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Abstract 
The rise and development of opinion groups, just as their clash in social conflict, are 

notoriously difficult to study due to a complex interplay between structure and dynamics. The 
intricate feedback between psychological and sociological processes, tied with an ample 
variability of individual traits, makes these systems challenging both intellectually and 
methodologically. Yet regular patterns do emerge from the collective behavior of dissimilar 
people, seen in population and crime rates, in protest movements and the adoption of 
innovations. Statistical physics comes then as an apt and successful framework for their study, 
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Preface

I can still recall some of that first undergraduate course in Classical Me-

chanics, back in 2003 at UNAM in Mexico City. During one of our lectures,

and before diving deeply into the wonders of frames of reference, forces

and energy, Prof. Rafael Barrio asked us a seemingly innocent question,

‘how are physicists different from everyone else?’ After the expected si-

lence coming from a group of terrified first-year students, he chose to con-

tinue. ‘A physicist knows just how much is a little. Take that tree for

example,’ Rafael said, pointing to one of the grandiose trees in between

the east and west buildings in our Faculty, ‘can you tell me how many

leaves it has?’

Well, we could try and guess, or climb and count leaves, yet what a

physicist does is make a model. Forget the details for a second, and pre-

tend our tree is nothing but a trunk followed by z branches, each of which

is subsequently divided in exactly z − 1 branches. Going on and on for

k divisions, branches finally give way to z(z − 1)k−1 leaves. Now we just

have to count branch divisions to set z and k (rather easier than counting

foliage) and we end up with a pretty good estimate for the total number

of leaves in the surface. Furthermore, we have a functional relationship

between the properties of our tree, telling us that its surface will increase

exponentially as the tree and the number of layers inside grow. Even

those with an eye for detail might be satisfied, since we can progressively

consider more complicated features (like a varying number of branch di-

visions) to increase the descriptive power of the model.

Nine years later and with a Ph.D. project on the go, I have learned how

to count to try and understand why people behave the way they do. For

that is precisely what models give, they are simplified pictures of reality

that let us grasp relations between quantities of interest, ultimately al-

lowing us to predict what will happen in the future. So let it be trees,
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water molecules or the dynamics of social conflict, we could learn so much

more than we did while talking about them, if we just start counting and

realize how much is a little.

The work summarized in the next pages would not have been possible

without the support of a great deal of people in many different places.

Most of the research was carried out in the Complex Networks group at

the Department of Biomedical Engineering and Computational Science of

Aalto University School of Science (or just BECS, formerly the Labora-

tory of Computational Engineering in Helsinki University of Technology),

which functioned as a Centre of Excellence in Computational Complex

Systems Research during 2006–2011. There my overall gratitude goes to

my supervisor Prof. Kimmo Kaski, who not only gave me the opportunity

to join BECS, but worked day by day in making the group an exceptional

place to grow academically. This Thesis follows directly from my M.Sc.

project developed mainly at Instituto de Física in Universidad Nacional

Autónoma de México, with a short visit to the Centre for Mathematical

Biology at the University of Oxford. Since then I have counted with the

guidance and wisdom of Prof. Rafael Barrio, who has been there from the

first equation to the last simulation.

I have been lucky to learn from many leading academics in the field. I

thank Prof. János Kertész for his experienced advice and constant help

throughout the years, which included a visit to the Budapest Univer-

sity of Technology and Economics. My time at the Institute for Cross-

Disciplinary Physics and Complex Systems in Spain would not have been

as fruitful without the focused erudition of Prof. Maxi San Miguel. My

sincere thanks go to Prof. Julia Tagüeña and everyone at Centro de In-

vestigación en Energía in Mexico for making our small social experiment

a reality. I was fortunate to be in the company of Prof. Jari Saramäki and

Prof. Santo Fortunato, whose lectures were extremely enlightening and

an inspiration to my work. I am also grateful to Prof. Angel Sánchez and

Prof. Ingve Simonsen for their useful remarks in the pre-examination of

this Thesis. My Ph.D. project, along with its numerous research trips, was

supported financially by BECS and by grants from the European Coopera-

tion in Science and Technology and the Finnish Foundation for Technology

Promotion.

The (somewhat) younger generation of scientists has also had a strong

impact on me over the past few years. It has been a pleasure to work with
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Dr. Taha Yasseri and Dr. János Török in an utterly non-conflicting col-

laboration. My academic roommates deserve compliments as well: Lauri

Kovanen for his eternal defense of the scientific method and the gram-

matical dissection of my Thesis, and Dr. Mikko Kivelä for his passionate

arguments never based on emotions. I congratulate both for their ability

to publish continually while sharing a room with a noisy Mexican. I have

learned a lot from my current collaborators Dr. Márton Karsai and Dr.

Raj Kumar Pan, who showed me that the near future is not only bereft of

sleep, but full of scientific challenges. Many thanks go also to Ville Lehtola

for showing me what it meant to be in Finland, and to Ville-Pekka Back-

lund for being the first student I actually had to teach something to. My

time at BECS has been as inspiring as it was entertaining, from Coffee

Time to the Journal Club, and I want to thank everyone at the Complex

Networks group for sharing it with me.

Outside academia, friends and family have been there to shape me into

the person I am, during my time in Finland and throughout my whole

life. I cherish all experiences shared with the groups of friends I have

made in the north of the world, which go by the cryptic acronyms HHK,

TKK and DSH. A lifelong gratitude will always be devoted to my mother

Alma González, who showed me the value of love strengthened by deter-

mination, and to my father Ernesto Iñiguez, whose wisdom I carry in my

heart and mind. I treasure every moment with my only and favorite sister

Daniela Iñiguez, a star in the sky, as well as all ridiculously philosophical

discussions with my brother-in-law Alejandro Lastra. To Daniel Arévalo,

brother in everything but blood, I am grateful for his tireless awesome-

ness and a masterful Thesis cover. Finally, in an ending that feels more

like a beginning, I thank my dearest Tiina Näsi for being exactly the girl

she is. To all the places I have swum, I could not have done it without you.

Espoo, March 21, 2013,

Gerardo Iñiguez González
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1. Introduction

1.1 Background

We are, after all, only human. We digress and transgress, so to speak,

naturally forming opinions and discussing with those of a different mind.

As individuals we perceive bits and pieces of reality, interpret the facts

through our ideas and emotions, and if willful enough, support the result-

ing subjective beliefs by reasoned arguments. Yet the same set of facts

may lead to opposing opinions, luring us to compare arguments and de-

cide which one is better. Our only choice left at the end is whether to join

a group of like-minded fellows, or to enjoy the continual strife of disagree-

ment. How do communities of similar opinion form? What are the main

traits determining their development? What is the social response to in-

formation proclaimed as fact? How do conflicts of opinion emerge and get

resolved?

The work in this Thesis aims at answering such questions through math-

ematical modeling and physical insight. Opinion and community forma-

tion, like most social phenomena, are notoriously difficult to study due to

their complex structure and adaptive dynamics. The intricate feedback

between psychological and sociological processes, coupled with the inher-

ent ambiguity of language, makes these systems challenging both intel-

lectually and methodologically. Even worse, most statements about them

seem as obvious and common-sense as their opposites, making knowledge

difficult to validate. As D. Watts points out [206, 207], ‘everyone has expe-

rience being human, and so the vast majority of findings in social science

coincide with something that we have either experienced or can imag-

ine experiencing.’ It is in this context that a modeling-based approach is

relevant, since the rigorous analysis of rule-bound dynamics (and the val-
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idation of the underlying hypotheses through comparison with empirical

data) can relieve us from our own intuition.

The statistical physics approach in modeling a system formed by a large

number of constituents, say a kettle full with boiling water, aims at char-

acterizing the system’s macroscopic properties in terms of the dynami-

cal evolution of its basic elements, like the water molecules in the kettle.

The fact that two systems with differing components may have the same

macroscopic behavior only due to their large size has prompted physi-

cists to go out of physics and into the realms of biology, economics and

sociology. Who is not, after all, tempted to use the same general frame-

work and modeling principles to study spins in ferromagnets as well as

humans in society? We should be careful though and remember, as D.

Stauffer does [188], that ‘people are not atoms.’ While electrons are identi-

cal, individuals are highly heterogeneous in personality, with interactions

variable in time through will and experience, which may indicate some

limitations for the ‘simple’ transfer of methods from physics [178].

Yet striking regularities at the societal level do exist [31]. Birth and

death rates, the development of protest movements, crime statistics and

the adoption of innovations, all show definite patterns emerging from the

collective behavior of dissimilar people. Thus, suitable modeling of pro-

cesses like community formation and opinion conflict should follow two

steps. First we need to establish simple yet realistic rules for the micro-

scopic dynamics of individuals, mathematically inferred from sociological

studies and small controlled experiments. Then we can derive the macro-

scopic behavior of the system through analytical and numerical calcula-

tions, aimed at a comparison with real data on large-scale social phenom-

ena. The availability of recent opinion surveys at the country level, as

well as detailed temporal records of conflict in collaborative websites such

as Wikipedia, are invaluable in this respect.

A common set of underlying mechanisms tied to broad interdisciplinary

applications have made the statistical physics of social dynamics a trendy

field with emergent success, as can be seen from the growing number of

reviews in the literature [36, 186, 209]. Despite the interest shown by the

scientific community, a majority of results favor theoretical description

over empirical verification, choosing the analytical tractability of simple

dynamical rules over the sociological relevance of more complicated mech-

anisms, and with conclusions accepted by plausibility rather than by com-

parison with observations. It seems pertinent then to focus our research
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on this unfortunate gap, in an attempt to answer the ‘call for a closer link

with reality’ of P. Sobkowicz [182] by a sensible combination of theoretical

modeling and real data analysis.

1.2 Objectives and scope

With such background in mind, the goal of this Thesis is to model the evo-

lution of opinions in society and compare outcomes with empirical data

on opinion conflict. Under the general framework of statistical physics,

the models included here characterize individuals with a reduced set of

variables and parameters, describe their social structure as a dynamic

network of interactions, and consist in equations for the coupled time de-

velopment of opinions and society. The macroscopic properties of the sys-

tem are then interpreted as the emergence of social groups and of conflict

between them due to opinion disagreement.

The following chapters comprise an overview of the field and a summary

of the results in Publications I–V, ordered as to answer these research

questions:

• How do communities of similar opinion form?

Opinion formation is mediated by social interactions and at the same

time influences the structure of society itself. In Publication I we

model this coevolution of opinion and network structure by consider-

ing discussions between individuals, personal attitudes towards the

mood of the majority, and rewiring of social links among people. The

dynamical rules are motivated by known sociological mechanisms

(such as homophily and network closures) and by our own small ex-

periment regarding agreement on a polemic issue. We argue that

the separation of time scales between fast opinion dynamics and

slow network rewiring may control the emergence of communities

of similar opinion.

• What are the main traits determining their development?

In Publication II we show that individuals with opposing attitude to-

wards the majority’s opinion tend to form small groups, while those

with agreeing attitude constitute larger communities. Thus, our

modeled society becomes fragmented as more people go against the

collective mood. We further confirm this claim in Publication III,

where a simplified version of the model is used to extend the ana-
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lytical treatment of the dynamics. Overall, both the ratio between

time scales and the diversity of personal attitudes may determine

the development of heterogeneous community structure in society.

• What is the social response to information proclaimed as fact?

Opinions are based not only on personality traits and discussions

with our peers, but also on information flow channeled by the media.

This input can be divulged as fact, often creating groups with con-

trary views on the subject. In Publication IV we extend our model

to consider the social response to scientific facts, finding that con-

cepts promoted by the media may be more difficult to acquire than

those opposed by it, since disagreeing individuals form tight commu-

nities that prevent opinion consensus. Additionally, we use scientific

perception surveys to adjust parameters in the model and pinpoint

cultural differences between two real populations.

• How do conflicts of opinion emerge and get resolved?

Finally, we focus our attention on the rise, persistence and resolu-

tion of opinion conflicts in tasks achieved by cooperation. In Publica-

tion V we develop a simple model where individuals interact directly

through discussions, indirectly by making changes to the common

product, and might decide to abandon the project altogether. The

dynamics allows for a state of mainly consensus and one of perpet-

ual conflict, as well as an intermediate regime where small conflicts

continually emerge and get resolved. These scenarios of strife agree

qualitatively with data on the collaborative website Wikipedia, where

people edit articles on numerous topics and discuss about their con-

tents.

4



2. The physics of society

Models are not reality. Among their myriad of definitions, types and ap-

plications [80], models are fictional objects aimed at representing a piece

of the world around us, where the goal is to achieve a level of isomor-

phism with measurable quantities of interest [51, 198]. More often than

not, however, they are simplified pictures of nature with an incomplete

account of relevant variables and interactions, which in view of their ob-

jective would strike us as nothing but wrong. Why should we care about

false models then? Well, simply because they are useful tools to get at

the truth [217]. Simple models might be used as a starting point for more

complex and accurate descriptions of reality, just as incomplete models

could let us focus on particular properties of intricate phenomena or as-

sess the importance of missing variables.

Above all, false models allow us to understand. In the study of social dy-

namics, for example, they may help in determining causal relations and

driving mechanisms behind empirical observations, lifting the burden of

explanation from a common sense that seems to fail as often as it suc-

ceeds. Models in the field of complex networks reveal the structural and

dynamical similarities between systems with very different functions, just

as the models of statistical physics show that size often comes along with

simpler descriptions in terms of macroscopic variables. So let us jump

right in and review some of the roles modeling has taken in these fields.

2.1 Social dynamics

The first philosophical discussion of a science of social phenomena is usu-

ally attributed to the 19th century positivism of A. Comte [45], who ar-

gued the inevitable coming of sociology as a consequence of mankind’s

quest to describe systems of increasing complexity with mathematical
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tools. Indeed, the success of newtonian mechanics in predicting the mo-

tion of macroscopic bodies, both earthly and celestial, led many to believe

in the existence of quantitative laws governing the behavior of individ-

uals. Some were more skeptical, L. Tolstoy among them [196], thinking

that our freedom of choice as conscious beings would allow us to invali-

date any proposed social mechanism. This paradox of free will [71] was

partly circumvented by the empirical work of A. Quetelet [161] and other

scholars of the time, who found that laws of statistical nature could be

applied to societies as a whole instead of particular individuals.

The statistical perspective of such ‘social physics’ was useful in other

fields of science as well, most prominently when the likes of J. Maxwell, L.

Boltzmann and J. Gibbs accounted for the macroscopic behavior of gases

in terms of the properties of large ensembles of particles, laying the foun-

dations of statistical physics on the way [83]. Efforts to describe social

structures with mathematical models followed suit in the mid 1900s, as

the field of sociometry started to develop around the main concept used

in this Thesis: a social network [27, 179, 205]. Introduced as a sociogram

by J. Moreno in psychology [141] and as a social network by J. Barnes in

anthropology [12], it is a mathematical representation of the pattern of

relationships, or ties, among a group of social entities known as actors.

These social units (individuals, groups of people or even entire societies)

are characterized by attribute data capturing their behavior, such as opin-

ions and attitudes. Relational ties, on the other hand, imply the existence

of any kind of interaction between actors, like discussions and friendship.

An example of a social network describing the pattern of discussions be-

tween individuals with different opinions is portrayed in Figure 2.1.

Social networks are useful models due to their incompleteness and sim-

ple definition. By disregarding most information about the social environ-

ment apart from some chosen attribute and relational data, we can sim-

plify the study of its structure to answer a particular question we might

have. A direct consequence is that even the same set of actors may lead to

very different network structures, depending on the definition of ties and

the topic one is interested in. Also, similar tools and measures are usu-

ally appropriate to probe networks made up of any kind of actors and ties,

leading to a generic methodology for the study of social and behavioral

phenomena based on structural analysis. The flexibility of this frame-

work has given rise to an extensive number of research studies, regarding

topics as varied as friendship networks in terms of typical size, chains of
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Figure 2.1. A social network. Representation of the pattern of relationships, or ties,
among a group of social entities known as actors. This case corresponds
to the model of Publication I where actors are individuals with a single at-
tribute, their opinion on a given topic, and ties imply the presence of related
discussions. By disregarding other social features, the network reveals the
presence of well-connected groups of actors with similar attributes, pictured
here as separate colors.

acquaintances and group segregation [64, 113, 134, 140], sexual and ro-

mantic networks [19, 124], networks of collaboration among scientists or

movie actors [5, 144], and even temporal phenomena like the spreading

of innovation in professional networks [44] and the stability of corporate

networks over time [53].

The modeling of dynamical features in social systems is arguably as

fascinating as it is challenging. Time-resolved networks (usually called

longitudinal studies in the literature [204, 212]) allow us to discern the

temporal variation of social processes, with the goal of identifying causal-

ity relations and ultimately predicting future behavior. Given that the

description of physical phenomena has similar objectives, the last few

decades have witnessed an increasing use of the ‘methods of physics’ [158]

in social network analysis. Indeed, the field of social dynamics [6, 36]

deals with the generic transition between order and disorder due to the

presence of networked interactions among social entities, where order is

identified as a state of consensus or homogeneity in the attributes of ac-

tors, and disorder implies an opposite state of conflict or heterogeneity.

There are many models in social dynamics, each tailored to describe

a particular topic ranging from the emergence of languages [213] to the

formation of hierarchies [40]. In the Axelrod model for culture dissemina-

7
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tion [7, 38], for example, neighboring actors in a social network are more

likely to interact if they share many cultural features (a principle known

as homophily [130]), and by doing so they exert social influence and be-

come more similar. Despite this drive for homogeneity, the dynamics may

end up in a stable state where many different cultural regions coexist.

Another equally surprising scenario of social polarization is found in the

Schelling model of residential segregation [172, 173], where even a mild

preference of actors to relocate in urban areas with alike neighbors leads

to a society of fully segregated ghettos [52, 192].

Social dynamics are often deeply influenced by the network underneath,

although notable exceptions do occur [88, 93, 94]. The temporal evolution

of individual attributes like opinions, attitudes and beliefs may be affected

by particularly short chains of acquaintances speeding up the flow of in-

formation, or by actors with a large number of ties capable of influencing

entire social groups [144]. The study of the properties of different network

structures lies at the heart of the field of complex networks.

2.2 Complex networks

Yes, networks are everywhere. From the technological and informational

backbone of the world that is the Internet and the WWW [157] to the

abundance of social networking services like Facebook [123] and Twit-

ter [58], networks have gone beyond their academic status as abstrac-

tions of human interactions to become an iconic concept in our everyday

lives. Recent years have witnessed an equally drastic shift in their use as

modeling tools: networks describe not only social groups but food chains,

neural and metabolic processes, product distribution structures and any

other system made up of a very large number of linked parts, fit to be

analyzed with generic statistical methods and often sharing properties

despite their distinct origins as social, biological or technological systems.

The emerging field of complex networks is now well established in the

literature, with several introductory and reference books on the matter

[15, 33, 61, 63, 66, 147, 148], as well as scientific reviews dealing with its

main concepts and applications [2, 24, 48, 62, 146].

In its simplest definition, a network is a collection of nodes (or vertices)

connected by links (or edges), quite equivalent to the pattern of actors

and ties of a social structure. It can be mathematically represented by

the elements Aij of an adjacency matrix, equal to 1 when nodes i and j

8
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are connected and 0 otherwise. The network idea is usually attributed to

the celebrated mathematician L. Euler [3], who used a small one to prove

that it was impossible to come up with a closed route along the bridges

of 18th century Königsberg by crossing each bridge only once. The study

of networks as purely abstract entities has gone a long way since then,

forming an entire branch of discrete mathematics known as graph theory

[25, 57, 85]. A typical task in proving some graph-theoretical statements,

from coloring to the analysis of flows, is to estimate the proportion of net-

works having a certain property by means of deterministic, combinatorial

techniques. Yet another route is to approximate exact results with proba-

bilistic methods, an often useful approach that led to the development of

random networks [67, 183] in the mid 1900s.

A minimal model for any pattern of connections, a random network can

be constructed from a set of N nodes where a link between any pair of

them is placed with independent probability p. The ensemble of all net-

works devised in this way has many analytical properties, such as the

degree distribution ρk giving the probability that a randomly chosen node

has k links to other vertices (called first neighbors or just neighbors), and

the mean value of ρk or average degree 〈k〉 = (N − 1)p. When N be-

comes really large and 〈k〉 stays constant, ρk takes the Poissonian shape

ρk = e−〈k〉〈k〉k/k!, meaning that the probability of having large degrees

in the network decays exponentially fast with k. We can consider proper-

ties that depend on a couple of nodes as well, like the average clustering

coefficient 〈C〉 (the probability that two neighbors of a vertex are also con-

nected, forming a triangle) and the average path length 〈�〉 (the size of

the shortest chain of edges linking two vertices). The limit N → ∞ with

constant 〈k〉 gives zero clustering and a path length scaling as lnN/ ln〈k〉,
meaning that large random networks have almost no triangles and rela-

tively short distances between nodes.

If anything, random networks might strike us as a bit ‘too simple’ to

describe the pattern of interactions in a real system, more fit as a neu-

tral model [217] with the explicit purpose of assessing the importance of

variables or mechanisms not considered by it. On one hand, patterns of

social interactions such as friendship [134] and corporate relations [53]

usually have small path lengths (just like random networks), but sig-

nificantly higher clustering than their random counterparts [143]. On

the other, degree distributions of many networks (scientific citation webs

[160], for example) tend to be broad, decaying slower than exponentially.
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Figure 2.2. Mixing patterns in networks. Average nearest-neighbors’ degree 〈knn〉
as a function of the degree k of a node for three mixing patterns commonly
found in networks, calculated here for different conditions in the model of
Publication I. A tendency of actors to connect with others of the same opinion
leads to assortative mixing, while the opposite creates disassortative behav-
ior. The neutral pattern of edges in random networks gives no correlation
between degrees.

These shortcomings prompted the development of two more realistic mod-

els, generally considered as the starting point of the field of complex net-

works [193]. The first is the small-world model of D. Watts and S. Strogatz

[16, 208], where short distances and many triangles coexist in a network

formed by randomly rewiring some edges in a regular lattice. The second

is the preferential-attachment model of A. Barabási and R. Albert [11],

a model of growing networks where new nodes connect to old ones with

probability linearly proportional to their degree, giving rise to an asymp-

totically scale-free distribution ρk ∼ k−3. Broad degree distributions are

indeed ubiquitous in nature [2], although the scale-free hypothesis in par-

ticular is often not tested in a rigorous way [42].

Networks can also be characterized globally by considering properties

of several vertices at the same time. Motifs, for example, are recurrent

small patterns of connections usually associated with particular functions

in the system [136], while mixing patterns measure the amount of selec-

tive linking between nodes with the same attributes [145]. Structural

mixing in the form of degree correlations is normally quantified by the

average nearest-neighbors’ degree 〈knn〉 and its overall dependence on the

degree of a node, like it is pictured in Figure 2.2. When 〈knn〉 grows with

k (meaning that nodes of similar degrees tend to be connected), we have a

so-called assortative mixing readily identified with the homophilic struc-

ture of social networks [82, 140]. Other systems like biological and tech-

nological networks [128, 156] are disassortative instead, containing many
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edges between high- and low-degree vertices.

Yet another concept related to sets of many nodes is that of community.

In social networks, it is intuitively defined as a group of actors belong-

ing together due to some criteria we are interested in, such as sharing

attribute data or similar patterns of ties [26, 205]. In one of the most

commonly used definitions, the group has more links between members

than with the rest of the network [163]. The related field of community

detection is an active research topic [74, 171] that shares several features

and methods with the problem of data clustering [106], where points in

arbitrary spaces are organized in clusters according to their similarity.

When looking for communities most approaches are operational, defining

groups in the network as the result of a given algorithm.

There is a lot more. The use of networks as models for empirical systems

has greatly increased the number of tools used to analyze them. Simple

patterns of nodes and links can be substituted by directed [1] or weighted

[13, 14] networks, where edges have directions or values representing the

strength of interactions [154]. The random network has been generalized

to contain any degree distribution in the configuration model [139, 150],

without losing its analytical tractability thanks to the (cunning) use of

generating functions [215]. Networks may be embedded in a geograph-

ical space [17], considered as dynamical structures [100] to account for

temporal activity like bursty human behavior [10], and even be intercon-

nected to other networks [32]. Still, let us turn the page now and jump

into the field of statistical physics, a useful framework for studying the

macroscopic properties of large systems of interacting components.

2.3 Statistical physics

Our world seems to be quite hierarchical in terms of length and time

scales, allowing us to classify systems in levels of different size and du-

ration and even offer independent mathematical descriptions for their

behavior. Yet higher levels do not come with additional laws, just with

new phenomena understandable by a proper reformulation of the rules of

lower levels [121]. Statistical physics, as a prime example, explains how

the macroscopic behavior of large physical systems arises from the mul-

titude of microscopic interactions of their components [60, 83, 89, 109].

In a very generic summary of the statistical physics method, the dynami-

cal properties of a system’s elements are enclosed in state variables, all of
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which determine the microscopic state σ of the system. As time goes by,

the system will jump between different configurations due to the interac-

tions among components and any external effect that might be present,

such as a field or a thermal reservoir. But instead of solving a very large

number of equations of motion for the individual elements, we may take

a statistical approach and consider the probability ρ(σ, t) of finding the

system in state σ at time t. Its temporal evolution is then governed by the

(conveniently called) master equation [15, 149],

∂ρ(σ, t)

∂t
=

∑

σ′

[
ρ(σ′, t)r(σ′ → σ)− ρ(σ, t)r(σ → σ′)

]
, (2.1)

where r represents the transition rates between states. By formally solv-

ing this equation, any macroscopic property that takes the value m(σ) in a

given state can be averaged to obtain the expectation 〈m〉 = ∑
σ m(σ)ρ(σ, t),

a good approximation for measurements made on the system as a whole.

If we are fortunate and patient enough, however, there may be a moment

when all terms in Eq. (2.1) cancel each other and ρ(σ, t) remains constant

at an equilibrium value ρσ. A system in contact with a thermal reservoir

follows in this case the Boltzmann-Gibbs distribution ρσ = Z−1e−βHσ [83],

where β is an inverse temperature and the Hamiltonian Hσ gives the

energy associated with state σ. The so-called partition function Z, being

much more than just a normalization constant, can be used directly to

calculate all the macroscopic properties studied in thermodynamics [34,

116].

Just like in the fields of social dynamics and complex networks, models

come to our rescue as simplifications of reality to focus on a given feature

of interest. In statistical physics, models are explicit expressions for the

Hamiltonian that consider some microscopic interactions in a minimal

way. One of the simplest and most studied examples is the Ising model

[29] that aims to describe the ferromagnetic properties of materials in

terms of the magnetic dipoles of their atoms. Here, the state variables are

N spins σi = ±1 that tend to align with their neighbors j on a network

via interactions of strength J > 0, implying Hσ = −J
∑

〈ij〉 σiσj . A use-

ful macroscopic property is the magnetization per spin m(σ) =
∑

i σi/N ,

measuring the level of alignment (or order) in the system. For certain

network structures and as the temperature goes down, the system under-

goes a transition from a disordered and symmetric phase with 〈m〉 = 0

to an ordered one with spontaneous magnetization 〈m〉 �= 0. The study

of phase transitions and symmetry breaking through dynamics like the
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Ising model is one of the main goals of statistical physics. Near the tran-

sition point many models (and the systems they describe) show the same

critical behavior despite their different definitions, a concept known as

universality [86, 184, 185].

Yet things are not always that simple. The partition function might not

have an explicit expression from where to calculate macroscopic quanti-

ties directly, or we may be interested in dynamical behavior before reach-

ing equilibrium, leaving us only with a master equation often impossible

to solve. One alternative is agent-based modeling [47, 177], a broad set

of computational and analytical techniques used in and out of physics to

describe seemingly disparate topics like Brownian motion, structure for-

mation in biological systems, pedestrian movement and urban growth.

Under this approach a system’s elements (let them be actors, nodes or

particles) are substituted with agents moving between a predefined set

of states available to them. The dynamics of each agent depends on oth-

ers via a network of interactions, and follows equations mimicking the

expected microscopic behavior of the system. The effect of any unknown

mechanism is usually considered with stochastic rules akin to those of

Monte Carlo methods [119, 133, 149]. Finally, global regularities are stud-

ied by averaging over all agents in computer simulations and, when pos-

sible, by comparing with analytical approximations. These techniques are

quite multidisciplinary and also used in population biology [129], artificial

intelligence [211] and computational sociology [126].

Overall, agent-based models take concepts and tools from statistical

physics and network theory to describe collective phenomena like social

dynamics, allowing us to understand the development of society as the

common product of individual wills, interactions among people and exter-

nal effects. It is now time to narrow down and move on to the main topic

of this Thesis: opinion formation and its relationship with the structure

of society.
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3. The dynamics of opinion

Everyone has an opinion. Many, in fact. Whether it is politics, art or

the unfathomable void of religion, we all feel compelled to have a say and

defend our positions, either through arguments or by pure dismissal of

alternative points of view. Yet opinions do sway. There are many studies

on the psychological and sociological factors determining opinion change,

ranging from personality and resistance traits to persuasive communica-

tion [69]. In the work of H. Kelman, for example, opinion shifts are classi-

fied into groups according to the level of private acceptance that goes with

public conformity [112]. We may be influenced and change our minds

either by compliance (to get social approval), identification (to establish

relationships with others), or by internalization (when the new position is

congruent with our values). Another example is B. Latané’s social impact

theory [120, 152], where opinions change due to social forces exerted by

people around us and with strength proportional to their number, impor-

tance and immediacy.

As the size of the studied social group increases, however, it becomes

increasingly difficult to setup face-to-face experiments, follow individual

interactions and deduce their combined effects on the group as a whole.

A complementary approach is the use of computer simulations via agent-

based modeling, referred to in the literature as opinion dynamics [36, 188,

190]. Here, individuals are described as agents shifting between opinion

states due to elementary social mechanisms, and the ultimate goal is to

characterize the rise of complete agreement or disagreement in the sys-

tem. What follows is a brief review of the most famous attempts at mod-

eling opinion formation, both over static social structures and when the

network of interactions varies over time.
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3.1 Modeling opinion formation

Models for the rise, exchange and shift of opinions simplify human inter-

actions by assuming a limited or bounded set of states available to agents,

and by proposing dynamical rules that enforce a particular social behav-

ior. The simplest of all is arguably the voter model [98], an extension of

the Ising model where opinions are binary variables xi = ±1. For each

interaction an agent i is randomly selected along with one of its neighbors

j and xi = xj , that is, the agent copies the state of the neighbor. Although

usually just an approximation, binary opinions may be the outcome of a

lengthy and complex discussion, or even the only alternative in processes

like elections and product selection. The mechanism of state copying, on

the other hand, mimics the homophily principle [130] by promoting neigh-

borhoods of similar opinion.

The voter model can be solved exactly with a master equation formalism

[78], showing that consensus is reached in regular lattices of dimension 2

and lower, but not in more than 2 dimensions. Extensions of the voter dy-

namics are numerous [54], considering other ingredients like noise [175]

and zealous individuals [138], the effect of more than two opinion states

[39, 181, 201] or of strategic imitation [203]. The voter model behaves

somewhat differently over complex structures such as small-world and

scale-free networks [37, 194], showing variations in the time required to

attain consensus and temporary stages with no opinion change.

Opinion formation models are as varied as the social mechanisms or in-

dividual personalities they intend to mimic. In the majority rule model

[81], for example, groups of a given size are chosen and the majority opin-

ion takes over all its agents, implementing a principle of social inertia or

validation [41, 79] by which pressure groups compete for political influ-

ence [20]. A nice classification of models in terms of individual personal-

ities is that of D. Stauffer [187], where agents take the roles of ‘mission-

aries’, ‘negotiators’ or ‘opportunists’. Social validation is a key factor for

the missionaries of the Sznajd model [195], in which agents manage to

convince all neighbors only if their own opinions are similar.

When our choices are not black and white but gray, like with political

tendencies or economic utilities, opinions may be better approximated by

continuous variables xi ∈ [0, 1] rather than by a couple of options. This

extension brings about two new features to the modeling of opinion dy-

namics. First, equilibrium states can show total agreement or be frag-
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Figure 3.1. Bounded confidence in opinion dynamics. Opinions xi as a function of
time t for the Deffuant-Weisbuch model in a system of size N = 104 with
(εT , μT ) = (0.17, 0.2). Darker dots imply a larger density of opinions. As time
goes on, agents with opinions closer than εT negotiate and converge their
views by the relative amount μT , leading to the formation of distinct opinion
groups. This dynamics constitutes the basic social interaction in the extended
model of Publication V.

mented into several groups with more than two values of opinion. Second,

the distance between agents’ states is a measure of their similarity and

can be used to define the occurrence of social interactions in the model.

One example is the concept of bounded confidence, which assumes that

individuals discuss only if they are close in opinion to each other [125].

Bounded confidence is the main ingredient of the Deffuant-Weisbuch [56]

and Hegselmann-Krause [95] models. In the former, agents take the role

of negotiators that meet in pairs to find a compromise, while in the lat-

ter agents are opportunists that adopt the average opinion of all of their

similar neighbors.

As is common in opinion dynamics, the Deffuant-Weisbuch model starts

by setting up N agents in a given network of social interactions. The

dynamics depends on only two parameters: a tolerance εT ∈ [0, 1] that de-

termines the reach of agent similarity, and a convergence μT ∈ [0, 1/2] that

defines the amount of compromise after discussions. Every interaction in-

volves a random pair (i, j) of neighbors, and if |xi−xj | < εT their opinions

get updated in the following manner:

(xi, xj) 	→ (xi + μT [xj − xi], xj + μT [xi − xj ]). (3.1)

These rules give rise to a dynamic process where similarly-minded in-

dividuals negotiate their positions and move symmetrically in opinion
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space, except for those near the boundaries that can only drift towards the

center. Such instability leads to the formation of a number of disjoint opin-

ion groups, approximately 1/(2εT ) for the completely connected network

used in Figure 3.1. The properties of this model have been studied exten-

sively, first in the physical context of inelastic collisions [9, 21] by means

of master equations [22], and then by considering societies with stubborn

individuals [117, 159] or open to external effects [87]. Some of the original

results have recently been questioned as well, regarding the conditions for

particular final states of the dynamics [131]. The mechanism of bounded

confidence for both negotiators and opportunists has been extended to vec-

tor opinions [77, 105], where discussions cover more than one single topic,

and to various underlying network structures [72, 73, 210].

Perhaps one of the most distinguishing features of the field of opinion

dynamics is the clear disproportion between theoretical models and re-

search validating their sociological assumptions through empirical data.

One notable exception is the study of elections. The Brazilian elections

of 1998 [49], in particular, have been described as the transient state

in a modified Sznajd model over scale-free networks [23]. Interestingly

enough, the distribution of votes received by candidates seems not to de-

pend on countries and years, once factors like the total number of can-

didates and votes in party lists are taken into account [75, 76]. Another

feature of real opinion formation processes that has attracted interest re-

cently is the fact that social networks are not static, but change in time

with their own dynamics. The explicit coupling between agents’ states

and network evolution, along with its new effects like fragmentation and

group formation, is our next topic to discuss.

3.2 Coevolution of network and opinions

Opinions may change, but sometimes people just don’t. A persistent con-

flict of views can push us to break social contacts and look for more ami-

able relationships, modifying the surrounding social structure and thus

affecting the way our opinions are shaped. From the point of view of the

statistical physics of social phenomena, the network of interactions may

change because of the agent-based model defined on top of it, creating a

feedback loop between structure and dynamics that has come to be known

as coevolution [90, 92, 96, 225]. Coevolving or adaptive networks (as they

are often called nowadays) have been studied across a broad range of disci-
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plines, with applications to chemical and neural networks [28, 104, 107],

cooperation in game theory [222, 223], disease spreading [91, 127, 180]

and even the dynamics of swarming insects [101, 202]. In addition to

the typical ingredients of agent-based models, a theoretical description of

coevolving systems includes microscopic rules for the removal, creation

or rewiring of edges that depend on the state of agents. Both node and

link dynamics come with characteristic time scales, telling us the speed

of their time evolution. When these time scales are comparable, adaptive

networks can organize themselves in highly nontrivial patterns and show

transitions due to the interplay between structure and dynamics.

As for the coevolution of network and opinions, one of the first contri-

bution is the minimal model by S. Gil and D. Zanette [84, 221]. In this

model the state variables and edges change to enhance the contact be-

tween agents with the same opinion, leading to a variety of network struc-

tures. The model starts off by distributing binary opinions randomly over

a completely connected network. Then, disagreeing neighbors equal opin-

ions with probability p1 (in a voter-like fashion), or keep their states and

get disconnected with probability (1− p1)p2. The final state of the dynam-

ics is determined by the parameter q = p1/[p1 + (1− p1)p2], measuring the

relative frequency of these two processes. When q is small, the system

gets divided into a couple of components with many internal links, sim-

ilar sizes and opposite opinions. For large q the network either remains

connected and adopts a single opinion, or fragments into a large agreeing

component and several poorly-connected, smaller ones. Such regimes are

loosely separated by a minimum in the fraction of remaining links in the

network.

In the light of real social behavior, link deletion may be substituted by a

rewiring process describing how individuals look around for more fitting

relationships. The model of P. Holme and M. Newman [65, 99], for exam-

ple, uses link rewiring to represent the formation of new acquaintances

between people of similar views, just as they influence each other due to

their friendship. Starting from a random network of agents with a fi-

nite set of different opinion values, with probability φ a randomly selected

node i rewires one of its edges to another node with the same opinion.

Otherwise i leaves the network structure unchanged and adopts the opin-

ion of the neighbor. The final state of the dynamics is then tunable by

the parameter φ. The limit φ → 1 leads to separate components formed

by the initial holders of each opinion value, while for φ → 0 agreement is
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promoted inside the original components of the random network. Nicely

enough, these regimes are separated by a phase transition where the dis-

tribution of component sizes is broad.

Coevolving models in the study of opinion formation and other social

phenomena are numerous, usually aimed at investigating the effect of an

adaptive network in generic dynamics like the voter [142, 199], Deffuant-

Weisbuch [115, 191] or Axelrod [200] models. As with the previous two

examples, their typical result is the existence of transitions as the rela-

tive rate of node and link updates is varied. This finally takes us to the

starting point of Publication I, a generic equation describing the coupling

between state variables and network structure in a coevolving model,

dxi
dt

=
∂xi
∂t

+
∑

j

Ô(xi, xj , g)Aij . (3.2)

In other words, the time evolution of an opinion xi is determined by two

terms: a dynamics of transactions ∂xi/∂t specifying opinion change due to

the existing interactions at time t, and a dynamics of generations
∑

j ÔAij

that tells how network variations affect xi. While transactions happen

at a fast time scale dt, generations develop over a slow time scale T and

correspond to an operator Ô modifying the entries of the adjacency matrix.

The interplay between structure and dynamics is then regulated by the

ratio of these two time scales, g = T/dt.

The next chapter deals with the main results of Publications I–III, a se-

ries of specific implementations for the dynamics of transactions and gen-

erations in Eq. (3.2). Intermediate values of g lead to a system that may

not only be fragmented, but present a heterogeneous community struc-

ture of agents with the same opinion. In this way, the coupling between

node and link dynamics turns out to be an appropriate mechanism to de-

scribe the emergence of a multitude of opinion groups in society.
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4.1 Opinion and community formation

As natural as it is to have opinions and share arguments with peers, it

is our tendency to stop discussing with someone who clearly disagrees,

choosing instead the less stubborn or more akin to our thoughts. At the

same time, the flow of information from new acquaintances may help re-

shape our arguments and modify our views. In the terms of Section 3.2,

there is a coevolution of network and opinions leading to heterogeneous

community structure in the system. How do these groups of individuals

sharing the same opinion develop in time? Well, it often helps to look at

the tree before attempting to draw it. Equipped with the sociological in-

sight of Section 2.1, we can prepare a controlled experiment where a small

group of people may discuss freely about a given topic, as well as end con-

versations and start new ones with other participants. Such experiment

can help us establish rules for the dynamics of individuals and network

links, leading to a model for the time evolution of opinion and community

formation.

4.1.1 A small social experiment

The warm and amiable city of Temixco in central Mexico is as good a place

as any to perform our small social experiment of opinion spreading, inven-

tively called ‘SmAll Talk’ [102]. In it, 20 university students with scien-

tific background were asked to share arguments and periodically state

their agreement or disagreement with a polemic statement, namely that

drugs should be legalized in Mexico. The issue of illegal drug trafficking

raises deep and mixed feelings in Mexican society, that with the so-called

‘Drug War’ [167, 168] has seen a 65% raise in homicide rates from 2005 to
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(a) Statement (b) Discussion (c) Rewiring

Figure 4.1. Experimental setup of SmAll Talk. (a) Participants are presented with a
statement, record their initial position with the opinion bar, and are arranged
in a random network. (b) Then discussions with all first neighbors take place
for a certain number of rounds, as well as possible changes in the opinion
bar. (c) Finally the subjects may rewire links from first to second neighbors
if dissatisfied with their neighborhood. The last two steps are repeated until
most of the group acknowledge their final position on the subject.

2010 [197]. Overall, the topic of drug legalization is not only controversial

enough as to keep the interest of participants in lengthy discussions, but

comes from such a multifaceted problem that a simple yes/no answer is

unlikely to prevail, thus preserving a symmetry between extreme opin-

ions.

Figure 4.1 summarizes the experimental setup of SmAll Talk. Partici-

pants are first presented with the statement and asked about their initial

position on the matter by means of a colored ‘opinion bar’ (Fig. 4.1a). In

this way, the opinion of individual i is measured by a continuous variable

xi ∈ [−1, 1] where ±1 implies total agreement or disagreement. Then ev-

eryone is arranged in a random network of social contacts and allowed

to discuss with all of their first neighbors for a given number of rounds

(Fig. 4.1b). The subjects are also encouraged to record any change in

opinion by using the opinion bar. Finally, participants are given the op-

portunity to simultaneously rewire their immediate neighborhood due to

any dissatisfaction by exchanging links from first to second neighbors

(Fig. 4.1c). This parallel rewiring scheme allows for pairs of subjects to

cut the same edge and create a couple of new ones, thus increasing the

average degree in the network. The discussion and rewiring steps are re-

peated until most individuals reach definite opinions and decide to stop

the process.

For those with an eye for detail, here is a brief description on how SmAll

Talk was carried out. All participants signed an informed consent form to

enroll, while their anonymity was preserved by providing them with ran-

dom usernames and passwords to use in the system. The experiment was

undertaken on a single evening at the Centro de Investigación en Energía

of UNAM in Temixco, Mexico, with volunteers from the postgraduate pro-
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Figure 4.2. Small experiment of opinion spreading. (a) Time series of opinions xi

as a function of the number of generations t/g, where most individuals even-
tually attain extreme positions close to ±1 and a few intermediate opinions
remain. (b) Coevolution of opinions and network structure for every genera-
tion, leading to the formation of two communities with opposite positions.

gram in Energy Engineering (area of Renewable Energies). After a call

for participation we selected 20 students coming from several provinces

in the country, with ages 22–35, middle-class income and a 50–50 ratio

of male to female. Subjects enrolled voluntarily with no incentive other

than a certificate of attendance, snacks for the event and an explanation

of the results at the end. The experiment was arranged in a large hall

with a single computer per individual, where several coordinators pre-

vented face-to-face chatting and helped with the on-screen instructions.

Each round of discussion between neighbors consisted of a message of

arbitrary length and its answer, while the rewiring step happened simul-

taneously for all participants. The event lasted roughly 4 hours, with brief

pauses every hour to eat and rest.

The outcome of our social experiment is shown in Figure 4.2. Following

Section 3.2 we see that many discussions take place before a change in the

network structure occurs, so that the time scale for a typical transfer of

information (transaction) is dt while the time scale for network rewiring

(generation) is T = gdt. The ratio g sets then the number of discussions

per rewiring and describes the separation between the fast transaction

and slow generation processes in the system. The time series depicted in
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Fig. 4.2a reveals how an initial distribution of opinions spread over the

interval [−1, 1] evolves into a state where most individuals have extreme

values close to ±1 and a few intermediate positions linger. Some partic-

ipants present small but erratic fluctuations, others seldom modify their

opinions, and a minority even undertakes a radical change of mind by

flipping the sign of xi. Moreover, in Fig. 4.2b we see how the network

structure coevolves with the opinion formation process. The average de-

gree increases, undecided individuals with xi ∼ 0 have neighbors of both

extreme positions, and the initial random topology evolves into a network

with two distinct opinion groups. This segregation of communities based

on individual traits is also seen in larger empirical friendship networks

[140].

4.1.2 A coevolving opinion formation model

Armed with these generic observations, we now turn to model the coevo-

lution of opinions and network structure by summarizing the results of

Publication I. In the agent-based framework of Section 2.3, we model opin-

ions as state variables of agents and ongoing discussions as links between

them. The coupled time evolution of state variables and network links

should follow Eq. (3.2), where the exchange of information through dis-

cussions in a fast time scale dt is described by a differential equation for

xi. Then, the outcome of our social experiment prompt us to write,

∂xi
∂t

= fs({xj}s)xi + fl({xj}l)αi, (4.1)

defining the dynamics of transactions. Here, the flow of opinions towards

the extreme values ±1 seen in Fig. 4.2a can be considered by a short-range

interaction term fs({xj}s)xi, so that xi grows exponentially towards ±1

with a rate determined by the opinions {xj}s of a subset of ‘close’ agents,

namely the first neighbors of i. Moreover, negative values of fs allow for

an asymptotic approach to an opinion |xi| < 1 identified with a state of

indecision. The flip of opinion sign of some participants in Fig. 4.2a is also

allowed by Eq. (4.1) due to the long-range interaction term fl({xj}l)αi,

comprising the indirect effect of the opinions {xj}l of all remaining ‘far’

agents in the network. This overall or public influence contained in fl is

weighted by the so-called attitude αi ∈ [−1, 1], a fixed parameter (for each

agent i) that tells us how personality traits make an individual oppose or

agree with the perceived mood of society.

We can express the interaction terms of Eq. (4.1) in a simple way by
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summing over opinions and weighting by distance,

fs = sgn(xi)
∑

j∈m1(i)

xj and fl =
�max∑

�=2

1

�

∑

j∈m�(i)

xj , (4.2)

where m�(i) is the set of �th neighbors of agent i, and �max is the shortest

path length to its most distant neighbor. The sign in fs keeps a symmetry

between positive and negative opinions, reasonable in the description of

controversial topics such as drug legalization where no opinion is clearly

the correct one. While fsxi is an homophilic term that tends to homoge-

nize opinion in the neighborhood of i, a negative attitude in flαi promotes

disparity of opinions, thus allowing for competing interactions.

In order to complete the model set by Eq. (3.2), we need rules defining

how agents rewire links between them in a slow time scale T , namely

the dynamics of generations. We choose a deterministic rewiring scheme

that implements the triadic closure mechanism [114] of acquainting our-

selves with the ‘friends of a friend’ to form triangles, as used by the par-

ticipants of our social experiment. Although sociologically plausible, this

local scheme may be relaxed to include a focal closure mechanism where

links between any two nodes are created, as discussed in Section 5.1.

When cutting bonds, an agent i preferentially breaks its link with a first

neighbor j if there is large disagreement. We accomplish this by selecting

agents j in decreasing order of the opinion difference pij = |xi − xj |/2, as

long as pij > 0. At the same time i chooses to connect with a second neigh-

bor l if the new link may help the agent in reaching an extreme opinion

±1. This means that we create the same number of new links (as cut in

the first phase) with agents l in decreasing order of the opinion similarity

qil = |xi + xl|/2, as long as qil > 0. For each i the number of deleted edges

and of created links are always equal, but a parallel rewiring implies that

the simultaneous actions of a couple of agents may lead to the net creation

or deletion of an edge. Quite nicely, the homophilic coupling between opin-

ions and network structure in the weights pij and qil promotes assortative

degree correlations like the ones seen in Figure 2.2, as is expected for real

social networks [145].

Figure 4.3 summarizes the main result found in Publication I. Our model

is let to run over a network of size N with initially random links and opin-

ions, as well as random attitudes, while the dynamics modifies state vari-

ables and topology with a fixed ratio g = T/dt. We freeze the opinion of

decided agents in the extreme positions ±1, allowing for a stationary final

state where no more changes occur in the system. In Fig. 4.3a we can see
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Figure 4.3. Model of opinion and community formation. (a) Average susceptibil-
ity 〈s〉 (main) and number of undecided agents 〈nund〉 (inset) as a function of
the coevolution parameter g for varying system size N , signaling fragmenta-
tion and merging transitions in the final state of the dynamics. (b) Example
networks for N = 400 and g = 5, 103 and 105, corresponding to the two tran-
sitions and a dynamics with no rewiring.

how the coevolution parameter determines such final state in terms of the

susceptibility 〈s〉 = ∑
s2/

∑
s, i.e. the average size of a small component

(other than the largest one) to which a randomly selected agent belongs

[189], and the average number of undecided agents 〈nund〉 (i.e. those with

|xi| < 1). When g increases the system undergoes a fragmentation tran-

sition, as evidenced by the increase in 〈s〉, followed by a merging transi-

tion where 〈nund〉 goes to zero. As shown in Fig. 4.3b, the intermediate

regime corresponding to a moderate interplay between opinion dynamics

and network evolution also leads to an inner structure of well-connected

groups with the same opinion, discoverable either by network drawing

techniques [97] or by community detection methods [118].

Publication I delves deeper into the analysis of our model by character-

izing this regime with other topological properties, as well as with analyt-

ical approximations for the time evolution of 〈nund〉 and the functional re-

lation between average degree and clustering coefficient in the final state

of the dynamics. It is time to move on, though, so let us concentrate on

the way individual attitudes shape opinion groups in our modeled society.
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4.2 Attitudes and opinion groups

‘No man is an island’, J. Donne would say [59], and as such, everything

we do takes and reflects on what those around us think. Social psychol-

ogy follows the lead with its social impact theory [120, 152], describing

the influence on individual thoughts exerted by the presence of others.

Our model encloses this effect in a minimal way via the long-range in-

teraction term flαi, that together with one-to-one discussions determines

the time evolution of opinions between generations. As opposed to the ho-

mophilic effect assumed for direct discussions, a negative attitude αi can

enhance opinion differences among agents. Perhaps another way of ex-

plaining this is through the anecdotal comment of a participant in SmAll

Talk, whom after being inquired about his continual attempts at interact-

ing with people of the opposite opinion, chose to answer: “it’s not about

me being right, but about showing them that they are wrong”. Some may

prefer strife over agreement, and their presence will undoubtedly play a

role in the formation of social groups. How does attitude determine the

development of communities in our model?

In Publication II we tackle this question by analyzing the link between

attitude and group size. A straightforward way of doing so is first to iden-

tify communities in a stationary final state corresponding to the interme-

diate g regime (like the center network in Fig. 4.3b), and then to calculate

the distribution of attitude values in each opinion group. In Fig. 4.4a we

plot such agent number distribution Nc as a function of αi for several rel-

ative group sizes c/N . Quite clearly the small community is composed of

agents with αi < 0, while the medium-sized group has attitudes of both

signs and the large one has mostly agents with αi > 0. In other words,

a negative attitude parameter drives the formation of small groups of in-

dividuals with the same attitude and opinion sign, segregated from those

who feel comfortable in the majority.

Let us go further and consider the effect of the average attitude 〈α〉 on

the number of communities in the network. The results in Figure 4.3 and

Fig. 4.4a correspond to attitudes uniformly distributed in [−1, 1], so we

can move this interval around to test the effect of varying 〈α〉 on the final

state of the dynamics. Indeed, Fig. 4.4b shows that when all attitudes are

positive (〈α〉 
 0) there is only one community with full consensus, but as

〈α〉 decreases the number of groups nα gets maximized. For 〈α〉 � 0 such

heterogeneous structure is lost due to the merging of most groups. The
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Figure 4.4. Attitudes and opinion groups. (a) Histogram of the agent number dis-
tribution Nc as a function of αi for varying relative group size c/N , with
N = 400 and g = 103. Small groups have only negative attitudes, while big
ones are mostly formed by agents with αi > 0. (b) Number of opinion groups
nα as a function of the average attitude 〈α〉, showing a maximal segregation
of communities for 〈α〉 < 0.

existence of an optimal attitude value can be intuitively understood as

frustration in the system: for decreasing 〈α〉 agents tend to form smaller

and smaller communities, until at some point numerous groups of the

same opinion are close by and detected as a single one. It is worth noting

that for 〈α〉 � 0 the visualized network tool [97] lets us distinguish only

two groups of opposite opinion, while the community detection algorithm

[118] finds three instead. Overall, it is clear that a measured portion of

agents with opposing attitude towards the mood of society is necessary

to break communities apart and enhance structural heterogeneity in the

network.

This link between attitude and group size can be further corroborated

by averaging over an ensemble of initial conditions, and by verifying the

robustness of the identified communities against several detection algo-

rithms. Yet another way is to devise a simplified version of the coevolv-

ing model of Section 4.1.2, one where the realism of complex topologies

is traded for an unambiguous definition of opinion group, while still pre-

serving some of the same macroscopic properties of its interplay between

opinion and network structure. The latter is indeed the focus of Publica-

tion III, as well as the next section.

4.2.1 A simplified model of coevolution

Picture for a moment that fancy dinner where everyone was seated around

a big wide table, and you just couldn’t find a topic of conversation with

your neighbors. Would it have been better to choose the other side of the
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Figure 4.5. A simplified model of coevolution. Diagram of generation dynamics
through location exchange in the chain model of Publication III. A pair of
agents i and j may swap places if opinion differences in their original neigh-
borhoods (left) are larger than in the alternative configuration (right), thus
increasing opinion homogeneity in the system.

table? Publication III deals with an opinion formation model of agents in

a closed chain, where the time evolution of opinions is coupled to location

exchanges between agents. The dynamics of transactions follows Eq. (4.1)

as before, but the interaction terms of Eq. (4.2) deal with opinion averages

over the sets of close and far agents, that is, fs = sgn(xi)〈x〉s and fl = 〈x〉l.
The generation dynamics is pictured in Figure 4.5. Instead of rewiring,

a pair of undecided agents may exchange places if opinion differences in

the original neighborhoods {i, i ± 1} and {j, j ± 1} are larger than in the

proposed configurations {j, i ± 1} and {i, j ± 1}. Therefore agents move

around to find a better discussing environment, in a manner reminiscent

of T. Schelling’s model for residential segregation [172, 173]. Moreover,

the simplified ring topology permits us to define boundaries between com-

munities where a flip of opinion sign takes place.

Despite the differences, this model exhibits a transition in the number

of undecided agents 〈nund〉 akin to the inset in Fig. 4.3a. For g larger

than a critical value gc, all agents reach the extreme values ±1 and form

large communities with the same opinion. Yet below gc homophily gives

way to frustration, as an increasing number of undecided agents with

αi < 0 get exchanged perpetually at the borders of decided opinion groups.

Publication III includes an extensive analytical treatment of the model,

with approximations for 〈nund〉, gc and the time evolution of the average

absolute opinion in the network.

Finally, we can confirm the scenario of Fig. 4.4a by calculating the atti-

tude distribution Nc over a large ensemble of realizations of the dynamics.

When g > gc all distributions have roughly a Gaussian shape centered

at 〈α〉 = 0 regardless of c, implying no correlation between attitude and
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group size. However, with g < gc the distributions for small and large c

peak below and above 〈α〉, respectively, while for intermediate sizes the

shape of Nc is bimodal.

All in all, the research in Publications I–III allows us to conclude that a

heterogeneous community structure in society may arise due to the inter-

play between opinion dynamics and network evolution in well-separated

time scales, and to the frustration arising from a diversity of personal at-

titudes. The situation we describe is somehow ideal though, as the setup

of SmAll Talk implies, since individuals interact in an isolated setting

and suffer no consequences from breaking connections. So let us move

on and consider more realistic scenarios, such as the presence of external

information and the effect of disagreement in cooperation.
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5. Opinions and conflict

5.1 Social response to scientific facts

Modern times are all about information. Let it be television, radio, news-

papers, or the web and its myriad of social networks, our daily lives are

immersed in an endless flow of data product of a society deeply inter-

twined with modern science and various emerging technologies. Opin-

ions are subject not only to discussions and personality traits, but to the

far-reaching effect of media. What is the social response to information

proclaimed as fact, such as scientific knowledge? The public perception

of science and its relationship with people’s opinions is in itself a topic of

debate, with descriptions in terms of scientific literacy [103, 135] or cul-

tural cognition [110]. Empirical evidence tends to favor the latter [4, 151],

where the perception of a fact is mainly influenced by moral values, be-

liefs and cultural traits shared with others rather than by technical un-

derstanding. Indeed, in polemic issues such as climate change the science

literate are often the most culturally polarized [111], actively dismissing

facts due to their values.

The culprits are our friends. Accepting a piece of scientific evidence has

no social value on its own, but the risk of disagreeing and be shunned

by peers may be huge [43]. Since this group influence depends on the

structure of the underlying social network, in Publication IV we describe

the effect of external information on opinion formation within the coevo-

lutionary framework of Section 3.2. There we take xi as the opinion of

agent i regarding the validity of a given scientific fact, such that total

agreement (xi = 1) would correspond to the correct position of accepting it

as true. The constant flow of data coming from the media is described by

a new parameter h, where its magnitude is proportional to the amount of
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information and its sign tells us if media is promoting the fact or not. The

symmetry between extreme positions ±1 in the model of Section 4.1.2 is

then broken by the effect of the associated external field for each agent,

hi = hi(xi;h), constituting a drive towards the scientific truth (hi > 0) or

away from it (hi < 0).

We can take into account these factors in a minimal way by writing the

dynamics of transactions as,

∂xi
∂t

= fsxi + flαi + h(1− xi), (5.1)

where the long- and short-range interaction terms are given by Eq. (4.2)

as before. Those fully accepting the scientific fact will disregard the me-

dia, but the rest may shape their views on its validity through an in-

terplay of opinions, attitudes and external information. Finally, group

influence is enhanced by the same generation dynamics of Section 4.1.2,

describing a process of opinion homogenization in social communities by

means of link rewiring.

The main features of the final state of the dynamics are shown in Fig-

ure 5.1, where we explore the effects of a varying field strength h in a

typical network configuration for the intermediate g regime. As the me-

dia increases its opposition to the scientific fact through a negative field

with growing magnitude, more agents comply with xi = −1 and lead to an

asymptotic consensus of disagreement with the fact in the limit h → −∞.

There are no undecided individuals to be found, and the few agreeing

agents get scattered over a random topology. If the media turns support-

ive with h > 0, however, the situation changes drastically. Small dis-

agreeing groups linger for considerably large values of h, while undecided

agents slow down the approach to positive consensus. In terms of swaying

individuals into its position, opposing media ends up being more effective

than a supportive one [50].

Publication IV contains an extensive analysis of this effect by using en-

semble averages and analytical approximations. There we explain the

asymmetry of Figure 5.1 with an approximate solution to Eq. (5.1), xi(t) =

[xi(0)−x∗]eλt+x∗, where the fixed point x∗ = −(h+αifl)/λ and its associ-

ated eigenvalue λ = fs − h have explicit expressions for their average val-

ues. This solution implies the existence of a critical field strength h0 > 0

where the eigenvalue changes sign, separating regimes where the fixed

point is either repulsive or attractive. Additionally, we extend the gener-

ation dynamics of Section 4.1.2 by considering a focal closure mechanism
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Figure 5.1. Social response to external information. Effect of the external field
strength h on the final state of the dynamics with N = 200 and g = 103.
Decided agents are drawn as red (xi = 1) or blue (xi = −1) circles, and unde-
cided individuals as yellow (0 < xi < 1) or black (−1 < xi < 0) squares. The
social response to a fact represented by the position +1 is characterized by
a critical field value h0 > 0, above which external information fails to sway
small disagreeing groups and undecided agents into accepting the fact.

[114], where agents are allowed to rewire links with anyone in the net-

work (not only second neighbors) due to opinion similarity. The presence

of this mechanism results in a loss of heterogeneous network structure,

less undecided agents and an increase in the critical value h0.

At this stage, an ideal step would be to gather large-scale data concern-

ing temporal features of the public perception of science and compare it

with the previous model. Unfortunately the methodologies used in most

scientific perception surveys have changed continually, shifting their fo-

cus from literacy to the link between science and society [18], thus making

the integration of data in different time snapshots quite difficult but for

isolated cases [170]. Moreover, polls at the country level do not usually

record details about social interactions, leaving a direct measurement of

the coupling between opinions and network structure to small controlled

experiments like the one in Section 4.1.1.

An alternative and less ambitious approach is considered in Publication

IV, where we use a couple of surveys from the European Union [68] and
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Mexico [46] to adjust the field strength in our model and quantify differ-

ences between the two populations. We first select 15 equivalent state-

ments from both surveys, classify them as facts or fallacies (according to

the subjective judgment of the authors), and give them h values that are

compatible with the level of agreement found in each population. Then

we focus, for example, on the set of fallacies with h > 0 that correspond

to an unfavorable perception of science at the matters at hand. It turns

out that the European poll has a larger set, yet with smaller assigned

h values, implying a Mexican population with particular yet pronounced

scientific misconceptions. A detailed account on the process of adjusting

field strength with survey data (as well as the classification of statements

as facts or fallacies) can be found in Publication IV.

The public understanding of science is a multifaceted phenomenon deal-

ing with the susceptibility of social groups to scientific and technological

notions in the presence of the same human cognitive abilities, different

cultural traits, and the politics of a globalized world, where opinions de-

velop under the effect of ever-changing external information. We now turn

to yet another situation in which individual opinions are forced to clash

against the common product of a larger group, that of the tasks achieved

by cooperation.

5.2 Conflict in collaborative dynamics

‘Two heads are better than one’, or so the old proverb goes. Indeed, the ef-

forts of many usually outweigh those of a single individual when it comes

to efficiency and the ability to solve complex tasks, leading to higher lev-

els of organization and social structure. Cooperation is no less fascinating

in its origin and consequences, arising despite the competition of natural

selection [8, 153] and often ending up in strife due to disagreements of

any kind [174]. The potential for conflict among cooperating individuals

is commonplace in insect species [166] and in groups of primates [55, 70],

the latter usually managed through policing and negotiation. Humans

are the masters of the trade, so to speak, with a gregarious nature that

has taken us from hunter-gatherer groups to societies entwined at the

global level [30, 132, 164], and a taste for conflict all the way from per-

sonal struggles to all-out war. Let them be partnerships [137], teamwork

in operating rooms [169], open source software development [122] or pub-

lic policy making [162], collaborative endeavors are prone to differences
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in attitudes, approaches and emphases, that is, opinions. How do such

conflicts of opinion emerge and get resolved?

Following the approach described throughout this Thesis, in Publication

V we take a particular collaborative environment and analyze its generic

dynamics with the agent-based modeling techniques of Section 2.3. In the

era of Internet and fast remote communications, the access to data regard-

ing cooperation between large groups of people is more feasible than ever.

Our chosen example is Wikipedia, a free, web-based encyclopedia where

volunteering individuals jointly write articles about any topic imaginable,

with all records of edits and discussions open to the public [216]. Although

the writing process is usually peaceful and constructive, some controver-

sial topics prompt users to disagree profoundly about the contents of the

articles. The ensuing ‘edit wars’, silly as they might seem [214], result in

a complex interplay between disparate opinions and a common product,

where editors continually override each other’s contributions instead of

building a consensual article.

We can model this situation in a minimal way by considering the coe-

volving dynamics between a set of N continuous opinions xi ∈ [0, 1] and

a single article value A ∈ [0, 1], representing the views of agents on a

given topic covered by the article and the particular position written on

it. Editors on the real Wikipedia can propose changes in an open forum

or ‘talk page’ [176], yet instead of constructive discussions, most com-

ments are simply appraised by similarly-minded individuals or ignored

by the rest. Then, it seems pertinent to describe this clash of minds by

the bounded-confidence dynamics of Eq. (3.1), otherwise known as the

Deffuant-Weisbuch model, where only pairs of opinions differing less than

a given tolerance εT ∈ [0, 1] can get even closer by the relative amount

μT ∈ [0, 1/2]. Additionally editors may modify the article when dissatis-

fied by it, effectively coupling the opinion and common product dynamics

in a second bounded-confidence process with tolerance and convergence

εA, μA ∈ [0, 1]. In other words, if |xi − A| > εA agent i edits the article to

its liking (A 	→ A+ μA[xi −A]), else it agrees and adopts the current state

of the product (xi 	→ xi + μA[A− xi]).

Figure 5.2 summarizes one of the main results of Publication V, regard-

ing the time evolution of opinions and article state when μA is varied. In

the simplest yet non-trivial scenario in parameter space (εT , μT , εA), the

initial stages of the dynamics are characterized by one large mainstream

group with opinions xi ∼ 1/2 and two small extremist groups near the
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Figure 5.2. Symmetry breaking in collaborative dynamics. Time evolution of opin-
ions xi and article A for different values of the convergence μA. (a) For low
μA groups are stable and the article follows the majority in an intermediate
position. (b) As the convergence increases A begins to oscillate between ex-
tremes and reaches consensus in a slanted opinion. (c) For large enough μA

the extremists spread out and converge to the mainstream group.

borders of the interval [0, 1]. For low convergence μA the article remains

close to a stable mainstream opinion, meaning that the small changes

made by dissident agents are not enough to overcome the majority’s view

on the topic. As μA increases, however, A begins to oscillate between ex-

treme opinions and ends up in a consensus state different from 1/2. In

more technical terms, the system undergoes a symmetry-breaking tran-

sition due to a local bifurcation in the speed of the mainstream group,

causing the entirety of editors to agree on an article expressing a slanted

view on the subject. Larger convergence undermines this effect, causing

the extremist groups to spread out and converge to the majority.

These regimes can also be discerned with the relaxation time τ of the dy-

namics. As shown in Publication V both numerically and with analytical

arguments, a system of finite size N always reaches a state of consensus

where all opinions and article share the same value. Yet in the regime of

Fig. 5.2a the relaxation time is very large, while for Fig. 5.2b it reduces

drastically to a quantity independent of N . Somewhat curiously, the open

conflict between groups (signaled by a persistent interaction through the

article) actually accelerates the convergence to consensus. Is it then possi-

ble to describe a conflictual scenario where consensus is only temporary or

nonexistent at all? We now turn to this question by extending our model

and comparing it with real data from Wikipedia.

36



Opinions and conflict

0.04 0.17 0.3
0

4

8

M

Dresden bombing

(a) Single conflict

×104

0 1

0

3

S

t

×104

0.2 0.7 1.2
t (×104 )

0

0.8

1.6
Japan

(b) Consensus plateaus

×106

0 1

0

3

S

t

×104

0.1 0.7 1.3
0

0.7

1.4
Anarchism

(c) Controversiality

×107

0 1

0

9

S

t

×104

Figure 5.3. Modeling controversy in Wikipedia. Empirical controversiality measure
M as a function of the number of edits t for three different conflict regimes in
Wikipedia. As more and more editors arrive to change an article, the resolu-
tion of a single conflict (a) can be replaced by cycles of strife and compromise
(b) or by pure, uninterrupted controversiality (c). Insets show the theoretical
analogue S for Npnew = 4 and εA = 0.47, 0.46, 0.44, respectively, where the
transition between regimes is modulated by the time scales of relaxation and
renewal.

5.2.1 Controversy in Wikipedia

The online project Wikipedia has been subject to intensive research on

recent times, mainly due to its large scale, data availability and the di-

versity of social phenomena it encompasses. The focus of research has

changed as well, moving slowly from the topological analysis of growing

networks of articles and links between them [35, 224] to the study of tem-

poral features such as online content popularity [165] and circadian pat-

terns of editorial activity [219]. As for the detection of conflicts in the col-

laborative creation of articles, the selection of appropriate metrics is far

from trivial, given the diversity of features that correlate with an article’s

controversiality. A suitable option relies on counting mutual reverts by

pairs of editors [220], that is, situations where each individual chooses to

delete an edit made by the other. The associated controversiality measure

M disregards non-conflictive scenarios (like vandalism and mistakes due

to inexperience) by considering the total number of edits of each reverting

individual and the amount of editors involved in the conflict [218].

Figure 5.3 shows the temporal evolution of M for three different conflict

regimes found in Wikipedia, with time t measured in number of edits for

a given article. Although the definition of the controversiality measure

makes it a monotonically increasing quantity, the distribution of mutual

reverts in time varies greatly. In the scenario of Fig. 5.3a we find topics

like the bombing of Dresden in World War II, where the rise and resolution
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of a single conflict is signaled by a smooth increase to a constant value.

The arrival of new editors dissatisfied with the current state of the article

may lead subjects such as Japan to the intermediate regime of Fig. 5.3b,

characterized by stages of conflict and plateaus of consensus. Finally, the

popularity of the Anarchism article makes it fall into the extreme case of

Fig. 5.3c, a scenario of never-ending controversiality where mutual reverts

happen all the time.

In the second part of Publication V we extend our bounded-confidence

model to account for a nonzero flux of agents and capture these conflict

regimes. In order to keep N fixed and simplify the treatment of the dy-

namics, we introduce a new parameter pnew as the probability for an old

editor to be replaced by a new one with random opinion. Then, the system

never reaches a state of permanent consensus and we can measure con-

flict by following the time evolution of the sum of absolute changes in the

article, S(t) =
∑t

t′=1

∑N
i=1 |A(i)−A(i−1)|. Indeed, S turns out to be a qual-

itative analogue of the empirical measure M , as inferred from the inset

curves in Figure 5.3. The interplay between the time scales of relaxation

to consensus and agent renewal gives rise to the peaceful and warring

scenarios of Fig. 5.3a and c, separated by a narrow regime in parameter

space where the time scales are similar (Npnewτ ∼ 1) and the density of

consensus plateaus gets maximized.

It is often surprising and soothing to find models that, simple as they

may be, are still capable of emulating properties of complex phenomena

such as conflict resolution, where the opinions of many clash together in

an environment full of perspectives with the oft impossible goal of agree-

ing on a task. Instead of losing ourselves in the myriad of differences

between individuals, we can concentrate on a few mechanisms and de-

scribe the global behavior of the system in terms of physical concepts, like

interactions and time scales. Yet reality is never that easy; a fitting model

does not disprove that other mechanisms are at play, and the qualitative

information gained might not be enough to allow prediction or control

over the system. To conclude with the overview in this Thesis, we now

continue with a brief outlook on the statistical physics approach in social

dynamics.
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6. Final remarks

We have all felt the sway of our opinions and the pull of friends, the way

our gregarious nature leads to circles of supporting relationships and yet

profound strife. The work summarized in this Thesis provides mathemat-

ical descriptions for the evolution of opinions in society, based on simple

mechanisms of individual conduct and group influence. Such models ab-

stract the inherent complexity of human behavior by reducing people to

opinion variables spread over a network of social interactions, with vari-

ables and interactions changing in time at the pace of a handful of equa-

tions. While the rules of the models are motivated by sociological studies

or small controlled experiments, their behavior at the system level can be

analyzed with statistical physics tools and compared with available data

on large-scale social phenomena.

From the extensive analysis of these models, a couple of generic conclu-

sions are in order. First, the emergence of groups of agreeing individuals

in society may be regulated by well-separated time scales of opinion dy-

namics and network evolution, and by a distribution of personality traits

in the population. Our social environment can then be fragmented as

more people turn against the collective mood, ultimately forming minori-

ties as a response to external influence. Second, the exchange of views in

tasks achieved by cooperation may lead not only to the rise and resolution

of opinion issues, but to an intermediate state where conflicts get solved

just to appear again and again. This aspect of human behavior, seen in

collaborative websites like Wikipedia, can be emulated by surprisingly

simple interactions among individuals.

The results presented here are but a piece in the intricate puzzle that is

the understanding of the interplay between structure and dynamics in so-

ciety, a recent collective effort known as computational social science [47].

The field aims at characterizing temporal human behavior in different
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scales through interdisciplinary approaches, and as grand and difficult as

that sounds, a series of steps to follow seems clear enough. We should first

ask socially relevant questions, beyond simple curiosity or common sense,

allowing for proper descriptions at the individual level. Alternative mod-

els can then be statistically treated, compared and validated with empiri-

cal studies, like the development of groups in large social networks [155].

The final and most challenging step is a successful data-driven modeling

of social phenomena, where real data analysis and theoretical simulations

may be run in unison to give quantitative predictions and control over the

system.

Research studies in the statistical physics of opinion and social conflict,

including this Thesis, fulfill such requirements just to some extent. Apart

from foreseeable improvements like quantitative comparisons with cur-

rent or future data sets, a basic difficulty lies in the collaboration between

social and physical scientists, who tend to regard the other field as little

more than descriptive [27]. While the physics approach revolves around

simple models and the search for universal properties across many sys-

tems, the social sciences emphasize variations among individuals and in-

teractions. Better representations of reality probably lie somewhere in

between, and these disciplines should try to share more than just a com-

mon interest in social behavior.

An ambitious step in this direction would be a stringent use of the sci-

entific method, beyond the conceptual exercises that abound in the study

of opinion formation. The systematic gathering of data through controlled

online social experiments, tied to a variety of modeling tools, could allow

us to measure the effect of different mechanisms and replicate results

[93, 108]. If so, we will be in the position to formulate and reject hypothe-

ses like those underlying the agent-based formalism, or even predict and

control the response of a social group to carefully designed perturbations.

Perhaps then we will cease, as W. Hazlitt once said, to be the slaves of our

own opinions.
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