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Energies involved in nuclear bonds are more 
than million times higher than those in 
chemical bonds. This makes it possible to 
create very effective reactors for energy 
production: by splitting heavy nuclei 
(fission) or by merging light nuclei (fusion). 
Energy produced in fusion reactions exceed 
that of fission by an order of magnitude, but 
the realization of a commercial fusion 
reactor has up to now eluded scientists due 
to the high energy barrier for achieving 
them. The best performing fusion device is 
the tokamak, where the thermonuclear 
plasma is confined using strong magnetic 
fields in toroidal configuration. One major  
factor that decreases efficiency, and hence 
power production, is turbulent transport. 
In Iter, the next big fusion device with the 
projected capability of considerable net 
energy production, transport has been 
optimized by enlarging the plasma cross-
section. However, this is an expensive 
road to take. 
In this work we describe development and 
benchmarking of a kinetic model capable of 
simulating turbulent transport in tokamaks. 
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Thermal transport in a magnetised plasma is believed to be substantially enhanced
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Preface

This thesis outlines some of the work done in the ELMFIRE group. The

project was begun by Jukka Heikkinen, Timo Kiviniemi and me on 8th of

December 2000 when I – as an undergraduate student – first printed out

the MC code upon which we began to design the electric potential eval-

uations in real space. Since then the code has developed tremendously,

and virtually none of the original lines of code exist anymore, after Fran-

cisco Ogando joined the group and introduced proper software develop-

ment practices. The group has grown by two additional members: Susan

Leerink who has concentrated on experimental comparisons and Tuomas

Korpilo who has taken over code development. We believed then, as we

still do now, that total distribution function calculations are the best way

to simulate the complicated system that is the tokamak plasma from cen-

tral axis to plasma-material boundary. We have been proven right since

then, as most other groups have developed their own delta-f codes to in-

corporate full-f (or, total-f ) characteristics.

Early on we decided to perform spectral analyses of the fluctuations,

which are complicated by the simulation geometry through the rotational

transform. Spectral analysis makes it possible to analyze the linear growth

rates and frequencies of the instabilities, but a lot of optimization needed

to be done on the simulation side, primarily due to the resource limits im-

posed, in retrospect. Since then the computational power of machines has

grown by a factor of 210, but problem sizes have become much larger too.

A “standard” benchmarking regimen had emerged in the fusion com-

munity for turbulence codes through earlier publications by other au-

thors, and because ELMFIRE incorporates many unique numerical meth-

ods, benchmarking of the code was begun in 2003 to improve general con-

fidence in the results of the code. The standard regimen includes linear

properties of geodesic acoustic modes and electrostatic drift-wave insta-
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bilities, as well as saturation levels for transport and rotation. These had

become very important since 1996, when Science magazine reported that

“turbulence may sink titanic reactor” (according to computational predic-

tions of the time), referring to Iter. Since then experimental scalings and

more refined computational investigations have shown that such claims

were premature, and additional understanding of transport is needed.

The ELMFIRE was one of the first particle codes to incorporate a working

kinetic electron model, and as such most if not all of the benchmarks had

to be performed with Boltzmann distributed electrons. The code was de-

veloped in close co-operation with the FT-2 tokamak group, who provided

experimental data (starting from profiles) for us to analyze and reproduce

with gyrokinetic simulations. The parameters of this experiment are well

suited ELMFIRE simulations, because the small a/ρ∗ value means that

the simulation grid sizes do not need to be very high, and the high level of

fluctuations also relax the simulation particle number needed. The high

collisionality in this experiment also makes it possible to reach a neoclas-

sical equilibrium relatively quickly.

All of the benchmark cases have been, alas, based on large tokamaks,

and as such have been very expensive to simulate with ELMFIRE. The lin-

ear growth rate analysis for different wave lengths and non-linear satura-

tion levels of the ITG/TEM branch of instability was quite involved com-

putationally and the analysis needed to be developed over time to compen-

sate for some of the restrictions imposed by computation. Whereas the FT-

2 has been rather straightforward to simulate, the benchmark cases have

even needed some code development to be amenable to analysis. The issue

of turbulence saturation in the benchmark cases is still work under in-

vestigation, with new benchmark cases having been proposed within the

TF-ITM framework that still need to be done, provided we are afforded

some new computational resources.

In many ways, benchmarking has always had to go “against the wind”,

because while such testing is crucial for the validity of the code, the cases

investigated are also usually well known physics and as such can not pro-

vide new breakthroughs in turbulence and transport. However, history

tells us that cross code benchmarking may in fact reveal new features of

the physics involved in the non-linear regime because the models used to

simulate the same physical system are different.

I would like to acknowledge the continued support given to me by Prof.

Rainer Salomaa, who adopted me to the fusion group as an undergradu-
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ate. I have also received support from Academy of Finland (SA), European

Fusion Development Agreement (EFDA) in Association Euratom-Tekes,

CSC Scientific Computing, and Wihuri Foundation. I would also like to

thank my family, friends and Tuomas Karjalainen for the social support a

person needs in his life.

Espoo, March 19, 2013,

Salomon Janhunen
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1. Introduction

We live a precarious existence here on Earth, currently without the option

to leave. Clearly a balance of resource use and waste management is dif-

ficult to achieve, and the network of feedback on Earth is complicated [1],

and not very well understood. Human history is riddled with examples

of fallen cultures, the most notable of which have been ancient Egyptians

and the Mayan culture [2]. More often than not, environmental factors

much less severe than the ones mentioned earlier have played into these

collapses, which have occurred at the height of the culture’s prosperity.

To make a long story short, the reason why cultures collapse when no-one

would expect them to (during their height) has to do with poor steward-

ship of depletable natural resources and slowly creeping man-made en-

vironmental damage, which is compounded by natural changes. Society

has become more dependent on crops and agricultural techniques with

stricter conditions for success, and when natural variation tips the bal-

ance, society falls. Here, improved agricultural technologies have made

an unsustainable population growth (Malthusian catastrophe) possible,

and their failure has made conditions during collapse much more severe.

Fusion reactions provide the possibility of satisfying the future energy

requirements of humanity for millennia without the loss of quality of life,

provided that other space1 and resource limits are heeded. Access to a pre-

viously unusable energy source with limited environmental impact and

vast reserves but potential society changing prospects is something that

cannot be foregone easily.

Commercial fusion is a high technology area, where no advance comes

easily. While a number of other approaches have been proposed for con-

finement of the plasma state required for thermonuclear fusion reactions

1The experiments by John B. Calhoun on mice are a stark example of space as a
limiting factor.
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Introduction

(e.g., inertial, electrostatic-inertial, to name a few), the best performance

has been obtained by magnetic confinement up to date. The flagship of

magnetic confinement is the tokamak, which astounded the fusion com-

munity in the late 60’s by the high level of confinement achieved. Old

newspapers of that period have predictions that the tokamak would start

producing commercial fusion energy in 10 years time. This was not, alas,

realized. The problem is that the tokamak operates in a state of self-

organized criticality, where any deviations from the critical state intro-

duces instabilities which degrade confinement (much like in a sand pile

or a bank of snow).

Thermal transport in a magnetised plasma is intimately related to the

biggest unsolved physics problem of turbulence. Turbulence is the very

cause why heat escapes from the plasma core much more efficiently than

through mere collisional transport, and why even the most successful

magnetic fusion devices of today are not sufficient to produce commer-

cial fusion power. While through experimental projections it has been

estimated that a bigger reactor2 will produce a significant excess of fusion

energy, understanding of the physics involved in the heat and particle

transport of such a machine in operation is still quite rudimentary. Many

difficult engineering problems are also expected for a bigger reactor — and

by no means do we wish to underestimate the effort needed to build such

a machine as an international project where the parts are manufactured

all over the world.

The tokamak has been the most successful geometry to date in terms

of performance, and has been therefore the subject of intensive research.

Since its invention by Tamm and Sakharov in the 1950’s, the performance

of the tokamak has steadily improved, and many aspects of the physics

involved are well understood. Until fairly recently, the global magneto-

hydrodynamic (MHD) stability (before beginning of 1970’s) was a ques-

tion of concern. At the same time, heating and accumulation of impurities

have been extensively investigated, while more lately improving confine-

ment has been one of the most important objectives. In current experi-

ments MHD quasi-stable plasmas with constrained but desirable density

and current profiles are generated regularly, and some very important

confinement modes have been discovered. The confinement times of en-

ergy and density in the tokamak – and in other magnetic confinement

2The Iter experiment, http://www.iter.org
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schemes – scale roughly as

τE ∼ L2
r

χ
,

where Lr is the characteristic scale length (related to the size) of the de-

vice, and χ is the characteristic diffusivity. To lengthen the confinement

time τE (and therefore, improve the efficiency of the reactor), we must ei-

ther enlarge the device or reduce overall diffusivity (i.e., transport). Build-

ing larger and larger devices is ultimately economically prohibitive, so re-

ducing transport is a preferred way to improve performance. However,

this requires improved understanding on physics of the transport coeffi-

cient, which needs additional scientific focus on the subject.

Although the plasma in current tokamak experiments is usually stable

to global MHD modes which would destroy the confinement altogether,

the plasma is always in a state of thermodynamic quasi-equilibrium with

an abundance of free energy for driving more benign instabilities, which

reduce the confinement time through convective-dominated transport (i.e.,

turbulence). Confinement modes which are observed to suppress this

micro-turbulence (such as the high confinement mode, or H-mode) have

been found experimentally. One of the outstanding problems of trans-

port processes in tokamaks is the physics of achieving H-mode conditions

(L-H transition) and in general transport barrier formation, explanation

of which has attracted several possible hypotheses ranging from purely

neoclassical (rotational runaway and orbit losses) to modulational insta-

bilities between turbulent eddies and zonal flows [3,4]. Kinetic effects are

important, because modes undergo Landau damping. Full f gyrokinetic

simulation (the framework of this thesis) allows for the investigation of

all these processes that affect the distribution function f of kinetic theory

simultaneously. This is the relative advantage of ELMFIRE.

Earlier in the field people dreamt of building a comprehensive database

of turbulence simulation scalings, which could be called upon to predict

transport levels and flows of any experimental set-up [5]. However, as

they were building this database, it was realised that at least seven nor-

malized parameters (Larmor radius ρ∗, collisionality ν∗, ratio of dynamic

to magnetic pressure βp, ion-electron temperature ratio τ , inverse aspect

ratio ε, safety factor q, curvature κ) were needed for such a database.

Because the number of required simulations grows exponentially as a

function of free parameters, it has since been recognized that it is much

cheaper to run each of these cases separately with a turbulence code

rather than build a database. Integrated multi-scale simulation platforms

13
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(such as the one developed by European Fusion Development Agreement

Task Force Integrated Tokamak Modelling, EFDA TF-ITM) where trans-

port coefficients are received from turbulence codes and incorporated into

macroscopic transport simulations are being developed to address this is-

sue.

The basic tenets of science are that any hypothesis needs to be falsifi-

able, and steps must be taken to attempt to falsify it. Nothing can be

proven right in this context, but at least a decent attempt to prove them

wrong has to be made. This is the basic theme of this thesis: validation

and verification of the ELMFIRE , to build confidence in any results that

are derived from simulations. Validation is where the numerical model

and the theoretical basis are compared, and verification is testing predic-

tions given by the code to well known physical systems, other codes and

experiments. Of course, as with any scientific hypothesis, falsification fol-

lows abandoning the previous hypothesis and developing a new one (in

this case, remedying the code or theoretical basis). This cycle is never

complete.

The thesis is built as follows: in Chapter 2 we describe drifts and parti-

cle trapping, and outline the most relevant drift-wave instabilities driven

unstable by drifts. In Chapter 3 we attempt to describe concisely the lin-

ear benchmarking work which includes linear analyses of plasma waves

in various experimental settings. Chapter 4 contains characterisation of

turbulence and some results found while simulating the non-linear state

after the linear transient. We also discuss some observations made during

the benchmarking process, practical requirements for running the ELM-

FIRE code, and new diagnostics included in the ELMFIRE package of pro-

grams. The various benchmarking conditions are discussed. In Chapter 5

we include a discussion of some important numerical aspects that have

been found during the development of the ELMFIRE code. The conclu-

sions in Chapter 6 are followed by the set of collected articles that are

referenced to in the thesis.

A theoretical survey of the model used in the ELMFIRE has been pub-

lished based on two different perturbation theories, namely Lie transfor-

mations and Kruskal averaging co-ordinates, due to concern whether the

Krylov-Bogoliubov averaging retain the Hamiltonian nature of the sys-

tem. We shall talk about this in the next chapter.
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1.1 Particle trapping and curvature driven instabilities

The matter inside the reaction vessel of the Tokamak is heated to high

temperatures for fusion reactions to take place, and in this state the ma-

jority of atoms have been fully ionised. The bulk of ions and electrons

in the vessel constitutes a plasma, which is confined by the use of the

Lorentz force in strong magnetic fields. The kinetic theory of plasma (see

for example Ref. [6]) is obtained by separating the large scale collective be-

haviour and small scale particle to particle interactions, which are treated

as a scattering process. This approach drastically reduces the dimension-

ality of the problem (from 6N to 6 dimension in phase space), which is fur-

ther reduced through gauge transformations (or averaging, whichever one

prefers) to a 5 + 1 dimensional phase space using gyrokinetic approxima-

tions, which also modify the collisional operator slightly. In the following

theoretical treatment we shall concentrate on the collective motion of par-

ticles and mostly neglect the scattering process for simplicity, while they

are included in the code. The plasma in thermonuclear devices satisfies

conditions for classical physics very well, so we neglect quantum mechan-

ical aspects of the system except for the electron Coulomb logarithm in

collisions. Also, relativistic effects (such as retarded potentials) are ne-

glected for simplicity. These approximations are justified by the relatively

low energy and density of the bulk tokamak plasma considered in trans-

port calculations, but are not always applicable in all of fusion research.

1.2 The ELMFIRE code

Computational physics has become an indispensable tool in fusion re-

search because experiments are expensive, take a long time to prepare,

and measurements of some important phenomena and quantities are very

difficult with existing equipment, requiring specific experimental set-ups.

Simulations are used in optimization of experiments and plasma charac-

teristics, in the prediction of planned experiments, and interpretation of

experimental results. New simulation models are also being developed to

aid in theoretical work.

Plasma turbulence is believed to be one of the main processes leading

to enhanced (anomalous) radial transport observed in tokamaks, which

reduce the confinement to unacceptable levels. Small scale, low frequency

instabilities drive that turbulence and its study is therefore of crucial im-
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portance for improving confinement efficiency. The overall interaction

of those small scale processes can however be correctly simulated with

global simulations that cover all, or a significant part, of the whole toka-

mak. In order to reproduce interesting processes where the particle dis-

tribution function deviates from Maxwellian, kinetic methods are needed.

As most interesting processes occur at a characteristic frequency much

lower than the particle gyration around the magnetic field, the gyroki-

netic model was introduced, first for the linear regime [7] and later for

nonlinear problems [8, 9]. This method produced considerable savings in

computation by ignoring the high frequency phenomena of not relevant

importance.

The gyrokinetic method was further simplified with the assumption that

particle distributions are close to a known kind (e.g. Maxwellian), intro-

ducing the δf technique [10]. This method allows for further reduction in

computation at the expense of limiting its range of accuracy due to its as-

sumption on the particle distribution. With the δf approach, gyrokinetic

plasma simulation has become a standard tool for transport analysis in

toroidal magnetic fusion devices, under conditions of weak perturbations

[11–16]. All these methods calculated the electrostatic potential from a

complicatedly modified Poisson equation, and lacked a proper treatment

of the electromagnetic perturbations with multiscale structures in both

space and time. A different way to express the same problem was pre-

sented later [17] with a scheme based on Krylov-Boholiubov averaging

method where the polarization drift is included into the equations of mo-

tion. Also considerations for inhomogeneous plasma and electromagnetic

fluctuations have been developed [18] for the gyrokinetic model.

Another simplification commonly used applies to the consideration of

electrons. Their inertia may be neglected by considering an adiabatic

model, resulting in further computational savings. One of the reasons

why the study of kinetic electrons has received little attention is mainly

due to computational difficulty as electrons move much faster than ionic

species. However lately new techniques are being developed [19] to study

their influence on unstable modes, like the ETG.

From the gyrokinetic theory, two main approaches have been followed

for computational resolution of the intervening equations: deterministic

and Monte Carlo particle in cell (PIC) codes. Both approaches can work

under both δf and full f models, have been intensively tested [20] produc-

ing similar results with still remarkable persistent differences regarding
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zonal flows [21] which have influence on transport and conductivity.

The ELMFIRE code [22] solves the gyrokinetic full f equations for quasi-

neutrality with a PIC algorithm based on a variation of the gyrokinetic

model developed in reference [17]. The main difference to the standard

theory is the definition of the gyroaveraging procedure, where the E × B

velocity is subtracted from the particle velocity. The main features of the

numerical solution of the model are described in section 2.1. In Chapter 3

and Chapter 4 the results of standard comparison benchmarks [12] are

presented, both in the linear and saturation regimes. By linear testing

we refer to growth rate and phase evolution of most unstable modes (the

equations which are linear), while in non-linear cases saturation levels

of heat conductivity are investigated. These tests are not applicable as

comparisons to experimental data, however there are enough computa-

tional results from different models to serve as a benchmark of sufficient

confidence.

As ELMFIRE solves the gyrokinetic equations with a Monte Carlo method,

its results suffer from statistical noise that arises from using a finite num-

ber of test particles. Noise production in PIC codes has been widely stud-

ied in Ref. [23], but beyond this simulations of ETG instability [24] have

shown the possibility of noise strongly affecting growth rates. The study

of noise and initialisation influence on results is therefore a key issue,

and is addressed in Chapter 3. Finally conclusions show the key points

regarding the development of ELMFIRE and its applications. The ELM-

FIRE code has been used for analyzing the turbulence spectra in tokamak

plasmas (PIV).

The code is being developed as a co-operative project of Aalto University

School of Science and VTT Technical Research Centre of Finland to inves-

tigate transport phenomena in the tokamak, especially in the scrape-off

layer (SOL) where plasma comes directly into contact with solid matter

(a limiter or a divertor). In such conditions it is expected that large de-

viations from the equilibrium distribution function may be observed due

to kinetic effects, and that the electron and ion species both contribute to

the physics observed. Because kinetic effects and non-linear polarization

are important, conventional fluid models can not be used effectively in

this regime to study the forementioned problems. It is important to note

that while δf codes need to iterate with an external transport model to

model experiments, full f codes can develop meaningful comparisons to

experiments with suitable sources and sinks.
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2. Theoretical basis of ELMFIRE

2.1 Lagrangian computational cycle for the physics model

The computational algorithm of the gyrokinetic full-f model ELMFIRE

is best categorised as a Lagrangian explicit/implicit predictor-corrector

solver for the Boltzmann equation in a magnetized plasma. The compu-

tational cycle is illustrated in figure 2.1. The distribution function f is

represented as a discrete sample, and evolved by advancing the localised

phase space volume (i.e., test particle or marker) with its Hamiltonian

equations of motion. In this way, the distribution function may be evolved

Figure 2.1. The Hamiltonian computational cycle of ELMFIRE . From the top, particles
move according to their Hamiltonian equations without polarization, and the
polarization operator is collected. Fields are solved from quasi-neutrality us-
ing the polarization operator, and the polarization is applied to the particles
and collisions are applied. A new Hamiltonian is obtained, and the cycle
begins anew.

particle by particle using field data obtained from the previous time step,

and the polarization drift motion contribution is estimated and applied af-

terwards. This method (some controversy in nomenclature exists between
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implicit or predictor-corrector1) has several features which may be useful

in turbulence simulations. It includes non-linear polarization which is

usually neglegted, and eases calculations of the polarization operator for

non-Maxwellian distributions.

-100 -50 0 50 100
k r

0

0.5

1

1.5

2

2.5

3

CIC / NGP
CIC transfer

Figure 2.2. Measured spectral transfer function of the cloud-in-cell (CIC) interpolation
technique in relation to the nearest-grid-point (NGP) method (relative am-
plitudes). The CIC method introduces filtering of the particle density by
distributing particle weight on the grid. The analytical transfer function is
g(kr) = 4 sin2(πkr/N)/(2πkr/N)2 with N = 200.

The polarization response is estimated by taking finite sized particles

[25] and estimating the density response to the polarization motion. This

is constrained by quasi-neutrality, and a solution for the electric field at

the beginning of the next time step is obtained. This method has been

found to be very stable in practice, but finite sized particles introduce

additional filtering on the grid (see figure 2.2) which may be numerically

important. Numerical properties of this method, and if it may be used

in conjunction with advanced numerical methods such as finite volume

methods, may need to be investigated in the future.

2.2 Kinetic description of plasma

The Boltzmann equation of a multi-species plasma (usually one species

of ions, and the electron species) is given in the Lagrangian (or material)

coordinates by
dfa
dt

= Ci(fa) (2.1)

1A question raised in discussions with Harold Weitzner, Courant Institute, NYU.
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where f is the distribution function, species a, i ∈ {ions, electrons},

d

dt
=

∂

∂t
+
∑
i

dzi
dt

∂

∂zi
(2.2)

for any set of non-Cartesian coordinates zi, and Ci is the species-to-species

collision operator which we will discuss later. The Boltzmann equation es-

sentially expresses the conservation of the distribution function fa in time

in the coordinate system which follows the plasma species in question. We

shall ignore the collision term Ci(fa) in the following analysis, although it

is included in the numerical model. The collisionless Boltzmann equation

for plasma is called the Vlasov equation.

The electromagnetic field acts as a body force for the distribution-fluid,

and in the presence of magnetic and electric fields ( �B and �E, respectively),

the Vlasov equation in the Eulerian (or phase space) coordinates becomes

∂fa
∂t

+ �v · �∇fa +
qa
ma

[
�E + �v × �B

]
· �∇v fa = 0, (2.3)

where f(�x,�v; t), �∇ =
∑

k ik
∂

∂xk
and �∇v =

∑
k ik

∂
∂vk

are the partial differen-

tial operators in the Cartesian rectangular phase space (�x,�v) with ik as

its unit vectors, qa and ma are the charge and mass of the particle species

in question. While it might seem that Eq. (2.1) and Eq. (2.3) are com-

pletely different equations altogether, the difference between them is that

Eq. (2.1) is stated in the frame of the fluid in Lagrangian co-ordinates (as

opposed to external observer of the Eulerian co-ordinates), and thus the

systems do not differ for our choice of interactions except for the collision

term.

A plasma consists of charged particles (namely, electrons and ions), and

as such, any fluctuations in the relative densities of particle species and

their velocities in the plasma result in an electromagnetic field, which

obeys the Maxwell’s equations⎧⎪⎪⎨
⎪⎪⎩

�∇· �E =
Q

ε0
, �∇× �E = −∂ �B

∂t
,

�∇· �B = 0, �∇× �B = μ0
�j +

1

c2
∂ �E

∂t
,

(2.4)

where ε0 and μ0 are the permittivity and permeability of vacuum, �j is

the current density, c = 1/
√
ε0μ0 is the speed of light in vacuum. Charge

density Q and current density �j in terms of the distribution functions fa

are given by the constitutive relations

Q =
∑
a

qa

∫
fa d

3v, �j =
∑
a

qa

∫
�vfa d

3v. (2.5)
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It is the coupling between motion and fields (Eqs. 2.3 and 2.4) to which

plasma owes its complex and highly nonlinear nature which exhibits itself

in all scales of interest.

The Vlasov-Maxwell system of equations as stated in Eqs. (2.3) and (2.4)

can not be utilised directly in numerical simulations for processes that oc-

cur in the drift-wave or transport time scale. The system imposes strict

limits on the temporal and spatial resolutions due to fast processes associ-

ated with particle motion (e.g., cyclotron motion and plasma oscillations2),

but fortunately these processes can be dealt with by using a perturbative

approach which we outline in Section 2.3.

It can be shown that the Vlasov equation can be transformed to single

(and multiple) particle dynamics through the application of point particles

in the form of delta functionals (Klimontovich distribution), so we will use

the gyrokinetic theory interchangeably as single particle theory in the

following discussion.

2.3 Gyrokinetic Vlasov-Poisson system

There are a number of ways to perturbatively expand the Vlasov-Maxwell

system over the particle gyro-motion, which yield a set of gyrokinetic

equations [9, 18, 26, 27]. There exists a wealth of theoretical literature

on this issue beyond the references given. In this presentation we shall

opt to take clarity over completeness, and for a thorough derivation of the

gyrokinetic system the reader is advised to peruse the references. Great

care has to be taken to end up with equations that conserve the phase

space and avoid secular terms. The expansion is still being debated in

the scientific literature and is by no means entirely finished at the time of

writing this thesis. Gyrokinetic theory by itself is of interest not only to

fusion physics, but also to space plasma physics.

The Vlasov equation (2.3) includes the fast time scale associated with

particle gyro-motion in the magnetic field. This motion has the period

Ω = qaB/m, which is called the cyclotron resonance frequency, and it ap-

pears in the qa
ma

�v × �B · �∇v fa term in Eq. (2.3). The averaging (or gauge

transformation) removes the fast time scales associated with the gyro-

motion, but retains the finite Larmor radius effects. These effects are im-

portant in turbulence simulations, because they affect the growth rates of

instabilities and their saturation levels.
2The plasma oscillation is removed by numerical dissipation.
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The Vlasov (or Boltzmann) equation can be transformed to any coor-

dinates (the coordinate system in Eq. (2.2) is arbitrary) to facilitate the

gyro-averaging procedure. A natural choice of coordinates are the gyro-

centre coordinates, given by⎧⎨
⎩

�x = �R+ �ρ

�v = �v‖ + �v⊥ = v‖ b̂+ v⊥ (ê1 cosα+ ê2 sinα) ,
(2.6)

where �R is the gyro-centre coordinate, �ρ = Ω−1b̂× �v is the Larmor radius,

b̂ =
�B
B = ê1× ê2 is the unit vector along the magnetic field, v‖ is the velocity

component parallel to the magnetic field, v⊥ is the perpendicular velocity

component, α is the gyro-angle. We define the magnetic moment as the

lowest order adiabatic invariant μ = v2⊥/2B, which arises as an invariant

during development of the perturbation theory.

The gyrokinetic equations are obtained from the Vlasov-Maxwell system

by assuming the gyrokinetic ordering,

ω

Ω
= O(ε),

ρ

L
= O(ε), L ∼ L‖ ,

vE×B

vth
= O(ε), (2.7)

where ω is the frequency of the perturbations, L is the characteristic back-

ground scale length, L‖ is the scale length of the perturbations parallel to

the magnetic field lines, �vE×B is E × B drift velocity, vth is the character-

istic thermal velocity of the distribution, and ε is a smallness parameter.

Two other frequently taken approximations in transport models are the

drift ordering, where the finite Larmor radius effects are ignored by tak-

ing ρ/L → 0, and the MHD ordering with vE×B/vth = O(1). The drift

ordering may be utilized for the kinetic electron species.

The transformation to the gyro-centre coordinates (�R, μ, v‖ , α) allows us

to write the unperturbed Vlasov equation Eq. (2.3) as

∂f

∂t
+

(
�v‖ +

�E × �B

B2

)
· �∇Rf − Ω

∂f

∂α

+ �v ·
(
−�∇�ρ · �∇Rf + �∇v‖

∂f

∂v‖
+ �∇μ

∂f

∂μ
+ �∇α

∂f

∂α

)

+
qe
m

�E ·
(
b̂
∂f

∂v‖
+

�v⊥
B

∂f

∂μ
+

b̂× �v⊥
v2⊥

∂f

∂α

)
= 0.

(2.8)

It is interesting to note that through the co-ordinate transformation we

have separated drift-motion generating terms and the terms associated

with cyclotron oscillation.

The system may then be averaged by 〈·〉α = (2π)−1
∫ · δ(�x − �ρ) dα, and

the system is solved to first order in ε, and gyrokinetic equations correct
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to O(ε2) are obtained. The gyrokinetic equation is given by

∂〈f〉α
∂t

+
1

B∗
‖

(
�v‖ + �vd +

〈 �E〉α × �B

B2

)
· �∇R 〈f〉α

+
(
�a‖ +

qe
m
〈 �E〉α · b̂

) ∂〈f〉α
∂v‖

= C(fi)

(2.9)

where the drift of the gyro-centre �vd and the parallel acceleration a‖ are

defined by

�vd ≡ �b×
(
v2‖
Ω
b̂ · �∇b̂+

v2⊥
2Ω

�∇ lnB

)
, (2.10)

a‖ ≡ −v2⊥
2
b̂ · �∇ lnB, (2.11)

B∗
‖ = B

(
1 +

v‖
Ω
b̂ · �∇× b̂

)
. (2.12)

The gyro-centre drift includes the curvature and gradient drifts which are

important in inhomogeneous magnetic fields (such as the field in a toka-

mak). The parallel acceleration a‖ is usually neglected as a higher order

term, and B∗
‖ is the phase space Jacobian. It is important to note that we

omit in this treatment the ponderomotive terms in the gyrokinetic electric

potential for simplicity. The total distribution is expressed as follows:

f = 〈f〉α + εg = 〈f〉α +
qe
mB

(φ− 〈φ〉α) ∂〈f〉α
∂μ

. (2.13)

The Maxwell equations can be transformed in the same manner, giving

their gyrokinetic electromagnetic equivalents. We consider only electro-

static perturbations and a static magnetic field background, which gives

us the gyrokinetic Poisson equation

∇2φ+
q2e

mBε0

∫
(φ− 〈φ〉α) ∂〈f〉α

∂μ
δ(�R+ �ρ− �x) d�Rd�v = − 1

ε0
(qeñi − ene) ,

(2.14)

and the electric field is given by �E = −�∇φ. The second term on the left

hand side is the polarization density. ELMFIRE includes the polarization

drift in the equations of motion and calculates the electric field from quasi-

neutrality. This approach is given to more detail in section 2.4. In ELM-

FIREthe polarization density is inseparable from the gyrocenter density.

The electron Larmor radius is smaller than the ion Larmor radius by a

factor of
√
me/mi ≈ 1/60, so we may use the drift-kinetic equation for the

electrons:

∂f0
∂t

+
1

B∗
‖

(
�v‖ + �vd +

�E × �B

B2

)
· �∇Rf0 +

(
a‖ +

qe
m

�E · b̂
) ∂f0
∂v‖

= 0. (2.15)
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In some investigations where the electron kinetics are of no interest the

response of electrons to charge imbalances are thought to be instanta-

neous (which they generally are not due to trapping). In this case the

electron species can be assumed to be adiabatic, and the electron response

can be expressed through the Maxwell-Boltzmann distribution:

fe(x, v) = e
− H

kBT ,

ne(�x) =

∫
f(x, v)dVv = ne0 e

− qeδφ
kBTe ≈ ne0

(
1− qeδφ

Te
+O(ε2)

)
,

(2.16)

where ne0 is the electron background density and Te is the electron tem-

perature, H is the Hamiltonian and δφ is the electric perturbation. While

the implementation of a kinetic electron model is entirely non-trivial, the

adiabatic model is very simple: the electron contribution appears only

in the polarization equation. Electron trapping does, however, play an

important role in transport simulations as a mechanism for charge imbal-

ance and drift-wave drive. Both the kinetic and adiabatic electron models

have been implemented successfully in the ELMFIRE .

The electrostatic gyrokinetic equations presented are nonlinear, non-

local (due to gyroaveraging) and allow deviations from the equilibrium

distribution. This gives us great confidence that they allow simulating the

core plasma as well as the scrape-off layer plasma (with provisions). The

gyrokinetic equation may be developed to a hierarchy of gyrofluid equa-

tions in analogous manner to the standard development of MHD equa-

tions from the Vlasov equation.

The effect of trapping is two-fold. The compressibility generated by the

magnetic drifts drive previously stable drift modes unstable, and the trap-

ping of electrons causes a non-adiabatic response which may also drive

instabilities due to imperfect charge neutralization by the fields. In fig-

ure 2.3 we show some of the primary types of particle orbits in the ab-

sence of electric fields. There is a discontinuous transition from a passing

orbit to a trapped orbit, and different probability distribution (∝ 1/vr) for

density. The radial velocity of the trapped and passing particles in fig-

ure 2.3 are shown in figure 2.4. This complicates initialization because

the Maxwell-Boltzmann distribution is not adequate.

The equations of motion that would be obtained from the gyrokinetic

equations using the Klimontovich representation for the distribution could

be used to simulate the individual particles. However, numerically it is

advantageous to simulate the canonical equations of motion because os-

cillating integrands (due to magnetic field inhomogeneity) are difficult to
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Figure 2.3. Orbits for particles with different pitches calculated with the LISCO code
(by Heikkinen, Kurki-Suonio & Carlsson). Note the discontinuity in inboard
probability density due to transition from trapped to passing particle orbit
topology.

26



Theoretical basis of ELMFIRE

-800

-600

-400

-200

 0

 200

 400

 600

 800

 0.265  0.27  0.275  0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315

v r
 / 

m
/s

r

velocity

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0.285  0.29  0.295  0.3  0.305  0.31  0.315

v r
 / 

m
/s

r

velocity

Figure 2.4. Radial velocity for the barely trapped and barely passing particles. We see
that the left lobe is cut off after transition to passing.
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accurately simulate. We shall talk about the magnetic field and equations

of motion in section 2.5.

2.4 Gyrokinetic theory as used in the ELMFIRE code

Gyrokinetic equations of motion, Poisson equation, and energy and mo-

mentum conservation laws were derived in [27] based on the reduced-

phase-space Lagrangian and inverse Kruskal iteration [28]. This formal-

ism together with the choice of the adiabatic invariant J = 〈�p · ∂�x/∂φ〉 as

one of the averaging coordinates in phase space provides an alternative

to the standard gyrokinetics, and has been adopted as the basis of de-

velopment for ELMFIRE. These equations, developed to the 2nd order in

gyrokinetic smallness parameter, do not show explicit ponderomotive-like

(in potential) or polarization-like (in density) terms. Gyrophase and field

dependent gyroradius functions through gyroaveraged coordinates can be

used in direct numerical integration of the gyrokinetic equations in parti-

cle simulation of the field and particles with full distribution function, us-

ing pullback and push-forward transformation mappings. This allows, for

example, the choice between gyrokinetic systems with polarization drift

either present or absent in the equations of motion. From a full-f particle

simulation standpoint, this is simpler than numerical solution of compli-

cated integro-differential equations for the polarization density.

In the following we shall neglect the magnetic inhomogeneity and per-

turbations for simplicity. However, it is straightforward to extend the

equations for inhomogeneous magnetic field using the same procedure as

in the following, but also as relying on the formalism as shown in the

previous section. A similar extension to perturbed magnetic field is also

feasible when based on the general equations quoted in [28, 29]. The gy-

rokinetic orderings ω/Ω ∼ ρ/L ∼ ε and E⊥/(BV⊥) ∼ ε for perturbations

are adopted. The latter condition for the limit of the magnitude of the
�E × �B drift velocity may be considered mandatory for the iteration proce-

dure applied in the present formalism.

A necessary ordering is that electrostatic potential and related varia-

tions in particle distribution can have large long-wavelength components

but only small short-wavelength components, i.e., |b̂ × �E| ∼ vBε for the

electric field �E, where b̂ = �B/B is the unit vector along the magnetic

field �B and �v is the particle velocity. Otherwise, macroscopic variables

are assumed to vary on a scale longer than gyroradius ρ, i.e., ∇ ∼ 1/L
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with L ∼ ρ/ε. Here, ε is an expansion parameter of the gyrokinetic the-

ory to obtain the averaged slow motion behind the fast gyro-oscillation,

i.e., t → s = t/ε. Usually in gyrokinetics, and also in the present work,

one assumes the macroscopic variables to vary in time slower than the

gyroperiod, i.e., d/dt = 1/T with T ∼ Ω/ε = (eB/m)/ε.

The gyrokinetic transformation involves transformation from the coor-

dinates �x,�v to �R,U, J, φ, which allows to describe the particle slow mo-

tion in terms of only �R,U, J without explicit dependence on the gyroan-

gle like variable φ. Here, �R defines a so called gyrocentre position by

�ρ = �x(R,U, J, φ, t)−�R with �ρ denoting gyroradius like variable. U has a cor-

respondence to the particle parallel velocity along the magnetic field, and

J to the gyro-oscillation energy of the particle. For implementation of the

inverse Kruskal iteration [28,30,31] for this purpose and to follow the de-

notation adopted in [28], we adopt the following definitions �v = u‖b̂+u⊥�n1

with �n1 = − sin(θ)ê1 − cos(θ)ê2 and �n2 = cos(θ)ê1 − sin(θ)ê2, and ϑ = θ/2π,

and denote (�x, u‖, u⊥, ϑ) ≡ (�y, ϑ). Here, given in right-hand-rule order, the

unit vectors perpendicular to the magnetic field are ê1 = b̂ · ∇b̂/|b̂ · ∇b̂| and

ê2 = b̂× ê1, and thus depend only on �x. The particle-related basis set with

�n1 and �n2 depends in addition to �x also on the instanteneous orientation

of the particle velocity in terms of the angle θ.

The spatial components of the velocity in transformed coordinates �g are

ordered as

�g(0)x = Ub̂+ V⊥�n1 (2.17)

�g(1)x = �g(0)x + (u
(1)
‖ − U)b̂+ (u

(1)
⊥ − V⊥)�n1 − 2π(ϑ(1) − φ)V⊥�n2

= �g(0)x +
ε

ω(0)

e

m

[∫ φ

(b̂ · �E(�x(1), εs)− b̂ · �E(�R, εs))dφb̂

+

∫ φ

�n1 · �E(�x(1), εs)dφ�n1

+

∫ φ

(�n2 · �E(�x(1), εs)− 〈�n2 · �E(�x(1), εs)〉)dφ�n2

]
. (2.18)

Denoting �G = �g
(1)
x − �g

(0)
x , one can find from the above equation using

partial integration that 〈 �G〉 = 〈 �G⊥〉 = (ε/ω(0))(e/m)〈 �E × b̂〉/(2π). Here,

〈�n1 · �E〉 = 0 follows from the electrostatic relation 2π(V⊥/Ω)�n1 · �E(�x(1), εs) =

−∂Φ(�x(1), εs)/∂φ.

One may then write directly for the solution of �x(2) and for the gyrora-
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dius �ρ(2) up to this order

�ρ(2) = �x(2) − �R =
ε

2πω(0)
V⊥�n2 +

ε

ω(0)

∫ φ
�G‖dφ

+
ε

2πω(0)
b̂× �G− ε2

2π[ω(0)]2
e

m
b̂×

∫ φ

( �E − 〈 �E〉)dφ+ ε2�xc2.

(2.19)

In the above equations �E is evaluated at position �x(1). Without loss of free-

dom, one may set 〈∫ φ
( �E−〈 �E〉)dφ〉 = 0 and 〈∫ φ �G‖dφ〉 = 0. The integration

constant �xc2 can be chosen otherwise arbitrarily. Evidently, with this in-

tegration constant one can control whether the drift velocities are let to

affect the gyroradius or not (e.g., the 〈 �E〉× �B drift contribution through the

b̂ × �G term to �ρ). As it will turn out later in our formalism, this constant

also determines whether the polarization drift appears in the drift veloc-

ity, and similarly whether the so called polarization density will appear

explicitly in the gyrokinetic Poisson equation.

As shown in [27] the potential variation within this formalism gives the

Poisson equation

ε0∇ · �E(�r, t) =
∑
p.s.

e

∫
d3RdUdJfp〈δ(�r − �x)〉 − ∇r · P, (2.20)

where the Dirac’s delta function has been used to express the variation

δfΦ(�x, t) =
∫
d3rδ(�r − �x)δfΦ(�r, t). The so called polarization term ∇r · P

collects the rest of the variation terms. Its detailed form is not expressed

here. It turns out that this term is zero to the iteration order considered

in the present work.

The present formalism has conservation laws for the energy and angular

momentum. Within the framework of Kruskal’s theory, it is most natural

to identify the gyrocentre position �R with the point �r in this context. In-

tegration of the obtained local energy conservation law with respect to �r

yields the following expression for the total energy

K =

∫ {
1

2
ε0E

2 +
1

2μ0
B2 + �E · �P +

∑
p.s.

∫
dUdJ

[
fp〈m

2
v2〉

]
�R=�r

}
d3r.

(2.21)

Similarly, for the total angular momentum �L of the system one obtains

�L =

∫ {
�r ×

[
ε0 �E × �B + �P × �B +

∑
p.s.

∫
dUdJ [fp〈m�v〉]�R=�r

]

+
∑
p.s.

∫
dUdJ [fp〈�ρ×m�v〉]�R=�r

}
d3r. (2.22)

The corresponding local expressions of the energy and angular momen-

tum conservation laws can be found in [29]. The latter can be more useful
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in diagnostics of the energy and angular momentum in simulation codes,

as in diagnostics the inflow and outflow of energy or momentum through

any boundary of the diagnostic region has to be accounted for in any prac-

tical realization.

Using the iterated solutions for �x(2) and �v(1) obtained earlier, one finds

Â = �A+ (m/e)Ub̂+ 2πmω(0)εb̂× �xc2, ÂU = 0, ∂Φ̂/∂U = (m/e)U . Therefore

from the equations of motion one obtains to second order in ε

�VR = Ṙ = UB̂/B� + Ê × b̂/B�

VU = U̇ = (e/m)B̂ · Ê/B�
(2.23)

with B� = B[1 + 2πm(ω(0)/B)ε∇× (b̂× �xc2) · b̂] and B̂ = �B + 2πmω(0)ε∇×
(b̂ × �xc2). To express these in terms of the electric field �E one needs to

calculate Ê [27].

After some algebra one finds

eÊ = 〈e �E〉 −m

[
∂〈 �G〉
∂t

+ 〈 �G〉 · ∂〈
�G〉

∂ �R

]

+m

[
∂(〈 �G⊥〉+ �H)

∂t
+ 〈 �G⊥〉 · ∂(〈

�G⊥〉+ �H)

∂ �R

]
+O(ε3).

(2.24)

Here �H = ε2(e/m)�xc2 × �B. In obtaining Eq. (2.24), one exploited the iden-

tity〈
Δ
∂(�x(2) − �x(1))

∂φ
·
∫ φ

( �E⊥ − 〈 �E⊥〉)dφ
〉

=

〈
∂(�x(2) − �x(1))

∂φ
·Δ

∫ φ

( �E⊥ − 〈 �E⊥〉)dφ
〉
,

(2.25)

where Δ is any differential operator acting on the expression immediately

in front of it and commuting with φ integration.

Equations (2.23) with the expression (2.24) provide the gyrokinetic equa-

tions of motion for �R and U correct to second order in ε. It is of interest to

note that with the integration constant �xc2 one is able affect the appear-

ance of the drift motion in this presentation. Choosing �xc2 = 0 = �H, one

effectively leaves only the 〈 �E〉 × �B drift in the perpendicular drift motion,

while the choice �H = −〈 �G⊥〉 introduces also the polarization drift mo-

tion (which comes from the convective time derivative of 〈 �E〉 × �B motion)

into the perpendicular drift motion. It’s important to note that with these

choices, it was also defined whether the 〈 �E〉 × �B drift motion was allowed

to affect the gyroradius in Eq. (2.19) or not. That the appearance of the

polarization drift in the drift motion is in this way connected to the defini-

tion of the gyroradius in gyrokinetics was already noted by P. Sosenko et

al [17]. It is the power of the present inverse Kruskal iteration procedure
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where the choice of the presence of the polarization drift in drift motion

can be simply turned on or off in due course of developing the formalism

within the same theory expansion.

One should also note that 〈e �E〉 in Eq. (2.24) is defined at �x(2). By Taylor

expanding �E about �x(1), one finds that 〈e �E〉 = −e∇RΥ, where Υ is the

nonlinear potential including the ponderomotive potential as it appears in

the standard gyrokinetic theory [18] with �xc2 = 0 or in its modified version

with polarization drift [17] with ε2�xc2 = −b̂×〈 �G〉/Ω. In the latter case, the

ponderomotive potential has an additional term ε2�xc2 · 〈(∂Φ/∂�x)(�x(1))〉.
It is interesting to note that (2.20) with �P = 0 and �x = �x(2) reproduces

the standard gyrokinetic result [27]. If one wishes to have the polarization

drift in the perpendicular drift motion one chooses ε2�xc2 = −(ε/2πω(0))b̂×
〈 �G⊥〉 instead of �xc2 = 0.

The inverse Kruskal iteration with the Dirac’s constrained Hamilto-

nian [28] and with the choice of the adiabatic invariant J = 〈�p · ∂�x/∂φ〉
as one of the averaging coordinates in phase space presents suitable and

transparent in obtaining gyrokinetic equations under different assump-

tions of gyrocentre coordinates. This includes the standard gyrokinetic

formalism as well as its variation where the polarization drift is enclosed

in the gyrocentre motion. The latter gives a gyrokinetic Poisson equa-

tion that reduces to a condition for particle-like charge densities with no

explicit polarization term. It is directly solvable with particle simulation

methods using direct sampling of particle density with gyroangle and field

dependent gyroradius function. The required effort is in the iteration of

the Euler equations for the particle position and velocity up to the desired

order in gyrokinetic parameter that can be performed with the inverse

Kruskal method.

The present formalism has been exploited in constructing the gyroki-

netic full f particle code ELMFIRE [22]. Here, the free constant �xc2 was

chosen to let the ion polarization drift to appear in the gyrocentre drift

motion. The remaining trembling in the gyroradius (see Eq. (2.19))

Δ�ρ(2) =
ε

2πω(0)
b̂× ( �G− 〈 �G〉)− ε2

2πω(0)2

e

m
b̂×

∫ φ

( �E − 〈 �E〉)dφ

+
ε

ω(0)

∫ φ
�G‖dφ (2.26)

is taken into account directly in sampling the density from �R to �r with a

φ-varying gyroradius �ρ(2) in the gyrokinetic Poisson equation. This part

of the charge density vanishes at long wavelength limit of perturbations,

and can be modelled in an explicit sense for solving Φ over the time step.
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In ELMFIRE , the polarization charge density is sampled directly from the

polarization drift motion

�VRp = −(m/e)

[
∂〈 �G〉
∂t

+ 〈 �G〉 · ∂〈
�G〉

∂ �R

]
× b̂/B

of the ion gyrocentres. This part consists also of long wavelength pertur-

bations and is thus modelled in an implicit sense for solving Φ over the

time step, i.e., the sample of this charge density is expressed in terms of

the Φ at the end of the time step.

Alternatively, one could have set �xc2 = 0 as in the standard model and

could have directly sampled charge densities and separately the coeffi-

cient matrix of the Poisson equation from the linear �E dependent trem-

blings of the particle gyroradii (including polarization effects), i.e., from

Eq. (2.26) by setting 〈 �G〉 = 0 there. With this scheme as well as with the

previous one, one may directly calculate the 〈 �E〉 term in Eq. (2.24) with-

out resorting to separate evaluation of the somewhat complex analytical

expression of the ponderomotive force.

The procedures given above provide a viable simulation technique valid

for wavelength range limited only by the simulation grid and by the ac-

curacy of interpolation methods. The method is attractive as it readily

allows introduction of either higher order or otherwise cumbersome addi-

tions of the gyrokinetic formalism to the numerical implementation. Here,

one exploits the direct sampling of the particle density from �R to �r with a

field and φ-varying gyroradius in the gyrokinetic Poisson equation either

in an explicit or implicit sense, depending on its complexity. The standard

way of introducing higher order differentials for this purpose may turn

out to be impractical for numerical realization in more complex cases as

with higher order corrections.

2.5 Magnetic and simulation geometry

The quasi-toroidal coordinate system (pictured in figure 2.5) maybe parametrized

by ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x = (R0 + r cos θ) cos(ζ)

y = (R0 + r cos θ) sin(ζ)

z = −r sin θ,

(2.27)

and, if it is assumed that coordinates where the field equations given

are the quasi-ballooning coordinates [35] which approximately follow the
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x

z

x

z

Figure 2.5. Exaggerated representation of the poloidal cross section of the quasitoroidal
computational grid in the absence of rotational transform. The area elements
are scaled to be of equal volume in the Boozer co-ordinates. On the right a
corresponding toroidal co-ordinate system is shown.

magnetic field lines. This choice of coordinates relaxes computational ef-

fort by allowing long toroidal cells. The coordinate transformation from

the quasitoroidal (r, θ(ϑw), ζ) coordinates to the magnetic field aligned

(r, χ, ζ) coordinates (which follow the field lines) is given by

χ = θw − ι(r)ζ, (2.28)

with ι = 1/q. The co-ordinate ϑw is related to θ by

ϑw =
1√

1− ε2
arccos

(
ε+ cos θ

1 + ε cos θ

)
.

These are the coordinates used in ELMFIRE calculations for the fields.

The quasi-ballooning coordinates impose periodic conditions on physical

quantities ℵ in the following manner:⎧⎨
⎩

ℵ(r, χ+ 2π, ζ) = ℵ(r, χ, ζ)
ℵ(r, χ− 2πι(r), ζ + 2π) = ℵ(r, χ, ζ).

(2.29)

There is another parametrization for the torus, named toroidal coordi-

nates (pictured in figure 2.5) in the literature, parametrized by (u, v, ϕ):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x =
a sinh v cosϕ

cosh v − cosu

y =
a sinh v sinϕ

cosh v − cosu

z =
a sinu

cosh v − cosu
,

(2.30)

which has the advantage of separable solutions for the Laplace equation.

Using the quasitoroidal Boozer coordinates (we shall return to these

later) [37–39], we can express the magnetic field as

�B = g(ψp)∇ζ + μ0I(ψp)∇θw + δ(ψp, θw)∇ψp, (2.31)
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where g(ψp) = BTR, 2πI(ψp) the total current inside the magnetic surface

as labeled by the poloidal magnetic flux 2πψp. Alternatively, the vector

potential is �A = ψ∇θw − ψp∇ζ. In the following, we shall take δ ≡ 0

[37]. Straight-field-lines in the (θw, ζ)-plane (poloidal-toroidal plane) are

ensured by

q(ψp) =
�B · ∇ζ

�B · ∇θw
(2.32)

with q as the safety factor. Note that because B is a function of poloidal

angle (1/R dependence), either ζ or θw angle must be nonuniform to make

q constant on a flux surface. From the particle Lagrangian L = mv2/2 +

qe �A · �v − qeφ, one may derive (to first order in ρ/�) the drift Lagrangian as

Ld = mv2‖ + qe �A · �vgc + μB −H (2.33)

where H = mv2‖/2 + μB + qeφ is the lowest order drift Hamiltonian. We

have from the chain rule dψp/dt = ψ̇p = �vgc · ∇ψp, dθw/dt = ˙θw = �vgc · ∇θw,

dζ/dt = ζ̇ = �vgc · ∇ζ for the components of the guiding-center velocity.

From �B = g(ψp)∇ζ + μ0I(ψp)∇θw one finds

v‖ = �vgc · �B/B = (gζ̇ + μ0I ˙θw)/B. (2.34)

The drift-Lagrangian Ld can therefore be written as

Ld = mΩρ‖(gζ̇ + μ0I ˙θw)/B + qe(ψp∇θw − ψp∇ζ) · �vgc + μB −H

= qeρ‖(gζ̇ + μ0I ˙θw) + qeψp
˙θw − qeψpζ̇ + μB −H

≡ Pθw
˙θw + Pζ ζ̇ + μB −H,

where Pθw = qe(μ0Iρ‖ + ψp) and Pζ = qe(gρ‖ − ψp) are momenta canonical

to θw and ζ. The drift-Hamiltonian is given by

H =
q2e
m

ρ2‖B
2/2 + μB + eφ. (2.35)

The Hamiltonian equations of motion are given by⎧⎨
⎩

Ṗζ = −∂H/∂ζ, Ṗθw = −∂H/∂θw,

˙θw = ∂H/∂Pθw , ζ̇ = ∂H/∂Pζ .
(2.36)

Using the expressions for Pθw and Pζ , one finds qegψp = gPθw − μ0IPζ −
eμ0Iψp. Differentiation of this equation gives

dψp =
gdPθ − μ0IdPζ

qeD
(2.37)

where D = ρ‖(gμ0I
′− g′μ0I)+μ0I+ gq with the prime denoting derivation

with respect to ψp. Therefore

∂ψp

∂Pθ
=

g

qeD
,

∂ψp

∂Pζ
= − μ0I

qeD
. (2.38)
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From the expressions of Pθ and Pζ , one finds

dPθ = qe(μ0I
′ρ‖dψp + μ0Idρ‖ + qdψp)

dPζ = qe(g
′ρ‖dψp + gdρ‖ − dψp)

Eliminating dψp gives

dρ‖ =
(μ0I

′ρ‖ + q)dPζ − (g′ρ‖ − 1)dPθ

qeD
(2.39)

from which follows
∂ρ‖
∂Pθ

=
1− ρ‖g′

qeD
,

∂ρ‖
∂Pζ

=
q + μ0I

′ρ‖
qeD

. (2.40)

The particle guiding-centre equations can thus be written using the

Hamilton’s equations as

Ṗζ = −qe
∂φ

∂ζ
− (μ+

q2e
m

ρ2‖B)
∂B

∂ζ

Ṗθ = −qe
∂φ

∂θw
− (μ+

q2e
m

ρ2‖B)
∂B

∂θw

ζ̇ = −μ0I

D

∂φ

∂ψp
− (

μ

qe
+

qe
m
ρ2‖B)

μ0I

D

∂B

∂ψp
+

qe
m

ρ‖B2(q + ρ‖μ0I
′)

D

˙θw =
g

D

∂φ

∂ψp
+ (

μ

qe
+

qe
m
ρ2‖B)

g

D

∂B

∂ψp
+

qe
m

ρ‖B2(1− ρ‖g′)
D

The canonical momenta Pθ and Pζ are not very useful in particle track-

ing. Instead, we wish to replace them with ψp and ρ‖. Using the differen-

tials of ψp and ρ‖, we can solve for the relations of ψ̇p and ρ̇‖ to Ṗθ and Ṗζ

which gives

ψ̇p =
μ0I

D

∂φ

∂ζ
− g

D

∂φ

∂θw
+

(
μ+

q2e
m

ρ2‖B
)[

μ0I

qeD

∂B

∂ζ
− g

qeD

∂B

∂θw

]
,

ρ̇‖ = −q + ρ‖μ0I
′

D

∂φ

∂ζ
− 1− ρ‖g′

D

∂φ

∂θw

+

(
μ+

q2e
m

ρ2‖B
)[

q + ρ‖μ0I
′

qeD

∂B

∂ζ
− 1− ρ‖g′

qeD

∂B

∂θw

]
,

(2.41)

which are used in ELMFIRE simulations for particle pushing, with the dis-

tinction that the gyroaveraged electric field is used, making these equa-

tions equivalent to Eq. (2.9) and (2.23). The particles also experience col-

lisions through a stochastic operator and polarization motion which is im-

plicitly solved and applied after explicit particle pushing.

The co-centric circles approximation (currently used in ELMFIRE) for the

geometry has flux surfaces coincident with the quasitoroidal (r, ζ). The

functions I(r), q(r), g(r), J(r, θ), and the magnetic coordinates ψp, θw, ζ

related analytically by

2πμ0I = BpRεκ, 2πq = gεκ/BpR, 2πJ = εκR/Bp,

ψp =

∫ r

0
BpRdr, θw = (2π/κ)

∫ ϕ

0
dϕ/(1 + ε cosϕ), ζ = φ,
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using ε = r/R, and κ(ε) =
∫ 2π
0 dϕ/(1 + εcosϕ). Here we have also, �B =

BT φ̂+Bpϕ̂, g = BTR is constant in space, and BpR is a function of only r.
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3. Linear growth rate analyses

Nothing happens until

something moves.

Albert Einstein

Instability in a system is apparent, when the system is in static equilib-

rium (i.e., sum of forces and moments are zero), but dynamically tends to

move away from it. Such a case may be easily illustrated by the example

of a pen balanced on its tip; statically all forces are balanced and the sys-

tem is in equilibrium, but when time is allowed to start, the pen tips over

and finds a dynamical equilibrium. In this crude illustration of instability

we have all the basic elements present: a small perturbation is needed to

get the pen going, the tilt of the pen grows, and after a short while, the

pen finds equilibrium on its side at the table having dissipated the free

energy available to it through deformation, waves and heat.

3.1 Linear growth of drift instability

Generally the problems of flows in fluids are highly non-linear. Such prob-

lems may be generally represented as a system of ordinary differential

equations
dX

dt
= f(X)

X(t = 0) = a(x),

(3.1)

where a(x) is an initial state, X(x) is the state variable dependent on co-

ordinates x, and f is a (generally non-linear) function on the state variable

and t is time. The issue of linear growth of unstable modes presents itself

when the non-linear equations are linearized about the fixed point (i.e.,

the initial state) f(a) = 0. Linearisation of Eq. (3.1) about a fixed point
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yields the linear problem

dX

dt
= A(X− a) = AδX

X(t = 0) = a,

(3.2)

with A = (∂Xf)(a), which has the formal solution δX(t) = δX(t = 0) expAt.

The solution to the linear differential system of Eq. (3.2) is called the lin-

ear solution. As a result, we may find decaying or growing solutions which

generally have time-dependent oscillations if A has complex eigenvalues.

Through Fourier-analysis, the problem can be expressed as an algebraic

problem in (k, ω)-space. Because here only stability is of concern, we may

illustrate this with a single complex eigenvalue of A by writing out an

“atomic” solution

δxk(t) = δxk(t = 0) exp i(k · x− ωt) (3.3)

where ω is a complex eigenvalue and k is the wave vector (related to co-

ordinates x). If we write ω = ωr + iγ, we find unstable (exponentially

growing) solutions when γ > 0. We will call ωr frequency and absolute

value of γ the growth rate of a linear eigenmode, with the complex ω as

the eigenvalue. In principle, it is possible to have constant driving terms

in Eq. (3.1) which do not appear in the linearised problem, but here only

exponentially growing instabilities (which eventually dominate) are of in-

terest. One of the classical examples of such an analysis is the Rayleigh-

Taylor instability, where fluid layers (e.g., water on oil) interchange due

to gravitation. In the tokamak plasma the analogous driving force is in-

homogeneity of the magnetic field. The existence of non-linearly driven

instabilities (such as the parametric instability of zonal flow) is notewor-

thy, as this analysis utterly neglects them.

As an example of linear instability analysis we present the derivation of

the reactive fluid model introduced by B. Coppi and utilized by J. Wei-

land [40] for quasilinear scaling of turbulent transport. The model is

based on the Braginskii closure obtained by expanding the kinetic the-

ory on an orthogonal basis (Sonine polynomials) and deriving first-order

corrections [41]. This model is used in analysis of experiments using

transport codes (such as JINTRAC), amongst other theoretical and ex-

perimental scalings. In the following treatment, we follow the procedure

of Weiland to find growth rates and frequencies for the Ion Temperature

Gradient (ITG) and Trapped Electron Mode (TEM) branch of drift insta-
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bility. The MHD equations are given by

∂na

∂t
+ �∇ · (na�va) = 0, (3.4)

∂�va
∂t

+ �va · �∇�va =
qa
ma

(
�E + �va × �B

)
− 1

mana

(
�∇pa + �∇ · πa

)
, (3.5)

3

2
na

(
∂

∂t
+ �va · �∇

)
Ta + pa�∇ · �va = −�∇ · �qa, (3.6)

dpa
dt

− γp�∇ · va = 0 (3.7)

where na is the density of particle species a and va its fluid velocity, �E =

−�∇φ is the electric field and φ is the electric potential, pa is the scalar

pressure, πa is the viscosity tensor (the non-spherical part of the pres-

sure tensor), and �qa is the heat flux. The continuity equation is stated in

Eq. (3.4) (which can also be used to derive charge conservation), Eq. (3.5)

is the fluid momentum conservation equation, and Eq. (3.6) is the equa-

tion for energy conservation (also called the Braginskii energy equation).

We also assume that the compression associated with perturbations is

adiabatic (Eq. (3.7)), an assumption which holds for rapid processes. We

use γ = d+2
d = 5

3 , because the system is essentially three dimensional

(parallel and perpendicular pressures are not discriminated).

The Braginskii closure to the fluid hierarchy is attained by assuming

that the heat flux is diamagnetic,

�qa ≈ �q∗a =
5

2

pa
maΩa

b̂× �∇Ta, (3.8)

which gives us

�∇ · �qa = �∇ · �q∗a = −5

2
na�v∗a · �∇Ta +

5

2
na�vDa · �∇Ta. (3.9)

The magnetization flow is discussed in more depth in Ref. [6].

We also assume that the fluid velocity �va is given by the second order

iterative solution to the momentum equation (3.5),

�va = �v∗a + �vEa + �vπa + �vpa, (3.10)

�v∗a =
b̂× �∇pa
namaΩa

, (3.11)

�vEa =
�E × b̂

B
, (3.12)

�vπa =
b̂× �∇ · πa

namaΩa
, (3.13)

�vpa =
1

Ωa

d(b̂× �va)

dt
≈ 1

ΩaB

d�E

dt
, (3.14)

where �v∗a is the diamagnetic drift, �vEa is the E×B-drift, �vπa is the viscosity

drift and �vpa is the polarisation drift velocity, with d
dt = ∂

∂t + �va · �∇ as the
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convective derivative, and the �vEa is used as the dominating fluid velocity

in the polarization velocity.

It is important to note, that the velocities given above do not include the

gradient and curvature drifts, which are present in the kinetic treatment.

They do arise in the fluid treatment as well if we allow the magnetic field

to have inhomogeneity, which gives us an analogous drift

�vDa =
Ta

maΩa
b̂×

(
b̂ · �∇b̂+ �∇ lnB

)
, (3.15)

but this velocity does not appear unless the true fluid velocities (v∗a, vEa,

and so on) are operated upon, like in the flux divergence term of the con-

tinuity equation. They therefore represent compressibility of the flux.

We will frequently use �∇ · (na�va) and �∇ · �va, so it is useful to state them

explicitly:

�∇ · (na�vEa) =
qa
Ta

�vDa · �∇φ+ �vEa · �∇na (3.16)

�∇ · (na�v∗a) =
1

Ta
�vDa · �∇pa (3.17)

�∇ · [na(�vpa + �vπa)] = �∇ ·
[
na

Ωa

∂(b̂× �va)

∂t

]
. (3.18)

We may write (remember that b̂× �∇p · �∇p = 0)

3

2
na�v∗a · �∇Ta − Ta�v∗a · �∇na =

5

2
na�v∗a · �∇Ta, (3.19)

which conveniently cancels with the diamagnetic part of the heat flux of

Eq. (3.9) in Eq. (3.6). Let us write ω∗a = �v∗a ·�k, ωDa = �vDa ·�k, where �k is the

wave vector. With �v = �vEa + �v∗a we may manipulate the energy equation

to

1

Ta

∂Ta

∂t
+

1

T
�vEa · �∇Ta − 2

3

1

na
�vEa · �∇na +

5

3

1

Ta
�vDa · �∇Ta − 1

na

∂na

∂t
= 0. (3.20)

Now, let us linearize the system by assuming T = T0 + δT , n = n0 + δn,

φ is the perturbed potential, and Fourier analyze the problem (�∇ → i�k,

∂/∂t → −iω), which gives us the linearised temperature perturbation for

the ions (the electrons are treated in similar manner):

δTi

Ti
=

ω

ω − 5
3ωDi

(
δni

ni
+

ω∗e
ω

(
ηi − 2

3

)
eφ

Te

)
, (3.21)

where ηi =
Lni
LTi

for the ions, and LT i = |∇ log Ti|−1 and Lni = |∇ log ni|−1

are the temperature and density scale lengths (for the ions), respectively.

Now, from the continuity equation with �vi = �v∗i + �vEi + �vπi + �vpi we obtain

∂ni

∂t
+

1

Ti
�vDi · �∇pi +

qini

Ti
�vDi · �∇φ+ �vEi · �∇ni + �∇ · [ni(vpi + vπi)] = 0, (3.22)
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which through similar Fourier analysis, with the aid of �∇ · [ni(vpi+ vπi)] =

ink2ρ2s(ω − ω∗i) eφTe
(ρs = cs

Ωi
, and cs =

√
Te/mi is the sound velocity) and

linearization gives

δni

ni
=

[
ω (ω∗e − ωDe) +

(
ηi − 7

3
+

5

3
εn

)
ω∗eωDi − k2ρ2s (ω − ω∗iT )

(
ω − 5

3
ωDi

)]
×

[
ω2 − 10

3
ωωDi +

5

3
ω2
Di

]−1 eφ

Te
,

(3.23)

where εn = 2Ln
LB

, LB = B
|∇B| is the magnetic field gradient scale length,

and ω∗iT = ω∗i(1 + ηi). The procedure is in no way limited to the ions,

so for the trapped electrons we obtain a similar expression, except that

ρs is assumed to be zero for electrons (their Larmor radii are negligible).

By quasi-neutrality δni = δne and writing the electron density perturba-

tion as an adiabatic part δne/ne = eφ/Te (for the free electrons) and the

trapped part (with ft =
√
ε as the trapped fraction, ε is the inverse aspect

ratio), we obtain the dispersion relation

ω∗e
Ni

[
ω(1− εn) +

(
ηi − 7

3
+

5

3
εn

)
ωDi

−k2ρ2s[ω − ω∗i(1 + ηi)]

(
ω

ω∗e
+

5

3τ
εn

)]

=ft
ω∗e
Ne

[
ω(1− εn) +

(
ηe − 7

3
+

5

3
εn

)
ωDe

]
+ 1− ft,

(3.24)

where we have introduced τ = Te/Ti, ηe = Lne/LTe (produced in the same

manner as for the ions) and

Nj = ω2 − 10

3
ωωDj +

5

3
ω2
Dj , j ∈ {e, i}. (3.25)

The mode can be classified by examining Ni −Ne < 0: if the inequality is

true, the mode is the ion temperature gradient mode, otherwise it is the

trapped electron mode. They travel in different directions, TEM travels

along ω∗e whereas ITG travels along ω∗i, which are opposite. The poloidal

wave vector in a tokamak may be written as k = m/r, where m is the

mode number.

As we can see, the dispersion relation given by Eq. (3.24) is a quartic

polynomial, which is cumbersome (but possible) to solve by hand. Because

all the coefficients are real there may only be even numbers of complex so-

lutions, which are complex conjugates of each other, ω = ωr ± iγ. While

this fact does not simplify solving the problem, it implies two important

things. First, any solution with a negative imaginary part has a conjugate

pair, so finding such a root implies that there is an unstable solution with
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Figure 3.1. Stability diagram for the FT-2 machine parameters obtained by solving the
dispersion relation 3.24 with Mathematica for different values of η and εn.
The coloured area is unstable. Here τ = 2 and Itot = 18.9kA.

equal absolute values. Because all roots may be complex, we have the

possibility of two different unstable modes simultaneously in the plasma,

which may be ITG and/or TEM. The dispersion relation is easily solved

using symbolic analysis software such as Mathematica (as illustrated by

figure 3.1) or by solving the eigenvalue problem of the Frobenius compan-

ion matrix numerically. The growth rates and frequencies may then be

used to calculate quasilinear transport rates for particles and heat.

The linearised fluid equations presented above do capture some of the

physics associated with ITG/TEM branch of drift modes, however the

model predicts excessively high mode growth rates when k⊥ is chosen to

be at the maximal growth rate (with respect to GS2 [42]). Weiland chooses

k⊥ρ well below the maximum, with k2⊥ρ
2 of 0.05 to 0.1 depending on the

reference. With this caveat, we take this model and use it as an order-of-

magnitude estimate for simulation parameters. We have solved the dis-

persion relation for the “Cyclone base case” [12] parameters of section 3.2,

over k⊥ρs ∈ [0, 2]. In figure 3.2 we plot the unstable modes found in this

region for an adiabatic electron case with ft = 0 and ηe = 0, and a kinetic

electron case with ηe = 0 but non-zero ft. These cases have also been
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used in ELMFIRE simulations of drift wave turbulence in benchmarking,

with mode growth rate and frequency spectra used as an aid in select-

ing suitable simulation parameters (e.g., timestep) for benchmarking the

ELMFIRE , in addition to numerical stability and implicit dissipation con-

ditions.

0 0.5 1
k

θ
ρ

s

-0.4

-0.2

0

0.2

0.4

ω
,γ

 / 
(v

T
/L

n)

ω/4
 γ
γ

kin

Weiland

Figure 3.2. Growth rates and frequencies of the ITG/TEM drift instabilities with the “Cy-
clone base case” parameters, taking the trapping fraction ft = 0 and ηe = 0.
We interpret from Ref. [35] that the Weiland points correspond to the val-
ues highlighted with circles. Growth rate for trapped electron fraction of
ft =

√
2ε/(1 + ε) is enhanced. Compare with figure 3.9.

According to Eq. (3.3) we may find a growing solution in an “experimen-

tal” context (e.g., ELMFIRE simulation) by examining the time series of

the eigenmode expansion of the physical quantity, be it density or the po-

tential. However, it is important to note that in general the eigenmodes

in a complex geometry are not pure toroidal Fourier modes, but instead

a more complex structure (called a ballooning structure) which involves a

set of Fourier modes. Nevertheless, we may express a perturbation in the

form

φ(r, ϑ, ζ) =
∑
m,n

φm,n(r) e
i(mϑ+nζ). (3.26)

when (r, ϑ, ζ) are taken as coordinates on the parametric torus (see Sec. 2.5).

As a matter of convenience, the reader is directed to read Ref. [35]

where the Fourier analysis technique is outlined. However, this coordi-

nate transformation which had been made for simplifying the numerical

solution of the gyrokinetic Poisson equation complicates Fourier-analysis,

because the (m,n) modes populate only the region near mι ≈ n.

The dynamics of a typical growing (m,n) mode is shown in Fig. 3.3.
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Figure 3.3. The complex logarithm of a Fourier mode in an ELMFIRE simulation for the
adiabatic Cyclone Base case.

There is a waiting period in the simulation as the modes phase them-

selves, and a growth period is observed for the amplitude and the phase

after the seed fluctuations have set in. The complex logarithm of the

Fourier coefficient for the mode exhibits linear behavior, and when the

mode amplitude reaches sufficient values the growth is inhibited. In this

case the spanning Fourier spectrum has been restricted to improve signal-

noise ratio by including only a specified n-mode in the charge separation.

3.2 The “Cyclone Base” case, with variations

The “Cyclone base” case parameters were given as dimensionless quan-

tities, such as R/LT , R/Ln, ηi = Ln/LT , τ = Te/Ti, a/R, q and ŝ, where

the temperature and density scale lengths are given by L−1
T = |∇ lnT | and

L−1
n = |∇ lnn|, respectively, R is the major radius and a is the minor ra-

dius, ŝ = r
q
dq
dr is the magnetic shear, q is the magnetic safety factor and ν is

the collisionality. The results were given also in dimensionless quantities.

While this method avoids confusion with units, it also leaves the freedom

of scaling R, a, Ti and ni in a consistent manner (see table 3.1). Also, dif-

ferent authors appear to use different ion species and ion-electron mass

ratios for their results in the literature, while others do not specify these

at all.

This has resulted in several different versions of the same parameter

set for which the ELMFIRE is run: the scaled Cyclone parameters used in
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the adiabatic linear analyses, and differently scaled parameters used in

kinetic non-linear runs. The Integrated Tokamak Modelling Task Force

(TF-ITM) IMP#4 project has defined the parameters in a dimensional

form, and also these differ from original ELMFIRE Cyclone tests.

Table 3.1. Initial parameters for the “Cyclone base case” test cases with adiabatic and
kinetic electrons. These parameters were chosen to satisfy the normalized
values.

R/LT = 6.9 R/Ln = 2.2 R/a = 2.78 r0/a = 0.5 ŝ = 0.78

q(r0) = 1.42 R = 0.55m Ti = 100 eV ni = 0.5 · 1018 m−3

In the linear and kinetic non-linear comparative tests we adopt the so-

called “Cyclone DIII-D base case” dimensionless parameters [12] with

hydrogen ions, a widely used test case described in Table 3.1. Corre-

spondingly, initial density and temperature radial profiles are given as

n0[1 + αn tanh
r0−r
αnLn

], T0[1 + αT tanh r0−r
αTLT

] with αn = αT = 0.95, r0 =

(rL + rR)/2, n0 = 5 · 1019 m−3, T0 = 100 eV, for the analysis of the Cy-

clone base case in the adiabatic case. In the kinetic electron case we use

an initial density n0 = 5 · 1017 m−3 and αn = αT = 0.9. For the linear anal-

ysis, the inner and outer radii of the simulation region are rL = 0.16 m,

rR = 0.24 m with a = 0.3975 m as the minor radius. The plasma current

density profile is taken as j = j0(1 − r2/a2)αI with j0 = I0(1 + αI)/πa
2

giving the maximum current density in terms of the total plasma current

I0 and minor radius a. In the following, we have αI = 3.0, BT = 1.1 T,

R = 1.1 m, and I0 = 200 kA. At r = r0, ρi/a = 0.0023. These parameters

give the same normalized parameters locally at r0.

For the kinetic transport simulations, we have chosen the scaled set of

“Cyclone base” parameters. It is important to note, however, that these

parameters were not used for the adiabatic non-linear evaluations, which

were performed much later under the EFDA TF-ITM framework.

The electron model used in adiabatic simulations assumes Boltzmann-

distributed electrons, whose response to an electric potential Φ is taken

as

ne = 〈ni〉+ δne = 〈ni〉 e
e(Φ−〈Φ〉)

Te ≈ 〈ni〉
(
1 +

e(Φ− 〈Φ〉)
Te

)
, (3.27)

where 〈ni〉 and 〈Φ〉 are the flux surface averages of the simulated ion den-

sity and potential. This model allows for the ion temperature gradient

instability, but not any instabilities associated with electron motion such

as trapped electron modes or electron temperature gradient modes.
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3.2.1 TF-ITM Cyclone parameters

Currently the most important part of IMP #4 is the cross verification pro-

cess. In 2006 the “Cyclone base” case was chosen for this task while the

problems associated with it are recognised. In the literature for non-linear

transport analyses dimensionless parameters are given, which could be

referenced to. However, the ITM background parameters were set in

terms of absolute values and profiles: Te = Ti = 2keV, B = 1.91T, LT =

0.246m, a = 0.625m, R0 = 170cm, LT /Ln = 0.321, q = 1.4, ŝ = 0.78. Hence,

for example, the local value of ρ∗/LT is 0.0138 or about 1/73, while the

global value of a/ρ∗ is 184.7.

Table 3.2. Initial parameters for the ITM#4 “Cyclone base case” test cases.

R/LT = 6.9 R/Ln = 2.2 R/a = 2.78 r0/a = 0.5 ŝ = 0.78

q(r0) = 1.42 R = 1.7m Ti = 2000 eV ni = 0.45 · 1019 m−3

The model geometry is concentric circular. The outer third quarter is

0.5 < r/a < 0.75. The q profile is a parabolic one satisfying the local

parameters: q = 0.854 + 2.184(r/a)2.

Model density and temperature profiles are prescribed in terms of their

gradients,

R∇Ti = 2keV ×R/LT × p(r)

R∇ni = 4.5 · 1019m−3 ×R/Ln × p(r)

R∇Te = R∇Ti

R∇ne = R∇ni

where

p(r) = −1 + sech2(
r − rl
δa

) + sech2(
r − rr
δa

) (3.28)∫
p(r) dr = −r + δa

(
tanh(

r − rl
δa

) + tanh(
r − rr
δa

)

)
(3.29)

is a normalised profile with boundary buffer zones δa. The boundary layer

may be left out in the ELMFIRE simulations, because density gradients

near the boundary reduce χi estimate values, and make plots made while

running the case more meaningful. For global codes it is important to

remember that scale lengths are functions of temperature, and as such,

results in the profiles of the following form (analogously for density):

T (r) = 2keV exp
1

LT

(
a/2− r + δa

(
tanh(

r − rl
δa

) + tanh(
r − rr
δa

)

))
,

(3.30)
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which ensures that the LT is constant over simulation region, which is

needed for comparisons with the flux-tube codes. Adiabatic electrons with

density scaling factor taken from initial quasi-neutrality (when φ = 0)

was chosen.

3.3 Adiabatic linear growth

Up to recently, very few codes in addition to ELMFIRE had a working ki-

netic electron model (especially in non-linear simulations). The adiabatic

model was developed to ELMFIRE some time after the kinetic electrons

were developed, but because mostly all published benchmarking data was

for adiabatic electrons, it had to be used. The adiabatic model is given in

equation 2.16.

The standard “Cyclone base” case is an adiabatic electron case with a

hyperbolic tangential density and temperature profile given by n, T ∝ 1 +

α tanh((rref−r)/(αL)), where L is the gradient scale length and α = 0.05 is

a boundary factor that is chosen so that values near boundaries are finite.

The maximal temperature and density gradients are chosen at rref/a =

0.5, where the mode growth spectrum is investigated. In essence, the

ELMFIRE was rendered a linear stability code for this purpose. While not

developed as such, linear stability calculation of modes is an important

benchmark for the code to pass as a tool for non-linear simulations.

The development of linear growth profiles as shown in Publication I fig-

ure 3 was not a simple procedure in terms of running the ELMFIRE and

analysis methods used, because at the time computational resources were

very limited. The DIII-D experiment is a mid-range tokamak, and as such

has a relatively low ρ� = ρs/a ≈ 1/184. The resolution needed for simu-

lating an experiment scales roughly as ρ−2
� , and a high resolution entails

using high numbers of particles for acceptable noise levels. Also, the ini-

tialisation procedure was found to contaminate the signal by introducing

a high initial perturbation, which limited the region of acceptable linear

growth. It is important to realise that the particular Fourier transform

used in this context is not the traditional one, but a variation where m

numbers are independent but n modes have a phase shift which is lin-

early dependent upon m.

The particle noise could have been suppressed by using sufficient num-

ber of particles per mode, but limiting the number of modes was compu-

tationally more attractive because the noise spectrum is broadband and
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scales as 1/
√
N with N particles. As the discretisation of the field equa-

tions needs to be sufficiently refined, the resolution may not be restricted

in this way. Particle noise may be reduced by using Fourier filtering (later

used by others, see for example Ref. [43]) for a specific toroidal n-mode,

allowing only the corresponding band of m-modes to grow. Distribution

function initialization has to be done carefully when performing such in-

vestigations on the ELMFIRE , as shown in section 5.2. A local Maxwellian

was chosen for the adiabatic linear growth rate analyses. In this initial-

ization, all modes are absent in the beginning and the logarithm of the

amplitude starts from −∞.

Very quickly it was observed that changing the poloidal resolution would

affect the growth rates of the modes, although the system should be well

resolved. This can be seen very clearly in Fig. 3.4 where we see an in-

crease of the growth rate of the (30, 21) mode as a function of the maximal

poloidal resolution (with m = dNY/2), until a sufficient resolution is at-

tained.

The linear growth rate spectrum given in Publication I Fig. 3 has been

obtained by using local Maxwellian initialization, and by keeping only one

n-mode in each point with kθρs = qn
r ρs. The nominal simulation parame-

ters for the adiabatic linear growth rate analyses are given in Table 3.3,

where dNX, dNY and dNZ are the number of radial, poloidal and toroidal

grid points in the quasi-ballooning co-ordinates, respectively, and Δt is the

time step. Particle numbers were varied between Npart = (9− 23) · 106 by

increasing the number of pitch values in the initial distribution to keep

the particle number per cell constant for similar noise characteristics in

the simulations.

Table 3.3. Simulation parameters used for the adiabatic linear Cyclone test cases.

dNX = 25− 31 dNY = 150− 500 dNZ = 4− 16 Δt = 2 · 10−7 s

In figure 3.5 we show the typical m-structure for {φ2
k}Ω for the logarithm

of the mode energy (in arbitrary units) as a function time. As can be

seen, most of the mode energy is associated with the resonant mode at

q = 10/7 at radius r/a = 0.5. This means that effectively the total energy

associated with an n mode can be used for evaluating the growth rate.

This is not the case for mode phases, however, and therefore only the

resonant mode was used for calculating the phase velocity.
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Figure 3.4. Linear growths for different poloidal grid values. We give the logarithm of
energy in arbitrary units as a function of time steps taken. There is a thresh-
hold value for resolution.
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Figure 3.5. Typical mode energy dependence for different m values for n = 21, in loga-
rithmic arbitrary units. Time unit on the horizontal axis is 4μs.

3.4 Kinetic linear growth

The case with kinetic electrons was not as well investigated in the lit-

erature, probably due to the state of kinetic electron development at the

time. The non-adiabatic electron response introduces new branches of in-

stability in addition to the ion temperature gradient mode. With only one

reference (i.e., Ref. [44]) available to the authors’ knowledge, we were re-

stricted to a case with a ν∗ �= 0 and LTe → ∞, which has the same ITG

instability (due to the lack of electron drive) but where the existence of

a trapped electron fraction is predicted to further increase growth rates.

The paper addresses linear and non-linear evolution of modes, and finite

β stabilization of ITG modes.

Because GS2 [42] was not used by the ELMFIRE group for linear sta-

bility calculations at the time, this singular reference was chosen as the

kinetic electron benchmark case. Discussions with other physicists in the

field would have been very useful to this excercise, in retrospect. Corre-

spondence was unsuccesful, as none of the earlier authors wished to (or,

were unable to) discuss this excercise with us.

With the kinetic electron population simulated by the full-f particle

method, noise problems were further aggravated. In Fig. 3.6 a typical

unfiltered result is shown without periodization in the phase signal. If
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any modes were to be found at all, the signal is drowned out by the noise

and initialisation. Increasing the number of particles was not an option

due to the meager computational resources afforded by the group at the

time. After trying several variations of simulation parameters unsuccess-

fully, a drastic filtering regime was adopted: the signal is filtered in time,

and the total energy of corresponding n-mode is calculated over a region of

the simulation volume, inspired by Ref. [45] (see figure 3.8). Time filtering
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Im

Figure 3.6. Time trace of the time evolution of amplitude and phase of (70, 49) at r = a/2.
Here time filtering has not been performed.

of the signal, if done properly, suppressess higher frequency oscillations

while keeping lower frequency oscillations relatively intact. Although fil-

tering will reduce also the amplitudes of the signal as well as the “noise”

we want rid ourselfs of, the signal to noise ratio improves as only rela-

tive changes in the amplitudes are needed for the linear growth rate and

frequency analyses. This is the case only if the filtering window is not

changed during the filtering procedure. If the window for a moving av-

erage changes, the spectral properties will change (namely the transfer

function) and therefore may influence the analysis. A transfer function

for a moving average filter is illustrated in figure 3.7.

However, the filtering in time introduces a different problem: a linear

growth is exponential, and as such, has a wide spectrum. Applying dif-

ferent width moving averages on different data points will change the

results, and therefore the time-filtering scheme is dangerous if used un-
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wisely.
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Figure 3.7. A typical transfer function for a moving-average filter of width of 150 points
on a time series of 500 points. The analytic transfer function is g(k) =

sin(Mk)/M sin(k), with k ∈ [−π, π] and M is the number of points.

The integration of a quantity A(ψp) over volume Ω is given by

{A}Ω =

∫
ΩA(ψp) J(ψp, χ, ζ)dψpdχdζ∫

Ω J(ψp, χ, ζ)dψpdχdζ
, (3.31)

where J is the Jacobian. When A(ψp) = n2
i (ψp;m,n) we obtain a mea-

sure of the energy associated with the Parseval sum of (m,n) modes for

the n mode under investigation. Finding the radial extent of growing

modes was done manually over all the possible (m,n) combinations in the

simulation, and uniform centered time averaging was performed for the

complex Fourier coefficients. We show the typical m-structure for {n2
i }Ω

for the mode energy in figure 3.8 (in arbitrary units). As can be seen, the

most unstable mode here is a side-band mode which is localized off of the

nominal region at q = 10/7, and the analyses were made for such modes

with highest late time amplitudes. This was deemed necessary to obtain

a reasonable scale of growth. Error bars have been obtained from least-

squares fitting, but are unreliable due to the strong filtering required.

Table 3.4. Simulation parameters for the kinetic linear Cyclone test cases.

dNX = 31 dNY = 300 dNZ = 8 Δt = 7 · 10−8 s Npart = (28− 75) · 106

The results from this procedure are given in Publication I figure 3, and

the later evaluated GS2 results are shown in figure 3.9. With current re-

sources the kinetic linear growth rate analyses could be done even without
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Figure 3.8. A typical radial profile of the energy associated with modes for multiple
growing modes in the kinetic simulations. Radial localization of modes is
observed.

0 0.1 0.2 0.3 0.4 0.5
k

θ
ρ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

ω
,γ

 / 
v T

/L
n

ω
r
/4

γ

Figure 3.9. Growth rate and frequency spectra for the kinetic Cyclone Base case obtained
with the GS2 code.
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filtering, which has been done for adiabatic Cyclone calculations. How-

ever, these would benefit from spectral filtering and prior equilibriation

of neoclassical physics using the spectral filter given in Chapter 5. In

this case the effect of neoclassical background flows on linear growth rate

analyses could be determined using a full f code. This was deemed to be

outside of the scope of this thesis.
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4. Drift-wave driven transport in the
presence of neoclassical transport

Big whirls have little whirls,

That feed on their velocity; And

little whirls have lesser whirls,

And so on to viscosity.

Lewis Fry Richardson

4.1 Introduction to drift-wave turbulence

In a non-linear simulation there are generally three phases of the trans-

port evolution. First, there is the (almost) linear growth of an instability,

after which the mode growth saturates through non-linearities and simul-

taneous generation of neoclassical flows, and a steady state of turbulence

may be attained. However, a linearly unstable case may be non-linearly

stable because of the generation flows in the system, a secondary insta-

bility which initially was stable may arise, or transport may be oscillatory

due to a dynamics of the flows. Even when the simulation is started with

low initial fluctuations, the linear and saturation phases will always be

present if unstable conditions are assumed.

Linear growth rate analyses have been used widely to predict transport

in the magnetic fusion community, but due to the forementioned reasons

are of limited value in analyses of turbulence. Non-linear processes in

saturation generally play a much more important part than the linear

drive itself [46], although quasi-linear theory may be taken as the first

crude approach to turbulence (especially for weak turbulence, a desired

property).

How the saturation develops is a rather complicated issue. Turbulent

transport depends on background flows (turbulently or neoclassically driven)

and wave-wave interaction as well as the driving instability. In any exper-
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iments, such flows may be pre-existent and develop during transport and

coupled zonal flow (ZF) dynamics. In the simulations any initial flows

and perturbations may be added, but without experimental knowledge

are conjecture, at best. Therefore, the only possibility is to simulate sim-

plified cases and attempt to induce physical processes that correspond to

the experimental situations from which current experimental knowledge,

in terms of simultaneous plasma parameters, is unfortunately rather lim-

ited. Thus, the computational process that leads to saturation of turbu-

lence through linear growth, non-linear saturation and flow generation is

artificial and does not generally occur in nature.

Turbulent saturation in a simulation may be declared when the trans-

port becomes such that quick dynamic changes no longer occur and a

steady mean level of transport is attained. Without particle and heat

sources and sinks the linear drive is exhausted due to relaxation of pro-

files and transport quickly wanes. Transport saturation is therefore a

dynamical concept, which needs a balance of sources and sinks to exist.

Interaction between waves is currently believed to be the most impor-

tant process how a turbulent state is reached. When an instability reaches

a critical level, it excites secondary waves through non-linear scattering

processes (cascades), which siphon off energy from the original wave and

grow. These secondary waves interact with other waves of shorter and

longer wave lengths in a similar manner, and progressively smaller scale

fluctuations emerge. The smaller waves damp due to viscosity, and a sta-

tionary turbulent state emerges.

4.1.1 The Hasegawa-Mima-Charney equation

The saturation process of turbulence may be illustrated by the Hasegawa-

Mima-Charney (HMC) equation, which presents itself in drift-wave physics

as well as flows in planetary atmospheres (Rossby waves). In the latter

case the Lorentz force is supplanted with the Coriolis force obtained from

the change to a non-inertial rotating co-ordinate system. In plasmas, the

scalar potential is electric, whereas in planetary atmospheres it is gravi-

tational.

We begin with the fluid momentum equation using truncation closure at
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momentum,

∂na

∂t
+ �∇ · (na�va) = 0, (4.1)

∂�va
∂t

+ �va · �∇�va =
qa
ma

(
�E + �va × �B

)
− 1

mana

�∇pa, , (4.2)

which gives us as the the lowest order solution, with ∇p → 0 and �E =

−∇φ, in the form

vE = −∇φ×
�B

B2
0

(4.3)

which allows us to iteratively solve equation 4.2:

∂�vE
∂t

+ �vE · �∇�vE =
qa
ma

�vp × �B → �vp =
1

ΩiB0

[
− ∂

∂t
∇⊥φ− (�vE · ∇⊥)∇⊥φ

]
,

(4.4)

and express the total fluid velocity as

�v = −∇φ×
�B

B2
0

+
1

ΩiB0

[
− ∂

∂t
∇⊥φ− (�vE · ∇⊥)∇⊥φ

]
. (4.5)

The magnetic field has been assumed to be homogeneous which removes

compressibility through the gradient and curvature and vE , and because

the pressure gradient was neglected, also the diamagnetic velocity is re-

moved.

The continuity equation may be re-expressed as

d lnn

dt
+∇ · �v = 0, (4.6)

with incompressible (in the highest order) flow and adiabaticity δn/n0 =

eφ/Te, which lead us to

lnn = lnn0 + ln

[
1 +

δn

n0

]
= lnn0 + ln

[
1 +

eφ

Te

]
≈ lnn0 +

eφ

Te
. (4.7)

Including the advection and compressibility by v

∂

∂t

[
eφ

Te

]
+ �vE · ∇ lnn0 +∇ · �vp = 0, (4.8)

which written out gives

∂

∂t

(
1

ΩiB0
∇2

⊥φ− eφ

Te

)
+ (�vE · ∇)

[
1

ΩiB0
∇2φ− ln

n0

Ωi

]
= 0. (4.9)

The equation is now normalized by

Ωit → t,
(x, y)

ρs
→ (x, y),

eφ

Te
→ φ

and we obtain the Hasegawa-Mima-Charney equation

∂

∂t
(∇2φ− φ)−

[
(∇φ× b̂) · ∇

] [
∇2φ− ln

n0

Ωi

]
= 0. (4.10)
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The equation may be expanded as a Fourier sum of elementary solutions,

just as we did for the linear system in Chapter 3, which gives us

∂tφk = iωkφk +
∑

k1+k2=k

Λk
k1,k2φk1φk2 ,

Λk
k1,k2 =

1

2

b̂ · (k1 × k2)

1 + k2
(k22 − k21, )

ωk =
k × b̂

1 + k2
· ∇n0

nΩi
.

(4.11)

We see that the time derivative operates on a linear quantity, and the non-

linear term includes a quadratic nonlinearity and an imaginary advector.

There is no linear instability in this model, only propagation of modes, so

the model excludes linear growth (in contrast to Chapter 3, where non-

linearity was dropped). This equation conserves energy and enstrophy,

and is therefore a suitable toy model for considerations into vortex dy-

namics in the plasma, such as the generation of zonal flows through the

modulational instability [47]. Even a noise-driven Hasegawa-Mima pro-

duces a spectrum [48], which is important to acknowledge especially in

the context of Monte Carlo simulations.

Results of ELMFIRE simulations are compared in Publication IV to Hasegawa-

Wakatani simulation results where the electron adiabaticity condition is

relaxed. Initial dimensional analysis [49] suggested that the energy spec-

trum of drift waves should fall off as S(φ2
k) ∝ k−5, if low-β plasmas are

considered. Differences in dynamics across flux surfaces and on flux sur-

faces, generally spectra of the form k−αθ
θ k−αr

r are found. Numerical simu-

lations of Hasegawa-Wakatani equations [50] yield the values of α = 1.6,

α = 2.7, α = 4.2 for the exponent of S(ñ2
k) spectra, in progressively more

adiabatic (i.e., collisionless in the absence of trapping) regimes.

4.2 The Cyclone Base case

4.2.1 Some background of the Cyclone cases

The “Cyclone base” case has not been deliberately chosen to be a bench-

mark case, but it has become such ad hoc through extensive investiga-

tions in the literature. It is based on the DIII-D shot #18499 1. It has

several problems as a benchmark case for turbulence studies. The q pro-

file in the case is not realistic (i.e., experimentally reproducable), and

1See http://www.ipp.mpg.de/~bds/cyclone/D3D81499/.
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due to the H-mode transport barrier present in the edge it incorporates a

huge pedestal. It is — like almost all experimental situations — near the

threshold of instability, where plasma shape and electromagnetic effects

are important, and various heat sources (Ohmic, neutral particle injec-

tion, radiofrequency) are present. Transport scaling obtained by increas-

ing the temperature gradient is purely artificial, and not experimentally

reproducable due to profile stiffness observed in experiments.

However, as a code-to-code comparison, such a case is of interest. In

the absence of sources and sinks, the χi value is expected to slowly decay

as the gradients relax and instability drive diminishes. The simulation

should produce a stable system as its end result. Transport scalings based

on this observation have been developed (see Ref. [12]), and it was there-

fore decided in the TF-ITM framework to compare the χi versus R/LT

evolution in transport. Because turbulent dynamics should be indepen-

dent of the initial values set into codes, the χi curves should overlap in

long enough simulations.
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r / a

1

1.5

2

2.5

3

q

ELMFIRE
Cyclone

Figure 4.1. The q-profile as a function of normalized radius in the Cyclone base case
and ELMFIRE, obtained from minimization of the squared errors of q while
keeping the real shear at r/a = 0.5.

The radial heat energy flux for adiabatic simulations can be obtained

from the distribution function as a moment, using

Qr =

∫
Hvrf Jdv⊥dv‖ , (4.12)

where H is the drift-Hamiltonian ((2.35)), the radial velocity includes

drifts. In practice, this can be evaluated by taking the difference between

the starting position and ending position of the particle, and dividing by

the time step. It can be shown that for adiabatic electrons the mean par-

ticle flux over the flux surface is zero, so the energy and heat fluxes are

equal. The full fluxes are diagnosed in ELMFIRE, however. There is a

question whether the electric potential should be included in the energy

flux, but it has not been included in the results we give below. The heat
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and energy fluxes are related through

�Q = �q + γp�v, (4.13)

where the factor γ = 3/2 is chosen because of partial cancellation of the

convective flux and work done by electrostatic field on the radial current

[51,52].

With ELMFIRE first long simulations exhibited a non-convergence of

transport, as shown in Publication III and Publication V. The quenching

of turbulence coincides with growth of a characteristic electric field struc-

ture. The question why this non-convergence is observed arises. In the

following discussion we attempt to evaluate various hypotheses on this

issue, and present simulations where the effect is absent.

4.2.2 Adiabatic non-linear runs of Cyclone Base case

The original “Cyclone base” case [12] is a problem where adiabatic elec-

trons are assumed. This case has become a standard benchmark for all

turbulence codes, and therefore has been investigated also with ELMFIRE.

The first adiabatic non-linear runs of “Cyclone base” case with density

dependent particle weights were encouraging (see figure 4.2). Here a local

adiabatic model (2.16) with only toroidally localized average over the flux

surface was used, and only later was improved to ensure that from the full

flux-surface average of the linearized electron response was used. The ini-

tial results were suspect, and investigations on the adiabatic model were

taken. Equal particle weights were introduced, because it was observed

that the binary collision model of Ref. [53] did not function well with un-

equal particle weights and impurities (not used here), and particle noise

properties were expected to improve in long simulations.

Also one misadventure was the use of concurrent ion density as the elec-

tron background density. A peculiar non-convergence of transport was

observed for cases where the electron density was allowed to follow the

flux-surface average of the ion density. The adiabatic model was modified

to keep electron density at the same value as the flux surface averaged

value of the ion density just after initialisation. We discuss the choice

of the adiabatic model more in depth in Chapter 2. The change from

the older adiabatic model with 〈ne〉 = 〈ni〉(t) to an adiabatic model with

〈ne〉 = 〈ni〉(t = 0) changed the dynamics remarkably in the new simula-

tions with constant particle weights, in the absence of collisions. In the

erroneous simulations we found that strong radial density rippling (with

62



Drift-wave driven transport in the presence of neoclassical transport

0 50 100 150 200
t / L

T
/v

T

0

10

20

30

χ
i / 

ρ
2 i v

T
/L

n

Figure 4.2. The preliminary result for χi. Here particles with density dependent weights
were used.
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Figure 4.3. The χi scaling with ne ∝ 〈ni〉(t = 0). The LLNL scaling curve from Ref. [12]
is given for reference.
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Figure 4.4. Adiabatic “Cyclone base” simulations for R/LT = 8.28 case, with original
initialisation and ζ-angle randomisation with 445 million particles (2N) and
890 million particles (4N).

almost singular kr) was created through particle transport which caused

electric fields that suppressed turbulence, but in the newer simulations

such rippling effect was absent. However, as shown in figure 4.3, these

simulations also were non-convergent. The simulations that were devel-

oped furthest at the time, with highest particle numbers, were presented

in Publication III.

4.2.3 Initialisation and particle randomisation

Because the initialisation manifests an initial disturbance as shown in

figure 5.5, it was deemed necessary to control the initialised spectrum by

randomisation in the ζ-direction. This procedure is allowed by the fact

that the particle motion is invariant (for axisymmetry and in the absence

of electric fields) for rotations along the torus. Because all n �= 0 modes

that arise from the initialisation are suppressed by this procedure, density

is efficiently smoothed, while allowing for a seed perturbation in density

that ensures growth of instabilities (from shot noise). The initialisation

perturbation is dependent on the number of initialisation points in config-

uration space co-ordinates, and as such, changes in particle numbers are

performed for the pitch variable. It is unaffected by the particle weight-

ing scheme. We believe this perturbation arises due to finite steps used in

following the particles while they are being initialized (see Chapter 5.2).

However, while increasing the number of initialization points from 30 to

90 increases the maximal mode number of the disturbance, significant
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low-order mode numbers exist.

Several simulations were performed for randomized and original initial

distributions with different marker numbers, but for clarity we show only

three in figure 4.4. Here the initial transient and later evolution are il-

lustrated by first taking a nominal simulation where 445 million particles

were used (2N,orig), randomizing the initial distribution from this case

before fields have acted on them (2N, rand), and simulating a 890 million

particle case with randomisation. If convergence of the initial transient

is found between the randomized cases, we may assess the simulations to

be converged. While these simulations show similar initial dynamics, the

height and shape of the initial transient is very different. This suggests

that convergence has not been found yet.
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Figure 4.5. The local χi scaling with R/LT at r/a = 0.5 in the PPCF PIII R/LT = 6.9

case, with the LLNL scaling curve from Ref. [12]. We observe clear non-
convergence of the heat conductivity in this case.

We have simulated in figure 4.6 the standard R/LT = 6.9 case with

uneven particle weights, in contrast to figure 4.5. With these parameter

choices we observe profile relaxation and a bursty χi which terminates

near the LLNL stabilization value. In figure 4.7 we show that the trans-

port is almost entirely due to convection, based on the plots from the con-

vective heat flux Q = 5/3 pvE×B and from the purely statistical measure
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obtained in the code. The varying particle weights allow for more particle

allocation in the high-density inner regions, with improved noise charac-

teristics. We observe that an increased particle number improves also

transport convergence, which suggests that the problem is noise related.

4.2.4 Unphysical turbulence quenching mechanisms

Finite orbit width effects are rarely investigated by gyrokinetic codes,

because in δf codes the curvature and gradient terms do not act on the

background. In gyro-fluid codes such neoclassical effects are introduced

through additional conductivities, and as such, finite orbit width effects

are neglegted. The ELMFIRE is unique in this regard, as such background

distribution dependent terms are naturally included, but this dynamics

causes also additional problems near the boundaries due to combination

of orbit losses and boundary conditions.

Particle noise and the thermalization problem

Generally it is accepted that numerical simulation of turbulence (of any

kind) is challenging, because non-linear interactions create progressively

shorter wavelengths in the system. In a real system they will be even-

tually thermalized by collisions, but in a simulation the thermalization

problem is related to the fact that any undamped simulation system with

a cascade and a resolution limit will inevitably hit that limit, because the

cascade produces ever smaller scales. This is remedied in gyrofluid codes

by introducing hyperviscosity (e.g, μ∇6v) which damps away high-k fluc-

tuations but retains long wavelength fluctuations. The ORB5/NEMORB

gyrokinetic particle codes use a Krook collisional operator to achieve the

same damping [54].

In ELMFIRE simulations where the whole simulation region is affected

by collisions with a fictitious background distribution we also observe sat-

uration of χi, but because this method introduces also a drag on the mean

flows we discard this option as a possible solution.

It is also possible for particle noise to drown out a coherent signal, which

can be seen in Publication I.

Proposed mechanism for Er growth from cooling in absence of Γ

Heat transport naturally leads to temperature relaxation, and if the dis-

tribution function is assumed to have thermalized well in this process, we

may infer a density change (due to change in the mean orbit width). In the
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Figure 4.6. Heat flux as a function of R/LT in simulations with unequal weights. The
LLNL curve [12] is plotted as reference in both cases. The simulation starts
at the square and ends at the circle. The values are evaluated at r/a = 0.5.
The total particle number is 800M in the 6.9 case and 3000M in the 8.28 case.
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Figure 4.7. Comparison of the E ×B flux to energy (Qi) flux in the R/LT = 10.35 case at
r/a = 0.5. The flux is clearly dominated by convection.

adiabatic electron model this density change is ignored, which will lead to

a difference between electron and ion density, which results in a polari-

sation response and E × B flows. This is best illustrated by the following

analysis.

If, for simplicity, one takes the perturbation c cos(r/b) of the ion orbit

half width w due to the ion temperature relaxation along the radial direc-

tion r, the related shrinking and widening of orbits causes an ion density

perturbation −(cw/3b2)n0 cos(r/b), where n0 is the unperturbed density at

r/b = π/2. Taking into account of the ion polarization, quasineutrality

condition gives the potential perturbation −ΩcB(w/3) cos(r/b), where Ω is

the ion cyclotron frequency and B is the magnetic field.

We calculate the amplitude −ΩcBw/3 for the ELMFIRE Cyclone Base

case simulation in figure 4.3. Here, B = 1.91T, Ω = 108 s−1, and w = 2.5 cm

for thermal bananas at radius r/a = 0.5 (the node of bipolarity r/b = π/2).

The relative ion orbit width perturbation c/w can be, directly read from

the data e.g., at the end of calculation. From the picture of Ti profile, we

read for the perturbation Ti about −250 eV at the inner relaxation maxi-

mum implying c/w = 0.035. If these numbers, and the fraction of trapped

ions 0.3, now are put into our expression of potential perturbation am-

plitude, we get 500V at the inner relaxation maximum for the potential

perturbation at the end of calculation.

Note that we have a negative c at the r/a = 0.5 (negative maximum of

perturbation) which means a positive potential maximum at that point.

Both the direction and amplitude of the resulting bipolar potential pertur-
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Figure 4.8. Cooling induced electric potential growth at r/a = 0.5 in adiabatic Cyclone
case with R/LT = 10.35.

bation from ELMFIRE simulation are in fair agreement with this theory.

What matters here is the magnitude of Ti and its relaxation. The larger

Ti or its relaxation, the larger is the effect. In our Cyclone base simu-

lations, we have taken Ti ≈ 4000 eV at the inner edge. Ti relaxation is

also enhanced by the (unphysical) initial transient in ion heat diffusivity

in simulations. Thus, for comparison of results from different codes, we

have to look at whether the Ti relaxation is equally strong and Ti is at the

same level (ion orbits wide enough to clearly see the effect). E.g., any ef-

fort to keep the inner edge in thermal bath with Ti fixed there in GYSELA

(see PIII) may mask this effect.

When electrons are kinetic and collisions are taken into account, the

above effect can affect transport, but due to electron dynamics saturates.

Collisions take care of the return ion current which neutralizes the charge

separation from ion orbit modification sooner or later. Also, Ti relaxation

is now also partially controlled by ambipolar electron/ion radial convec-

tion. Convective heat losses do not cause orbit modifications between ions

and electrons. In kinetic ELMFIRE simulations with collisions, this effect

has not been clearly identified.

The result means that it is not possible to calculate saturation in the

adiabatic limit in the full f code unless electron adiabaticity is redefined

to prevent charge separation through the ion orbit shrinking/widening

(but this may cause other problems) or unless Ti profile is kept unrelaxed

(by some thermal bath or similar ways). In the kinetic case, collisions

and electron/ion convection ultimately cancel this charge separation thus

preventing any steady potential bipolarity (the latter may appear only

transiently for weak collisions).

Strong curvature in the electric potential induces an orbit squeezing (or,
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Figure 4.9. Radial profile of the orbit squeezing parameter of figure 4.8.

widening) effect [55], which also changes density profile. In figure 4.9 we

present the squeezing parameter

S = 1− qe
mdΩp

∂2φ

∂r2
, (4.14)

where Ωp = qeBp/md is the bounce frequency. The particle orbits are

proportional to the squeezing parameter by S−1/2, so if S < 1 we obtain

widened orbits. This appears to be important near the inner border of

the simulation, where the orbit loss dynamics caused by the widening

may influence radial electric field dynamics. Here we have used Dirichlet

boundary conditions for the potential. Particle boundary conditions are as

in Publication I.

The growth of electric field shear stresses turbulence, and beyond some

limit, suppresses it. This could result in a decaying of the saturation state

in adiabatic cases.

4.2.5 Kinetic electron non-linear saturation

Electron non-adiabaticity introduces several changes to the transport dy-

namics: electron trapping makes the electron response to ion perturba-

tions less efficient and therefore enhances growth rates of modes (see

Chapter 3), and makes significant density relaxation (beyond polarisation

density response) possible. Therefore, this presents a new channel of heat

transport, namely ballistic transport due to gross E × B radial particle

flux (which is absent in adiabatic simulations).

The non-linear simulations where the modes are allowed to interact are

performed using the same Cyclone base case parameters as used for the

linear calculations as basis (table 3.1) , except for the parameter a/ρs,

which in these cases is taken to be 300 (here ρs =
√
Ti/mi). This was

70



Drift-wave driven transport in the presence of neoclassical transport

8.5 8.6 8.7 8.8 8.9 9 9.1
R / L

T

0

1

2

3

4

χ
ι / 

v tρ
s2 /L

n

Figure 4.10. Simulation of the Cyclone base case parameters with kinetic electrons and
890 million particles. The transport reaches quickly a gyro-Bohm value
after the initial transient.

produced in the kinetic electron cases by scaling the parameters R, a and

Itot by a factor of 2, while keeping the other parameters intact.

Evolution of the thermal conductivity χi(a/2) is investigated in two dif-

ferent ways: in time and against the local temperature gradient scale

length. The latter is also an important diagnostic, as the change in the

local gradient scale length can be utilized in producing R/LT scans [5].

These results are illustrated in Publication I figure 8 and figure 4.10.

In the first kinetic simulations particle noise was found to be very high

(only 1500 particles per cell were used), and no growth of turbulence was

seen. However, the choice of ni(r = 0.5) = 5 · 1019 m−3, in the presence

of collisions increased collisionality from νeiLn/vT i = 0.45 to 45, 100 times

stronger collisionality than in reference [44]. This enabled a neoclassical

transport analysis and noise estimation from this data, and a rather in-

teresting picture emerges in Publication I figure 4. The following results

are presented in this figure: flux-surface averaging the charge separation

and non-averaged, with collisions and without. With collisions and no av-

eraging the highest χi was found, and flux-surface averaging the potential

reduced this but retained the dynamics. Without collisions the χi value

dropped significantly, to the level initially found in the first case. Flux-

surface averaging further decreased the conductivity, and no significant

time evolution of the χi remained to be seen.

This can be interpreted in the following way (PI): collisions induce the

neoclassical transport levels, to which noise contributes additively. Flux-

surface averaging reduces the noise in E × B heat flows but retains neo-

classical contributions, and removing collisions removes this contribution.

To find the turbulent behavior, the collisionality was decreased by chang-
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ing the density to ni(r = 0.5) = 5 · 1017 m−3, and by varying the particle

number to find where the noise level is sufficiently low for the turbulence

to grow. Publication I figure 7 shows the ion heat conductivity at r = a/2

which saturates after an overshoot that is progressively larger as a func-

tion of particles.

Further insight into the saturation is provided by figure 4.10 where the

χi is plotted as a function of R/LT i and time in due course of the simula-

tion. The obtained χi evolution reflects the features familiar from other

(delta f ) code results in similar cases [56]. After the overshoot and some

steepening of the Ti radial profile, χi and Ti profile relax towards the

gyroBohm condition χLn/ρ
2
svT i ∼ 1 for ion heat conductivity. One can

compare this χi value at R/LT i = 9 with the value of χLn/ρ
2
svT i = 1.3

obtained in another simulation (see Fig.2 in [57]) in the Cyclone base

case where global delta f simulations (with adiabatic electrons) were per-

formed. Global simulations may perform differently from the flux tube

calculations, which was already stressed in the latter work. However,

based on Publication I figure 7, where the end-state fluxes are indepen-

dent of particle number, we infer that the resulting transport suffers from

non-linear noise fluxes which overtake turbulence later on in the simu-

lations. Figure 4.10 also suggest this interpretation, as the conductivity

does not exhibit burstiness generally observed in turbulent simulations.

4.3 FT-2 simulations of turbulence and neoclassical physics

The FT-2 tokamak is the perfect experiment for ELMFIRE to simulate.

First simulations while early development of the code were performed

with FT-2 parameters, and especially investigations of the kinetic electron

model were motivated by the experimental conditions of this machine. It

was realized from early investigations with the Weiland model that the

FT-2 is mostly trapped electron mode unstable, which necessitates the

use of a kinetic electron species in simulations. The FT-2 also has high

collisionality, low β, large aspect ratio and ρ∗, so it is much less demanding

computationally than the big experiments are. Also, neoclassical physics

is very prominent in FT-2 shots, and this makes it possible to investigate

the interplay between micro-turbulence and neoclassical mechanisms for

poloidal flows.

Therefore a lot of work related to this thesis and other publications made

with the ELMFIRE concentrate on the FT-2. The role of simultaneous core
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heating and edge cooling has been investigated (Publication I), neoclassi-

cal investigations were performed (PII), and also comparisons to Doppler

reflectometry signal of the density fluctuations has been performed (PVI).

Spectral analyses of the fluctuations have been performed from the very

beginning of the ELMFIRE project (PIV), which were the starting point for

experimental comparisons. Later this work was taken over by S. Leerink.

Table 4.1. Parameter ranges for the FT-2 tokamak used in this work.

R = 0.55m a = 0.08m R/a = 6.875

q = 1.2− 7 ŝ = 0.25− 2 Itot = 18− 55kA

Ti(0) = 80− 120 eV BT (0) = 2.2T ni(0) = 0.5 · 1018 m−3

4.3.1 Spectral investigations and dynamics of a flux-driven
system

The initial cases that were of interest were the lower hybrid ion heated

cases of the FT-2 given in publications I and IV. They were performed

using a stochastic lower-hybrid heating model which specifies a threshold

velocity and upscattering of particle energy. Thermalization would occur

through the binary collision operator. On the outer boundary, we would

employ a charge exchange operator (which based on the probability of this

interaction, would bring energy down) and recycling lost particles as re-

initialized neutrals (this was done on electron-ion pair basis).

Many different types of simulations of the same basic type were per-

formed, some were started with low gradients and heating would bring

this up, as well as starting from a high temperature and retaining the

gradient lost through transport using the heating technique. This source

was used to inject off-axis energy into the system, which would keep up

fluxes. Heat was removed from outer boundary using charge exchange re-

actions and re-ionization based on the neutral profiles obtained from the

experiment.

Several interesting observations were made from these simulations, one

of which was the creation of a knee-point in the electron temperature

and density in between the heating and cooling regions (published in

EPS’05&06 [58, 59]). The fluxes needed to drive the system to this state

were similar to the heating power used in the experiments. The current

SOL model (used in Publication VII) was not available for this case yet.

While some others have attempted to simulate the FT-2 (see Publication
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III), currently ELMFIRE is the only code available for this machine.

4.3.2 Neo-classical equilibrium and effect of turbulence

An interesting question in concomitant neoclassical and turbulent inves-

tigations is, whether Reynolds stress contribution affects the neoclassi-

cally determined poloidal flows. It has been determined earlier [4, 60]

that neoclassical flows may interact with turbulence through shearing, by

lowering turbulence levels. However, some references also suggested that

turbulence might have an effect on neoclassical electric fields as well [61],

which needed investigation.

In Publication II we investigated this by modifying the FT-2 parame-

ters so that proper neoclassical applicability regime was better heeded:

current was increased to 55kA, a parabolic current profile was adopted,

and deuterium was chosen as the particle species. The FT-2 has operated

shots with deuterium plasmas. In figure 4.11 we present the fluctuation
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Figure 4.11. Turbulence spectra for the case shown in Publication II. The saturation
spectrum clearly exhibits a power law. The slope can be evaluated to be
−4.0± 0.1.

spectrum for density in this simulation. The exponent of the spectrum

lies near the adiabatic limit of the Hasegawa-Wakatani coupling constant

(see Publication IV), although the system is TEM unstable as FT-2 man-

ifests. The PDF of density fluctuations is shown in figure 4.12, In flux-

surface averaged simulation of this case, we find a remarkable correspon-

dence with the Hazeltine-Hinton radial electric field (figure 4.13). Only

the outermost value differs from theory, which is due to boundary treat-

ment which introduces drag. Inclusion of impurities and lower current
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Figure 4.12. Probability distribution function of density fluctuations, relative to back-
ground density. We see that the fluctuations are slightly negatively biased
compared to the symmetric Gaussian fit. The Gaussian form has since been
indentified with the geodesic acoustic oscillation (reference VII)

.

Figure 4.13. Neo-classical electric field from flux-surface averaging. This was only al-
luded to in Publication II, but was requested to be seen by the referee.
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complicates neoclassical analysis, as seen in Publication VII.

0.4 0.6 0.8 1
r / a

-14

-12

-10

-8

-6

-4

-2

E
r / 

kV
/m

Elmfire (mean)
Hazeltine-Hinton

Figure 4.14. Recalculation with the self force corrected. Now we see that the mean field
(obtained with Savitzky-Golay filtering) agrees well with the neoclassical
expression, contrary to PII.

The only question that remained in this case was the difference observed

in the radial electric field when turbulence was allowed to grow. We have

since revisited this case by simulating it with the current code versions,

and the result for the mean electric field is show in figure 4.14. Now

the neoclassical expression (obtained after profile relaxation) closely fol-

lows the simulation result, after local least squares filtering in radius and

time. Reynolds stresses remain in the simulation, but they only drive

fluctuations of Er from the NC equilibrium. The reason for this difference

is a the net particle flux that is caused by a self force due to interpolation

choices, which was identified later.

This case has been widely used to improve confidence in the code af-

ter further development, because it exhibits turbulence and has simpler

neoclassical physics than the case in PVII.

4.3.3 Long-term transport and comparison to Doppler
reflectometry

Recently the code results were compared to Doppler reflectometry mea-

surements on the FT-2 tokamak in Publication VII. The difference be-

tween this case and the Cyclone results given earlier in this work is the

collisional regime: the FT-2 parameters are strongly collisional, while still

exhibiting interesting TEM turbulence with strong fluctuations. The re-

quired particle numbers were therefore much lower, while it was quickly
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found that the high shear in FT-2 required the use of radially dense grid,

especially near the outer boundary where the experimental diagnostic

was located. We discuss the resolution requirement more in Chapter 5,

which was instrumental in broadening the turbulent spectrum which was

very coherent in low-resolution runs. In the beginning of the simulation

the dynamical neo-classical equilibrium was first developed, and then fil-

tering was turned off and turbulence was allowed to develop. See fig-

ure 5.7 for details.

The lessons learned from both of these cases are the basis of current

work to simulate Ohmic TEXTOR plasmas, where the parameter regime

is closer to Cyclone. There is also an on-going project to simulate ASDEX

Upgrade Langmuir probe measurements with the TF-ITM.
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5. Some numerical aspects of
gyrokinetic particle simulation

On two occasions I have been

asked, “Pray, Mr. Babbage, if

you put into the machine wrong

figures, will the right answers

come out?” ... I am not able

rightly to apprehend the kind of

confusion of ideas that could

provoke such a question.

Charles Babbage

This chapter concerns some very important lessons learned while de-

veloping the ELMFIRE. We have improved memory consumption, linear

system solution, and practical storage of the dynamically collected matrix

just to mention a few things not included here, but we deemed them to be

outside the scope of this work.

5.1 Discretization, null-space and accuracy

How the numerical approximation of differential operators is defined is

of great importance. It is well known that centered differences are dif-

ficult to invert, because they generally introduce zero eigenvalues in the

discrete system, which usually tend to explode dynamically.

5.1.1 Resolving power of a finite-differencing scheme

The polarization operator for gyrokinetic particle simulations is an elliptic

operator, which may be approximated in the long-wavelenth limit as a

Laplacian. Therefore, we may investigate numerical accuracy with the

Poisson equation

∇2φ = ρ (5.1)
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as a toy model. The discretized Laplacian operator is ∇2
hφ = 1/h2(φ(x −

h)− 2φ(x) + φ(x+ h)), which can be Fourier transformed by taking φ(x) =

eikxφ(k). With this we obtain

−k2φ(k) = ρ(k), (5.2)

2(cos(hk)− 1)

h2
φ(k) = ρ(k). (5.3)

These expressions are pictured in Fig. 5.1. It is trivial to see that the

2nd order Taylor expansion of Eq. 5.3 gives the exact form of Eq. 5.2, but

includes O(h2) error terms. The gyrokinetic operator is Laplacian-like for

long wavelengths, as shown in figure 5.2.
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Figure 5.1. Spectra of the Laplace operator, its finite difference and effect of calculating
the potential in the centres instead of vertices (when density is interpolated
on the grid, like in FEM). It is important to see how Δh folds over in high-k,
due to O(k2) error terms.

5.1.2 Comment on the implicit electron model

Explicit schemes for electron dynamics are generally unstable in electro-

static gyrokinetic simulations. This is widely accepted to be due to the

ωH mode [26], which deteriorates the electron solution (see figure 5.3).

Several different ways have been suggested as solutions for this problem,

such as the split-weight scheme, taking electrons as a fluid, to name a few.

These problems are absent in electromagnetic simulations (which have

problems of their own), but in electrostatic simulations we have solved

this problem by an implicit electron model (see I).
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kχ

k�

Figure 5.2. Spectra in (kr, kχ)-space for the quasi-neutrality operators. We see that the
“momentum conserving” interpolation scheme introduces a null-space to the
operator (right). Similar behavior may be derived for the Δh stencil of 1 −
0 − 2 − 0 − 1 analytically in 1D. Note the similarity of the spectra in the
low-k region, where the Laplacian k2-spectrum is accurate (elongation due to
non-orthogonal quasi-ballooning coordinates).

r

�

n
�

Figure 5.3. Explicit electrons cause a blow-up of electric field, probably due to the ωH

mode; shown as poloidal cross-sections of potential over toroidal sections. On
the next time step, the negative values will be positive, and vice versa.
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Figure 5.4. Potential disturbance structure created by the localized Maxwell-Boltzmann
distribution. Improved initialization on particle orbits removes it completely.
The structure is periodic in nϑ.

5.2 Quiescent initialization of the distribution function and toroidal
randomization

Naïve initialization with a local Maxwell-Boltzmann distribution, given

by

fa(x, v) = na(x)

(
m

2πkBT

)3/2

exp

{
−
v2‖ + v2⊥
2kBT

}
, (5.4)

results in problems in gyrokinetic simulations of tokamak plasmas. The

problem is that this distribution is not an eigenfunction of the orbit av-

eraging operator, and therefore causes an initial transient in the electric

field when time is allowed to flow (see figure 5.4). Collisional dynamics

will relax the distribution eventually, but large dynamic relaxation is un-

desired in the beginning of turbulence simulations. This problem was

already identified and remedied in early simulations with the ASCOT

code, where only radial polarization was included [62], and other inves-

tigators have later found the same initialization solution widely known

as the canonical Maxwellian [63]). The techniques to construct this distri-

bution vary. The transient may be eliminated by the following procedure,

which has been implemented to ELMFIRE as the preferred option to local

Maxwellian:

1. pick particle velocities just like with the local Maxwellian,
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2. calculate the particle trajectory over the bounce time ωB in the absence

of �E,

3. take particles on this trajectory, and use them for simulation of plasma

turbulence.

In the case of equal particle weights, two symmetric particles are initial-

ized instead of a set on the trajectory. The scheme ensures that the distri-

bution is an eigenfunction of the orbit averaging operator, so the violent

electric field transient is absent from the simulation.

The quiescent initialization appeared to introduce perturbations in den-

sity (see figure 5.5) which were high enough to complicate the growth

rate analysis by damping away in the beginning of the linear growth rate

analyses while physical modes near the same (m,n) values were being in-

vestigated for growth. Unfeasibly high numbers of initialisation markers

are needed in poloidal and toroidal directions to suppress this effect (in

figure 5.5 we have used 450 million particles). Therefore, in the adiabatic

simulations the local Maxwellian initialization was chosen.

Because background flows are suppressed by filtering, the initialization

to local Maxwellian does not interfere with the linear dynamics like in the

non-linear simulations, which require the quiescent initialization for the

reasons mentioned above.
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0.0001
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<
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Figure 5.5. Poloidal mode structure (in mode number m) of density in initialization
scaled to the flux-surface averaged density. This structure is clearly due to
the quiescent initialisation procedure, and can be eliminated by randomi-
sation the ζ-variable of the particles or by using an isotropic Maxwellian
initialisation. In this picture the flux-surface averaged value of the zonal
component (0, 0) is suppressed.
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5.3 Resolution requirements for simulations

Drift-wave turbulence exists in a near-isotropic k⊥ distribution, with the

mean kx � ky. This means that to get a proper turbulence spectrum

(and non-linear dynamics), the simulation has to have sufficient over-

lap of mode spectra on adjacent radial surfaces. This imposes a limit

to the radial grid size. Let us assume that locally we may write q(r) =

q0(1 + ŝ(r0)(r − r0)/r0), with the shear ŝ = r/q ∂q/∂r (the same for ι, sign

reversed). The modes expressed by the quasi-ballooning grid are given by

− Nz

2
<

m

q
− n ≤ Nz

2
, (5.5)

so on our reference radius we get −Nz/2 < m/q0 − n and on the next

−Nz/2 < m/(q0 + ŝΔr/r0) − n. Now, to get a uniform spectrum sufficient

overlap is needed, which gives us the condition

πŝ

[
Δr

r0Δθ
− Δr q0

r0Δζ

]
< Δm (5.6)

where we estimated nmax ≈ mmax/q, mmax = π/Δθ and used Δζ = 2π/Nz.

Already a few conclusions can be drawn from (5.6): increasing shear will

require us to use a smaller radial grid size, and decreasing Δζ will relax

that condition slightly. However, for modest Nz and the requirement that

Δm = 1 we find a simplified condition

Δr

r0Δθ
<

1

ŝπ
. (5.7)

In fact, simulations show that a resolution limit does have a significant

impact. If we have too coarse a radial resolution we find that transport

levels can be up to a factor of 3 higher than in a case where the resolu-

tion condition has been taken into account (see figure 5.6). The resolution
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Figure 5.6. Radial resolution impacts χi drastically. The case shown is from VII, courtesy
of S. Leerink.

limit can be overcome through a different scheme for parallel interpola-

tion, known as the shifted metric [64]. This technique has the advantage
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of eliminating the complicated quasi-ballooning structure in the computa-

tions (all toroidal sections are identical), and only the parallel part of oper-

ators require interpolation along the grid. This is more accurate than the

quasi-ballooning co-ordinate system, which is O(h), whereas the shifted

metric owes its accuracy solely on the accuracy of the interpolation tech-

nique which can be of any order. A version of ELMFIRE already incorpo-

rates a shifted metric approach, and is being tested for the Cyclone case.

5.4 Impact of averaging in neoclassical simulations

Gyrokinetic particle simulations may be restricted to neoclassical pro-

cesses by averaging in tokamak plasmas. While this is usually performed

by taking only the flux-surface average, it has been observed that the

simple flux-surface averaging results in a non-equilibrium distribution

function that kick-starts a geodesic acoustic oscillation (GAM) when the

simulation is continued without averaging. In addition to the GAM oscil-

lation dynamics, poloidal asymmetry of the electric field is important in

impurity dynamics, which is not properly captured by a pure flux-surface

average. Non-equilibriation of the distribution function may be corrected

by including the non-zero m values of the n = 0 mode. We propose an or-

thogonal Fourier basis filtering technique which takes higher m-numbers

into account in the electric field, thus removing the spurious GAM oscil-

lation when the simulation is continued without averaging.

The flux surface averaged potential does not allow finite Larmor radius

effects to be included, that are important for the dynamics of geodesic

acoustic oscillations [65]. Therefore the end state of such simulations is

not an equilibrium with respect to GAM oscillations, and it is debatable if

they therefore are even an equilibrium of the radial electric field dynam-

ics. The GAM oscillations exhibit the Rosenbluth residual and more com-

plicated dynamics arises due to impurity-ion parallel friction [66]. For this

reason, we have applied a technique of averaging the polarization equa-

tion starting from the charge separation between electrons and ions which

eliminates the turbulent modes but retains the effects of finite Larmor ra-

dius and parallel pressure gradients on the neoclassical equilibrium.

In ELMFIRE the polarization operator is constructed so as to have po-

larization motion of the particles balance any charge separation, which

is equivalent to the more widely used approach of separating the polar-

ization density from ion density. This difference complicates filtering,
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however, because the electric field solved from polarization needs to be

consistent with charge changes locally, and as such may not be separately

(outside the solution of the electric potential) averaged.
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Figure 5.7. Dynamic equilibriation of the distribution function due to filtering, which is
turned off at 180μs. Large oscillations arise only after turbulence develops.

The subtle balance in parallel dynamics in the tokamak frequently pro-

duces situations where simple flux-surface averaging is insufficient for

capturing the crucial aspects of neoclassical physics. This is illustrated

clearly by our physical example: the distribution function thereby gener-

ated is not free of dynamical oscillations, and even the saturation radial

electric field in the presence of impurities differs greatly depending on the

averaging method. However, when non-zero m-modes are included in the

filtering technique, the system is undisturbed after filtering is turned off.

This is illustrated in figure 5.7.

In the field frequently only flux surface averaged potentials are evolved,

which needs to be addressed to obtain better agreement with experiments.

This is not a major problem for delta-f codes, but important for full f and

gyrofluid codes.
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6. Conclusions

This work consists of a mixture of numerics development of ELMFIRE as

well as rigorous testing of physical cases with the code. We have devel-

oped new techniques of gyrokinetic particle simulation, and a unique tech-

nique for kinetic electron treatment. The theoretical basis developed for

the code allows for higher order effects and non-linear polarization to be

taken into account by changing gyro-sampling points, which appears to

allow for easier implementation than the standard formalism. The sim-

ulation model is applicable to turbulence and neoclassical analyses due

to its use of a binary collision model. We present benchmarking results

and comparisons to experiment that solidify confidence to the code and

simulation techniques.

We have been able to demonstrate that the simulation recovers neoclas-

sical physics where theory is applicable, and even in cases where recently

developed neoclassical theory for impurity dynamics has been needed.

The code conserves momentum and energy with proper simulation pa-

rameter choices. Diagnostics of these quantities can be used to evaluate

if resolution requirements are sufficient.

The most successful linear and non-linear benchmarks of “Cyclone base”

case considered in the work are the following: linear growth of the ITG

mode for adiabatic electrons, linear growth of the ITG/TEM branch for

kinetic electron simulations, and corresponding non-linear simulations

with varying temperature profiles. In linear adiabatic analyses excel-

lent results were found, whereas kinetic electron cases were complicated

by noise. Analysis of mode energetics made linear growth rate analyses

even in these cases possible. The non-linear simulations produced several

rather surprising results. The analysis clearly demonstrates that finite

orbit effects may in fact play an important role in saturation of trans-

port especially in regards to the standard adiabatic model, and as such,
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need to be taken into account in turbulence simulations. Greater particle

numbers than expected were needed to obtain well converged non-linear

adiabatic simulations of the Cyclone Base case, which was relaxed to all

the way to stability through transport.

We investigated the reactive fluid model for turbulent transport scal-

ing that has been developed by Coppi and adopted by Weiland (e.g., in

Ref. [12,40])), which is used as a part of transport models. The fluid equa-

tions presented in Chapter 3 do capture some of the physics associated

with ITG/TEM branch of drift modes, however the model tends to pre-

dict excessively high mode growth rates when k⊥ is chosen away from the

mixing length estimate. With this caveat, we may use this model as an

order-of-magnitude estimate for simulation parameters, but more refined

models (such as GS2 code) were needed in benchmarking.

The observation that convergence may be improved by increasing the

radial simulation box number and particle per cell values allowed us to

compare measurements of FT-2 tokamak to simulations. The ELMFIRE

has been utilized in interpretation of experimental data obtained from

microwave backscattering measurements, with direct measurements of

micro- to macro-scale transport phenomena in the FT-2 tokamak being

quantitatively reproduced by ELMFIRE predictions. The robust presence

of geodesic acoustic modes was later observed also in experiments.

Gyrokinetic particle simulations may be restricted to neoclassical pro-

cesses by averaging in tokamak plasmas. While this is usually performed

by taking only the flux-surface average, it has been observed that the

simple flux-surface averaging results in a non-equilibrium distribution

function that kick-starts a geodesic acoustic oscillation (GAM) when the

simulation is continued without averaging. In addition to the GAM os-

cillation dynamics, poloidal asymmetry of the electric field is important

impurity dynamics, which is not properly captured by a pure flux-surface

average. Non-equilibriation of the distribution function may be corrected

by including m �= 0 modes of the n = 0 mode. In this work we proposed

an orthogonal Fourier basis filtering technique which takes the non-zonal

component into account in the electric field, thus removing the spurious

GAM oscillation which arises when the simulation is continued without

averaging. This system was used succesfully to first develop the neoclas-

sical equilibrium before turning on turbulence in FT-2 Doppler reflectom-

etry comparisons.

One of the outstanding problems of transport processes in tokamaks is
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the L-H transition and in general transport barrier formation. We have

presented the first self-consistent simulations where heating and cooling

processes create a transport barrier like structure in the simulation. The

benchmarking that is presented in more detail here was partly motivated

by discussions on this work.

The computational requirements of ELMFIRE have slowed progress in

investigations, but with the current generation of supercomputers it can

tackle many important questions of transport. Only full fand total-f codes

(or, δf code iteration within transport models) can be expected to produce

a meaningful steady state for experimental set-ups. This seems to be the

direction most other codes are going. To improve ELMFIRE’s applicability

in broader regimes, especially geometry and inclusion of magnetostatics

need to be considered in the future. An improved SOL model for limiter

tokamaks is already projected as a short-term goal, which may later be

expanded with other developments to a shaped divertor configuration. At

this stage, the code would be able to treat a much broader set of instabil-

ities (and turbulence thereof), such as kinetic ballooning and drift-Alfén

modes. Also, implementation of the full pullback transformations enable

investigations of strongly driven systems where short wavelength (elec-

tron) modes co-exist with fluid modes, in addition to the moderate wave-

lenth modes (k⊥ρs ≤ 1) that are simulated now.

Using the ELMFIRE code as an investigative platform, we may be able

to develop more cost-effective fusion reactors to the DEMO phase and be-

yond.
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