering a software interrupt, is to
determine whether secure world entry is acceptable in terms of processor and
device settings, akin to the ROM entry sequence in M-shield. If these checks
are successful, the monitor mode has the exclusive right to clear a control
register bit, the so called “non-secure” (NS) bit which defines the entry into
the secure world, but also serves as the defining signal to all other security
aware hardware support built around the TZ architecture. For example, the
interrupt controller can be configured with a completely separate interrupt
vector when in secure world and the MMU can for each mapped page also
adhere to the current state of the NS bit, as can the settings of the DMA
controller. The same bit is also mirrored on processor communication buses,
enabling core-external logic to alter their operations based on whether the
processing core is in secure- or non-secure world — this may apply to timers,
clocks, watchdogs and the like, but also to external memory controllers or
communication hardware. All this processor support provides a versatile base
on which to build a TEE, especially if the secure memory mapping is backed
up by the existence of ASIC-internal ROM and RAM memory, so that secure
memory access is not visible on external interfaces.

In ARM TZ the processor core always boots “in” the secure world. This
is logical, since the secure world is the trust root of the system, but this
also allows for the boot sequence to configure secure world features — to
read secrets and initiate isolation boundaries for the secure world — before
engaging in non-secure operating system startup.

6.7.3 Intel VT-x / AMD SVM

The main companies supplying the PC industry with processors, Intel and
AMD, have designed an interesting PSE-like facility that as a construct is
quite different from the ARM TZ.

As discussed in Section 6.5, the TCG technologies provide authenticated
boot, where the initial part of the boot sequence is measured into the TPM.
There are several drawbacks of this approach. One is that the measurement
cannot be repeated after the device has booted, thereby it does not adequately
protect against run-time attacks — computers like PCs can have boot cycles
that last for months and even years. Another issue with boot-time measure-
ments is that in open hardware platforms like the PC, auxiliary hardware
devices with memory access at hardware level can be inserted by the device
owner, and the firmware of these devices and their DMA use is not in all cases
adequately reflected in the boot-up measurements.

As an answer to the abovementioned concerns, in 2005 Intel and AMD for
TCG designed a concept often denoted “Late launch”. The feature is part
of the Secure Virtual Machine technology in AMD processors[6][85], and the
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Trusted Execution Technology by Intel[43]. In the core of this hardware sup-
port is a feature whereby a “fresh” TCG-style software measurement of a
TCB can be initiated at any time when the device is running. This measure-
ment will be performed in a processor state where possibly harmful hardware
concepts like interrupts, DMA and in the PC case even multi-core operation
are turned off. This processor state is similar to the state in which the ARM
TZ monitor mode is launched, as described in Section 6.7.2, i.e., the measure-
ment (computation) to be conducted cannot be affected by plugin hardware
devices or malware residing in the system. The TCB that is measured is a
small piece of code that will be launched after the measurement completes.
The processor sends the code of the TCB to the TPM, which computes the
code hash, resets a PCR dedicated for this purpose, and extends that PCR
with the code hash. Then it launches the TCB.

In this state, the binding properties of the TPM chip for keys, encrypted
data or non-volatile storage is a straight-forward way of achieving secure stor-
age for this TCB. Only the code whose measurement corresponds to the bind-
ing is given access to the store, or to the use of secret keys.

The main communicated intent of including late launch in the processor
architecture is to set up a hypervisor to run underneath a virtualized operating
system. Other features of the VT-x and SVM architectures do support exactly
such concepts — the hardware means to virtualize or compartmentalize the
operating system without need for modification in the OS code. I.e., the
hypervisor is measured, and can be remotely attested by TPM functions by
leveraging secrets in the secure storage provided to it. The late-launched code
becomes the TCB, and if that TCB provides facilities for executing secure
service logic, it effectively can become a TEE.

6.7.4 Aegis

The discussion on PSE hardware would not be complete without presenting
Aegis[86][88], a secure processor hardware design originating in the research
community in 2003-2005, thus it predates many of the architectures presented
above. Aegis introduces a processor with several relevant PSE concepts. One
is the notion of attested execution of a secure program, i.e., the processor
microcode combines the secure program results with a signed attestation of
the device, its security kernel (the TEE), the executed program, and its in-
puts. With this information a remote party can validate the system (and
its state) in which the returned results were computed. Aegis also includes
integrity-protected, and potentially encrypted caching of memory pages us-
ing the L2 cache, making memory footprint considerations unnecessary as
all memory can be considered secure. The Aegis system also includes soft-
ware extensions to interrupt and later resume trusted application execution
measurement when network connectivity or other system operations that by
nature include too much code or state to be included in the attested algo-
rithm execution trace. The contributions of Aegis hardware research has not
yet reached contemporary processor technology.

27



6.8 TEE software architectures

The software architectures related to a TEE are often engineered to the spe-
cific hardware environment they operate in. However, as these software mod-
ules typically strive to overcome inherent shortcomings of the related hardware
architectures, they are often instructive in their own right.

6.8.1 Early Nokia software

The early MShield hardware was in Nokia devices leveraged by a software
layer that implemented a simple TEE. The basic structure of this TEE can
be found in [53], where Kokkonen presents a few fundamental software con-
cepts needed in a processor TEE. One is the presence of an external trust
root, that constitutes or binds the public-key certificate hierarchies that in
his model authorizes securely booting images or the loading and execution of
code inside the secure environment. Another is the presence of an immutable
hardware identity, to which external trust roots like secure boot certificates
unequivocally can be bound.

His model also includes the use of device secrets shielded from ordinary
system software, in MShield[13] implemented using device e-fuses, to provide
secure storage for trusted applications.

Additionally, the architecture included an authenticating program loader,
a cryptographic library, secure storage and a ROM patching facility. All in all
the properties of this early architecture did provide an isolated environment
that was used mostly for device manufacturer services — subsidy locks, IMEI
(device identity) integrity, phone variant locking etc.

The On-board credentials architecture (ObC) was originally built as a
trusted application on this TEE in [53], and first presented as a poster[11]
in 2008. ObC adds additional isolation for third-party trusted applications,
scheduling and open provisioning for third parties. ObC is presented in Sec-
tion 9.1.

6.8.2 OSLO

OSLO[50] is not by itself a TEE, but the first publicly reported software
project that made use of TCG DRTM for late-launching code. It is con-
structed as a solution to issues found with TCG authenticated boot and con-
temporary TPM chips and BIOSes. The primary objective of OSLO is to
re-measure, and re-activate the OS after the initial device boot-up.

6.8.3 Flicker

The Flicker[63] architecture builds further on the OSLO concept and is the
first architecture where the late-launched VT-x / SVT environment is used
to execute a single secure credential under the isolation properties of the late-
launched measured environment. It consists of a Linux driver that sets up
the call to the late-launched environment, and a boot-strap that takes care
of the essential secure credential entry and exit procedures, like passing input
parameters and returning results. On return, the Flicker architecture releases
control back to operating system, but the TCG/TPM measurements of inputs
and outputs of the last Flicker execution are available and can be remotely
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attested, much like with the Aegis security processor. The Flicker architecture
has been used to demonstrate several security applications like LaLa — a late
launched application[39] as well as publication P5.

In the x86 environment, some research projects have achieved isolation
with properties that are architecture-specific. SICE[12] achieves isolation by
leveraging the System Management Mode (SMM) on AMD processors. In
SICE, needed trust roots are perceived to be provided by a TPM. Since SMM
code needs to be authorized by the chip vendor, in a real deployment SICE
needs to be released by such a company.

TrustVisor[62] is a small hypervisor that constructs a TCB - a memory
environment with isolation and attestation for selected portions of applica-
tions without relying on the OS for isolation. The main protection is set-up
using MMU memory protection primitives, making the the scheduling of such
application critical code efficient.

6.8.4 The path to trusted operating systems

Building on the isolation property and trust roots, one path, and in many
cases a likely end goal, is to either run a scheduling operation in the hardware-
isolated domain to improve the trustworthiness and firewalling between several
OSs in the same device or between applications in the untrusted environment.
These approaches are quite different from those brought forward in this thesis,
but nevertheless form an important research direction in the field of trusted
computing.

Hypervisors are small microkernels that schedule de-privileged operating
systems within a computing device. Among others, the Trustvisor project
mentioned above is one project that uses hardware isolation as a fundament
for improving hypervisor trustworthiness and to leverage existing hardware
trust roots. The NOVA project by Steinberg and Kauer[84] has similar end
goals.

Microkernels and hardened, minimized OS kernels designed with security
and isolation in mind is a research direction initiated in the 90s, e.g., by
Liedtke & al. [58][59]. The L4 microkernel has over the years been used
extensively in mobile environments, and one variant, the seL4 kernel has re-
cently been formally verified for security[52][51]. The smart card embedded
OSs like MultOS[20], share many of their security requirements with micro-
kernels. Future Trusted Operating Systems, i.e., operating systems that run
and isolate applications within the PSE isolation domain will likely leverage
these or similar technologies. This is discussed further in Chapter 10.
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Chapter 7

Security Goals

In Section 4.4, the basic hardware properties of PSEs were outlined. As an im-
plementation of these we describe one real-world PSE hardware architecture,
available on a vast majority of mobile phones deployed today, and explore the
software requirements needed to complete the building of a fully functional
TEE on this hardware base. Some of the requirements are by default fulfilled
by existing software and earlier work[53] — these properties are acknowledged
in this section.

In the context of this thesis, the main implementations of the software
architectures satisfying these security goals will be described in Chapter 9.

The hardware architecture is fundamentally ARM TZ, with three on-ASIC
memories — a bank of SDRAM, a ROM and a bank of e-fuses for non-volatile
storage. The e-fuses hold at least a device-specific secret seed, an external
trust root (a public key hash), and a public chip identifier — the latter can
also be a derivation of the secret. The secure booting of such a TEE is straight-
forward, and described in Figure 7.1. The chip boot vector (0) points to the
on-chip ROM, which securely boots a bootloader that sets up the ARM TZ.
The MMU is configured to assign the whole or parts of the on-chip memories to
the secure world. Additionally, a monitor code and entry scheduler is installed
in the secure RAM (1+2), to provide some general services like a) validation
of the public keys of the external trust root used for further secure boot and
other authorization, b) signature verification primitives for validating further
code launched as part of secure boot, and c) interfaces and authorization
support for subsequent installation of secure-world code to the secure RAM.
At this point the TEE basic properties are set up and the isolation of its
domain is configured by means of ARM-TZ. The entry scheduler is henceforth
the guardian of all TEE entries, both for entries where the functions of the
scheduler itself is called, and for entries where uploading and executing trusted
applications takes place. Such code needs to be digitally signed by the device
manufacturer to be allowed for execution inside the TEE, an approach that
is no different from what was deployed already in the IBM cryptographic
co-processor[31].

As the TEE has been set up at the initial stage of the bootloader, it can
continue booting up the rest of the OS and platform by using the interfaces
provided by the TEE (3). The general setup of this baseline TEE architecture
is well understood and dates back at least to 2003 as was described in section
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Figure 7.1: Securely booting a TEE

6.8.1.
To program for the TEE, the uploaded trusted applications can leverage a

TEE-internal API that typically includes cryptographic primitives like RSA,
AES, DES and several hash functions. These operate on their inputs within
the secure-world domain, sometimes making use of on-chip hardware accel-
erators. The API also gives the uploaded trusted applications access to the
device secret or a derivation of it, a hardware RNG, and possible some limited
storage inside the secure RAM that is available for the TEE, and persistent
for the duration of one boot cycle.

The secure memory available for the secure-world programs varies depend-
ing on whether the TEE Internal API and secure-world installation code re-
sides in RAM or ROM. It is not uncommon in contemporary smart phones
that only 10-15kB of secure memory remains for secure-world program exe-
cution, i.e., its code, heap and stack. Additional memory is accessible from
secure-world code, e.g., memory used for parameter I/O to the secure world
— this is typically arranged by the calling driver as physically mapped I/O
buffers from insecure memory. All operations involving these I/O buffers
must however be considered insecure in the sense that such memory access
will happen over a memory bus outside the chip, open to simple hardware
attacks.

Our extended TEE architecture does not make use of virtual memory
(MMU), interrupts and DMA when operating in the secure world. Thus, in
the following discussion, we assume that these hardware features are turned
off on secure world entry and remain so until the secure-world program ex-
its. Instead, scheduling is done purely in software. For us, the scheduling in
software was an imposed system requirement. However, the results of this
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thesis regarding scheduling are applicable also to hardware-triggered opera-
tion, since the security issues arising from the scheduling of execution between
secure and insecure memory do not depend on the source of the trigger.

The baseline TEE described above is by itself usable for a variety of device
manufacturer security services. However, if we consider any trusted applica-
tion, implementing a security service or an algorithm on behalf of an external
service provider or even an OS component, the following system properties
are required:

1. Rollback protection:

The statefulness of operations and non-volatile data in a TEE is crucial
for most services, especially if the services are executed in an interleaved
fashion. Several types of rollback protection is needed: For provisioned
code and data, which may be upgraded over time, the TEE should have
mechanisms to ascertain that only the latest versions will be usable —
A trusted application version upgrade may be motivated by a flaw in
earlier application versions. Second, many trusted applications need the
means to store information locally in a secure, non-volatile storage. In
this type of TEE such storage is by necessity arranged outside the TEE.
The TA, when reading in information from the store, must however
be able to rely on that the store information is current and that an
attacker has not replaced the store with an older version. Third, if
a TEE architecture will execute the TA code in a piecewise manner,
scheduled from an OS driver, replay protection must be applied within
the TA execution session to guarantee that data flowing between the
partial executions are not replayed out of context or that the execution
steps are not executed out of order.

2. Isolation:

The TEE provides hardware isolation from the rest of the system, by
virtue of the memory banks that reside on the same chip as the processor
core with the PSE features for context separation.

Additionally, any trusted application that is uploaded to the TEE with
different authorization than the one used for uploading TEE system
code must remain logically isolated from the TEE system level as well
as from other trusted applications, unless authorization for interaction
between trusted applications is provided.

3. Secure scheduling:

By consequence of the small footprint of the TEE, uploaded trusted
applications need to be split up and executed in pieces. For the same
reason, the scheduler itself needs to reside in a driver in unprotected
memory, and only a minimal security context shall be maintained in
secure RAM to ensure the integrity of the expected trusted application
program flow.

4. Data caching:

In the absence of a standard solution for applying secure virtual mem-
ory, data caching needs to be implemented otherwise, especially related

32



to scheduling. The program state, subroutine input and output pa-
rameters, big cryptographic keys and other data may need to be at
least temporarily cached in insecure memory during program execution.
These data caches must be cryptographically protected for confidential-
ity and integrity, as well as bound to mechanisms protecting against
rollback and data re-ordering.

5. Provisioning:

Trusted applications and data for them need to be provisioned to the
device from a remote location. Both the data and the program code
may need to be protected for confidentiality in addition to providing
integrity guarantees. It should be possible to uniquely bind secrets usage
to a specific set of trusted applications. Trusted applications originating
from the same author or such that are otherwise associated may need
to construct a device-local security domain in which secrets are shared
among all applications assigned to the domain.
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Chapter 8

Theses

Low-cost trusted hardware is becoming widespread especially in mobile de-
vices but also in the personal computer context. These environments lack in
many significant areas such as non-volatile storage, statefulness and size of
secure memory.

It is not difficult to pinpoint many specific security functions and services
that are straight-forward to implement with PSEs, and such services have al-
ready significantly advanced the level of security for devices where they have
been deployed. Mobile phone manufacturers have successfully used these en-
vironments for integrity protecting software (secure boot), forcing the binding
between an operator and a device for the duration of a subsidized contract
(subsidy locking), enforcing operator-specific variations in device software and
asserting device identity. However, in this thesis we aspire to go further, to
make full third-party secure service development available. This includes open
programmability, provisioning and the ability of the TEE to support any num-
ber of such third-party programs deployed on the device. In this setting, the
constraints of the baseline TEE environments as described in Chapter 6 be-
come apparent. A number of new requirements have to be catered for, and
software primitives need to be formulated to accommodate the scarcity of
memory available for PSE-managed isolation.

Researching mechanisms for achieving goals that also can be met by exist-
ing discrete hardware, like smart cards, is motivated by efficiency and cost.
Figure 8.1 illustrates the problem space: Programmable secure environments
can be considered bound by the aspects of price, achieved security level and
overall performance — generally it is hard to satisfy more than two of these
constraints at once. On a high level this thesis sets out to increase the perfor-
mance of the end solution without sacrificing either the security level or the
low price point of the default configuration.

With this motivation, the following research goal defines the scope of this
thesis:

We aim to define a software and hardware infrastructure around
a commonly available PSE to enable secure third party use and
programmability. We do this by adding at least partial support
for off-line roll-back protection and scheduling in the untrusted do-
main for secure data caching. We aim to construct a system that in
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Figure 8.1: Research motivation

terms of isolation and performance approaches the level of security
provided by dedicated security hardware — without the additional
hardware cost. The provisioning of data and code to these envi-
ronments shall be possible to all application developers, without
constraints on who can issue the trusted applications.

8.1 Detailed research goals

In this section, the contribution of this thesis is summarized by highlighting
the research questions which the individual research publications solve. We
take a bottom-up approach, i.e., we begin by examining trust roots and secure
device boot-up and end by discussing trusted application provisioning and
isolation domains.

Compared to operations executed in stand-alone or self-contained security
elements like cryptographic co-processors or smart cards, it is more difficult
to reason about the security level for software running under the protection
of a PSE. A set of requirements of the underlying platform need to be defined
to measure the achievable trustworthiness in some quantifiable manner:

Research question 1: What hardware and software trust roots are
necessary to set up a functioning TEE on a PSE?

The Trusted Computing Group has for the TPM[94] chip done seminal
work of defining the concept of a Root-Of-Trust in the meaning that we will
be considering here. Although the TPM[94] is a physical chip, its correct
operation relies on an external security function, the Core Root of Trust
for Measurement (CRTM). The Mobile Trusted Module (MTM) specification
defines a collection of security operations similar to the TPM, but does not
necessarily rely on being physically instantiated on a chip. Instead it allows
for a software implementation within a PSE, provided that a set of trust roots
for MTM engine verification, stateful storage and integrity of external trust
roots for secure boot are available. Publication P1 outlines these roots in the
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context of contemporary processor security environments.

Secure boot was outlined in Section 4.2. A simple implementation of secure
boot relies on an external trust root, usually a signature key pairKpriv /Kpub.
Only the sequence of programs signed by this trust root may be executed on
the system.

This kind of secure boot is very inflexible. It makes software upgrades
difficult. Another problem is that modern computers and mobile phones in-
clude drivers and other software from many vendors, which need to be able
to publish and update them independently.

Research question 2: How can secure boot be made more flexible,
allowing software patching, conditional and parallel execution and vari-
able ordering of the code in the boot sequence as well as constrained
delegation of trust to other software publishers?

Publication P1 describes a secure boot architecture based on MTM com-
mands. The first goal is to implement roll-back protection of code updates.
Additionally, the architecture supports parallelization and re-ordering of the
boot sequence. The latter is needed if many processors securely boot up a
system in parallel or if the boot sequence is conditionally executed depending,
for example, on user input.

In order to support multiple software vendors, the architecture also allows
delegation of authority from the single trust root to other public keys. This
delegation can be constrained so that each vendor is able to only authorize
code for a specific part of the boot sequence. For example, execution of code
from the vendor may be conditional on other components already run as part
of the boot-up. This mechanism can also be used to check for the presence of
required libraries, interfaces or even software licenses.

For rollback protection, contemporary PSEs have little integrated support,
as was discussed in Section 6.2. Since rollback protection is required for many
services, it needs to be externalized with respect to the secure environment.
As the PSE has read-only nonvolatile secure storage for key material, a secure
session between the PSE and the external component can be set up based on
such key information. This session must account for manufacturing require-
ments like key set-up, chip testing and device service where either component
has to be replaced:

Research question 3: Can we move the persistent state for the PSE
to an external memory? How is the secure context between the PSE and
this external memory set up, especially as part of manufacturing, testing
and device care requirements?

Publication P2 presents a hardware design for persistent, non-volatile stor-
age, where the logic of the external hardware component allows for lifecycle
management of its secure session setup and storage. This includes support
for chip testing at the factory and provisioning secrets at early stages of pro-
duction, support for chip replacement at service points as well as a possibility
for fault analysis in case the hardware component’s failure and return rates
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turn out to be unusually high.
Such procedures are necessary from the point of view of deployability and

quality assurance in large-scale manufacturing, and non-trivial to achieve
when combined with the security and integrity requirements of the storage
and the need to protect the device user’s privacy. As a practical concern,
P2 also emphasizes the cost minimization of the external storage. Since the
overall rollback protection functionality is divided between the TEE and the
storage component, we minimize the hardware logic in the external compo-
nent side whenever possible, at the cost of adding more logic in software inside
the TEE.

For the topic of rollback protection, P2 also highlights a very different
design issue. Flash memory cells are susceptible to wear-out, i.e., the same
memory location can be written to only a certain number of times before the
cell loses its ability to maintain the written value without read errors. In
dedicated storage components like memory-based hard drives, such anomalies
are managed by complex algorithms that balance the cell wear-out. Our
design has to work without the support of such algorithms and flash cells that
are guaranteed to support only a very low number of re-writes:

Research question 4: How is storage cell wear-out best considered in
the context of non-volatile storage for roll-back protection data? Can the
success probability of an attacker attempting to exploit wear-out using
exhaustive attacks be mitigated?

Since the architecture of P2 relies on a TEE with RAM, we do add, in the
TEE, data integrity checking and algorithms to balance wear-out while also
allowing us to identify when a cell has been worn out and returns unreliable
data.

We can also use the TEE for non-volatile memory wear-out protection dur-
ing a single boot-cycle by not committing every data update that relies on
the rollback protection all the way to persistent storage. To thwart simple
hardware attacks, this insight requires, in the proposed architecture, that the
protocol between the TEE and the storage is encrypted so that an eaves-
dropper observing the communication cannot determine whether a persistent
storage commit was done or not. The protocol in P2 fulfills this property,
and is further discussed in Section 9.3. With this property in place, the fre-
quency of actual data commits to flash can be dependent on how much the
storage has already been used up, i.e., how close we are to a promised number
of write cycles with no errors, the time between events that require commits
and how many commits all the way to flash memory have been done since
the last boot-up. This statistical optimization is another example of how an
architecture can be made to perform even when cost needs to be minimized
— in this case in terms of the amount and quality of persistent memory. The
discussion is only briefly touched on in publication P2 due to publication size
constrains, but further discussion is available in Section 9.3.

Random Access Memory (RAM) in the CPU is costly, and if parts of it are
dedicated to only security, like the on-chip memory reserved for the TEE, the
memory amount provided for this purpose in mass-produced devices will be
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put under careful scrutiny. As a result, any TEE code design must be made
to fit into a computing environment with an extremely challenging memory
resource size, often as low as 10-15 kB. Well established TEE programs that
are designed and implemented at the time of chip manufacturing can partially
rely on being run from ROM but for any new or evolving logic the RAM budget
is a constraint - the code, its heap and stack must all fit in the RAM reserved
for the TEE.

One option to extend the TEE isolation domain is to securely page data
between the secure and insecure memory. However, the needed code for im-
plementing this operation in a general way, especially with integrity protec-
tion, may itself be larger than the available secure side RAM. Publication P3
presents a design where a standardized feature set (the Mobile Trusted Mod-
ule specification) is implemented as a set of TEE programs with a minimal
memory footprint. The publication mainly addresses the following issue:

Research question 5: For resource-constrained PSEs, how do we se-
curely assign a shared data state to a set of distinct programs that as a
collective implement a function set or service? What are the necessary
trust roots in such an architecture?

In addition, publication P3 provides a reference implementation of the
complete TCG Mobile Trusted Module (MTM) functionality on a TEE. Mea-
surements included in P3 shows the performance benefits of taking the TEE
approach, when compared to stand-alone chips. Stand-alone hardware TP-
M/MTM chips run at lower clock speeds than the PSE (running at the full
speed of the main processor core), and thus the cryptographic performance
of stand-alone TPMs is significantly worse. On the other hand, a TEE-based
MTM implementation needs to use encryption for preserving its long-term
state. Even with this shortcoming, the TEE MTM implementation is signif-
icantly faster for MTM commands that execute complex cryptography like
digital signing or key generation. Publication P3 successfully argues that a
TEE implementation of MTM functionally is a viable alternative to stand-
alone security logic.

Publication P4 describes an architecture for piecewise program provision-
ing as well as for the scheduling and temporal caching of the executing trusted
application and its data. The secure scheduling happens under the supervi-
sion of an untrusted entity in insecure memory. This architecture may at
first glance seem contrived, since a PSE-internal OS with trusted application
isolation can utilize memory management and processor context isolation fea-
tures provided by the processing core to achieve this. However, footprints
of contemporary “minimal” trusted OSs or microvisors[44][81], i.e., the size
of their code and data structures, even without the secure data scheduling,
today exceeds available secure hardware memory by at least 400%, often by
significantly more. To achieve this, we are faced with an extension to research
question 5:
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Research question 6: In a PSE where the trusted application code and
data need to be provisioned and executed in a piecewise manner, what
cryptographically protected data structures can be applied to guarantee
the integrity, rollback protection and confidentiality of the code and data
during the execution session?

The previous contributions all rely on the interaction between logic inside
the PSE and logic elsewhere, whether in untrusted memory or in another
TCB, like the non-volatile secure storage chip. Especially in interaction with
untrusted memory, any cached data needs to be both confidentiality and in-
tegrity protected in addition to maintaining rollback protection for it. A
typical and well-analyzed cryptographic tool to achieve confidentiality and
integrity data protection at the same time are so called authenticated en-
cryption (AE) primitives. In a constrained PSE, which as a rule can address
both trusted and untrusted memory at the same time, it is tempting to use
AE primitives to stream data from the secure environment into untrusted
memory, and encrypt it on the fly. The opposite operation, decryption into
the secure environment, is of course equally useful. This need caused us to
examine a very specific issue:

Research question 7: Are authenticated encryption primitives secure
in a model where encryption and decryption is done as a stream, and
partial encryption and decryption results are by necessity exposed to a
potential attacker before the integrity check calculation is completed?

The answer to the question is not in all cases obvious, and the existing
security proofs for AE primitives are done in a model where the operations,
i.e., encryption or decryption including the integrity check generation or val-
idation are done as an atomic activity rather that as a stream. Publication
P5 explores this problem, both in the PSE use case described above, but also
in a use-case where a co-processor provides the AE service for streamed data.
With some minor constraints we formally prove the streaming mode to be as
secure as the baseline model for one AE primitive (AES-EAX). We also report
on possible implementation pitfalls that need to be avoided when applying AE
for streaming data and point out that a recently standardized PSE interface,
the GP Device Internal API[42], provides an AE API that is non-ideal in this
respect. Its uninformed use may open up unintentional attack vectors when
AE is used.

Publications P1-P5 collectively provide a framework in which different as-
pects of executing code securely in a memory and feature-constrained PSE
can be achieved. The MTM logic is one example of a feature set that lever-
aged the extra protection and freedom of implementation provided by this
framework.

Publication P6 approaches third-party code provisioning and security do-
main setup from the perspective of applications and in the context of MTM
and TCG technologies. Here, the initial assumption is that independent third
parties want to write and distribute their own applications (mobile apps) to
devices, and such applications need to leverage baseline MTM services like
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secure storage, cryptographic key generation and use, and possibly attesta-
tion. We also assume that the third parties operate in isolation from each
other i.e., we do not consider it feasible that applications would share a single
MTM resource and collectively manage keys and state updates. Instead we
take the approach that every application gets its own MTM resource that will
be executed in the PSE whenever the application requests for it. The need
for isolating these MTM resources from each other is evident. But we also
need to uniquely bind a MTM instance to an OS application or resource:

Research question 8: How are trusted applications inside the TEE
uniquely bound to applications in the operating system, and how can
this fact be reliably attested to third parties?

In P6 the used PSE is the AMD SVM[6][85], with the Flicker[63] archi-
tecture described in Section 6.8.3, i.e., a TCG late-launched environment in
Linux.

Application identification is done with the Integrity Measurement Archi-
tecture (IMA)[77]. The isolation between domains is constructed around a
cryptographic key, which is bound to an underlying hardware TPM. This key
is included in necessary x86 late-launch platform measurements and used as
a decryption key for PSE application state (in this case the MTM state). In
other words, the combination of TPM platform measurements for a) the PSE
code being launched, b) the security context identified by a key, and c) the
OS application currently running in a late-launched environment are used to
construct an isolated (data) security domain for a third party application.
Although the implementation in this case is specific to TCG standards, the
threat model and overall architecture is applicable to any PSE.

The MTM implementation above exposes another shortcoming, visible when
the configuration for the function sets and their shared data needs to be set
up. Even though TPMs can bind code measurements to sealed data or key
usage, it is difficult to use TPM functionality to set up security domains for
several pieces of such code to share secrets. This issue is not limited to MTM:
any program set running with the TPM late-launch methodology as the PSE
fundament and needing to share some secret or protected state faces the same
issue.

For this purpose, publication P6 introduces an enabler, the setup PAL,
where PAL is the Flicker term for a trusted application. The setup PAL
contains a hardcoded trust root from which signed statements are received,
containing the measurements of other TAs (PALs) that are to become part
of the security domain. Using this information, the setup PAL defines a
local security domain based on a symmetric key and binds that key to future
measured launches of the PALs that are to be part of the security domain.
Even though the design in P6 is TCG late launch specific, it in no way is
limited to the MTM function set — this solution is applicable to any set of
PALs that would operate on behalf of a remote party:
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Research question 9: On the assumption that trusted applications
can be remotely provisioned on behalf of a third party, what are the
TCG/TPM mechanisms by which a remote party can define and main-
tain a secure domain for provisioned sets of code and data as well as
content locally generated by the provisioned code?

The complexity of code provisioning mechanisms as described in publication
P6 with TPM late launch mechanisms leads to the question whether open
provisioning could be designed better, if we would have the freedom of choice
also for the TEE design?

Research question 10: In open provisioning, the provisioning party
has the freedom to define, for his own use, the security domain and
which code and data will belong to it, without any constraints from a
centralized issuer. How is such a security domain set up in a logical
manner, if we also account for code updates from the provisioning entity
and possible code (subroutine) sharing between security domains?

The code provisioning problem and code isolation for such provisioned
code, is explored in publication P7. The On-Board Credentials architecture
presented in publication P7 was also earlier presented in a larger technical
report[32] and a poster session[11] by the same authors. It is also further
summarized in Section 9.1. Like Flicker[63], ObC will execute third party
credentials sequentially, one at a time, and use this for isolation between cre-
dentials. However, unlike Flicker, which uses x86 hardware and TPM for
isolation, ObC isolates third party provisioned, untrusted code against the
underlying trust roots in software inside the PSE. This can be formulated as:

Research question 11: In a PSE that executes third party code, how
is that code, which is untrusted from the PSE perspective, isolated from
trust roots and critical system resources that make up the overall PSE
trust domain?

In the absence of hardware mechanisms to provide isolation, some virtual-
ization will be needed for the third-party code. The practical non-applicability
of off-the shelf hypervisors and trusted OSs for this task was discussed in pub-
lication P4. Instead, ObC relies on a PSE-internal interpreter to isolate third-
party ObC PSE code from the internal trust roots (keys) in the PSE. Parts
of this byte-code interpreter, designed for the specific purpose of isolation, is
formally validated (see Section 9.1.2).
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Chapter 9

Overview of the software
architectures

This chapter presents an overview of the individual solutions that have been
developed as parts of thesis, to complement the often brief introductions avail-
able in the research publications. In most cases also additional research work
is presented — protocols and research aspects that did not fit in the original
publications or are subject to future public dissemination. In its own section,
the practical impact of these architectures is discussed.

The main effort of the thesis work focuses on constructing an environment
for third-party program execution, not only third party access to a set of
functions. Publications P5, P6 and P7 together describe the inner workings
of On-board Credentials — an interpreted environment, where the interpreter
itself, the code it executes as well as the data of the code being executed is
processed in pieces inside the PSE, operated by a driver engine in the OS.
The contributions together assert the security properties of this arrangement,
i.e., the security and isolation of the execution of the third-party credential.

Additionally, two validation topics are presented as part of this chapter. We
explore the formal validation of necessary parts of the ObC software. Pub-
lication P4 already sets the fundament for arguing about the correctness of
the sealing and unsealing cryptographic primitives, but Section 9.1.2 builds
further on the argument and discusses work done towards proving the cor-
rectness of the ObC architecture. Section 9.4 presents one specific application
example — a ticketing protocol and system which for its security relies on a
programmable secure environment like the one being provided by ObC. The
system makes use of the specific features provided in the thesis context: The
ticketing algorithm needs to be executed in isolation, it originates from a third
party, and it will require isolation, programmability, remote data provisioning
and rollback-protected secure storage. Also the third party and the customer
have a shared incentive to authenticate or attest the security of the environ-
ment and the level of its roots of trust. The baseline protocol is provided
in publication P8, but we also explore ticketing system extensions that do
provide a migration path from mobile devices without an integrated feature
like ObC.

The chapter content that has not been peer reviewed include the formal
validation conducted for ObC in Section 9.1.2 and the detailed description
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of the probabilistic update process for the non-volatile storage presented in
Section 9.3 which did not fit in the page allocation for the publication. The
filter based mechanism to identify double-spending for identity-based ticketing
described in Section 9.4 has been separately submitted for publication.

9.1 On-board Credentials

Much of the work presented in the attached academic publications relates
to an architecture designed and implemented at Nokia Research Center dur-
ing the years 2005-2012. The architecture was mainly designed for two TEEs
available in mobile phones, the Texas Instruments’ M-Shield and ARM Trust-
Zone, although research instantiations of the design have over the years been
ported onto several other platforms including a “secure kernel” design with
a TPM for storage, the Flicker architecture on AMD processors, at least one
hypervisor, and even onto smart cards. The thesis author is the main ar-
chitect and implementor of the ObC baseline that constitutes the PSE/TEE
code and its internal as well external interfaces.

The starting point for the On-board Credentials project was to explore the
potential for using mobile device TEEs to provide security benefit to third
party services, and thereby the end user. The architecture was also seen as
a means to achieve portability of legacy TEE code across processor architec-
tures. Being a proprietary design, and in relying on PSEs in handsets, which
only to a limited degree are tamper-resistant, ObC is designed to fill a niche
where the security service deployed within it does not motivate the inclusion
of a high-cost secure element in the mobile device but where the services
still are an attractive enough attack target to require the extra protection
ObC provides. As stated earlier, the TEEs in contemporary handsets govern
mechanisms like asserting the non-modifiability of device identities and for
providing DRM mechanisms and subsidy locks. I.e., the business incentives
for securing these services are high from the perspective of device manufac-
turers, operators and content providers. That the PSE/TEE used by ObC
successfully has been used for manufacturer services gives some assurance of
the achievable security.

At the heart of the On-board Credentials architecture lies its TEE-side
interpreter. The default choice for a TEE — a JavaCard interpreter — was
ruled out in 2005 due to the available evidence based on the ROM/RAM
requirements of virtual machines. Instead, the bytecode originates from a
subset of Lua 2.4[71] bytecode which was chosen as the starting point for the
project, although quite soon the bytecode diverged from its origin due to the
specific needs of the platform. Code portability is mostly a side-effect of the
interpreter design, its main function is isolation — of TEE secrets and state
with respect to the programs executed within the interpreter.

Functionally, the major constraint behind most ObC design decisions has
consistently been the scarcity of PSE isolated memory, and much of the work
has revolved around the problem to achieve security when burdened with this
constraint. A straight-forward model where a trusted application code and
secrets are first uploaded to the secure environment, then execution happens,
and finally results are returned has often not been possible. Since the main
target PSEs can address insecure memory also, another solution could have
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been to extend the secure memory by designing a concept for secure virtual
memory, where memory pages are encrypted and temporarily stored in inse-
cure memory. This architecture more or less requires the presence, in secure
memory, of a scheduler or small OS that supports secure virtual memory,
and uses the MMU and page-fault interrupts to trigger this activity. Unfor-
tunately, the existing TEE based software environments for now are mainly
geared towards secure function execution (IRQs and DMA are often turned
off for security reasons during secure mode invocation), and to implement a
scheduler or hypervisor and setting it up would exhaust, or often simply not
fit in the available 10-20 kB isolated RAM memory.

Instead, the ObC core is built as a scheduling system where the ObC func-
tionality is built as a set of “remote procedure calls”, in fact spread out over
many TEE applications. The scheduling between these applications as well
as managing the encrypted state of the currently interpreted ObC program is
left to a scheduler operating as a driver inside the untrusted OS. Figure 9.1
shows the overall setup of ObC. The scheduler will receive the ObC program
invocation, i.e., the locally encrypted program code, and any possible inputs,
including input parameters, and storage data sealed by a previous invocation
of the code. The scheduler temporarily stores all this information, and then
invokes the bytecode interpreter, i.e., uploads the appropriate TEE program
piece for ObC program upload and execution initialization, and also gives
the encrypted ObC program bytecode as input for that TEE program. On
successful ObC bytecode decryption, the interpreter starts executing, but for
many of the more complex bytecodes, one of several events leading to schedul-
ing will happen. Such events include bytecode requesting an input parameter,
or bytecode needing to invoke a library function, or in some platforms even
the case where individual bytecodes handled by a different TEE program is
encountered. The event request will cause the interpreter to collect its run-
time state (including the virtual machine’s program counter, local variables
and stack), encrypt it, and return to the OS scheduler. Furthermore it will
indicate in a return parameter what the reason for the scheduling event was.
Consequently, the scheduler will act on this information and re-invoke the
same or different TEE program, possibly with some of the temporarily stored
data, and if it is a re-invocation of the interpreter, the stored state1. In this
manner the overall bytecode execution will continue, until the next ObC byte-
code returns an error or a complete indication. The ObC API caller typically
has to indicate which return parameters it is interested in, so on successful
bytecode termination, the scheduler will look in its temporary store (dynamic
state), and dig out the parameters that are returned to the caller. All other
variables in the store are considered temporary in nature and destroyed at
return to the untrusted application context.

This way of operating causes a significant processing overhead to the exe-
cution of the ObC programs, due to the often numerous context switches and
corresponding encryption of state that occurs over the execution of a single
ObC program. However, since the PSE system runs at the full processing

1E.g., if the interpreter bytecode invokes a bytecode library call entry, the scheduler will
stack the calling interpreter state, and launch the invoked call in the interpreter with a
clean state context. The stacked interpreter state is restored after the library call execution
successfully terminates, and the scheduler re-invokes the calling code execution — which
presumably starts by collecting results from the library call.
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speed of the processor, we do see that ObC program execution speed (with
the overhead) is comparable to that of smart card applications which are lim-
ited by the lower clock frequency of the cards. Publication P3 provides some
measurements to assert this fact. The frequent returns to the scheduling op-
eration inside the OS also has the advantage that OS IRQs and even DMA
will be served during those intervals — if this would not be the case, the user
might perceive a lengthy ObC invocation as a temporary device freeze, since
at the times the TEE is used with no DMA and IRQ handling, the rest of the
device is on hold and no user or external I/O can happen.

In addition to the scheduling via the OS, the interpreter also implements
simple virtual memory management for bytecode pages. The bytecode en-
cryption is done in 64-byte units, with integrity checks and a plaintext header
indicating the relative position of the code page in the overall code. Cur-
rently the interpreter reserves internal space for four pages (256B) to reside
in secure memory at a given time, and memory pages are decrypted into se-
cure memory in an on-demand manner without rescheduling through the OS
— for a single ObC program, all encrypted code pages are always available
to the secure-side TEE program by memory reference. The virtual-memory
support for code-page aging is minimal, and constitutes 194 bytes of com-
piled C-code. Overall, minimization of the interpreter/TEE code is obviously
crucial to the architecture, and thus ObC uses only a single, shared AEAD en-
cryption primitive (AES-EAX) for all its operational security, data formatting
(type-length-value encoding) is common over all data. These design decisions
not only saves algorithm and parsing space, but also makes integrity checks,
rollback protection, memory buffer checks, and attribute conversions common
throughout the implementation.

The bytecode set of the ObC interpreter to some degree reflects on the en-
vironment in which ObC trusted application are run. In addition to a very
standard set of functions like arithmetic operations, memory (variable) access
and jumps, mostly inherited from the LUA bytecode set, the bytecodes in-
clude functions for sealing or unsealing a variable. These commands include
parametrization for a variety of security contexts. The sealing can happen
in a storage context, where the program stores information for itself persis-
tently. It can also be done in a subroutine context, where the encrypted
data is bound to the currently executing session so that another compiled
ObC program (a kind of a subroutine or DLL “heap”). Sealed data always
enjoys confidentiality and integrity protection. For run-time seals, like tem-
porary cached subroutine I/O, also rollback protection is provided as part of
the seal. Other special types of seal contexts include externally provisioned
secrets and contexts usable for temporary caching of data during one ObC
program invocation — a sort of code-initiated virtual memory for data ar-
rays. All complex library function APIs provided to the ObC interpreter,
like asymmetric key generation and use, hash algorithms or random number
sources are also accessed through a sealed “DLL interface” via the insecure
scheduler, orchestrated by the ObC program through a set of bytecodes.

The ObC interpreter has a few esoteric bytecodes that relate to the very
specific security properties provided by the platform. One is the counter in-
terface, which provides, to the executing ObC program, a way to increment
and read non-volatile system counters provided by the platform, where avail-
able. Using this primitive, a bytecode program can for itself build rollback
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Figure 9.1: On-board Credentials architecture
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protection between device boot cycles. Another bytecode is the endorsement
of another ObC trusted application to the same security domain as the cur-
rently running application. This means that an ObC program locally on the
device can attach other programs (or bytecode libraries) to its own security
domain. This functionality is needed for constructing non-remotely managed
security contexts, as opposed to remotely configured ones. Such contexts can
be used if the terminal device itself is responsible for provisioning code or
data to other devices with ObC. They can also be used for distributing se-
crets between devices. Furthermore, an extension bytecode set with privilege
escalation also exists for programs originating from the device manufacturer
— this is a platform specific way to also enable the writing of system services
as bytecode.

For bytecode programs, ObC has its own provisioning model, which has
been minted “open” in some of the public materials. The provisioning model
is not in the core of this thesis, but in short it relies on the following basic
elements: A certified public platform key, akin to the endorsement credential
in TCG[94] can be used by a third party to determine that the device con-
tains an ObC environment and that the key is bound to that environment.
Where, in TCG/TPM protocols, that certified key is used to encrypt data
in a protocol used for binding privacy keys for attestation, in ObC it is used
to encrypt a symmetric encryption key, originating from the server, that will
come to define, in the target device, the security domain of the programs
and secrets originating from the server. In the device, the ObC provisioning
system will input, but never reveal, this domain key encrypted for it, and will
further assign all programs and secrets encrypted with the domain key into
the security domain defined by it.

9.1.1 ObC development environment

As the first bytecode interpreter was written directly for the Lua bytecode,
the first ObC programs were written in Lua 2.4[71], and a standard Lua com-
piler was used to produce the bytecode. The support for on-demand loaded
subroutine modules (akin to dynamically loaded libraries), with the related
support for integrity, confidentiality and rollback protection for the parame-
ters and responses channeled through the untrusted OS caused the bytecode
to evolve in directions where the LUA language would have needed significant
extensions to support the evolving virtual machine design. Instead, a dedi-
cated macro assembler was designed for the bytecode. Finally, the toolchain
was completed by adding call-frame bytecodes to the virtual machine and
writing a fairly standard BASIC language compiler to the environment and
leveraging the C preprocessor for including byte-code assembler snippets to
the compiled binary as a form of STDIO library functionality. A bytecode
emulator and debugger is also available to test the developed algorithms in
isolation on a PC.

The following simple example provides an insight to how ObC programs
look like. The example code implements password-protected sealed storage
for any caller. We see that environment I/O is performed using subroutines,
and the logic is in plain BASIC. The word size for the ObC interpreter is
16 bits. Automatically allocated word arrays are supported as part of the
language and bytecode, and byte-referencing half-words (bytes) in arrays is
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possible.

rem ######################################################################
rem # A program in evo that implements a s e a l i n g f u n c t i o n a l i t y based on
rem # an app l i c a t i on−s p e c i f i c i d e n t i f i e r ( s e c r e t / password ) provided
rem # by a d r i v e r
rem #
rem # Compile and run t h i s in the development env e . g . with
rem #
rem # ’ bin / comp i l e run s ea l ed . sh evoexamples / s e a l . evo + +’
rem #
rem ######################################################################

rem # Dec l a ra t i on s must come be f o r e i n c l ud e s
d e c l a r e array i a r r 10
de c l a r e i n t e g e r r i n t 11

#include ” i o c od e s . evoh”
#include ” program io . evoh”
#include ” ar rays . evoh”
#include ”arraycmp . evoh”

rem −−− Declare the ”name” o f the array

func t i on main ( )

dim mode as i n t e g e r
dim j as i n t e g e r
dim password as array
dim data as array

rem −−− The system opera te s based on a ’mode ’ i d e n t i f i e r which i s the
rem −−− f i r s t argument always . The va lues are
rem −−− 0x0000 : I n s e r t new password + sea l ed data
rem −−− 0x0001 : Recover s ea l ed data based on the password
rem −−−
rem −−− NOTE! The password should always be 16 bytes / 8 words .
rem −−− The d r i v e r should make sure o f th i s , e . g . by hashing

mode = r e ad i n t e g e r (IO PLAIN RW, 0)
r ead ar ray (IO PLAIN RW, 1 , password )
j = a len password
i f j != 8

return 0
end
i f mode == 0

read ar ray (IO PLAIN RW, 2 , data )
append array ( password , data )
wr i t e a r r ay (IO SEALED RW, 2 , password )

else
r ead ar ray (IO SEALED RW, 2 , data )
j = array part match ( password , data , 0 , 8)
i f j == 0

return 0
end
j = alen data
j = j − 8
copy ar ray par t ( password , data , 8 , j )
w r i t e a r r ay (IO PLAIN RW, 2 , password )

end
return 1

end

9.1.2 ObC validation

The security validation of the ObC concept is a multi-faceted issue which has
been approached from a number of angles over the years. Principles of the
provisioning protocol as well as secrets backup and migration has been val-
idated with the AVISPA tool[10]. Some of these proofs have been reported
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on in [54]. Publication P4 argues about the formal correctness of applying
authenticated encryption for sealing in the most relevant hardware instanti-
ation. Both of these implicitly rely on work conducted to list all deployed
key diversifications and seal header content patterns to ascertain that these
values are unique to each seal usage, so that replay of sealed data from the
untrusted OS side out of context will not be an attack vector.

In the ObC architecture, no issuer control is enforced on provisioned code.
This means that the ObC interpreter bytecode interface must withstand all
attacks at the bytecode level. The interpreter design attempts to alleviate
this risk in the following ways:

1. A weighted count of interpreter execution steps2 is maintained for the
duration of an interpreted program. When the count reaches a prede-
fined maximum, execution will be terminated. When a lower sub-limit
is reached, execution is temporarily halted for OS interrupt handling.
These measures guarantee that OS mechanisms are given the opportu-
nity to abort inappropriately time-consuming computation or infinite
loops.

2. Before each bytecode execution, the placement of the bytecode in the
program text is examined to ascertain that the remaining space is enough
to accommodate the longest bytecode possible (3 bytes).

3. Data is kept separate from the program text, and structured as an array
store rather than memory accesses.

4. General computation is virtually limited to stack-based operation. This
simplifies the bytecode language significantly. Only a few specific regis-
ter arithmetic operations (2) are provided to enable efficient stack-frame
operation for programs compiled from BASIC more size-efficient.

5. All stack and storage accesses in the interpreter code is channeled through
4 interfaces (PUSH / POP and STORE / GET). The code / logic im-
plementing these interfaces has been formally proved correct against
boundary conditions with Event-B[3] and the Rodin platform[4].

The B methodology[2] for system analysis was developed by Jean-Raymond
Abrial in the 1990’s. It has been applied for safety critical software systems,
e.g., the automation for the 14th Paris Metro line[14]. Event B[3] is an evo-
lution of the B methodology for which the open toolset Rodin[4] has been
developed in a EU research project. The code that maintains the dynamic
data of ObC programs, i.e., the stack and data store have been formally
modeled using the Rodin tool, and proven correct against intentional or unin-
tentional overflow. Abstractly the Rodin tool inputs a system description, in
the form of a set of events. For the purpose of this discussion, an event can be
a function or a method in the code that we are validating. The description of
an event includes guards, i.e., assertions regarding the correct behavior of the
event. The tool includes descriptions regarding parameters, their types and
possible range limitations. What Rodin can prove is that the system never
can be run into a state where the assertions fail.

2The count is weighted based on consumed time, i.e., invoking sealing / unsealing prim-
itive costs more than executing a JMP operation.

49



Figure 9.2: A detail from an Event-B proof

From the abstract function descriptions, we carefully designed C code to
diverge as little as possible from the formal model event. Figure 9.2 shows
one detail from one completed proof of the function adding a data (array)
element to the data store of the interpreter. In Figure 9.3 the corresponding
C code is presented, and the relation between these two should be obvious.

Furthermore, the dataflow of the interpreter bytecode implementation has
been individually analyzed against boundary and overflow issues. All I/O
buffers that channel information to and from the interpreter as well as all tem-
porary buffers that may hold information of non-predetermined fixed length
are interfaced with a macro language that guarantees overflow and underflow
protection along with the distinction between accessing untrusted and trusted
memory, wherever this is needed.

Even in combination, these efforts cannot provide full guarantees of the
structural integrity of the interpreter codebase. Furthermore, the interpreter
uses cryptographic primitives which have not been validated as part of the
ObC project. Bootstrap code will authenticate the ObC interpreter and allow
it to run in the TEE environment — this code is also outside the scope of
the ObC itself. Last, the TEE parts of the ObC project consisting of the
interpreter, I/O primitives, scheduling support and crypto interfaces is written
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Figure 9.3: A detail from C code corresponding to the Event-B proof
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Figure 9.4: MTM / TEE architecture

in ANSI C, i.e., the compiler may well introduce additional vulnerabilities into
the end result.

9.2 Mobile Trusted Module

The Mobile Trusted Module (MTM) specification started out as an adapta-
tion of the TPM1.2 functions[94] for mobile devices. At the time the MTM
work was initiated in 2005, some mobile devices were already equipped with
TEEs, and thus one important incentive was to enable the use of the TPM
interface on these. This affected the resulting standard in two ways: First,
the mandatory command set of TPM1.2 had to be narrowed down, since
the available RAM and ROM inside the TEEs was limited, as already was
discussed in Section 9.1. Secondly, the isolation properties provided by the
TPM1.2 when implemented as standalone chip now needed to be formalized
as a set of additional roots of trust to be provided for the MTM by the PSE
and TEE. MTMv1.0 specifies five of these roots, as described in publication
P1, which must be provided by the underlying TEE to guarantee the overall
security of MTM and its state.

Additionally, MTM adds support for secure boot, constructed using the
system of PCRs and the authenticated boot sequence as a basis. The main
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advantage of the MTM secure boot system is that it separates the authoriza-
tion mechanism from the booted code measurements. In “traditional” secure
boot this issue is often overlooked. All code checks based on external trust
roots either share one or a few device specific public keys for all boot valida-
tions or use trust roots embedded in the code image doing the validation.

In MTM the secure boot process includes an external trust root hierarchy,
using so called verification (public) keys, and signed assertions — so called
reference integrity metric (RIM) certificates — to arrive at the continue or
abort decision at any point during the secure boot sequence. The security-
relevant processing of the keys and attribute certificates is internalized inside
the MTM logic, i.e., the code partaking in secure boot does not need to contain
the logic to decide on the viability of the boot flow, it only needs to abort if
the MTM gives it that verdict. The key management for the secure boot as
well as related signatures and certificates can be provided and managed by the
device integrator, and code components taking part in the secure boot process
ideally need only call a single function (MTM verifyRIMCertandExtend) to
determine whether the boot sequence should be aborted or not. Such a system
clearly is useful when constructing OS- and stakeholder-agnostic, securely
booting systems. This functionality is described in detail in publication P1.

The thesis publications provide a full set of Roots of Trust for an imple-
mentation of an MTM in the described TEE context. The Root of Trust
for Measurement (RTM) derives from the legacy secure boot sequence and is
thus integrity protected in a hardware-assisted manner. The Root of Trust
for Storage (RTS) is provided by virtue of having secrets in the isolated do-
main from which storage secrets can be derived, a sealing implementation
as described in the previous section or in publication P6 and the rollback
protection provided by publication P2. It is instructive to notice that the
security of the three mandatory counters in MTM — one to protect against
firmware rollback, one to protect against (MTM) secure boot policy rollback
and one to protect against rollback of sealed objects produced by MTM — is
implied by the RTS, as it should be. The legacy secure booting does provide
sufficient protection for the Roots of Trust for Verification and Enforcement
(RTV / RTE) whereas the RTS as described can provide necessary storage
for the Root of Trust for Reporting (RTR), a signature key assigned into RTS
at manufacturing time.

Figure 9.4 shows a generalized architecture where MTM is implemented as
software inside a TEE. The figure exposes the similarities between implement-
ing the standardized MTM functionality on a PSE compared to Figure9.1 and
the ObC implementation. The closeness highlights the viability of the over-
all architecture — which for both ObC and MTM share the setup where a
complex, insecure driver component residing in the untrusted operating sys-
tem can be let to orchestrate the execution of secure functionality with little
degradation of overall security properties. From the pictures one can also
derive the main differences between the ObC and MTM architectures: ObC
is geared towards code execution, and has only limited features for providing
platform (OS) binding. MTM includes many features that can be used to
improve the trustworthiness of the main OS, such as secure boot support, OS
attestation and the aforementioned binding properties for keys and data, but
it does not support code execution. This distinction shows the need for fur-
ther development in the general TEE area - –there is no reason why isolated
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domain programmability and platform binding need to be kept separate —
in fact the features complement each other as is shown in publication P5.

Publication P3 includes more detailed material regarding the MTM on PSE
adaptation, including many performance figures.

9.3 Rollback protection with TCB-external non-
volatile memory

The work towards using an external flash memory component together with
a TEE for rollback protection is introduced in publication P2. The main
objective is to provide a way for the TEE and trusted applications in the
TEE to maintain state when targeted by off-line attacks (see Chapter 5). As
a result, data that is managed by the TEE but stored encrypted and integrity
protected outside the TEE can be bound to a counter or equivalent in the
storage component dedicated to rollback protection.

The presented design has been implemented for an auxiliary service con-
troller in the mobile phone — an energy management chip (EMC) — whose
main task is to control battery charging and other processes related to pow-
ering the internal components of the mobile phone. Due to its main purpose
the EMC does contain circuitry to produce high enough voltage levels to drive
flash memory writing — a feature typically missing from the main CPU. The
EMC controller in question also has embedded flash dedicated for configura-
tion data related to battery charging. The design in P2 is designed as add-on
logic for the EMC controller chip to leverage “leftover flash cells” for TEE
rollback protection.

The following constraints guided our specific design: The EMC had no
source of randomness. Complexity of EMC side processing had to be be
minimized to fit — in particular we minimized the number of registers and
used only one cryptographic algorithm. Overall we follow a “leave it to the
TEE” principle — whatever logic that can be outsourced to the TEE is moved
there. E.g., a significant part of the burden of ensuring state correctness and
consistency is left to the TEE.

The overall design is depicted in Figure 9.5. The trusted applications pro-
vide services accessible to OS-side applications and system functions. The
TEE has access to device-specific secret keys using which it can construct
encrypted storage containers for persistent storage maintained by the OS. To
provide roll-back protection for the containers, the TEE also communicates
with an external, non-volatile memory, that mainly provides non-volatile stor-
age for rollback protection data binding, like counters. One example is to
implement the MTM rollback counters using this mechanism. The main con-
tribution of publication P2 is the protocol and functional interface between
the TEE and the logic that persistently stores the rollback protection data.

In P2 we also note that the protocol can support confidential communi-
cation between the TEE and the external memory. This is a feature whose
motivation was left out from the publication for size reasons. For straight-
forward integrity binding, and considering the minimization target, providing
confidentiality may seem a strange requirement when communicating with a
memory that typically would only contain an integrity-protected counter.
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Figure 9.5: Rollback protection architecture

The reason for protocol confidentiality 3 is the probabilistic update of the
non-volatile rollback storage. We want to minimize intentional attacks against
storage wear-out by the user stimulating a huge number of events that cause
rollback protection counters to increment until the flash cells that host them
are worn out. For this, we make the unprotected communication channel
between the TEE and the rollback protection memory confidential by crypto-
graphic means. The intuition is that even if some state updates are logged only
in volatile storage inside the TEE and not in the rollback protection memory,
we can build the system to force the attacker to resort to probabilistic guess-
ing about which state updates actually are logged to the rollback protection
memory. Since also the erasure of TEE state requires a device reboot, the
cost of a single rollback guess is quite high and not easily automated.

In our implementation, the number of guaranteed successful writes to the
non-volatile memory cells is fairly limited, as low as 1000. Even with tens
of memory cells available, the number of rollback-protected state transitions
on a device is limited. In case the system is used as rollback protection for
services with relatively low criticality, like implementing DRM music playback
limitations or keeping track of wrong password entry attempts, then the avail-
able state space may quickly become exhausted. Worse, an attacker, like the
user, may easily leverage such services to intentionally exhaust the rollback
space by causing excessive amounts of state changes.

During system uptime, the TEE can and must ascertain the integrity of its
local RAM memory also against rollbacks. Naturally, the decision whether to
write to non-volatile memory or not must be probabilistic so that the attacker
cannot guess which state updates remain external to the rollback protection
memory, and thus remain subject to a state rollback opportunity. One simple
setup could assume a requirement of a T year lifetime for the system, and
N flash cells available for rollback protection, each with a minimum of C
updates. If t updates occur in a day, the formula y(t) = (86400/t) gives the
average interval between updates.

Based on y(t), a memory parameter (floating average) for the frequency of

3In the interest of testing, the final design variants of the rollback protection design
re-introduced plaintext reads for all memory cells. For highest impact of the probabilistic
update that feature must be disabled.
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updates can be constructed whenever a successful update is performed:

m0 = y(t);m = (p− 1)/p ∗m+ 1/p ∗ y(t)
where the ratio 1 : (p − 1) in the above can be defined depending on an

update limit defined by T and N :
p = (N ∗ C)/(T ∗ 365)
In such a setting, the decision whether to perform a state update in local

memory by increasing a counter only in the TEE, or by updating the external
memory can now be based on the following rules:

1. During system shutdown: If non-committed state updates in TEE local
memory is bigger than a fixed value, then make an external update
before shutting down.

2. When a state update is requested by an application, the decision to
make it external can be done in the following way: A random value
r ∈ [0, 1] is compared to a linear (and suitably scaled) combination of
m, p and other parameters, say a perceived “accumulated seriousness”
of the state updates not yet committed to rollback protection memory.
If r < j then make the update in external memory, otherwise do only a
local update.

To deter an attacker from determine the update state by eavesdropping the
channel between the TEE and the rollback protection memory, the following
approaches can be used:

1. All cell reads shall be encrypted, so that memory cell values are not
exposed.

2. One flash cell is dedicated for ’dummy external writes’ when the state
is actually only updated locally. This cell will age prematurely, but
writing to it will limit side-channel information leakage. Flash memory
cell writing consumes significant energy, which makes the measurement
of EMC chip power consumption a valid side channel for determining
whether writes do occur or not.

3. All cell writes shall be encrypted, so that the memory cell index that is
written to, i.e., the ’dummy write cell’, is not exposed to an eavesdrop-
per.

A probabilistic protection approach is by nature always attackable by prob-
abilistic attacks tweaked to the protection mechanisms, and it is difficult to
quantify in exact terms what is the gain that can be achieved with the mech-
anism provided above. On the other hand, not considering the problem of
an attacker exhausting system resources dedicated to rollback protection also
easily leads to insecure systems, or systems that are open to severe denial-of-
service attacks, that in worst-case scenarios render the devices unusable.

9.4 Public Transport Ticketing Application

When a secure execution concept has been rendered functional on top of a
PSE, along the lines presented in publications P1-P7, the architecture of
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course ideally supports the development of any secure algorithms and code,
for any use case. Publication P8 and manuscript[91] describe one real-world
example of an architecture implemented with the ObC architecture. The
application is public transport ticketing with mobile phones and NFC. In
short, we built a non-gated ticketing system for mobile phones with a built-in
TEE and NFC communication primitives. The following properties defines
the goals and target environment for our non-gated protocol:

R1. The location, time, traveler identity and needed cryptographic evidence
shall form a tuple that defines the trip endpoints and traveler in a reli-
able and non-repudiable manner,

R2. Trip endpoints, e.g., touch-points at bus stops, could be equipped with
contactless smart cards, but not with gates or contactless devices that
require continuous power supply.

R3. The mobile phone should not be assumed to be connected to a back-end
cloud infrastructure in real-time, i.e., the system must be designed to
operate in a partially offline manner.

R4. The traveler activity with a touch-point should be modeled as ’tap’,
i.e., a traveler taps at a bus-stop touch-point before he travels, and taps
another touch-point when he ends his trip at another bus stop.

R5. Travelers might be subjected to random ticket inspection, i.e., protocols
must be designed to support this property.

Figure 9.6: TEE operations (from P8)

Our solution is based on signed challenges produced by the TEEs, where
each signature also included a monotonically increasing TEE counter. An
overview of the tap protocol is provided in Figure 9.6. The same TEE logic
is used both in the mobile phone TEE and in the contactless smart card at
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touch-points. The evidence of a complete non-gated tap consists of signatures
of both phases 1 and 2 in Figure 9.6 including the respective counters of the
TEEs. This satisfies the identity binding based on the key stored in the TEE,
and the location in the form of the touch-point identity. The time is collected
from the fact that taps to especially touch-points are uniquely ordered, and
based on the reporting time of the evidence by the phones in the system, an
absolute time interval can be assigned to each counter value in each touch-
point TEE. The evidence reported from the mobile phone of the traveler also
includes the time of the taps collected using non-secure clock of mobile phone.
Based on these reported tap-time by the individual traveler’s phone (phase
0), the server maintains a reference time-interval which can be considered
accurate.

Additionally, the phone TEE counter and its signature capability is limited
by an authenticated release of the counter (phase 3), signed by the server
cloud. This limits the amount of taps that a single mobile phone can per-
form before being forced to report evidence to the back-end cloud in order to
continue tapping. Another feature of the system is that the challenges given
to the touch-point smart cards by the mobile phones are commitments of the
mobile phone(phase 0) from which the server cloud can at least statistically
infer the mobile phone that sent the challenge. However, the final back-end
reporting (phase 3) may be intentionally left out or be severely delayed. To
improve on this situation, we store the challenges in the touch-point cards and
probabilistically include it in and cryptographically bound it to two future re-
sponses of phase 1; i.e., every phone that taps a touch-point card is forced to
relay two prior tap challenges back to the back-end cloud in addition to the
response for its own challenge. This provides a back channel of taps towards
the server that can be used for security auditing and even fare calculation.

Publication P8 provides further discussion on on other system features, like
enrolment, auditing, ticket verification as well as a protocol security analysis.

We believe publication P8 describes a use case where the TEE features pro-
vide a highly useful security fundament for a real end-user service. However,
since the ticketing work is motivated by the larger end-goal to enable mobile
device ticketing for public transport, we have also worked on an extended
design that enables ticketing on the deployed based of NFC-enabled mobile
phones with no programmable TEE. Where the presence of a TEE makes par-
tial off-line ticketing feasible, a trade-off between network access and end-user
device security can be found for a system with secure touch-points. The rest
of this subsection presents such a ticketing protocol improvement. It com-
pletes the discussion on ticketing and publication P8, but is not otherwise
part of the main thesis topic.

We revisit the system assumptions of the original non-gated system in the
following manner:

1. The user device / mobile phone is not trustworthy. A virus or the
traveler himself potentially has access to all the code and secrets in the
phone, and may report on these secrets over the Internet.

2. We increase the expectation for the capability of the phone to connect
to a back-end cloud. We will design the revised protocol around a time
period of t minutes. A traveler must connect his device to the back-end
cloud and receive “real-time” tokens at most t minutes before traveling.

58



Figure 9.7: Ticketing - insecure terminals

Our main incentive for upgrading the ticketing system for open devices is
to alleviate the risk of attacks potentially directed against the travelers with
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open devices. Since our system is Id-based, the main threat is the misuse of
identities, i.e., a liability concern for the travelers.

We assume that the main protocols and functions presented in publica-
tion P8 still apply also to open devices. These devices will still perform the
same steps of enrolment, certificate renewal, signing touch-point smart card
responses and receiving authenticated release commitments for the device-
specific counter. Compared to a device with a TEE, the trustworthiness of
the open device is assumed to be weaker. Our only operation in the device
that is partially directed against the traveler is the requirement for counter
release commitments. We augment this functionality with a requirement for
open devices to fetch the challenge for the touch-point smart cards in near-
real time from the back-end cloud. In this manner, we still force the traveler’s
phone to periodically interact with a back-end server in the non-gated system.
This new interaction can also be protected by validating user credentials, like
a PIN, to further complicate the required system infiltration needed to mount
a successful attack.

Furthermore, we add some new attributes to the transport certificates is-
sued by the back-end infrastructure to open devices. We also augment the
touch-point smart card logic with new auditing features that increase the pos-
sibility of catching identity theft in non-gated transport. For gated transport
we add a feature to make tail-gating attacks4 more difficult.

Figure 9.7 shows the overall additions done to the system. The new data
structures are as follows:

1. A reverse hash-chain attribute is added to the transport certificate,
signed by the server trust root and bound to an account of a trav-
eler. The reverse hash-chain is split into run lengths of m elements
(m = 2 in Figure 9.7). The actual elements (tokens) of the hash chain
are retrieved m at a time by the mobile phone of the traveler before
traveling. The token retrieval is possibly subject to user-authorization
for improved end user protection.

2. A monotonically increasing time value is added to the system, and main-
tained by the back-end cloud. The time value is updated e.g., once a
second, and is consistent across a single transport system. This time
value will be signed by the server distributing the hash-chain elements
and be cryptographically bound to the last token from the set of m
tokens, i.e., the one that is to be spent first, on system entry.

3. All touch-point smart cards are augmented with a time-dependent Bloom
filter[16] which is maintained individually by every single smart card.
This is in addition to the statistically returned challenges of earlier trav-
elers. Like the statistically selected earlier challenges, the Bloom filter
is returned bound to the touch-point card signature. These forces the
end-user device that taps the touch-point card to return the filter along
with the challenge response to complete a valid transaction report. The
time-dependence within each card is built based on the entry tap time
commitments by the server, i.e., the reference time may be lagging for
touch-point cards that are rarely used.

4A tailgating attack is where a customer intentionally throws a valid ticket back over
the gate to let a friend defeat the physical access control of the gate.
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The extensions for the ticketing system operate according to the message
flows outlined in Figure 9.7. The touch-point smart cards now include dis-
tinct operations for entry vs. exit — intermediate taps, if supported, can be
modeled according to the exit template.

The entry operation with the touch-point smart card includes the validation
of the transport certificate, and that the entry token maps to the hash chain
root. The entry operation will also validate that the time bound to the entry
token is e.g., at most t = 900 (15 minutes) earlier than the last time seen by
the smart card. If all validations succeed, the smart card will return to the
end-user device not only the signed challenges but also a kind of verification
ticket bound to the entry token value which can be validated by all other
smart cards in the system. Furthermore, the entry token value will, in the
card, be added to a Bloom filter that is periodically emptied, i.e., it contains
only entry taps accumulated during a t-minute period. The Bloom filter is
a very efficient data structure for this kind of aggregation, since filters for
various smart cards can be trivially combined in the server, and the search
for (the absence) of the double-spending of tokens can be made very efficient.

During exit, a touch-point smart card does not accept a tap operation
without a matching system entry commitment returned by some other smart
card in the transport system. An exit token must also be in the same hash
chain as the entry token. These mechanisms alleviate identity theft, since an
NFC eavesdropper may get the entry tap and the smart card signature, but
not the exit token. Whenever tokens are retrieved with NFC eavesdropping or
network-based attacks, the extra use of the token will trigger double-spending
auditing mechanisms.

The traveler’s incentive for reporting back evidence in the revised system is
different from the protocols that use TEEs. In the latter case, the phone will
force the traveler to report back on the threat of becoming dysfunctional, and
all signatures are signed with keys that reside in the TEE. In the former case,
the blocking mechanism relies on the conditional reception of the tokens from
the server and the assumption that reporting of travel conducted based on
those tokens must be performed before the retrieval of the next set of tokens.
Token retrieval with no submitted evidence should by default be considered
to represent the maximum fare of any travel that can be done on the system.
In this way, the user is always incentivized to report the evidence correctly
and promptly. Timely evidence feedback also benefits the user by improving
the auditing mechanisms for catching double-spending.

Based on the Bloom filter contents, and the knowledge of tokens active at
a given time (the only condition by which they are accepted at touch-point
smart cards), every card returns, on every tap, a statistical representation of
the recent entry taps at the touch-point card that is being tapped. This in-
formation is channeled by the mobile phones to the back-end cloud. With the
assumption that 50-70% of phones report back (their own taps) almost imme-
diately, it is easy enough in the back-end cloud to aggregate the Bloom filters
and pinpoint double-spending occurring in the transport system - since all
tokens are generated in the back-end cloud, full information of their contents
and validity (in terms of t) is known to the back-end.
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Brief security analysis of the added features

We assume that the phones, in addition to the augmentation proposed here,
operate the default signing scheme already deployed. Thus a replay attack
entails both stealing the longer term signature key from a phone, capturing
the token over the air (and replaying it) or alternatively mounting a harvest-
ing attack using a real-time virus in the attacked phone. We can identify
the following threat categories and corresponding ways the described solution
mitigates these issues:

1. The attacker has learned the long-term secrets of the victim. If the
attacker copies the entry code off the air, he can likely in a non-gated
environment produce a tap and a smart card response that will with-
stand at least cursory ticket inspection. However, the system will catch
double-spending by aggregation and inspection of the touch-point card
Bloom filters. In a gated system, entry duplicates are likely caught im-
mediately and even access may be denied for either the attacker or the
correct traveler. With token copies retrieved by eavesdropping the NFC
interface, the attacker cannot exit a gated system if he does not follow
the victim like a shadow.

2. Any copying of the short-lived tokens is valid only for entry during the
stated system allowance period t. In a gated system this is an absolute
measure, but old copies will also be caught at ticket verification in a
non-gated system and by touch-point cards in case the use of the cards
has advanced its notion of time past the time constraint of the token
copy.

3. The attacker travels using a complete copy of all ticketing data in the
original traveler’s phone 5. This means that the attacker will report all
travels to the back-end just like the original traveler would do. Based
on the protocol and its secrets, there is no way of differentiating the
attacker from the original traveler since we assume that the attacker
has full access to the mobile phone of the original traveler. However,
double-spending mechanisms will notice parallel usage quickly, and in
gated transport one of the two phones may even be denied system access
or exit. In any case the fraud is quickly unearthed, and appropriate
measures can be taken.

4. The attacker travels using the identity of a traveler, but does not report
anything to the back-end if ticket verification is not encountered. In
this case, the smart card filters will provide information to the audit-
ing server about non-reported taps. Further, tap information becomes
available as part of the back-channel from smart cards to the server
through other tapping travelers. Using this mechanism, or by the at-
tacker encountering ticket verification, the system will get information
of an attacked identity.

5. A widespread software attack, where a vast number of phones are in-
fected as a botnet and, for example, one trip from each victim is used

5All needed information is only available for copying at most t seconds before travelling
because of the requirement to fetch fresh tokens before traveling, all needed information is
only available after the tokens have been fetched.
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by the attacker, will be impossible to protect against with the above as-
sumptions. To alleviate this kind of attack some other reactive security
mechanism, for example a virus checker, needs to be deployed.

The protocol additions for open devices puts in place several separate mech-
anisms to protect both the traveler and the system against undue fraud and
misplaced liability. Nevertheless, when deployed in a mass-market scenario,
there is a clear threat that widespread attacks can cause significant distur-
bances in the perception of the ticketing system by travelers, since an attacker
can easily cause denial-of-service and cases where many kinds of “plausible
undeniability” may surface. Clearly, a system where the traveler’s phone is
equipped with a TEE is the more user-friendly choice6.

9.5 The author’s role and real-world impact

The architectures presented in Chapter 9 have had quite varying practical
impact. Today, the TEE components of the On-board Credentials architecture
is present on more than 100 million sold mobile phones, running on three
different processor families. This includes all Nokia Symbian 3 and Nokia
Lumia (Windows Phone 8) mobile phones in production.

The thesis author was the main architect and implementor of all ObC de-
signs relating to the TEE code, including the internals of the embedded virtual
byte-code interpreter, its APIs as well as its provisioning functions. Despite
this large deployment base and its publication history, ObC has not yet found
widespread third-party usage. It has been used as technology fundament for
several important in-house tests and trials on Nokia devices. In 2008 a hard-
ware one-time password generator - the RSA SecurId - was ported to ObC. In
2012, the large-scale ticketing trial in New York with end customers travelling
on the long Island Rail network[69] was implemented with a system that was
based on ObC and publication P8. We hope that recent efforts on trans-
ferring selected lessons from this architecture into standardization (Chapter
10) can build an evolution path from the proprietary solution ObC currently
is to an open solution that is adoptable across many manufacturers’ devices,
thereby stimulating third-party takeup.

The specification of MTMv1 was mostly concluded in 2010, although the
work group continues to advance the technology, e.g. to incorporate in fu-
ture specification versions the use-case of allowing third-party programs to be
provisioned and run in a TEE with MTM as an authorizing component[68].
The author served as an in-company technical advisor for the MPWG during
the MTMv1 specification, and has been participating as an active member in
TCG/MPWG as specification editor since 2010, concentrating on future de-
velopments of the standard. The author also supervised and participated in
three MTMv1 development efforts — a public MTM emulator[49] in 2008, an
MTM as a TEE reference implementation in an on-the-market device in 2009
(publication P3), and the development of an MTM subset for the Terminal
Mode Consortium specification[66] in 2011. A recent NIST draft publication,

6Further refined content from Chapter 9.4 has in collaboration with Sandeep Tamrakar
been accepted for publication as a conference paper (Tapping and Tripping with NFC,
International Conference on Trust and Trustworthy Computing 2013)
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“Guidelines on Hardware-Rooted Security in Mobile Devices”[1], takes inspi-
ration from the Roots of Trust concepts present in TPM1.2, MTMv1 and
publication P1, and describes a requirements architecture for Mobile device
security based on these.

The Terminal Mode (now MirrorLink) protocol and architecture is the first
external use case that will base its security needs on functionality provided
by the MTM. This will provide an important stimulus for mobile device man-
ufacturers to include MTMs in their TEE offering.
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Chapter 10

Future work

Mobile device manufacturers have used PSEs for almost 10 years already, pri-
marily for services related to regulation or business ecosystems. The PSEs
have not been available for application services or third-party programming.
This has been the emphasis of work discussed in this thesis. Going forward,
PSEs do have the unique property that they are fully integrated with the
core processing of the device. The execution context of trusted applications
can be well isolated from the OS, but at the same time the trusted applica-
tions can be granted direct memory access to OS and application memory,
as well as to all external hardware connected to the main processor. Also
interrupt control, DMA and MMU configuration is typically well integrated
with the PSE architecture. This allows very powerful security mechanisms
to be implemented, e.g., for run-time integrity checking or secure accessory
access. However, many practical obstacles lies in the way of harnessing this
power. Such issues include multiplexing driver and device states if they are
controlled both from the TEE and from the OS, the size of logic needed to
drive a GUI, and interrupt or DMA sharing from the PSE serving both secure
and non-secure environments. This context clearly merits more research —
in terms of what, but also in terms of how we can use the available hardware
architectures to secure our devices even better.

Despite the obstacles, there is already ongoing standardization work[42]
that hints towards attempting to extend the use of code in PSEs to operate
less like an isolated processing environment and more like a hypervisor that
orchestrates a larger variety of security processes in a mobile device. Use
case targets include trustworthy user I/O and connecting short range radio
communication, like NFC, directly to the PSE without passing through the
OS.

In parallel, an ongoing trend is to populate also mobile processors with
an increasing number of processing cores. This will impact PSE logic. If all
cores deploy their own PSE, there are immediate problems in how these PSEs
and the TEE’s constructed from them can interoperate and share information
between the cores. On the other hand, if only a single PSE exists in the device,
multi-core control becomes an issue.

Therefore, the solutions provided by this thesis at best only can serve as
a first stepping stone in a much bigger evolution where TEEs are likely to
develop towards scheduling engines for enabling security services and operat-
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ing systems in mobile phones, much like how hypervisor technology is used in
cloud servers. Still, the threat model for mobile devices in the hands of users
remains quite different from that of code executed in data centers, mostly be-
cause mobile devices more readily fall into adversaries’ physical control. Also,
usability and manageability of mobile devices is different from PCs since they
have smaller screen sizes and use more constrained input methods. Thus, in
mobile devices the security solutions and PSEs in them must at least partially
evolve in their own direction.

The emergence of security standards to leverage and unify the use of PSEs
also serves as evidence of the ongoing interest in this area. NIST recently made
public a draft guideline for hardware rooted security in mobile devices[70] that
builds forward from the work on roots of trust done for MTM in TCG. Also,
where security APIs for decades only focused on providing access to well
defined cryptographic primitives and functions (PKCS#11[72], TPM1.2[94]),
emerging standards like Global Platform TEE APIs[42][41] and future MTM
versions[68] also now standardize the programming environment inside PSEs
and APIs that focus on provisioning and using trusted applications. The
smart card legacy (ISO 7816[47], GP Card Specification[40]) also provide an
architecture for provisioning trusted applications, even though programmable
and stand-alone cards by nature and ecosystem are quite different from PSEs.

Figure 10.1 summarizes currently active and existing standards in the wider
context of this thesis and PSEs. A recent stack of specifications around the
Global Platform TEE is a central reference and a possible convergence point
for these activities in the future. The programmable smart card specifica-
tions (on the left) define an ecosystem in which trusted applications written
in JavaCard can be securely provisioned to a smart card and used. The stack
is dominated by standards belonging to Global Platform, but some of the
fundamental smart card properties originate from the ISO 7816 set of stan-
dards. Important adopter standards include Open Mobile Alliance (OMA)
and 3GPP that specify services (i.e., trusted applications) around the SIM /
UICC subscriber smart card. In the financial sector, EMV defines smart card
interfaces for the payment industry. The new GP TEE (middle) specifica-
tions to some degree inherit from the programmable smart card technology,
but add to it and adapt these concepts to be implementable on the most com-
mon contemporary PSEs. In the TEE programming paradigm, the trusted
applications are natively programmed and compiled for a trusted OS. Thus,
the GP TEE defines C-language bindings to a standard support library that
contains cryptography security primitives, an API as a driver interface from
the untrusted OS, and an application management and provisioning interface
for authorizing the programs for the TEE. The TCG specifications are mostly
functional interfaces, provided to the OS and applications through the trusted
software stack (TSS). The functions shall however be securely implemented,
either as hardware or as a trusted applications, say in the Global Platform
TEE framework.
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Figure 10.1: TEE-related standards
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Chapter 11

Conclusions

Increasing the trustworthiness of the mobile phone is an important enabler
when integrating services like wallets, access control tokens, remote banking
or even theft protection into the devices that have an ever increasing presence
in our daily lives.

This overall problem scope is wide. Operating systems need to be hardened.
Remote provisioning of application code, firmware upgrades and restricted
data needs to be reliably performed. Backup and restore of data, secure ap-
plication data storage as well as firewalling between business and personal use
are commonly needed features. Usability for the user as well as for applica-
tion programmers is another important requirement. This thesis contributes
towards solutions to all of these problems by providing a security framework
within which many of these needs can be addressed. We set out to use con-
temporary processor hardware security features with the target to build TEEs
that enable third-party use and especially third-party programmability. We
define a software architecture, with some hardware aspects, that securely iso-
lates the TEE execution from all other computation occurring on the device.
The attached research publications as a whole provide evidence that by cater-
ing for off-line roll-back protection and by building external secure scheduling
for an environment that is too resource-constrained to host a full-featured
trusted operating system, we can still implement an architecture that despite
the hardware limitations does provide the wanted programmability and iso-
lation — in a very cost-effective manner.

To attain trustworthy execution in the given context, the thesis makes a
contribution in somewhat multi-disciplinary manner. The discussion on ab-
stract roots of trust in a phone is one that strongly relates to the field of
trustworthy system research. Analyzing encryption primitives in a new data
flow model is an example of cryptography research. The bulk of the thesis con-
tributions clearly falls into the context of trusted computing, although some
of the discussion on scheduling borders on the topic of system architectures.
The application example also ventures into issues with security protocols.

All of the academic publications of this thesis were associated with signif-
icant engineering effort in the respective topical areas. We believe that this
adds to the viability of the results. It is also humbling to know that the
fruits of this labor have reached the hands of more than a hundred million
end customers today and that this work feeds into standards that eventually
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will define architectures available across device manufacturers and device cat-
egories. When the application programmer eventually can leverage trusted
execution, secure storage and trustworthy device authentication to make his
service endpoint more secure, then we will have nudged the state of the art
in mobile device trustworthiness a little bit in the right direction.
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Abbreviations

3GPP Third Generation Partnership Project

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AMD Advanced Micro Devices

APDU Application Protocol Data Unit

API Application Programming Interface

ARM Advanced RISC Machine

ASIC Application Specific Integrated Circuit

BIOS Basic Input Output System

BT Bluetooth

CA Certification Authority

CPU Central Processing Unit

CryptoAPI Cryptographic Application Programming Interface

DMA Direct Memory Access

DRM Digital Rights Management

DRTM Dynamic Root of Trust for Measurement

eFUSE on-chip, non-volatile, one-time programmable memory

eSE Embedded Secure Element

EK Endorsement Key

EMV Europay, MasterCard, Visa

ETSI European telecommunications Standards Institute

FIFO First In - First Out (buffer)

GSM Global System for Mobile Communications
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HTTP Hyper Text Transfer Protocol

HSM Hardware Security Module

ICC Integrated Circuit(s) Cards

IEC International Electrotechnical Commission

IFD InterFace Device

IMA Integrity Measurement Architectyre

ISO International Standardization Organisation

IRQ Interrupt Request

JTAG Joint Test Action Group (debugging interface)

LPC Low Pin Count (bus)

MMU Memory Management Unit

MMC Multi Media Card

MPU Memory Protection Unit

MTM Mobile Trusted Module

MUSCLE Movement for the Use of Smart Cards in Linux Environment

NFC Near Field Communication

NIST National Institute of Standards and Technology

ObC On-board Credentials

OMAC One key Message Authentication Code

OMA Open Mobile Alliance

OS Operating System

OTP One Time Pad

PC Personal Computers

PCMCIA Personal Computer Memory Card International Association

PC/SC Personal Computer / Smart Cards

PIN Personal Identification Number

PKCS Public Key Cryptography Standards

PKI Public Key Infrastructure

POP Post Office Protocol

POS Point Of Sale
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PSE Processor Secure Environment

PUF Physically Unclonable Function

RAM Random Access Memory

RIM Reference Integrity Metric

RNG Random Number Generator

ROM Read Only memory

RoT Root Of Trust

RSA Rivest, Shamir and Adleman

RTM Root of Trust for Measurement

SDRAM Synchronous Dynamic Random Access Memory

SE Secure Element

SIM Subscriber Identity Module

SoC System-on-Chip

TCB Trusted Computing Base

TCG Trusted Computing Group

TCPA Trusted Computing Platform Alliance

TEE Trusted Execution Environment

TLB Table Lookup Buffer

TLS Transport Layer Security

TPM Trusted Platform Module

TEE Trusted Execution Environment

UI User Interface

UMTS Universal Mobile Telecommunications System

UICC Universal Integrated Circuit Card

USB Universal Serial Bus

VM Virtual Machine

VT-x (Intel) Virtualization processor architecture
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