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Abstract 
A flow of electric current in a metal is the result of the collective motion of mobile conduction 

electrons within a relatively static background formed by ionized atoms. An electric current of 
1 ampere used in everyday appliances corresponds to a flow rate of about 6*1018 electrons per 
second. In this thesis, I have studied experimentally and theoretically certain metallic 
nanostructures where electric charge can be measured and transported at a precision of one 
electron. 

Before this thesis, single-electron effects in hybrid structures consisting of superconductors 
(S) and normal metals (N) had not been thoroughly investigated. Many of the new results 
presented in this thesis concern the SINIS-type single-electron transistor. This structure 
consists of superconducting source and drain electrodes with a normal metallic island in 
between. The island is contacted to the electrodes via tunnel junctions (I). Due to a 
phenomenon konwn as the Coulomb blockade, the electric and heat currents through the 
transistor can be significantly altered by changing the gate charge by a fraction of the 
elementary charge. 

Several physical phenomena in the SINIS transistor were observed for the first time in the 
experiments of this thesis: We showed that the cooling power incident on the normal metal of 
the transistor can be modulated by the gate charge. We also demonstrated that the SINIS 
transistor can be used as an electron turnstile. The electric current through the turnstile is 
equal to the product of the elementary charge and the frequency of an external driving signal. 
A device that realizes this current-frequency-dependence with a sufficiently high accuracy 
could be used in electrical metrology in the future. 

As an important technological advance in the study of hybrid structures, we demonstrate that 
single-electron tunneling events between a superconductor and a normal metal can be detected 
in real time with a capacitively coupled single-electron transistor. By counting individual 
electrons, electric currents less than 1 attoampere can be measured, which is impossible with 
traditional room-temperature electronics. By measuring the rate of electron tunneling events, 
we were able to study the coupling of high frequency microwaves and so-called nonequilibrium 
quasiparticles to the measured samples. Finally, we have determined the distribution of heat 
dissipated in the process of charging a metallic island by a single electron. 

Keywords tunnel junctions, Coulomb blockade, electronic transport, supreconductivity, 
quasiparticles in superconductors, nonequilibrium thermodynamics 

ISBN (printed) 978-952-60-3628-1 ISBN (pdf) 978-952-60-5076-8 
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 
Location of publisher Espoo Location of printing Helsinki Year 2013 
Pages 195 urn http://urn.fi/URN:ISBN:978-952-60-5076-8 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Olli-Pentti Saira 
Väitöskirjan nimi 
Kvasipartikkelien kuljetuksen hallinta hilajännitteellä nanomittakaavan suprajohde-
normaalimetalli-hybridirakenteissa 
Julkaisija Perustieteiden tiedekunta 
Yksikkö Olli V. Lounasmaa -laboratorio 
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 48/2013 
Tutkimusala Matalien lämpötilojen fysiikka 
Käsikirjoituksen pvm 11.12.2012 Väitöspäivä 28.03.2013 
Julkaisuluvan myöntämispäivä 31.01.2013 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Metallisessa johtimessa kulkeva sähkövirta syntyy vapaiden johtavuuselektronien liikkeestä 

verrattain liikkumattomien ionien muodostamassa hilassa. Arkipäiväisen sähkölaitteen 
käyttämä 1 ampeerin virta vastaa noin 6*1018 elektronin virtausta sekunnissa. Tässä 
väitöskirjassa on tutkittu kokeellisesti ja teoreettisesti metallisia nanorakenteita, joissa 
sähkövarauksen mittaaminen ja liikuttelu eri johtimien välillä on mahdollista yksittäisen 
elektronin tarkkuudella. 
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Preface

This thesis documents the scientific research results and findings to which

I have contributed while working in the PICO group lead by professor

Jukka Pekola. I first joined the group as a research assistant in the

summer 2006 when it belonged to the Low Temperature Laboratory of

Helsinki University of Technology. When I finally ended my graduate

studies around the New Year’s Eve of 2013, the laboratory was known as

the O. V. Lounasmaa laboratory (OVLL) of Aalto University. Despite the

passing of years and natural in- and out-flux of group members, the day-

to-day life of working in the group stayed much the same: under Jukka’s

supervision, it was always easy to focus on essential research questions

and the grass-roots level work needed to get things done. Without a doubt,

he deserves the greatest acknowledgement for making this thesis a real-

ity.

My history with the advisor of this thesis, docent Mikko Möttönen,

starts one year earlier, in the year 2005. I thank him for introducing me

to the standards and conventions of the physics community via the the

assignments and, later, publications that I authored in his group. Since

then, we have maintained a close and straightforward companionship in

matters both related and unrelated to physics, which has greatly bene-

fited the completing of this thesis.

Most of the new results reported in this thesis are based on measure-

ments of very small artifacts at very low temperatures – smaller than 1

micrometer at less than 0.1 kelvin above the absolute zero. To realize

such measurements, the physicist, or a student aspiring to become one,

must master various technical skills ranging from electron beam lithog-

raphy to mechanical design and operating of complex gas-handling sys-

tems. To a large extent, these techniques were taught hands-on to me by

Dr. Matthias Meschke, to whom I’m grateful for his patience.
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For helpful advice, honest feedback, and insightful questions related

to my research I wish to thank also professor Pertti Hakonen, staff sci-

entist Alexander Savin, docent Tero Heikkilä, and senior scientist Sorin

Paraoanu from OVLL, and research leader Antti Manninen from MIKES.

For the opportunity to do my graduate studies in Aalto University and

OVLL, I wish to thank the former director of the laboratory, professor

Mikko Paalanen, the head of the Applied Physics department, professor

Matti Kaivola, and the professor in charge of my graduate course pro-

gram, Risto Nieminen. For the access to the cleanroom facilities of Mi-

cronova nanofabrication center, I thank director Veli-Matti Airaksinen,

process engineer Paula Heikkilä, and the rest of the cleanroom staff. I’m

grateful to the secretaries of the OVLL for their invaluable assistance in

dealing with the formalities of the university administration. I thank the

staff of the OVLL mechanical workshop, especially foreman Arvi Isomäki

and technician Markku Korhonen, for realizing my mechanical designs

and pointing out why some of them could not be realized.

As important as the role of administration and support staff is, the big

picture of the graduate school experience is shaped by the daily interac-

tions with fellow students and post-doc level researchers. At times when

my life seemed to be a part of my PhD project, and not the other way

around, I was privileged to be sharing office space, equipment access, and

free time with great people such as Juha Vartiainen, Antti Kemppinen,

Andrey Timofeev, Tommy Holmqvist, Sergey Kafanov, Nikolai Chekurov,

Thomas Aref, Paolo Solinas, Youngsoo Yoon, Hung Nguyen, Wonjae Kim,

Antti Peltonen, Joonas Peltonen, Juha Muhonen, Ville Maisi, Simone

Gasparinetti, Timothe Faivre, Jonne Koski, and Klaara Viisanen. I wish

to devote a special acknowledgement to Anna Feshchenko for the unfor-

gettable time I spent instructing her Master’s thesis with one hand in a

cast due to a broken wrist.
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1. Introduction

At the microscopic level, the flow of electric current in a metal corresponds

to a collective motion of mobile conduction electrons within a background

created by relatively static atomic nuclei and valence electrons [1]. The

electron is a fundamental particle whose charge is equal to −e, where e
is the elementary charge. The value of e in SI units is approximately

1.602× 10−19 C [2]. An electric current of 1 ampere used in a typical elec-

trical appliance corresponds to a flow rate of about 6 × 1018 electrons per

second. Hence, the granularity of electric charge is not observed in ev-

eryday settings. However, a convincing proof of the quantization of elec-

tric charge was presented by Robert Millikan already a century ago in

1913 [3]. By performing the famous oil droplet experiment, he was able to

measure changes in the motion of the droplets as they randomly acquired

individual electrons or ions from the air that was ionized with x-rays.

Partly for this work, Millikan was awarded the Nobel Prize in physics in

1923 [4].

In this thesis, we study metallic nanostructures where electric charge

can be transferred in a controlled fashion between conductors one electron

at a time. We also demonstrate the detection of individual electron tun-

neling events between a superconductor and a normal metal in real time,

and measure small electric currents by counting the passage of individual

electrons. Although such demonstrations are standard in semiconductor

quantum dots with tunable barriers [5, 6], the use of electron counting

techniques to study of hybrid superconductor–normal metal structures is

new. Also, another recurring theme in the experiments is electronic cool-

ing and heat transport in the presence of single-electron charging effects.

The physical platform on which we performed most of these experiments

is the SINIS-type single-electron transistor (SET). This structure consists

of superconducting (S) source and drain electrodes with a normal metallic
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Introduction

(N) island in between. The island is contacted to the electrodes via tun-

nel junctions (I). Due to a phenomenon known as the Coulomb blockade,

electric transport through the transistor can be significantly altered by

a fraction-of-e change in the gate charge of the transistor [7, 8]. In the

existing literature, hybrid structures consisting of superconducting and

normal electrodes have been studied in various configurations [9, 10, 11],

where they were employed as electronic coolers and probes of electronic

temperature, for example. The new results and experimental techniques

we present here are based on an interplay between the superconducting

gap parameter Δ and the charging energy Ec, which has not been studied

thoroughly in hybrid structures in earlier works.

The overview part of this thesis is organized as follows: In Section 2,

we give a general description of the physical phenomena observed in the

experiments in terms of established theory. The experimental results con-

cerning density of non-equilibrium quasiparticles in thin film aluminum

are also presented in Section 2 along with the relevant theory of quasipar-

ticle dynamics in the superconductor. Section 3 contains a description of

the experimental methods used for the low-temperature transport mea-

surements. We describe briefly the sample fabrication and refrigeration

techniques that are well known in the field of mesoscopic physics. More

emphasis is given to the discussion of the filtering and shielding solutions

incorporated in the design of the sample stages, and analysis of the perfor-

mance and back-action of the SET-based electron counting scheme used

in many of the experiments.

The most important new experimental results are presented in Section 4

with supporting theory. Publications I, II, X and XI highlight different as-

pects of heat flow in the presence of charging effects. The heat transistor

experiment reported in Pub. II was the first experimental demonstration

of Coulombic control of refrigeration, and also the first demonstration of

NIS thermometry in a device with strong charging effects. The experi-

mental results were found to be in excellent agreement with a theoret-

ical model based on the orthodox theory, which should motivate further

studies of more complex designs. One such study was Pub. I, where we

propose theoretically a cyclic electronic refrigerator based on a NIS-type

single-electron box [12] subject to a radio frequency gate drive. The same

structure with a much slower gate drive was the subject of Pubs. X and

XI, where we analyzed theoretically and experimentally the statistics of

dissipated heat instead of the time-averaged cooling power. This work

2
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was based on an earlier proposal [13], where it was noted that such an

analysis would constitute a first test of certain fluctuation relations of

non-equilibrium thermodynamics [14, 15] in an electronic system.

The remaining Pubs. III–IX concern the transport of electric charge in

hybrid structures. In Pub. III, we demonstrated that a hybrid SET can

be used as an electron turnstile that produces the current I = ef , where

f is the frequency of an external drive signal. A major motivation for

the rest of the studies was to improve the accuracy of the hybrid turn-

stile from the about 1% level of the original demonstration towards the

10−7 level required for a metrological current source [16]. The first step

in this direction was taken in Pub. IV, where coupling of microwave radi-

ation from higher temperature parts of the cryostat was identified as the

source of subgap leakage observed in NIS junctions. Further advances in

microwave shielding brought about by improved sample and sample stage

design are reported in Pubs. V, IX, and VII. The 2e Andreev tunneling pro-

cess, another source of subgap leakage in NIS and SINIS structures, was

studied quantitatively in Pub. VIII, and could also be observed in the data

of Pub. IX. Furthermore, the sample of Pub. IX was also suitable for prob-

ing the density of non-equilibrium quasiparticles in the superconducting

leads. For a sample fabricated with a direct NS contact as a quasiparticle

trap, we were able to infer a record-low upper bound on the density of

nonequilibrium quasiparticles nqp < 0.033 μm−3. Similarly, we obtained

an upper bound of γ < 1.6 × 10−7 for the Dynes parameter [17, 18] of the

thin film aluminum leads, which is also the lowest number reported to

date. In Pubs. VI and VII, the charge escape rate from a mesoscopic trap-

ping node through a SINIS SET was studied. In the setup with the best

microwave shielding, we were able to observe charge trapping times of

about 10 h, which is an evidence for the applicability of SINIS structures

for certain applications of electronic metrology.

Finally, Section 5 contains a description of two efficient numerical meth-

ods that we employed in the analysis of electric transport in Coulomb-

blockaded NIS structures.

3
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2. Theoretical basis

2.1 Quasiparticle transport in tunnel junctions

2.1.1 Orthodox theory of single-electron tunneling

The studies of single-electron transport presented in this thesis are en-

abled by electrical measurements of tunnel junctions, such as the one de-

picted in Fig. 2.1. A tunnel junction [9, 19] is an arrangement where two

conductive electrodes are separated by a thin insulating layer. Charge

carriers in the electrodes can penetrate the potential barrier of the in-

sulator via quantum mechanical tunneling, thus allowing for an electric

current to pass through while inducing only a weak perturbation to the

electronic properties of the electrodes.

The theoretical basis for modeling of electron transport in the sequen-

tial tunneling regime is thoroughly presented in two classic review ar-

ticles, one by Averin and Likharev [20], and the other by Ingold and

Nazarov [21]. Owing to the key role orthodox theory has in the inter-

pretation of the experimental results presented here, the essential steps

of the calculation are reproduced below. Furthermore, many of the exper-

iments highlight conditions where the system’s behavior departs in some

way from the basic model. These scenarios and their theoretical modeling

are discussed in later sections.

The starting point of the orthodox theory is a second quantization de-

scription of the tunnel junction and the electrodes with the Hamiltonian

H = HL +HR +HT , (2.1)

where HL and HR correspond to the two electrodes referred to as the left

(L) and right (R) lead, respectively, and HT is the tunneling Hamiltonian

5



Theoretical basis

Figure 2.1. Scanning electron micrograph taken at a slightly oblique angle showing the
crossing of two metallic electrodes on an oxidized silicon substrate. Due to
an insulating oxide barrier covering the bottom (vertical) electrode, a tunnel
junction is formed between the electrodes at the intersection.

that accounts for the tunnel coupling between the leads. A Hamiltonian

of this form was originally introduced by Cohen et al. [22]. Neglecting

electron spin for now, the lead Hamiltonians can be written generally as

HL =
∑
k

εLka
†
kak HR =

∑
k′
εRk′b

†
k′bk′ , (2.2)

where ak and bk′ (a†k and b†
k′) are annihilation (creation) operators for

quasiparticle states with wave vectors k and k′ in the left and right leads,

respectively, and εLk and εRk′ are the excitation energies. The tunneling

Hamiltonian is given by

HT =
∑
k,k′

(
Tkk′a†kbk′ + h. c.

)
, (2.3)

where Tkk′ is the tunnel matrix element between states k and k′, and

the conjugate term denoted by h. c. describes the coupling in the opposite

direction. The origin of tunnel coupling is a finite overlap between wave

functions in the different leads. Evaluation of the tunnel matrix elements

from first principles is deferred until the next section, as the calculation

has many subtleties and is not crucial to the derivation of orthodox theory.

In Sec. 2.2.1, the above formulation will be augmented with a descrip-

tion of the coupling of finite-frequency electromagnetic modes to the tun-

neling process. The simpler case of a dc voltage bias V applied over the

junction can be treated with an energy conservation argument, as will

be shown shortly. External electric fields can also couple directly into the

electrodes, although voltage drops in the leads are usually neglected when
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dealing with opaque small-area junctions. Nevertheless, with suitable de-

vice parameters, it is possible to observe Joule heating [23] or absorption

of microwave photons in the thin-film electrodes [24]. Part of the energy

absorbed in the film in the form of quasiparticles excitations could then

diffuse into the junction site, and affect the observed tunneling current.

Heat flows in thin-film structures will be discussed in detail in Sec. 2.4.

Due to the continuum of electronic states available for tunneling, charge

transfer from, say, lead L to lead R can be described in the first order by a

Markovian transition rate ΓL→R. This rate can be evaluated by treating

HT as a weak perturbation and applying Fermi’s Golden rule. The result

is the transition rate between microscopic states si and sf of the whole

system, given by

Γsisf =
2π

�
|〈sf |HT | si〉|2 δ(Esi − Esf ), (2.4)

which should be integrated over the possible initial and final states. Re-

calling the form ofHT in Eq. (2.3) and the orthogonality of the basis states,

a nonzero amplitude for left-to-right tunneling is obtained only in the case

|sf 〉 = b†
k′ak |si〉. Thus, we obtain

Γσ
L→R =

2π

�

∑
k,k′

|Tkk′ |2
〈
a†kakbk′b†

k′

〉
0
δ(εk − εk′ + eV ), (2.5)

where the superscript σ indicates that the result is for one spin species

only, 〈. . .〉0 denotes an average over the statistical ensemble of initial

states, and the effect of voltage bias has been inserted by hand to the

energy conservation condition. In Fermionic statistics,
〈
a†kakbk′b†

k′

〉
0
=

PL(k) [1− PR(k
′)], where we have denoted by PL(k) and PR(k

′) the occu-

pation probability of states k and k′ in the left and right leads, respec-

tively. If, furthermore, the leads are in thermal equilibrium, the occupa-

tion probabilities follow the Fermi-Dirac distribution: In the left lead, for

example,

PL(k) =
1

1 + exp
[
(εLk − εLF )/kBTL

] , (2.6)

where TL is the temperature and εLF is the Fermi energy of the lead. The

fact that both probabilities PL and PR appear as independent factors is

a manifestation of the perturbative nature of the tunneling Hamiltonian

approach, which is the appropriate picture for opaque junctions. The op-

posite limit of a transmission approaching unity can be addressed by a

Landauer-Büttiker–type scattering approach, where the reservoirs act as

perfect sinks of carriers [25].

7



Theoretical basis

The remaining summation in Eq. (2.5) over wave vectors weighted with

the squared matrix element is often deferred by introducing a tunneling

resistance RT that incorporates information about the average matrix el-

ement and density of states near the Fermi level. The end result is an

integral

ΓL→R =
1

e2RT

∫ ∞

−∞
dEL

∫ ∞

−∞
dER fL(EL)nL(EL)

[1− fR(ER)]nR(ER)δ(EL − ER + eV )

=
1

e2RT

∫ ∞

−∞
dEfL(E)nL(E) [1− fR(E + eV )]nR(E + eV ), (2.7)

where nL(E) [nR(E)] is the density of states (DOS) in lead L (R) relative

to the constant density of states absorbed in the prefactor RT , and the

occupation probability assumes the form

fL,R(E) = [1 + exp(E/kBTL,R)]
−1 (2.8)

as the energies are measured relative to the Fermi level. The case

nL(E) = nR(E) = 1 corresponds to a junction between two normal metal-

lic electrodes. Various non-constant densities have been used to describe,

e. g., quasiparticle excitations in a superconductor, which is the central

theme of this thesis and discussed in more detail in Secs. (2.3.1) and

(2.3.2). In addition to pure superconductors, tunneling spectroscopy is

widely used in the literature to study the proximity effects occurring at a

clean interface between a superconductor and a normal or ferromagnetic

metal [26, 27, 28]. Equation (2.7) is convenient for modeling of experi-

mental results, as the parameter RT is equal to the asymptotic resistance

of the junction, which can be determined in many cases even by a hand-

held multimeter. However, from a theoretical point of view the result is

unsatisfying, as the dependence of RT on the physical dimensions of the

junction is not elaborated. These issues will be addressed in the next sec-

tion.

2.1.2 Evaluation of tunneling matrix elements

In order to demonstrate the influence of the barrier properties on the

tunneling transport, we will calculate explicitly the tunneling matrix el-

ements for a rectangular barrier between two normal conductors in the

ballistic plane-wave case, and evaluate the double sum over wave vectors

in Eq. (2.5). Figure 2.2 illustrates the assumed geometry of the conductors

and the barrier.
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Figure 2.2. Two rectangular conductors connected by a tunnel barrier in between.

Before presenting the calculation, let us consider the range of applicabil-

ity of the ballistic picture. The elastic mean free path lel of electrons in the

typical conductors of this work – evaporated aluminum and copper thin-

films – at low temperatures is of the order of 10 nm [29, 30]. On the other

hand, taking 100 nm as the typical lateral dimension of the tunnel junc-

tion and the adjacent electrodes, we see that the electronic wave functions

at the junction site are not simple plane waves, but instead show interfer-

ence patterns resulting from scattering [31]. The results of the ballistic

calculation for one-electron transport are not sensitive to the interference,

and remain valid in the diffusive case as well [31]. Later in this thesis,

we will present results concerning the coherent tunneling of two electrons

across a tunnel junction between a normal metal and a superconductor.

Also in this two-electron case, we will use a theory based on the ballistic

picture to explain the experimental results. However, in order to obtain

a quantitative agreement, we will introduce Ach, the area per quantum

channel, as a semi-phenomenological fitting parameter that will also ac-

count for the diffusive enhancement of the two-electron conductivity that

is not explicitly included in the model. The theory for two-electron tun-

neling in an NIS junction is presented in Sec. 2.3.2.

For performing the overlap integrals, explicit wave functions are needed

for the quasiparticle states in the leads. We write down the stationary

single-particle Schrödinger equation

− �
2

2μ
∇2ψ(r) + U(z)ψ(r) = Eψ(r), (2.9)

9
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where μ is the effective mass, and the tunnel barrier is modeled by a rect-

angular potential barrier U(z) = U0 for 0 < z < s and U(z) = 0 otherwise.

In the classic treatment of tunnel current by Simmons [32], the rectan-

gular shape of the potential barrier is modified to account for biasing and

the so-called image force experienced by a charged particle in the vicin-

ity of conductors, but these effects are ignored here for simplicity. On

the other hand, Simmons’s result is a barrier penetration calculation for

single-particle wave functions, and as such is not a suitable starting point

for theoretical modeling of, e. g., coherent tunneling processes involving

multiple electrons.

Due to the assumed homogeneity of the barrier in the xy plane, the 3D

wave function factorizes into ψ(r) = ϕ(x, y)φ(z), where the transverse

part ϕ(x, y) is the solution of a particle-in-a-box problem and φ(z) corre-

sponds to 1D barrier penetration. The transverse solutions read

ϕnm(x, y) =
2

a
sin(

nπ

a
x) sin(

μπ

a
y), Exy =

π2�2

2μa2
(n2 +m2), (2.10)

where n, m ∈ Z+ and the conductor boundaries are taken to lie at x, y = 0

and x, y = a. The longitudinal component of the wave function satisfies

− �
2

2μ
∂2zφ(z) + V (z)φ(z) = Ezφ(z). (2.11)

We look for solutions that are free-electron like in one of the leads (say, L)

and decay exponentially inside the barrier. Requiring a node of the wave

function at z = −L and first-order continuity at z = 0, we obtain a family

of solutions

ψL
q (z) =

⎧⎨
⎩−

√
2
L sin(kzz − θ) for z ≤ 0√
2
L sin(θ)e

−κz for z > 0
,

kz =
qπ − θ
L

, κ =

√
2μU0

�2
− k2z , tan θ =

kz
κ
, Ez =

�
2k2z
2μ

,

(2.12)

where q ∈ Z+. Long L limit was assumed above for state normalization.

The above choice of exponentially decaying wave functions in the forbid-

den lead (i. e., lead R for a state occupying mostly lead L, and vice versa)

is the same as originally employed by Bardeen [33]. Prada and Sols [34]

discuss different theoretical approaches to the problem of electron tun-

neling through NIS structures, and also use the "Bardeen model" as their

starting point with a more careful analysis of its range of validity than is

presented here.

Let us now return to the double sum over wave vectors k in Eq. (2.5).

Following Bardeen’s calculation, matrix elements between the standing

10
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wave states defined above can be evaluated as

Tkk′ = U0

∫
z>a

dr ψL
k (r)

∗ψR
k′(r) (2.13)

in the limit of vanishing energy difference Ek−Ek′ . We note that the tun-

neling matrix element vanishes between states with different transverse

momenta. For the sums in z direction with a continuum of momentum

states, we perform the standard substitution
∑

kz
→ L

π

∫
dkz and change

the integration variable to E = Exy + Ez. We arrive at

Γσ
L→R =

L2μ

π�3

∫ ∞

0
dEPL(E)

[
1− PR(E

′)
] ∑
n,m≥1

|Tkk′ |2√
EzE′z

, (2.14)

where E′ = E + eV . Finally, we evaluate the matrix elements by direct

integration. The occupation factors imply that only electrons within an

energy range of few times max{eV, kBT} from EF can participate in the

tunneling processes. The relevant energy scale over which the matrix el-

ements change is given by the barrier height measured from the Fermi

level, i. e., Φ0 = U0 − EF . In the limit of small bias voltages and tempera-

tures eV, kBT � Φ0, we can assume E = E′ ≈ EF when dealing with the

matrix elements. The tunneling rate can now be written as

ΓL→R =
1

2π�

∑
n,m≥1

σ

T

(
EF

U0
− π2�2

2μa2U0
(n2 +m2)

) ∫ ∞

0
dEPL(E)

[
1− PR(E

′)
]
,

(2.15)

T (εz) = 16 εz(1− εz)e−2s
√

2μU0
�2

(1−εz), (2.16)

where the summation over the spin index σ in Eq. (2.15) amounts to a

multiplication by factor 2. Physical interpretation can be given to the

different factors that constitute Eq. (2.15): The prefactor can be written as

1/(e2RK), where the von Klitzing constant RK is the electrical resistance

of one perfectly transmitting channel. Terms in the n,m-summation show

which longitudinal channels contribute to the tunnel conductance. Factor

T (εz) is equal to the penetration probability of an electron that impinges

orthogonally on the barrier with longitudinal kinetic energy Ez = εzU0.

Equation (2.16) for T (εz) has been published in, e. g., Ref. [34].

To describe the typical opaque AlOx barrier of this work, we take

μ = 0.5me, s = 1.1 nm and U0 = 2 eV based on Gloos et al. [35]. Sub-

stituting these values into Eq. 2.16, the transmission probability T (εz)

evaluates to 4×10−5. Furthermore, we note that T (εz) has an exponential

dependence on the longitudinal energy in the relevant energy range in

the vicinity of the Fermi level. Hence, majority of the tunneling electrons
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have small transverse momentum, i. e., the incident angle of tunneling

electrons is small. This is known as the focusing effect [36, 37]. To obtain

an analytical formula for the effective channel number, we expand T (ε) as

T (εF + δ) = T (εF ) e
s

√
2μU0

�2(1−εF )
δ
, (2.17)

where εF = EF /U0. We arrive at the channel number estimate

N =

∑
n,m≥1

σ
T (Ez/U0)

T (EF /U0)
≈

√
μΦ0

2π2s2�2
a2. (2.18)

We note that the final answer depends only on Φ0, and not on the absolute

barrier height U0 or the Fermi energyEF . The result can be also expressed

in terms of area per channel, which evaluates to 1.4 nm2 in the prototyp-

ical AlOx case based on the barrier parameters stated above. However,

one should be aware of the considerable scatter in the barrier parame-

ters reported in the literature. For Pub. VIII, we used d = 2 nm based

on high-resolution transmission electron microscopy (HRTEM) measure-

ments reported in Ref. [38], leading to a2/N = 2.5 nm2 instead.

2.2 Circuit considerations

2.2.1 P (E) theory

A thorough treatment of the electromagnetic environment and its cou-

pling to charge tunneling has been presented in great detail by Ingold

and Nazarov [21]. The resulting framework is known as the P (E) theory,

of which we will reproduce only the most essential results here.

In the network theory picture on which the theory is based, the junc-

tion is viewed simply as a capacitance Cj . Ideally, this models the parallel

plate capacitor formed by the junction electrodes and the insulating di-

electric. The possibility of charge transport between the capacitor plates

via tunneling is accounted for in a perturbative manner. For a quantum

description of such a circuit element, one introduces the operator Q for

the charge on the junction electrodes, and the phase operator ϕ conjugate

to it, defined as

ϕ(t) =
e

�

∫ t

−∞
dt′U(t′), (2.19)

where U = Q/Cj is the operator for voltage drop across the junction. The

tunneling Hamiltonian of Eq. (2.3) is modified to read

HT =
∑
k,k′

(
Tkk′a†kbk′e−iϕ + h. c.

)
. (2.20)
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The operator e−iϕ appearing in the above equation has the effect of chang-

ing the junction charge by e, as Qe−iϕ = e−iϕ(Q− e). After a Golden Rule

calculation similar to the one presented before, the tunneling rate formula

corresponding to Eq. (2.7) can be shown to assume the form

ΓL→R =
1

e2RT

∫ ∞

−∞
dλ

∫ ∞

−∞
dEfL(E)nL(E)

[1− fR(E + λ)]nR(E + λ)P (eV − λ), (2.21)

where P (E) can be interpreted as the probability density to emit energy E

into the environmental modes in the tunneling process. Negative values

of E correspond to energy absorption. The above parametrization of the

double integral was chosen to show explicitly that the P (E) function acts

as a convolution kernel when evaluating Γ(eV ). In the most general case,

the function P (E) can be calculated as the Fourier transform

P (E) =
1

2π�

∫ ∞

−∞
dt e

i
�
Et

〈
eiϕ̃(t)e−iϕ̃(0)

〉
R
, (2.22)

where ϕ̃(t) = ϕ(t) − V t is the fluctuating part of the phase over the junc-

tion, and the ensemble average 〈. . .〉R is taken over realizations of the

noisy environment. Sometimes, the word ‘reservoir’ is used to emphasize

the fact that the environment is composed of a large number of degrees of

freedom, and can absorb or emit energy to the studied system without a

noticeable change in the state of the reservoir.

It can be shown that
∫∞
−∞ dE P (E) = 1 always, enabling its interpreta-

tion as a probability density. It is also possible to write the P (E) in a

form where the probability to emit or absorb k photons at specific envi-

ronmental modes appears explicitly (see, e. g., Ch. 20.2.2 of Ref. [39]). The

phenomenon where a tunneling event is associated with absorption of a

photon from the environment is generally referred to as photon-assisted

tunneling (PAT). The P (E) function for an equilibrium environment at

temperature T satisfies a detailed balance relation

P (−E) = e−E/kBTP (E). (2.23)

For completeness, we note that calculations going beyond the network

theory approximation have been presented in, e. g., Ref. [40] and the ap-

pendices of Ref. [21], where propagation of electrons and electric fields in

the electrodes is explicitly included in the model.

Above, the problem of describing the environmental influence was re-

duced to the evaluation of the phase-correlation function appearing in
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Eq. (2.22). The standard continuation here is to invoke the equality〈
eiϕ̃(t)e−iϕ̃(0)

〉
R
= eJ(t), (2.24)

where the correlation function J(t) is defined as

J(t) = 〈[ϕ̃(t)− ϕ̃(0)]ϕ̃(0)〉R . (2.25)

Equation (2.24) can be proven using Wick’s theorem [21] provided that the

ensemble average is taken over an equilibrium distribution of the reser-

voir.

Weak noise limit — In the context of this thesis, the P (E) formalism is

applied in cases where environmental fluctuations are coupled weakly to

the junction. For physical insight, we will expand Eq. (2.24) to first order

in J(t) and substitute back to Eq. (2.22) to obtain

P (E) =
[
1− 〈

ϕ̃(0)2
〉
R

]
δ(E) +

1

2π�

∫ ∞

−∞
dt e

i
�
Et 〈ϕ̃(t)ϕ̃(0)〉R , (2.26)

assuming the correlator
〈
ϕ̃(0)2

〉
R
is finite. The same expression can be

obtained by assuming ϕ̃(t) � 1 and expanding Eq. (2.24) to second order

in ϕ̃. Integration over E shows that the result is properly normalized.

The form is thus appropriate for description of rare interactions caused

by weak noise. We can write the result for E 
= 0 in terms of the spectral

density of phase or voltage fluctuations as

P (E) =
1

2π�
Sϕ̃ϕ̃[E/�] =

π

RKE2
SV (E/h), (2.27)

where we have used the notation of Clerk et al. [41] for the phase noise,

and Martinis et al. [42] for the voltage noise. The relationship between

phase and voltage noise follows from the definition of ϕ̃ and the Wiener-

Khinchin theorem, which relates the spectral density to Fourier compo-

nents. The expression for P (E) in terms of SV (f) has been presented in,

e. g., Ref. [42]. We identify the possibility to use the tunneling current as

a spectrometer of the environmental noise, provided that the shape of the

Γ(V ) [or I(V )] dependence is such that the P (E) can be deconvoluted from

the measurement results. In Ref. [43] by Basset et al., fluctuation spec-

troscopy was demonstrated in the Cooper pair and quasiparticle branches

of the I(V ) characteristic of Josephson junction.

Noise from an electrical impedance — Another essential result for the

theoretical basis of this thesis is an expression for the phase correlation

function J(t) of equilibrium noise originating from the electrical circuit
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Z(!)Z(!)

Zt(!)Zt(!)

CjCj

Figure 2.3. The impedance Zt(ω) determining the tunneling charge dynamics is that of
a parallel connection of junction capacitance Cj and the impedance Z(ω) of
the embedding circuit as seen from the junction electrodes.

into which the junction is embedded. The result depends only on the total

impedance Zt(ω), defined as

Zt(ω) =
1

iωCj + Z(ω)−1
, (2.28)

where Z(ω) is the impedance of the surrounding electrical circuit as seen

from the junction, as illustrated in Fig. 2.3. Zt(ω) is the impedance that

describes the relaxation of charge across the junction created by, e. g., an

instantaneous tunneling of an electron across the barrier. For the charge

relaxation process, the junction appears as a purely capacitive element.

However, it should be noted that for realistic sample geometries, the ef-

fective shunt capacitance appearing in Zt(ω) includes in addition to Cj

(∼ 1 fF) some fraction of the much bigger lead capacitance (up to 10 pF in

Pub. IV).

In a complete quantum treatment, the Hamiltonian should include a

term Henv describing the internal dynamics of the electrical environment

and the coupling to the junction coordinates Q and ϕ. The Caldeira–

Leggett Hamiltonian [44] allows an arbitrary environmental impedance

Z(ω) to be modeled by a family of harmonic oscillators. However, the

relevant phase correlator can be evaluated by an application of the

Fluctuation-Dissipation Theorem (FDT) [45] without constructing Henv

explicitly. The result is [21]

J(t) = 2

∫ ∞

−∞
dω

ω

Re[Zt(ω)]

RK

e−iωt − 1

1− e−β�ω . (2.29)
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Using Eqs. (2.24) and (2.29), the P (E) function for an arbitrary impedance

Zt(ω) can be evaluated by performing two nested integrals. In general,

the integrals cannot be performed in closed form, and one must resort to

numerical techniques. In the special case that limω→0
Re[Zt(ω)]

ω is finite –

in practice meaning that the junction is inductively shunted – a linear

expansion to first order in Re[Zt(ω)]
RK

can be performed, yielding

P (E) =
2

E

Re[Zt(E/�)]

RK

1

1− e−βE (2.30)

for E 
= 0, in agreement with Ref. [42]. In Ref. [46], the zero-temperature

limit of the above formula is shown to hold for a general Zt(ω) and suffi-

ciently large E. We stress that zero-temperature (quantum) fluctuations

of the environment cannot emit energy, and hence cannot enable tunnel-

ing electrons to overcome energy barriers created by charging effects or

the superconducting energy gap.

In the supplemental material of Pub. IV, we treat algebraically the ex-

perimentally relevant case of a finite-temperature dissipative element,

which we model as parallel RC circuit. The exact result for J(t) reads

J(t) =
ρ

2

[
cot(B)

(
1− e|τ |

)
− |τ |
B

− 2
∞∑
n=1

1− e−nπ|τ |/B
nπ [1− (nπ/B)2]

− i sign (τ)(1− e−|τ |)
]
, (2.31)

where ρ = 2πR/RK , τ = t/(RC), and B = �/(2kBTenvRC). The above

series representation can be employed in numerical calculations. Fur-

thermore, in the limit |E| � kBTenv, �/(RC) and ρ � 1, one obtains a

particularly simple analytic result

P (E) =
1

π

ρkBTenv
(ρkBTenv)2 + E2

. (2.32)

One should note that the above approximation does not capture the cor-

rect asymptotic behavior for large E. From Eq. (2.30), one expects an

exponential e−|E|/kBT cutoff for large negative E, and an algebraic 1/E3

decay for positive E. The Lorentzian form of Eq. (2.32) is nevertheless

useful for describing sub-gap I(V ) features of an NIS junction irradiated

by the Nyquist noise of a weakly coupled hot (Tenv � Δ/kB) resistor. This

case was studied in detail in Pub. IV.

Furthermore, we demonstrated that engineering a capacitive shunt

close to the junction increases the effective C in the environmental

impedance, reducing the coupling of harmful high-energy photons to the

junction. Note that the capacitance C does not appear in Eq. (2.32), but
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Figure 2.4. Exact and approximative P (E) functions for an RC environment with R =

2 Ω and C = 1 pF at temperature Tenv = 4 K. The right panel is a close-
up of the behavior close to zero energy. The thick black curve is an exact
result calculated by evaluating J(t) from Eq. (2.31) numerically with high
resolution, and then taking the Fourier transform. Red and blue curves are
the approximate results from Eqs. (2.30) and (2.32), respectively. The result
of Eq. (2.30) tends to infinity at E = 0.

increasing the environmental RC product narrows the range of energies

where it is valid. Figure 2.4 illustrates the P (E) functions calculated

with the approximative formulas of Eqs. (2.30) and (2.32), and the ex-

act numerical result based on Eq. (2.31) for a typical RC environment of

Pub. IV. The sub-gap current in the experiments in the low-temperature

limit is determined by the values of the P (E) function in the energy range

−Δ < E < 0. Detailed interpretation of experimental I(V ) and Γ(eV )

curves in the context of PAT is discussed in Sec. 4.2.

Composite fluctuations – The fluctuations coupling to a tunnel junction

in a real low-temperature experiment can originate from multiple inde-

pendent sources. The possibilities include equilibrium noise from cir-

cuit elements at different temperature stages of the cryostat, and non-

equilibrium noise from actively driven components. Let us the consider

the case when the total phase fluctuation is a sum of independent compo-

nents, i. e., ϕ̃ = ϕ̃1 + . . .+ ϕ̃n with [ϕ̃i, ϕ̃j ] = 0. It follows immediately from

Eq. (2.22) that the total P (E) function is then the convolution

P = P1 ∗ . . . ∗ Pn, (2.33)

where Pi is the P (E) function evaluated for fluctuator ϕ̃i alone.

In the case of a remote noise source, for example, it can be useful to con-

sider separately the source fluctuations and the transfer function from
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the source to the junction under study. A frequency-independent scaling

of voltage (or, equivalently, phase) fluctuations by a factor ξ has the same

effect as replacing the impedance Zt(ω) by ξ2Zt(ω). A practical way to re-

alize such voltage division is by a linear chain of tunnel junctions. This

idea has been employed in earlier works for reducing the susceptibility of

CBT temperature sensors to environmental fluctuations [47]. Consider a

chain of N identical tunnel junctions with capacitance C in an environ-

ment described by resistance R. Direct evaluation of the impedance seen

by one tunnel junction gives

Zt(ω) =
R

(ωRC)2 +N2
. (2.34)

We can arrive at the same expression from the voltage division viewpoint:

the chain as a whole is equivalent to a capacitance C/N , but each junc-

tions feels only a fraction ξ = 1/N of the fluctuations over the chain.

Hence, Zt(ω) = N−2 R
(ωRC/N)2+1

, in agreement with Eq. (2.34) above. In

the limit N → ∞, the behavior approaches that of an ideal voltage bias.

In the range of validity of Eq. (2.30), a similar relation can be written for

a frequency-dependent attenuation ξ(ω). In the case of an electrical cir-

cuit containing sub-circuits at different temperatures, the P (E) functions

can be evaluated independently for the sub-circuits taking into account

the transfer function realized by the rest of the circuit. This "compos-

ite" scheme was used for modeling the electrical environment of Pub. VII,

which consisted of an on-chip resistor and unwanted microwave radiation

leaking from higher-temperature parts of the cryostat into the sample

stage.

2.2.2 Charging energy

The electrostatic energy stored in a capacitor is Q2/(2C), where Q is the

charge transferred between the capacitor plates and C is the capacitance.

Substituting elementary charge e for Q, we obtain an energy scale for

single-electron charging effects that we will refer to as charging energy1,

Ec =
e2

2C
. (2.35)

The condition where electronic transport is suppressed due to an energy

barrier created by charging effects is called Coulomb blockade. According

to a history of single-electronics presented in Ref. [50], charging effects in

1Note that Ec is sometimes defined as 2e2/C in works involving Cooper pair
tunneling [48], and also e2/C is used by some authors [49].
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Figure 2.5. Capacitance network with N = 2 islands and M = 6 voltage terminals
corresponding to two capacitively coupled SETs.

electrical transport were first observed as a zero-bias dip in conductance

of granular metal films [51, 52, 53, 54]. However, a lithographical way of

defining the geometrical arrangement of conductors and tunnel junctions

is needed for realizing devices with more complex logical functions. The

fabrication process of tunnel junctions utilized in this thesis is based on

that developed by Fulton and Dolan [55, 7], and is explained in detail in

Sec. 3.1.

For an illustrative reasoning about the energy scales relevant for single-

electron devices, we take C = 1 fF for a typical capacitance in lithographi-

cally realized structures. The resulting Ec is 1.3×10−23 J. We can then in-

fer the following necessary conditions for observing strong Coulomb block-

ade in a tunnel junction device: temperature T < Ec/kB = 0.9 K, bias

voltage V < Ec/e = 80 μeV, and shielding of junction from photon irradi-

ation for frequencies f > Ec/h = 20 GHz. To exclude also k-photon pro-

cesses for k > 1, the shielding should be effective already for frequencies

f > Ec/(kh).

We will now derive a general expression for the change in the energy of

a tunneling quasiparticle due to charging effects. Let there be N metallic

islands andM voltage terminals. We will use subscript i for the terminals,

and subscripts j and k for the islands. The relevant information about

the geometry of the system is encoded in capacitance matrices C and C0

such that the capacitance between islands j and k is given by Cjk, and

the capacitance between island j and terminal i by C0
ji. The diagonal

term Cjj describes the self-capacitance of island j, i. e., the capacitance

to a ground potential surrounding the island at an infinite distance. By

definition, C is symmetric. For island j, we denote the potential by vj and
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the total charge by qj . The electric potential of terminal i is kept at Vi by

an ideal voltage source. Illustration of a two-island configuration is given

in Fig. 2.5.

We seek to describe the electrostatic energy of the system as a function

of the voltages Vi and island charges qj . Charge conservation for island j

gives ∑
k

Cjk(vj − vk) +
∑
i

C0
ji(vj − Vj) = qj , (2.36)

or, equivalently,(∑
k

Cjk +
∑
i

C0
ji

)
︸ ︷︷ ︸

CΣ
jj

vj −
∑
k

Cjkvk = qj +
∑
i

C0
jiVi. (2.37)

We introduce the diagonal matrix CΣ whose elements are defined as indi-

cated above. Furthermore, we define matrix A = CΣ − C. Eq. (2.37) can

be written equivalently in matrix form as

Av = q + C0V , (2.38)

where the bold symbols are column vectors with a row for each island.

The above equation gives a mapping between island charges and island

voltages. The electrostatic energy U of the system is contained in the

capacitors,

U =
1

2

∑
jk

1

2
Cjk(vj − vk)2 +

∑
ij

1

2
C0
ji(vj − Vi)2. (2.39)

Note that each island pair is counted twice in the first summation, hence

the factor 1/2. Let us expand Eq. (2.39) as

U =
1

2

∑
j

(∑
k

Cjk +
∑
i

C0
ji

)
v2j −

1

2

∑
jk

vjCjkvk −
∑
ij

ViC
0
jivj + const.

(2.40)

The constant term is a function of the external voltages Vi only, and can

be neglected. From the above equation, we identify the matrix form

U =
1

2
v�Av − v�C0V . (2.41)

Let us now consider a tunneling event where the charge state is changed

from q to q + δq. Incidentally, the potential is changed from v to v + δv.

First, we consider the case where a quasiparticle is transferred between

two islands, say, from k to k′. The work done by a voltage source is equal

to its voltage times the transferred charge. Thus, the work done by all the

sources is

W = −
∑
ij

C0
jiδvjVi = −δv�C0V . (2.42)
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The change in electrostatic energy is obtained from Eq. (2.41) as

ΔU = δv�Av +
1

2
δv�Aδv − δv�C0V , (2.43)

where we have utilized the fact that A symmetric. Subtracting Eq. (2.43)

from (2.42), we obtain the amount by which the energy of the quasiparticle

is changed,

ΔE =W −ΔU = −δv�A
(
v +

1

2
δv

)
= −δq�A−1

(
q +

1

2
δq + C0V

)
.

(2.44)

The rightmost form in the above equation inspires us to define a charging

energy potential Fc as

Fc =
1

2

(
q + C0V

)�
A−1

(
q + C0V

)
, (2.45)

so that ΔE = −ΔFc for tunneling between two islands. Next, we consider

tunneling between a voltage terminal and an island. If the electron is

extracted from (deposited to) terminal i, ±e should be added to the charge
transferred from terminal i in Eq. (2.42). Thus, for tunneling from (to)

terminal i, we have

ΔE = ±eVi −ΔFc. (2.46)

Finally, we may express the island charges qj in terms of the number of

elementary charges nj deposited on the island, qj = enj , assuming the

islands are initially neutral.

The potential Fc defined by Eq. (2.45) is a quadratic polynomial of the

variables nj . For any index j, it can be written as

Fc = Ec,j(nj − ng,j)2 + Cj , (2.47)

where Ec,j is interpreted as the charging energy for island j, and ng,j is

the effective gate charge that depends on the voltages Vi and charge states

of the other islands nk, k 
= j. The constant Cj contains terms without

nj dependence, which consequently do not affect the charge dynamics of

island j. It is now evident from the forms of Eqs. (2.45) and (2.47) that

one can tune the energy landscape of different {nj} configurations via the
macroscopic voltages Vi. The effect of voltage terminal Vi on island j is

mediated as the induced gate charge term C0
jiVi.
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Figure 2.6. BCS gap of thin film aluminum as a function of temperature as determined
by tunneling spectroscopy performed with an NIS junction. Using the theory
of Sec. 2.3.2, we fitted either Δ (black spheres), or Δ and TN (red squares)
from the observed I–V characteristics of the junction at different bath tem-
peratures. Dashed line is the BCS theory prediction inferred from Eq. 2.50
with Δ = 250 μeV in the weak coupling limit kBTc/(�ωc) � 1. The inset
shows the fitted TN values versus the bath temperature, illustrating that the
methods for determining the bath and junction temperatures are consistent
at least in the temperature range 0.25 K < T < 1.3 K, and that the normal
electrode in this experiment was subject to a residual heating that caused its
temperature to saturate around 200 mK.

2.3 Superconducting structures

2.3.1 Quasiparticles in BCS superconductors

Vanishing electrical resistance and the ability to repel magnetic fields are

signatures of superconductivity that can be easily perceived at the macro-

scopic scale [56]. In more sophisticated structures, further unique phe-

nomena pertaining to the quantum mechanical coherence properties of

superconductors can be observed. At the microscopic level, superconduc-

tivity can be understood through Bardeen-Cooper-Schrieffer (BCS) the-

ory [57, 58]. The theory predicts that an attractive interaction between

conduction electrons will result in the realization of a superconducting

ground state through the condensation of Cooper pairs, i. e., bound states
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of two electrons. The origin of the attractive interaction between elec-

trons is their coupling to the lattice phonons. Two characteristic features

of the superconducting state are a finite, material-dependent energy gap

Δ against single-electron excitations, and a complex-valued order param-

eter with a well-defined phase.

From the BCS theory, the elementary excitations in a superconductor

are known to be Bogoliubov quasiparticles. In the microscopic description,

they consist of a phase-coherent pair of an electron and a hole having op-

posite wave vectors and spins. However, physical phenomena related to

single-quasiparticle tunneling between a superconductor and a normal

metal can be analyzed without an explicit treatment of the coherence fac-

tors. In the so-called semiconductor model [56], the essential property of

superconducting electrode is its energy-dependent density of the quasi-

particle states. The BCS expression for the quasiparticle density of states

reads

NS(E) = N0
|E|√

E2 −Δ2
Θ(|E| − |Δ|), (2.48)

where the energy E is taken relative to the Fermi level, and N0 is the

density of states in the normal state. For aluminum, N0 = 1.45 ×
1047 m−3J−1 [1, 59]. From a device perspective, the most crucial features

of NS as defined in Eq. (2.48) are the complete absence of quasiparticle

states for |E| < Δ, and the singularities at |E| = Δ. However, many re-

cent transport experiments on tunnel junctions [60, 61, 62, 63, 64], also

see Ref. [65] and the references within, display behavior that is better

described by a phenomenological life-time broadened expression

NS(E) = N0

∣∣∣∣∣Re
[

E + iΓ√
(E + iΓ)2 −Δ2

]∣∣∣∣∣ , (2.49)

where Γ, or its dimensionless equivalent γ = Γ/Δ, is called the Dynes

parameter. Values for γ in the cited studies fall in the range 10−2 . . . 10−6.

The simple life-time broadened expression was originally introduced by

Dynes et al. for studies of superconductivity in Pb–Bi-alloys [17], and later

in granular aluminum films [18]. Particularly in Ref. [17], the experimen-

tally measured broadening terms Γ were found to be in good agreement

with the theoretically estimated quasiparticle recombination times τr for

τr � 2× 10−10 s.

A finite Dynes parameter induces a quasiparticle density of states equal

to γN0 at the midpoint of the gap. In transport measurements, this would

appear as a leakage channel in parallel with the ideal BCS junction.

When analyzing experimental I–V characteristics, the fitted value of γ
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is sometimes interpreted as an indicator of junction quality on the basis

that low-quality junctions often display large sub-gap leakage. As one of

the main results of this thesis, we will show that the inherent limit for the

γ parameter in opaque Cu/Al junctions fabricated with the standard pro-

cess, if such a limit exists, is not larger than 1.6× 10−7. Leakage currents

observed in typical transport measurements can be attributed to mech-

anisms other than real sub-gap states, some of which we will discuss in

Secs. 4.2 and 4.3.

The temperature behavior of the gap parameter Δ can be inferred from

the relation [56]

1

N0V
=

∫
�ωc

0

tanh
[√

ε2 +Δ2/(2kBT )
]

√
ε2 +Δ2

dε, (2.50)

where T is the temperature, and �ωc and V describe the cut-off energy

and strength of the attractive electron-electron interaction. The expected

behavior is that Δ achieves its maximum value at T = 0, and vanishes at

a critical temperature Tc. The Tc of bulk aluminum is 1.2 K [66], whereas

the figures observed in thin films are generally higher depending on film

thickness, grain size, and oxygen impurity concentration [67, 59, 68]. For

weak-coupling superconductors with kBTc/(�ωc)� 1, one has the relation

Δ(0) � 1.76 kBTc (2.51)

that links the zero-temperature gap and the critical temperature. In

Fig. 2.6, we show the measured superconducting gap of an aluminum thin

film in the temperature range 0.05 − 1.3 K. The experimental value of Δ

was determined by a fit to the measured I–V characteristic of a Cu/Al NIS

junction. The data agrees quite well with the theoretical curve obtained

from a numerical solution of Eq. (2.50) for Δ = 250 μeV.

2.3.2 The NIS junction

In this section, we will consider electric transport through an NIS junc-

tion in the framework of orthodox theory laid down in the previous chap-

ters. The basic results are expressions for the electric and heat currents

in terms of the change in energy for a tunneling quasiparticle, denoted

by E. In the most elementary case of a low-impedance voltage bias, the

change in energy is equal to ±eV , where the sign is chosen according

to whether the quasiparticle tunnels in the direction of the bias (+) or

against it (−). In the model, the electric transport through the junction is

described by only two parameters: the tunneling resistance RT [discussed
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Figure 2.7. (a) Schematic illustration of electron transport through a NIS junction. The
shaded regions represent the Fermi-Dirac distribution in the normal elec-
trode (left), and the superconducting quasiparticle density of states accord-
ing to BCS theory (right). The Fermi levels EF in the two electrodes are
indicated by the dashed lines, and they are shifted relative to each other by
an applied voltage bias V . The panels on the right show electric current (b)
and heat flow to the normal metal (c) through an NIS junction as a function of
bias voltage at different temperatures calculated from orthodox theory with
no sub-gap states. In the order of decreasing current and cooling power, the
temperatures are 0.25Tc, 0.2Tc, 0.15Tc, 0.1Tc, and 0.05Tc.

in detail in Sec. (2.1.2)], and the gap parameter Δ of the superconduct-

ing lead [see Sec. (2.3.1)]. Despite the apparent simplicity of the model,

it can produce quantitatively correct predictions in many experimentally

interesting cases.

In the NIS case, the general result of Eq. (2.7) yields

ΓN→S(E) =
1

e2RT

∫ ∞

−∞
dE′ nS(E′ + E)[1− fS(E′ + E)]fN(E

′), (2.52)

ΓS→N(E) =
1

e2RT

∫ ∞

−∞
dE′ nS(E′)fS(E′)[1− fN(E′ + E)], (2.53)

where nS(E) is the normalized BCS density of states [see Sec. 2.3.1], and

fS(E) and fN(E) are the quasiparticle occupation factors for the supercon-

ductor and normal metal. We assume that the quasiparticles in the nor-

mal and superconducting electrodes are in quasi-equilibrium, i. e., they

follow a Fermi-Dirac distribution at some temperatures TN and TS, re-

spectively. Under theses assumptions, Fig 2.7(a) illustrates the density of

states and occupation factors on both sides of an NIS junction.

It follows from basic symmetries of fN, fS and nS that ΓN→S(E) and

ΓS→N (E) are equal. Hence, we can drop the subscripts and consider a

single quasiparticle transition rate Γ(E). For a voltage-biased junction,
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the time-averaged current through the junction is related to the transition

rates by

I(V ) = e[Γ(eV )− Γ(−eV )]. (2.54)

Figure 2.7(b) displays the theoretical large-scale I–V characteristic at dif-

ferent temperatures. Approximately at voltage ±Δ/e, which we will refer

to as the gap voltage, one finds an onset of current which becomes sharper

as the temperature is decreased.

For many applications, it is important to consider the heat carried by

the quasiparticles as well. A single quasiparticle of energy E deposited to

(extracted from) an electrode adds (removes) an amount E − EF of heat.

The integrands of Eqs. (2.52) and (2.53) yield the distribution of energy

for the tunneling quasiparticles. Consequently, we obtain the following

integral forms for the average heat power incident on electrode N

Q̇N
N→S(E) = −

1

e2RT

∫ ∞

−∞
dE′E′nS(E′ + E)[1− fS(E′ + E)]fN(E

′), (2.55)

Q̇N
S→N(E) =

1

e2RT

∫ ∞

−∞
dE′ (E′ + E)nS(E

′)fS(E′)[1− fN(E′ + E)]. (2.56)

Again, by symmetry, one has Q̇N
S→N(E) = Q̇N

N→S(E) and we drop the sub-

scripts. Furthermore, we have the relation

Q̇S(E) = −Q̇N(E) + EΓ(E) (2.57)

that can be derived by algebraic manipulation or by considering conser-

vation of energy. The total heat load on each electrode of a voltage biased

junction is obtained by summing up both tunneling directions, i. e.,

Q̇N
tot(V ) = Q̇N(eV ) + Q̇N(−eV ), (2.58)

Q̇S
tot(V ) = −Q̇N

tot(V ) + I(V )V. (2.59)

A peculiar property of the NIS junctions is that for bias voltages slightly

less than the gap voltage Δ/e, one finds a region where Q̇N
tot(V ) is nega-

tive, i. e., the normal electrode is cooled. Considering the preceding dis-

cussion on the heat carried by tunneling quasiparticles, it is evident that

cooling can be brought upon by extracting quasiparticles from above the

Fermi level or depositing them below it. In Fig. 2.7(c), we show the sim-

ulated total heat flow to the normal electrode as a function of voltage at

different temperatures.

Equations (2.52)–(2.59) allow the electric and heat currents through an

NIS junction to be evaluated for different bias voltages V and electrode

temperatures TS and TN. The associated integrals cannot be evaluated
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Figure 2.8. Determining the density of non-equilibrium quasiparticles from tunneling
rate data of Pub. IX. Red spherical markers are data from a sample with
direct NS-contacts for quasiparticle evacuation, whereas the green triangle
markers correspond to a sample where quasiparticle evacuation occurs solely
through the tunneling barrier oxide to the overlapping normal metal shadow.
The thick dashed horizontal lines show the bias-independent tunneling rates
induced by the stated densities of non-equilibrium quasiparticles according
to Eq. (2.63). Relevant sample parameters here are N0 = 1.45 × 1047 and
RT = 0.55 MΩ, accounting for the parallel connection of the two 1.1 MΩ

junctions of the SET.

exactly in closed form, mandating the use of numerical methods for a di-

rect application of the model. However, analytical approximations exist

for different operation points, and the ones most relevant to the subse-

quent experiments are discussed below. A more extensive treatment of

the NIS transport integrals is given in Ref. [69].

In anticipation of electron counting experiments and measurements per-

formed on Coulomb blockaded NIS devices, the primary quantity we are

interested in is the directional tunneling rate Γ(E) instead of the I(V ) de-

pendence. When the energy gain in tunneling is large compared to Δ, the

tunneling rates are the same as for a fully normal junction,

Γ(E) =
E

e2RT
for E � Δ. (2.60)

The sub-gap behavior of a junction with electrodes thermalized to

TS, TN � Δ/kB is captured well by the following approximation:

Γ(E) =
Δ

e2RT

[
K1(

Δ

kBTS
) + eE/kBTNK1(

Δ

kBTN
)

]
, for |E| � Δ (2.61)

where K denotes the modified Bessel function of the second kind. Equa-

tion (2.61) illustrates that in the range 0 < E < Δ, there is a region where
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the tunneling rate has an exponential dependence on E/(kBTN ). On the

other hand, the effect of a finite TS is to add a constant "background" rate

that has no energy dependence for |E| � Δ. These properties enable NIS

junctions to be used as sensitive probes of the electron temperature of

the normal electrode. Assuming TN = TS = T , Eq. (2.61) can be further

simplified into

Γ(E) =

√
πkBTΔ

2

e−Δ/(kBT )

e2RT

[
1 + eE/(kBT )

]
(2.62)

by replacing the Bessel function by the first term in its asymptotic series

expansion.

While TS term of Eq. (2.61) has no influence on the total current e[Γ(E)+

Γ(−E)] due to the lack of bias dependence, the tunneling events described

by it are real and can be detected in an electron counting experiment.

Consistently with Refs. [59] and [70], we define the volumetric density of

quasiparticles as

nqp = 2N0

∫ ∞

Δ
dEnS(e)fS(E), (2.63)

where N0 is the density of electronic states at Fermi level in the normal

state. Now, the TS term of Eq. (2.61) can be written in terms of nqp as

Γnqp =
1

e2RT

∫ ∞

Δ
dE′nS(E′)fS(E′) (2.64)

=
nqp

2e2RTN0
. (2.65)

Since N0 is a material parameter, and the junction resistance RT can be

calibrated from other measurements, nqp can be reliably inferred from

the observed value of Γnqp. The insensitivity of Γnqp to biasing conditions

enables one to distinguish it from other sub-gap processes. In Fig. 2.8,

we show a part of the measured sub-gap rates reported in Pub. IX. In the

dataset for the sample having an effective quasiparticle trap, no plateau

is observed and an upper bound of nqp < 0.033 μm−3 can be inferred. In

contrast, a clear plateau corresponding to nqp = 0.69 μm−3 is observed for

the reference sample lacking such a trap.

For describing cooler devices, approximations of the heat flow integral in

Eq. (2.55) are important. The basic result, valid at TN, TS � Δ/kB, is that

the cooling power of a single NIS junction assumes its maximum value of

Q̇N
opt = −0.59

Δ1/2(kBT )
3/2

e2RT
(2.66)

at the bias voltage given by

Vopt = (Δ− 0.66kBT )/e. (2.67)
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In Sec. 4.1, we discuss cooler devices that exhibit significant charging ef-

fects. For these devices, the analysis of steady-state electric and heat

transport can be carried out by considering typical trajectories in the

charge configuration space, or by master equation methods. In both ap-

proaches, an essential quantity is the average heat 〈Q〉 carried by a quasi-
particle as a function of the energy E. From Eqs. (2.52), (2.55), and (2.57),

we find

〈
QN(E)

〉
=
Q̇N(E)

ΓN(E)
≈ E −Δ− (1 + ξ)kBT

2
, (2.68)

〈
QS(E)

〉
= − 〈

QN(E)
〉
+ E, (2.69)

where the coefficient ξ in the analytical approximation of
〈
QN(E)

〉
is a

slowly increasing function of (E − Δ)/kBT , which vanishes in the limit

E → −∞ and is approximately equal to 0.26 at E = Δ. A cooler device

operating near the optimum bias of Eq. (2.67) thus extracts about kBT of

heat from the normal electrode per each tunneling electron.

To finish our theoretical overview of quasiparticle transport in NIS

structures, we address the rate parameter for the two-electron Andreev

process. For any device whose mode of operation is based on the sequen-

tial single-electron tunneling picture, coherent multi-electron processes

constitute a mechanism for unwanted current leaks through the device.

For electron pumps, for example, the lowest-order process that persists in

the T → 0 limit sets the fundamental accuracy of the device. In Ref. [71],

Averin and Pekola analyze the theoretical rates of multi-electron pro-

cesses in NISIN and SINIS-type single-electron transistors. They find

that two-electron Andreev tunneling is the dominating higher-order pro-

cess in a SINIS SET with Ec < Δ. Earlier, it was shown that Andreev-

induced leakage can be observed in the I–V characteristics of high-quality

NIS junctions [65]. In this process, two electrons forming a Cooper pair

are transferred coherently through the junction in either direction. Since

no quasiparticle excitations are created in the superconductor, the thresh-

old energy is zero.

In the experiments of this thesis, 2e Andreev processes were observed

in SINIS-type SETs and NIS-type single-electron boxes. The theoretical

analysis of Ref. [71] was performed in the same quasi-1d ballistic geome-

try that we utilized in Sec. 2.1.2. The resulting expression for rate param-
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eter as a function of the change in electrostatic energy E reads

Γ2e(E) =
1

e2RT
× g

16πN
∫
dE′ f(E′ − E/2)f(−E′ − E/2)

×
∣∣∣∣∣∑± a(±E′ + Ec − iγ1/2)

∣∣∣∣∣
2

, (2.70)

a(E) =
Δ√

E2 −Δ2
ln

[
Δ− E +

√
E2 −Δ2

Δ− E −√E2 −Δ2

]
, (2.71)

where g = �/(RTe
2) is the normalized conductance of the junction, N is

the number of transport modes, and γ1 is a life-time broadening param-

eter. The origin of the life-time term γ1 are the competing one-electron

processes, but in practice the dependence of the rate parameter on γ1 is

weak, and a convenient small number can be used to suppress the diver-

gences of the a(E) term. We present quantitative results calculated with

Eqs. (2.70)–(2.71) in Sec. 4.3.

Compared to the single-electron rate of Eq. (2.52), the prefactor for the

Andreev rate has an additional dependence on the quantity ζ = g/N ,

i. e., the normalized conductance per transport mode. Since both g and

N are proportional to the junction area, the parameter ζ depends on the

properties of the tunneling barrier only. From our previous treatment of

first-order quasi-1d tunneling [see Eq. (2.15)], we find ζ = T/(2π), where

T is the barrier penetration probability for a quasiparticle with longitu-

dinal energy EF . However, the barrier parameters needed to estimate T

according to Eq. (2.16) are difficult to determine experimentally. Alterna-

tively, one can write

ζ =
�

e2
× Ach

RTA
, (2.72)

where Ach is a phenomenological parameter describing the area of one

quantum channel. In Pub. VIII, we obtained ζ = 4×10−5 for a device with
RTA = 2.8 kΩμm2 (junction size 40 nm × 35 nm), yielding Ach = 30 nm2.

A further analysis of the data from Pub. IX, presented in Sec. 4.3, gives

ζ = 10−5 andRTA = 14 kΩμm2 (junction size 110 nm×110 nm), resulting in
Ach = 35 nm2 for a device fabricated with the same fabrication process but

different process parameters. We recall the theoretical estimates Ach =

1.4 nm2 and 2.5 nm2, which we obtained earlier based on Eq. (2.18) and

different parameters of AlOx barriers reported in the literature. The large

discrepancy between the theoretical and experimental values suggests a

hypothesis that only 4–8% of the junction area participates actively in the

tunneling process. At the microscopic level, this would follow from small

variations in the thickness of the barrier oxide.
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Figure 2.9. Schematic model of the heat flows in a mesoscopic NIS junction device.

However, it is theoretically known [31] and has been experimentally ob-

served [72, 73, 74] that a phase-coherent, diffusive motion of quasiparti-

cles in the electrodes can result in interference effects that increase the

probability of two-electron Andreev tunneling. It is then interesting to

compare our results to those of Greibe et al. [65] obtained for somewhat

larger Al/AlOx/Cu junctions up to 400 × 400 nm in size. Analyzing the ob-

served subgap conductance curves within a theoretical model of diffusive

Andreev tunneling, they infer a participation ratio of 13%, i. e., approxi-

mately twice as large as the figure we report. In light of these numbers,

our devices may operate in a regime where the ballistic and diffusive con-

tributions are of equal magnitude.

2.4 Heat flows in mesoscopic systems

In the design of any low-temperature experiment, thermal insulation and

thermal anchoring are central topics. Issues related to thermalization are

pronounced in the field of mesoscopic physics, where sample volumes and

cross-sectional areas are small, and in experiments with superconducting

components, owing to the vanishing electronic heat conductance. Figure

2.9 illustrates the relevant thermal reservoirs in a typical NIS junction

device, such as an electronic cooler. We will only consider steady-state

heat flows, in which case the heat capacities do not play a role in the

analysis.

First, we address the electron system of the normal metal electrode, and

its coupling to the lattice phonons. In the quasiclassical diffusive limit as
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defined in, e. g., Ref. [75], the state of the electron gas is determined by its

energy distribution, which we have denoted by fN(E) in earlier sections.

The processes that compete to determine the shape of the distribution are

the electron-electron relaxation, characterized by the scattering time τe−e,

electron-phonon relaxation with scattering time τe−ph, and quasiparticle

injection with rate τinj. The temperature of the electron gas is well defined

only when the occupation is given by a Fermi-Dirac distribution. Follow-

ing Giazotto et al. [75], we identify three separate regimes as follows: Full

equilibrium occurs when τ−1e−e � τ−1e−ph � τ−1inj , resulting in the electron gas

to be thermalized to the lattice temperature Tph. In quasi-equilibrium,

τ−1e−e � τ−1inj � τ−1e−ph, and the energy distribution is still a Fermi-Dirac

one, but at a temperature TN not necessarily equal to Tph. By definition,

an effective electronic cooler should be able to drive the electrons into

quasi-equilibrium. Non-equilibrium is achieved when τ−1inj � τ−1e−e, τ
−1
e−ph,

and in this case the electrons do not have a well-defined temperature.

There are, however, ways to generalize the definition of temperature to

cover also non-equilibrium distributions. One such generalization is pre-

sented in Ref. [76]. In this article, the authors are able to realize a non-

thermal electron distribution in the normal electrode of a SINIS structure

using 0.1–2 kΩ tunnel junctions for quasiparticle injection. Based on the

fact that the tunnel junctions employed in this thesis are 100–1000 times

more resistive than those of Ref. [76] while the device geometries are sim-

ilar, significant non-equilibrium effects are not expected here.

The central theoretical results concerning the electron-phonon coupling

are τ−1e−ph ∼ T 4 for disordered samples [77] and τ−1e−ph ∼ T 3 in the pure

limit [78]. Experimental results on Cu films presented in Ref. [79] seem

to agree with the T 4 behavior, but the data is not strong enough to allow

for a reliable determination of the exponent. They report τ−1e−ph = 100 kHz

at 200 mK for a Cu island having dimensions of 500 μm × 45 nm ×
300 nm. The exponent T 3 seems to be more prevalent in the litera-

ture [80, 11, 81, 75], and we will also employ it in our analysis. It

can be shown that if the electron-phonon relaxation rate has a temper-

ature dependence of T p, the electron-phonon heat flow is proportional to

T p+2
ph − T p+2

N [82]. Therefore, the heat flux to the normal metal electrons

from the electron-phonon coupling is given by

Q̇e−p = ΣV(T 5
ph − T 5

N), (2.73)

where Σ is a material parameter, and V is the volume of N island. The

values of Σ for copper found in the literature are (in units of Wm−3K−5)
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2.0× 109 [80, 81], and (0.9− 4)× 109 [11].

The phonon system of the normal electrode, at temperature Tph, is

treated here as a separate entity from the substrate phonons at T0 mainly

for illustrative purposes only. In Ref. [83], it is argued that the compa-

rable Kapitza boundary resistance between a metallic thin film and the

interface layer of a substrate vanishes since the average phonon wave-

length λp is larger than the film thickness. A quantitative upper bound

for the Kapitza boundary resistance can be obtained using bulk values

from Ref. [84]. The reported result from an acoustic mismatch calculation

between copper and silicon reads

RK =
14.3 K4W−1cm2

T 3
phA

, (2.74)

whereA is the surface area of the interface. Comparing the above result to

Eq. (2.73), we infer that the change in the phonon temperature of a normal

electrode is less than 10% of the observed drop in the electron temperature

assuming a film thickness of V/A = 20 nm and T < 300 mK. We note

that Rajauria et al. [85] report of experiments performed in the standard

SINIS cooler geometry where they observed a drop of 50 mK in the phonon

temperature of the Cu island starting from a bath temperature of 489 mK.

In practical SINIS coolers, the evacuation of the quasiparticle excita-

tions created in the superconductor by the tunneling current can be prob-

lematic. The heat flow of the electron-phonon coupling in a superconduc-

tor is reduced approximately by a factor e−Δ/(kTS) compared to the normal

state [86]. In high-performance designs, the superconductor heating has

been mitigated by normal-metal quasiparticle traps connected directly to

the superconducting electrode near the cooling junction [87], or by alter-

native cooler geometries that reduce the quasiparticle density near the

junctions [88].

Fortunately, an NIS sample fabricated with the standard Fulton-Dolan

process [see Sec. 3.1] almost always features a form of a quasiparticle trap

even without deliberate planning: Typically at a distance of few microm-

eters from the junction, the superconducting electrode starts to overlap

with its normal metallic copy, which is an unavoidable side-product of the

shadow evaporation method. This phenomenon is well illustrated in the

scanning electron micrograph of a real sample shown in Fig. 3.1(c). Quasi-

particle excitations from the superconductor can then tunnel through the

oxide barrier to the normal metal, where their excess energy is trans-

ported to the lattice via the much stronger electron-phonon coupling in
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Figure 2.10. Induced quasiparticle density nqp and the equivalent TS by a homogeneous
source term in a quasi-1d geometry where an ideal quasiparticle trap is
placed at a distance of 1000 μm [panel (a)] or 10 μm [panel (b)] of a tunnel
junction. The parameters correspond to the experimental conditions real-
ized in Pub. IX.

the normal metal. Due to a combination of this trapping effect and rela-

tively low injection currents, significant effects attributable to overheat-

ing of the superconducting electrodes were not observed in most of the

experiments of this thesis.

The exception is the experiment of Pub. IX, where the employed elec-

tron counting technique allowed even low quasiparticle densities to be

observed. For TS � Δ/kB, Eq. (2.63) can be approximated as

nqp =
√
2πΔkBTSN0e

−Δ/(kBTS), (2.75)

illustrating that nqp and TS are interchangeable quantities, if a thermal

distribution for the quasiparticle energies can be assumed. The measure-

ment scheme of Pub. IX allowed the determination of nqp with essentially

zero quasiparticle injection. Hence, the observed finite quasiparticle den-

sity of nqp = 0.69 μm−3 (corresponding to TS = 159 mK) in the sample

without an additional direct-contact quasiparticle trap is indicative of an

external heat load incident on the superconducting electrodes creating

quasiparticle excitations. Assuming that the quasiparticles are created

homogeneously over the area of the superconducting lead, the injection

rate per area can be estimated using Eq. (2.65) and the resistance-area

product of the oxide. Since the SET junctions are realized with the same

oxide, we can use the RTA value of 14 kΩμm2 obtained for the junctions.

In this manner, the injection rate is estimated to be 6.6 × 103 Hz/μm2, or

2.2 × 105 Hz/μm3 assuming a constant volumetric injection over the film

thickness h = 30 nm.

These results can be compared directly with the figures obtained for su-

perconducting resonators in Ref. [70] by Martinis et al. There, the authors
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report a higher density of non-equilibrium quasiparticles, nqp = 10/μm3.

However, due to the slower quasiparticle recombination rate in their

purely superconducting sample, the corresponding volumetric injection

rate is only 2.4 × 103 Hz/μm3. They also list possible mechanisms that

could be responsible for the observed injection rate, including cosmic rays,

background radioactivity, stray blackbody radiation from warmer parts of

the cryostat, and heat release from sample materials. In another recent

study on superconducting resonators [89], the quasiparticle density was

observed to saturate similarly at 25 − 55/μm3. According to the authors,

they can exclude the possibility that the quasiparticles observed in the

experiment were generated by stray microwaves.

Finally, we discuss the results of Pub. IX obtained with a sample where

the superconducting electrodes were terminated at a distance of approxi-

mately 10 μm from the junction by a direct contact to a large normal metal

electrode. The geometry of the trapping structure is visible in Fig. 3.1(b).

In this case, we were able to infer the upper bound nqp < 0.033 μm−3

(TS < 122 mK) next to the junction. The combined trapping effect of the

overlapping shadow and the direct contact can be estimated within the

simple diffusion model presented in, e. g., Ref. [90]. The diffusion equa-

tion reads

−∇ · (κ∇nqp) = −αnqp + j, (2.76)

κ = l0vF
√
kBTS/(2πΔ), (2.77)

where l0 is the mean free path, vF is the Fermi velocity, α =

(2e2N0RTAh)
−1 describes the effect of the shadow trap, and the constant

term j is the volumetric injection rate. Since κ depends on TS, a self-

consistent solution is in principle needed. However, from Eq. (2.75) we

can infer that the dependence is only logarithmic in nqp, and an approx-

imative solution with a constant κ is quite accurate. In order to model

the situation of Pub. IX, it is sufficient to consider a 1d geometry with

the boundary conditions ∂nqp

∂x (x = 0) = 0 and nqp(x = L) = 0, which

describe the vanishing injection at the tunnel junction and the assumed

ideal trapping at distance L from the junction, respectively. The solutions

corresponding to L = 1000 μm and 10 μm are plotted in Figs. 2.10(a) and

(b). We observe that an ideally functioning trap that evacuates all quasi-

particles at x = 10 μm would result in nqp = 0.006 μm−3 at the junction. In

reality, the reduction is probably less dramatic than the result of this sim-

ple calculation indicates. However, it shows that the observed reduction
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of nqp from 0.69 μm−3 to less than 0.033 μm−3 by adding a quasiparticle

trap is plausible.
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3. Experimental methods

3.1 Sample fabrication

The samples studied in the experiments of this thesis consisted of litho-

graphically patterned metallic thin films on an oxidized silicon substrate.

Tunnel junctions were realized with the Fulton–Dolan method [55, 7]. Be-

low, we give a brief overview of the various stages of the sample fabrica-

tion process. All the utilized cleanroom processes are well established in

the field of microfabrication, and are described more thoroughly in, e. g.,

Ref. [91]. The exact process parameters varied between sample fabrica-

tion runs. The figures given below represent typical values.

The starting point of the process is a polished silicon wafer. The wafer

has a thermally grown silicon dioxide surface layer with a nominal thick-

ness of 300 nm. A polymer resist is prepared on top of the wafer by spin

coating: A few milliliters of dissolved resist is poured on top of the wafer,

which is then rotated with a spinner that spreads the solution uniformly

on the wafer surface. Next, a soft bake on a hotplate removes the remain-

ing solvent. For this work, a two-layer resist stack was fabricated us-

ing commercially available resists from the company Microchem. For the

first layer, we used a poly(methylmetacrylate-methacrylic acid) [P(MMA-

MAA)] solution in ethyl lactate, spun at 4000 RPM for 40 s, and then

baked at 170 ◦C for 1–2 minutes. The second layer was a polymethyl-

metacrylate (PMMA) solution in anisole, spun at 2500 RPM for 40 s, and

baked similarly as the first layer. A typical thickness obtained with the

above recipe was 500 nm using a weight-by-weight (w/w) concentration

of 11% for the P(MMA-MMA) solution and 4% for the PMMA. After spin

coating, the wafer was cut into smaller segments and chips down to about

10 mm per side, which were then processed individually.
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Figure 3.1. Scanning electron micrographs at three different magnifications of a sample
fabricated with multi-step lithography. In panel (a), the metal film denoted
by GND is the ground plane that is galvanically insulated from the sample
leads on top of it by a 25 nm AlOx layer. Similarly, the horizontal Cr wire
visible in the middle of panel (c), which was engineered to capacitively couple
the two SETs, is situated below the oxide. In panel (b), the contact areas
between the Au leads leading to the bonding pads and the Al/Cu double-layer
structure in the middle are shown.

In the next step, a computer-designed pattern is transferred on the re-

sist by an electron beam writer. In this work, the exposure was performed

by a modified LEO Supra 40 scanning electron microscope. The acceler-

ation voltage was 20 kV, and a typical dose for the finest structures was

400− 800 μC/cm2. The exposed parts of the resist are removed chemically

in a process called development. The chip was soaked in a 25% volume-

by-volume (v/v) solution of methyl isobutyl ketone (MIBK) in isopropanol

(IPA) for 15–30 s, after which it was rinsed in pure IPA and blow dried

with nitrogen. After development, the resist contains wide cavities with

exposed substrate at the bottom.

Thin-film metal deposition was performed by physical vapor deposition

(PVD) using a focused electron beam to heat the evaporated metal. Evap-
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oration of metal from an open crucible in a vacuum chamber causes the

metal atoms to take a line-of-sight route from the source to the substrate.

Film thickness (typically 15–50 nm) and deposition rate (3–20 Å/s) are

controlled by a gauge based on the resonance frequency of a quartz crys-

tal exposed to the metal vapor. Tunnel junctions and metal-to-metal con-

tacts and were created in situ using multiple-angle evaporation, following

the method by Dolan [55]. The tunnel barrier was created by oxidizing a

freshly deposited aluminum film at an atmosphere of 1–20 mbar of pure

O2 for about 3–10 minutes.

In the final lift-off step, the remaining resist is removed along with the

metal deposited on top of it, leaving behind only the metal pattern on the

silicon substrate. Lift-off was performed by soaking the sample in acetone.

The lift-off process was accelerated by heating the bath to about 70–80 ◦C,

blowing with a syringe, and applying ultrasonic power.

For some samples, we realized large on-chip capacitances using a sam-

ple geometry where two vertically overlapping metal layers were galvani-

cally insulated by an AlOx layer. The insulating layer was fabricated with

the atomic layer deposition (ALD) process [92] in a commercial Beneq

TFS-500 system. In early studies such as the one reported in Pub. IV, we

used 400 nm of AlOx to ensure complete galvanic insulation. For Pub. IX,

the layer thickness was reduced to 25 nm without any apparent leakage.

From low-temperature I–V measurements on such a sample, we were

able to infer a lower bound of 1012 Ω for the leakage resistance through an

overlap area of 25000 μm2.

The lithography and metal deposition process had to be performed twice

to define the metal layers below and on top of the AlOx layer. To realize

lateral alignment with a sub-1 μm accuracy, dedicated alignment marks

were deposited on the sample chip, and all subsequent lithographic ex-

posures were performed in relation to these marks. A relatively heavy

element, such as gold, was used as the material of the alignment marks

to ensure good visibility when scanned by an electron beam.

Figure 3.1 illustrates a sample that was fabricated by employing all the

above techniques. The visible features in panel (a) are six electrical leads

from the edges of the pattern to the center, a metallic ground plane that is

located underneath the AlOx insulator, and four alignment marks at the

corners. The material for all these structures is gold. In panel (b), the

connections from the Au leads to a Cu/Al pattern forming the active part

of the sample are shown. Alignment marks with a checkerboard pattern
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can be faintly seen at the corners below a Cu/Al film that was incidentally

deposited on top. Panel (c) shows the central part with two SETs that are

capacitively coupled by a Cr wire. The fork-shaped tips of the two gate

electrodes can be seen on the left and right edges. Typical of the Dolan

process, two copies of the original resist pattern reside on the surface. The

lower Al film (shifted to the left) has been oxidized before depositing the

Cu film (shifted to the right). Tunnel junctions are formed at the regions

where the two metals overlap.

3.2 Refrigeration

The experiments reported in this work call for cryogenic temperatures

partly due to fundamental properties of the used materials, and partly

due to technological limitations. To study superconducting thin films and

tunnel junctions between superconductors and normal metals, the sam-

ple temperature must be below the critical temperature Tc of the super-

conductor. For strong single-electron charging effects, the energy scale

of thermal fluctuations kBT has to be small compared to charging en-

ergy Ec. Studies of electronic cooling or, in general, non-equilibrium phe-

nomena benefit greatly from low temperatures due to the T 5 dependence

of the heat load from electron-phonon coupling. In addition, the mag-

nitude of several error sources of electrical measurements is greatly di-

minished at low temperatures. In the context of this work, these include

the Johnson-Nyquist noise from resistive elements, current leaks through

semiconducting and insulating materials, and to some degree the 1/f -type

charge [93] and resistance [94] noise inherent to tunnel junction devices.

The necessary sub-100 mK temperatures can be reached in a 3He–4He

dilution refrigerator. The cryogenic cooling power of a dilution refriger-

ator is based on a finite solubility of 3He in 4He even at absolute zero,

and the mixing enthalpy of transferring 3He atoms from a pure phase into

a dilute 3He–4He phase. A detailed description of the operating princi-

ple of a continuously-operating dilution refrigerator can be found in, e. g.,

Ref. [66]. The low-temperature measurements performed by the Author

for this thesis were carried out in several plastic dilution refrigerators

fabricated by the staff of the O.V. Lounasmaa Laboratory. The design is

described in detail in Ref. [95] by Pekola and Kauppinen. The dilution

unit of the refrigerator is fabricated from either Stycast or Torlon plas-

tic, and is attached to a compact stainless steel frame. The dilution part
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houses a spiral heat exchanger, containing approximately 2 m of Teflon

(PTFE) tube, and the mixing chamber, to which the sample stage car-

rying the investigated samples is thermally linked via a sintered silver

rod. In operation, the whole assembly is inserted into a dewar filled with

liquid helium. The dilution part is situated in a vacuum chamber that

can be filled with a small amount of helium gas for initial thermalization,

and then evacuated by pumping to realize a sufficient thermal isolation

from the relatively hot surroundings. The liquid Helium bath provides an

efficient thermalization for all electrical connections running from room

temperature to the vacuum chamber of the cryostat.

The temperature of the sample holder was monitored by measuring con-

tinuously the resistance of a ruthenium oxide resistor that was thermally

anchored to it. RuO2 resistors have good thermal sensitivity in the op-

erating temperatures of dilution refrigerators; the particular commercial

resistors used in this work would display a resistance of about 1.3 kΩ at

4 K, and more than 40 kΩ at 50 mK. The temperature calibration curve

for each resistor had been obtained in a dedicated cooldown, where the re-

sistance reading and the temperature obtained from a primary Coulomb

Blockade Thermometer (CBT) [96] were recorded throughout a tempera-

ture sweep.

3.3 Electrical wiring and shielding

The experimental part of this thesis consists of electrical characteriza-

tion of tunnel junction devices. A common feature to all the studied de-

vices is that their electrical terminals present a high impedance load: For

tunnel junctions, the apparent resistance varies from a minimum of ap-

proximately RT to an essentially infinite resistance occurring either in

Coulomb blockade or in a NIS junction biased deep inside the supercon-

ducting gap. The smallest RT for which we present data is 30 kΩ, with

typical values being 100–1000 kΩ. Similarly, the gate electrodes of single-

electron devices appear as purely capacitive loads.

The experiments were carried out in several different 3He–4He dilution

refrigerators. For the majority of the experiments where only the dc char-

acteristics of the devices were of interest, all device terminals would be

connected to what we will refer to as dc wiring. Starting from 12 room

temperature BNC connectors, the wiring first runs through the 4 K LHe

bath as a loom of 6 twisted pairs of Manganin wire inside a metallic
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sheath. At the 1 K pot stage, each of the 12 signal wires is connected

to a 0.5 mm outer diameter Thermocoax cable with a length of 1.5–2 m

(depending on the particular cryostat) that is thermalized at the sample

holder at mixing chamber temperature. All 12 Thermocoax lines termi-

nate to a commercial multi-pin connector. The total resistance per line

from room temperature to sample holder connector is about 200 Ω both

at room temperature and during cryostat operation, sufficient to limit

the electronic heat conduction between temperature stages to a level that

does not hamper the cryostat operation. It should be noted that the ca-

bling resistance of 200 Ω is small compared to even the smallest sample

resistances considered in this work, and hence can be neglected in the

analysis.

The main drawback of this measurement scheme is slow response time

of the room-temperature readout to changes in sample impedance: the

effective rise time of an SET electrometer readout is limited by the RC-

product of the sample resistance and the cabling capacitance in parallel.

Zorin [97] gives a value of 490 pF/m for the capacitance per unit length

for the used Thermocoax cable. Hence, the expected readout bandwidth

for a 100 kΩ electrometer measured through a 2 m cable is only 1.5 kHz.

For the experiments in Pubs. III and IV, 1–100 MHz drive signals were

applied to the gate electrode of a SINIS turnstile device. In this case,

the radio-frequency signal was brought to the sample stage by a coaxial

cable transmission line with a 50 Ω characteristic impedance, which was

thermalized via thermally anchored attenuators at 4 K and at the 1 K pot

stage.

In Pub. IV, subgap leakage of NIS devices was linked to microwave ir-

radiation of the tunnel junctions at frequencies of 50 GHz and higher.

A central idea in many subsequent studies, including those reported in

Pubs. V–IX, was to study the microwave coupling in detail, and to seek

technological solutions that help to reduce it. Based on earlier results [98],

it was understood that at least a part, if not all, of the photon flux must

come from the 4 K parts of the cryostat. There is no fundamental reason

why this external flux could not be eliminated. We limited the scope of our

study to dc properties only, so that propagation of rf signals in the MHz

range did not need to be addressed in the design.

The high-frequency filtering properties of the employed Thermocoax ca-

ble are well known and studied in detail in Ref. [97]. Using the general

formula given in the article, backed by measurements up to 18 GHz, one
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obtains an attenuation of 200 dB/m at f = 20 GHz and 300 dB/m at f =

50 GHz. To see quantitatively that this amount of attenuation is entirely

sufficient, consider the spectral density of voltage fluctuations of a 100 Ω

resistor at 300 K: SV (f) = 2kBTR = 2 × 10−18 V2/Hz for f � 6 THz.

To reduce this figure below the detection threshold of the most sensitive

measurements charted in Fig. 4.4, about 100 dB of attenuation is needed.

In Fig. 3.2, panels (a) and (b) show the typical sample stage employed

for dc measurements in the beginning of this work. Two weak spots were

identified in this design, namely a leaky dc connector and an inadequately

sealed shield cap. Panels (c) and (d) show a refined design where these

issues have been addressed while adhering to the space and weight con-

strains of the plastic dilution refrigerators. Quantitative results on cou-

pling of stray microwaves to tunnel junctions in various setups are pre-

sented in Sec. 4.2.

3.4 Electron counting with SETs

Many of the experiments reported in this thesis require the ability to de-

tect individual electron tunneling events occurring in a mesoscopic sys-

tem. There are two basic electrometer realizations that provide sufficient

charge sensitivity for electron counting applications: the single-electron

transistor (SET) [7, 8], and the quantum point contact (QPC) [99, 100,

101]. In this thesis, we have used exclusively SINIS-type SETs for elec-

trometry. This allows the electrometer to be defined with the same fabri-

cation process as the studied structures, which reduces significantly the

complexity of the sample production and improves the yield. For pur-

poses of electrometry, the SINIS SET performs similarly to its fully nor-

mal counterpart: The effective gate charge ng, which controls the Coulom-

bic energy gap of quasiparticle tunneling, is affected by the distribution of

electric charge in the vicinity of the SET. In this manner, the 1–1000 pA

quasiparticle current through the device can be modulated by fraction-of-e

changes in the effective gate charge.

Figure 3.3(a) illustrates the typical sample layout and electrical connec-

tions we have used in electron counting experiments, whereas Fig. 3.3(b)

shows an idealized circuit diagram where the current transport through

the SET is not explicitly considered. The electrometer is capacitively cou-

pled to electrode R, which in turn is electrically connected only to electrode

L via a low-transparency tunnel contact. Electrostatic coupling between
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Figure 3.3. (a) Scanning electron micrograph of a sample consisting of a single-electron
box (with electrodes L and R), and a capacitively coupled single-electron tran-
sistor. All control electronics is located at room temperature, and connected
to the sample leads through dc wiring according to the illustration. The SET
is held in voltage bias, and the instantaneous current is read out by a room-
temperature transimpedance amplifier whose output is digitized by an A/D
converter. (b) Simplified circuit diagram for description of the charge dynam-
ics of the box. Capacitor Cj models the total mutual capacitance between the
box electrodes L and R, Cx between the SET island and the electrode R, CL

between the left gate electrode and electrode L, and CR stray and geometric
capacitances of the electrode R. (c) Three-second experimental trace illustrat-
ing the detector current jumps in response to changes in the charge state of
the box.

the electron box and the SET can be studied formally by writing down the

relevant terms of the charging energy potential Fc defined in Sec. 2.2.2.

We use variable n to denote the number of electrons transferred from elec-

trode L to R, so that qR = −qL = ne, and variable m for the number of

electrons on the SET island. For simplifying the algebra, we assume CR

to vanish and keep only the lowest order in the coupling capacitance Cx.

We obtain

Fc =
e2

2Cj
n2 +

e2Cx

CjCSET
nm+

e2

2CSET
m2, (3.1)

where CSET is the total capacitance of the SET island. From the cross-

term of Eq. (3.1), we infer that a quasiparticle tunneling event in the box,

changing n by ±1, also changes the effective gate charge of the SET elec-

trometer by (Cx/Cj)e. In general, the parameter κ = Cx/Ccount, where Cx

is the coupling capacitance and Ccount is the total capacitance of the count-
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ing node, determines the fraction of the detected charge that is coupled to

the electrometer, and should be maximized for best signal-to-noise ratio.

Figure 3.3(c) shows an experimental time trace of the current through a

voltage-biased SET that is sensing the charge state of a single-electron

system near charge degeneracy.

The sample of Fig. 3.3(a) has two gate electrodes, whose potentials we

refer to as Vdet,g and Vbox,g, respectively. They allow for independent tun-

ing of the effective gate charge for the single-electron box and the elec-

trometer. In an experiment performed on a sample like that of Fig. 3.3(a),

one always observes some amount of capacitive cross-coupling between

each gate electrode and islands other than the one it is intended to con-

trol. It is usually possible to determine the cross-coupling matrix ele-

ments by studying the system’s response to one- or two-dimensional gate

voltage sweeps, although this can be non-trivial to implement in practice

for more complex single-electron devices. When the cross-coupling matrix

is known, it is possible to determine a linear combination of gate voltage

offsets that affects only the gate charge of the single-electron box, for ex-

ample. This is useful when one wants to manipulate the charge state of

the box while keeping the detector at a charge-sensitive operation point.

An overview of general aspects of electrometer performance in single-

electron counting measurements has been presented in Ref. [90] by Pekola

et al.1 The three most important figures of merit that are discussed in the

article in depth are charge sensitivity, back-action on the monitored sys-

tem, and readout bandwidth. Charge sensitivity of an SET electrometer is

typically expressed in units of e/
√
Hz. It is a measure of the noise level of

the measurement setup as a whole referred to the "input" of the SET, i. e.,

the gate charge. For an SET device, a voltage fluctuation δV at the output

of the readout chain can be related to a charge fluctuation δq through

δq =
e

Cg

(
∂V

∂Vg

)−1
δV, (3.2)

where ∂V
∂Vg

is the measured sensitivity of the output to the applied gate

voltage Vg, and Cg is the conversion factor between applied Vg and the SET

gate charge eng. The gate capacitance Cg can be determined accurately

in the experiment from the measured gate modulation period V1e of the

electrometer according to Cg =
e

V1e
.

In practice, the low-frequency noise spectrum is dominated by 1/f -type

1The section on single-electron readout was composed mainly by the author of
this thesis.
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charge noise that is found in all metallic single-electron devices [102].

Zorin et al. [103] give the charge sensitivity of SET devices as 10−3 – 10−4

e/
√
Hz at f = 10 Hz. We find that the low-frequency charge noise spectrum

of the electrometer data from Pub. IX is well fitted by 2.8 × 10−3e/
√
f ,

in line with the literature values stated above. Throughout this thesis,

the used electrometers were quite resistive (of the order of 1 MΩ) and

consequently the probing currents were small (about 30 pA in Pub. IX,

for example). This choice reduces electronic back-action and substrate

heating. The drawback is that the charge sensitivity at f > 100 Hz set by

amplifier noise was relatively poor, about 3.8× 10−4e/
√
Hz. For reference,

the best charge sensitivity reported in the literature is 0.9 × 10−6e/
√
Hz,

obtained at f = 1.5 MHz [104].

Any physical measurement perturbs the state of the system being

probed. In the case of SET electrometry, the cross-term in Eq. (3.1),

which is responsible for coupling the counting charge to the electrome-

ter, also mediates an electronic back-action from the electrometer to the

single-electron box. The probing current is transported through the SET

by sequential single-electron tunneling events. Hence, the variable m of

Eq. (3.1) fluctuates stochastically between two consecutive integer values.

The rate parameter for these fluctuations is fc = Idet/(2e). The induced

voltage noise over the junctions of the electron box can have sufficient

spectrum content at high frequencies to cause photon-assisted tunneling

events. We discuss this mechanism in Sec. 4.2 along with other sources of

electromagnetic fluctuations.

The low-frequency part of detector back-action causes the effective gate

charge of the box to fluctuate between e(ng,0 ± κ′/2), where ng,0 denotes

the dc gate position without detector fluctuations, and κ′ = Cx/CSET is

the charge coupling fraction from the detector island to the box. Turek

et al. [105] analyze the effect of these fluctuations on dc gate modula-

tion characteristics based on experimental data, and sequential tunneling

theory that is equivalent to the one presented here. We have not consid-

ered explicitly this back-action mechanism in the analysis of the electron

counting data that we present. For estimating the magnitude of the effect,

we can assume the gate dependence of tunneling rates to be

Γ(ng) = Γ0e
2ngEc/(kBT ),

where Γ0 is a constant the T is the temperature. Now, the tunneling rate
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observed in the counting experiment is

Γobs(ng) =
1

2

[
Γ(ng − κ′/2) + Γ(ng + κ′/2)

]
,

and the relative error is cosh [κ′Ec/(kBT )] − 1. Substituting κ′ = 0.1 and

Ec/kB = 0.6 K corresponding to Pub. IX, we find the relative error to be

17% at an effective temperature of 0.1 K.

We also recognize the possibility of phonon-mediated back-action. The

Joule heating power P = 〈IV 〉 dissipated at the detector junctions can

cause the substrate to be locally heated. Since the counting node has to

be placed physically close to the detector to realize sufficient charge cou-

pling, it is plausible for the phonons of the counting node to be heated as

well, which would lead to an elevated electron temperature and increased

tunneling rates. A calculation presented in Ref. [90] based on a model of

the thermal conductivity of SiO from Ref. [106] shows this to be a poten-

tial issue in some electron counting experiments. However, in the case of

Pub. IX, we were able to verify the thermalization of the electron system

in the counting node down to 50 mK [see Fig. 3(a) of the journal article],

ruling out this back-action mechanism.

Finally, we consider the effect of finite detector bandwidth on the ex-

tracted tunneling rates. In this thesis, the electrometer read-out was

performed with a room-temperature current amplifier through a wiring

consisting of sections of twisted-pair and Thermocoax cable. Long cabling

combined with the high source impedance of the SET electrometer re-

sults in an available read-out bandwidth of about 1–10 kHz, as discussed

in Sec. 3.3. Although this bandwidth is sufficient for studying sub-gap

quasiparticle tunneling in opaque NIS junctions, the ability to estimate

and – to some degree – correct the detector bandwidth bias in experimen-

tal data is useful. We make use of the methodology and theory presented

by Naaman and Aumentado in Ref. [107]. The theoretical analysis con-

cerns a time-domain measurement of the state of a two-level RTN fluctu-

ator with transition rates ΓA and ΓB. Transitions between the two states

are determined by threshold detection at the midpoint between the signal

levels corresponding to states A and B, which is what we have used con-

sequently in the analysis of the experimental data. Finite response time

of the detector is modeled by making the process of changing the output

state of the detector Markovian with a rate parameter Γdet.

When analyzing the experimental data for Pub. V, we obtained esti-

mates for the rate parameters ΓA,B from the inverse of the observed mean
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Figure 3.4. Effect of finite detector bandwidth on the observed state lifetimes (filled sym-
bols), and the bandwidth-corrected lifetime estimates (open symbols). We
used a set of computer-generated RTN traces sampled at 105 Hz to simulate
observations of a two-level system. The true dwell times of the two states
are given by the formula τA(B) = (500 Hz)−110±E , where E is a dimension-
less variable mimicking the gate charge offset encountered in actual single-
electron experiments. Gaussian white noise with an r.m.s amplitude of 0.25
relative to the state separation was added to simulate experimental charge
noise. Prior to threshold detection, the signal was low-pass filtered with a 4th
order low-pass filter having a cut-off frequency of 5 kHz. In the bandwidth-
correction formulas, the detector response time parameter Γdet was set to
12.5 kHz in order to maximize the parameter range where accurate lifetime
estimates are obtained.

dwell times, Γ∗A,B = 1/
〈
τ∗B,A

〉
. According to the theory of Ref. [107], these

rate estimates are related to the true rate parameters as

Γ∗A =
ΓAΓdet

ΓA + ΓB + Γdet
, Γ∗B =

ΓBΓdet

ΓA + ΓB + Γdet
. (3.3)

Solving ΓA,B from the above pair of equations yields an expression for the

bandwidth-corrected rates. Due to the phenomenological modeling of the

detector response, Γdet for a particular readout setup is to be considered

a fit parameter, which nevertheless should be related to the physical rise-

time of the detector readout. Following Ref. [107], parameter Γdet can be

fitted from the full distribution of observed dwell times. Detector band-

width was explicitly accounted for in the published data of Pubs. IX and

XI.

In Fig. 3.4, we show results from computer simulations that illustrate

the bandwidth-correction procedure in practice. We generated a set of

two-level RTN signals with different rate parameters. We added Gaussian

white noise that was similar in magnitude to the charge noise typically ob-

served in the experiments, and low-pass filtered the signal. The artificial
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detector traces were then processed with the same code that was used to

count the tunneling events in the experimental data. We observe that a

combination of a high and a low rate parameter, which occurs in electron

box experiments away from the degeneracy, causes a significant bias in

the uncorrected life-time estimates. Due to the fact that the fastest excur-

sions to the short-lived state are missed, both transition rate parameters

are severely underestimated. Based on the simulation results, we con-

clude that the bandwidth-corrected transition rates from electron count-

ing experiments are usable up to about twice the intrinsic bandwidth of

the readout even in the presence of moderate charge noise.
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4. Results on NIS devices

4.1 Gate control of electronic refrigeration

In this section, we present an investigation of the thermal effects in a

SINIS-type SET. This structure provides enables a study of the inter-

play between charging effects and heat transport at mesoscopic scale.

In general, to achieve lowest possible electron temperatures in a SINIS

cooler, the volume of the island should be minimized in order to reduce

the heat load from electron-phonon coupling. It is precisely at low temper-

atures and in sub-micron structures where charging energy effects man-

ifest themselves. Charging energy effects can be expected to have an in-

fluence in the design and analysis of electronic coolers aimed at sub-100

mK temperatures.

Our analysis shows that a Coulomb-blockaded SINIS functions as a

gate-controlled single-electron refrigerator, i. e., a heat transistor. We

demonstrate experimentally gate modulation of the heat flux out of the

normal metal island by more than a factor of three. In addition to cool-

ing properties, the structure displays unique features in the I-V curves

of temperature probe junctions originating from changes in the charge

number distribution of the island. The experimental findings are success-

fully reproduced by an application of the theoretical methods presented

in earlier chapters. These results have been reported in Pub. II.

In Fig. 4.1(a), we illustrate a scanning electron micrograph of one of the

measured heat transistor samples along with a sketch of the measure-

ment setup. The central normal metal island is a copper block with lateral

dimensions 180 nm× 2300 nm determined from the SEM micrograph, and

thickness of 20 ± 3 nm based on AFM measurements. The superconduct-

ing parts of the sample are thin-film aluminum with a similar thickness
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Vds

Figure 4.1. (a) Scanning electron micrograph of the heat transistor sample, illustrating
also the measurement connections and denomination of voltages. (b) The-
oretical heat flow from the normal metal island at the optimal bias point
Vds � 2(Δ − 0.66kBTN)/e at different temperatures as a function of the gate
voltage. The figure appears in Pub. II as Fig. 1.

thickness as the island. For the experiment, four aluminum-oxide tun-

nel junctions with approximate dimensions 120 nm × 40 nm and specific

room-temperature resistance of 0.6 kΩ μm2 were fabricated on the island.

The two inner junctions with 110 kΩ resistance were used as a voltage-

biased cooler pair. Consistent with the transistor analogy, we denote the

bias voltage over the cooler junctions Vds. The outer junctions with a re-

sistance of approximately 150 kΩwere current-biased at picoampere-level,

enabling accurate thermometry of the island electron temperature by ex-

ploiting the temperature sensitivity of Vprobe in the 100-500 mK range.

The gate electrode was driven by a variable voltage source. Figure 4.1(b)

illustrates the excepted normalized cooling power of the heat transistor,

displaying the modulation of heat flow with gate voltage at different op-

erating temperatures. For simplicity, effect of the temperature probes has

been neglected in this figure.

For a direct verification of the Coulomb blockade effects, we also fabri-

cated and measured a reference sample with similar geometry and junc-

tion parameters, except for large capacitor pads attached to the island

with NS contacts, suppressing the charging energy but ideally blocking

the electronic heat flow by means of Andreev reflection [108]. In the ac-

tual heat transistor sample, we preserved only small, 500 nm long su-

perconducting protrusions in order to maintain the same topology with
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a minimal suppression of the charging energy. Measurements performed

on the reference sample mimic those performed on the heat transistor,

and consequently the obtained data could also be analyzed in an almost

identical manner. However, since the reference sample as such does not

constitute a test bed for any new physical phenomena, we do not present

a detailed analysis of it.

An intuitive picture of the gate dependence of the cooling power can

be obtained by analyzing the behavior of a SINIS cooler in terms of

typical charge state trajectories. With the gate tuned to charge degen-

eracy, the device operates similarly to a regular SINIS whose electric

and heat currents have been scaled by 1/2. We can therefore apply

the analytic NIS junction results from Sec. 2.3.2: Taking into account

the series connection of two junctions, the optimal cooler bias voltage is

Vds,opt = 2(Δ− 0.66kBT )/e. The maximum cooling power is

Q̇N(open) � −0.3Δ
1/2(kBT )

3/2

e2R||
, (4.1)

where R|| is the parallel resistance of the two cooler junctions.

In the case of full Coulomb blockade, i. e., the normalized gate charge

ng equal to an integer, electric and heat currents through the device are

strongly suppressed. Most of the time, the system lies in the minimum

energy charge state n = ng with excursions into n = ng ± 1 occurring

at a rate Γ↑ = Γ(eVds/2 − Ec). The relaxation rate back to n = ng is

given by Γ↓ = Γ(eVds/2 + Ec), and is much larger than Γ↑ for the bias

voltages Vds ≈ 2Δ where cooling is observed. The total heat deposited into

the normal electrode by these two quasiparticle tunneling events can be

written in terms of the 〈Q(E)〉 function defined in Eq. (2.68) as〈
QN(0→ 1→ 0)

〉
=

〈
QN(eVds/2− Ec)

〉
+

〈
QN(eVds/2 + Ec)

〉
. (4.2)

To study the strong Coulomb blockade limit, we take eVds = 2Δ and em-

ploy the approximation
〈
QN (E)

〉 ≈ E − Δ (valid for E � Δ) to the first

term, and
〈
QN (E)

〉 ≈ (E − Δ)/2 (valid for E � Δ) to the second term.

The average heat extracted from the normal metal per tunneling electron

is thus Ec/4 as opposed to roughly kBT in the gate open case. For the

on-off-ratio of cooling power, we obtain

Q̇N(closed)/Q̇N(open) � Ec

4kBT
× 4Γ↑

Γ(eVds/2)
� Ec

kBT
e−Ec/kBT . (4.3)

Above, the factor 4Γ↑ results from the fact that there are two possible

cycles (ng → ng ± 1 → ng) each involving a transfer of two electrons. Al-

though the total cooling power is suppressed due to Coulomb blockade,
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Figure 4.2. Left column: Electron temperatures extracted from the data acquired at
bath temperatures 176 mK, 214 mK and 250 mK with the gate in open (ng =
1/2, blue squares) and closed (ng = 0, red triangles) position. Right column:
Theoretical cooling power vs. T 5

N − T 5
S for each data point on the left, and a

line fit. According to Eq. (4.5), the slope is given by −ΣV.

the efficiency of the device improves by a factor Ec/(4kBT ). This could be

a beneficial trade-off in realistic coolers, where disposing of the heat de-

posited into the superconducting leads can be the limiting factor of device

performance. However, a similar improvement in performance can be re-

alized in a regular SINIS cooler by driving it with a smaller bias voltage.

The device geometry shown in Fig. 4.1(a) with separate junction pairs

for cooling and thermometry is standard for NIS coolers. The significant

charging energy of the device makes extracting the island temperature

from the observed Vprobe non-trivial. First, Iprobe has an explicit gate de-

pendence. Secondly, the transconductance ∂Iprobe/∂Vds does not vanish at

fixed island temperature. Two years after Pub. II, Koppinen et al. pub-

lished a more extensive study of NIS thermometry in Coulomb blockaded

structures [64]. For a quantitative analysis of the measured data, we

constructed a full Master equation based model of the electric and heat

transport in the device in the manner described in Sec. 5.1. In a high-
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level language, the computational model can be described as⎡
⎣Iprobe
Q̇N

⎤
⎦ = f(Vds, Vprobe, ng, TN, TS). (4.4)

In the experiment, the variables Vds, ng, Iprobe are controlled by room-

temperature voltage and current sources as shown in Fig. 4.1(a). Fur-

thermore, we measure Vprobe, and assume TS to coincide with the bath

temperature T0. Inserting the known values into Eq. (4.4), we can solve

for TN and also infer Q̇N. As a consistency check, we can insert the values

obtained in this manner to a heat balance equation. Assuming the stan-

dard electron-phonon heat flow of Eq. 2.73 and equilibrium phonons, we

have

Q̇N = ΣV(T 5
N − T 5

0 ). (4.5)

Full analysis of the experimental data is presented in Pub. II, and it is

found to be in excellent agreement with the model described above. In

Fig. 4.2, we present additional experimental data sets of TN and Q̇N ver-

sus Vds that were not included in the journal article due to space con-

straints. When treating the electron-phonon coupling constant Σ as a

fitting parameter, we obtain values 2.2 − 2.3 × 109 (in units of Wm−3K−5)

that are close to the literature value of 2× 109 reported for copper. This is

an important proof of the quantitative validity of the model.

The work on heat transistor can be considered to be a partial experimen-

tal verification of the essential building blocks of the theoretical proposal

of Pub. I. In that proposal, we studied electrical refrigeration in a NIS-

type single-electron box that is subjected to a radio-frequency gate drive.

In contrast to traditional realizations of electrical refrigeration employing

dc bias voltages, in the proposed scheme, the heat-extracting quasiparti-

cle tunneling events are actuated by the capacitively coupled gate that

drives the box between different charge states.

The operation conditions can be derived based on the approximative ex-

pressions for the quasiparticle tunneling rate [Eq. (2.62)] and the amount

of heat extracted by a single tunneling event [Eq. (2.68)]. The appropriate

scale for the drive frequencies is given by the prefactor of Eq. (2.62), i. e.,

we require

f �
√
πkBTΔ/2

e2RT
. (4.6)

At these drive frequencies, the tunneling events take place when the

change in the energy of the tunneling quasiparticle is approximately Δ,

in which case an amount of heat proportional to kBT is extracted. Hence,
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we can write suggestively the total cooling power of the rf single-electron

refrigerator as

Q̇N = −αfkBT, (4.7)

where the prefactor α is expected to be of the order unity in the optimal

range of operation parameters. In Pub. I, a quantitative analysis of the

expected cooler performance is presented using Monte Carlo and master

equation based simulation methods. An experimental demonstration of

these ideas was presented later by Kafanov et al. [109]. Instead of the

single-electron box topology of the original proposition, the experiment

was performed with a single-electron transistor in order to allow in situ

electron thermometry based on the electric current through the device.

The authors used a low dc bias voltage of 0.25Δ/e over the SET to create

a small probe current that was sensitive to the temperature of the normal

metal island.

4.2 Effect of the electromagnetic environment

An intuitive idea of the behavior of devices based on single-electron tun-

neling can often be obtained by considering only the energetics of the sys-

tem. Accounting for bias voltages and changes in the electrostatic charg-

ing energy, one can sort the possible tunneling processes into energetically

favorable and unfavorable ones. Superconducting hybrid structures can

be treated in this manner as well by including an energy cost of Δ for

each quasiparticle excitation created in a superconducting electrode. For

quantitative results, one needs to consider the numerical values of the

rate parameters Γ of various processes. From general thermodynamical

arguments, one expects a detailed balance equation of the form

Γ(−ΔE) = e−ΔE/kBTΓ(ΔE), (4.8)

where ΔE is the change in energy in the tunneling event, to hold in ther-

mal equilibrium. From Eq. (4.8), one sees that energetically unfavorable

(ΔE < 0) processes have a finite probability to occur, and that probability

will go to zero in the limit T → 0. A second observation is that a single-

electron device cooled down to millikelvin temperatures should exhibit

an exponential dependence of the type exp (eVb/kBT ) for charge tunneling

rates versus voltage changes, enabling very sensitive voltage amplifiers

and tunneling spectroscopy with good energy resolution. Finally, this rea-

soning can be used to obtain a temperature dependence of exp (−Ec/kBT )
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for the error probability of single-electron pumps and turnstiles, where

Ec is the charging energy of the device. Substituting Ec/kB = 4 K and

T = 50 mK, routinely reachable values for samples defined with electron-

beam lithography and cooled in a dilution refrigerator as described in

Sec. 3, one obtains a remarkably low probability of 1.5×10−35. Such num-

bers are not, however, observed in the experiments, for which we will

discuss several mechanism in this and the following chapters.

It is often non-trivial to realize the full thermal equilibrium in the sense

described above. One can also take the viewpoint that improving the

performance of single-electron devices is akin to improving the thermal-

ization of the device toward the sample holder temperature. One pos-

sible mechanism for Eq. (4.8) to fail is interaction with the electromag-

netic environment. This interaction is described by the P (E) theory [see

Sec. 2.2.1], and affects the tunneling processes by giving the tunneling

quasiparticle a finite probability to exchange energy with the environ-

ment. It is helpful to make a distinction between two kinds of environ-

mental couplings, which we will call strong and weak.

In the case of strong coupling, the real part of the impedance Zt(ω) seen

from the junction at some angular frequency ω is comparable to the re-

sistance quantum RK = 25.8 kΩ or larger. To achieve strong coupling in

the frequency range interesting for single-electron devices, it is necessary

to fabricate the resistive element lithographically close to the junction in

order to prevent capacitive shunting. For the operation of single-electron

devices, a high impedance on-chip environment is usually beneficial for

several reasons: It creates a local RC filter that cuts the coupling of

high-frequency noise to the junction, reduces the rates for higher-order

events causing leakage, and provides an additional charging energy bar-

rier for tunneling electrons without the need for a gate electrode. An on-

chip resistive environment has been implemented in many earlier stud-

ies. In this thesis, such a design was employed in the devices measured

in Pubs. VI and VII. Although the effect of the on-chip resistor was not

thoroughly investigated, it was included in the environment used for the-

oretical modeling as descried in Sec. 2.2.1 and Pub. VI, and the observed

charge trapping times observed in these structures were extremely long.

For a weakly coupled environment, the P (E) function can be evalu-

ated for large values of E from the voltage fluctuation spectrum using

Eq. (2.27), or from the environmental impedance Zt(ω) and environment

temperature Tenv using Eq. (2.30). The resulting P (E) function has most
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of its probability mass centered at E = 0, but the long tail for negative

E extending up to kBTenv is potentially harmful for device performance:

A "hot" environmental fluctuator, i. e., one with Tenv � Ec/kB for single-

electron devices or Tenv � Δ/kB for an NIS device, enables energetically

unfavorable processes to occur via photon absorption.

Of the experiments included in this thesis, the one reported in Pub. IV

is the first one where the hot environment model was explicitly employed.

There, it was shown that sub-gap leakage currents of NIS junctions can

be attributed to photon assisted tunneling. The environment was modeled

as an RC circuit at a temperature of 4 K corresponding to the tempera-

ture of the liquid helium bath and the vacuum chamber surrounding the

dilution unit of the cryostat. The main theoretical result of the study was

that the I–V characteristic in such an environment is identical to that pro-

duced by a sub-gap quasiparticle density of states in the superconductor

corresponding to Dynes parameter

γ = 2πR/RK × kBTenv/Δ. (4.9)

Furthermore, we showed that the sub-gap leakage could be reduced by

an order of magnitude by fabricating the junctions on a ground place act-

ing as a capacitive shunt. A similar improvement in the performance of

single-electron turnstile devices containing a capacitive shunt was also

observed.

In Pub. V, the on-chip capacitive shunting technique was used to shield a

single-electron box. The single-electron box is not galvanically connected

to electrical leads, and thus cannot be subjected to a usual I-V measure-

ment. Instead, we probed the charge state of the box as a function of ex-

ternal gate voltage using a capacitively coupled SET electrometer. From

the single-electron box measurements, the influence of the electrical envi-

ronment could be assessed in two ways: First, by measuring the width of

the Coulomb blockade steps in gate modulation curves, the effective tem-

perature of the box could be determined. As reported in the article, for the

unshunted sample, a minimum width was observed around 200 mK, after

which the Coulomb step started to widen as a function of temperature.

This can be understood through the transition rates plotted in Fig. 4.3(a):

At low enough temperatures, the ratio Γ(E)/Γ(−E) determining the shape

of the Coulomb step does not measure the electronic temperature of the

box electrodes, but is instead set by the decay of the tail of the P (E) func-

tion for negative energies. For the shielded sample, no clear saturation of

the step width was observed at least for T > 80 mK.
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Figure 4.3. (a), (b) Theoretical single-electron tunneling rates for NIS junctions using
sample parameters from Pub. V [(a) Δ = 200 μeV, RT = 2.0 MΩ (sample
"R1"); (b) Δ = 200 μeV, RT = 3.3 MΩ (sample "G1")]. Black curves are
thermal equilibrium rates. In panel (a), red curves incorporate the effect
of a resistive RC environment 4 K. In panel (b), blue curves include sub-
gap states in the superconductor corresponding to Dynes parameter γ = 5×
10−7. Shaded boxes indicate the range that would be accessible in a typical
galvanic I–Vmeasurement, and the range that was studied in the performed
counting measurement. (c), (d) Re-analyzed tunneling rates from the data of
Pub. V for sample R1 and G1, respectively, incorporating detector bandwidth
correction (colored markers), and the theoretical predictions including the
effect of a best-fit RC environment (solid black lines). In panel (d), dash-
dotted lines give the theoretical curves corresponding to Dynes parameter
γ = 5× 10−7 as in panel (b).
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Secondly, we detected the electron tunneling events in real time and de-

termined the tunneling rates Γ(E) in the energy range −60 μeV . . . 60 μeV
at temperatures up to 200 mK. As illustrated by the shaded regions in

Figs. 4.3(a) and (b), I-V and counting measurements enable the probing

of complementary bias voltage and tunneling rate ranges. The measured

tunneling rates are presented in Figs. 4.3(c) and (d), corrected for finite

detector bandwidth. The saturation background set by environmental

noise is evident in the data for the unshunted sample, whereas the lowest

rates observed for the shunted sample are more than an order of magni-

tude smaller. Nevertheless, the lowest temperature rates differ from the

thermal equilibrium curves also for the shunted sample. The rates could

be plausibly explained by environmental coupling or by a small density

of sub-gap states in the superconductor. As is evident from comparing

Figs. 4.3(a) and (b), the predicted tunneling rates for the P (E) and Dynes

case differ for negative E, but the quality of the data for the shunted sam-

ple is not sufficient to differentiate between them. The main conclusion

of this measurement is nevertheless clear: the low-temperature dynamics

of the unshunted sample was set by interaction with a hot electromag-

netic environment, and the isolation could be significantly improved by

an on-chip capacitive shunt.

The conclusions made in Pub. V were later confirmed by the results of

Pubs. IX, VI and VII. In these studies, efforts were made to improve the

decoupling from environment through sample and sample stage design.

In Fig. 4.4, we have plotted the power spectra of voltage fluctuations in-

ferred from all the quasiparticle transport measurements performed for

this thesis. Different device topologies and measurement schemes probe

the tunneling rates at different energy ranges: I–V measurements are

best suited for determining the relatively large tunneling rates Γ(E) re-

alized when E is close to the gap parameter Δ and offer essentially zero

visibility in the range E < 0. Electron counting measurements on single-

electron boxes and transistors can be used to map the region around

E = 0. The measurable E range is in practice limited by the require-

ment that both rates Γ(E) and Γ(−E) are within the detector bandwidth.

Finally, electron traps can be used to probe the deep negative E range. In

Pub. VII, the trapping times were of the order of several hours, in which

case obtaining proper statistics on the escape processes becomes challeng-

ing due to long measurement times needed.

In the preceding discussion, the origin of the high-frequency photons
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Figure 4.4. Noise spectra in the 10 – 200 GHz range extracted from various experiments
on single-electron devices. The curve sections for which no measurement
with a smaller noise power is available should be treated as upper bounds.
"Shunted" devices were fabricated on a ground plane, whereas "bare" devices
resided on a SiO/Si substrate. The sample stage used in Pubs. IV and V
was the baseline design, whereas in Pub. IX the light-tight design was used
[see Sec. 3.3]. Measurements of Pub. IX were repeated in an independent
light-tight setup at MIKES designed by A. Kemppinen with identical results.
For Pub. VI, we used an improved version of the baseline design with two
nested shield caps, but a leaky dc connector. For Pub. VII, the marker above
corresponds to the longest hold times which were obtained in the MIKES
setup. The hold times observed in the light-tight design described in Sec. 3.3
were about one order of magnitude shorter. For reference, we have plotted
also the three spectra given by Covington et al. in Ref. [110]: An extrapolation
of 1/f charge noise data from Ref. [103], and best fits to the data obtained
from 4 and 6-junction electron pumps, respectively.
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has been taken to reside out side the sample stage. This hypothesis can be

verified in practice if the measured tunneling rates are found to diminish

when the sample stage shielding or filtering is improved. The outstand-

ing question is then what is the source of the weakest observed voltage

fluctuations: SV (f) = 3 × 10−26 V2/Hz at 50 GHz, and 6 × 10−31 V2/Hz

at 200 GHz. It must be said, however, that these numbers are mere up-

per bounds extracted from the observed tunneling rate data: it is possible

that the true voltage fluctuations are even weaker still, and the observed

tunneling events are caused by a process other that PAT. Nevertheless, it

is expected that when the microwave shielding is sufficiently improved,

sources from inside the sample stage begin to dominate. A simple ther-

modynamical argument tells that any material in thermal equilibrium

with the sample stage cannot emit a significant quantity of photons at

frequencies above fth = kBT/h. At T = 50 mK, fth = 1 GHz, and we

conclude that the possible on-chip microwave sources must be in inequi-

librium. In Ref. [110], Covington et al. proposed that the 1/f -type charge

noise originating from glassy sample chip materials extends up to mi-

crowave frequencies. However, the upper bound obtained from the data

of Pub. VII at 200 GHz is 50 dB below the expected level for charge noise

stated in Ref. [110], calling for a re-evaluation of the argument.

In counting experiments, the high-frequency component of the back-

action of the electrometer is a possible source of voltage fluctuations.

However, being externally tunable, the severity of the back-action is eas-

ily checked in the experiments by measuring the dependence (if any) of

the tunneling rates on the operation point of the detector. To summarize

the findings, no detectable back-action was observed in Pubs. VI and VII.

In Pub. V, for the unshunted sample, detector back-action was negligible

compared to the external microwave noise, whereas for the shunted sam-

ple, the back-action could be observed but was not quantitatively studied.

In Pub. IX, a weak linear dependence of the tunneling rates on the detec-

tor current was found. In the case of Pub. IX, the two SETs were placed

relatively far from each other (about 5 μm) and the capacitive coupling

between the SET islands was realized with a resistive Cr wire. We were

expecting that the resistive wire would exhibit inherent low-pass filtering

properties, which would result in diminished back-action. We have not

assessed this hypothesis quantitatively in light of the measurement re-

sults. In a recent work by Lotkhov and Zorin [111], the authors studied

photon-assisted escape processes from an electron trap irradiated by pho-
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tons originating from a SINIS-type SET. The escape rate was found to be

proportional to the emitted flux of photons that are more energetic than

the energy barrier of the trap, in agreement with the photonic back-action

model.

4.3 Sub-gap processes in SINIS single-electron transistors

In this section, we will review measurements of tunneling processes in a

SINIS-type SET, where quasiparticles in the superconducting leads were

efficiently evacuated (see Sec. 2.4), and the junctions were well shielded

frommicrowave irradiation (Sec. 4.2). We take the viewpoint that the sub-

gap tunneling processes, i. e., those observed at bias voltages less than

Δ/e per junction, are a measure of the inherent quality of the device.

The measurement results presented in this section have been reported in

Pub. IX, although some of the analysis is new. The sample layout can be

seen in Fig. 3.1. At the heart of the sample chip there are two capacitively

coupled SINIS SETs. These precautions were made to enable the study of

the inherent transport properties of the SETs. The sample design is sym-

metric so that either one of the SETs can be employed as an electrometer

that probes the other SET, which we will refer to as the device under test

(DUT). The sample design includes a ground plane for capacitive shunt-

ing of bias and gate leads, superconducting leads that make a large area

(8×8 μm2) contact to gold electrodes for efficient quasiparticle evacuation,

and a resistive Cr wire for realizing a coupling between the two SETs that

cuts a part of the high-frequency back-action.

I–V measurements are the standard method for probing the subgap

transport of NIS structures. However, subgap characterization of high-

quality NIS and SINIS samples is challenging due to small transport

current and high device impedance. In the I–V measurements of low-

temperature samples for this thesis, the best current noise levels were

of the order of a few fA/
√
Hz. The smallest nonzero current readings we

obtained were about 0.1 fA at a bias voltage of 250 μV , which required

an overnight measurement for a single I–V curve. The true sub-gap re-

sistance of the SINIS samples of Pub. IX inferred from electron counting

measurements was about 1013 Ω at zero bias. Even if the current noise of

the amplifier could be eliminated, parasitic conductance along the sample

chip or sample holder might shunt the sample. The above-mentioned best

subgap I–V measurements yield a resistance of 1012 Ω. When measuring
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Figure 4.5. Combination plot of measured process rates in a SINIS SET. Black curves
and markers are experimental data, whereas the colored curves are theoret-
ical predictions. Experimental data for |Vds| > 250 μV (black lines and open
squares) is obtained from I–V measurements averaged over gate modula-
tion. Experimental data for |Vds| < 250 μV (filled black squares) is the ob-
served process rate in electron counting traces. Theoretical predictions have
been calculated with parameters T = 50 mK, RT = 1.1 MΩ per junction,
Δ = 210 μV, Ec = 0.25Δ, normalized conductance per channel g/N = 10−5,
and Dynes parameter γ = 1.5× 10−7.

such high-impedance samples, it is crucial that the input of the current

amplifier is kept at ground potential to prevent leakage currents through

cabling and connectors from interfering with the measurement. For exam-

ple, the BNC connectors that we used for room-temperature connections

have their ground leakage resistance rated typically at 5× 109 Ω.

In the sample topology with two capacitively coupled SETs, it is possible

to characterize the sample parameters RT, Ec, and Δ from ordinary IV

measurements with currents of the order of 1 pA and higher. In this way,

the tunneling rates obtained from electron counting near zero bias can

be compared to theoretical estimates calculated with the known sample

parameters. This method was employed in the article to obtain the upper

bounds γ < 1.6×10−7 for the Dynes density of states and nqp < 0.033 μm−3

for the density of non-equilibrium quasiparticles in the superconductor.

Following the original reasoning of Dynes et al. [17], we can infer an

estimate for the quasiparticle recombination time from the experimental
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broadening term. We have then τr = �

2γΔ = 10 μs as the experimental

figure. The equilibrium result for quasiparticle relaxation time at low

temperatures can be written as [89, 112]

τr =
τ0
nqp

N0(kBTc)
3

2Δ2
, (4.10)

where τ0 is a material parameter and assumes the value 460 ns for

aluminum [89]. For the measured record-low quasiparticle density of

nqp = 0.033 μm−3, the predicted recombination time is 6 s. Clearly,

quasiparticle–quasiparticle relaxation is not responsible for the observed

lifetime broadening. However, in the measured sample, the dominant

quasiparticle evacuation mechanism is via the normal-metal traps located

at a distance of L = 10 μm from the junction. Assuming a thermal distri-

bution of quasiparticle energies, the average diffusion time to the trap site

can be calculated according to

τd = L2/Dqp, Dqp = D
√
kBTS/(2πΔ), (4.11)

where D = 60 cm2/s is the diffusion constant for aluminum [70]. At tem-

perature TS = 122 mK corresponding to the nqp value stated above, we

arrive at τd = 200 ns, which is shorter than the experimental life-time

estimate by a factor 50. Although it is physically motivated to expect a

quasiparticle trap placed too close to the junction site to induce effective

subgap states, the simple model presented above appears to be too naive

to capture the correct physics of the experimental scenario. One can also

adopt the view that the Dynes parameter as employed here does not arise

from a finite life-time of the quasiparticle states, but instead only charac-

terizes the density of quasiparticle states in the superconducting gap at

the junction site.

When both the electron counting and I–Vmeasurement techniques are

pushed to their limits, it is possible to produce a semi-continuous plot of

process rates as a function of bias voltage ranging from 8 Hz to 2×109 Hz,
which is illustrated in Fig. 4.5. The fact that there is an apparently seam-

less transition between the two data sets around |Vds| = 250 μV is even

surprising, as the count rates are obtained with the gate at degeneracy,

whereas the plotted I–V curve is an average over gate modulation. The

explanation is two-fold. First, around that bias point, the quasiparticle

transport is dominated by 2e Andreev processes and gate modulation of

the total current is relatively weak. Second, due to a mechanism ex-

plained shortly below, each Andreev event results in a passage of one
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Figure 4.6. Rate parameters for first and second order tunneling processes in a SINIS-
type SET as a function of Vds. Sample parameters for theory calculations
are as in Fig. 4.5. In panel (a), corresponding to the case of charge degen-
eracy, black markers show the rates inferred from 1e jumps observed in the
experimental data. Solid black and red curves are theoretical predictions for
subgap states only and Andreev processes (followed by a fast 1e relaxation)
only, respectively. The dashed red curve accounts for the fact that some of the
n = 2 excitations relax back to n = 0 via another 2e Andreev process, and are
not observed in the experiment. In panel (b), corresponding to the case of full
Coulomb blockade, we plot the experimental rates for following processes: 1e
excitation from n = 0 to n = ±1 (black), 1e relaxation from n = ±1 to n = 0

(red), and 2e Andreev process from ±1 to ∓1 (blue). Experimental electrome-
ter traces measured at the two bias points indicated by arrows are presented
in Fig. 4.7.

quasiparticle through the device in the direction of bias voltage, which

enables the correspondence Iobs = eΓobs to be made.

In Pub. IX, the 2e Andreev rates were not quantitatively analyzed,

although they were considered to be a plausible explanation for some

of the observed rates. Later, we learned that the electron count rates

for |Vds| > 100 μV and the low-bias behavior in measured I–V curves

could be relatively well explained by the theory of 2e Andreev events pre-

sented in [71] and experimentally verified for an NIS single-electron box

in Pub. VIII. For the theoretical calculations, the parameter g/N describ-

ing normalized conductance per channel was set to the best-fit value of

10−5. This value is in good agreement with the value g/N = 4 × 10−5

obtained in Pub. VIII when adjusted for differing junction resistance and

size. Contribution to electron counting traces is detailed in Fig. 4.6(a),

where a baseline due to Dynes density of states is assumed.

For a more explicit proof that Andreev events were indeed occurring in

the measured SET, we present electron counting traces obtained when the

gate charge was tuned to full Coulomb blockade. The idea is the same that

was employed earlier in Pub. VIII. In the electrometer traces on which the

gate open data presented in Fig. 4.6(a) is based, actual 2e jumps cannot be
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Figure 4.7. Experimental traces demonstrating 2e oscillations in a Coulomb-blockaded
SINIS-type SET.
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observed, as the n = 2 charge state populated by an Andreev event tends

to relax into n = 1 state via ordinary 1e tunneling. Similar process takes

place for n = −1 that relaxes into n = 0. The rate parameter for the decay

process is much larger than the bandwidth of the electrometer readout,

and hence only a 1e jump is observed. On the contrary, in full Coulomb

blockade and suitable biasing, it is possible to observe characteristic 2e

oscillations in the charge state. This can be understood through the pro-

cess rates plotted in 4.6(b): Once the system is excited into a state n = 1

(case n = −1 is similar) by 1e tunneling, it is more likely to switch to

the state n = −1 via 2e Andreev process than relax back to n = 0 via 1e

process. Hence, in the experimental traces, one expects to see occasional

bunches of rapid 2e oscillations, with each bunch containing on average

Γ2e(1 ↔ −1)/Γ1e(±1 → 0) jumps. The optimal bias voltage range, ac-

counting for limited detector bandwidth and trace lengths of 6 seconds,

is 50–100 μV. Two such experimental traces, matching qualitatively the

theoretical predictions, are shown in Fig. 4.7. Unfortunately, the amount

of recorded electrometer traces does not allow for a quantitative analysis

of the process parameters in the Coulomb blockaded case. In retrospect,

the SINIS SET appears to be better suited for observation of 2e events

than the NIS single-electron box employed in Pub. VIII, as the process

rates under biased conditions are more favorable for data acquisition.

4.4 A quantized current source: The SINIS turnstile

In the preceding sections, we have established the high quality of the SI-

NIS SET as a circuit element with experiments and theory spanning more

than eight orders of magnitude in process rates for a single device. Fur-

thermore, in Pub. VII, the charge trapping times in excess of 10 h were

observed in an electron trap realized with a SINIS SET. These features

combined with a relatively simple fabrication process and low number of

control signals needed for device operation – one bias voltage and one

gate voltage – make it a viable candidate for realizing an accurate source

of quantized current. Chronologically, the first experimental and theo-

retical work on the current source idea, called the SINIS turnstile, was

done shortly after the theory for rf-refrigeration (Pub. I) and the experi-

ments on the heat transistor (Pub. II). The article included in this thesis,

Pub. III, is the first experimental demonstration of current plateaus by an

rf-driven SINIS turnstile.
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The principal motivation for studying quantized current sources is two-

fold [16]: First, an accurate single-electron source that produces a suffi-

ciently high output current would enable a new definition of ampere in

the SI system of units. Secondly, when viewed as a frequency-to-current

converter, the current source would enable a consistency check between

two already established quantum standards of electrical quantities: the

resistance standard based on quantum Hall effect, and the voltage stan-

dard based on Josephson effect. Performing this experiment is said to

close the quantum metrological triangle, and is considered to be one of

the most important challenges in electrical metrology at the moment. The

exact requirements on the current source depend on the specifics of the

measurement setup. For a comparison performed on a current or volt-

age balance based on Ohm’s law, a current of at least 100 pA at an accu-

racy of 10−7 is required to produce metrologically interesting results [90].

Another variant is known as the electron counting capacitance standard

(ECCS) [113, 114], where the current source is used to charge a cryogenic

capacitance with a known number N of electrons, and the generated volt-

age is compared against the Josephson voltage standard. Compared to

the direct Ohm’s law scheme, the ECCS can be realized with a current

source capable of producing smaller currents, but suffers from an addi-

tional source of uncertainty in the frequency dependence of the capaci-

tor. The 7-junction normal metal pump used in the NIST ECCS exper-

iment had an error rate of 1.5 × 10−8 when operated at a frequency of

5.05 MHz [115].

As is the case for all single-electron current sources, the basic operation

principle of the SINIS turnstile is to transfer an integer number N of

electrons from the source electrode to the drain in each cycle of an external

drive signal at frequency f . The generated current is thus ideally I =

Nef . The direction of current flow is set by voltage biasing the device

at approximately Vds = Δ/e, i. e., Δ/(2e) per junction. For producing the

N = 1 plateau, which gives the highest accuracy in real devices, a cyclic

drive signal of the form ng(t) = −1
2 + Ag sin(2πft) with Ag ∼ 1

2 is applied

to the gate. A square wave drive yields generally a better accuracy, but

the signal shape can get distorted due to frequency dispersion present in

real rf wiring. In Fig. 4.8(a), the simulated turnstile current as a function

of Ag is plotted in the case of a sinusoidal drive and a few bias voltages

around Vds = Δ/e, displaying a wide plateau.

For an elementary analysis of turnstile errors, we consider rate param-
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Figure 4.8. Simulated quantized current plateaus for f = 10 MHz and Vds/Δ =

0.8, 0.9, 1.0, 1.1, 1.2 in the order of increasing current. The rate parameters
have been calculated with the same theoretical model as for Fig. 4.5, except
that device parameters have been changed to Ec = 5 K and RT = 250 kΩ.

eters for various tunneling properties in a scenario where the turnstile

charge state is initially n = 0, and the gate charge is changed sharply to

ng = −1 for the duration τ = 1/(2f) of half a cycle, corresponding to an

ideal square wave drive with Ag = 1/2. We assume the tunnel junctions

are identical, so that the electron tunneling rates can be described by a

single function Γ(E). The rate parameter for an electron to tunnel in from

the source lead is Γ(Ec + eVds/2), which is what should occur in normal

operation. The probability that this tunneling process is missed is

pmiss = exp [−τΓ(Ec + eVds/2)] . (4.12)

Furthermore, after the charge state n = 1 has been occupied, another

tunneling process to state n = 2 can take place with rate parameter

Γ(−Ec + eVds/2). Assuming pmiss to be small, the probability of an extra

electron tunneling during the cycle is

pextra = 1− exp [−τΓ(−Ec + eVds/2)] . (4.13)

In order to obtain an illustrative analytical answer for the minimized to-

tal error probability pmiss + pextra, we assume that both Γ(Ec + eVds/2)

and Γ(−Ec + eVds/2) lie in the range of thermal activation illustrated in

Fig. 4.5. Then, we write Γ(±Ec + eVds/2) = Γ(eVds/2) exp (±Ec/kBT ), and

the optimal total error probability is found to be

perr =
2Ec

kBT
e−2Ec/kBT (4.14)

irrespective of the frequency f . However, the result is undoubtedly too op-

timistic and the practical performance is limited by features not described

by the above approximation. Firstly, the forward transition rate ceases to
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grow exponentially beyond Vds > Δ/e, and the generated current cannot

exceed Δ/(eRT). Secondly, the leakage current does not decrease with-

out bound as the Ec/kBT ratio is increased, but is limited by the subgap

processes.

For a more comprehensive estimate of turnstile performance, we have

performed master equation based simulations incorporating the full the-

ory for subgap behavior presented in Sec. 4.3 including 2e Andreev pro-

cesses. We assumed the same values for the Dynes parameter γ and nor-

malized conductance per channel g/N , but increased the charging energy

to 5 K and decreased the junction resistance to 250 kΩ, which are still

achievable values. In Fig. 4.8(b), close-ups of the plateau reveal differ-

ences from the ideal behavior at the 10−7 relative error level for the best

bias voltage Vds = Δ/e. An alternative view to turnstile accuracy is given

in Fig. 4.9, where the distribution of the number n of electrons transferred

per cycle is illustrated. Here, we observe that some amount of error can-

cellation takes place, as the probabilities for n = 0 and n = 2 are of the

same order of magnitude near the best pumping parameters. The mini-

mized total error probability is 5 × 10−7. Depending on the application,

the appropriate figure of merit may be either δI/I or 1− P (n = 1). In the

QMT experiment, only the average error δI is important, whereas an elec-

tron counting error measurement detects all pumping errors, and hence

measures the total error probability 1− P (n = 1).

The progression of the turnstile accuracy demonstrated in the experi-

ments can be summarized as follows: In the first proof-of-concept demon-

stration (Pub. III), the accuracy was of the order of 1% for pumping fre-

quencies up to 80 MHz. A significant improvement to better than 10−3 ac-

curacy at f = 10 MHz was shown in Pub. IV by implementing the on-chip

capacitive shunt and optimizing junction parameters. The best turnstile

pumping result presented to date is an accuracy of 10−4 at f = 20 MHz

by Knowles et al. [116], where an rf-tight sample stage was used and the

geometry of the superconducting leads was improved to aid diffusion of

injected quasiparticles away from the junctions. In light of the present

knowledge about quasiparticle transport in SINIS structures, it is still

plausible than an optimized SINIS turnstile could be used to perform the

ECCS experiment, and that a parallelized array of turnstiles could be

used as a metrological current source. However, to realize these ambitious

goals, at least the following two technical challenges need to be solved.

First, thermalization of both the normal metal island and the super-
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Figure 4.9. Distribution of simulated pumping errors for the curves Vds/Δ = 0.8, 1.0, 1.2

from Fig. 4.8. P (n = 0) is the probability miss an electron transfer during a
cycle (thin dashed line), P (n = 2) is the probability to transfer two electrons
through the device (thin solid line), and 1 − P (n = 1) gives the total error
probability (thick solid line).

conducting leads deserve a detailed study. The volume of the turnstile

island has to be kept small in order to maximize Ec, reducing the total

effectiveness of electron-phonon coupling for island thermalization. For-

tunately, it has been shown [109] that in an operation point where quan-

tized current plateaus are produced, the normal island is actually cooled

in a manner similar to the rf-refrigerator concept presented in Sec. 4.1. In

the superconducting leads, the heating problem is more severe. Each elec-

tron transported through the turnstile creates a quasiparticle excitation

in both superconducting leads. Hence, the local heating power injected to

the superconductor at the junction is approximately equal to IΔ/e. As dis-

cussed in Sec. 2.4, the electron-phonon coupling in superconducting ma-

terials is remarkably weak, and to dispose of this heat in practice, the hot

quasiparticles have to be evacuated to a specifically designed quasiparti-

cle trap. However, the normal metallic traps cannot be placed too close to

the turnstile in order to avoid the degradation of the superconductivity at

the turnstile junctions through inverse proximity effect.

Second, the experimentally observed area participation ratios of less
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than 10% (see Sec. 2.3.2) are a concern for the design of high-performance

turnstile devices. An optimized turnstile possesses a low tunneling re-

sistance to enable high pumping speeds, a low junction capacitance to

maximize Ec, and a low barrier transparency to hinder higher-order error

processes. A low participation ratio necessitates a larger junction area to

realize a given conductance, which results in a larger capacitance. For

example, in the theoretical analysis of turnstile performance presented in

Ref. [71], the authors predict a 10−8 accuracy at a current level of 100 pA

for a device with Ec = 10 K and N = 1000 quantum channels. Using the

theoretical estimate Ach = 1.4 nm2 (see Sec. 2.1.2), such a two-junction de-

vice with AlOx barriers could have a charging energy up to 7.5 K. On the

other hand, a calculation with the experimental value Ach = 30 nm2 leads

to a charging energy of just 0.4 K. We envision that the ideal turnstile

junction would be formed on the face of a single-crystalline aluminum

grain, leading to a uniform barrier and thus a high participation ratio.

4.5 Statistical mechanics of driven single-electron transitions

In the final experimental investigation of this thesis, we consider the pro-

cess of charging mesoscopic conductors by individual electrons from the

point of view of statistical physics. In Sec. 4.1, we have already considered

the average heat deposited to or extracted from the electrodes of single-

electron devices: the heat transistor concept deals with fixed gate charges

only, i. e., the rate of change of the gate charges in the experiment is slow

compared to the rate parameters of the typical tunneling processes. In the

rf-refrigerator scheme, a small number of tunneling events takes place in

each cycle of the external gate drive. From the same theoretical footing,

it is possible to make a connection to some key topics of modern non-

equilibrium statistical physics by extending the analysis to cover the full

distribution of the thermodynamic quantities instead of the mean values

only.

The physical system that we study is a single-electron box whose charge

state is controlled by an external gate voltage. We demonstrate a method

for determining the total amount of heat generated in a single gate ramp,

and use this method to obtain the full distribution of generated heat. The

properties of the obtained distributions are shown to obey the Jarzyn-

ski [14] and Crooks [15] fluctuation relations (FRs), which are two fun-

damental results of non-equilibrium statistical physics. Classical ther-
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modynamics governs the behavior of a wide range of physical systems

and man-designed machines. However, thermodynamical theorems are

usually formulated in the limit of large systems, i. e., when the particle

number and number of degrees of freedom approaches infinity. Some of

the established notions need to be re-evaluated when dealing with small

systems having a very restricted number of degrees of freedom. In this

sense, the single-electron box can be thought of as one of the "smallest"

systems possible, having only one discrete degree of freedom: the num-

ber n of elementary charges transferred from, say, the left electrode to the

right. This fact, combined with an excellent microscopic understanding of

the dynamics of n, makes the single-electron box an ideal testbed of FRs

in mesoscopic physics.

Consider a system obeying classical mechanics described by a Hamil-

tonian H = H(x, λ), where the vector x represents the internal degrees

of freedom and λ is an external control parameter. The setting for the

equilibrium FRs that are of interest here is the response of the system,

initially in thermal equilibrium at temperature T at time t = ti, to a vari-

ation of the control parameter along a predetermined trajectory λ = λ(t)

lasting until time tf . This is referred to as the protocol. We define the

dissipated workWdis as

Wdis =W −ΔF, (4.15)

where W denotes the thermodynamical work performed on the system

during the protocol, andΔF = F (λ(tf ))−F (λ(ti)) the change in Helmholtz

free energy. The general definition ofW applicable here is

W =

∫ tf

ti

∂H

∂λ
λ̇ dt, (4.16)

and the free energy is defined through the partition function Z(λ) as

Z(λ) =
∑
x

e−βH(x,λ) (4.17)

F (λ) = −β−1 lnZ(λ), (4.18)

where β = 1/(kBT ). The Second Law can be now formulated as

〈Wdis〉 ≥ 0, (4.19)

where the ensemble average is taken over microscopic realizations of the

protocol. It states that the average work exerted on the system in chang-

ing the control parameter λmust be larger or equal to the free energy dif-

ference at the end points of the protocol. However, the work performed on
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the system depends on the microscopic trajectory traversed by the system,

and hence fluctuates between repetitions of the protocol. In particular, for

some trajectories, one may find W < ΔF , although 〈W 〉 ≥ ΔF holds for

the mean value.

It is a characteristic feature of small system experiments that such

entropy-reducing trajectories can make up a significant fraction of the

observed trajectories. The landmark Jarzynski equality states that, for a

system starting in thermal equilibrium,〈
e−βWdis

〉
= 1, (4.20)

where the ensemble average again is taken over microscopic realizations.

The Crooks relation is a stronger result that can be written forWdis as

PF (−Wdis)

PR(Wdis)
= e−βWdis , (4.21)

where PF and PR are the probability distributions of Wdis when the pro-

tocol is performed in the forward (usual) direction and in reverse, i. e.,

λ(t) = λ(ti + tf − t), respectively. In the past 10 years, a number of

experimental tests [117, 118, 119, 120, 121, 122] have been performed

probing various aspects of FRs. The experiment we report in Pub. XI is

the first such test in an electronic system where the control parameter

protocol could be implemented. Compared to previous experimental in-

vestigations of Eqs. (4.20) and (4.21), the implementation on an electronic

platform brings about a comprehensive microscopic theory and the ability

to collect statistics over 105 repetitions of the control protocol.

Equations (4.19)-(4.18) constitute a general formal recipe allowing the

FRs (4.20) and (4.21) to be applied to any classical system. We have im-

plemented this method in Pub. X, starting from the construction of the

classical Hamiltonian for the single-electron box circuit and the voltage

source controlling the gate charge. However, the experimental method

employed in Pub. XI can be derived with a much shorter reasoning that

we will present here. We take advantage of the simplifying conditions that

(i) the experiment was performed in Coulomb blockade, i. e., Ec/(kBT )� 1

and (ii) the gate protocol started at ng = 0 and ended at ng = 1. At the

highest employed experimental temperature of 214 mK, the Ec/(kBT ) ra-

tio was 9.1. Consequently, at the beginning and end of the protocol, the

charge state of the box would essentially always be the minimum-energy

state n = ng. As we show in detail in Pub. X, the essential source of fluctu-

ations in Wdis is the behavior in the middle of the sweep when ng is close
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to degeneracy. The fluctuations of the charge state at the endpoints can

be ignored at the level of statistical accuracy achieved in the experiment.

Hence, we obtain

Wdis =W −ΔF =W −ΔU + TΔS =W −ΔU = Q, (4.22)

where Q is the total heat generated during the protocol application. In

the above derivation, we have utilized the general theorem F = U − TS

and the fact that S = 0 at the endpoints as per the preceding reasoning.

The above equality thus allows us to write the FRs (4.20) and (4.21) in

terms of the generated heat Q.

Now, the heat Q could be determined in a calorimetric manner by re-

lating it to the observed temperature change in the box electrodes. How-

ever, the technical requirements of a true calorimetry scheme are beyond

those presently demonstrated, although in principle feasible. In the ex-

periments of Pub. XI, we determined Q for an individual trajectory from

the observed timing of the electron tunneling events. In an elastic tun-

neling event from electrode L to R, the heat extracted from electrode L

equals E−μL and the heat deposited to electrode R equals E−μR, where
E is the kinetic energy of the tunneling quasiparticle. Hence, the total

heat deposited into both electrodes equals Q = μL − μR = 2Ec(ng − 1
2).

We are now in a position to describe the complete experimental method

of Pub. XI. We apply a sinusoidal drive signal ng = 1
2 +

1
2 cos(2πft) to the

gate of a NIS single-electron box, and monitor simultaneously the charge

state with an SET electrometer. To ensure that the tunneling dynamics

were governed by the equilibrium thermal fluctuations, the experimental

data was acquired at relatively high temperatures up to 214 mK. As il-

lustrated by Fig. 4.3, the crossover temperature to non-thermal behavior

in a single-electron box experiment is below 150 mK. The employed drive

frequencies f were 1–20 Hz in order to accommodate for the low detec-

tor bandwidth of approximately 1000 Hz. Each half cycle constituted an

individual realization of the gate protocol, transforming the system state

from n = ng = 0 to n = ng = 1, or vice versa. From the observed stochastic

tunneling times τi, the total heat generated in the sweep can be evaluated

as the sum

Q =

N∑
i=1

(−1)i+12Ec(ng(τi)− 1

2
), (4.23)

where N is the number of tunneling events in the trace. Equation 4.23

was originally presented in Ref. [13].
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Figure 4.10. Experimental trace from the data of Pub. XI. The red trace shows the sinu-
soidal drive applied to the gate of the box, and black trace is the electrometer
response, illustrating that the charge state is synchronized to the drive sig-
nal. Peak-to-peak amplitude of the drive corresponds to approximately 1e

in gate charge. The close-up shows one half cycle of the drive (shaded area
in the top panel), corresponding to one instance of the gate control protocol
used for tests of fluctuation relations.

A typical experimental time trace acquired in the experiment is shown

in Fig. 4.10. After the switching events have been identified by threshold

detection from the electrometer trace, evaluation of Q for this particular

trajectory is straightforward by application of Eq. 4.23. For determining

the full Q distribution, we recorded the electrometer traces for at least

1000 repetitions of the gate protocol. In Fig. 4.11, we show a set of exper-

imental distributions obtained at 182 mK for drive frequencies 1–20 Hz.

In Figs. 2(b) and (c) of Pub. XI, the first and second moment of Q distribu-

tion as a function of frequency at 182 mK is computed from this data. The

largest datasets for a single Q distribution we acquired contain 1–4×105
repetitions of the gate protocol. These distributions were used for the

most accurate test of the Jarzynski and Crooks fluctuation relations. The

Jarzynski-type exponential average
〈
e−βQ

〉
could be evaluated to 3 % ac-

curacy, with the offset attributed to charge noise and finite detector band-

width. The noise level in the determination of Q for a single trajectory

was found to be 0.032 kBT at 214 mK.

Theoretical description of the Q distributions at a qualitative level is

possible from general thermodynamic principles. The single microscopic

parameter that is needed is a rate parameter fc describing internal en-
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ergy relaxation of the system. At frequencies much smaller than fc, the

drive can be considered adiabatic, and both 〈Q〉 and 〈
Q2

〉
vanish, i. e., all

individual trajectories show zero dissipation. In general, for f � fc, the

distribution of Q is approximately Gaussian and the first and second mo-

ments are related by
〈
(Q− 〈Q〉)2〉 = 2kBT 〈Q〉. This can be shown by a

series expansion of JE or by an application of the Fluctuation-Dissipation

Theorem [13].

For f � fc, the drive is nonadiabatic and heat generation is maximized.

For the single-electron box, fc can be taken to be the tunneling rate at

degeneracy. At 182 mK, this rate was found to be 9 Hz by observing the

stochastic tunneling without a gate drive. The distributions presented in

Fig. 4.11 fit well to the above description: For the highest studied fre-

quencies, about Ec/2 of heat is dissipated in each trajectory, but the dis-

tribution contains a long tail extending to negative Q values. As the drive

frequency is lowered below 5 Hz, the peak of the distribution starts to

move toward zero. Observing the fully adiabatic regime would require

even lower drive frequencies. This is explained by the fact that for the

sinusoidal ng drive employed here, the rate of change near the charge de-

generacy point is 2πf . Hence, near the degeneracy, even the 1 Hz drive is

fast enough so that the system cannot follow it adiabatically.

The theoretical framework we have established allows the charge state

of the single-electron box in response to an external gate drive to be sim-

ulated. Following the procedure of Pub. V, we extract the parameters RT,

Ec, and Δ by observing the stochastic quasiparticle tunneling events for

different constant values of the gate charge ng and temperatures T . The

data sets of parameter extraction are shown in the supplemental mate-

rial of Pub. XI. For the purposes of testing the FRs (4.20) and (4.21), it

is crucial that the charge degree of freedom is coupled to an equilibrium

environment at a single temperature T . Hence, we will assume fully ther-

malized quasiparticle distributions in the box electrodes, and a negligible

coupling to fluctuations of the electromagnetic environment. Given the

tunneling rate as a function of energy Γ(E), the full Q distribution can be

evaluated efficiently without a Monte Carlo simulation using the method

described in Sec. 5.2. In Fig. 4.11, we show the theoretical distributions

obtained in this manner. We find them to be in good agreement with the

experimental data.
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Figure 4.11. Full distributions of generated heat at 182 mK for drive frequencies 1–
20 Hz. The gate drive is sinusoidal, centered at the charge-degeneracy point
ng = 1/2, and has a peak-to-peak amplitude corresponding to 1e in gate
charge. Black markers show the experimental distribution obtained from a
data set with total length of 500 s. Red curves are simulated distributions
for the known sample parameters at T = 182 mK, which was determined by
an independent thermometer on the sample stage.
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5. Numerical methods

5.1 Master equations for single-electron transport

In this section, we present a general framework for calculating time-

averaged electric and heat currents in a single-electron system with a

master equation approach. As in Sec. 2.2.2, we assume a general setting

of N islands and M voltage terminals. For clarity, we will use the in-

dexing variable i to refer to the voltage terminals only, and variables j

and k for the islands. The system state at any given time t is specified

by the vector V of external voltages Vi, and the integer vector n, where

the component nj expresses the excess charge of island j in units of the

elementary charge. An effective way to perform the averaging over the

stochastic charge state trajectory is to consider the probability distribu-

tion p(n, t) of different charge states n. The time-dependence of p is given

by the master equation

dp(n, t)

dt
= −

∑
n′ �=n

γ(n,n′)p(n, t) +
∑
n′ �=n

γ(n′,n)p(n′, t), (5.1)

where γ(n,n′) denotes the total transition rate of all elementary processes

that change the charge state from n to n′.

Let us consider how to construct the rate matrix elements γ(n,n′).

Single-electron tunneling events between a lead and an island contribute

according to

γ([. . . nj . . .] , [. . . (nj ± 1) . . .]) =
∑
i

Γ1e
ij (−ΔFc ± eVj), (5.2)

whereΔFc = Fc(n
′)−Fc(n) is the change in the charging energy potential

defined in Eq. (2.45), and Γ1e
ij is the tunneling rate from orthodox theory

[Eq. (2.7)] for the junction between lead i and island j. The absence of a

tunnel junction is formally equivalent to RT = ∞ in the present context.
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Two-electron Andreev processes can be treated similarly,

γ([. . . nj . . .] , [. . . (nj ± 2) . . .]) =
∑
i

Γ2e
ij (−ΔFc ± 2eVj). (5.3)

Finally, if the system has multiple islands with tunnel junctions between

them, the inter-island processes contribute terms of the type

γ([. . . nj . . . nk . . .] , [. . . (nj ± 1) . . . (nk ∓ 1) . . .]) = Γ1e
jk(−ΔFc), (5.4)

γ([. . . nj . . . nk . . .] , [. . . (nj ± 2) . . . (nk ∓ 2) . . .]) = Γ2e
jk(−ΔFc). (5.5)

For all combinations of charge states n and n′ except for those explicitly

listed above, γ(n,n′) = 0. It should be noted that if the voltages Vj are

time (in)dependent, the same holds for the rates γ(n,n′).

If the distribution p(n, t) is known, the expectation value of the electric

current to lead i can be obtained from

〈Ii(t)〉 = e
∑
n

p(n, t)
(
Γ1e,in
i,n − Γ1e,out

i,n

)
+ 2e

∑
n

p(n, t)
(
Γ2e,in
i,n − Γ2e,out

i,n

)
,

(5.6)

where Γ
1e,in(out)
i,n is the rate parameter for 1e tunneling to (from) lead i

when the system is in charge state n, and Γ2e,in(out)
i,n is the rate for the 2e

Andreev processes. Each term in Eqs. (5.2)-(5.3) corresponds to exactly

one term in Eq. (5.6).

In the modeling work for this thesis, we only considered the heat flow

to a normal metal island due to 1e events in either single-electron box or

single-electron transistor configuration. In this case, we can write simply〈
Q̇N(t)

〉
=

∑
n

p(n, t)
(
Q̇N,1e,in

i,n + Q̇N,1e,out
i,n

)
. (5.7)

For a numerical implementation, one chooses a representative set of

charge states {nλ}Lλ=1 so that the probability mass of the states outside

this set is negligible. The master equation (5.1) can be written in matrix

form as
dp(t)

dt
= A(t)p(t), (5.8)

where Aλ,λ = −
∑

λ′ �=λ γ(nλ,nλ′), Aλ′,λ = γ(nλ,nλ′) for λ′ 
= λ, and pλ(t) =

p(nλ, t).

If the external voltages are constant in time, also the matrix A(t) is

constant and the distribution p(t) tends to the steady-state solution peq

defined by

Apeq = 0,
∑
j

peqj = 1. (5.9)

Average electric and heat currents can be computed by direct evaluation

of Eqs. (5.6) and (5.7).
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The second case we consider is that of a time-dependent cyclic drive,

i. e., V (t + τ) = V (t) for some cycle length τ . It follows that the probabil-

ity density should converge to a steady-state solution peq(t) that has the

same periodicity, peq(t + τ) = peq(t). We discretize the cycle into Nt time

steps of length Δt = τ/Nt, and approximate A(t) during the time interval

[mΔt, (m+ 1)Δt] by the constant Am = A(mΔt) for m = 0 . . . Nt − 1. The

propagator for the probability density over the full cycle is then given by

U(τ) = exp (Δt ANt−1) · · · exp (Δt A1) exp (Δt A0) . (5.10)

Solution by matrix exponentiation is much preferred over solving Eq. (5.8)

by explicit methods due to the fact that the non-zero transitions rates

contained in A(t) can easily vary by 10 orders of magnitude, making the

problem very stiff. The steady state distribution at the beginning of the

drive cycle, peq(0), is determined by the equations

U(τ)peq(0) = peq(0),
∑
j

peqj (0) = 1. (5.11)

The density at an arbitrary point of the cycle can be then calculated as

peq(t) = U(t)peq(0), where U(t) is the natural generalization of Eq. (5.10)

for t < τ .

Finally, we show how to calculate accurately the total charge trans-

ferred to the lead i during the steady-state cycle. We define 〈qi(τ ′)〉 =∫ τ ′
0 dt 〈Ii(t)〉, and construct an augmented state vector p̃(t) =

⎡
⎣ p(t)

〈qi(t)〉

⎤
⎦.

The time development of p̃ is given by

dp̃(t)

dt
=

⎡
⎣A(t) 0

b(t) 1

⎤
⎦ p̃(t) ≡ Ã(t)p̃(t), (5.12)

where the matrix A(t) defined similarly as in Eq. 5.8, and the components

of the row vector b(t) are

bλ(t) = e
(
Γ1e,in
i,nλ

− Γ1e,out
i,nλ

)
+ 2e

(
Γ2e,in
i,nλ

− Γ2e,out
i,nλ

)
(5.13)

in accordance with Eq. (5.6). We construct the augmented propagator

Ũ(τ) following the earlier procedure, and decompose it as

Ũ(τ) =

⎡
⎣ U(τ) 0

Uqi(τ) 1

⎤
⎦ , (5.14)

where U(τ) defined by the above equation is equal to that given in

Eq. (5.10) by construction. The expectation value of the charge trans-

ferred in the steady-state cycle is then given by

〈qi(τ)〉eq = Uqi(τ)p
eq(0), (5.15)
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where peq(0) is obtained from Eq. (5.11). The same procedure can be

used to find the expectation value of total heat deposited to an island,〈
QN

i (τ)
〉
eq
.

5.2 Computation of the distribution of dissipated heat in a driven
two-level system

In Sec. 4.5, we analyzed the statistics of heat generated in a single-

electron box subjected to a gate drive. We showed that the dissipated

heat in a single instance of a gate protocol that drives the charge state

from n = 0 to n = 1 is given by

Q = 2Ec

∑
i

(−1)i+1

[
ng(τi)− 1

2

]
, (5.16)

where Ec is the charging energy of the box, ng(t) is the gate charge in

units of e at time t, and τi is the time instant of the ith tunneling transition

during the sweep. The time-dependent energy difference of the two charge

states is

ΔE = Fc(n = 1)− Fc(n = 0) = −2Ec

[
ng(t)− 1

2

]
. (5.17)

The tunneling processes are Markovian, and the rate parameters for the

0 → 1 and 1 → 0 transitions (denoted by + and −, respectively) are given
by Γ±(t) = Γ(∓ΔE), where the function Γ(E) is determined by junction

properties.

We wish to study the distribution of Q for a particular gate protocol

ng(t) averaged over the stochastic tunneling trajectories. We will denote

the density function of this distribution by pQ(Q), so that the expectation

value of any function f(Q) can be evaluated as 〈f(Q)〉 = ∫
dQpQ(Q) f(Q).

Without loss of generality, we assume that the gate protocol begins at

time instant t = 0 and finishes at t = T . In this case, Eq. (5.16) can be

rewritten as

Q

2Ec
=

∫ T

0
dt ng(t)

dn(t)

dt
= ng(t)n(t)|T0 −

∫ T

0
dt
dng(t)

dt
n(t), (5.18)

where n(t) is the charge state of the box (either 0 or 1) at time t. For

treating the remaining integral term, we define a new functionW (t) by

W (t) =

∫ t

0
dτ
dng(τ)

dτ
n(τ), (5.19)

so that Q/(2Ec) = 1 − W (T ), if we make the simplifying assumptions

n(0) = ng(0) = 0 and n(T ) = ng(T ) = 1. In the remaining, we will con-

sider the time evolution of the density function ofW , which we denote by
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ρ(W, t). The density function pQ defined above is related to ρ through

pQ(Q) =
1

2Ec
ρ(1− Q

2Ec
, T ). (5.20)

We decompose theW distribution into two terms

ρ(W, t) = ρ−(W, t) + ρ+(W, t), (5.21)

where ρ−(W, τ) is the W distribution over trajectories for which n(τ) = 0,

normalized so that
∫
dWρ−(W, τ) gives the occupation probability of the

state n = 0 at t = τ . The conditional distribution ρ+(W, τ) is defined

similarly with respect to state n = 1. Let us consider the time-dependent

Fourier components of the conditional distributions, defined as

C±(k, τ) =
∫ ∞

−∞
dWe−i2πkWρ±(W, t). (5.22)

At τ = 0, we have ρ−(W ) = δ(W ) and ρ+(W ) = 0, which translate into

C−(k, 0) ≡ 1 and C+(k, 0) ≡ 0. In a numerical implementation, it is

preferable to choose a Gaussian wave packet C−(k, 0) = e−(σk)2 as the

initial condition to avoid truncation artifacts in the final result.

Let us consider a small time step from t = τ to t = τ +Δt, and derive an

update rule for C±(k, t) that is accurate to first order in Δt. If n(τ) = 0,

and no transition occurs during the time step, the value of theW integral

does not change. On the other hand, if n(τ) = 1, and no transition occurs,

the increment toW is given by

W (τ+Δt)−W (τ) =

∫ τ+Δt

τ
dt
dng(t)

dτ
= ng(τ+Δt)−ng(τ) ≡ Δng(τ). (5.23)

This is equivalent to shifting the distribution ρ+(W, τ) by Δng(τ). Hence,

without state transitions, the exact update rule reads

C−(k, τ +Δt) = C−(k, τ) (5.24)

C+(k, τ +Δt) = e−i2πkΔng(τ)C+(k, τ). (5.25)

To account for state transitions, we first define Pij as the Markovian tran-

sition probability from charge state j to i, i. e.,

Pij = P (n(τ +Δt) = i|n(τ) = j) . (5.26)

Approximating the transition rates Γ±(t) during the time step by their

values at t = τ , the Pij can be conveniently evaluated with matrix expo-

nentiation as⎡
⎣P00 P01

P10 P11

⎤
⎦ = eΓ(τ)Δt =

⎡
⎣1− Γ+(τ)Δt Γ−(τ)Δt

Γ+(τ)Δt 1− Γ−(τ)Δt

⎤
⎦+O(Δt2). (5.27)
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The matrix exponential form is preferred in numerical implementations

for its inherent stability even with large Γ(τ)Δt. The non-diagonal terms

P01 and P10 account for the possibility to change the charge state dur-

ing the time step, which promotes mixing of the conditional distributions.

Since the diagonal terms are already first order in Δt, accumulation of

phase during the time step can be neglected if the transition occurs. We

can now write the full update rule for C±(k, t) in a short time step Δt as

C−(k, τ +Δt) = P00C
−(k, τ) + P01C

+(k, τ), (5.28)

C+(k, τ +Δt) = P11e
−2iπkΔng(τ)C+(k, τ) + P10C

−(k, τ). (5.29)

Using the above equations, the time dependence of an arbitrary collection

of Fourier coefficients can be solved numerically in an efficient manner.

We note that the dc-component C±(0, τ) gives the probability of occupying

state n = 0 (n = 1) at time instant t = τ .

At the end of the simulation, the density function pQ(Q) can be deter-

mined from the Fourier components C+(k, T ), whereas C−(k, T ) should

all equal to zero. Assuming the protocol ng(t) is nondecreasing, W (T )

lies in the interval [0, 1]. Hence, it is sufficient to determine the Fourier

coefficients only at wave numbers k = n/2 for n = 0 . . . N , where N

is a sufficiently large integer. The full density function ρ(W, t) with a

W -discretization of 2/N can be then obtained by Fast Fourier Transform.
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