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This thesis on algebraic statistics contains five papers. 
  
In paper I we define ideals of graph homomorphisms. These ideals generalize many of the 

toric ideals defined in terms of graphs that are important in algebraic statistics and 
commutative algebra.  

  
In paper II we study polytopes from subgraph statistics. Polytopes from subgraph statistics 

are important for statistical models for large graphs and many problems in extremal graph 
theory can be stated in terms of them. We find easily described semi-algebraic sets that are 
contained in these polytopes, and using them we compute dimensions and get volume bounds 
for the polytopes. 

  
In paper III we study the topological Tverberg theorem and its generalizations. We develop 

a toolbox for complexes from graphs using vertex decomposability to bound the connectivity. 
  
In paper IV we prove a conjecture by Haws, Martin del Campo, Takemura and Yoshida. It 

states that the three-state toric homogenous Markov chain model has Markov degree two. In 
algebraic terminology this means that a certain class of toric ideals are generated by quadratic 
binomials. 

  
In paper V we produce cellular resolutions for a large class of edge ideals and their powers. 
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1. Introduction

1.1 Introduction to algebraic statistics

The goal of algebraic statistics is to solve statistical problems using tools

and techniques from algebra. There is a wide array of problems for which

this approach has been highly successful, from improving statistical test-

ing methodology to determining whether a particular model is identifiable

or not.

In practice, the algebraic questions arising from statistics typically in-

volve monomial or toric ideals – two well-studied classes of algerbaic ob-

jects. These ideals are very well-behaved, but understanding them re-

quires a substantial amount of combinatorial theory.

Another collection of well-studied objects that appear frequently in al-

gebraic statistics are graphs, which provide a convenient way to encode

dependencies among random variables. Graphs are also important in

statistics since understanding the behavior of large random networks is

becoming increasingly important for real-life applications.

This thesis consists of five papers that investigate various combinatorial

problems arising from algebraic statistics and its related topics. The doc-

ument begins with introductions, including literature suggestions, to the

methods and themes that are most essential for understanding these ar-

ticles, e.g., monomial and toric ideals, graph homomorphisms, polytopes

from graphs, and connectivity in polytopal complexes, followed by sum-

maries of the articles, and then the articles themselves.

The book by Drton, Sturmfels, and Sullivant [17] provides an excellent

introduction to algebraic statistics.
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Introduction

1.2 Methods

1.2.1 Monomial and toric ideals

Toric and monomial ideals are two classes of polynomial ideals that are

important in commutative algebra and algebraic statistics.

The central objects in papers I and II are toric ideals. There are many

equivalent definitions of toric ideals, but for our purposes, we use the

following: A toric ideal is a polynomial ideal generated by all binomials

xu − xv such that u− v is in the kernel of an integer matrix A.

In statistics, it is often convenient to collect data into contingency tables.

For instance, when performing certain statistical tests, it is useful to have

a way to generate tables with the same row and column sums uniformly.

Algebraic statistics provides a systematic way of doing this: The idea is

to encode tables as monomials and then study the toric ideal generated

by the binomials corresponding to tables with the same row and column

sums. Given a set of row and columns sums, along with a generating

set for the ideal, one can produce a connected graph with vertices corre-

sponding to the contingency tables with the given row and column sums

and edges corresponding to binomials that are divisible by an element in

the generating set.

The primary aim of algebraic statistics is to understand toric ideals like

these and to interpret what various algebraic properties of these ideals

mean for the statistical methods. For example, the important property of

normality is implied by having a square free generating set.

A common approach for understanding complicated toric ideals is de-

composing them into simpler ones. The main method for doing this is the

toric fiber product, introduced by Sullivant [56] and developed further by

Sullivant, Engström and Khale [24]. For two toric ideals with sufficiently

compatible structures, their toric fiber product is a new toric ideal that

inherits many of their individual properties. In this thesis, there are a

number of toric ideals defined in terms of graphs, where the toric fiber

product often corresponds to gluing the underlying graphs together over

a common subgraph or some other simple process of decomposing graphs.

Monomial ideals are polynomial ideals generated by monomials. In al-

gebraic statistics, they have been used to encode systems in reliability

theory. They are, in some respect, easier to understand than toric ideals

and they provide good examples for different algebraic techniques. The

10
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main objects appearing in paper V are square free monomial ideals and

their powers.

To understand a polynomial ideal I in a polynomial ring S, and more

generally any module over a ring, it is very useful to consider a free reso-

lution. A free resolution is an exact sequence of the form

0← S/I ← I ← Sb0 ← Sb1 ← · · · .

In general, it is a challenging problem to produce minimal resolutions like

this; however, sometimes the maps in the sequence can be interpreted as

boundary maps in a cell complex. For monomial ideals, this gives rise to

the method of cellular resolutions introduced by Sturmfels and Bayer [2].

Literature

- Some general literature on toric ideals:

[20, 24, 28, 34, 55, 56]

- Some examples of toric ideals in algebraic statistics:

[10, 12, 17, 29, 33, 35, 36]

- Some examples where monomial ideals are studied:

[2, 15, 16]

11
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1.2.2 Graph homomorphisms

A graph homomorphism is a map from the vertex set of a graph G to the

vertex set of a graph H that induces a map from the edge set of G to

the edge set of H. Graph homomorphisms give the class of graphs the

structure of a category. In algebraic statistics, there are many objects

defined in terms of graphs, but often in a somewhat ad hoc way. The main

example of this is the toric ideals related to graphical models. Graph

homomorphisms can be used to unify these concepts – one of the main

themes in paper I.

Graph homomorphisms generalize many of the concepts that are central

in graph theory, for example graph colorings and independent sets. A

coloring of a graph G is a coloring of the vertices of the graph so that no

two adjacent vertices have the same color. A coloring of G with n colors

can then be encoded as a graph homomorphism from G to the complete

graph with n vertices. An independent set in a graph is a set of vertices so

that no pair of vertices in the set are adjacent. An independent set can be

encoded as a graph homomorphism into the graph consisting of an edge

between two vertices with a loop attached to one of the vertices.

In paper IV, we use graph colorings to give new versions of the topo-

logical Tverberg theorem and, in paper I, one of our results gives a new

algebraic method to obstruct the existence of certain graph colorings.

An important problem in graph theory is to count the number of graph

homomorphisms between two graphs, especially between large random

graphs. In paper III, the main object is a class of polytopes that are ob-

tained by counting graph homomorphisms. These polytopes parameterize

exponential random graph models that are used to understand very large

networks.

Another application is that outcomes of Markov chains can be inter-

preted as graph homomorphisms from a directed path to some graph de-

pending on the model. In paper IV, we employ this approach to prove a

conjecture by Haws, Martín del Campo, Takemura and Yoshida [36] about

toric ideals related to Markov chains.

In paper V, polyhedral complexes obtained from generalizations of graph

homomorphisms are used to find cellular resolutions of monomial ideals.

12
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Literature

- Good general texts on graph homomorphisms are:

[7, 13]

- Different concepts of graph colorings are studied in:

[5, 6, 7, 18, 38, 45, 57]

- The counting of subgraphs and how it is related to statistics:

[8, 11, 14, 46, 49, 50, 51]

- Here are some examples of papers studying independent sets:

[19, 22, 44, 47]
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1.2.3 Polytopes from graphs

A convex polytope is the convex hull of a finite set of points. If the points

are lattice points, the polytope is a lattice polytope.

To every lattice polytope, we associate a toric ideal as follows: The coor-

dinates of the vertices of a lattice polytope can be collected into a matrix

A that define a toric ideal. Reversing this process yields a polytope for

every toric ideal. The properties of this ideal can often be expressed in

terms of the corresponding polytope. In this respect, all the toric ideals

that are defined in terms of graphs give polytopes that have a graph the-

oretic interpretation. A number of the proofs in article I make use of this

correspondence.

Polytopes are important in optimization theory. A well known combina-

torial optimization problem is to find a largest independent set in a graph.

This is encoded by the independent set polytope, whose vertices are the in-

cidence vectors of independent sets in a graph. In paper I, these polytopes

appear as the polytopes related to toric ideals in algebraic statistics.

An important class of statistical models for large random networks are

the exponential random graph models. These models are parameterized

by the polytopes of subgraph statistics studied in paper II. These poly-

topes are obtained by taking the convex hull of all possible vectors of sub-

graph counts of graphs with a given number of vertices.

A lattice polytope is normal if the lattice points in integer dilations of

the polytope can be obtained as a sum of the lattice points in the orig-

inal polytope. This property is important for the toric ideals associated

to polytopes. For example, normality can be used to bound the degree of

a generating set of a toric ideal. The normality of polytopes related to

graphs is used in articles I and IV, where the polytope appearing in paper

IV comes from studying the graph homomorphisms from a directed path

into a complete directed graph.

Literature

- Some general texts on the importance of polytopes:

[25, 32, 40, 41, 43, 54, 59]

- Some examples of where polytopes are important in statistics:

[26, 52]

14
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1.2.4 Connectivity of polytopal complexes

Topological combinatorics has produced many different ways to solve com-

binatorial problems by translating them to questions about topological

spaces. Many problems are translated into questions about the connec-

tivity a particular topological space. The spaces that most often occur in

this way are polyhedral complexes. A polytopal complex is a set of poly-

topes that have been glued together over faces. A special example of a

polyhedral complex is a simplicial complex, where every polytope in the

complex is a simplex. An important example of a simplicial complex is

independence complex of a graph G, whose vertex set is the vertex set of G

and whose simplices are the independent sets in G. This kind of complex

is studied in papers III and V.

If a complex is contractible, then it is as connected as it can be and

proving that a complex is contractible is often the easiest way to prove

that a complex is very connected. If a complex can be embedded in such

a way that it is convex, then we get a certificate that it is contractible.

Another way to show that polyhedral complexes are highly connected is

to show that they are shellable. A complex is shellable if its facets can

be removed sequentially in a well-controlled manner. Shellability implies

that the complex topologically is a wedge spheres of some fixed dimension.

To show that a simplicial complex is shellable, it is sometimes easier to

prove a stronger condition called vertex decomposablility. In paper III, the

concept of vertex decompasabilitity of the independence complex of graph

is translated to a graph theoretic property and used to prove a variant of

Tverbergs theorem.

Discrete Morse theory provides a way to reduce the number of cells in

a complex without changing its topology. In paper V, discrete Morse the-

ory is used to prove that some cell complexes support minimal cellular

resolutions of powers of edge ideals of graphs.

Literature

- Some texts explaining and using topological combinatorics:

[1, 4, 9, 30, 31]

- The independence complexes are studied in:

[19, 42, 44]
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- The concept of shellability is important in:

[58]
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1.3 Summary

1.3.1 Paper I: Ideals of graph homomorphisms

In this paper, we introduce a new class of toric ideals called ideals of graph

homomorphisms. Given two graphs G and H we define an ideal IG→H in

the polynomial ring

k[rφ | φ is a graph homomorphism from G to H].

These ideals generalize toric ideals studied in algebraic statistics, where

H is taken to be a complete graph with loops. A good introduction to

algebraic statistics is the book by Drton, Sturmfels and Sullivant [17].

Polytopes and toric ideals are the two main classes of objects studied here

with examples coming from graphs. We prove a number of basic results

about these ideals, using methods from Sections 1.2.1, 1.2.2, and 1.2.3,

and we show that some of them have very nice algebraic properties, such

as being Cohen-Macaulay.

In algebraic statistics, it is important to find generating sets and Gröb-

ner bases of ideals. We use toric fiber products by Sullivant [56] to create

generating sets for larger graphs by gluing together the generating sets

of smaller graphs. When H is an edge with a loop on one of the vertices,

the graph homomorphisms correspond to independent sets of the graph G.

In this setting, we provide Gröbner bases for the ideals corresponding to

all bipartite graphs, yielding an alternative proof of a classic theorem by

Hibi [39]. Explicit Gröbner bases are also constructed for all graphs that

are bipartite if one vertex is removed: Such Gröbner bases are quadratic

and square-free, which proves that the corresponding rings are Cohen-

Macaulay.
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1.3.2 Paper II: Polytopes from subgraph statistics

In this paper, we study the convex polytopes obtained by taking the convex

hull of all possible vectors of subgraph counts of graphs with a given num-

ber of vertices. These polytopes are interesting from an extremal graph

theory point of view and they are important in statistics. Polytopes play

a key role and, since counting subgraphs is close to counting homomor-

phisms, we use methods from Section, 1.2.2 and 1.2.3.

In extremal combinatorics, there are many questions about the possible

number of certain subgraphs if one fixes the number of another subgraph.

These can be translated into questions about what happens close to the

boundary of a polytope of subgraph statistics. In statistics, the geometry

of these polytopes determine the behavior of maximum likelihood esti-

mations for exponential random graph models, as described by Rinaldo,

Fienberg and Zhou [26].

Many questions from extremal graph theory expressed in terms of these

polytopes are very hard to understand. Instead of studying the polytopes

directly we approximate them by using random graph models. The expec-

tation values of the subgraph counts from random graph models cut out

subsets of the polytope. In many cases, these subsets are easily param-

eterized semi-algebraic sets. We find a family of such sets, called curvy

zonotopes, that, in the limit of very large graphs, fill the entire polytope.

Using this family of sets, we bound the volume of the polytopes and de-

temine their dimensions. The volume bound involves the evaluation of a

new class of integrals generalizing the Selberg integral [53].

The random graph models we use are exchangeable random graph mod-

els. Their usefulness can be explained by their central role in the theory of

graph limits developed by Lovász and Szegedy [46]. With this, we prove

that the polytopes can be approximated arbitrarily well by curvy zono-

topes.

18
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1.3.3 Paper III: Tverberg’s theorem and graph coloring

The topological Tverberg theorem states that for any prime power q and

any continuous map from the (d+1)(q− 1)-simplex to Rd, there are q dis-

joint faces of the simplex whose images intersect. This holds even under

some conditions on which vertices can be in the same face. One way to

encode these conditions is to say that the faces have to be color classes

in a coloring of a certain graph. If the theorem holds, then the graph is

called a Tverberg graph. Engström [18] showed that a graph of maximal

degree D is a Tverberg graph if D(D + 1) < q. However, this condition is

far from optimal: It is conjectured that there is a constant K such that a

graph is Tverberg if KD < q.

In this paper, we use methods from section 1.2.4 to prove a fixed param-

eter version of the conjecture. That is, for every ε > 0, there is a constant

Kε such that if the graph has ((d+1)(q−1)+1)(1+ε) vertices and q ≥ KεΔ,

then there is a q-coloring of the graph with the desired non-empty inter-

section property.

When proving that a graph is Tverberg, one important object is the in-

dependence complex. It is required that the independence complexes are

sufficiently (topologically) connected, but Engström [18] conjectured that

the complexes are, in fact, shellable. We prove this conjecture by proving

that the complexes are vertex decomposable. For a good introduction to

topological combinatorics, see [4]. The main graph-theoretic tool for prov-

ing both results are algorithms for removing a special types of subgraphs

called squids.

19



Introduction

1.3.4 Paper IV: The three-state torics homogenous Markov
chain model has Markov degree two

The Markov degree of the toric homogenous Markov chain model is the

minimal degree in which a particular toric ideal is generated. The ideals

studied here were first considered by Takemura and Hara [33] and were

further studied by Haws, Martín del Campo, Takemura, and Yoshida [36]

who, based on computer calculations, made many conjectures about these

ideals. This paper is devoted to proving the conjecture that the Markov

degree of the three state Markov chain model is two.

These ideals describe some of the equations satisfied by the probability

distribution of a general time homogenous Markov chain. The methods

used are very combinatorial, but are inspired by the toric fiber products

introduced in Section 1.2.1. The variables in the ring are indexed by graph

homomorphisms from a directed path into a complete directed graph and

the description in terms of the homomorphisms in Section 1.2.2 is used.

When the lengths of paths increase, no new types of moves are needed

and thus, the ideals from long paths are constructed from the ideals of

shorter paths.

20



Introduction

1.3.5 Paper V: Cellular resolutions of powers of monomial ideals

In this paper, we study monomial ideals and powers of monomial ideals,

with a focus on edge ideals of graphs and their powers. The edge ideal of

a graph G is the ideal 〈xuxv | uv ∈ E(G)〉 in k[xv | v ∈ V (G)].

Our goal is to find minimal free resolutions of these ideals and simulta-

neously find resolutions of all their powers. The main method for doing

this uses cellular resolutions. First we construct a non-minimal resolu-

tion from a subdivided polytope. Then we use convexity to prove that

an acyclicity condition is satisfied in order to support a resolution. From

there, we use discrete Morse theory to make the resulting cell complex and

resolution smaller –this approach was developed by Betzies and Welker.

The discrete Morse theory is applied in two steps, the first step is to re-

duce the complex to a cell complex isomorphic to a Hom complex that has

a nice description. The final step uses optimal Morse matchings from in-

dependence complexes of graphs to make the resolution minimal.

Our main example is the edge ideal of a path and all its powers. The

primary objects and techniques in this paper are monomial ideals and

the machinery introduced in Section 1.2.1. Cell complexes related to the

graph homomorphisms introduced Section 1.2.2 support the cellular reso-

lutions of interest and discrete Morse theory, introduced in Section 1.2.4,

is the main tool to make the resolutions smaller.
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