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Abstract 
Many cryptanalytic techniques are based on exploiting linearity properties of cryptosystems. 

One of such techniques is linear cryptanalysis, invented by Matsui in 1993. Originally 
developed for block ciphers FEAL and DES, it has become a standard method for analyzing all 
kinds of symmetric ciphers. Linear cryptanalysis of a block cipher is traditionally based on a 
biased linear combination of the input and output bits of the cipher. Mathematically speaking, 
such a combination can be seen as a linear mapping to a one-dimensional binary vector space. 
Several authors have considered the use of other types of linear mappings as well, such as 
multidimensional and nonbinary mappings. To find suitable mappings, one usually has to 
analyze linearity properties of the individual components used in the cipher. The more the 
components resemble linear functions, the less secure the cipher is against linear 
cryptanalysis. 

Linear cryptanalysis is a method for analyzing the formal description of a cryptographic 
primitive. Side-channel attacks form another class of cryptanalytic methods in which an 
implementation of the primitive is analyzed instead of the description. They are based on doing 
physical measurements which may reveal critical information about the internal state of the 
primitive. 

This dissertation presents several cryptanalytic results related to linearity of cryptographic 
primitives. The work contains results concerning both formal specifications and real-life 
implementations of primitives. Related to the former area of cryptography, we describe a 
framework for estimating resistance against general linear cryptanalysis in which linear 
mappings over arbitrary finite Abelian groups can be used. As applications, we present a linear 
distinguishing attack on the stream cipher Shannon and on the block cipher DEAN. In addition, 
we study individual cryptographic components and present results regarding their linearity 
properties in different domains. In particular, we give evidence that certain functions based on 
discrete logarithm are highly nonlinear. Related to the implementation side of cryptography, 
we present a technique for automated analysis of side-channel data and show that it works in 
practice by using it to attack the ECDSA implementation in OpenSSL. The technique is based 
on modeling the implementation as a linear dynamical system which allows efficient analysis 
of the situation. 
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Tiivistelmä 
Useat kryptoanalyyttiset menetelmät perustuvat salausmenetelmien 

lineaarisuusominaisuuksien hyödyntämiseen. Eräs tällainen menetelmä on Matsuin vuonna 
1993 esittämä lineaarinen kryptoanalyysi. Se kehitettiin alun perin FEAL- ja DES-
lohkosalausmenetelmille, mutta siitä on tullut standardi menetelmä kaikentyyppisten 
symmetristen salausmenetelmien analysointiin. Lohkosalausmenetelmän perinteinen 
lineaarinen kryptoanalyysi perustuu jonkun syöte- ja tulostebittien lineaariyhdistelyn 
tilastolliseen vinoumaan. Matemaattisesti tällainen yhdistely voidaan nähdä lineaarisena 
kuvauksena yksiulotteiselle binääriselle vektoriavaruudelle. Useat tutkijat ovat tarkastelleet 
myös muunlaisten lineaarikuvausten käyttämistä, kuten moniulotteisia ja ei-binäärisia 
kuvauksia. Sopivien kuvausten löytämiseksi täytyy tavallisesti analysoida salausmenetelmässä 
käytettyjen yksittäisten komponenttien lineaarisuusominaisuuksia. Mitä enemmän 
komponentit muistuttavat lineaarisia funktioita sitä turvattomampi salausmenetelmä on 
lineaarista kryptoanalyysia vastaan. 

Lineaarinen kryptoanalyysi on menetelmä, jolla analysoidaan kryptografisen primitiivin 
muodollista kuvausta. Toisen tyyppisen menetelmäluokan muodostavat 
sivukanavahyökkäykset, joilla muodollisen kuvauksen asemesta analysoidaan primitiivin 
toteutusta. Ne perustuvat fysikaalisiin mittauksiin, jotka voivat paljastaa kriittistä tietoa 
primitiivin sisäisestä tilasta. 

Tässä väitöskirjassa esitetään useita kryptografisten primitiivien lineaarisuuteen liittyviä 
kryptoanalyyttisia tuloksia. Työ sisältää tuloksia sekä primitiivien muodollisista kuvauksista 
että niiden todellisista toteutuksista. Edelliseen kryptoanalyysin alueeseen liittyen esitetään 
viitekehys vastustuskyvyn arvioimiseksi lineaarista kryptoanalyysia vastaan tilanteessa, jossa 
käytetään lineaarisia kuvauksia mielivaltaisissa äärellisissä Abelin ryhmissä. Sovelluksena 
esitetään lineaarisia erotteluhyökkäyksiä Shannon-jonosalausmenetelmää ja DEAN-
lohkosalausmenetelmää vastaan. Sen lisäksi tutkitaan erillisiä salausteknisiä komponentteja 
ja esitetään niiden lineaarisuusominaisuuksia koskevia tuloksia erilaisissa 
määrittelyjoukoissa. Erityisesti esitetään tiettyjen diskreettiin logaritmiin perustuvien 
funktioiden epälineaarisuutta tukevia tuloksia. Kryptografisten toteutusten puolelta esitetään 
tekniikka sivukanavadatan automaattiseksi analysoimiseksi ja osoitetaan että se toimii 
käytännössä hyökkäyksessä OpenSSL-järjestelmän ECDSA-toteutusta vastaan. Tekniikka 
perustuu toteutuksen mallintamiseen lineaarisena dynaamisena järjestelmänä, joka 
mahdollistaa tilanteen tehokkaan analyysin. 
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1. Introduction

A mathematical system becomes generally easier to understand if it ex-

hibits linear rather than nonlinear behavior. Indeed, many cryptana-

lytic techniques are based on exploiting linearity properties of cryptosys-

tems. This dissertation presents cryptanalytic results related to such

techniques.

One cryptanalytic method that exploits linear behavior is linear crypt-

analysis [34, 35]. Originally developed for block ciphers FEAL and DES,

it has become one of the most widely used methods to formally analyze

symmetric ciphers. Nowadays, resistance against linear cryptanalysis is

held as a basic design principle when new ciphers are designed and many

methods to ensure that no linear attacks are possible have been devel-

oped. Linear cryptanalysis of a block cipher is traditionally based on a bi-

ased linear combination of the input and output bits of the cipher. Mathe-

matically speaking, such a combination can be seen as a linear mapping to

a one-dimensional binary vector space. Several authors have considered

the use of other types of linear mappings as well, such as multidimen-

sional and nonbinary mappings. To find suitable mappings, one usually

has to analyze linearity properties of the individual components used in

the cipher. The more the components resemble linear functions, the less

secure the cipher is against linear cryptanalysis. Some basic problems

in linear analysis are finding good linear mappings, estimating the data

complexity of the attack, and finding the right statistical hypothesis test

to conduct the attack.

Traditional linear cryptanalysis is a technique to analyze the formal

description of the system. Side-channel attacks (e.g., [22]) form another

class of cryptanalytic methods in which a specific implementation of the

system is analyzed instead of the specification of it. They are based on in-

formation obtained by doing physical measurements on the system. Side-

1



Introduction

channel attacks can be based on, e.g., power consumption, electromag-

netic radiation, acoustics, or timings. The measurements may reveal the

internal state of the system and can be used in conjunction with other

cryptanalytic techniques to break the system. Side-channel analysis can

be done for implementations of any cryptographic primitive. For software

implementations, attacks based on cache timings are a real threat and an

implementation can be vulnerable to such attacks if it uses table lookups

involving state or secret key bits. Even if a vulnerability is found, imple-

menting an attack in practice can still be quite complicated. For example,

the attack may require analysis of large amounts of side-channel data

which is infeasible to do by hand.

In this thesis, we present contributions concerning both formal specifica-

tions and real-life implementations of cryptographic primitives. Related

to formal cryptanalysis, we examine symmetric ciphers and their build-

ing blocks using linear cryptanalysis. Related to implementation-specific

analysis, we present a framework for automated side-channel data analy-

sis. Real primitive designs are studied in both fields of cryptanalysis. The

next section gives a more detailed overview of the contributions based on

the six publications included in the thesis.

1.1 Contributions of the Thesis

The main contributions of the thesis are in the six publications that can

be summarized as follows.

Publication I. The work gives a technique for estimating average capac-

ities for multidimensional linear approximation for any iterated block ci-

pher. The technique combines linear hulls of different linear approxima-

tions used in multidimensional analysis. Thus, it provides a more ac-

curate estimate for the capacity than if a single linear trail was used.

The technique computes capacity estimates in an iterative manner which

makes it more efficient. Both binary and nonbinary linear approximations

can be used with the technique. It is used to study linear approximations

of the toy cipher DEAN which is a nonbinary SPN network. The obtained

results show that the security bounds given by the designers of DEAN are

not sufficient for multidimensional attacks.

Publication II. Linearity is a quantity that indicates the maximum corre-

lation of a function and affine functions. The work derives an upper bound

2
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for the linearity of Exponential Welch Costas functions. They are nonbi-

nary functions that can be utilized, e.g., as S-boxes in ciphers. The derived

upper bound shows that Exponential Welch Costas functions are asymp-

totically more nonlinear than previously conjectured by Drakakis et al.

[12]. It also shows that their asymptotic nonlinearity is high: their linear-

ity is larger by at most a logarithmic factor than the minimum linearity

achieved by generalized bent functions. Thus, Exponential Welch Costas

functions provide asymptotically good resistance to linear cryptanalysis.

Publication III. The work studies linearity properties of the discrete log-

arithm defined in a finite field with 2n elements. The discrete logarithm

function is extended to a bijection in the binary vector space which is also

the domain where linearity properties are studied. The work shows how

the discrete logarithm function is related to a function studied previously

by Feng et al. [16]. The nonlinearity of this class of functions was studied

by Carlet and Feng [6]. In this work, the approach is different than what

they used and the derived bound is slightly better, while asymptotically,

the bounds are equal. The work identifies a certain geometric sum which

is the basis for the lower bound on the nonlinearity. The sum is studied

using a certain type of polynomials, called mask polynomials, that depend

on what the linear approximation being used. In addition, the sum is in-

vestigated experimentally to identify how it affects the final bound.

Publication IV. The work presents a practical linear distinguishing at-

tack on the Shannon stream cipher that uses at most a 256-bit secret key.

The attack is able to distinguish the keystream generated by Shannon

from a uniformly random sequence using about 231 keystream words, a

single counter, and about 231 computations. The specification of Shannon

states that there should be no distinguishing attacks on Shannon requir-

ing less than 280 keystream words and less than 2128 computations.

Publication V. Cache-timing attacks are based on cache-timing data that

reflects the behavior of the algorithm and reveals information that can be

used to recover the state of the algorithm or some secret key bits. The

work describes a novel method for automated analysis of cache-timing

data, which is often very time consuming if done by hand. The method

uses a hidden Markov model to describe the relationship between side

channel observations and internal states of the algorithm. The hidden

Markov model represents the operation of the implemented algorithm as

a linear dynamical system that is observed through a noisy channel. The

3
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developed method also makes use of vector quantization for classification

of timing data. It was demonstrated by running an attack on the elliptic

curve portion of OpenSSL. In combination with a lattice attack, we man-

aged to carry out a practical key recovery attack on live cache-timing data

without simulating the side channel.

Publication VI. The work proposes a cache-timing attack on the SNOW

3G stream cipher. The attack exploits cache-timing data that is caused by

operations in the implementation that involve table lookups. In particu-

lar, the attack exploits the table lookups involved in the two consecutive

S-boxes and the two multiplication operations in the shift register update

function. The information revealed by the two S-boxes makes it possible

to determine the input of one of the S-boxes almost uniquely. The attack is

capable of recovering the full cipher state from the empirical timing data

in a matter of seconds. It requires no known keystream only observations

of a small number of cipher clocks.

Other Contributions. Related to Publication III, we derive a new lower

bound for the nonlinearity of a linear combination of output bits of dis-

crete logarithm in a finite field with 2n elements. Unlike the bound in

Publication III, the new bound is dependent on the Hamming weight of

the masking vector used to define the linear combination. We also give

new results on the linearity properties of constant addition modulo 2n and

constant multiplication modulo 2n + 1, which both are operations used in

IDEA.

1.2 Outline of the Thesis

The thesis begins with a summary which is followed by the publications.

The structure of the summary is as follows.

Chapter 2 outlines the main cryptographic concepts relevant for this

thesis. We give an overview of basic symmetric ciphers, classifica-

tion of traditional cryptographic attacks, and side-channel analysis.

Chapter 3 presents some basic algebraic tools related to group theory

that are used throughout the text. The main tools relevant to lin-

ear cryptanalysis are algebraic transforms that can be studied using

character sums.

4



Introduction

Chapter 4 presents the statistical tools used in the cryptanalytic tech-

niques relevant to this thesis. These techniques rely on basic prob-

ability theory, statistical testing, hidden Markov models, and vector

quantization.

Chapter 5 presents a framework for general linear distinguishing at-

tacks that can employ linear mappings over arbitrary finite groups.

The presented attacks are essentially statistical tests based on ei-

ther the LLR or the χ2 test statistic which are also discussed in the

chapter. To estimate the attack complexity, we study properties of

linear approximations which are the foundation of linear attacks.

Chapter 6 presents results on linear properties of some mappings that

can be used as building blocks in ciphers. The results indicate the

resistance of these mappings to linear cryptanalysis. Novel results

on the linearity of discrete logarithm are also given.

Chapter 7 presents the method for automated analysis of side-channel

data. The method relies on hidden Markov models and vector quan-

tization.

Chapter 8 draws conclusions.

5
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2. Cryptography

Cryptography can be divided into secret-key and public-key cryptogra-

phy, also known as symmetric and asymmetric cryptography. Secret-key

encryption uses the same key for encrypting and decrypting. Public-key

encryption commonly uses a pair of keys, where one of them is secret and

the other one public. The security of these cryptosystems can be assessed

in many ways. Traditional cryptanalysis studies the formal specification

of the cryptosystem. Opposed to this, side-channel analysis tries to find

weaknesses in a specific implementation of the system. In the following

sections, we give a very short overview of basic symmetric ciphers, clas-

sification of attacks, and side-channel analysis. The reader is referred to,

e.g., Menezes et al. [36] for a more extensive overview.

2.1 Symmetric Ciphers

2.1.1 Block Ciphers

Regarding analysis of symmetric ciphers, our focus is on general tech-

niques that can be applied for both block and stream ciphers. Given a

secret key K, a block cipher on set A is defined by an encryption function

EK : A→ A.

For each K, the function EK is required to be invertible and the inverse

function E−1K is called the decryption function. Given x, y ∈ A such that

EK(x) = y for some key K, we call x the plaintext and y the ciphertext.

Many block ciphers are constructed by iterating the same round function

for a number of rounds. At each round, a round key is typically combined

using some group operation, such as the bitwise XOR. The round keys are

determined from the key by simple operations. The encryption function

7
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EK of an R-round iterated block cipher on A is specified by a sequence of

round functionsGK1 , GK2 , . . . , GKR
on A and a keyK = (K1,K2, . . . ,KR) ∈

AR such that the encryption EK(x) of plaintext x ∈ A is computed as

x0 = x,

xr = GKr(xr−1) for r = 1, 2, . . . , R,

EK(x) = xR.

Key-alternating block ciphers are a class iterated block ciphers in which

each round function GKr can be expressed with the function gr : A→ A as

GKr(x) = gr(x+Kr).

2.1.2 Stream Ciphers

Stream ciphers are ciphers that encrypt the plaintext by combining it with

a pseudorandom keystream. In this work, we consider only synchronous

stream ciphers that produce a keystream independently of the ciphertext.

Synchronous stream ciphers are finite state machines containing an in-

ternal state and a state update function. In addition, they contain a

keystream generating function that is used to produce the keystream,

and an output function that is used to combine the keystream with the

plaintext. The internal state at time t is represented by the vector st =

(st1, st2 . . . , stl) of l individual components sti, 1 ≤ i ≤ l. The state update

function G produces the next state as

st+1 = G(st,K),

where st is the current state and K is the key. The keystream function

F produces a new keystream symbol zt from the key K and the internal

state st as

zt = F (st,K).

The output function H is an injective function that produces a ciphertext

symbol ct by combining a plaintext symbol pt and a keystream symbol zt
as

ct = H(pt, zt).

The output function has to be injective so that it is possible to determine

the plaintext from the ciphertext and the keystream. It is often chosen to

be a simple operation such as the bitwise XOR.
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2.2 Cryptanalysis

Cryptanalytic attacks can be classified according to what threat they pose

to the cryptosystem. The classification is commonly done by evaluating

(1) what knowledge and capabilities are needed as a prerequisite, (2) how

much secret information is revealed, and (3) how much effort is required

to perform the attack. In the following sections, we present a classification

of formal attacks against symmetric ciphers. The same principles apply

in side-channel analysis, which we also briefly discuss. In side-channel

attacks, one should additionally consider implementation specific details.

2.2.1 Attack Scenarios

Cryptanalytic techniques are based on a number of assumptions about

the amount of information the attacker has available. It is usually as-

sumed that the algorithm description is known to the attacker, which is

called Kerckhoff ’s principle. Other common attack scenarios include the

following:

Ciphertext-only. The attacker has only a collection of ciphertexts.

Known-plaintext. The attacker has a set of ciphertexts and the corre-

sponding plaintexts.

Chosen-plaintext. The attacker can choose a set of plaintexts and ob-

tain the corresponding ciphertexts.

Adaptive chosen-plaintext. The attacker can choose subsequent plain-

texts based on the previously obtained ciphertexts.

There also exist chosen-ciphertext and adaptive chosen-ciphertext attacks

in which the assumptions are made for ciphertexts instead of plaintexts.

In a related-key attack, the attacker can obtain ciphertexts generated

with two different keys whose values are unknown, but there is a math-

ematical relationship between the keys that is known to attacker. There

are also chosen-IV and known-IV attacks.

2.2.2 Success of the Attack

The main objective of cryptanalysis is recovery of the secret key since it

allows decryption of any ciphertexts generated with the key. However,

even if the attack does not lead to key recovery, it can give useful infor-

mation about the security of the cipher. Knudsen [21] classified attacks

9
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on block ciphers based on the amount and quality of previously unknown

information that the they reveal:

Total break. The attacker recovers the secret key.

Global deduction. The attacker finds an algorithm equivalent to en-

cryption and decryption without learning the secret key.

Instance deduction. The attacker is able to generate previously un-

known plaintexts or ciphertexts.

Information deduction. The attacker gains previously unknown Shan-

non information about the secret key, the plaintexts or the cipher-

texts.

Distinguishing algorithm. The attacker can detect statistical anoma-

lies in the cipher by applying the algorithm.

The presented classification is hierarchical: total break allows global de-

duction, global deduction allows instance deduction, and so on. It is also

possible to use a distinguishing algorithm for gaining information about

the secret key if, e.g., it is known how different keys affect the statistical

properties of the ciphertexts. With stream ciphers, internal state recovery

can be classified as instance deduction and initial state recovery as global

deduction. A state recovery algorithm for a stream cipher can also lead to

recovery of the initial state if the state update function G is bijective and

independent of the key K.

The focus of the formal analysis in this thesis is on distinguishing at-

tacks. The presented side-channel attacks are concerned with recovery of

the secret key or the initial state.

2.2.3 Complexity of the Attack

Another characterization of attacks is based on the required computa-

tional resources:

Time. The number of computation steps that are needed to execute the

attack.

Memory. The amount of storage required to perform the attack.

Data. The amount of data (e.g., plaintexts, ciphertexts, or keystream)

required for the attack.

10



Cryptography

For distinguishing attacks, the data complexity of the attack is usually the

most important indicator of attack complexity, but memory requirements

can also be significant. A distinguishing attack against a stream cipher

is commonly considered successful, if the keystream can be distinguished

from a truly random sequence based on less than |K| keystream symbols,

where K represents the set of possible keys K. With block ciphers, the

size of the codebook can be used as the limit instead.

2.2.4 Side-Channel Analysis

Traditional cryptanalysis studies the formal description of the system.

Opposed to this, side-channel attacks are based on information that is

gained from the physical implementation of the system. Side-channel

leakages might reveal information about the internal state of the system

and may be used in conjunction with other cryptanalytic techniques to

break the system. Side-channel attacks can be based on information ob-

tained from, e.g., power consumption, timings, electromagnetic radiation

or even sound. Active attacks in which the attacker manipulates the op-

eration of the system by physical means are also considered side-channel

attacks.

Due to the number of different types of side-channel attacks, it would

be difficult to list different attack scenarios as with traditional cryptanal-

ysis. In this thesis, our focus is on cache-timing attacks in which side

channel information is gained by measuring cache access times when the

cryptographic algorithm is running. To obtain these measurements, it is

assumed that the attacker has some device or code in their possession

that they can give input to, program, or modify in some way that forces

it to perform in a certain manner, while at the same time obtaining mea-

surements from the side channel.

11
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3. Group Theory

This chapter presents some basic algebraic tools related to group theory

that are used in the analysis. The main algebraic tools are based on char-

acters and related sums.

3.1 Basic Notation

Let n be a positive integer and p be a prime. We use Zn to denote the

ring of integers modulo n and Fpn to denote the finite field of order pn. We

associate every element of Fpn to a unique vector of Fn
p using a fixed basis

of Fpn over Fp. The vectors in Fn
2 are identified with the elements in Z2n

using the natural correspondence (u1, u2, . . . , un) ∈ Fn
2 ↔ un2

0 + un−121 +

· · ·+u12n−1 ∈ Z2n . We use ⊕ to denote the addition (also called the bitwise

XOR) of vectors in Fn
2 . Given two vectors u = (u1, u2, . . . , un) ∈ Fn

2 and

v = (v1, v2, . . . , vn) ∈ Fn
2 we denote u · v = u1v1 ⊕ u2v2 ⊕ · · · ⊕ unvn ∈ F2.

Given two functions f : A → B and g : B → C, their composition g ◦
f : A → C is defined as (g ◦ f)(x) = g(f(x)). Given a real number z, we

denote e(z) = e2πiz and en(z) = e(z/n).

3.2 Characters

Let A be a finite Abelian group written additively and U be the multiplica-

tive group of complex numbers of absolute value one.

Definition 3.1. A character χ of A is a homomorphism χ : A→ U .

In other words, if χ is a character of A, then

χ(x+ y) = χ(x)χ(y)

for all x, y ∈ A. A trivial character χ0 is defined as χ0(x) = 1 for all x ∈ A.
For every character χ of A, there is a conjugate character χ defined by
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χ(x) = χ(x) for all x ∈ A, where the bar denotes complex conjugation. It

follows that χ(x) = χ(−x). Given characters χ and ψ of two finite Abelian

groups A and B, respectively, we use χ× ψ to denote the function defined

as (χ× ψ)(x, y) = χ(x)ψ(y), which is a character of A×B.
The set of characters obviously forms an Abelian group under multipli-

cation. In fact, there is a one-to-one correspondence between the charac-

ters of A and the elements of A [28]. Thus, we can identify every character

of A as χu, where u ∈ A. Moreover, the identification can be done in such

a way that χ0 denotes the trivial character and χu = χ−u for all u ∈ A.

3.2.1 Characters of a Finite Field

Let Fq denote a finite field of order q = pn, where p is a prime and n is a

positive integer. We call characters of the additive group of Fq the additive

characters of Fq. Similarly, characters of the multiplicative group F∗q are

called the multiplicative characters of Fq.

Let Tr: Fq → Fp denote the absolute trace function defined as

Tr(x) = x+ xp + · · ·+ xp
n−1

.

The trace function is a linear transformation, and therefore the function

χ1 : Fq → U defined by

χ1(x) = ep(Tr(x))

is clearly an additive character of Fq. The following theorems [28, pp. 190–

191] describe how all additive and multiplicative characters of Fq can be

defined.

Theorem 3.2. For each 0 ≤ j ≤ q − 1, the function χj with χj(x) = χ1(jx)

for all x ∈ Fq is an additive character of Fq and every additive character of

Fq is obtained in this way.

Theorem 3.3. Let α be a fixed primitive element of Fq. For each 0 ≤ j ≤
q − 2, the function ψj with

ψj(α
k) = eq−1(jk)

for all 0 ≤ k ≤ q − 2 defines a multiplicative character of Fq and every

multiplicative character of Fq is obtained in this way.

Alternatively, multiplicative characters of Fq can be defined using a dis-

crete logarithm. The discrete logarithm loga x of x ∈ F∗q to the base a is the
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integer k such that 0 ≤ k ≤ q−2 and x = ak. The multiplicative characters

of Fq can now be defined for all x ∈ F∗q as

ψj(x) = eq−1(j logα x),

where α ∈ F∗q is primitive.

3.3 Character Sums

Much of the analysis in this thesis is based on studying the properties of

certain character sums. Let A be a finite Abelian group written additively.

The following fundamental theorem [28, pp. 188–189] yields several im-

portant identities in character sums.

Theorem 3.4. If χ is a nontrivial character of A, then∑
x∈A

χ(x) = 0.

If χ is the trivial character χ0, then the above sum is clearly equal to |A|.
It is then straightforward to prove the following result on character sums,

which is often called the orthogonality relation of characters.

Theorem 3.5 (Orthogonality relation). If χu and χv are characters of A,

then

1

|A|
∑
x∈A

χu(x)χv(x) =

⎧⎪⎨⎪⎩0 if u �= v,

1 if u = v.

Gauss sums are an important tool for analyzing properties of mappings

between additive and multiplicative groups of finite fields.

Definition 3.6. Let ψ be a multiplicative and χ an additive character of

Fq. The character sum

G(ψ, χ) =
∑
x∈F∗q

ψ(x)χ(x).

is called a Gauss sum.

The exact value of a Gauss sum is generally not known. However, the

absolute value of a Gauss sum can be determined as given in the following

theorem [28, p. 193], which has many useful applications when one tries

to obtain bounds for other character sums.
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Theorem 3.7. Let ψ be a multiplicative and χ an additive character of Fq.

Then the Gauss sum G(ψ, χ) satisfies

G(ψ, χ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q − 1 if ψ = ψ0, χ = χ0,

−1 if ψ = ψ0, χ �= χ0,

0 if ψ �= ψ0, χ = χ0.

If ψ �= ψ0 and χ �= χ0, we have

|G(ψ, χ)| = √q.

3.3.1 Examples of Character Sums

The following special cases of the previous results are important for the

analysis later on. For each u ∈ Zm, the function χu(x) = em(ux) defines a

character on the additive group Zm. By Theorem 3.4, we then have

∑
x∈Zm

em(ux) =

⎧⎪⎨⎪⎩m if u = 0 mod m,

0 if u �= 0 mod m,

According to the orthogonality relation for characters, we have

∑
r∈Zm

em(r(y − z)) =

⎧⎪⎨⎪⎩m if y = z mod m,

0 if y �= z mod m,

for y, z,m ∈ Z with m ≥ 2.

3.4 Fourier Transform

Suppose that A and B are finite Abelian groups (written additively). Let

χu and ψv be unique characters of A and B, respectively, identified by

u ∈ A and v ∈ B.

Definition 3.8. The Fourier transform of φ : A→ C is defined by

φ̂(u) =
∑
x∈A

φ(x)χu(x).

The inverse Fourier transform is then given by

φ(x) =
1

|A|
∑
u∈A

φ̂(u)χu(x).

If A is the Cartesian product B×B×· · ·×B of n groups, we may denote the

Fourier transform of φ by φ̂(u1, u2, . . . , un), where ui ∈ B for all 1 ≤ i ≤ n.

In this case, χu is the character ψu1 × ψu2 × · · · × ψun .
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Definition 3.9. The Fourier transform of f : A→ B is defined by

̂(ψv ◦ f)(u) =
∑
x∈A

ψv(f(x))χu(x).

We conclude this section by recalling Parseval’s theorem [29, p. 385].

Given a function φ : A→ C, then∑
u∈A
|φ̂(u)|2 = |A|

∑
x∈A
|φ(x)|2. (3.1)
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4. Statistics and Probability Theory

This chapter presents the statistical tools relevant to the cryptanalytic

techniques used in the thesis. These techniques rely on basic probability

theory, statistical hypothesis testing, hidden Markov models, and vector

quantization.

4.1 Probability Distributions

Let X and Y be random variables with finite sample spaces A and B,

respectively.

Definition 4.1. The probability density function of X is the function

pX : A→ [0, 1] defined as

pX(x) = Pr(X = x).

If X is clear from the context, we will simply use p to denote pX . The

function pX will also be referred to as the probability distribution of X. If

pX(x) = |A|−1 for all x ∈ A, then pX defines a uniform distribution and X

is said to be uniformly distributed. We will use p0 to denote the uniform

distribution. The joint probability distribution of X and Y is defined as

pX,Y (x, y) = Pr(X = x, Y = y) for all x ∈ A and y ∈ B. Random variables

X and Y are said to be statistically independent if pX,Y (x, y) = pX(x)pY (y)

for all x ∈ A and y ∈ B.
Let f : A → B be a function between finite sets A and B, and let X be a

uniformly distributed random variable on A.

Definition 4.2. The output distribution of f : A → B is the function

pf : B → [0, 1] defined as

pf (y) = Pr(f(X) = y).
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Since X is uniformly distributed, we can alternatively define the output

distribution of f as

pf (y) =
|{x ∈ A : f(x) = y}|

|A| .

4.2 Correlation

The correlation coefficient between two functions indicates similarity be-

tween the functions. Assume that A and B are groups defined as before

and let U be the multiplicative group of complex numbers with absolute

value one.

Definition 4.3. The correlation coefficient between functions φ : A → U

and θ : A→ U is the complex number defined as

c(φ, θ) =
1

|A|
∑
x∈A

φ(x)θ(x).

It is clear that the absolute value of a correlation coefficient lies always

within the range [−1, 1].
Suppose that f : A → B is a function and let χu and ψv be characters of

A and B, respectively. The correlation coefficient between functions ψv ◦ f
and χu is denoted by cf (u, v). It follows that

cf (u, v) = c(ψv ◦ f, χu) =
1

|A|
̂(ψv ◦ f)(u).

We will simply use cf (v) to denote the correlation coefficient c(ψv ◦ f, χ0),

where χ0 is the trivial character of A.

4.2.1 Correlations and Probability Distributions

In this section, we give results regarding the values of a function and

its homomorphic projection. Let A and B be defined as before and let

ψv denote a character of B. Suppose that f : A → B is a function with

the output distribution pf . The following result describes a relationship

between the values of f and ψv ◦ f for all v ∈ B.

Theorem 4.4. Let f : A→ B be defined as above. For all v ∈ B, we have

cf (v) = p̂f (−v). (4.1)

Proof. Using the definitions of correlation coefficient, Fourier transform,
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and output distribution, we get

cf (v) =
1

|A|
∑
x∈A

ψv(f(x)) =
1

|A|
∑
y∈B
|{x ∈ A : f(x) = y}|ψv(y)

=
∑
y∈B

pf (y)ψv(y) =
∑
y∈B

pf (y)ψ−v(y) = p̂f (−v)

for all v ∈ B.

Hence, if the correlation coefficients cf (v) = c(ψv ◦ f, χ0) are known for

all v ∈ B, then the output distribution pf can be determined completely

using the inverse Fourier transform by the formula

pf (y) =
1

|B|
∑
v∈B

cf (v)ψ−v(y),

where y ∈ B. In other words, the output distribution of f is completely

determined by its homomorphic projections ψv ◦ f , v ∈ B. The general

form of this result is known as the Cramér–Wold theorem [10]. Parseval’s

theorem (3.1) and the identity (4.1) yield the following corollary.

Corollary 4.5. Let f : A→ B be defined as above. Then∑
v∈B
|cf (v)|2 = |B|

∑
y∈B

pf (y)
2. (4.2)

4.3 Capacity

The capacity of a probability distribution measures the nonuniformity of

the distribution: larger capacity indicates higher nonuniformity. It is used

to determine the relationship between the sample size and the error prob-

ability of a statistical hypothesis test based on the LLR statistic or the χ2

statistic.

Definition 4.6. The capacity between probability distributions p and p′

with the sample space A is

C(p, p′) =
∑
x∈A

(p(x)− p′(x))2
p′(x)

.

If p′ is the uniform distribution, then C(p, p′) is denoted by C(p) and called

the capacity of p. The capacity of a function is defined using its output

distribution in the following way.

Definition 4.7. The capacity of a function f : A → B with the output

distribution pf is

C(f) = C(pf ) = |B|
∑
y∈B

(
pf (y)−

1

|B|

)2

.
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4.3.1 Capacity and Correlations

According to Theorem 4.4, the distribution of f : A→ B can be determined

from the correlation coefficients cf (v), v ∈ B. The following theorem de-

scribes how the correlation coefficients can also be used to determine the

capacity of f .

Theorem 4.8. Let f be defined as before. Then

C(f) =
∑
v �=0

|cf (v)|2. (4.3)

Proof. We get from the definition of C(f) that

C(f) = |B|
∑
y∈B

(
pf (y)

2 − 2pf (y)
1

|B| +
1

|B|2

)
= |B|

∑
y∈B

pf (y)
2 − 1.

The result follows from Parseval’s theorem (3.1) when we observe that

cf (v) = 1 for v = 0.

The corresponding theorem for mappings between binary vector spaces

has been shown by Baignères et al. [1]. For a Boolean function f : Fn
2 → F2,

the capacity can be simply computed as

C(f) = |cf (1)|2 =
∣∣∣∣ ∑
x∈Fn

2

(−1)f(x)
∣∣∣∣2.

4.4 Statistical Testing

In this thesis, we are mainly concerned with statistical hypothesis tests

that decide between two hypotheses. Given a data set with an empirical

distribution q, we want to determine whether the given data has been

drawn from some specific distribution or is uniformly random. These

kind of hypotheses tests are relevant for statistical distinguishing attacks,

where the attacker tries to distinguish whether the given data has been

produced by a cipher (with a certain unknown key) or is a sample drawn

from the uniform distribution. We present two statistical tests that can

be used for this purpose. For a more detailed discussion about statistical

testing, we refer to Cover and Thomas [9].

Let X1, X2, . . . , XN be a collection of independent and identically dis-

tributed random variables with sample space A. The studied data set is

formed by the realizations x1, x2, . . . , xN of these random variables. Their

empirical distribution q is computed by

q(y) =
|{1 ≤ t ≤ N : xt = y}|

|A|
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for all y ∈ A.

4.4.1 Likelihood Ratio Test

In the likelihood ratio test, it is decided whether the given data has been

drawn from the probability distribution p or p′, where p′ �= p. It assumes

that accurate estimates of both p or p′ are available. According to the

Neyman–Pearson lemma, the likelihood ratio test is the uniformly most

powerful test for simple hypotheses, i.e., hypotheses which completely

specify the distributions. The likelihood ratio test makes the decision

based on the log-likelihood ratio (LLR) test statistic.

Definition 4.9. Let p and p′ be probability distributions on A, and let q

be an empirical distribution on A. The log-likelihood ratio is defined as

LLR(q; p, p′) = N
∑
x∈A

q(x) log
p(x)

p′(x)
.

The decision is made by computing the value of the LLR statistic for the

given data set: the decision is p if LLR(q; p, p′) ≥ 0; otherwise, it is p′.

Baignères et al. [1] proved the following theorem, which gives the data

complexity of a distinguisher based on the LLR statistic.

Theorem 4.10. Assume that probability distributions p and p′ are close to

each other. Then the data complexity of distinguishing p from p′ is

N =
r

C(p, p′)
,

where r is a small constant and C(p, p′) is the capacity between p and p′.

Hence, the data complexity of distinguishing whether the given data fol-

lows the uniform distribution p′ = p0 or is drawn from a close-to-uniform

distribution p is N = r/C(p). To achieve the success probability PS , the

constant r has to be chosen according to

r = 4Φ−1(PS)
2,

where Φ is the cumulative distribution function of the standard normal

distribution. For PS = 0.95, we have r ≈ 8.

4.4.2 Chi-Squared Test

In the χ2 test, it is decided whether the given data set is drawn from a

specific probability distribution or not. The χ2 test can be used if enough

information about the distributions is not available to use the LLR test.

The test makes use of the following test statistic.
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Definition 4.11. Let p′ be a probability distribution and q an empirical

distribution on A. The χ2 test statistic is defined as

χ2(q; p′) = N
∑
x∈A

(q(x)− p′(x))2
p′(x)

.

Thus, large values of the χ2 statistic indicate large differences between

q and p′. The decision is made by comparing the value of χ2(q; p′) to a

threshold τ , which depends on the size of the distribution (degrees of free-

dom) and the probabilities of the two types of errors, rejecting p′ when it is

right and accepting p′ when it is wrong. The decision is p′ if χ2(q; p′) ≤ τ ;

otherwise, it is decided that the data has not been drawn from p′.

Vaudenay [43] proved the following result on the data complexity for χ2

tests.

Theorem 4.12. Assume that q is drawn from either a close-to-uniform

distribution p or the uniform distribution p′ = p0. The data requirement of

the χ2 distinguisher is then given as

N =
r
√
|A|

C(p)
,

where r is a small constant and C(p) is the capacity of p.

Assuming that |A| ≥ 28, one can derive the estimate [38]

r ≈ (
√
2 + 2)Φ−1(PS),

where PS is the required success probability. For PS = 0.95, we have r ≈ 8.

4.5 Markov Chains

A stochastic process describes a dynamical system which can be in pre-

cisely one state at a time and the transitions between different states may

involve some amount of uncertainty. A stochastic process is modeled as a

sequence of random variables (Qt)t>0, where each random variable takes

on values in some set S, which is called the state space of the process.

A Markov chain is a particular stochastic process, in which the next

state of the system depends only on the current state and not on the pre-

ceding states. See Durrett [14] for an overview of Markov chains.

Definition 4.13. A Markov chain is a sequence (Qt)t>0 of random vari-

ables such that

Pr(Qt+1 = qt+1 |Qt = qt, . . . , Q2 = q2, Q1 = q1) = Pr(Qt+1 = qt+1 |Qt = qt)

for all t > 1.
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Any Markov chain can be represented as a linear dynamical system in

the following manner. Let (Qt)t>0 be a Markov chain with the state space

S = {s1, s2, . . . , sn}. To describe the probabilities of each state after t steps,

we use the vector rt = (rt1, rt2, . . . , rtn)
T , where rti = Pr(Qt = si) denotes

the probability that the system is in state si at time t. We use

aij = Pr(Qt+1 = sj |Qt = si)

to denote the transition probability that the system moves from state si
to state sj at time t+ 1. The matrix

A = (aij)n×n

is called the transition matrix of the system. According to the Chapman–

Kolmogorov equation [14, p. 36], the state distribution of the Markov

chain at time t+ 1, t > 0, can then be determined as

rt+1 = Art,

which defines a linear dynamical system.

4.6 Hidden Markov Models

A hiddenMarkov model (HMM) models a Markov chain with a finite num-

ber of possible states that are assumed to be directly unobservable. How-

ever, information about the state can be gained from the symbols that are

emitted from each state at each time step. For an overview of HMMs, see

Rabiner [41].

As Markov chains, HMMs can be represented as dynamical systems.

An HMM is defined by the set of internal states, the set of transition

probabilities between the states, the set of observable symbols, the set of

probabilities that a certain symbol is emitted from a certain state, and

the initial state distribution. The set of internal states is denoted by S =

{s1, s2, . . . , sn} and the state at time t is denoted by the random variableQt

such that the sequence (Qt)t>0 forms aMarkov chain. The set of transition

probabilities in the system is denoted by A = {aij}, where

aij = Pr(Qt+1 = sj |Qt = si)

for all 1 ≤ i, j ≤ n as before. The set of observable symbols is denoted by

V = {v1, v2, . . . , vm} and the observation emitted at time t is denoted by
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the random variable Ot. The set of emission probabilities is denoted by

B = {bj(k)}, where

bj(k) = Pr(Ot = vk |Qt = sj)

for all 1 ≤ j ≤ n and 1 ≤ k ≤ m. The initial state distribution indicates the

probability distribution for the first state Q1. It is denoted by π = {πi},
where

πi = Pr(Q1 = si)

for all 1 ≤ i ≤ n. Using these parameters, we can define HMMs as follows.

Definition 4.14. A hidden Markov model is the tuple

λ = (A,B, π),

where A denotes the set of transition probabilities, B denotes the set of

emission probabilities, and π denotes the initial state distribution.

4.6.1 The Three Basic Problems for HMMs

HMMs make it possible to analyze the relationship between the internal

states of a dynamical system and the observations emitted from the sys-

tem. We present three problems which are relevant for this kind of analy-

sis and give a brief overview of the methods used to solve these problems.

The presented problems are sometimes called the three basic problems for

HMMs in literature, e.g., by Rabiner [41] who we also refer to for a more

detailed discussion about these problems.

Given a model λ = (A,B, π), we letO = O1O2 . . . OT andQ = Q1Q2 . . . QT

denote sequences of random variables representing emitted observations

and visited states, respectively. We use n to denote the number of internal

states in the HMM as before.

Problem 1. Given an observation sequence o = o1o2 . . . oT and a model

λ, how do we efficiently compute Pr(O = o |λ), the probability of the
observation sequence given the model?

Problem 2. Given an observation sequence o = o1o2 . . . oT and a model λ,

what is the most likely state sequence q = q1q2 . . . qT that produced

the observations?

Problem 3. Given an observation sequence o = o1o2 . . . oT and a model

λ, how do we adjust the parameters of the model λ = (A,B, π) to

maximize Pr(O = o |λ)?
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Problem 1 is called the evaluation problem since it is concerned with

finding the probability that a specific observation sequence has been pro-

duced by the givenmodel. The problem is solved by the forward–backward

algorithm, which is able to efficiently compute this probability.

Problem 2 is known as the decoding problem. It is related to under-

standing the behavior of a system based on the observations emitted from

the system. The goal is to find the most probable state sequence that has

produced the given observation sequence. One solution to this problem

is offered by the Viterbi algorithm [17, 44], which is able to efficiently

compute the state sequence q that maximizes Pr(Q = q |O = o, λ), where

o is the given observation sequence. The time complexity of the Viterbi

algorithm is O(Tn2). In cryptography, the decoding problem is relevant

for side-channel cryptanalysis, since it allows the attacker to infer inter-

nal behavior of the system based on physical measurements if a suitable

model for the system exists. An application of the Viterbi algorithm to

cache-timing attacks is presented in Publication V.

Problem 3 is known as the learning problem. It asks how to adjust the

parameters of the model λ = (A,B, π) to maximize the probability that

the given observation sequence is produced. There is no known analyti-

cal method to achieve this. However, it is possible to adjust the param-

eters such that the probability Pr(O = o |λ) is locally maximized using

iterative procedures such as the Baum–Welch algorithm [3] or gradient

techniques [27]. Each iteration of the Baum–Welch algorithm has the

time complexity O(Tn2). Adjusting the parameters is often called train-

ing the HMM and it typically involves collecting a set of observation se-

quences from a real physical phenomenon, which are then used in train-

ing. Like the decoding problem, the learning problem is also relevant in

side-channel cryptanalysis. In Publication V, an application of the Baum–

Welch algorithm is presented for adjusting model parameters based on

cache-timing data.

4.7 Vector Quantization

Vector quantization (VQ) is a statistical technique that can be used for

classifying new observations into categories which have been determined

using a training data set containing observations with known categories.

An application of VQ is presented in Publication V, where it was used in

combination with an HMM to analyze cache-timing data.
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Each category can be defined using a prototype vector and a label. We

use P to denote the set of prototype vectors called the codebook and L to

denote the set of labels for each codebook vector. In addition, we have

a mapping l : P → L that associates each codebook vector with a label.

When a new observation v is obtained, it is classified using a vector quan-

tizer q defined by q(v) = argminp∈P d(v, p), where d(v, p) is the Euclidean

distance between v and the codebook vector p. The label of v is then l(q(v)).

We can employ learning vector quantization (LVQ) [23] to create the

codebook. It works in the following way. First, we obtain a training data

set D containing vectors with predetermined labels in L, and an initial-

ization for the codebook P , which can be derived by performing k-means

clustering [30] on all training vectors sharing the same label and taking

the resulting centroids. The following process is then iterated until an ac-

ceptable error rate is achieved. We (randomly) pick a training vector from

D and check if it is correctly classified using the vector quantizer q: if it

is, we move the matching codebook vector closer to the training vector;

otherwise, the codebook vector is moved away.
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5. Linear Distinguishing Attacks

A distinguishing attack is a form of cryptanalysis, where the attacker is

able to distinguish whether the given set of samples has been generated

by a particular cipher or not. In linear distinguishing attacks, a linear

transformation is first applied to the given set of samples and the re-

sulting data set is then studied using a statistical hypothesis test. This

chapter presents a framework for linear distinguishing attacks that can

employ linear mappings over arbitrary Abelian finite groups. We first

discuss statistical testing in distinguishing attacks of data sets and then

linear approximation of functions and block ciphers. Linear approxima-

tions are used in estimating the efficiency of the attack. Finally, we briefly

describe the linear distinguishing attacks presented in Publication I and

Publication IV.

5.1 Linear Distinguishers

A distinguishing attack on a cipher is an attack, where the attacker is

able to tell whether the given samples have been generated by the cipher

or not. Distinguishing attacks are essentially statistical hypothesis tests,

where the aim is to detect any statistical bias in the given set of samples.

In linear distinguishing attacks, a linear transformation is first applied to

the given set of samples. The purpose is to expose statistical nonunifor-

mity in the data if it originates from the cipher. The decision is then made

by studying the distribution of the resulting data set using a statistical

hypothesis test.

Finding an efficient linear transformation is a cipher-specific task. It

usually involves constructing an approximative linear model for the ci-

pher by finding linear approximations for the nonlinear components of the

cipher. The more accurate approximations are found, the more efficient
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linear transformation can be constructed. For nonlinear filter generators

with a linear feedback function, one typically forms a linear approxima-

tion for the filter function and uses the linear feedback relation to cancel

out the state variables involved in the approximation such that the re-

maining variables induce a nonuniform distribution. An example of this

is presented in [39].

The efficiency of the transformation depends on how nonuniform distri-

bution it is capable of inducing. Hence, it is inherently connected to the

method used for measuring the nonuniformity in the distribution and also

to the used hypothesis test. These aspects have been studied in many pa-

pers regarding attacks using linear transformations from Zn
2 to Z2. For

example, the seminal work by Matsui and Yamagishi [35] and Matsui

[34] is based on this kind of a transformation. Linear attacks using a

number of statistically independent one-dimensional transformations (or

equivalently, linear approximations) have been studied by Kaliski and

Robshaw [20] and Biryukov et al. [4]. The first attack based on a truly

multidimensional transformation was presented by Englund and Maxi-

mov [15]. Baignères et al. [1] proved several useful results regarding the

foundations of such attacks and Hermelin et al. [19] presented a method

for constructing multidimensional approximations from one-dimensional

approximations. Publication IV gives a practical multidimensional dis-

tinguishing attack on the stream cipher Shannon. In this thesis, linear

distinguishing attacks are presented in a general setting, where any lin-

ear transformations between finite Abelian groups can be used. This has

been previously studied by Baignères et al. [2]. Publication I presents

such an attack on the block cipher DEAN.

Our focus is on a block cipher defined using the encryption function

EK : A → A, where K is the secret key and A is a finite Abelian group.

The transformation used in the distinguisher is a homomorphic projec-

tion T : A×A→ B, where B is a subgroup of A×A. Now suppose that we

have N data pairs (xt, yt), 1 ≤ t ≤ N , belonging to A × A. The empirical

distribution q used in the hypothesis test is computed as

q(y) =
|{1 ≤ t ≤ N : T (xt, yt) = y}|

N

for all y ∈ B. We say that the distribution q originates from the cipher if

yt = EK(xt) for all 1 ≤ t ≤ N with some unknown key K. In the following

sections, we present two hypothesis tests that can be used in the distin-

guisher to study the empirical distribution. They depend on the attack
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model which is chosen according to how much information obtained from

the cipher in the analysis.

5.1.1 The LLR distinguisher

The LLR distinguisher makes the decision using the likelihood ratio test.

The attack model assumes that if the empirical distribution q originates

from the cipher, then the samples have been drawn according to an un-

known distribution belonging to a collection p1, p2, . . . , pl of known distri-

butions. To decide whether the data set originates from the cipher or

follows the uniform distribution p0, the attacker will compute the LLR

statistic

LLR(q; pi, p0) = N
∑
y∈B

q(y) log
pi(y)

p0(y)

for each 1 ≤ i ≤ l. If the maximum of LLR(q; pi, p0) over all 1 ≤ i ≤ l is

nonnegative, it is decided that q originates from the cipher.

Assuming that the distributions p1, p2, . . . , pl are close-to-uniform, the

data requirement for the LLR distinguisher can then be determined ac-

cording to Hermelin et al. [19] from

NLLR =
r

min1≤i≤l C(pi)
,

where r is a small constant that depends on the desired success proba-

bility PS . To achieve PS = 0.95, we can choose r = 8. In typical cipher

construction where the secret key is added to the data using the group

operation, particularly in so-called key-alternating ciphers, the distribu-

tions p1, p2, . . . , pl tend to be permutations of each other and thus have the

same capacity, which is equal to the average capacity taken over all keys

[19]. We then estimate that the success probability is significant for about

half of the keys with the sample size NLLR when r = 8.

5.1.2 The χ2 distinguisher

The χ2 distinguisher performs a χ2 test to make the decision. Unlike in

the LLR distinguisher, the attack model does not assume knowledge of the

distributions p1, p2, . . . , pl originating from the cipher. The cipher distribu-

tions are usually key-dependent, so it tends to be infeasible to determine

them for all keys. Moreover, if the size of B is small, the capacities of the

distributions vary significantly with the key. When the size ofB increases,

the capacities may tend to get closer to the average capacity of the cipher

taken over all keys [7]. A distinguisher based on the χ2 statistic can be
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created under such an assumption.

Let us denote M = |B|. The χ2 test statistic for the empirical distribu-

tion q and the uniform distribution p0 is then given by

R = χ2(q; p0) = NM
∑
y∈B

(
q(y)− 1

M

)2

.

If the empirical distribution q is drawn from a cipher distribution, the

expected value of R/N can be estimated with the expected capacity C

taken over the cipher distributions p1, p2, . . . , pl. On the other hand, if q

follows the uniform distribution p0, thenR follows the χ2 distribution with

M−1 degrees of freedom. The expected value of R/N is then (M−1)/N . If

R/N is closer to C than (M − 1)/N , then the hypothesis that q originates

from the cipher is accepted.

Assuming that the cipher distributions p1, p2, . . . , pl are close-to-uniform

and that q is drawn from one of the cipher distributions or from the uni-

form distribution p0, the data requirement of the χ2 distinguisher can

then be estimated by Theorem 4.12 to be

Nχ2 =
r
√
M

C
,

where r is a small constant depending on the success probability PS and

C is the expected capacity taken over the cipher distributions. To achieve

PS = 0.95, we choose r = 8.

5.2 Linear Approximation of Functions

Let A and B be finite Abelian groups and f : A→ B be a mapping. Let χu

and ψv be characters of A and B, respectively.

Definition 5.1. A linear approximation Lf (u, v) of f is the function

x �→ ψv(f(x))χu(x).

We call u ∈ A the input mask and v ∈ B the output mask of the approxi-

mation.

In linear cryptanalysis, the attacker usually tries to find linear approxi-

mations that have as nonuniform output distributions as possible. If the

nonuniformity of the distribution can be exploited in a statistical attack,

we say that the linear approximation is strong. In the optimal case (for

the attacker), the function f is a homomorphism, which is possible only if

the linear approximations are constant.
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The linear approximation of a function f : A→ B is sometimes based on

characters of certain groups that are different from the groups A and B

used in defining the function. To emphasize the difference, we will talk

about the domain of the approximation: if characters ofA′ �= A andB′ �= B

are used for characters of the approximation, the groups A′ and B′ define

the domain of the approximation.

5.2.1 Correlation of a Linear Approximation

The strength of the linear approximation is measured using a quantity

called correlation. As shown later, the correlation of a linear approxima-

tion of a Boolean function reflects the Hamming distance of the Boolean

function to a linear function.

Definition 5.2. The correlation of a linear approximation Lf (u, v) of f is

the correlation coefficient

cf (u, v) = c(ψv ◦ f, χu)

between functions ψv ◦ f and χu.

Thus, a linear approximation Lf (u, v) with a large correlation indicates

a large correlation between the homomorphism χu and the homomorphic

projection ψv ◦ f of f . If u = 0, the linear approximations of f have the

form

x �→ ψv(f(x))

since χ0 is a trivial character. In this case, the correlation is simply de-

noted as cf (v).

If f is bijective, we obtain the following relationship between the corre-

lations of linear approximations of f and f−1 by making the substitution

y = f(x) in the Fourier transform of f .

Theorem 5.3. If f : A→ B is bijective, then

cf−1(u, v) = cf (v, u).

5.2.2 Approximation of Boolean Functions

Binary linear approximations are approximations in which characters of

a binary vector space are used. Let f, g : Zn
2 → Z2 be Boolean functions.

The Hamming distance dH(f, g) between f and g is defined as the number

of elements x ∈ Zn
2 for which f(x) �= g(x). Given a Boolean function f ,
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the correlation of a linear approximation of f is related to the Hamming

distance between f and a linear function as demonstrated by the following

example.

Let f : Zn
2 → Zm

2 be a vector-valued Boolean function. The characters

of Zn
2 and Zm

2 can be defined as χu(x) = (−1)u·x and ψv(x) = (−1)v·x, re-
spectively. The correlation of a linear approximation of f is then given

by

cf (u, v) = c(ψv ◦ f, χu) =
1

2n

∑
x∈Zn

2

(−1)v·f(x)⊕u·x.

Let ϕa denote the linear function x �→ a ·x, where a = u or a = v. It is then

easy to verify that

cf (u, v) = 1− 21−ndH(ϕv ◦ f, ϕu).

Thus, smaller Hamming distance between x �→ v · f(x) and x �→ u · x
indicates larger correlation for the binary linear approximation Lf (u, v).

Indeed, a linear approximation of a vector-valued Boolean function f is of-

ten defined as the mapping x �→ v ·f(x)⊕u ·x and not as x �→ (−1)v·f(x)⊕u·x

as indicated by the general definition given before. The correlation, how-

ever, is the same.

5.2.3 Approximation of Homomorphic Functions

Suppose that f : A→ B is a homomorphism, and let χu and ψv be charac-

ters of A and B, respectively. The composition of two homomorphisms is

clearly a homomorphism, so ψv ◦ f is a character of A. By the orthogonal-

ity relation for characters, the correlation of a linear approximation of f

can be determined as

cf (u, v) =
1

|A|
∑
x∈A

ψv(f(x))χu(x) =

⎧⎪⎨⎪⎩0 if ψv ◦ f �= χu,

1 if ψv ◦ f = χu.

Since ψv ◦ f and χu are both characters of A, there always exists such

u ∈ A and v ∈ B that the correlation of the linear approximation is one.

Hence, for every homomorphism, there exists a linear approximation with

correlation one.

5.3 Linearity and Nonlinearity

The linearity of a function indicates the maximum correlation between

any nontrivial homomorphic projection of the function and any homomor-
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phic function. In other words, it indicates the largest correlation of a non-

trivial linear approximation of the function. Conversely, the nonlinearity

of a function reflects the minimum correlation of a function to homomor-

phic functions. Higher nonlinearity generally means better resistance to

linear cryptanalysis.

Let f : A→ B be a function between finite Abelian groups A and B.

Definition 5.4. The linearity of f is defined as

L(f) = |A|max
u∈A

max
v∈B
v �=0

|cf (u, v)|.

Definition 5.5. The nonlinearity of f is defined as

N (f) = |A| − L(f)
|B| .

Theorem 5.3 then yields the following result.

Theorem 5.6. If f is bijective, then

L(f−1) = L(f).

5.3.1 Linearity of Boolean Functions

When A and B are binary vector spaces, the nonlinearity of a function

reflects the minimum Hamming distance of the linear projection of the

function to the set of all linear (and also affine) functions.

Let f : Zn
2 → Zm

2 be a vector-valued Boolean function. The characters of

Zn
2 and Zm

2 have the form χu(x) = (−1)u·x and ψv(x) = (−1)v·x, respectively.
The nonlinearity of f can then be written as

N (f) = 2n−1 − 2n−1max
u∈Zn

2

max
v∈Zm

2
v �=0

|cf (u, v)|.

By the definition of nonlinearity and the relationship between correlation

and Hamming distance, we can then deduce that

N (f) = min
u∈Zn

2

min
v∈Zm

2
v �=0

dH(ϕv ◦ f, ϕu).

5.3.2 Limits for Linearity

High nonlinearity is one desirable property for S-boxes. The following

result gives upper and lower bounds for the linearity of a mapping f : A→
B, where A and B are arbitrary finite Abelian groups.
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Theorem 5.7. Given a mapping f : A→ B, we have√
|A| ≤ L(f) ≤ |A|.

Proof. We follow the ideas of Drakakis et al. [13] to prove the result. Let

F : A×B → {0, 1} be the indicator function of f defined as

F (x, y) =

⎧⎪⎨⎪⎩1 if y = f(x),

0 otherwise.

Let χu be a character of A and ψv be a character of B. It follows that

F̂ (u, v) =
∑

x∈A,y∈B
F (x, y)χu(x)ψv(y) =

∑
x∈A

χu(x)ψv(f(x))

=
∑
x∈A

ψ−v(f(x))χu(x) = |A| cf (u,−v). (5.1)

Using Parseval’s theorem (3.1), we get∑
u∈A,v∈B

|F̂ (u, v)|2 = |A||B|
∑

x∈A,y∈B
|F (x, y)|2 = |A|2|B|.

We cannot have |F̂ (u, v)| <
√
|A| for all u ∈ A and v ∈ B, since it implies∑

u∈A,v∈B
|F̂ (u, v)|2 < |A|2|B|.

Therefore, |F̂ (u, v)| ≥
√
|A| for some u ∈ A and v ∈ B. From the defi-

nition of linearity and (5.1) it then follows that L(f) ≥
√
|A|. Obviously,

|F̂ (u, v)| < |A| always holds. We have thus shown the result.

The functions that achieve the lower bound in the previous theorem, are

generally called bent functions, defined originally by Rothaus [42] who

studied bent Boolean functions. Since then, the notion of bentness has

been studied in many different domains. Kumar et al. [24] studied the

class of functions from Zn
m to Zm. Logachev et al. [31] adapted the notion of

bentness to functions from any finite Abelian groupA to the multiplicative

group of complex numbers of magnitude one, which is essentially the same

set of functions as considered above. In Publication II, it is shown that the

linearity of Exponential and Logarithmic Welch Costas functions is larger

than the lower bound only by a logarithmic factor. They are functions

defined on Zn, where n = p− 1 and p is a prime. Publication III examines

the linearity of discrete logarithm on Fn
2 and establishes upper bounds

which, depending of the type of the linear approximation, are close to the

lower bound.
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5.4 Approximation over Composed Functions

Block ciphers and stream ciphers commonly employ consecutive nonlinear

functions. In this section, we will show how to determine the correlation

of a linear approximation over composed functions using the correlations

of linear approximations over individual functions.

Suppose that A, B, and C are finite Abelian groups. Let f : A → B and

g : B → C be functions and let Lf (u,w) and Lg(w, v) be their linear approx-

imations. We first consider a situation, where the input to g is computed

as f(x) + y, where y is statistically independent of x and uniformly dis-

tributed. Such a composition of f and g is the function F : A × B → C

defined as

F (x, y) = g(f(x) + y)

and the correlations of its linear approximations are

cF ((u,w), v) = cf (u,w)cg(w, v).

The maximum of this value taken over w ∈ B is often used for estimating

the correlation of the composed function g ◦ f , and is quoted as Piling-up

lemma [34]. In cryptographic contexts, however, the variable y is the key,

which is a fixed value. The accurate expression for the correlation of g ◦ f
was given by Daemen et al. [11] in the binary case, and in the general

case by Baignères et al. [2].

Theorem 5.8 (Correlation theorem). Let f : A → B and g : B → C be

functions. The correlation of a linear approximation of g ◦ f is given by

cg◦f (u, v) =
∑
w∈B

cf (u,w)cg(w, v).

Proof. By expressing the correlations in terms of Fourier transform and

using the orthogonality relation for characters, we get∑
w∈B

cf (u,w)cg(w, v)

=
∑
w∈B

1

|A|
∑
x∈A

λw(f(x))χu(x)
1

|B|
∑
y∈B

ψv(g(y))λw(y)

=
1

|A||B|
∑

x∈A,y∈B
ψv(g(y))χu(x)

∑
w∈B

λw(f(x))λw(y)

=
1

|A|
∑
x∈A

ψv(g(f(x)))χu(x)

= cg◦f (u, v)

for all u ∈ A and v ∈ C.
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The correlation theorem indicates that the correlation over several con-

secutive functions is determined using all possible intermediate mask

combinations. A fixed mask combination is often called a linear trail, and

the set of all linear trails is called the linear hull of the cipher.

In practice it is usually not possible to compute the exact correlation

using all linear trails. Instead, it is assumed that the round keys are sta-

tistically independent and uniformly distributed. With this assumption, it

is possible to estimate the correlation using the Piling-up lemma. If there

is one dominant linear trail, the obtained estimate is accurate. However,

if there are many linear trails with significant correlations, this kind of

estimate can be rather inaccurate.

Using the triangle inequality, we obtain

|cg◦f (u, v)| ≤
∑
w

|cf (u,w)||cg(w, v)|.

5.5 Approximation of Block Ciphers

Many block ciphers are constructed by iterating the same round function

for a number of rounds. At each round, a round key is typically combined

with the data using some group operation, such as the bitwise XOR. The

round keys are usually determined from the key using by simple opera-

tions. In this section, we study the correlation of an iterated block cipher,

where round keys are used at each round.

Let A be a finite Abelian group written additively. Recall that the en-

cryption function EK of an R-round iterated key-alternating block cipher

on A is specified by a sequence of round functions g1, g2, . . . , gR on A and

a key K = (K1,K2, . . . ,KR) ∈ AR such that the encryption EK(x) of plain-
text x ∈ A is computed as

x0 = x,

xr = gr(xr−1 +Kr) for r = 1, 2, . . . , R,

EK(x) = xR.

We denote by Gr the round function such that Gr(x) = gr(x + Kr). Al-

though we have restricted ourselves to group A on each round, it would

be straightforward to extend the following analysis to include the use of

different groups at different rounds.
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5.5.1 Expected Correlation

Let χu denote a character ofA. Given a linear approximation LGr(ur, ur−1)

of the round function Gr, its correlation is equal to

cGr(ur−1, ur) =
1

|A|
∑
x∈A

χur(gr(x+Kr))χur−1(x) = χur−1(Kr)cgr(ur−1, ur).

Since the encryption function EK is a composition of the round functions,

its correlation can be determined using the correlation theorem as

cEK (u, v) =
∑

u1,...,uR−1

R∏
r=1

χur−1(Kr)cgr(ur−1, ur),

where u0 = u and uR = v. The proof of this result is a straightforward

generalization of the same result in the binary case due to Daemen et al.

[11].

As noted previously, the success probability of a linear attack depends

on the squared absolute value of the correlation of the linear approxima-

tion that is used in the attack. Since the correlation may vary a lot with

the key in modern block ciphers, the expected squared absolute value of

the correlation is frequently used to measure the strength of a linear ap-

proximation. The proof of the following theorem is also a generalization

of the proof in binary case due to Nyberg [37]. An alternative proof using

the Markov property has been given by Baignères et al. [2].

Theorem 5.9. Let g1, g2, . . . , gR be the round functions of an R-round key-

alternating iterated block cipher EK on a finite Abelian group A with the

key K = (K1,K2, . . . ,KR). If K is drawn from the uniform distribution on

AR, then

EK |cEK (u, v)|2 =
∑

u1,...,uR−1

R∏
r=1

|cgr(ur, ur−1)|2, (5.2)

where u0 = u and uR = v.

5.5.2 Expected Capacity

As before, let EK be an iterated key-alternating block cipher defined on a

finite Abelian group A with a key K ∈ AR. Since the size of the whole

distribution of values {(x, EK(x)) : x ∈ A} is intractable, as computing its

capacity would require to compute the sum of the squared absolute corre-

lations for all characters of A × A, a cryptanalyst must restrict attention

to a subgroup of characters. In the applications to be considered in this
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paper, such character subgroups are formed by characters on subgroups

of A×A.
Assume thatA′ andB′ are subgroups ofA. LetB = A′×B′ be a subgroup

of A × A and let λw denote a character of B. Let fK : A → A × A → B be

the mapping defined as

x �→ (x, EK(x)) �→ T (x, EK(x)),

where T is a homomorphic projection from A×A to its subgroup B. From

Theorem 4.8, it is then easy to see the following result.

Lemma 5.10. The capacity of fK can be computed as

C(fK) =
∑
w �=0

|cfK (w)|2. (5.3)

A character of B can be written as λw = χu × ψv, where χu and ψv are

characters ofA′ andB′, respectively. Because the characters of a subgroup

are simply restrictions of the characters of the entire group, χu and ψv also

define characters on A. We get

cfK (w) = c(λw ◦ fK , χ0) = c(ψv ◦ EK , χu) = cEK (u, v). (5.4)

We can then take the expected value of the squared absolute correlation

of a linear approximation of EK from (5.2) and use the identities (5.4) and

(5.3) to determine the expected capacity of fK as given in the following

theorem.

Theorem 5.11. Let g1, g2, . . . , gR be the round functions of anR-round key-

alternating iterated block cipher EK on a finite Abelian group A with the

key K ∈ AR. Let fK and T be functions defined as above. If K is drawn

from the uniform distribution on AR, then

EK(C(fK)) =
∑

u0,...,uR

R∏
r=1

|cgr(ur−1, ur)|2, (5.5)

where the sum is taken over all u0 ∈ A′ and uR ∈ B′ such that either u0 or

uR is nonzero.

5.5.3 Computing Expected Capacity

Cho [7] designed a customized algorithm to compute the expected capac-

ity of a multidimensional linear approximation of the binary block cipher

PRESENT iteratively from round to round. Based on similar approach,
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we can devise a general algorithm for the same purpose. By reordering

the terms in (5.5), we get the following iterative algorithm for computing

the expected capacity of fK for a general key-alternating block cipher EK
in the case where B takes the form A′ ×B′.

Theorem 5.12. Let fK be the mapping defined before and let Γi[·] denote

an indexed array for 0 ≤ i ≤ R. The expected capacity C = EK(C(fK)) is

computed by the following iterative procedure:

Γ0[u0] = 1 for all u0 ∈ A′,

Γr[ur] =
∑

ur−1 �=0

|cgr(ur, ur−1)|2Γr−1[ur−1] for r = 1, 2, . . . , R,

C =
∑

uR∈B′
uR �=0

ΓR[uR].

Many correlations of linear approximations over intermediate rounds

will trivially vanish, but still the number of characters with nonzero cor-

relation is usually too large. This means that in practice only a lower

bound of the capacity can be determined using this algorithm. How to

select the sets of intermediate masks must be determined for each cipher

separately, and requires different heuristic strategies to be used.

5.6 Applications

5.6.1 DEAN

DEAN [2] is a nonbinary AES-like key-alternating block cipher that en-

crypts blocks of 18 decimal digits. Its resistance to linear cryptanalysis

was studied in Publication I using the iterative procedure presented in

Theorem 5.12. A block in DEAN is represented as a 3 × 3 array of ele-

ments from the additive group Z2
10. Linear approximations of DEAN were

thus constructed using characters of the group A = (Z2
10)

9.

Using a bound derived from a single linear trail, Baignères et al. [2]

estimated that the best LLR distinguisher would require the full code

book of known plaintext blocks to succeed over four rounds of DEAN. The

results presented in Publication I indicate that the designers’ bound is

not sufficient: At least five rounds are needed before the data complexity

of the χ2 distinguisher exceeds the code book bound. If resistance against

the LLR distinguisher is wanted, then at least seven rounds are needed.
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5.6.2 Shannon

Shannon [18] is a stream cipher that is based on a nonlinear feedback

shift register (NLFSR) and a nonlinear filter (NLF) function. A practical

linear distinguisher for it was presented in Publication IV. The distin-

guisher is based on a particular linear combination of keystream words

derived by combining certain linear approximations of the NLFSR and

the NLF at specific time instances. The used nonlinear functions have

strong linear approximations which makes the final linear combination

biased. The decision is made using the LLR test, which is justified as-

suming that the initial state is uniformly distributed. The data complex-

ity predicted by linear approximation of the cipher is about 231 with the

confidence level PS = 0.92. In the practical tests, the distinguisher was

observed to require about 234 keystream words to achieve the same level

of confidence, which shows that the determined linear approximation of

the cipher gives a good estimate for the data complexity.
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In this chapter, we study linearity properties of some individual functions

in different domains. We show how the previous concepts can be used for

analyzing nonlinear mappings. Our interest is in functions that have sim-

ple representations in certain algebraic structures, but can still be used as

nonlinear mappings in conjunction with other functions. We give results

on addition modulo 2n, multiplication modulo 2n + 1, discrete logarithm

in F2n , and Exponential Welch Costas (EWC) functions that are based on

discrete logarithm in Zp. An upper bound for the linearity of a linear

combination of the output bits of discrete logarithm in F2n was derived in

Publication III. In this chapter, we derive a new upper bound that gives

more accurate results for certain linear combinations than the previous

bound. The results on the linearity of EWC functions were presented in

Publication II.

6.1 Addition Modulo 2n

Addition modulo 2n is one of the most commonly used operations in sym-

metric ciphers. It can be used in combination with other simple opera-

tions, such as bitwise XORs and rotations, to induce diffusion in the ci-

pher. In IDEA [25], it is one of the operations used for combining subkeys

at each round of the cipher.

Binary linear approximations of addition of two integers modulo 2n have

been studied in [39, 45]. Wallén [45] presented an Θ(log n)-time algorithm

for computing the correlation of linear approximation of addition modulo

2n, an optimal algorithm for generating all linear approximations with a

given nonzero correlation coefficient, and determined the distribution of

the correlation coefficients. Nyberg andWallén [39] presented a more gen-

eral technique for computing correlation coefficients for addition of more
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than two integers and generating linear approximations for addition of

two integers.

As noted in the previous chapter, the data complexity of a linear distin-

guishing attack on an iterative block cipher is dependent on the capacity

of the used linear approximation. An estimate for the capacity can be ob-

tained by using the expected capacity over the round keys. In this section,

we describe how to obtain the expected value of squared absolute corre-

lation for constant addition modulo 2n such that the algorithm of Wallén

[45] can be used to speed up the computation.

For a constant K ∈ Z2n , we let addK : Z2n → Z2n denote the constant

addition function

addK(x) = x+K.

In addition, we let add: Z2n × Z2n → Z2n denote addition modulo 2n with

two inputs. The correlation of a (binary) linear approximation of add is

denoted by cadd((u,w), v), where u,w ∈ Zn
2 are the input masks of the

approximation and v ∈ Zn
2 is the output mask. By Theorem 1 of Nyberg

[37], it is straightforward to derive a relationship between the correlations

for addK and add.

Theorem 6.1. Let addK denote a constant addition function on Z2n and

add denote addition on Z2n with two inputs. Suppose that u, v, w ∈ Zn
2 . If

K is drawn from the uniform distribution on Z2n , then

EK |caddK (u, v)|2 =
∑

w∈Z2n

cadd((u,w), v)
2.

Every correlation coefficient cadd((u,w), v) can be computed in Θ(log n)

time using the algorithm of Wallén [45]. Hence, it takes Θ(2n log n) time

to compute EK |caddK (u, v)|2 for any u, v ∈ Zn
2 .

6.2 Multiplication Modulo 2n + 1

Multiplication modulo 2n + 1 is also an operation used in the block cipher

IDEA to combine subkeys. It is used in combination with addition in Zn
2

and addition in Z2n to induce nonlinearity in the cipher. In this section,

we derive a relationship between correlations of linear approximations of

constant multiplication and discrete logarithm.

For a constant K ∈ Z2n , we let multK : Z2n → Z2n denote the constant

multiplication function used in IDEA defined as

multK(x) = g−1(g(x)g(K) mod 2n + 1),

44



Nonlinearity of S-boxes

where g : Z2n → Z2n+1 is defined by

g(x) =

⎧⎪⎨⎪⎩x if x �= 0,

2n if x = 0.

Let us now assume that 2n + 1 is prime as in IDEA. Suppose that α is a

generator of Z∗2n+1 and let logα x denote the discrete logarithm of x ∈ Z∗2n+1

to the base α. We can now reformulate multK as

multK(x) = f−1(f(x) + f(K) mod 2n), (6.1)

where f : Z2n → Z2n is defined by

f(x) =

⎧⎪⎨⎪⎩logα x if x �= 0,

logα 2
n if x = 0.

Since 2n = −1 = α2n/2 (mod 2n + 1), we can also deduce that f(0) =

logα 2
n = logα(−1) = 2n−1 (mod 2n). Using the correlation theorem, we

can now compute the expected value of the squared absolute correlation

of a linear approximation of multK in the following manner.

Theorem 6.2. Let multK be the constant multiplication function on Z2n

defined as before and suppose that u, v ∈ Z2n . If K is drawn from the

uniform distribution on Z2n , then

EK |cmultK (u, v)|2 =
∑

w∈Z2n

|cf (u,w)cf (v, w)|2,

where f is defined as above.

Proof. Let χw denote a character of the additive group Z2n such that w ∈
Z2n . Using the correlation theorem, we get

cmultK (u, v) =
∑

w∈Z2n

χw(f(K))cf (u,w)cf−1(w, v)

=
∑

w∈Z2n

χw(f(K))cf (u,w)cf (v, w)

The theorem follows by following the same steps as with the proof for the

expected value of the squared absolute correlation of a linear approxima-

tion of an iterative block cipher in Theorem 5.9.

Although we stated Theorem 6.2 for linear approximations over Z2n ,

we could just as well use other groups of the same order in the approxi-

mations. For example, by identifying elements of Z2n and Zn
2 using the

natural correspondence, we could use such linear approximations that
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u ∈ Zn
2 and characters of Zn

2 are applied for the input of the function.

Theorem 6.2 also shows that the linearity of constant multiplication mod-

ulo 2n + 1, where 2n + 1 is prime, is significantly tied to the linearity of

discrete logarithm in Z2n+1, which is studied in Section 6.4. The formula-

tion (6.1) for multK shows that the multiplication of subkeys in IDEA can

be represented using additions modulo 2n.

6.3 Discrete Logarithm in F2n

In this section, we study linearity properties of discrete logarithm in F2n .

We consider discrete logarithm as a nonlinear vector-valued Boolean func-

tion that could be used as a component in symmetric ciphers. Brandstät-

ter et al. [5] studied the least significant bit of discrete logarithm in F2n

and showed that it is highly nonlinear. In Publication III, an upper bound

for the linearity of a linear combination of the coordinates of the discrete

logarithm was derived. For fixed dimension n, this upper bound depends

on the length of the masking vector determining the linear combination.

In this section, we deduce an upper bound that depends on the Hamming

weight of the masking vector. Compared to the bound of Publication III,

this upper bound provides better estimates when the masking vector is

sparse.

Let n be a positive integer and denote q = 2n. Suppose that α is a

primitive element of F2n . The discrete logarithm logα x of x ∈ F∗q to the

base α is the integer l such that 0 ≤ l ≤ q − 2 and x = αl. We study

properties of the function f : Fq → Zq defined as

f(x) =

⎧⎪⎨⎪⎩logα x if x �= 0,

q − 1 if x = 0.
(6.2)

Given a vector v ∈ Fn
2 , we will use v ≪ i and v ≫ i to denote the left and

right cyclic shifts of v by i coordinates, respectively. For 1 ≤ i ≤ n, we let

δi ∈ Zn
2 denote a unit vector, where the component at index i is one and

the rest are zeros. Given a vector v ∈ Fn
2 , the new upper bound for the

linearity is based on deriving an upper bound for the sum

S(v) =
∑

w∈Zq−1

∣∣∣∣∣ ∑
x∈Zq−1

e2(v · x)e2n−1(wx)
∣∣∣∣∣

that depends on the Hamming weight of v. For this purpose, we present

lemmas that show how the value of S(v) can be estimated using the upper
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bound for S(δn), which is known to be accurate. The bounds make use of

the quantity

D(q) =
4

π2
(q − 1) ln(q − 1) + 0.38(q − 1) + 0.608 + 0.116

1

q − 1

as in Publication III. We first prove the upper bound for S(δn).

Lemma 6.3. Let S(v) be defined as before for v ∈ Fn
2 . Then

S(δn) < q − 1 + 2D(q).

Proof. According to the orthogonality relation, we have

m−1∑
r=0

em(r(y − z)) =

⎧⎪⎨⎪⎩m if y = z mod m,

0 if y �= z mod m,

for y, z,m ∈ Z with m ≥ 2. Let v ∈ Fn
2 be a vector. The mapping x �→

eq−1(wx) is a character of Zq−1 for all w ∈ Zq−1. We have

S(v) =

q−2∑
w=0

∣∣∣∣∣
q−2∑
x=0

e2(v · x)eq−1(wx)
∣∣∣∣∣

=

q−2∑
w=0

∣∣∣∣∣ ∑
v·x=0

eq−1(wx)−
∑
v·x=1

eq−1(wx)

∣∣∣∣∣
≤ q − 1 + 2

q−2∑
w=1

∣∣∣∣∣ ∑
v·x=0

eq−1(wx)

∣∣∣∣∣
For v = δn, it then follows that

S(δn) ≤ q − 1 + 2

q−2∑
w=1

∣∣∣∣∣
q/2−1∑
x=0

eq−1(2wx)

∣∣∣∣∣
= q − 1 + 2

q−2∑
w=1

∣∣∣∣∣ 1− eq−1(w)1− eq−1(2w)

∣∣∣∣∣
= q − 1 + 2

q−2∑
w=1

∣∣∣∣∣sin(2n−1πw/(q − 1))

sin(πw/(q − 1))

∣∣∣∣∣
< q − 1 + 2D(q),

where the last step follows from the upper bound of Cochrane [8], see the

proof of Corollary 2 in Publication III.

Corollary 6.4. For n ≥ 5, we have

S(δn)

q − 1
< log q.

Proof. The previous lemma yields

S(δn)

q − 1
<

8

π2
ln(q − 1) + 1.76 +

1.216

q − 1
+

0.232

(q − 1)2
.

It is then straightforward to check that the result holds for n ≥ 5.
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The following two lemmas show how S(v) can be decomposed for any v ∈
Fn
2 such that it is possible to use the upper bound for S(δn) to determine a

bound for S(v).

Lemma 6.5. Let v, v′ ∈ Zn
2 be vectors. Then

S(v ⊕ v′) ≤ S(v)S(v′)
q − 1

.

Proof. Let v, v′ ∈ Fn
2 be vectors. We get

S(v)S(v′) =
q−2∑
w=0

∣∣∣∣∣
q−2∑
x=0

e2(v · x)eq−1(wx)
∣∣∣∣∣
q−2∑
w′=0

∣∣∣∣∣
q−2∑
y=0

e2(v
′ · y)eq−1(w′y)

∣∣∣∣∣
=

q−2∑
w=0

q−2∑
w′=0

∣∣∣∣∣
q−2∑
x=0

e2(v · x)eq−1((w − w′)x)
∣∣∣∣∣
∣∣∣∣∣
q−2∑
y=0

e2(v
′ · y)eq−1(w′y)

∣∣∣∣∣
≥

q−2∑
w=0

∣∣∣∣∣
q−2∑
x=0

q−2∑
y=0

e2(v · x)e2(v′ · y)eq−1(wx)
q−2∑
w′=0

eq−1(w′(y − x))
∣∣∣∣∣

= (q − 1)

q−2∑
w=0

∣∣∣∣∣
q−2∑
x=0

e2((v ⊕ v′) · x)eq−1(wx)
∣∣∣∣∣ (6.3)

= (q − 1)S(v ⊕ v′),

where (6.3) follows from the orthogonality relation.

Lemma 6.6. Let v ∈ Zn
2 denote a vector. For any integer i ∈ Z, we have

S(v ≫ i) = S(v).

Proof. We have x≪ i = 2ix (mod 2n− 1) for any n-bit integer x ∈ Zn
2 and

for any integer i ∈ Z. Since the mapping v �→ 2iv defines a bijection on

Z2n−1, we get

S(v) =
∑

w∈Zq−1

∣∣∣∣∣ ∑
x∈Zq−1

e2(v · x)eq−1(wx)
∣∣∣∣∣

=
∑

w∈Zq−1

∣∣∣∣∣ ∑
x∈Zq−1

e2(v · (x≪ i))eq−1(2iwx)

∣∣∣∣∣
=

∑
w∈Zq−1

∣∣∣∣∣ ∑
x∈Zq−1

e2((v ≫ i) · x)eq−1(wx)
∣∣∣∣∣

= S(v ≫ i)

for all v ∈ Fn
2 .

Lemma 6.7. Assume that n ≥ 5 and let v ∈ Fn
2 be a vector. Then

S(v)

q − 1
< (log q)wH(v).
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Proof. Denote k = wH(v) and suppose that li denotes the index of the ith

nonzero component in v. By Lemmas 6.5 and 6.6, we get

S(v)

q − 1
=
S(δl1 ⊕ δl2 ⊕ · · · ⊕ δlk)

q − 1
≤ S(δl1)S(δl2) · · ·S(δlk)

(q − 1)k
=

(
S(δn)

q − 1

)k

.

The result follows by Corollary 6.4.

Using the previous results, we can deduce the following upper bound for

the Fourier coefficients of f . The proof follows the same outline as the

proof of Theorem 5 in Publication III. Given a vector v ∈ Fn
2 , we will use

v · f to denote the function x �→ v · f(x).

Theorem 6.8. Suppose that n ≥ 5 and let v ∈ Fn
2 be a vector. Then

max
u∈Fn

2

|v̂ · f(u)| < 1 + (log q)wH(v)√q.

Proof. Using the definition of Fourier transform and the orthogonality re-

lation, we get

|v̂ · f(u)| =
∣∣∣∣∣ ∑
x∈Fn

2

e2(v · f(x))e2(u · x)
∣∣∣∣∣

=

∣∣∣∣∣ ∑
x∈F∗q

e2(v · logα x+ u · x) + e2(wH(v))

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
x∈F∗q

e2(v · logα x+ u · x)
∣∣∣∣∣+ 1

=
1

q − 1

∣∣∣∣∣ ∑
w∈Zq−1

∑
x∈F∗q

e2(v · logα x)eq−1(w logα x)

×
∑
y∈F∗q

eq−1(−w logα x)e2(u · x)
∣∣∣∣∣+ 1

≤
√
q

q − 1

∑
w∈Zq−1

∣∣∣∣∣ ∑
x∈F∗q

e2(v · logα x)eq−1(w logα x)
∣∣∣∣∣+ 1,

where the last step follows from triangle inequality and the result on

Gauss sums. By substituting z = logα x and using Lemma 6.7. we get

|v̂ · f(u)| ≤ 1 +

√
q

q − 1
S(v) < 1 + (log q)wH(v)√q

for n ≥ 5.

Thus, we obtain the following upper bound for the linearity of a linear

combination of the coordinates of discrete logarithm.

Corollary 6.9. Assume that n ≥ 5 and let v ∈ Fn
2 be a vector. Then

L(v · f) < 1 + nwH(v)2n/2.
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6.4 Exponential Welch Costas Functions

In this section, we discuss linearity of Exponential Welch Costas (EWC)

functions and their inverses, Logarithmic Welch Costas (LWC) functions.

The EWC and LWC functions are nonlinear mappings used in SAFER

[32, 33]. The mappings are bijections on Zp−1, where p is a prime. A

lower bound on the linearity of EWC and LWC functions was derived in

Publication II. According to Theorem 5.6, the linearity of a bijection and

its inverse is the same, so the same bound applies for both functions.

We use p to denote an odd prime, and α to denote a generator of the

multiplicative group Z∗p. The exponential function of Zp is a mapping

from Zp−1 to Z∗p defined as x �→ αx mod p. We consider Zp−1 to be the

set {0, 1, . . . , p− 2} and Z∗p to be the set Zp \ {0} = {1, 2, . . . , p− 1}.

Definition 6.10. An Exponential Welch Costas function is the mapping

f : Zp−1 → Zp−1 defined as

f(x) = (αx mod p)− 1.

Its inverse function f−1(x) = logα(x + 1) is called a Logarithmic Welch

Costas function.

We first present an alternative proof for Lemma 1 of Drakakis et al. [13]

or Lemma 1 in Publication II.

Lemma 6.11. For any u ∈ Zp−1 and v ∈ Z∗p, we have∣∣∣∣∣
p−2∑
x=0

ep(vf(x))ep−1(ux)

∣∣∣∣∣ ≤ √p.
Proof. Viewing the exponential function as mapping to Zp, we can define

its Fourier transform as

S(u, v) =

p−2∑
x=0

ep(vf(x))ep−1(ux) = ep(−v)
p−2∑
x=0

ep(vα
x)ep−1(ux)

= ep(−v)
p−1∑
x=1

ep(vx)ep−1(u logα x).

The function ψu(x) = ep−1(u logα x) defines a character of the multiplica-

tive group Z∗p and χv(x) = ep(vx) defines a character of the additive group

Zp. By the definition of Gauss sum, we obtain

S(u, v) = ep(−v)G(ψu, χv),

where G(ψu, χv) denotes the Gauss sum with the multiplicative character

ψu and the additive character χv. The result follows by Theorem 3.7.
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The proof also shows how the linearity of EWC and LWC functions is

related to the value of Gauss sums. If the output domain of f is treated

as Zp as opposed to Zp−1, we have

|ψ̂v ◦ f(u)| = |G(ψu, χv)|.

Thus, we obtain the following value for the linearity.

Theorem 6.12 (13). Let f : Zp−1 → Zp be defined as an EWC function.

Then

L(f) = √p.

As indicated by Theorem 5.7, the lower bound for the linearity is
√
p− 1,

which is almost achieved by EWC functions. If the output domain is cho-

sen as in the definition, the situation is not so straightforward as is shown

in Publication II. However, the bound in Publication II implies that also

in this case the EWC functions have asymptotically high nonlinearity.

Theorem 6.13. Let f : Zp−1 → Zp−1 be an EWC function. Then

L(f) < 2

π

√
p ln p+ 4

√
p.
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7. Side-Channel Analysis

In this chapter, we discuss cache-timing attacks and present a technique

for automated analysis of side-channel data. We also briefly describe the

cache-timing attacks presented in Publication V and Publication VI. Au-

tomated data analysis is critical if the attack involves processing of large

amounts of data obtained from many executions of a particular process,

such as an algorithm. Our technique for data analysis is based on mod-

eling the environment using hidden Markov models (HMMs) and vector

quantization (VQ). An application of the technique is shown in Publication

V, where automated data analysis is performed for cache-timing data ob-

tained from ECDSA scalar multiplication in OpenSSL. The resulting state

information is then used to recover the secret key. Publication VI presents

a cache-timing attack against the SNOW 3G stream cipher, where this

kind of data processing is not needed.

7.1 Cache-Timing Attacks

Cache-timing attacks are based on measuring the latency it takes for the

CPU to access data while the cryptographic algorithm is running. A CPU

has a limited number of working registers to store data. Modern proces-

sors are equipped with a data cache to offset the high latency of loading

data from main memory into these registers. When the CPU needs to ac-

cess data, it first looks in the data cache, which is faster but with smaller

capacity than main memory. If it finds the data in the cache, it is loaded

with minimal latency and this is known as a cache hit; otherwise, a cache

miss occurs and the latency is higher as the data is fetched from succes-

sive layers of caches or even main memory. Thus access to frequently

used data has lower latency. Cache layers L1, L2, and L3 are common-

place, increasing with capacity and latency. Our focus is on data caches,
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but processors often have an instruction cache as well.

Cryptographic algorithms can be vulnerable to cache-timing attacks if

they rely on table lookups that depend on some secret value, e.g., the se-

cret key. These table lookups may be visible in cache-timings and thus

leak critical information about the secret value. An attacker can detect

this by concurrently running a spy process [40] that does nothing more

than continually load its own data into the cache and measure the time

required to read it. Fast cache access times indicate cache hits, which

means that the cryptographic algorithm has not accessed those cache lo-

cations since the last iteration, because that would evict the spy process

data, cause a cache miss, and thus slower cache access times for the spy

process.

Simultaneous multithreading technology in processors allows active ex-

ecution of multiple threads concurrently. In a cache-timing attack sce-

nario, this relaxes the need to force context switches since the threads

naturally compete for shared resources during execution, such as the data

caches.

7.2 Automated Side-Channel Data Analysis

Recall that an HMM can be seen as a dynamical system which behaves

like a Markov chain that has directly unobservable states. Information

about the states can only be obtained through the emitted observations.

An HMM is represented as a tuple

λ = (A,B, π),

where A denotes the set of transition probabilities between the states, B

denotes the set of emission probabilities, and π denotes the initial state

distribution. The unobservable part of the HMM can be seen as a proba-

bilistic linear system since its state transitions can be modeled using the

transition matrix of the Markov chain.

HMMs provide a natural way to model side-channel scenarios: the tar-

get system is seen as the hidden part of the HMM and the emitted obser-

vations are seen as the information leaked through the side channel. Us-

ing the techniques mentioned previously, side-channel data analysis can

be performed using HMMs and VQ. The analysis process can be divided

into two steps: We first create the HMM based on system specifications

and adjust its parameters using a set of observation sequences obtained
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from the side channel. When a new sequence of observations arrives, we

infer the most likely state sequence that has emitted these observations

using VQ and the HMM. Details of this process are presented in the fol-

lowing sections. We assume that the attacker can modify the system in

the first phase in such a manner that its behavior can be observed.

Building the HMM. The HMM should be constructed such that its hidden

part reflects the operation of the system and the set of observables reflect

the observations obtained from the side channel. In practice, one internal

state of the real system can emit many observations which is not allowed

by HMMs. To overcome this problem, one can use a sequence of states

in the HMM to model one main state in the system. The set of observ-

able symbols should be the same as the set of labels for VQ. When a new

side-channel observation is obtained, it can then be mapped to an HMM

observable using VQ.

Training the HMM. To train the HMM, we first initialize the model pa-

rameters with rough estimates which will be improved during the train-

ing process. We then obtain a set of observation sequences from the side

channel by running the system with different parameters and observing

how the system operates. Since we know how the system operates, we can

label the obtained sequences in the HMM domain. The model parameters

can then be adjusted by running the Baum–Welch algorithm using the ob-

servation sequences as the training data set. The VQ codebook is created

using LVQ.

Inference of the State Sequence. The constructed model can now be used

to infer the behavior of the target system in the following way. When we

obtain a new observation sequence from the side channel, we tag each ob-

servation with the label of the closest VQ codebook vector. Thus, we get

a sequence in the HMM observation domain. Using the Viterbi algorithm

with the sequence, we can then infer the most likely state sequence that

emitted the observations. The obtained state sequence is actually a se-

quence of substates; the actual operation sequence can be recovered based

on the transitions that are taken in each state sequence. The obtained

state sequences can then be used in conjunction with other methods to

break the system.
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7.3 Applications

7.3.1 OpenSSL ECDSA

The presented technique for automated side-channel data analysis is ap-

plied in Publication V for cache-timing data obtained by performing the

ECDSA signature operation in OpenSSL. The scalar multiplication in the

OpenSSL ECDSA implementation uses table lookups that depend on the

nonce used when creating a signature. These table lookups are visible in

the cache-timing data revealing significant amount of information about

the nonce. Given enough such information, the private key can then be

recovered using a lattice attack.

The model used to analyze obtained cache-timing data is constructed in

the following way. The hidden part of the HMM reflects operation of the

double-and-add scalar multiplication. An abstraction of it is depicted in

Fig. 3 of Publication V. In the real HMM, each depicted state consists of

four or five substates. The set of observations for the HMM is {D,A,E}.
It is assumed that doublings mainly emit Ds and additions As. The start

and end states are assumed to mainly emit Es. In the analysis phase, VQ

is used to tag real cache-timing data with these labels. The most likely

operation sequence can then be obtained using the HMM. A portion of

nonce bits is revealed by the operation sequence.

7.3.2 SNOW 3G

Publication VI presents a cache-timing attack against SNOW 3G, which

is an LFSR-based stream cipher used to preserve confidentiality and in-

tegrity in 3GPP networks. Leander et al. [26] presented a framework

for cache-timing attacks on LFSR-based stream ciphers that use table

lookups when the LFSR is clocked. They noted that many stream ciphers

have an LFSR update function, where constant multiplications have been

implemented using table lookups involving shift register bits, and cache-

timing measurements reveal some of those bits. Since the LFSR feedback

relation is linear, each observed bit can be expressed as a linear combina-

tion of the bits in the initial state. Once enough bits have been observed,

the initial state can thus be recovered by solving the equation system.

SNOW 3G uses an LFSR and a finite state machine (FSM) to produce

the output keystream. Our attack on SNOW 3G also uses the information
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obtained from the table lookups in the LFSR update function, but most

importantly, it uses information obtained from the table lookups used by

the two consecutive S-boxes, S1 and S2, in the FSM. Due to this structure,

information about the input and output of S1 is revealed, which makes

it possible to determine a small set of candidates for the inputs of S1.

The state recovery algorithm obtains a set of candidate values for the

cipher state at certain time instances based on side-channel information

and then trims incorrect candidates using the LFSR feedback relation

and a relation involving LFSR and FMS registers. The resulting attack is

capable of recovering the cipher state in a matter of seconds, requiring no

known keystream and using only a small number of cipher clocks. While

the attack makes use of the information obtained from the LFSR table

lookups, it also works only with the FSM lookups and does not rely on the

linearity of the shift register feedback relation. The attack was shown to

work with experimental side-channel data under an attack model, where

the attacker can control the rate at which the cipher is clocked.
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8. Conclusions

In this thesis, we studied how linearity can be exploited in cryptanalysis

and how it affects the design of cryptographic primitives. We obtained re-

sults concerning both formal specifications and real-life implementations

of cryptographic primitives. Related to formal cryptanalysis, we examined

symmetric ciphers and their building blocks using linear cryptanalysis.

Related to implementation-specific analysis, we presented a framework

for automated analysis of side-channel data. Real primitive designs were

studied in both areas of cryptanalysis.

Extending previous research on linear cryptanalysis, we presented a

framework for (multidimensional) linear distinguishing attacks over fi-

nite Abelian groups. The presented techniques were employed in particu-

lar in the analysis of the block cipher DEAN, but the attack on the stream

cipher Shannon can also be viewed within this framework. The analy-

sis of DEAN shows that relevant security bounds against linear attacks

cannot be obtained without considering the linear hull effect and mul-

tidimensional analysis. We presented a general purpose algorithm that

can be used for obtaining more accurate security guaranties against lin-

ear cryptanalysis. The linear distinguishing attack on Shannon is based

on low nonlinearity of the used S-boxes, but also on a certain structural

weakness that makes the cipher operate in a more linear manner.

The results in this thesis give evidence that discrete logarithm can be

used to create functions that have high nonlinearity in different domains.

We studied linear combinations of the coordinates of discrete logarithm in

F2n and derived lower bounds for their linearity. Although the bounds are

meaningful only for certain linear combinations, the methods give some

new insight to the linearity of discrete logarithm in F2n . Determining a

more accurate bound for it remains an interesting open problem. Expo-

nential Welch Costas functions were shown to have high nonlinearity.
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Conclusions

We presented efficient cache-timings attacks on OpenSSL’s ECDSA im-

plementation and SNOW 3G. The attack on the OpenSSL ECDSA im-

plementation shows that the data analysis framework can be used to

significantly facilitate side-channel attacks. The results on both cache-

timing attacks prove that simply by obtaining timing information from

table lookups, it is possible to create very powerful attacks on implemen-

tations of cryptographic primitives.

A common theme in the presented linear analysis of symmetric ciphers

and individual functions, was to employ nontraditional domains in linear

approximations. One possible research topic in this direction is to study

combinations of different domains in linear cryptanalysis. Another area

of research is to continue to study linearities of functions using the pre-

sented methods.
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