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Abstract 
This thesis addresses computational modeling of early language acquisition using statistical 

learning mechanisms. There is a constantly increasing amount of evidence from experimental 
psychology and brain imaging studies that human infants are sensitive to the statistical 
structure of sensory input and that their ability to extract statistics of speech signals plays a 
central role in learning of the native language. The idea of domain-general statistical learning 
mechanisms in language acquisition is in contrast to the nativist view of language acquisition, 
in which many language-specific innate factors have been traditionally assumed to exist in the 
human brain. 

This thesis presents a series of computational studies addressing the questions of what kind 
of representations are learnable from speech signals and what kind of computational 
mechanisms are needed for the learning. The core idea is to model language acquisition from 
the perspective of a tabula rasa agent that does not have any advance knowledge of language or 
its relevant units such as phones, phonemes, syllables, or words, but simply comes into being 
with a number of generic statistical learning algorithms. When exposed to speech input in 
different experimental settings, these algorithms then start to model recurring patterns in the 
data and link these patterns to contextual variables such as simulated visual input associated 
with the speech contents. From a machine learning perspective, the studied methods 
correspond to unsupervised and weakly supervised machine learning algorithms, since 
language learning takes place without explicit supervision. 

As a result of these studies, it is shown that spoken words can be learned from continuous 
speech based on the statistical structure of the speech input and without assuming a phonetic 
or other linguistically motivated intermediate representation of language. Different strategies 
for grounding the acoustic word patterns into their visual referents are also studied, and new 
methods for segmentation of speech into phone-like units and clustering of acoustic features 
into discrete categories are presented. Finally, it is shown that frequency characteristics of the 
human auditory system can also be derived from the statistics of speech signals, suggesting that 
distributional learning in auditory perception may not be limited to learning of linguistic 
representations of speech. 
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Tiivistelmä 
Tämä väitöskirja käsittelee varhaisen kielenoppimisen laskennallista mallinnusta 

hyödyntäen tilastollisia oppimismenetelmiä. Jatkuvasti kasvava määrä kokeellisen 
psykologian ja aivotutkimuksen tutkimuksia on osoittanut että ihmislapset ovat herkkiä 
aistiärsykkeiden tilastollisille ominaisuuksille, ja että näillä tilastollisilla ominaisuuksilla on 
keskeinen rooli varhaisessa äidinkielen kehityksessä. Ajatus kielen omaksumisesta pelkkänä 
mukautumisena aistiärsykkeiden rakenteellisiin ominaisuuksiin ilman synnynnäisiä 
kielispesifejä oppimismekanismeja on ristiriidassa niin kutsutun perinteisen nativistisen 
ajattelumallin kanssa. Jälkimmäisessä synnynnäisille kielellisille mekanismeille annetaan 
suuri painoarvo. 

Tämä väitöskirja sisältää joukon tutkimuksia jotka pyrkivät selvittämään minkälaisia 
tilastollisia rakenteita on opittavissa puhesignaaleista ja minkälaisilla oppimisalgoritmeilla 
tämä oppiminen voidaan saavuttaa. Työn ydinajatuksena on lähestyä kielenoppimista niin 
sanotun “tyhjän” oppivan agentin näkökulmasta. Tällä ei ole minkäänlaista ennakkokäsitystä 
tai -tietoa kieleen liittyvistä rakenteista, kuten äänteistä, tavuista tai sanoista. Sen sijaan 
agentti on varustettu tilastolliseen oppimiseen soveltuvilla algoritmeilla, jotka pyrkivät 
erilaisissa puhetta sisältävissä oppimistilanteissa löytämään signaaleista rakenteellisesti 
merkittäviä hahmoja. Koneoppimisen näkökulmasta kyseessä on ohjaamattomien ja heikosti 
ohjattujen hahmontunnistusmenetelmien kehitys ja soveltaminen, sillä varhainen 
kielenoppiminen tapahtuu poikkeuksetta ilman täsmällistä opetusta. 

Tutkimuksen tuloksena voidaan osoittaa että puheessa esiintyvät sanat voidaan oppia 
jatkuvasta puheesta puhesignaalin tilastollisia ominaisuuksia hyödyntäen ja ilman että oppija 
tulkitsee puheen käyttäen ensin foneettisia tai muita lingvistisesti merkityksellisiä 
yksiköitä. Tutkimuksessa käydään läpi myös erilaisia oppimisstrategioita sanoja vastaavien 
akustisten hahmojen sekä niiden merkityksien yhdistämiseen että esitellään uudet 
menetelmät puheen segmentointiin äänteenkaltaisiksi yksiköiksi sekä akustisten piirteiden 
kategorisointiin klusteroinnin avulla. Lopuksi työssä osoitetaan, että ihmisen 
kuulojärjestelmän taajuusominaisuudet voidaan johtaa tilastollisella oppimismenetelmällä 
suoraan puhesignaalin aika-taajuus -rakenteista. Tämä viittaa siihen, että tilastollinen 
oppiminen ei välttämättä rajoitu kuulohavaintojen jäsentämisessä pelkästään kielellisten 
rakenteiden oppimiseen. 
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1. Introduction 

Language is one of the most fundamental factors that differentiate humans 

from other animals. Its referential symbolic nature allows us to code, 

transmit, receive, and store information about the surrounding world and 

across the members of our society in a highly efficient manner. Importantly, 

language allows us to detach ourselves from our immediate surroundings in 

time and space, enabling the conceptualization of the state of the world in 

the past and in the future, and enabling the acquisition of knowledge from 

situations that we are not personally witnessing. In addition, inner speech 

serves our conscious thinking by integrating complex experience-driven 

mental representations of the world into a compact symbolic code that 

allows compositional structuring and manipulation of the contents of our 

thought (Vygotsky, 2012). Although it is difficult to come up with an exact 

definition for what language actually is, it is evident that language is 

ultimately realized as verbal, signed, or written communication with its 

characteristics shaped by the sociocultural environment of the language 

users, and with pragmatic purposes related to everyday social behavior (cf., 

Saussure, 1916; Port, 2010). 

Since communication plays such an important role in our daily life, 

language has been an integral part of research since the early antiquity. 

Since then, the study of language has expanded and specialized to numerous 

scientific fields and disciplines (Fig. 1). Despite the inevitable fragmentation 

of research into different areas with more focused interests, or “scientific 

reductionism”, integration is also required in order to form a unified 

understanding of the way that language is represented in our minds, how it 

is implemented at a neural level, and ultimately, how it is acquired and used 

in different communicative contexts  (see, e.g., Meltzoff et al., 2009; Moore, 

2007). 
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Figure 1: An example of different research fields and disciplines involved in the research of 
language. The listing is not meant to be comprehensive, but simply illuminates the diversity 
of research involved in understanding language as a phenomenon. 

One central question calling for integration across disciplines in the 

scientific study of language is how do human children learn to understand 
and produce their native language? From an external perspective, the 

manner that human infants acquire their native language seems almost 

effortless. Instead of being explicitly taught, they learn to understand 

complex utterances and produce speech through everyday interaction with 

other people in various contexts. Due to continuous linguistic exposure, 

children also become capable to understand speech in adverse acoustic 

conditions despite different acoustic characteristics of different talkers. 

Moreover, they are able to fill in missing semantic and referential content of 

speech with the help of the context in which the communication takes place 

and add tens of new words to their vocabularies on a daily basis. The 

astonishing effectiveness of human learning becomes evident when one tries 

to create a comprehensive model explaining the early language acquisition 

(LA) process. Despite years of research, answers to questions such as how do 

infants discover words from continuous signals without pauses between 

words, how much of language capability is innate and how much is learned 

from experience (the so called nativism versus empiricism debate; see, e.g., 

McNeilage & Davis, 2005), how language becomes represented in the 

human brain, or what are the origins and proper rehabilitation approaches 

to language pathologies such as autism, dyslexia, or otherwise delayed 

language development, are still largely unknown. Although a plethora of 

important findings and candidate theories related to the above and other 

questions have been made, bits and pieces of information are still on the 

table waiting for assembly with some crucial parts still missing (Moore, 

2007).  
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1.1 Language, speech, and their perceptual learning 

Language has been traditionally characterized as a system with a property 

called duality of patterning (Hockett, 1960): all meaningful signs (words) of 

the system can be divided into a finite number of discrete, non-overlapping, 

building blocks (phones, phonemes, or syllables) that do not carry any 

individual meaning but can be combined sequentially in novel ways in order 

to form new words. Moreover, the combinatorial property of the discrete 

words themselves gives rise to a property of “discrete infinity”, meaning that 

an infinite number of expressions can be generated from a finite set of words 

when they are repeatedly combined to form larger compositional structures 

(see, e.g., Studdert-Kennedy & Goldstein, 2003; Abler, 1989). Finally, the 

compositional structure of the elements is governed by the grammar of the 

language – a set of rules operating on the elements in order to distinguish 

roles, causalities, and temporal properties of the messages (Chomsky, 1965). 

Basically all research in mainstream linguistics assumes this type of discrete 

hierarchical representation of language, even though precise definitions for 

the sub-word elements may vary (Port, 2010; but see also Frank et al., 

2012).  

 As tempting as the duality of patterning and discrete sequential coding of 

the language may seem in the theoretical sense, the question of how do 
infants learn that a language consists of a sequence of meaningless units 
that make up meaningful words is not currently understood. The major 

challenge is that the language is primarily realized as speech (or as sign 

language) and its physical characteristics vary notably from context to 

context and from talker to another. Young infants only have access to the 

acoustic surface structure of speech where individual phonemes or words 

and their boundaries are not readily perceivable, not to mention the abstract 

mental concepts inside the head of the talker. Instead of hearing sequences 

of discrete phonemic units, infants hear a continuous stream of air pressure 

variations that is a result of continuous movement of the articulators. The 

discrete sequential representation of language is already absent at the level 

of articulatory gestures where subsequent sounds are articulated in parallel 

using different articulators and causing temporally neighboring speech 

sounds to merge together into context-sensitive syllables and words (e.g., 

Studdert-Kennedy & Goldstein, 2003 or Lieberman, 2007, for an overview). 

The mapping from an abstract linguistic message to a physical speech signal 

is so complex that researchers in speech sciences have struggled for decades 

in order to find comprehensive descriptions for the mapping from the 

variable speech acoustics to the invariant discrete units of a language (see 

Port 2007, 2010, for reviews).  

Against this background, one may ask what is actually learnable from 

speech and what kind of innate mechanisms and constraints are required to 

explain the language learning process? If speech is so different from the 

underlying abstract and discrete structure of language, how can one learn 

the latter by only having perceptual access to the former?   
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Naturally, in order to function at all, the spoken language must contain 

regularities that the talker can use to formulate a mental concept into a 

precisely defined series of motor commands – commands that then become 

converted into physical signals according to the laws of physics and are 

ultimately recognized as familiar by the listener. In this context, it has been 

known for a long time that humans and animals are sensitive to the 

statistical regularities in the sensory input and that the mammalian brain 

readily extracts and adapts to these regularities, or patterns, providing a 

starting point for language learning without any a priori linguistic 

knowledge.  

In his seminal work, Hebb (1949) described a finding that the connections 

between biological neurons become strengthened due to their concurrent 

activity, explaining how brain is able to perform associative learning 

between neural representations (so-called Hebbian learning). This finding 

was followed by studies showing how the development of visual cortex 

depends on the post-natal visual experience (Wiesel & Hubel, 1963; 

Blakemore & Cooper, 1970), how different aspects of sensory processing are 

driven by learning (see Edeline, 1999 for a review), and e.g., how human 

infants become sensitive to the characteristics specific to native speech 

sounds due to linguistic exposure (Werker & Tees, 1984; Werker & Lalonde, 

1988). It is now understood that the mammalian neocortex acts as a generic 

mechanism for learning statistical regularities in sensory input (see 

Mountcastle, 1978 and Hawkins & Blakeslee, 2005), and can be illustrated 

by the experiments where animals learn to process visual input with their 

auditory cortex (Sur et al., 1988) or where congenitally blind humans learn 

to process visual input with electrical stimulation of their tongue (Ptito et al., 

2005). 

However, it has been only during the last few decades when the study of 

early language acquisition has taken big leaps forward under a paradigm 

called statistical learning (also known as distributional learning). The 

statistical learning in language acquisition research sprung from the seminal 

paper of Saffran et al. (1996a) who showed that 8-month-old infants are able 

to segment words from an unknown language by relying solely on the 

statistical relationships between neighboring speech sounds. Since then, 

numerous studies have described how statistical learning operates already at 

birth (Teinonen et al., 2009), plays a role in perceptual categorization (Maye 

et al., 2002, 2008), word segmentation (Saffran, 2001; Newport & Aslin, 

2004), acquisition of structural rules (see, e.g., Laakso & Calvo, 2011; Frank 

et al., 2012; Aslin & Newport, 2012), word referent mapping (Smith & Yu, 

2008; Vouloumanos, 2008; Smith et al., 2011), and reading skills (Arciuli & 

Simpson, 2012). Furthermore, it seems that the mechanism is not limited to 

language but seems to be generic across all auditory and visual perception 

(Saffran et al., 1999; Kirkham et al., 2002; Bulf et al., 2011) and also exists in 

other primates (Hauser et al., 2001; Newport et al., 2004). The major 

implication of all these (and many other) studies is that a large proportion of 

the language acquisition seems to be explicable in terms of learning from the 
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statistics of speech and other sensory input1 and that this learning can be 

accomplished without language-specific learning mechanisms or a 

“language module”. This in contrast to the earlier poverty of the stimulus 

argument (e.g., Chomsky, 1975, 1980) that states that there is not enough 

structure in the language input to children for language to be learned from 

it, thereby also making the earlier nativist theories such as Universal 

Grammar questionable (but see also Yang, 2004 and Aslin & Newport, 

2012). However, how such statistical learning mechanisms actually work, 

what type of language representations they can generate, and how much of 

language acquisition can they ultimately explain is not yet very well 

understood.  

1.2 Computational modeling of spoken language acquisition 

From an engineering point of view, the idea of statistical learning has close 

parallels to the fields of signal processing and machine learning. Whereas 

behavioral studies on statistical learning attempt to illuminate what type of 

signal statistics are learnable by the human brain, signal processing and 

machine learning researchers are devoted to understanding how different 

(sensory) signals can be efficiently represented in computational systems 

and how functionally relevant patterns can be learned from these signal 

representations. This is also where computational models of early language 
acquisition step in: as long as the human brain is regarded as a 

computational device obeying the laws of physics, any theory or model 

related to language acquisition should also endure computational 

implementation of the model so that the functionality of the model can be 

verified through simulations in realistic settings.  

However, implementation of a theoretical model typically leads to a 

number of issues: first of all, a theory may be useful in understanding the LA 

process and in the formulation of more specific research questions, but the 

theory may be too vague to be implemented as an algorithm (cf. Marr’s 

levels of analysis; Marr, 1982). Another possibility is that the theory covers 

the computational aspects of the process, but is not implementable given the 

existing limitations in the hardware. However, possibly the largest issue is 

that, given the complexity of the phenomenon, no single model can address 

all aspects of the learning problem simultaneously. This means that a large 

number of assumptions need to be made regarding the processes not 

studied in a given simulation, yielding very different results for different 

assumptions and having significant consequences on the ecological validity 

of the results. 

Despite the evident challenges, computational models can provide useful 

knowledge regarding the LA process. First of all, they can set statistical 

                                                
1 Passive perception of speech input is naturally not enough for language 
acquisition, but the learning always takes place in an interactive setting between 
the learner, a caregiver, and a shared environmental context. However, these 
factors together with other cognitive development are not in conflict with the 
distributional learning hypothesis, but provide constraints to the learning process 
in the language domain. 
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baselines to the learnability of data (what, at least, can be learned from the 

data with the given constraints and assumptions). An estimation of upper 
limits of learning can be also attempted (e.g., Feldman et al., 2009a; Smith 

et al., 2006), although reaching conclusive results without notable 

simplification from the real world settings is usually difficult. Moreover, in 

addition to replicating behavioral findings, computational models may also 

help to formulate new behavioral hypotheses to be verified and to better 

predict or understand the nature of different developmental disorders 

related to the language faculty. 

There is also another role for the computational models of human 

language acquisition: understanding the computational principles of the 

learning process also enables the development of computational devices that 

can acquire human-like speech processing capabilities and therefore also 

enables new ways of human-machine interaction. The existing state-of-the-

art automatic speech recognition (ASR) systems are based on the estimation 

of statistical correspondences between acoustic and textual representations. 

This calls for expert knowledge in phonetics and huge amount of work in 

preparing the speech material for the estimation of the system parameters. 

Still, ASR systems perform well only on speech input that conforms to the 

acoustical and lexical content of the training material (see Lippmann, 1997). 

Novel words, grammatically incorrect constructions, background noise, and 

the paralinguistic aspects of everyday communication all cause major 

challenges to the system with a pre-defined set of capabilities. These 

shortcomings are not least due to the fact that ASR systems do not 
understand speech, but they simply convert acoustic input directly into 

textual output using the given elementary units and their estimated 

correspondences in both modalities. This is in contrast to human speech 

perception where everything is primarily based on the situated 

understanding of the message, and presentation of the speech as a written 

text is only a secondary goal achievable by literate people. The performance 

of the systems following the traditional ASR paradigm is still improving, but 

the improvement is becoming incrementally smaller and the estimated 

saturation level is far behind human speech perception capabilities (see, e.g., 

Scharenborg, 2007, and references therein). Given the complexity of 

language, it now seems evident that, even for machines, speech perception 

and production skills have to be learned through ever increasing experience 

with the linguistic environment if systems with human-like speech 

communication capabilities are desired in the future (Räsänen et al., 2012). 

Given the above motivation, this thesis studies the computational 

modeling of language acquisition. More specifically, the focus is on 

unsupervised learning of statistical structures of continuous real speech with 

the methodological aim of working towards a self-learning computational 

agent capable of spoken language understanding. The methodological work 

is paralleled with the theoretical goal to understand what kind of structures 

are actually learnable from speech and what kind of environmental or 
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internal (“innate”) constraints are needed for the language acquisition 

process to be successful.   

1.3 Aims of the thesis 

This thesis concentrates on models of statistical learning from spoken 

language input. The aim is to understand what kind of representations can 

be learned from speech signals without making strong a priori assumptions 

on the units that might be relevant for language processing (e.g., phones, 

phonemes, syllables, or words) and to see whether the simulated learning 

results are also supported by behavioral findings. Since as little advance 

expert knowledge is desired to be introduced to the algorithms as possible, 

the focus is on unsupervised and weakly supervised learning algorithms that 

do not require manually labeled learning data. The algorithms are evaluated 

in computer simulations that attempt to model different aspects of the 

language acquisition process.  

The main research questions addressed in this thesis can be listed as 

follows: 
 

• Does the speech signal contain statistical regularities that can be 

learned without strong supervision and assumptions of language 

specific innate mechanisms? 

• What types of signal processing and pattern discovery algorithms are 

required for successful statistical learning from speech? 

• What is the relationship between the automatically learnable 

structures and linguistically motivated units such as phones, words, 

or syllables? 

• Does the statistical structure of speech have any implications to the 

manner that the human auditory system represents signal 

information in time and frequency?  

 

The thesis specifically focuses on computational studies related to the 

learning of representations from continuous speech without the a priori 

linguistic knowledge, i.e. on the acquisition of the very first building blocks 

upon which later stages of language learning can rely. Since no model has 

been successful in acquiring a phonemic or orthographic representation of 

auditory speech (see also the discussion in P-V), the work related to 

computational models dealing with word learning or grammar induction 

from phonetic transcription or the orthographic layer are excluded from this 

work, but are discussed in depth elsewhere (e.g. in Witner, 2010; Daland & 

Pierrehumbert, 2011; Buttery, 2006). On the same basis, models of adult 

word perception such as TRACE (McClelland & Elman, 1986) or Shortlist 

(Norris, 1994) or language learning simulations utilizing manually trained 

ASR systems (e.g., Roy, 2005; Krunic et al., 2009) are not discussed since 

they do not explain how the representations used in the models come into 
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being during the early human development. Instead, the reader is 

recommended to see Scharenborg & Boves (2010) for an overview. Note that 

the aim is not to argue against conventional linguistic representations of 

language such as the phonemic system and duality of patterning but to 

understand how such systems could arise from perceptual learning. Also, 

the role of speech production is not much discussed since the focus of the 

current work is limited to the perceptual aspects of language acquisition. 

However, the development of speech production and its possible links to 

speech perception will be addressed in future work (see Rasilo et al., 

submitted).  

1.4 Organization of the thesis 

This thesis consists of two introductory sections and nine peer-reviewed 

publications. The first introductory section briefly describes how the 

computational models of language acquisition can be interpreted from the 

theoretical background of earlier, mainly behavioral, language learning 

studies. Section 3 then reviews the major findings from the computational 

modeling work performed so far. Since the computational modeling of 

language acquisition is a relatively new topic and many of the other studies 

have been carried out simultaneously with the work presented in this thesis, 

the contributions of the current work are directly integrated to the review of 

other work in the field. Both introductory sections are based on a more 

extensive review of the topic presented in P-IX.  

The second part of the thesis consists of three journal articles, five papers 

in conference proceedings, and one book chapter. Figure 2 shows a thematic 

map of the publications and how they are related to each other temporally 

and methodologically.  

 

Figure 2: A thematic map of the publications. The arrows illustrate how methodological 
and theoretical content of the publications connect to earlier work. 
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1.5 Main contributions of the thesis 

The technical contributions of this thesis are the following: 
 

• An algorithm for automatic segmentation of speech into phone-like 

units (P-I).  

• An algorithm for computationally efficient clustering of acoustic 

feature vectors into categories without requiring a priori manual 

definition of the number of clusters (P-III). 

• An algorithm for discovering patterns from sequential data in the 

context of weak labeling (P-IV). 

• An algorithm for discovering patterns from sequential data in a 

purely unsupervised manner (P-V). 

• A method for deriving spectrotemporal filter-banks optimized for 

pattern detection in sensory data (P-VIII). 

The main scientific contributions to the study of language 
acquisition are the following: 

 

• A computational model showing that words can be learned from 

continuous speech when the speech is associated with concurrent visual 

input related to the speech contents (P-II, P-IV). 

• A computational model showing that word-like units can be learned from 

speech without any a priori linguistic or phonetic knowledge or any 

concurrent multimodal input by simply analyzing the statistical structure 

of atomic acoustic events (P-V). 

• A result showing that the frequency characteristics of human hearing are 

matched to the spectrotemporal statistical structure of continuous 

speech, and that this structure can be derived automatically from speech 

signals in an incremental manner (P-VIII). 

• A simulation result revealing that the statistical learning approach can 

explain behavioral findings in grammar learning from an artificial 

language, a finding originally thought to require more abstract rule-based 

mechanisms (P-VII). 

• A preliminary idea and a related simulation suggesting that the visual 

context can bind together lexical representations that do not originally 

generalize across acoustically varying realizations of a word (the so called 

generalization problem; P-VI). 
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• A review article bringing together existing and partially separate works 

related to the computational models of phonetic and lexical learning from 

speech, including the other work presented in this thesis. An 

interpretation of the proposed models based on the major theoretical 

frameworks and behavioral findings in language acquisition. 

Introduction of a taxonomy into word learning models with indirect and 

direct grounding to the word referents (P-IX).  



 

 

2. The theoretical background for 
computational models of language 
acquisition 

The theoretical background of the computational models of LA can be 

understood from the perspective of two theories of LA that try to integrate 

the existing findings on early language acquisition: the native language 

magnet theory expanded (NLM-e; Kuhl et al., 2008) and the PRIMIR 

framework of LA (Werker & Curtin, 2005). Although the theories do not 

claim fully explicit sequential ordering of developmental stages, their main 

connotations are as follows: NLM-e states that language learning starts by 

learning the statistical properties of native speech sounds, leading to 

enhanced phonetic perception of native contrasts. Once phonetic perception 

has achieved a sufficient proficiency level, words can be segmented and 

learned based on the sequential organization of perceived phonetic units. 

PRIMIR, on the other hand, states that the organization of the language 

faculty is driven by the acquisition of word forms directly from the acoustic 

surface properties of speech signals (or on the “general perceptual plane”) 

that combine both phonetical and indexical features. Later, once sufficiently 

many lexical tokens have been memorized, the learner is able to discover 

similar subword patterns across different word tokens, providing a starting 

point to the subword level organization and perception of language 

(phonemes). Phoneme representation of spoken language then enables fast 

accumulation of new vocabulary since the learned tokens automatically 

generalize to their acoustic variants through phonemic encoding. However, 

PRIMIR also maintains that the statistical properties of native phonetic 

units affect the way that spoken words are represented in the general 

perceptual plane, but this representation does not yield proper 

generalizations across different contexts and talkers without the help from 

lexical learning.  

The distinction of the learning order of words and subword units between 

PRIMIR and NLM-e also divides the computational models into two basic 

categories: those models where the phonetic system is learned before words 

(cf. NLM-e) and those where proto-lexical items are learned before the 
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phonetic system (cf. PRIMIR). Despite the intuition that knowledge of 

subword units such as phones or syllables must precede word learning 

because they are the basic building blocks of words, the answer to the 

question of representational learning order is not obvious. As Peter Jusczyk 

(1993a) wrote, 

“One potential problem with using characterizations of the mature state to guide 
research about the initial state is that it may lead one to assume that the 
elementary units that yield the best description for the adult’s knowledge function 
as elementary units during acquisition of the knowledge… … to the extent that a 
description of the adult state of knowledge of the sound patterns of the language is 
best captured by assuming phonemic representations, we have to provide an 
explanation of how these representations develop in the course of language 
acquisition.” 

Researchers in speech sciences have struggled for decades in order to find 

comprehensive descriptions for the mapping from variable speech sounds of 

the acoustic domain to the invariant and abstract linguistic units such as 

phones or even phonemes that can be placed serially to construct larger 

linguistic units such as words (see Port, 2007, 2010, for reviews). Despite 

the tremendous amount of work on this issue, the basic problem always 

seems to be that the variability in the acoustic tokens cannot be captured 

into segmental models that assume independence of a phone from the 

preceding and following phones, making accurate categorization of phone-

sized units impossible when they are isolated from their context. The 

standard solution to get away with the difficulties at the segmental level is to 

extend the units to be context sensitive by making their characteristics 

dependent on the neighboring phones. Another possibility is to use lexical 

memory for disambiguation of difficult segments by first retrieving the most 

likely word, given the sequence of the initial phone hypotheses, and then 

seeing which phones (or phonemes) correspond to the ambiguous segments 

(e.g., TRACE, McClelland & Elman, 1986; but see also Norris et al., 2000). 

Although feasible for segment disambiguation, both of these approaches are 

not compatible with the idea that speech perception consists of the 

perception of sequences of independent units that are realized as sequences 

of phones. Otherwise the surface structure of speech should enable this type 

of serial segmentation into the discrete building blocks despite the variation 

introduced by coarticulation. If a phonemic system of sequential discrete 

elements exists, at least there seems to be no direct access to it from the 

surface structure of speech. 

The second issue from the perspective of language learning is that, even 

before the categorization of speech sounds into a finite set of categories, the 

discovery of the phone-like segments themselves is problematic in the 

absence of a priori knowledge of their structure. While it has been proposed 

that humans and other primates are capable of primitive segmentation of a 

continuous acoustic stream into acoustically coherent segments, namely, 

basic-cuts (Kuhl, 1986; 2004), the correspondence of these units with 

linguistically motivated phones is not direct. Several diverse computational 
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methods for blind segmentation of continuous speech into phone-like units 

have been proposed (Scharenborg et al., 2007; Esposito & Aversano, 2005; 

Estevan et al., 2007; Aversano et al., 2001; Almpanidis & Kotropoulos, 

2008; P-I) and they all systematically fall short of an ideal performance if 

manually performed phonetic transcription is used as a reference. What is 

common to these methods is that they analyze changes in spectral content of 

the speech signal and hypothesize phone boundaries at points of notable 

discontinuity in the spectrum. While this type of chunking of the speech 

signal can detect approximately 70–80% of phone boundaries (with ±20 ms 

accuracy), many of the phone transitions are still detected with very low 

accuracy or are detected only with an otherwise significant amount of 

oversegmentation (Räsänen et al., 2009a). For example, the overall quality 

of the segmentation is too low to be directly utilized as a front-end 

processing before feature extraction in ASR systems (see also Räsänen & 

Driesen, 2009). Only when context-sensitive phone models are imposed in a 

top-down manner and taught to the segmentation algorithm using pre-

recorded speech data in supervised training paradigms, the segmentation 

algorithms reach segmentation performance that starts to converge with the 

definitions of phone boundaries (e.g., Demuynck et Laureys, 2002; 

Toledano et al., 2003; Keshet et al., 2005). In this case the segmentation 

models are essentially built manually upon the criteria that are also used to 

evaluate their performance.  

There is also notable evidence that human listeners do not only pay 

attention to the sequential evolution of phonetic units, but store detailed 

supra-segmental and episodic acoustic information regarding speech tokens. 

Variables such as talker and speaking style characteristics have been shown 

to affect speech perception performance (e.g., Pisoni, 1997). Young infants’ 

representations of words appear to be holistic and contain information 

regarding not only phonetic, but also indexical and stress information 

related to the word forms (Houston & Jusczyk, 2003; Curtin et al., 2001; 

Curtin et al., 2005). Infants as old as 14 months also fail to discriminate 

phonetic contrasts in otherwise similar novel words when learning names of 

external referential objects (Stager & Werker, 1997). Finally, there is some 

evidence that event-related potentials in the brain, often used to measure 

categorical auditory perception, are equally sensitive to phonetically relevant 

and irrelevant acoustic parameters (Aaltonen et al., 1994). 

Due to the inability of the phonemic/segmental view of speech perception 

to explain the acoustic mapping problem and the effects of suprasegmental 

acoustic details on adult speech perception, contemporary views have 

emerged that question the entire existence of segmental phonemes as 

fundamental units of speech perception (Port, 2007; Pisoni, 1997; Warren, 

2000). These views are also supported by the detailed analyses of 

pronunciation errors in young children that point towards suprasegmental 

or even word-level representations of produced words instead of 

phonologically motivated encoding of word forms (e.g., Waterson, 1971; see 

also Markey, 1994, for an overview). 
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Even if the phonemic representation of language is present in our minds 

and used to code and decode linguistic messages, the problem is that the 

mapping from acoustic signals to phonemic representations cannot be easily 

learned directly from continuous speech by simply analyzing statistical 

properties of acoustic events without support from some additional source 

of information. Even if the phone segmentation would succeed with perfect 

accuracy, the speech sounds from a number of different talkers do not neatly 

group into clusters of phonetic categories in terms of their acoustic features, 

but largely overlap in the acoustic space. This is demonstrated in the work of 

Feldman et al. (2009a), where Bayesian modeling (clustering) with 

theoretically well-justified mechanisms for learning was used to learn 

phonetic categories of American English vowels from the formant data of 

Hillenbrand et al. (1995). Despite the fact that the formant frequencies were 

estimated from isolated productions of the vowels instead of continuous 

speech, classification of the segments into correct phone categories was far 

from perfect. Only when support from the lexical layer was utilized in order 

to perform context-sensitive classification, the categorization of the 

segments became successful (Feldman et al., 2009a).  

Given all the considerations above, it is not obvious that the infants would 

learn their native language by first acquiring a fully functional phonetic 

system of the language and only then start learning words as sequences of 

phones. As for the phonemes, some sort of proto-lexical layer becomes 

almost necessary as long as phonemes are defined as the smallest units of 

language that contrast between two words. However, the evidence is not 

conclusive. First of all, the above discussion does not take into account the 

fact that human infants are not only equipped with auditory capabilities, but 

can also use information from other modalities to disambiguate situations 

that are not separable in the purely auditory domain. Another important 

factor is that human infants are not only listening, but also experimenting 

with speech production. Infants are equipped with an articulatory system 

that gives them access to the constraints and possibilities of speech sound 

generation, revealing another representation of speech acts that is not linear 

with respect to the auditory domain.  

In general, what kind of sub-lexical and lexical structures can be actually 

learned from speech with different types of approaches, constraints, and 

assumptions is not fully known. As will be seen in the following sections, 

partial success has been achieved with both lexicon-first and subwords-first 

approaches, but no single model has been so far able to convincingly explain 

the integral development and interdependence of the two systems. 



 

 

3. Computational models of phonetic 
and lexical learning 

Based on the distinction of NLM-e and PRIMIR theories of language 

acquisition, the existing computational models of speech perception 

development can be roughly divided into two main categories: those 

attempting to explain acquisition of phonetic categories directly based on 

the statistical structure of speech input (cf., NLM-e) and the models that 

start by learning word-like units from speech without explicitly assuming or 

modeling phonetic or phonemic representations of speech (cf. PRIMIR). In 

addition, a third group of models, here referred to as integrated models of 

LA, has recently been emerging and addresses the development of speech 

production in addition to perceptual development. All three major 

categories can be further divided into sub-categories according to the type of 

signals used in the simulations (e.g., a possible visual input in addition to 

speech) and the type of signal representations used in the statistical learning 

algorithm. Table 1 shows one way to organize the different methods 

according to their learning goals and the signal representations they use in 

their processing. 

In the next sub-section, the existing work on models of phonetic learning 

will be briefly discussed. This is followed by a discussion of what lexical 

learning is all about, how word semantics are related to word learning, and 

finally a brief review of work done in computational modeling of lexical 

learning is given. 
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Table 1: Classification of computational models of language acquisition from continuous 
speech into categories according to learning goals and signal representations used in the 
experiments. 

Type 

of 

model 

Models of 

phonetic 

learning 

Models of lexical learning 

Integrated 

models of 

perception 

and 

production 

How? 

Cluster 
instantaneous 

spectral 
features into 

distinct 
categories 

Discover and model recurring 
spectrotemporal patterns in 

continuous speech 

Model the 
learning of 

speech 
perception and 

production 
simultaneously 

in an interaction 
framework 

Multivariate 
pattern 

matching Audio features 
only 

Indirect 
lexical 

grounding 
(unsupervised 

learning) 

Transitional 
probability 

analysis 

Phonetic 
learning only 

Segment-based 
representation 

Sub-
classes 

 

Audiovisual 
clustering 

 

Direct lexical 
grounding 

(weakly 
supervised 
learning) 

Fixed-frame 

representation 

 

Both phonetic 
and lexical 

learning 

 

3.1 Models of phonetic learning 

One of the basic hypotheses in the NLM-e theory (Kuhl et al., 2008) is that 

the first stages in LA are dominated by the attunement of the infant to the 

statistical properties of speech sounds. More specifically, NLM-e states that 

the exposure to infant-directed speech (IDS) drives statistical learning of 

native phonetic categories which then form the basis for phonotactic 

segmentation of words from continuous speech. This theory is supported by 

multiple behavioral findings. For example, although infants are born with 

equal sensitivity towards all phonetic contrasts in the world’s languages 

(Eimas et al., 1971; Trehub, 1976), studies indicate that infants show 

heightened sensitivity to native phonetic contrasts towards the end of their 

first year (e.g., Kuhl et al., 2006), whereas sensitivity to non-significant non-

native contrasts decreases (Werker & Tees, 1984). Moreover, studies show 

that success in native phonetic category perception predicts later proficiency 

in the language (e.g., Tsao et al., 2004; Kuhl et al., 2005; see also Kuhl et al., 

2008, and references therein for a more comprehensive review on the topic), 

and that the categorical perception is already reflected in pre-attentive 

auditory processing (Winkler et al., 1999). In order to understand how the 

statistical learning of native phonetic categories actually takes place, several 

computational models have been used to study the acquisition of phonetic 

categories from speech.  
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The standard approach in the existing studies has been to apply clustering 

techniques to formant frequencies or other spectral representations derived 

from manually segmented vowel sounds and then compare the clustering 

outcomes to the known category identities of the vowel samples. In some of 

the studies, the correct number of phonetic categories has been manually 

provided to the clustering algorithm (de Boer & Kuhl, 2003), whereas more 

advanced algorithms are able to estimate the correct number of categories 

automatically (Vallabha et al., 2007; Kouki et al. 2010; Lake et al., 2009; 

Markey, 1994). The algorithms themselves include different variants of 

expectation maximization (EM; Dempster et al., 1977) based estimation of 

Gaussian mixture models (GMMs; see Duda et al., 2001) such as in the OME 

algorithm of Vallabha et al. (2007) and Lake et al. (2009), feature density 

histogram estimation in a multidimensional space (TOME; Vallabha et al. 

2007), and the use of self-organizing maps, or SOMs (Kohonen, 1990) as in 

the work of Kouki et al. (2010).  

Another possibility is to enhance phone perception by utilizing additional 

information from other modalities or by using constraints from another 

level of linguistic representation such as the lexicon. For example, Coen 

(2006) has shown that the introduction of visual information from the lip 

movements together with vowel formant data leads to a clustering result 

that discriminates vowel categories more accurately than using audio or 

visual information alone. On the other hand, Feldman et al. (2009a) have 

shown that a Bayesian model of categorical inference is unable to discover 

proper vowel categories from formant data alone, but when the model is 

accommodated with constraints from a simultaneously learned lexicon, the 

category learning succeeds. Finally, a largely unexplored link is the 

connection between articulatory development and categorical perception of 

speech sounds. Since the introduction of the motor theory of speech 

perception (Liberman et al., 1967; Liberman & Mattingly, 1985), a number 

of studies and models have proposed that the articulatory gestures could 

play at least some kind of role also in the perception of speech (e.g., Fowler, 

1989; Moore, 2007; Skipper et al., 2006; Goldstein et al., 2006; see also 

Nearey, 1997, and references therein for a discussion), although the exact 

role of gestural representations varies across theories. However, the basic 

principle underlying these theories is that the highly variable auditory 

representation is simplified if the speech can be represented as a series of 

partially overlapping articulatory gestures with phoneme-specific target 

positions for the articulators. The original motor theory suggests that speech 

perception and production are performed using an innate “speech module” 

and this module is responsible for perceiving speech as a series of invariant 

intended phonetic gestures (Liberman & Mattingly, 1985). This type of 

special module receives little support from behavioral or brain imaging 

studies (e.g., Pulvermüller, 2010, p. 269). Nonetheless, research shows that 

the motor cortex responsible for the control of articulatory gestures is 

activated during speech perception (Watkins et al., 2003; Sato et al., 2010) 

and also has a modulatory effect on speech perception (D’Ausilio et al., 
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2009). Also, it has been proposed that the motor representation of speech 

may be needed to resolve the neural competition between acoustically 

similar tokens, since spatially segregated motor areas (e.g., areas responsible 

for motor control of lips and tongue) can inhibit each other, whereas mutual 

inhibition at the level of the auditory cortex may be difficult due to notable 

overlap in the acoustic receptive fields (Pulvermuller, 2010). Although it is 

still early to say whether the motor system is an integral part of the 

development of successful speech perception, the two processes are 

evidently connected. 

Some computational models have already attempted to utilize the 

connection between perception and production. For example, the HABLAR 

model of articulatory and phonological development is based on the 

hypothesis that “phonological development emerges from the interaction of 
auditory perception and hierarchical motor control” (Markey, 1994). The 

system first learns to classify incoming (but synthesized) automatically 

segmented speech sounds into a finite number of acoustic categories and 

then also learns to imitate these sounds with an articulatory synthesizer 

equipped with reinforcement learning techniques. However, the model does 

not change its auditory perception of speech sounds based on articulatory 

experience, but the speech sound categories are kept fixed after perceptual 

learning preceding the articulatory development. Still, the preliminary tests 

reported by Markey indicated notable promise in the approach (Markey, 

1994). Unfortunately, the work on the model seems not to have been 

continued towards more comprehensive experiments, making drawing 

strong conclusions from the work difficult.  

Recently, Howard & Messum (2011) presented an integrative model of 

phonological development. Their computational learning agent, Elija, learns 

to produce native speech sounds and words through interaction with a 

human caregiver. Initially, Elija explores the space of different articulations 

and receives internal rewards for acoustically salient or motorically diverse 

productions. After the initial learning, Elija’s vocalizations start to draw the 

caregiver’s attention. The caregiver interprets Elija’s output in terms of the 

native phonetic system and provides feedback for successful articulations via 

the imitative reformulation of Elija’s speech output. This then reinforces 

Elija’s native-like articulatory gestures and causes the speech production 

system to converge towards the set of native speech sound categories. 

Moreover, mediated by the shared communicative context, Elija is able to 

associate its own speech to that of the caregiver, allowing Elija to learn the 

mapping between the acoustics of adult speech and its own articulatory 

gestures. Later, when the communicative situation is supplemented with 

referential objects that are being repeatedly named by the caregiver, Elija 

gradually learns the correspondence between object identifiers (“visual 

tags”) and their respective auditory and motor representations. Although the 

model concentrates more on the acquisition of articulatory gestures for 

speech production than modeling the acquisition of categorical perception of 

phone-like units, it is still an excellent example of how an integrative 
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framework including the modeling of the learner-caregiver interaction, 

auditory and motor learning, and the modeling of a shared communicative 

context can produce human-like learning results.  

Other work in the area includes, e.g., the work of Ananthakrishnan & Salvi 

(2011), Ananthakrishnan (2011), and Rasilo et al. (in preparation; see 

Räsänen et al. 2012 for a short overview) who have studied the mapping 

between perceptual categories and speech production. However, similarly to 

HABLAR and Elija, none of the approaches have utilized caregiver feedback 

or articulatory learning in the development of the distributional properties 

of the perceptual categories themselves, and therefore the role of 

articulatory development in categorical perception of speech is still 

unstudied in the computational modeling framework. 

3.1.1 Conclusions on computational models of phonetic learning 

The main finding from the clustering studies is that the distributional 

structure of signal features corresponding to vowel sounds can be captured 

with the proposed clustering techniques. In addition, the obtained vowel 

categories exhibit properties similar to human perceptual biases as 

described in NLM-e (Kuhl, 2000; Maye et al., 2002), such as the 

distinctiveness and similarity ratings of tokens belonging to these categories 

(see Toscano & McMurray, 2010; Feldman et al., 2009b). However, the 

categorization accuracy is far from perfect, but the average accuracy of 

classifying any single vowel representation into one of the possible vowel 

categories is around 70–80 % even for cases where not all vowel categories 

are considered. This means that assigning a unique and correct phonetic 

label to each acoustic percept is not possible (cf., Vallabha et al., 2007; 

Kouki et al., 2010). This is especially pronounced in the generalization 

across multiple talkers, where distributional clusters of one talker are not 

compatible to those of another, or where distributions learned from multiple 

talkers become very ambiguous at the category boundaries. On the other 

hand, if categorization performance notably below 100% is allowed at the 

phone perception level (note that human performance is not perfect either 

for isolated vowel recognition), the question is whether the words can be 

learned as sequences of such partial and distorted input. Is there a way to 

learn a robust lexicon directly upon the layer of acquired discrete units that 

have been learned in an unsupervised manner? 

An important limitation in many of the clustering studies is that the 

speech data do not represent randomly drawn segments from continuous 

speech, but carefully chosen maximally stable portions of context-limited 

vowel-segments.  The only exception is the work of Kouki et al. (2010), but 

they obtained only limited success in the clustering of features into vowel 

categories. In order to increase the ecological plausibility of the other 

approaches, a mechanism for segmentation of these vowel segments from 

continuous speech would be needed, or otherwise the methods should be 

evaluated directly on continuous speech. As already discussed in section 2 

and also studied in P-I, the segmentation problem is far from trivial. Related 

to this, the model of Howard & Messum uses a system for representing 
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incoming speech as a sequence of categorical units, but their existing work 

assumes that the perceptual category learning is mainly based on isolated 

caregiver reformulations of canonical babbling (Howard & Messum, 2011). 

Although not fully implausible, this behavioral hypothesis is to be confirmed 

with experimental studies.  

Another issue in phone category learning is the generalization across 

talkers. For example, in the work of Vallabha et al. (2007), the 

categorization of vowel segments is much more accurate for the experiments 

in which the same talker is used in the training and in the evaluation of the 

categorization. When additional talkers are used for evaluation, the 

performance drops significantly. Although this difficulty is expected due to 

well-known acoustic variability across different talkers, how human infants 

may solve this challenge remains unknown. From the computational point 

of view, statistical learning leads to much more ambiguous category 

boundaries if the learner receives data from several talkers instead of a 

single caregiver. On the other hand, modeling each talker separately or using 

data from only one talker, such as the primary caregiver, leads to much 

sharper category boundaries, but then these categories are not compatible 

with those produced by other talkers of the language. The generalization 

problem is also inherent to the lexicon-first models of LA (see next section), 

leading to incompatibilities between lexical items learned from the speech of 

different talkers (P-V).  

It should be also noted that, except for the work of Markey (1994), Kouki 

et al. (2010), and Coen (2006), the inventory of phonetic categories to be 

learned in the purely acoustic experiments is much smaller than that of the 

normal number of vowel categories in the world’s languages. Currently, how 

the other proposed methods would scale up to a full vowel repertoire of a 

language and how they can deal with the temporal ambiguity of vowel 

boundaries and the coarticulatory effects between subsequent vowels still 

remains unknown.  

3.2 Models of lexical learning 

According to the PRIMIR-theory of language acquisition, the development 

of subword units such as phones is guided by initial learning of a type proto-

lexicon – an initial collection of word forms that are coded as holistic 

acoustic patterns and that may be already grounded to some referential 

information such as objects or events that the words refer to. Only later, 

once a sufficient amount of words has been learned, the learner starts to 

realize that words consist of smaller constituents that overlap between 

different words, leading to the emergence of phonetic or even phonemic 

representation of the language (Werker & Curtin, 2005). This type of 

lexicon-first approach has been also undertaken in many computational 

models of LA that are briefly reviewed in this section. However, some 

attention has first to be paid to the nature of lexical representations and the 

semantic dimension of words before moving to the actual models.  
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3.2.1 On lexical representations of speech 

When literate adults discuss the concept of words, they talk about well-

defined entities that have both written and spoken form with a finite 

number of discrete elements (phonemes) in a specific order. The majority of 

the words either have significant associations that instantly stimulate 

multimodal perceptions related to the concept denoted by the word, or they 

play a significant role in the construction of grammatically correct sentences 

by disambiguating causal and temporal relationships of the actors and 

events involved in the verbal description at hand. Either way, the words 

show themselves as meaningful symbols and the symbol is perceived as 

“incorrect” when it is misspelled or mispronounced, requiring additional 

cognitive resources to recover from the aberration.     

From the viewpoint of a young infant, the situation is very different. This is 

especially true if the nativist views are completely abandoned and the infant 

is considered as a tabula rasa cognitive agent with efficient innate learning 

capabilities and a bias for social behavior. An infant does not know what a 

lexical item or symbol is. Moreover, it does not even know what speech is 

about. Much of the learning effort during the first year of the infant’s life is 

about discovering that the objects in the vicinity can be perceived through 

senses and that they can be also manipulated by motor activity. Through the 

development of the action-perception loop and maturation of the brain, the 

infant acquires understanding that the world is a 3-D realm with distinct 

objects with varying properties, and with actors (living objects) that can 

have an impact on the state of the other objects in the realm or on the (needs 

of the) infant itself. Although the development of auditory perception is 

affected by the exposure to speech associated with social and emotional 

interaction with the caregiver (cf. NLM-e; Kuhl et al., 2008), the author’s 

claim is that the first real contact with the language faculty occurs when 
the infant first realizes that sensory patterns originating from other 
people’s mouths have correspondence to the state of the surrounding 
world. This is probably already preceded by the realization that the objects 

and events in the environment are sometimes associated with distinct non-

speech auditory patterns (note that the sensory patterns need not be 

auditory, but signed language will also do the trick, e.g. Emmorey, 2006; cf. 

also the “goes with” vs. “stands for” distinction of words in Golinkoff et al., 

1994). The core of the language is in the ability to activate representations in 

other people’s minds about things that are not necessarily available in the 

present sensory domain, or at least not in the current focus of attention. The 

learning of these links is necessarily bootstrapped by associating the sensory 

patterns to internal active representations of the concepts describing the 

world. For very young infants, these associative links are necessarily tied to 

the surface form (i.e., acoustic or visual realization) of the patterns, since it 

is the most directly observable and statistically significant structure that has 

correspondence to the external world. This type of learning can be 

accomplished in the absence of any kind of linguistically motivated 

knowledge in the learner (P-IV; P-V; see also the Ecological Theory of 

Language Acquisition (ETLA) in Lacerda et al., 2004). 
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What this all means from the viewpoint of early lexical learning is that the 

learner does not have an ecological pressure to “find” words from speech nor 

code these words in any specific format (such as precisely defined sequences 

of discrete elements like phones or phonemes). Instead, the functional 

advantage of spoken language emerges from sufficiently detailed but 

sufficiently general representations of the spectrotemporal acoustic patterns 

that systematically indicate the co-occurrence of objects and events in the 

environment, i.e., the useful units of a language are defined by their 

semantic content.  These patterns can match individual words, but they can 

also be part-words, compounds, frequently co-occurring words (“doyou”; 

“Isee”), or even entire phrases if they are systematically used in specific 

situations. As long as there is equally good predictive power (or functional 

consequences) in “wrong” lexical representations of the language that do not 

match the adult vocabulary, there is really no need for the learner to refine 

these representations. As the complexity of the interactions with the 

environment increases and as the number of proto-lexical representations 

accumulates, the early representations of spoken language become refined 

in order to answer to the increasing communicative challenges and to reduce 

the internal contradictions in the previously acquired lexico-conceptual 

system (cf., principle of conventionality in Kuhl et al., 2008). For example, 

the increasing semantic awareness imposes new distinctions to the linguistic 

representations and gives rise to the concept of lexical synonymy. The 

increasingly structured parsing of speech and increased size of the lexicon 

also possibly gives rise to the subword/morphological representation of 

spoken language as it provides a more efficient means of coding (cf. 

PRIMIR, Werker & Curtin, 2005).  

3.2.2 On the grounding of auditory patterns 

In computational models of lexical learning, the word semantics are 

typically assumed to emerge directly from the established link between an 

acoustic word form and an internal representation of a word referent, such 

as a visual or haptic representation of an object or action. Based on this idea, 

the computational models of lexical learning from continuous speech can be 

divided into two main categories, based on the principle how words (learned 

acoustic patterns) are grounded to their referents. These categories will be 

referred to as models with indirect and direct grounding of words (Fig. 2; 

see also the division of methods in Table 1). 

Indirect grounding refers to a learning process in which the learning agent 

first learns speech patterns such as words from continuous speech 

independently of other modalities. The criterion for the initial word 

segmentation can be arbitrary, but, assuming the absence of a priori 

phonetic or linguistic categories, it has to be some type of statistical measure 

that reacts to the specific organization or recurrence in the acoustic features 

computed from the auditory signal. Once a pattern is learned and can be 

recognized from future input, its occurrence can be then studied in the 
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context of other modalities and internal states2 of the agent in order to find 

statistical correlations between the pattern and the contextual variables. 

Once such a correlation is found, it is said that the pattern (or word) is 

grounded to the contextual variable, providing meaning to the pattern.  

 

Figure 3: A schematic view illustrating indirect (left) and direct (right) lexical grounding. In 
indirect grounding, the word representations are first discovered purely on the basis of 
speech signal statistics, and then later associated to their referents. In direct grounding, the 
visual context acts as a labeling for the speech input, allowing the use of weakly supervised 
machine learning techniques in the word discovery.   

On the other hand, direct grounding means that the learning agent perceives 

speech simultaneously with internal active representations of contextual 

variables. Due to the immediate co-occurrence, the representations of the 

objects and events in the active internal state become associated with the 

heard auditory patterns, allowing instantaneous (but originally vague) 

meaning to emerge for the spoken utterances. In the simplest case, the 

internal state may simply reflect the visual objects in the immediate 

surroundings that the learner is attending to, leading to direct cross-modal 

associations between acoustic patterns and visual objects. For a more 

complex cognitive system, the internal state may reflect a combination of the 

task-modulated short-term memory contents (which may consist partly of 

immediate sensory consequences and partly of items recalled from the long-

term memory) and some internal variables of the system, such as the 

emotional state of the agent. The major difference from indirect grounding 

is that now the contextual variables such as visual objects can directly affect 

the patterning of the auditory stream. This provides the learning system 

with additional statistical constraints that can help in the learning process. 

For both indirect and direct grounding of word forms, the main problem is 

that one exposure to the auditory pattern is not sufficient to obtain meaning 

of the word since there are typically multiple potential word referents 

available (Quine, 1960). This is where so-called cross-situational learning 

mechanism comes into play (Pinker, 1989; Gleitman, 1990), and due to the 

multiple exposures to situations with several possible referents 

simultaneously with speech containing the word of interest, the ambiguity in 

word-referent mappings is gradually resolved (e.g., Smith & Yu, 2008; 

Smith et al., 2011).  

                                                
2 Note that while some words such as nouns typically refer to perceivable physical 
objects, some others such as “sad” or “hungry” are ultimately grounded to the 
internal needs or emotions of the learner.  
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The models that discover patterns from continuous speech in the absence 

of referential information will be discussed first in the next section, and then 

attention will be turned to the models of direct lexical grounding. 

3.2.3 Models of indirect lexical grounding 

So far, no computational model of indirect lexical grounding exists that 

would combine unsupervised acquisition of phonetic categories with lexical 

learning. Instead, a number of models have been proposed that attempt to 

learn lexical representations directly from continuous speech without 

relying on an intermediate phonetic layer.  
 

 
Table 2: Algorithms for word discovery in indirect lexical grounding (unsupervised 
learning). 

Algorithm Properties 

PERUSE  

(Oates, 2001, 
2001) 

Iterative multivariate pattern matching. Prototypical 
word representations (words are represented as time-
variant feature-value distributions). All signals have to be 
available during computation (batch mode).  

P&G  

(Park & Glass, 
2005, 2006) 

Multivariate DTW-based discovery of recurring patterns 
by pair-wise comparison of current and previously heard 
utterances. 

Exemplar-based memory (word realizations are stored as 
multivariate signals that are clustered into word classes 
using graph clustering). All signals are stored in the 
memory for processing (batch mode). 

Incremental P&G  

(McInnes & 
Goldwater, 2011) 

Incremental version of the P&G algorithm with higher 
ecological plausibility. Allows discovery of multiple 
matching fragments per each pair-wise comparison. 
Exemplar-based memory similarly to the original P&G. 
Old inputs are forgotten by the system. 

Transition 
probability-based 
learning 

(Räsänen, 2010; 
publication P-V) 

Incremental algorithm based on analyzing transition 
probabilities (TPs) between subsequent atomic acoustic 
units (vector-quantized speech features). Words are 
represented as a collection of transition probabilities 
characteristic to the word. All signals are immediately 
forgotten after their TPs have been analyzed.  

The computational models of LA from continuous real speech based on 

indirect lexical grounding include the PERUSE algorithm by Oates (2001, 

2002), the P&G algorithm of Park & Glass (2005, 2006) and its incremental 

variant by McInnes & Goldwater (2011), and the transitional probability-

based algorithm of Räsänen (P-V). These algorithms and their main 

properties are listed in Table 2.  

The basic working principle in all these models is to find long recurring 

patterns from the input that in practice correspond to words or 

combinations of often co-occurring short words. The algorithms themselves 

are fully unaware of the concept of word, and since the speech is not 

accompanied with any other categorical information that would enable 

grounding of the word forms, the detected structures do not carry any 

meaning. In each approach, there are several steps in the process of 

modeling discovery of word segments from raw speech signals. First, 
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incoming speech has to be transformed into frames of features that describe 

the temporally local spectral content of the signal in a compact manner. In 

order to learn recurring structures, or patterns, from speech, the continuous 

domain feature representations are then analyzed with a statistical model or 

further transformed into a series of discrete events using vector quantization 

of the feature vectors before the statistical analysis. 

In PERUSE, the learning is based on the assumption that structurally 

significant patterns occur as sequences of multivariate observations of 

features, where each temporal spot in the sequence has a unique mean and 

variance describing the local acoustic properties. The likelihood of a 

sequence of data for a given pattern model can be directly computed by 

temporally aligning the model with a pattern using dynamic programming 

and then summing the log-likelihoods of individual observations across the 

entire sequence. In order to discover the patterns, PERUSE performs a 

global and exhaustive search over all available speech data in order to find a 

set of signal models that each have multiple representative occurrences in 

the data set. The statistical model itself is updated iteratively by adding new 

realizations of the pattern class and updating model distributions according 

to these new observations. Oates has demonstrated the performance of the 

PERUSE algorithm in a word learning task from English, German and 

Mandarin speech, where it successfully detected more than 65% of frequent 

words used by a single talker. Oates has also represented a framework that 

allows grounding of the detected word forms to contextual sensory data 

collected by a robot (Oates, 2001). The main drawback of the PERUSE 

algorithm is that it requires all speech data to be in the memory of the 

system already at the beginning of the learning. The underlying assumption 

is that the longest words that have most occurrences in the data have most 

significance and are therefore learned first. Additionally, the algorithm is 

computationally complex, as it has to search and evaluate the data set 

iteratively numerous times in order to converge to the final set of words. In 

addition, each word has to occur several times in the data before a 

representation can emerge for it. This makes the approach implausible for a 

biological system that needs to deal with the continuous flow of sensory 

information here and now without access to globally determined statistical 

significances between different choices of signal patterning. Oates has also 

acknowledged this limitation, noting that iterative batch processing is an 

unreasonable requirement for a computational agent that should support 

continuous long-term LA (Oates, 2001). 

The word discovery algorithm by Park and Glass (2005, 2006), hence the 

P&G algorithm, is based on a modified dynamic time warping (DTW) of 

feature representations of auditory patterns. In the DTW, speech signals are 

represented as multivariate spectral time series and the aim of the DTW 

algorithm is to discover the cheapest path across a distance matrix whose 

elements describe the distances between the spectral frames of two signals. 

As an outcome, the obtained shortest path describes the temporal 

correspondence between spectrotemporal patterns in both sequences, and 
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DTW is therefore especially suitable for temporal alignment of signals that 

are known to contain identical utterances but spoken at a different tempo. 

Since individual words in speech represent only a small part of long 

utterances, the alignment is performed in limited temporal slices in the P&G 

algorithm. The alignment process is repeated for all pairs of utterances in 

the data-set, leading to a collection of pairs of aligned specrotemporal 

signals. Then the signals are clustered using an agglomerative graph 

clustering method (Newman, 2004) in order to find categories of similar 

patterns that in case of speech correspond to often occurring words. Note 

that the original P&G algorithm was not intended to model infant language 

acquisition, but was designed as an engineering tool for unsupervised 

pattern discovery from speech signals. Lately, McInnes and Goldwater 

(2011) have modified the P&G algorithm in order to achieve a higher 

ecological plausibility for LA simulations. Instead of performing word 

discovery as a batch process as in the original P&G algorithm, their system 

works incrementally by comparing the current input only to the previously 

discovered word fragments and to a finite number of previously perceived 

utterances. The word fragment extraction of the algorithm was also modified 

in order to allow the discovery of multiple separate word fragments from 

each pair-wise alignment between signals. They showed that their algorithm 

is able to discover recurring words from audio recordings of mother-infant 

interaction, especially in cases where the speech contains an infant-directed 

speaking style with multiple repetitions of salient words occurring close in 

time (McInnes & Goldwater, 2011).  

Finally, publication P-V presents a computational model for unsupervised 

word discovery from speech that is based on transitional probabilities (TPs) 

between atomic acoustic events. The model is inspired by the finding that 

eight-month-old infants can already segment recurring words from speech 

by analyzing TPs of subsequent syllables (Saffran et al., 1996a; 1996b) and 

may treat the detected segments as lexical items when presented in a proper 

linguistic context (Saffran, 2001; see also the introduction to statistical 

learning in section 1). However, the model of Räsänen does not assume that 

the learner can recognize phonetic or linguistic units such as phones or 

syllables from continuous speech, but simply represents the acoustic speech 

signal as a sequence of discrete elements obtained by unsupervised vector 

quantization of spectral vectors. Recurring speech patterns are modeled by 

analyzing the TPs between the discrete acoustic events, i.e. each unique 

pattern model is characterized by a specific set of TPs between the discrete 

elements in the signal. However, the modeling is not performed only for 

transitions between the two subsequent elements, but in parallel for a 

number of different temporal distances in order to capture long-range 

statistical dependencies and to enhance robustness of the model against 

noise variability in the signals.  

When tested on an English corpus containing child-directed speech 

(CAREGIVER; Altosaar et al., 2010), the results showed that the TP-based 

algorithm successfully learned a number of ungrounded word models that 
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were selective towards specific words in the material when compared 

against the word-level annotation (many of the models responded only to 

one word above 80% of the time; see also Räsänen, 2010, for results in the 

Finnish language). The word segmentation accuracy was also notably above 

chance level. It was also observed that the learning performance was much 

higher when the training and recognition was performed with data from the 

same talker. When data from multiple talkers were used, the generalization 

across talkers was relatively poor in terms of word recognition accuracy, 

although the segmentation accuracy generalized better for models learned 

from one talker to speech from another talker. This replicated the common 

finding from ASR research that acoustic models learned for one speaker are 

not easily generalized to other speakers, especially to speakers of different 

gender. The results also showed that the typical errors in word segmentation 

and model selectivity were either related to a situation where a model had 

considered that two frequently co-occurring short words are one word (such 

as “doyousee”, “doyoulikethe”), or when the words were acoustically similar 

(“small” and “ball”, or “cow” and “cat”).  

In later work (P-VI), it was shown that when the learned word models are 

grounded to visual referents through cross-situational learning, the acquired 

word-referent mappings also allow linking of synonymous but acoustically 

distinct word models together. This is one possible explanation of how 

initially acquired speaker-dependent word representations can be later 

generalized across a larger talker population based on the environmental 

contexts in which these words are used. Also, it was shown in P-VII that the 

TP-based model of P-V is able to explain behavioral findings in a rule-

learning task from an artificial language, originally thought to require more 

abstract rule-based computational mechanisms (P-VII; Laakso & Calvo, 

2011; Endress & Bonatti, 2007; Peña et al., 2002). 

 All in all, the above models demonstrate that learning of words (or “proto-

words”) from continuous speech is possible in the absence of contextual 

support or external feedback and without any a priori linguistic or phonetic 

knowledge. However, these word representations are not always perfectly 

aligned with the words defined by a proficient language user, but more likely 

represent statistically significant continuous spectrotemporal structures that 

systematically recur in the speech data. Notably, the existing studies use 

three totally different methodological approaches. The P&G approach and 

its incremental version (McInnes & Goldwater, 2011) basically perform 

exemplar-based learning by extracting recurring fragments of speech and 

then comparing these fragments to novel utterances. The approach in P-V 

does not store word exemplars per se, but represents each word as a 

construct that defines probabilities at which specific acoustic events follow 

each other in the word. Finally, the PERUSE algorithm (Oates, 2001, 2002) 

treats each word as a probabilistic construct, but solves the problem in 

purely continuous time and feature domains. Despite their differences, all 

the algorithms show a similar pattern of results, suggesting that the 
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recurring word structure in speech can be captured using a variety of pattern 

representations. 

3.2.4 Models of direct lexical grounding 

Table 3 shows a number of algorithms that have been used to study word 

learning under direct lexical grounding conditions (see Fig. 2). In a typical 

direct lexical grounding simulation, the acoustic speech utterances are 

presented together with categorical label information denoting what type of 

objects or entities are related to the linguistic contents of the utterance. 

However, the labels are not ordered or aligned in time as in typical 

supervised learning (cf. standard ASR), but the alignment only takes place at 

the utterance level. In some cases, real visual input is used in parallel to the 

audio and processed into clusters of visual features (e.g., Hörnstein et al., 

2009). The task of the algorithm is then to discover what parts of speech 

correspond to the categorical labels in the visual domain. This type of 

experimental setup aims to simulate a situation where the language learner 

listens to the speech of a caregiver and simultaneously attends to the objects 

and events related to the interaction situation. It is suggested in Räsänen 

(2012) that this is not an unreasonable simplification since infants at the age 

of early word learning (around 6–12 months) are already able to perceive 

the world as a set of discrete entities with separate identities and follow the 

attention of a caregiver during the infant-caregiver interaction.  
 
Table 3: Algorithms for word discovery in direct lexical grounding (weakly supervised 
learning). 

Algorithm Properties 

Statistical word 
discovery (SWD)  

(ten Bosch & 
Cranen, 2007) 

Segments speech into phone-like units and clusters them 
into 25 categories. Each context label is linked to audio by 
collecting a list of segment sequences that occur many 
times during the presence of the label. Most frequent 
sequences are treated as best exemplars for each label.  

Non-negative 
matrix factorization 
(NMF).  

(ten Bosch et al., 
2009a; Van hamme, 
2008)  

Represents speech signals as histograms of acoustic co-
occurrences (HACs) of atomic acoustic units. These 
histograms are then combined with visual information 
and decomposed with matrix factorization into basis 
vectors (words) and weights that denote the presence of 
these words in each signal.   

Weakly-supervised 
transitional 
probability analysis  

(publications P-II, 
P-IV) 

Analyzes transition probabilities of atomic acoustic 
events in the context of visual information.  

First version (P-II) operates on automatically derived 
phone-like segments, but the generalized algorithm (P-
IV) was studied using a fixed-frame signal representation.  

DP-ngrams  

(Aimetti, 2009) 

Dynamic-programming-based pattern matching. Words 
stored as exemplars that are linked to the contextual 
variables such as visual percepts. 

Mutual information 
based audiovisual 
clustering  

(Hörnstein et al., 
2009). 

Searches for temporally local and repeated target words 
using prosodic features and analyzes attended visual 
objects into features. Agglomerative clustering is 
performed in both modalities and audiovisual 
associations are defined as the pairs of cluster nodes 
having the highest mutual information. 
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As one of the first attempts of weakly supervised learning of words from 

continuous speech, the statistical word discovery (SWD) algorithm 

described by ten Bosch and Cranen (2007) utilizes segmental representation 

of speech by blindly segmenting the input signals into phone-like units 

based on spectral changes in the signal. These segments are then aligned 

with DTW and clustered with the k-means algorithm (MacQueen, 1967) so 

that each segment becomes represented by a categorical integer index. In 

other words, the utterances are converted into discrete sequences, one 

element spanning approximately one phone-sized unit. During the word 

learning process, the segmental representation of each utterance is 

represented in association with a bag of abstract tags that describes which 

words are present in the utterance but do not reveal the temporal locations 

or ordering of the words. Each utterance is then compared to all previously 

perceived utterances and the best matching subsequence of each pair is 

extracted. If the current utterance shares the same abstract tag with the one 

in the memory that it is being compared to, the best matching subsequence 

is appended to a Bmatch list. Otherwise it is added to Bno-match. When the 

learning process is repeated across several utterances, the match and no-

match lists grow in number. The lists are sorted so that the most frequently 

occurring sequences are placed at the top of the lists, revealing the most 

typical sequential representations of each word. The sequences in the Bno-

match are considered as negative examples of a word, and therefore the 

equivalent sequences in the Bmatch list are eliminated in order to facilitate the 

contrast in the cross-situational learning (ten Bosch & Cranen, 2007).  

Ten Bosch and Cranen evaluated the performance of the algorithm using 

the Aurora 2.0 database (Hirsch & Pearce, 2000) that contains continuously 

spoken English digit sequences with 1–7 digits per utterance and speech 

from a large number of talkers. The results showed that their algorithm 

achieved approximately a 90% word recognition rate after perceiving 1000 

tokens per digit when the hypothesized word tags were compared to the 

ground truth. The authors also noted that the number of false alarms (words 

being hypothesized to points in time where there are no corresponding 

words) was relatively high (above 10%). They hypothesized that it may 

indicate that the learned word representations were somewhat shorter than 

the true lengths of the words, since the correct recognitions did not cover the 

entire timeline of the utterances. 

In general, the SWD algorithm is interesting because it is one of the rare 

attempts to segment speech into phone-like units before further processing 

(cf. Kuhl’s basic cuts; Kuhl, 1986, 2004). While the idea of making an 

exhaustive comparison of the current speech token against all previously 

heard utterances with a shared context seems drastic, it is not totally 

unreasonable from the perspective of exemplar-based theories of human 

memory. Still, the work of ten Bosch & Cranen focuses mainly on the of 

question whether statistical regularities in the automatically learned phone-

like segments can form a basis for a lexicon. Analogues to human-like 

processing are not given by the authors.    
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Blind segmentation of speech into phone-like units was also used in the 

work of Räsänen, Laine and Altosaar (P-II). Similarly to ten Bosch and 

Cranen (2007), the segments were vector quantized with an early version of 

the method described in P-III in order to obtain discrete sequences of 

phone-like units representing the speech signals. Also, the utterances were 

paired with abstract tags denoting the “visual objects” perceived 

simultaneously with the utterance. However, the learning procedure was 

now based on TPs between subsequent phone-like units (cf. Saffran et al., 

1996a) in the context of each tag, i.e. the probability of a transition from 

discrete phone-like segment St to segment St+1 was measured separately for 

the presence of each contextual tag. During recognition, the probability of 

each tag was computed by following the transitions through the sequential 

representation of the utterance and retrieving the corresponding tag-specific 

TPs from the memory. When evaluated with the CAREGIVER Y1 FIN corpus 

(Altosaar et al., 2010) with a total of ten unique keywords (the visual tags), 

one keyword embedded in each utterance in addition to the surrounding 

carrier sentences, the algorithm obtained a keyword recognition rate of 

74.5% for speech from one talker. 

The experiments of P-II showed that there is some feasibility in the 

transitional probability approach in word recognition, but the overall word 

recognition rate was relatively low considering the simplicity of the task. 

Räsänen & Driesen (2009) found that the low performance was mainly due 

to segmental representation of speech that did not capture spectrotemporal 

details with sufficient accuracy in order to obtain efficient models for words. 

Insertions and deletions of segments were also a concern. Finally, the 

analysis of only subsequent segments (bigrams) of P-II did not yield 

sufficiently strong statistical models for speech. This led to the discarding of 

the segmentation-based approach, and a further developed mathematical 

framework for TP analysis is presented in P-IV (see also Räsänen et al., 

2009b). The approach makes use of the normal fixed-frame windowing with 

10-ms frame shifts and vector quantization of speech signals. In addition, 

similarly as in P-V, the TP analysis is performed at a variety of different lags, 

increasing notably the robustness of the learned models. When evaluated 

with the CAREGIVER Y2 UK corpus with 50 unique keywords, 1–4 

keywords occurring in each utterance, a word recognition rate of above 92% 

was obtained for data from four different talkers (two male, two female; P-

IV).  

Also based on vector quantized short-term acoustic features, ten Bosch et 

al. (2009a) and van Hamme (2008) have presented a non-negative matrix 

factorization (NMF) based approach to word learning. In NMF, spoken 

utterances are represented as histograms of acoustic co-occurrences (HACs) 

of atomic acoustic units (vector quantization indices) similarly a in P-IV and 

P-V. These histograms are then combined with related visual information 

into a large matrix V and decomposed with matrix factorization into basis 

vectors W and weights H so that V ≈ WH. When factorized, V � WH, 

matrix W represents the typical audiovisual patterns that recur in the data, 
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whereas H describes the activation level of these patterns in each utterance. 

During word recognition, the activation matrix H is computed from the 

HAC formed from the utterance under consideration (without the visual 

part). In order to obtain the activation values for the visual tags, the 

obtained H matrix is then multiplied by the submatrix Wg of the W that 

contains only the vectors related to the visual grounding information. When 

evaluated with the CAREGIVER corpus (Altosaar et al., 2010), the results 

showed that the NMF-based system can learn the ten unique keywords with 

high accuracy when grounded directly with the related visual tags during 

learning. For further ecological plausibility, the NMF-based LA model was 

modified in Driesen et al. (2009) so that the processing is no longer 

performed in a batch mode, but allows incremental learning. This makes the 

approach intriguing for LA studies since the NMF, and especially the HAC 

representation of the sensory input, share many properties with human-like 

information processing, including the representation of information in a 

distributed form and the ability to include multiple sources of information at 

different granularities into the same computational framework.  

Aimetti (2009) has proposed a dynamic-programming-based system for 

word learning from continuous speech. However, unlike the P&G algorithm 

(Park & Glass, 2005; 2006), the system also utilizes direct grounding of the 

lexical items to the co-occurring visual objects (visual objects are simulated 

with abstract and discrete semantic tags). The learning proceeds by first 

comparing the visual tags of the current utterance to the tags of previously 

perceived utterances in the short-term memory (STM) of the system. For a 

tag never perceived before, the entire utterance is stored as an acoustic entry 

for the new tag, and the system proceeds to the next utterance. In case of 

matching tags, the utterances are aligned with a method called DP-ngrams, 

which is a modification of the standard DTW that allows efficient extraction 

of best matching temporally contiguous aligned sequences. The part of the 

novel utterance containing the best matching alignment with existing 

memory entries is then extracted and appended to the list of exemplars 

representing the corresponding tag. When the process is repeated over the 

entire training data, each tag becomes associated with a list of exemplar 

occurrences of the corresponding word. These exemplars can then be 

matched with a novel utterance in order to determine which tag is the most 

likely in the speech signal. Also, a clustering process can be applied to the 

list of exemplars in order to obtain a prototypical representation of each 

word (Aimetti, 2009). 

Evaluation of Aimetti’s algorithm was carried out with the Y1 UK version 

of the CAREGIVER corpus (Altosaar et al., 2010). When evaluated in terms 

of word recognition accuracy (correspondence between true and 

hypothesized visual tag of a novel utterance), convergence to a word 

recognition rate of approximately 90% was observed with exemplar-based 

recognition after perceiving approximately 140 utterances. For prototype-

based recognition, the accuracy was notably worse (around 70%), suggesting 

that a word even from a single talker is not very well represented by an 
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“acoustic mean” of its realizations. For experiments with four talkers instead 

of one, a recognition rate of slightly below 50% was obtained after observing 

200 utterances, again giving a clear indication of the notable acoustic 

mismatch between different talkers even on material with very limited 

vocabulary.    

Finally, Hörnstein et al. (2009) have proposed a word learning model that 

can be actually considered as a hybrid of indirect and direct grounding. The 

first stage of their model is based on discovery of repeated word forms based 

on their approximate acoustic similarity within a finite (10-20 s) time 

window. The discovered repetitions of a word are then moved to a long-term 

memory where hierarchical agglomerative clustering is performed the word 

tokens based on their acoustic similarity. Simultaneously, the objects located 

in the center of the attended visual scene (captured by a camera) are 

analyzed into shape features and these shape representations are also 

clustered using the same agglomerative clustering algorithm but using a 

separate cluster space. The general problem in agglomerative clustering is to 

find the correct cut-off level in the hierarchical cluster tree at which the 

clusters are general enough to capture all the variability in the individual 

realizations of words and objects of the same category, but specific enough 

so that tokens from different categories do not become members of the same 

cluster. Hörnstein et al. (2009) solve this problem by finding the nodes of 

the cluster trees at which the mutual information between the auditory word 

clusters and the visual object clusters is maximized. In other words, the 

acoustic boundaries of the final word categories become determined by their 

statistical dependency with the most salient objects present in the 

concurrent visual context.  

Hörnstein et al. demonstrate that their algorithm is capable to learn at 

least a small number of keywords related to salient visual objects such as 

dolls and balls that are discussed in natural interaction settings between the 

learner and a caregiver. Moreover, they show that the inclusion of cues 

typical to infant directed speech (IDS), namely F0 accent and word-final 

keyword position information, improve the word learning performance of 

the system. This provides some of the first simulation results indicating that 

paying attention to the characteristics of IDS can aid in the word learning 

process, as already suggested by many studies with real infants (see 

Hörnstein et al., 2009, Werker & Curtin, 2005, and Kuhl et at al., 2008, for 

numerous references; see also de Boer & Kuhl, 2003 for the use of IDS in 

phonetic learning). 

3.2.5 Other experiments with direct lexical grounding 

In addition to the methods described above, a number of additional 

experiments of LA have been reported using the described algorithms or 

their further modifications. In ten Bosch et al. (2009b), the TP-based 

learning algorithm presented in P-IV was studied in different caregiver-

learning agent interactions. Different interaction strategies were simulated 

by varying the reliability of the visual labels associated with the spoken 

utterances, revealing the somewhat expected result that the more there is 
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ambiguity in the referential context of spoken words, the slower the learning 

rate will be.  

In ten Bosch et al. (2009c), the effect of the number of different caregivers 

was studied using the TP-based algorithm of P-IV, the DP-ngram algorithm 

of Aimetti (2009), and the NMF-based system presented in ten Bosch et al. 

(2009a) and Van hamme (2008). In the learning phase, the learner 

perceived speech from either one or four different caregivers. The word 

recognition accuracy was then probed for the four main caregivers and for 

six additional talkers available in the CAREGIVER Y2 corpus. The results 

from all three learning algorithms revealed that the generalization from one 

caregiver to the novel talkers was much worse than the word recognition 

performance evaluated for novel speech from the caregiver used in the 

training. When several different caregivers were used in the training stage 

(two male, two female), the generalization to six additional talkers was 

slightly better but still far from the matched talker condition. The NMF was 

also noted to have obtained the best generalization to unseen talkers from 

the three algorithms (ten Bosch et al., 2009c).  

Lately, Versteegh et al. (2010) have studied how the word learning 

performance is affected when the learning agent can actively decide whether 

the visual information (tags) is sufficiently reliable to be used in grounding 

of the co-occurring speech input. They devised a confidence measure that 

indicated the reliability of the utterance-tag pair. Based on that confidence 

measure and a user-set threshold, the agent was able to decide whether the 

content of an utterance was related to the concurrent visual tag. If the 

confidence was too low, no learning occurred. Otherwise the model contents 

were updated according to the standard NMF learning procedure (e.g., Van 

hamme, 2008). The results of the experiments revealed that the learner was 

partially able to overcome the uncertainty in the visual domain when 

actively questioning the reliability of the correspondence between visual and 

audio domains. If active learning was disabled, the word learning 

performance was notably hindered (Versteegh et al., 2010). 

3.2.5 Conclusions from models of lexical learning 

The computational studies reviewed in the previous subsection have 

successfully demonstrated that the word learning from continuous speech is 

indeed feasible without explicit top-down information using a variety of 

techniques. The models with indirect lexical grounding show that, in 

principle, proto-lexical representations of recurring word forms can be 

discovered based on the acoustic similarity of word tokens and in the 

absence of any linguistically motivated expert knowledge in the task. This 

type of discovery can be based on global matching of similar subsequences 

(exemplar-based view; Oates, 2002; Park & Glass, 2005; 2006) or on 

incremental analysis of TPs between automatically discovered speech 

sounds (P-V; see also Miller & Stoytchev, 2009).  

When contextual support in the form of visual abstract tags or visual 

features representing the objects in the concurrent visual scene are 

available, the discovery of auditory patterns that are relevant for each tag 
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can be made efficiently using a variety of approaches (ten Bosch & Cranen, 

2007; ten Bosch et al., 2009a; Van hamme, 2008; P-II; P-IV; Aimetti, 2009; 

Hörnstein et al., 2009). This simulates a learning situation where the 

learning agent simultaneously hears the speech of the caregiver and shares 

attention with the caregiver towards some specific objects in the 

environment.  

In theory, direct grounding enables more efficient pattern models due to 

additional statistical constraints. If the learning is based on the assumption 

that the visual objects are always present when they are being discussed, the 

learning algorithm can assume that the auditory patterns occurring in the 

absence of the visual object are not related to it. This makes it possible to 

contrast the statistical models so that those aspects of the models that are 

relevant only for the given visual tag are given higher priority (cf. ten Bosch 

& Cranen, 2007; P-IV). However, this also means that auditory patterns that 

are not systematically represented in the visual domain as possible referents 

do not obtain their own representations. 

Indirect grounding, on the other hand, enables acquisition of word forms 

independently of the surrounding context, making accumulation of 

vocabulary faster since any words can be learned without requiring evident 

referents in the external world. However, the obtained word models are 

initially weaker since the relevance of the patterns must be inferred solely 

from the statistical properties of the auditory stream. Because the models 

are learned in isolation from other domains, such as the visual world, there 

is no guarantee that the learned patterns have optimal correspondence to 

objects and events in the world (e.g., the agent may learn “redball” instead 

of “red” and “ball” if the combination occurs sufficiently often, although they 

are clearly dissociative entities in the world of visuomotoric experience). It is 

also possible that no distinct model emerges for a word at all, even though 

the word constantly has a visual referent in a normal learning situation. For 

example, the word models obtained from the unsupervised TP-based 

algorithm of P-V can be afterwards grounded to co-occurring visual tags in 

the 50 keyword recognition task of the CAREGIVER Y2 corpus by simply 

analyzing the co-occurrence frequencies of the words and tags. If these 

associative links are then used to recognize the most likely visual objects 

associated with novel utterances, a word recognition rate of approximately 

67% can be obtained (P-VI). This is notably worse than the result obtained 

with an algorithm applying the direct grounding approach for which above 

92% word recognition rate has been achieved using the same material (P-

IV).  

In general, indirect and direct grounding, when used in isolation, do not 

seem to directly correspond to the learning challenge faced by infants in 

early word learning. Requiring the learner always to have a concrete and 

attended referent for the spoken language it hears in order to learn 

something seems an unreasonable limitation. On the other hand, as 

language serves the purpose of lighting up associations in the minds of the 

receivers, learning a language in total isolation from the environment does 
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not make sense either. The need for some kind of contextual support is 

already indicated by the fact that detection and the precise modeling of the 

word patterns is not an easy task due to immense acoustic and temporal 

variability in speech. However, one should note that the models of lexical 

acquisition presented in this work aim to explain the very first steps of the 

LA, i.e. they show possible ways to bootstrap the learning system. After 

being able to segment a novel utterance into word-like units and unfamiliar 

segments, the demands of the acquisition process change and additional 

hybrid mechanisms of unsupervised pattern discovery and cross-situational 

grounding may become feasible. Also, since the human memory is highly 

based on associative links between perceived patterns and events, and since 

the processing at early sensory cortices is modulated by the multimodal 

context (Brosch & Scheich, 2005), it may well be that there never is truly 

unsupervised unimodal learning, but all sensory processing takes place in 

the context of other modalities and internal states of the learner, even in the 

absence of  “correct” referents. These contextual cues can be then used to 

store and retrieve patterns from the memory and to categorize them 

according to the similarity of the contexts in which they occur (cf., P-VI). 

Over time, the relationships between the patterns and their referential 

contexts simply become more distinct, enhancing the predictive value of 

spoken messages.  

As for the ecological plausibility of the proposed algorithms, PERUSE is 

the only one that directly runs into trouble with its batch training. The 

ecological plausibility of the DTW-based approaches (the P&G algorithm 

and the work of McInnes and Goldwater, 2007) is greatly enhanced by the 

work of Unal & Tepedelenlioglu (1992), who showed that the DTW 

computations can be accomplished with artificial neural networks. In a 

similar manner, the TP-based modeling of the signal structure in terms of 

short-term acoustic events is possible with recurrent neural networks with 

sufficient temporal memory (see, e.g., Elman, 1990), and the average 

temporal dependency structure explicitly modeled by the TPs has even been 

shown to have a close correspondence to the integration times measured in 

the human auditory system (Räsänen & Laine, submitted for publication).  

It should be also noted that despite the absence of an explicit phonetic 

layer, the statistical properties of speech sounds are implicitly taken into 

account in the approaches utilizing vector quantization of speech frames 

(e.g., P-II; P-IV; P-V; P-VI; ten Bosch & Cranen, 2007; ten Bosch et al., 

2009a; Van hamme, 2008). However, these clusters and the corresponding 

sequence elements are by no means comparable to phones, not least because 

they are not defined in duration, but have a fixed and short (typically 10 ms) 

length, they are not fully selective to speech sounds from only one phonetic 

category independently of the talker, and because the typical number of 

elements is much higher than the number of phones in any language. The 

basic reason for the conversion is not the belief that human infants would 

perceive speech as sequences of symbolic elements, but because the 

computational pattern discovery problem is simplified notably. Since the 
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discretization can be considered as lossy compression, the word modeling 

results obtained with discrete representations provide a lower bound to the 

learnability from the data from which semi-continuous or fully continuous 

methods designed to do the same task should be able to improve, if properly 

formulated. 



 

 

4. Summary of publications 

Publication I: “Blind segmentation of speech using non-linear 
filtering methods” 

 

Figure 4: A schematic overview of the blind segmentation algorithm of P-I.  

The first paper in the thesis introduces a novel algorithm for unsupervised 

segmentation of continuous speech into phone-like units. The algorithm is 

based on the hypothesis that phone segment boundaries can be detected by 

finding the time instances of sudden spectral changes in the speech signal. 

The study shows that approximately 75% of phone boundaries can be 

automatically discovered from speech when manually performed phonetic 

annotation is used as the reference in the evaluation. These results are in 

line with previous, methodologically different, approaches to blind 

segmentation of speech. Therefore the results strengthen the proposition 

that there is an inevitable upper limit in performance in purely bottom-up 

approaches to segmentation, making accurate segmentation of speech into 

phones impossible when only local spectral features are used. 
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Publication II: “Computational language acquisition by statistical 
bottom-up processing” 

 

Figure 5: A schematic view of the cross-modal associative learning system in P-II. 

It has been proposed in the literature that human infants might track 

transitional probabilities between phones or syllables in order to segment 

continuous speech into words. Publication II demonstrates a computational 

system that is able to learn associations between words in continuous speech 

and systematically co-occurring variables that represent simultaneously 

perceived objects in a visual context. More specifically, the system is based 

on blind segmentation of speech into phone-like units and the tracking of 

transitional probabilities of these segments in the context of visual objects. 

The study shows that the transitional probabilities between acoustic 

segments can lead to a word recognition rate that is notably better than 

chance when supported by contextual information from the visual stream 

during the learning stage. 
 

Publication III: “Self-learning vector quantization for pattern 
discovery from speech” 

 

Figure 6: A schematic view of the clustering method in P-III is shown on the left. The right 
panel shows a result from simulations where the number of acoustic categories (clusters) 
increases when speech from new talkers is introduced.  

Vector quantization of speech signals into sequences of discrete elements is 

an effective way to simplify the task of pattern discovery from continuous 

speech. However, the majority of the standard clustering algorithms either 

require that the number of clusters is specified in advance or they are not 

suitable for incremental clustering of data, making them implausible 

approaches for an on-line language learning system. In Publication III, a 

novel and computationally flexible method called self-learning vector 
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quantization (SLVQ) for incremental clustering of data is presented. The 

experiments described in the paper show that the SLVQ algorithm can learn 

a non-specified number of data clusters from speech features, and that the 

obtained clusters show comparable quality to a computationally more 

expensive and non-incremental k-means algorithm. It is also demonstrated 

that the learning process is relatively stable across a wide range of parameter 

settings and adapts correctly to the introduction of new acoustically deviant 

talkers. 
 

Publication IV: “A method for noise-robust context-aware 
pattern discovery from categorical sequences” 
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Figure 7: An example of the recognition output from the Concept Matrix (CM) algorithm in 
a digit recognition task (P-IV). The left panel shows the activity curves for all learned word 
models and the right panel shows the result after inhibiting the non-winning models.    

Publication IV extends the analysis of transitional probabilities between 

sequential elements by introducing a novel, incremental, and fast algorithm 

for weakly supervised pattern discovery and recognition from sequential 

data. Unlike with previously existing techniques such as Markov chains and 

hidden-Markov models, the present algorithm avoids the problematic 

Markov assumption by modelling the temporal dependencies of signals at a 

number of different distances, making it robust against variability and noise 

in the signals. It is shown in the study that the algorithm performs well in 

weakly supervised word learning tasks where the precise forms and 

locations of target words in the training signals are unknown. Also, the 

algorithm compares favourably against supervised speech recognition 

approaches in word recognition in noise. 
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Publication V: “A computational model of word segmentation 
from continuous speech using transitional probabilities of atomic 
acoustic events” 

 

Figure 8: An example of word patterns automatically discovered by the algorithm 
presented in P-V. The top panel shows a spectrogram of the original speech signal, the 
middle panel shows activation curves for each learned word, and the bottom-panel shows 
the final recognition output. True spoken words are also shown in the bottom panel. 

Publication V presents a computational system that is able to perform fully 

unsupervised segmentation and recognition of word-like units from 

continuous speech without a priori linguistic or phonetic assumptions. 

Unlike in Publication IV, the present model does not incorporate any type of 

contextual information such as visual labels in its processing, but simply 

analyzes transitional probabilities between small timescale acoustic events 

that are obtained automatically by feature extraction and bottom-up 

clustering. The experimental results reported in the publication support the 

theory that, instead of first mastering the phonetic unit of their native 

language, infants may first acquire proto-lexical representations of speech 

based on recurring acoustic patterns and only later discover the subword 

units that are shared between different lexical items. The results also lend 

support to the statistical learning hypothesis, showing that lexical learning is 

possible in the absence of innate linguistic knowledge. 
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Publication VI: “Context induced merging of synonymous word 
models in computational modeling of early language acquisition” 
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Figure 9: Word-referent association performance in the word learning task of P-VI for 
multiple talkers and a single talker as a function of the number of word patterns learned 
from speech. The red solid line shows the performance for normal bottom-up acoustic 
learning as in P-V, and the blue dashed line shows how the number of parallel word 
representations can be decreased with the help of word semantics. 

Publication VI extends the unsupervised model of word learning of 

Publication V to a system that first discovers word-like units from speech 

and then grounds the learned words to contextual variables such as visual 

objects and events through cross-situational learning. Moreover, the system 

is able to utilize cross-situational learning in order to discover synonymy of 

learned word models, allowing merging of models that represent differing 

acoustic variants of the same word. The experiments performed in the work 

show that 1) the grounding of word forms to external contextual variables is 

successful, although the learned models are not as selective as in the case of 

weakly supervised learning where contextual variables provide additional 

constraints to the word learning problem, and 2) the merging of 

synonymous word models allows to reduce the overall number of parallel 

representations for each word without significant loss in word recognition 

accuracy.  
 

Publication VII: “Acoustic analysis supports the existence of a 
single distributional learning mechanism in structural rule 
learning from an artificial language” 
 

Research on artificial language acquisition has shown that insertion of short 

subliminal gaps into a continuous stream of speech has a notable effect on 

how human listeners interpret speech tokens constructed from syllabic 

constituents of the language. Based on this finding, it has been argued that 

the observed results in artificial language acquisition cannot be explained by 

a single statistical learning mechanism. Publication VII shows that a system 

performing unsupervised learning of transition probabilities between short-

term acoustic events can replicate the main findings of the related 

behavioral studies. However, success of this learning calls for a specific 

constraint on the temporal processing of dependencies at the acoustic level, 

raising the question whether the human auditory system is also limited to 

the learning of relatively short-term acoustic dependencies.  
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Publication VIII: “Average spectrotemporal structure of 
continuous speech matches with the frequency resolution of 
human hearing” 
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Figure 10: Auditory filterbanks automatically derived from speech signals in P-VIII. 

Publication VIII describes how the average spectrotemporal structure of 

continuous speech can be measured using the so-called spectrotemporal 

dependency function. The obtained dependency measure can be interpreted 

as a matched filter for performing signal detection from continuous speech, 

providing a qualitative formulation for the integration characteristics that 

would be expected from a hearing system optimized to recognize patterns 

from speech. Simulations presented in the work show how the average 

spectrotemporal structure of continuous speech matches with the frequency 

resolution of human hearing.  
 

Publication IX: “Computational modeling of phonetic and lexical 
learning in early language acquisition: existing models and future 
directions” 
 

Publication IX is a review article on the existing computational models of 

phonetic and lexical learning. The goal of the publication is to integrate 

approaches and findings from different studies together in order to see what 

has been learned from the existing work, how these findings fit to the other 

studies of language acquisition, and what are the central issues that should 

be addressed in future studies. The article also represents the main 

contributions of the current thesis in the context of other studies in the field.



 

 

5. Conclusions  

It is evident from cognitive science studies that language exposure shapes 

the perception of speech sounds and that word segmentation is affected by 

the statistical structure of speech signals. This thesis set out to explore the 

question of what kind of patterns can be automatically extracted from 

speech without assuming innate linguistic knowledge. A number of 

computational algorithms were developed and simulations carried out in 

order to segment speech into phone-like units, to cluster segments or 

spectral features into discrete acoustic atomic events, and to learn words 

from continuous speech using the derived signal representations in weakly 

supervised and unsupervised language learning conditions. The main 

findings of this thesis can be summarized as follows: 
 

• Continuous speech contains statistical regularities that can be 

extracted with unsupervised and weakly supervised pattern 

discovery algorithms without ASR-like precise annotation and 

without a priori linguistic knowledge.  

• Bottom-up segmentation of speech into phone-like units without a 

priori language knowledge is possible to some degree. However, the 

current computational algorithms are not sufficiently accurate for 

systematic detection of all phone transitions in speech. Also, there is 

no known way to classify the obtained context-independent 

segments into discrete and speaker independent phone (or 

phoneme) categories. 

• A small vocabulary of words can be learned automatically without an 

intermediate phonetic or phonemic representation of speech. 

Moreover, learning of this proto-lexicon may be essential in the 

learning of efficient subword coding of language.  

• Statistical word learning is highly facilitated by contextual 

constraints from shared visual attention between the learner and the 

caregiver. 
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• Transition probability based learning does not necessarily imply 

tracking of phone or syllable probabilities, but that the statistical 

regularities at the level of linguistic units are also necessarily 

reflected in the statistical regularities of the acoustic speech signals.   

• Time-frequency structure of continuous speech is matched to the 

frequency resolution of the human auditory system when the 

structure is measured in terms of statistical dependency of speech 

energy at different frequencies. This match is motivated by the 

optimality principles of pattern detection.  

 

In general, together with the results from simultaneous work carried out in 

other research groups3, the results reveal that word learning is possible 

purely on the basis of the statistical structure available in the speech signals 

and that this learning does not require an intermediate layer of phonetic or 

syllabic representations of language. In contrast, the unsupervised 

acquisition of robust speaker invariant subword units for speech perception 

is a complex task that is not satisfactorily solved by the existing 

computational methods and may require additional sources of information 

in addition to the distributional characteristics of low-level acoustic features. 

The current evidence, however, is not conclusive, proving only what is 

possible instead of proving what is impossible. For example, none of the 

existing models have been able to address the hypothesis of PRIMIR that the 

phonemic representation of language emerges later in the development 

through accumulation of lexicon and discovery of similarities across 

different lexical items. 

If a learning agent could somehow obtain sufficiently a systematic and 

invariant sequential representation of speech sounds comparable to the 

phonetic or syllabic transcriptions made by expert phoneticians, the various 

word segmentation methods described in the literature show how word 

learning can be accomplished using this type of representation (e.g., de 

Marcken, 1995; Christiansen et al., 1998; Brent & Cartwright, 1996; Brent, 

1999; Venkataraman, 2001; Swingley, 2005; Blanchard et al., 2010), and 

how syntactic categories could be also inferred from phonological 

representations using distributional information  (Christiansen et al., 2009).  

Before that, more research is required in order to understand how the 

interplay between lexical and sub-lexical representations drives the 

development of language proficiency and communicative capability in early 

development.  

In addition to demonstrating different strategies for statistical word 

learning, the thesis demonstrates that statistical learning is not necessarily 

                                                
3 Much of the research was carried out in collaboration with L. Boves and L. ten 
Bosch from Radboud University Nijmegen, Netherlands; R. K. Moore and G. 
Aimetti from University of Sheffield, England; H. Van hamme, J. Driesen and K. 
Demuynck from University of Leuven, Belgium; and B. Kleijn, G. Henter and C. 
Koniaris from KTH, Sweden, during the Acquisition of Communication and 
Recognition Skills (ACORNS)-project funded by EU FP6 FET. 
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limited to linguistically motivated representations such as phones or words, 

but, in theory, the frequency resolution characteristics of the human 

auditory system can also be derived from speech signals with a neurally 

plausible learning rule. 

5.1 Open issues and future work 

The current computational models face a number of issues that are not fully 

addressed by any of the existing models. One of the biggest problems is the 

generalization across tokens with variable acoustic properties, such as 

different talkers. Distributional categories of speech sounds learned from 

purely acoustic signals are talker specific, and speaker-independent 

representations overlap so largely that discrimination of context-

independent vowels is far from perfect. The same is true for learned lexical 

items, where generalization towards new talkers is poor (see, e.g., P-V; ten 

Bosch et al., 2009c). How infants overcome the generalization problem is 

currently not understood, although first indications of the important role of 

the communicative context were provided in P-VI. Also, the manner that 

articulatory development, lexical learning, or, e.g., speaker normalization in 

the acoustic domain affect speech sound perception are not yet completely 

understood.  

 Another largely unexplored area is the role of prosody in early LA. 

Although behavioral studies indicate that infants are sensitive to prosodial 

aspects such as intonation and stress (Thiessen & Saffran, 2003; Thiessen & 

Saffran, 2004; Cutler, 1994; Jusczyk, 1993b), no computational model 

dealing with continuous speech has so far been able to utilize these features 

efficiently in its functionality. One should however note that the prosodial 

features are inherently included in all standard features that encode the 

wide-band spectrum of the speech signal such as the FFT and Mel frequency 

cepstral coefficients (MFCCs). The question then remains whether young 

infants treat prosody or other suprasegmental cues as a separate source of 

information and process them in isolation from the systems dealing with 

phonetic and lexical identity. If so, inclusion of a separate mechanism for 

prosodial processing should show some value in computational simulations. 

If not, a mechanism explaining the development of the ability to separate 

linguistic and paralinguistic information from the one and same signal is 

required.   

Temporal representation of speech signals is also an open question. 

Current computational models typically describe speech as a sequence of 

feature frames extracted at fixed intervals. While the segmentation of the 

signal into phone-like units before lexical access has been studied (P-I and 

P-II; Markey, 1994; ten Bosch & Cranen, 2007), bottom-up discovery of 

phone-like units is evidently difficult (see section 3). Interestingly, no 

computational approach has truly utilized syllabification of speech signals, 

although, e.g., the WRAPSA model of LA (Jusczyk, 1993a) directly states 

that the syllables serve as the basic temporal slices of speech input in 

perception. This is strengthened by the argument that seeing any other units 
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than syllables that would enable automatic temporal normalization of 

speech is difficult (Mehler et al., 1990). Also, Werker and Curtin (2005) 

argue in their PRIMIR theory that there is an innate preference for 

syllabification of speech input. The unsupervised segmentation of speech 

signals into syllabic units is known to be much more systematic and accurate 

with computational algorithms than the blind segmentation into phone-like 

units (Villing et al., 2006). Finally, EEG studies suggest that human speech 

comprehension performance correlates with the synchronization of the 

auditory cortex to the energy envelope of speech, and this synchronization 

shows deficits in dyslexic patients (Ahissar & Ahissar, 2005). Therefore the 

role of syllables in early LA should be further investigated with 

computational models. 

The question of the role of grounding in the learning of internal 

representations for acoustic patterns corresponding to words also needs 

more attention in the future. There is clear evidence that highly accurate 

models for words can be learned in cross-situational learning simulations, 

where the learning mechanism receives utterances paired with a set of 

possible word referents and that this scales up to vocabularies of at least 50 

words and multiple target words in each utterance (P-II; P-IV; P-VI; Van 

hamme, 2008; ten Bosch et al. 2009a; Aimetti, 2009). However, the 

statistical linkage between the acoustics and the referents is direct, and the 

algorithms cannot learn models for word patterns without clear referential 

information. Moreover, no lexical learning occurs at all if no referents are 

available. This also means that the models cannot learn words that do not 

have distinctive contextual referents. Also, the simulations have very strong 

assumptions (but not necessarily unreasonable; see Räsänen, 2012) 

regarding the coherence between the contents of the spoken utterances and 

the attention of the learner. On the other hand, unsupervised acquisition of 

words in the absence of referential information is demonstrated in the works 

of Oates (2001, 2002), Park and Glass (2005, 2006) and in P-V, but the 

generalization performance of these word models is worse due to their 

inability to overcome significant acoustic differences between word tokens 

in the absence of any contextual constraints, possibly leading to multiple 

parallel models for each word spoken in different acoustic conditions. 

The general problem is that none of the existing models provide a 

systematic strategy to exploit both bottom-up statistical cues and cross-

situational cues in concert in order to find the best possible representations 

for the incoming speech. In language learning literature, the word forms are 

often assumed to be first segmented from the speech stream before meaning 

can be attached to them (e.g., Werker & Curtin, 2005), being in line with the 

idea of indirect lexical grounding. On the other hand, the contents of the 

early receptive vocabulary of infants mainly consists of nouns with very 

distinctive external referents (e.g., Gentner, 1983; see also MacArthur–Bates 

communicative development inventories, Fenson et al., 2003), suggesting 

that the bootstrapping of early lexicon could be also explained by acoustic 

patterning based on direct cross-situational learning. Given the current 
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evidence, it is difficult to say whether word forms come first based solely on 

their acoustic properties or whether contextual constraints play a role in the 

lexical learning all the way from the beginning.  

Joint attention and intentionality in language learning are also topics of 

future research. The social-pragmatic theory of word learning states that a 

linguistic symbol itself is a tool to share attention between many persons 

and that learning children already know that the function of language is to 

direct the attention of others (Tomasello, 2000). The theory also assumes 

that the linguistic competence arises from the learner’s ability to infer the 

intentions of the speaker and then relate these to the spoken messages 

instead of just associating superficially perceived objects and actions to 

concurring words. Intentionality is also claimed to drive attention so that 

the task of the perceptual system is to search for goal-relevant features in the 

environment (Tomasello, 1995). In other words, the entire language use is 

about modulating attention toward internal and external concepts. 

However, the social-pragmatic theory does not state how the intentions are 

extracted or represented by the learner. This poses a difficult task for 

computational models of LA, since modeling of intentionality calls for agents 

with a highly developed ability to understand and reason the state of matters 

in the surrounding world, not only for their own percepts and actions, but 

also for actions and states of other agents. The question how intentionality 

could be modeled in simulated environments in a plausible manner is way 

beyond the scope of this discussion, but the reader is recommended to see 

Kaplan & Hafner (2006) for a related review.  

Finally, there are numerous other important phenomena that are barely 

touched in the existing research on computational models of LA. For 

example, syntax has been largely ignored in the existing work, assuming that 

syntactic learning follows from lexical knowledge. However, syntax may 

actually provide additional cues to the word learning problem: instead of 

assuming that the spoken words are purely independent of each other, the 

statistical dependencies across hypothesized word-like patterns may be used 

as an additional criterion in the learning process. In a similar vein, 

articulatory learning and the role of feedback in perceptual learning are not 

currently understood, although the hypothetical role of the articulatory 

domain in speech perception has been disputed since the introduction of the 

motor theory of speech perception (Liberman & Mattingly, 1985). There is 

also a plethora of knowledge from experimental studies related to 

bilingualism, language-related developmental disorders, and, e.g., statistical 

learning in non-speech domains that could be used to inspire and to 

evaluate future models of language acquisition. 

So far, we have barely started the journey towards understanding how 

language is represented in the human mind, how it is be learned by infants, 

and how it could be learned by machines. On this journey, computational 

modeling will serve as an important tool for testing new theories and 

integrating different pieces of language-related knowledge into coherent 

functional models. The development of new techniques for autonomous 
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machine learning also provides new solutions to different research and 

industrial applications dealing with language or other patterned data. 

However, the ultimate success in understanding language learning and 

processing will depend on the advances and cross-fertilization across the 

different disciplines seeking to understand aspects of human 

communication and cognitive processes behind the use of language. 
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Errata 

 

Publication P-VII 
 

Equation (6) should read 
    
Atot = max

c∈C,t∈[0,T ]
( Ac(t) | X ) , where T is the duration 

of the stimulus. 
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