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1. Introduction

1.1 Motivation

The interaction of humans with computers is becoming more complex as

the information technology evolves. Both the amount of data available to

users and the complexity of everyday tasks performed by users are grow-

ing, which calls for more sophisticated interaction methods than the stan-

dard methods of item selection or text inputting via keyboard and mouse.

Today’s computer systems are expected to participate actively in the pro-

cess of interaction rather than behaving like finite-state automata. The

user asks more abstract questions to the computer such as to find the most

relevant information source for the current task, rather than to locate a

document by its precise name. During moments of heavy multitasking

(e.g. video conferencing while reading documents related to the meet-

ing, or writing a report while following high-priority e-mails), the user

demands more empathy from computers, such as not being disturbed by

an e-mail alert at a very crucial moment of a video conference.

Implementation of this sort of intelligent behaviour presupposes that

the computer is aware of the state of the user’s mind. The main question

of this thesis is whether such an awareness can be possible. The thesis

also seeks answers to a couple of sub-questions that arise from this main

question:

• Which aspects of the user’s mind can be revealed from indicators that

can be measured in an unobtrusive way?

• How can we infer these aspects of the user’s mind from the available

indicators?

13
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In this thesis, the state of any mental process of the user (emotions,

interests, intentions, mental workload, etc.) at a certain time is named

as a mental state. The mental states investigated in this thesis are listed

below:

• Object relevance: This is a measure of how much the user is inter-

ested in an object she is interacting. In Publication I, the ranking of

real-world objects with respect to their relevance is inferred. And in

Publication II and Publication IV, the actual relevances of real-world

objects are estimated from eye movement patterns.

• Affective state: This is a quantitative measure of the emotional state.

In this thesis, the valence-arousal [107] scale has been adopted to quan-

tize the emotional state. Valence refers to the intrinsic attractiveness

(positive valence) or aversiveness (negative valence) of an event, object,

or situation [36]. And arousal is the degree of reactiveness to stimuli.

In Publication III and Publication VI, valence and arousal are inferred

from a set of biosignals.

• Mental workload (Cognitive load): This denotes how busy the work-

ing memory is with a cognitive process. In Publication III and Publica-

tion VI, mental workload is represented in a discrete scale and inferred

from a set of biosignals.

• Liking: In Publication VI, liking is used as a discrete measure of how

much the user liked a presented video. In this work, liking is inferred

from a comprehensive set of biosignals.

• Auditory Attention: This is the measure of how much attention the

user pays to an audio content. In Publication V, auditory attention is

quantized in a discrete scale from 1 to 4, indicating increasing level of

attention. In this work, auditory attention is inferred from three biosig-

nals.

Among these mental states, object relevance, liking, and auditory at-

tention are meant for being useful especially in content selection. The in-

terest and attention of the user to the previously presented contents can

guide educated guesses on which items among the available set would be

14
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the most desirable for the user. This can be considered as an information

retrieval problem in a broader sense. On the other hand, affective state

and mental workload are chosen to be useful in especially in deciding how

and when the selected content should be presented. For instance, the con-

tent can be filtered when the user is in negative valence or under high

mental workload, and can be made more salient when the user’s arousal

is low.

This thesis consists of case studies on inferring the abovementioned

mental states of users who are monitored by biosensors on novel experi-

mental setups. The thesis also introduces novel machine learning models

tailored for these inference tasks.

1.2 Proactive user interfaces

User interfaces can be classified into two categories based on how they

communicate with the user: i) command-based interfaces, ii) proactive

interfaces. Command-based interfaces work in a finite-state-automaton

fashion; given an explicit command, they take the associated action. On

the other hand, proactive interfaces [116] constantly monitor the user,

anticipate the user’s interests and automatically execute the compatible

actions. This type of user interfaces are also referred to as non-command

interfaces [89]. Attentive interfaces [122] are also a special type of proac-

tive interfaces with a focus narrowed on a single mental state category:

attention.

As opposed to command-based interfaces, the interaction in proactive

interfaces is implicit, in which the computer participates actively. The

primary difficulty in developing such interfaces lies in inferring the user

interests. This thesis introduces machine learning techniques that take

a step towards solving this problem by extracting cues from the user’s

mental processes and physiology.

1.3 Biosensing

Biosensing technology enables measuring many aspects of human phys-

iology, such as neuronal activity, eye movements, pupil diameter, heart

rate, body temperature, skin conductance etc. Advances in recent years

brought about unobtrusive biosensors that do not hinder subjects from

15
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performing real-world tasks, making them feasible for experimental stud-

ies in naturalistic setups. In this thesis, users are measured under var-

ious novel experimental scenarios by biosensors such as electroencephalo-

graph (EEG), heart rate sensor, accelerometer, and eye tracker. The biosens-

ing technologies used in the thesis are detailed in Chapter 6.

1.4 Machine learning

Machine learning is a field of science that deals with capturing compli-

cated properties of noisy data based on mathematical models. It is used

in solving problems such as predicting outputs from given inputs, classi-

fying patterns, forming groups of similar samples, representing the data

in a lower dimensional space, extracting the relationships between co-

occuring data sets, etc. The discriminative property of machine learning

algorithms is that they take into account uncertainty in a principled way.

This field has produced standard tools widely used in the scientific com-

munity, such as support-vector machines, linear discriminant analysis,

and Gaussian processes. As an introductory text to the field, see, for ex-

ample, [15].

Machine learning lies at the heart of the methodology of this thesis.

The thesis introduces novel machine learning models for mental state in-

ference. These models effectively handle the notoriously large amount of

noise in the biosensor data. They also reveal interesting properties of hu-

man nature, such as how synchronized human body is with the data the

user is interacting (Publication V), and how similar the emotional reac-

tions of subjects are to certain conditions (Publication VI).

1.5 Affective computing

Application of machine learning to biosensor data for inferring the emo-

tional state has been studied under the name of affective computing [94].

This discipline studies methods to recognize and interpret human affects

from signals such as speech, facial expression, skin conductance, heart

rate, brain activity, etc. Publication III and Publication VI can be sub-

scribed to this field of science.
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1.6 Contribution of the thesis

In this thesis, inference of a set of mental states is investigated in the

following novel experimental setups:

• Inferring the relevance ranking of objects in real-world video

scenes from gaze patterns: The user watches a video of real-world

scenes, where objects are augmented with textual information. Eye

movements of the user are recorded in the meantime. After the experi-

ment, the user ranks the objects on each frame with respect to their rel-

evance at that time. The analysis task is to infer the rankings from eye

movement patterns and visual properties of the objects (such as their

size and relative distance). See Publication I for details.

• Inferring the relevance of real-world objects from gaze patterns

when the user is mobile: The user explores an experimental art gallery,

wearing a helmet with an attached eye tracker. She marks the paintings

she likes most. Her eye movements are recorded in the meantime. The

goal is to infer the marked paintings from eye movements. See Publica-

tion IV for details. Publication II introduces a pilot system for proactive

contextual information access, where gaze is used for the first time to

retrieve information about the objects in the scene that is relevant to

the inferred context. This system is then used as an infrastructure in

Publication IV.

• Inferring the affective state, mental workload, and liking of a

desktop computer user from biosignals: The user performs a bunch

of realistic tasks on a desktop computer such as exploring images, fill-

ing in surveys, and solving logical puzzles. The user is measured by four

biosensors (EEG, ECG, motion sensor, and pupil dilation) in the mean-

time. After the experiment, the user annotates her affective state and

mental workload at several stages of the experiment. The task is to in-

fer these annotations from the measured biosignals. See Publication III

and Publication VI for details.

• Inferring auditory attention from the correlation between biosig-

nals of the listener and the listened audio content: The user lis-

tens to an audio while simultaneously performing another visual task.
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Single-channel EEG, 3D body motion vector, and pupil dilation are mea-

sured from her body in the meantime. Her ground-truth level of atten-

tion to the audio is controlled by playing with the difficulty of the visual

task. The task is to infer this ground-truth level of attention from biosig-

nals. See Publication V for details.

To infer the mental states under the abovementioned experimental

setups, the following three novel machine learning models have been tai-

lored:

• A multitask learning model that shares information across learning

tasks by inducing similar tasks to combine multiple data views in sim-

ilar ways (Publication III and Publication VI). Inferring each mental

state and inferring mental state for each user are treated as related

tasks, and each sensor is treated as a view. This model demonstrates

higher prediction accuracy and demands less computational time than

its predecessors on several benchmark data sets. See Publication III for

details.

• A Gaussian process classifier that classifies multivariate time series.

In Publication IV, eye movements inside a target object are modeled

as a time series with an attached binary label indicating whether that

object is relevant. Once the classifier has been trained, it predicts the

relevance of the newly seen objects from eye movements better than

dwell-time thresholding, which is the only earlier method that solves

the same problem.

• A Bayesian formulation of canonical correlation analysis (CCA) tailored

for time-dependent data, such as biosignals. An existing Bayesian CCA

model is extended with a Markov chain driven latent representation.

This model predicts the user’s auditory attention without requiring any

training labels (Publication V) from the correlation between the audio

content and the biosignals of the user listening to it. The model performs

better than time-independent variants of CCA in predicting attention in

large time periods.
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1.7 Organization of the thesis

In this manuscript, an overview of the computational methods used in

the published thesis work is given, and the main contributions are high-

lighted. In Chapter 2, a methodological background is developed starting

from basic concepts of machine learning. In Chapter 3, short descrip-

tions of supervised learning models referred in the publications are given.

These models are used either as components of the proposed models or

as baselines. In Chapter 4 the multi-view learning concept is advertised

for incorporating data coming from different sensors. In Chapter 5, the

multitask learning idea is suggested for learning related tasks together

by a single model. In Chapter 6, a flavour of the biosensing technology

is provided, focusing on the sensors used in the experiments. In Chapter

7, the experiment setups constructed in the publications and the inferred

mental states are explained. Finally in Chapter 8, ideas on possible future

research directions motivated by this thesis are given.
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2. Machine Learning Basics

2.1 Learning a model from data

Machine learning models serve for two main goals:

• predicting the outcome of a non-deterministic process from available

input factors.

• revealing intrinsic properties of data (such as, the relationship between

factors, or the low-dimensional manifold the data lie on), which is par-

ticularly useful when our prior knowledge on the underlying process is

too limited to devise a model.

In this chapter, machine learning problems encountered throughout

the thesis are explored. An introduction is also provided to methods of

assessing model performance. The chapter classifies machine learning

models as supervised and unsupervised models based on whether they use

ground-truth output data, and as parametric and non-parametric models,

based on modeling principles. These dichotomies are simplified for struc-

turing the methods used in this thesis.

2.2 Probabilistic analysis

Statisticians have two competing views on what a probability is: the fre-

quentist view, and the Bayesian view. For frequentists, probability is a

characteristic of an event that can be calculated by repeating an exper-

iment infinitely many times and taking the fraction of the occurrence of

the event. For Bayesians, it is a measure of the belief in whether the event
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can take place under the given conditions. Frequentists say that proba-

bility is an objective measure, while Bayesians define it as a subjective

value [27].

Suppose we have a probabilistic model p(x|θ) of a set of joint variables

x = [x1, x2, · · · , xD] parameterized by θ = [θ1, θ2, · · · , θK ]. The goal is to

estimate θ from a set of observations X = [x1,x2, · · · ,xN ]. The probability

of the occurrence of the observations p(X|θ) is called the likelihood. From

the frequentist point of view, the model parameters are scalar values that

converge to their true value as N → ∞. In applications, we are restricted

to a finite set of observations. Hence, the parameter values θMLE that

give the highest likelihood are the best possible guess we can make. In

frequentist inference, model parameters are estimated by θMLE , which is

called maximum likelihood estimation (MLE). The probabilistic model in

Publication I is inferred using maximum likelihood estimation.

The Bayesian approach sees model parameters as probability distri-

butions, as everything else in the model. The inference problem is es-

timating p(θ|X), which is called the posterior. By Bayes’ rule [11], this

distribution can be decomposed as

p(θ|X) =
p(X|θ)p(θ)

p(X)
.

The additional distribution on the parameters p(θ) is called the prior,

since it is observation-independent. Bayesian analysis allows prior beliefs

to be incorporated into the model via the chosen prior. The source of these

beliefs could be expert knowledge or the outcomes of earlier analyses. In

Bayesian formulation, an event that never occurs in the observations does

not necessarily have non-zero probability. The denominator p(X) is called

the evidence. It gives an overall idea of how well the model fits to the data.

Inference of a Bayesian model is about finding the posterior distribu-

tion that best explains the unseen samples. However, the posterior dis-

tributions of many models cannot be expressed in closed form as a func-

tion of parameters. In these cases, the posterior is approximated using

techniques such as Markov Chain Monte Carlo (MCMC) sampling [105],

and variational inference [57]. In MCMC, the posterior is approximated

by a large collection of samples randomly drawn from the posterior dis-

tribution. In variational Bayes, it is approximated by a combination of

simpler tractable distributions. MCMC often gives higher accuracy, while

learning with variational Bayes is usually faster. Variational inference is

used for the Bayesian model in Publication V. A detailed investigation of

Bayesian modeling can be found in [42].
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2.3 Unsupervised learning

Unsupervised learning is the task of finding structure in the data where

the samples are associated with output labels. An unsupervised model

separates the data into an assumed structure and pure noise. Some ex-

amples of unsupervised learning problems are:

• clustering: Forming groups of similar samples. A simple example is the

k-means clustering algorithm [80]. Infinite mixture models with Dirich-

let process priors [101] and latent dirichlet allocation [16] are more ad-

vanced variants.

• density estimation: Fitting a probability density to data. A simple choice

is the normal distribution. The learning task is to infer the unknown

mean and variance.

• dimensionality reduction: Finding a low-dimensional manifold that best

explains data for compression, noise removal, or visualisation. A typical

example is Principal Component Analysis (PCA) [93]. Gaussian Pro-

cess Latent Variable Models (GPLVM) [74] and Informative Discrimi-

nant Analysis [63] are more recent variants.

• dependency modeling: Modeling dependencies between co-occurring data

sets. A typical example is Canonical Correlation Analysis (CCA) [53,

125].

In Publication V, an unsupervised model that predicts auditory at-

tention from the dependencies between the user biosignals and audio is

introduced. See Section 7.3 for details.

2.4 Supervised learning

In supervised learning, each sample in the data has an assigned output.

The task is to learn a mapping from the input samples to the output val-

ues. This mapping is meant for predicting the output of new samples as

successfully as possible.

The performance of a supervised learning algorithm is evaluated by

splitting the data set at hand into two parts. The first part is shown to the
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model with the known outputs. This is called the training (or learning)

phase. Then, the outputs of the second part are predicted by the learned

model, and the predictions are compared to the true output values. This

is called the test (or generalization, or evaluation) phase. The former data

split is called the training data set and the latter test data set.

Supervised learning problems can be classified into three main cat-

egories based on the output structure: regression, classification, and or-

dinal regression. In the rest of this section, these three types of super-

vised learning algorithms are briefly described and examples to these al-

gorithms are demonstrated. Other types not used in this thesis, such as

structured prediction [8], are ignored for simplicity.

2.4.1 Regression

In regression, the goal is to predict real valued outputs y ∈ R from input

samples x. A simple regression method is linear regression

p(y|w, β) = N (wTx, σ2)

where we assume that the output is a weighted linear combination of the

input variables with an additive residual white noise with variance σ2.

The maximum-likelihood estimate of this model has the following analyt-

ical solution

ŵ = (XTX)−1XTy.

Geometrically, linear regression corresponds to fitting a hyperplane on

the data space that reduces the expected prediction error. Figure 2.1 il-

lustrates the idea on one-dimensional data.

More advanced regression methods are used in Publication V to infer

the level of user attention from biosignals. These methods are detailed in

Chapter 3.

2.4.2 Classification

In classification, the task is to assign an input sample x to one of the pos-

sible categories C = {c1, ..., cK}. An example is handwritten digit recogni-

tion, where we take the pixel values of the image of a handwritten digit

as the input, and predict the digit as the output.

A simple classification method is logistic regression. We explain this

model for binary classification {0, 1}; its extension to the multiclass case is
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Figure 2.1. Linear regression finds a hyperplane (a line for one-dimensional input) that
best maps the inputs to the outputs. A synthetic data set of 100 points gen-
erated from a bivariate normal distribution with mean [10; 1] and covariance
[21; 0.51.5] is shown as red pluses; the first variate being the one-dimensional
input data (shown on the x-axis), and the second the output values (shown
on the y-axis). The black line is the predictor learned by linear regression.

straightforward. Logistic regression directly models the class conditionals

in a discriminative fashion by a linear regressor on the log odds

log

[
p(y = 1|x,w)

p(y = 0|x,w)

]
= wTx.

By rearranging the terms, this equals to squeezing the output of a linear

regressor by the logistic function

p(y = 1|x,w) =
1

1 + exp(wTx)
.

Squeezing the output of a regression method by a sigmoid function to

model class-conditional densities is a common trick also used in state-of-

the-art classifiers such as Gaussian processes, as will be seen in Chapter

3.

In logistic regression, the likelihood of a data set X = [x1,x2, · · · ,xN ]

and the corresponding vector y = [y1, · · · , yN ] of binary labels {0, 1} is

p(y|X,w) =
N∏
i=1

p(yi|xi,w)yi(1− p(yi|xi,w))1−yi .

The negative log-likelihood then takes the form [51]

J(w) = −ln p(y|X,w) = −
N∑
i=1

{ln p(yi|xi,w) + (1− yi)ln(1− p(yi|xi,w))}

(2.1)

= −
N∑
i=1

{
yiw

Txi − ln(1 + exp(wTxi))
}
.
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The maximum-likelihood solution to this model is not available in

closed-form due to the non-linear sigmoid function. However, the concav-

ity of the negative log-likelihood enables to reach the global maximum us-

ing iterative methods. A standard choice is the Newton-Raphson method

which suggests

wnew = wold −H−1∇J(w)

as the update rule, where H is the Hessian matrix with respect to w.

Using this method, the update rule for logistic regression becomes

wnew = wold(XTRX)−1XTRz

where R is an N ×N diagonal matrix with Rii = p(yi|w)(1− p(yi|w)) and

z = Xwold +R−1(y − p)

with p = [p(y1|wold, · · · , p(yN |wold)]. This method is also known as iter-

ative reweighted least squares (IRLS) [106] because at each iteration it

solves a least-squares problem weighted by R [51].

Mental states such as affective state, mental workload, and object

relevance are predicted from biosignals in Publication III, Publication VI,

and Publication IV using state-of-the-art classification methods.

2.4.3 Ordinal regression

In ordinal regression, the output is discrete as in classification, but there

is an ordering relationship between the possible output values. In other

words, this is a regression problem with discrete output values. See [73]

for a review of applications of ordinal regression to medical data analysis.

A simple ordinal regression model can be obtained by modifying the

logistic regression model so that instead of direct class conditionals, the

log odds are taken with respect to the cumulative class conditional distri-

butions

log

[
p(y <= k|x,w)

1− p(y <= k|x,w)

]
= wk

Tx

for each category k. The CDF of the class conditional then becomes

p(y <= k|x,w) =
exp(wk

Tx)

1 + exp(wk
Tx)

.

The inference of this model is done by Newton-Raphson updates very sim-

ilarly to standard logistic regression.

This model is used in Publication I to predict relevance rankings of

real-world objects from eye movements in video scenes.
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2.5 Learning parametric and non-parametric models

Most machine learning methods can be fully described by a finite set of

parameters θ = [θ1, · · · , θP ], where the number of parameters P < ∞ is

predetermined by the model assumptions. For example, the linear regres-

sion has D+1 parameters (w1, · · · , wD, and b) for D dimensional data. This

kind of models are known as parametric models. In probabilistic paramet-

ric models, new samples are predicted based on the posterior p(θ|D) by

p(x∗|D) =

∫
p(x∗|θ)p(θ|D)dθ.

Parametric models can be non-probabilistic as well. Let M(θ) be a model

parameterized by θ. The learning phase is then about searching for a

parameter set θ̂ that maximizes a criterion of the expected generalization

performance. The trained model M(θ̂) then makes its predictions based

on this estimate.

There is another group of models, called non-parametric models that

cannot be described by a finite set of parameters. In such models, the

information in the training data is not summarized by a predetermined

number of parameters. Hence, learning and prediction stages cannot be

entirely separated. All the training data are directly used in predicting

new samples. Non-parametric models usually make less assumptions on

the data distribution than parametric models. However, they demand

more data for reliable performance.

In this thesis, parametric models are used in Publication I, Publica-

tion III, Publication V, and Publication VI, and non-parametric models in

Publication IV and Publication V.

2.6 Tuning model hyperparameters

Many machine learning models have some parameters that are not de-

signed solely to be learned from data. They can also be used to induce our

prior beliefs and assumptions about the data into models. This type of

parameters are called hyperparameters. If sufficient domain knowledge is

available, hyperparameters can be manually tuned. Otherwise, they are

tuned in a data-driven manner. Below, two popular methods are explained

for data-driven hyperparameter tuning.
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Type II maximum likelihood (ML-II)

This method is applicable to probabilistic models, where hyperparameters

are the parameters of prior distributions. Given a data set D, a vector

of model parameters θ, and a vector of hyperparameters γ, the type II

maximum likelihood method suggests learning the hyperparameters by

maximizing the marginal likelihood

p(y|D,γ) =

∫
p(y|D,θ)p(θ|γ)dθ

with respect to γ. In the proper Bayesian treatment, the hyperparam-

eters should be assigned a hyperprior p(γ) if they will be learned from

data. However in many situations, this makes the computations compli-

cated, such as in RVMs. Hence, we are satisfied with a more biased but

computationally more efficient estimate of the hyperparameters.

Cross-Validation

Validation refers to measuring the goodness-of-fit of a model. Cross-validation

is a special validation method. When it is used for evaluating a model hy-

perparameter, the training data are split into a number of partitions at

random. For each possible hyperparameter value in the set, the model is

tested on each partition after being trained on the other partitions. The

model performance for that hyperparameter value is measured by aver-

aging over all partitions. Finally, the value with the highest performance

is chosen. If the data are split into K partitions, the method is referred to

as K-fold cross validation. In the extreme case, there can be N partitions.

Then at each iteration, only one sample is held out, which is known as

leave-one-out (LOO) cross validation.

Cross-validation can be used for evaluating generalization performance

as well. In that case, instead of the training data, the whole data are split

into partitions, the held out partition is used for testing, and the rest for

training.

2.7 Measuring model performance

In this section, the performance measures for regression and classification

used in the publications are listed.
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2.7.1 Measuring regression performance

In regression problems, the most intuitive measure of performance is the

expectation of the divergence of predictions from the true values, which

is referred to as the mean-squared error (MSE) and usually estimated by

the sample mean

MSE(ŷ) =
N∑
i=1

(yi − ŷi)
2

where yi and ŷi are the true and predicted outputs for data point i, re-

spectively. It is often preferred to use the square-root of MSE, called the

root-mean-squared error (RMSE), since it has the same unit as the out-

put values. In Publication III, regression performance is measured using

RMSE.

2.7.2 Measuring classification performance

Suppose we have N samples, and N binary predictions. The predicted

labels compare with the true labels in four possible ways, as shown in

Table 2.1. Each entry in this table, also known as the confusion matrix,

shows the count of samples for which the predicted and true labels com-

pare as the entry denotes. Many measures revealing different aspects of

Prediction

Ground Truth

0 1

0 True Negative (TN) False Positive (FP)

1 False Negative (FN) True Positive (TP)

Table 2.1. Confusion matrix showing each possible relationship between the predicted
label and the true label. Each entry in the matrix shows the count of samples
whose predicted and true labels have the relationship identified by the entry.

the model performance can be calculated from the entries of this table,

such as:

• Accuracy : The proportion of the correctly classified samples ((TP +

TN)/N ). It is the most intuitive way of measuring classification perfor-

mance, but it is sensitive to class imbalance. For a data set having 98

samples labeled as 0, and 2 samples as 1, always predicting 0 gives 98%

accuracy.

• Precision: The proportion of correctly classified positive samples to all
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samples classified as positive (TP/(TP + FP )).

• Recall : The proportion of correctly classified positive samples to all

positive samples in the data (TP/(TP + FN)).

• F1-score : It is the harmonic mean of precision and recall

F1 = 2 · precision · recall
precision + recall

.

It is a preferred performance measure for imbalanced data sets. If the

cost of misdetecting each class label is equal, using Macro F1 score,

which is the mean of the F1-scores with respect to each label versus all

others, is convenient. This variant is used in Publication IV and Publica-

tion VI. For cases where recall and precision have unequal importance,

this measure is extended to

Fβ = (1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP

where the ratio of the importance of recall to precision is tuned by β

[104].

2.7.3 Receiver operating characteristic

Receiver operating characteristic (ROC) curve plots the change of recall as

a function of false-positive rate (FP/(FP +TN)) as the decision threshold

varies. ROC curves are used for comparing classifiers and for choosing

the optimum decision threshold which gives the best trade-off between

false positives and false negatives for a classifier. In Figure 2.2, ROC

curves for two classifiers are given in blue circles and red triangles. The

diagonal line shown in dashed black denotes the random chance level.

The classifier shown as blue circles is better than the one shown as red

triangles since its recall is higher for all false-positive rates. Two ROC

curves can be quantitatively compared by the area between the curves

and the false-positive rate axis. This measure, referred to as the area

under the ROC curve (AUC), is used as a standandard goodness measure

for comparing models especially when the data set is class-imbalanced

[70]. This measure is used for comparing models in Publication IV.
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Figure 2.2. ROC curves of two models, and the random chance level, are given in blue
circles, red triangles, and black dashed line, respectively. Both models are
better than random chance and Model 1 is better than Model 2.

2.7.4 Precision-recall curve

Precision-recall curve is the plot of change in precision as a function of

recall as the decision threshold varies. It is frequently used as a good-

ness measure by the information retrieval community [7] for comparing

models where output labels are binary (relevant and irrelevant) and there

is a grand imbalance between classes. In Figure 2.3, the precision-recall

curves of two imaginary models are given as blue circles and red trian-

gles. The curve of the model shown as blue circles is above that of the

model shown as red triangles, which means that for any relevance level,

the blue model has higher precision. Hence, the blue model is said to

have better retrieval performance than the red one. The inverse propor-

tion between precision and recall in both models is due to the well-known

precision-recall trade-off [7]. Typical measures to summarize precision-

recall curves include area under the precision-recall curve (applied in the

same way as the ROC curve), and the precision-recall breakeven point

(PRBEP) (the point on the curve where precision and recall are equal),

and mean average precision (MAP) (mean of the average of the precision

scores over a set of queries at threshold values where a true positive is

obtained for the newly added data point).
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Figure 2.3. Precision-recall curves of two models are given in blue circles and red trian-
gles. Model 1 is better than Model 2, since for each recall level, its precision
is higher.
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3. Supervised Learning by Kernels

Kernelizing a learning algorithm refers to changing its input space us-

ing a mapping function. Any algorithm whose formulation has the input

data always in dot-product form can be kernelized by replacing these dot-

product terms by a function, called a kernel, that satisfies certain mathe-

matical properties. This technique is called the kernel trick. Kernelizing

an algorithm brings in benefits, such as:

1. obtaining a richer feature representation, which yields better class seper-

ability,

2. integrating data coming from multiple modalities into a single learner,

3. operating on non-numeric or structured input data, such as string se-

quences and time series.

Kernel methods are used in Publication V due to 1, in Publication III and

Publication VI due to 1 and 2, and in Publication IV due to 1 and 3. In

this section, a brief mathematical background is given on kernels, and

the kernel types and the kernel-based models used in the publications are

described.

3.1 Kernels

3.1.1 Mathematical Background

We look for a mapping from the original feature space to a higher dimen-

sional vector space: Φ : X → H. We prefer this new space to be associated

with a dot product, and to have the possibility of assigning coordinates to
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each point on the space. A Hilbert space holds both of these properties.

Definition 1 (Hilbert Space) A Hilbert space H is an inner product

space endowed with a dot product 〈., .〉 that is separable1 and complete2.

Designing the mapping function Φ explicitly is both tedious and prac-

tically impossible for a high-dimensional target space. Alternatively, by

exploiting the dot product defined on H, we can design Φ indirectly by a

function that maps a pair of points (x,x′) to their dot product on H. Such

a function is called a kernel.

Definition 2 (Kernel) Given an arbitrary set X , a Hilbert space H and

a map Φ : X → H, a kernel k is a function that satistifies k(x,x′) =

〈Φ(x),Φ(x′)〉.

A direct consequence of this definition is that each kernel has to be sym-

metric (i.e. k(x,x′) = k(x′,x)), due to the symmetry of the dot product.

Definition 2 allows even infinite-dimensional feature spaces, as will be

exemplified in Section 3.1.2.

When kernelizing a model, a central question is how to assure whether

the chosen kernel k : X × X → R corresponds to a dot product on H,

in other words, whether a kernel is valid. Two concepts are essential

for assuring the validity of a kernel: Gram matrix, and positive semi-

definiteness.

Definition 3 (Gram Matrix) Given a set X = {x1, · · · ,xN} and a kernel

k, the corresponding Gram matrix is an N ×N matrix with entries

Gij = k(xi,xj)

for each xi,xj ∈ X .

Definition 4 (Positive Semi-definite Matrix) An N ×N matrix X sat-

isfying vXv′ ≥ 0 for any N × 1 vector v is referred to as a positive semi-

definite matrix.

Combining these two concepts, we can perform the validity check using

the Mercer’s theorem.

Theorem 1 (Mercer’s Theorem) A function k(x,x′) : RD × R
D → R is

a valid kernel if the Gram matrix G it produces for any finite set of points

{x1, · · · ,xN} with xi ∈ R
D is symmetric and positive semi-definite [85].

1A vector space H is separable if and only if it has a countable orthonormal basis.
2A vector space H is complete if every Cauchy sequence of elements in H con-
verges to an element of H.
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A vector space associated with a valid kernel corresponds to a special type

of Hilbert space with additional properties, called a Reproducing Kernel

Hilbert Space.

Definition 5 (Reproducing Kernel Hilbert Space) A Reproducing Ker-

nel Hilbert Space (RKHS) Hk of kernel k is a Hilbert space of functions

f : X → R with a dot product 〈., .〉 and kernel k : X ×X → R satisfying the

following properties:

1. k has the reproducing property 〈f, k(x, .)〉 = f(x) for any f ∈ Hk, and

thus 〈k(x, .), k(x′, .)〉 = k(x, x′).

2. k spans H (i.e. H =
{
f | f(.) =

∑N
i=1 αik(xi, .), αi ∈ R

}
) [38, 109].

According to the reproducing property, any positive definite kernel is rep-

resented as a dot product of two functions on the RKHS spanned by the

kernel. Hence, a kernel can be treated as a similarity measure for pairs

of data points. See [109] for a more thorough discussion.

3.1.2 Example Kernels

Below, the kernels used in this thesis are explained.

Radial Basis Function (RBF) Kernel

The RBF kernel is defined by

kRBF (x,x
′) = exp

(‖x− x′‖2
2σ2

)
where σ is a hyperparameter referred to as the length scale. It deter-

mines the smoothness of the decision boundary imposed by the kernel.

The larger σ is, the smoother the decision surface is. This kernel is also

known as the Gaussian kernel since its formula is proportional to the PDF

of the normal distribution. It is one of the most frequently used kernels

due to its simplicity, interpretability, and ability to capture non-linear

boundaries.

Linear Time Warping Kernel

This kernel is used for data sets whose samples are multivariate time

series. It uses linear time warping for aligning time series having pos-

sibly different lengths. Alignment is an element-wise matching between

two time series. Matched elements are then passed through an arbitrary
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kernel and summed. Formally, a linear time warping kernel is [111]

kLTW (X,V) =
1

L

L∑
k=1

k(xψ(k),vθ(k)),

where ψ(k) = �(|X|/L)k� and θ(k) = �(|V|/L)k� are the linear time warp-

ing functions and L is an arbitrary integer. Any valid kernel can be chosen

for k(., .). In Publication IV, this time-series alignment is preferred rather

than more advanced choices, such as [29], in order to keep computations

fast enough for real-time use in pervasive setups.

3.2 Support Vector Machines

The support vector machine is a kernelizeable pattern classification algo-

rithm. Since it was introduced [120], it has been used in quite many ap-

plications, and shown to be a robust and computationally efficient model

that generalizes to unseen data quite well [45, 87].

Let X = {(xi, yi)| i = 1, · · · , N} be a labelled data set with N data

points, where xi is a data point and yi ∈ {−1,+1} is the corresponding

label. The support vector machine searches for a hyperplane

f(x) = wTφ(x) + b,

also called the decision boundary that separates the two classes. If the

classes are linearly separable, SVM chooses the hyperplane that maxi-

mizes the distance of the closest sample to the decision boundary given by

yif(xi)/‖w‖, called the margin. The idea is visually illustrated in Figure

3.1. This corresponds to the following optimization problem

arg max
w,b

{ 1

‖w‖min[yi(wTφ(xi) + b)]}.

Since the distance of a sample to the decision boundary is scale-invariant,

we can set yi(wTφ(xi) + b) = 1 in order to convert the above optimization

problem to the following quadratic program

minimize
w,b

{1
2
‖w‖2}

s.t. yi(w · xi + b) ≥ 1, ∀i = 1, · · · , N

which can be solved by off-the-shelf packages.

In order to handle overlapping class distributions, and also to avoid

sensitivity to outliers, we modify the above formulation to allow misclas-

sification by introducing a penalty term ζi, called a slack variable, that
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Figure 3.1. Illustration of the margin maximization idea in SVMs. Left: Hard margin
SVM assumes linearly separable classes. It maximizes the distance of the
closest samples (support vectors) to the decision boundary. This distance is
called the margin. Note that the area within the margin boundaries (between
the two parallel grey lines) is empty. Right: In order to handle linearly
unseparable class distributions, soft margin SVM relaxes the above problem
to allow data points to be misclassified. For this, a penalty term ζi is assigned
to each data point xi. This term takes a positive value if xi lies beyond the
margin boundary (f(xi) = yi).

takes a positive value for every data point xi lying beyond the margin

boundary (f(xi) = yi). The resulting optimization problem then becomes

minimize
w,b,ζ

{1
2
‖w‖2 + C

n∑
i=1

ζi}

s.t. yi(w · xi + b) ≥ 1− ζi, ∀i = 1, · · · , n

ζi ≥ 0, ∀i.

Here, C is a hyperparameter that determines a trade-off between the

training error and margin size. This corresponds to the bias/variance

trade-off between model fit and generalization. The C is set either by

cross validation or using a heuristic [17, 22].

The Lagrangian of the constrained optimization problem is

L(w, b,α,β) =
1

2
‖w‖2 + C

N∑
i=1

ζi −
N∑
i=1

αi[yif(xi)− 1 + ζi]−
N∑
i=1

βiζi

where α = [αi, · · · , αN ] and β = [βi, · · · , βN ] are Lagrange multipliers.

This formulation of the problem is not kernelizeable, since the input data

xi does not appear in the dot-product form. If we convert the Lagrangian

into its dual form by setting its gradient to zero and expressing all vari-
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ables in terms of the Lagrange multipliers α, we have

maximize
α

⎧⎨⎩
N∑
i=1

αi −
1

2

N∑
i

N∑
j

αiαjyiyjx
T
i xj

⎫⎬⎭
s.t. 0 ≤ αi ≤ C, ∀i = 1, · · · , N (3.1)

N∑
i=1

αiyi = 0

where the data points appear in dot products (xT
i xj). This enables us to

replace the dot product with a kernel k(x,x′). This dual form comes with

the following set of conditions:

αi ≥ 0,

yif(xi)− 1 + ζi ≥ 0,

αi(yif(xi)− 1 + ζi) = 0,

βi ≥ 0,

ζi ≥ 0,

βiζi = 0,

which are known as the Karush-Kuhn-Tucker (KKT) conditions. The so-

lution of the quadratic problem in Equation 3.1 can be speeded up using

the sequential minimal optimization (SMO) [96] algorithm, which ana-

lytically solves a pair of Lagrange multipliers at a time, iterating over

different pairs.

Once the model is trained, the output of a new sample can be predicted

by

f(x∗) =
N∑
i=1

αiyik(xi,x
∗) + b.

From the first three KKT conditions, we see that αi = 0 for samples lying

in the correct margin. Hence, they do not contribute to prediction. Thus,

it is sufficient to store only those training data points that are outside

the correct margin. These data points are called support vectors. This

sparsity property allows fast prediction in SVMs.

The SVM is essentially formulated for binary classification. Its exten-

sion to multiclass classification can be done in multiple ways. Amongst

the most common ways are:

• OVA (One-versus-all): For a K class classification problem, K SVMs

are trained. For each class, a separate SVM discriminates that class
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from all others. In prediction, the new sample is assigned to the class

for which the value of the decision function fk(x
∗) is the largest (winner-

take-all).

• AVA (All-versus-all): A separate SVM is trained to discriminate each

pair of classes. Hence, K(K − 1)/2 SVMs are trained in total. In predic-

tion, the choice of each classifier is counted as one vote, and the sample

assigned to the class having the highest votes.

• Unified optimization: The optimization problem is reformulated so

that K one-versus-all classifiers are jointly trained [129]. This strategy

has been shown to result in poor computational performance due to the

increased complexity of the optimization problem.

In Publication III and Publication VI the OVA approach is adopted for

multiclass classification with SVMs due to its low computational demand.

3.3 Relevance Vector Machines

While being a robust and effective method, SVM has some disadvantages,

such as the difficulties in fixing the hyperparameter C, not providing a

probabilistic interpretation of predictions, and requiring a positive semi-

definite kernel. The Relevance Vector Machine (RVM) is a probabilistic

model, inspired from SVM, which is introduced to eliminate these short-

comings [117].

RVM was originally introduced as a Bayesian linear regression model

with the likelihood function

p(y|X,w, σ2) = N (y|f(x), σ2) = N (y|
N∑
i=1

wik(xi,x) + b, σ2).

where k(., .) is a kernel. This likelihood function essentially corresponds

to the noisy version of the SVM prediction function. In order to impose

sparsity to data points similarly as SVM, an automatic relevance determi-

nation (ARD) prior is placed on the weights

p(w|α) =
N∏
i=1

N (wi|0, αi
−1)

where α = [αi, · · · , αN ] denote the vector of hyperparameters. The poste-
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rior of w then becomes

p(w|y,α, σ2) = N (μ,Σ)

with Σ = (σ−2ΦTΦ+A)−1 and μ = σ−2ΣΦTy where A = diag(α0, α1, · · · , αN ).

Here, Φ is an N × (N + 1) matrix with Φij = k(xi,xj−1) and Φi1=1.

Since incorporating hyperpriors over α and σ2 would make computa-

tions complicated, hyperparameters are typically learned by type II maxi-

mum likelihood [79], as described in Section 2.6. When the weights w are

integrated out, the resulting marginal likelihood is

p(y|α, σ2) = (2π)−N/2|σ2IN +ΦTA−1Φ|−1/2 exp{−1

2
yT (σ2IN +ΦA−1ΦT )−1y}.

If we set the derivative of the marginal likelihood to zero, we get

αi
new =

γi
μi

2
,

(σ2)new = ‖y −Φμ‖2/(N −
N∑
i

γi)

with γi = 1− αiΣii. The RVM is trained iteratively; in each iteration, the

posterior of the weights is calculated based on the newest values of the

hyperparameters, then the hyperparameters are re-calculated based on

the new posterior. This procedure is repeated until convergence. At the

end of the iterations, most of the weights are forced towards an infinite

peak at zero by very large αi values. Hence, the corresponding kernels are

pruned from the model. The remaining active data points having nonzero

weights are called relevance vectors, analogously to the support vectors in

SVM.

RVM usually finds sparser solutions than SVM [117], enabling faster

prediction. It also learns all model hyperparameters in a single run.

Meanwhile, RVM and SVM are comparable in terms of generalization er-

ror. RVM can be used for classification as well by passing the regression

output through a sigmoid function. Its application to multiclass case is

straightforward, unlike SVM. RVM is used as a baseline model in Publi-

cation V for predicting auditory attention from biosignals.

3.4 Gaussian Processes

Gaussian processes (GPs) are stochastic processes such that any finite set

of samples are distributed as multivariate normal. A Gaussian process

is specified by a mean function m(x) and a covariance function k(x,x′)
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[102],

f(x) = GP(m(x), k(x,x′)).

The Gaussian process serves as a prior over functions mapping a set of

variates to a real-valued output. Given any two input points x, x′, and

assuming that the data are centred (i.e. m(x) = 0), the GP prior on the

corresponding outputs f , f ′ is the normal distribution

N

⎛⎝0,

⎡⎣ k(x,x) k(x,x′)

k(x′,x) k(x′,x′)

⎤⎦⎞⎠ .

A main structural difference of the Gaussian process from the models in-

troduced so far is that it is a non-parametric model. One way of deriving

the Gaussian process is to integrate out the model parameters (weights) of

Bayesian linear regression. Hence, the Gaussian process can be thought

of as a distribution over functions that are not restricted to a finite para-

metric set.

3.4.1 Regression

The Gaussian process is applied to regression along with a noise model

(also called the likelihood) that takes into account the noise in observa-

tions. A desirable choice is a Gaussian noise model which ensures closed-

form calculation of the predictive distribution: p(y|f) = N (f, σ2
n). The

joint distribution of the output of the training data and that of a new

sample x∗ then becomes⎡⎣ y

f∗

⎤⎦ ∼ N

⎛⎝0,

⎡⎣k(X,X) + σ2I k(X,x∗)

k(x∗,X) k(x∗,x∗)

⎤⎦⎞⎠ .

The predictive distribution can be analytically computed based on stan-

dard properties of the normal distribution

p(y∗|X,y,x∗) = N (μp,Σp) (3.2)

with

μp = k(x∗,X)[k(X,X) + σn
2]−1y,

Σp = k(x∗,X)[k(X,X) + σn
2]−1k(X,x∗).

The kernel parameters (if there are any) have a significant effect on

model performance. They can be tuned using the type II maximum likeli-

hood method. Let γ = [γ1, γ2, · · · , γN ] denote the vector of kernel parame-

ters, the log marginal likelihood of the model is

log p(y|X,γ) = −1

2
yTKy − 1

2
log |K| − N

2
log 2π.

41



Supervised Learning by Kernels

The partial derivative of the marginal likelihood with respect to each hy-

perparameter is given by [102]

∂ log p(y|X,γ)

∂γi
=

1

2
yTK−1∂K

∂γi
K−1y − 1

2
tr

(
K−1∂K

∂γi

)
.

Based on these equations, the hyperparameter values that maximize the

marginal likelihood can efficiently be found by a gradient-based optimizer.

Gaussian process regression is used in Publication V as a supervised

predictor of the level of user’s auditory attention from biosignals.

3.4.2 Classification

The GP can be applied to classification problems by passing its prediction

output through a sigmoid function. We assume a latent decision function

f ∈ R, and place a GP prior on it. For binary class labels {−1,+1}, the

sign of f gives the predicted class and its magnitude gives the confidence

of our prediction, similarly to y(x) in SVMs. Given a test sample x∗, its

class y∗ is predicted by

p(y∗ = +1|X,y,x∗) =
∫

p(y∗ = +1|f∗) p(f∗|X,y,x∗)df∗

where

p(f∗|X,y,x∗) =
∫

p(f∗|X,x∗,f) p(f |X,y)df . (3.3)

The predictive distribution of the latent function p(f∗|X,x∗,f) is identical

to GP prediction (Equation 3.2). By Bayes’ theorem, the posterior of the

latent function is

p(f |X,y) =
p(y|f)p(f |X)

p(y|X)
.

Here, f |X ∼ GP(0,K) is the Gaussian process prior. The entries of the co-

variance matrix K are calculated by applying the kernel k(x,x′) on each

pair of samples. The value of the latent function is converted to the poste-

rior class probability by a sigmoid likelihood function p(y|f) = σ(f). Some

possible sigmoid functions are the logistic function σ(f) = 1/(1+exp(−f))

and the probit function Φ(z) =
∫ z
−∞N (τ |0, 1)dτ . It is not necessary to cal-

culate the marginal likelihood p(y|X) explicitly in model inference. Since

it does not depend on f , it appears as a constant during inference. How-

ever, it is useful in learning hyperparameters, as for GP regression.

GP classification is used in Publication IV to predict the relevance

of real-world objects from eye movement patterns. It is preferred over

SVM for the probabilistic interpretation of its outputs. The probability
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of an object being relevant p(y = +1|x) is taken as a scalar measure of

relevance.

GP classification does not have an analytical solution since the non-

linear likelihood function makes the integral in Equation 3.3 intractable.

Hence, approximation methods are used for inference, such as Laplace

approximation [130], expectation propagation [86], and MCMC sampling

[118]. In Publication IV, the Laplace method is applied which approxi-

mates p(f |X,y) by a normal distribution.
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4. Multi-view Learning

In many applications, multiple data sources coming from the same process

are available. An example is a data base of images with textual annota-

tions. For each image, we have both pixel values and annotations explain-

ing the same scene in the image in different ways. Learning models that

relate the co-occurring samples of multiple data sources is referred to as

multi-view learning. Another application of multi-view learning is what

is focused on in this thesis: integrating multiple biosignals gathered from

a computer user for inferring her affective state.

In this thesis, two multi-view learning approaches are used. In the

first approach, the data sources are integrated into a single model by de-

signing a similarity measure for each data source and combining these

measures. Finding the best way of combining the measures is the cen-

tral machine learning problem. In the second approach, dependencies

between data sources are analyzed. To this end, data sources are pro-

jected to a new space, which is chosen to be the one that best reveals their

dependencies on each other.

4.1 Multiple kernel learning

Mercer’s Theorem [85] assures that combining valid kernels using ele-

mentary operations, such as addition, and element-wise multiplication

produces a valid kernel. This property gives us the opportunity to design

complex kernels from simple ones. Combining kernels brings the follow-

ing benefits:

• More complex kernels can capture more complex properties of data,

which results in improved model performance.

45



Multi-view Learning

• We can perform multi-view learning using any kernel machine by as-

signing a kernel to each available data source. This both enables in-

tegrating data sources with incompatible representations, and provides

the model the flexibility of capturing distinct properties of each data

source.

The multiple kernel learning (MKL) technique can be applied to any

kernelizeable model. The machine learning model on which MKL is per-

formed is called the base learner [45].

Kernel combination strategies can be put roughly into three cate-

gories [45]:

1. Combination by fixed rules: Pre-determined fixed rules are applied

for combination, such as K = K1 + K2 or K = K1 ⊗ K2 [110]. This

approach is used for designing pairwise kernels, where the idea is to

define rules of similarity between two pairs of samples (xa
i ,x

a
j ), (x

b
i ,x

b
j)

coming from views a and b. An intuitive rule would be to sum the cross-

similarities of the pairs

kP ({xa
i ,x

a
j }, {xb

i ,x
b
j}) = k(xa

i ,x
b
i )k(x

a
j ,x

b
j) + k(xa

i ,x
b
j)k(x

a
i ,x

b
j)

which is called the genomic kernel. This kernel has been shown to be

quite useful in bioinformatics applications [12].

2. Heuristic combination: The combined kernel is calculated based on

heuristics. An example is a linear combination of P kernels [115]

KP =
P∑

p=1

wpKp

where w = [w1, · · · , wP ] is the vector of kernel weights, which are deter-

mined by the following heuristic

wp =
πp − δ∑P

i=1(πi − δ)
.

Here, πp is the accuracy obtained by training the base learner on kernel

Kp only, and δ is a hyperparameter in the range [0,min{π1, · · · , πP }]
serving as a threshold.

3. Combination by optimization: The optimal combination is learned

from data by optimizing the cost function of the base learner with re-

spect to the combination parameters. If we assume a weighted linear
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sum of the views, we can rewrite the SVM primal optimization problem

as [100]

J(q) = minimize
wp,b,ζ

⎧⎨⎩1

2

P∑
p=1

1

qp
‖wp‖2 + C

n∑
i=1

ζi

⎫⎬⎭
s.t. yi

P∑
p=1

(wT
p · Φ(xi)) + b ≥ 1− ζi, ∀i = 1, · · · , n

ζi ≥ 0, ∀i
P∑

p=1

qp = 1.

The dual of this problem is

J(q) = maximize
α

{
n∑

i=1

αi −
1

2

n∑
i

n∑
j

αiαjyiyj

⎛⎝ P∑
p=1

qpkp(x
p
i ,x

p
j )

⎞⎠}

s.t. 0 ≤ αi ≤ C, ∀i = 1, · · · , n
n∑

i=1

αiyi = 0.

All of the parameters, including the kernel weights q = [q1, q2, · · · , qP ],
can be efficiently optimized in an iterative procedure consisting of two

steps. First, the kernel weights are kept constant, and the model pa-

rameters α are learned in the same way as standard SVM. Then, the

model parameters are kept constant and the kernel weights are learned

by gradient descent using the gradient of the SVM cost function with

respect to q

∂J(q)

∂qp
= −1

2

N∑
i=1

N∑
j=1

αiαjyiyjkp(x
p
i ,x

p
j ), ∀p = 1, · · · , P.

This procedure is repeated until convergence. In Publication III and

Publication VI, this strategy is extended to a multi-task learning method,

which will be detailed in Chapter 5.

The MKL technique is used in Publication III and Publication VI for

incorporating signals coming from different biosensors, motivated by the

assumption that each biosensor has different signal characteristics that

can be better captured by an individual kernel. Furthermore, a multi-task

learning method is introduced that enables information transfer across

tasks by enforcing correlated tasks to have similar kernel weights. See

Chapter 5 for further details.
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4.2 Modeling correlations between views

4.2.1 Canonical correlation analysis

Canonical correlation analysis (CCA) is a factor analysis method for an-

alyzing dependencies between co-occurring data sets. CCA searches for

linear projections u and v that maximize the correlation between data

sets X = [x1;x2; · · · ;xN ] and Y = [y1;y2; · · · ;yN ] [53]

ρ = maximize
u,v

cor(uTX,vTY). (4.1)

A common measure of correlation is Pearson’s correlation [40, 92], which

is defined as the covariance of two random variables normalized by the

product of their standard deviations

ρxy = cor(x, y)
E[(x− E[x])(y − E[y])]√

E[(x− E[x])2]
√
E[(y − E[y])2]

. (4.2)

This normalization makes the magnitude of the covariance interpretable.

Correlation can take values within [−1, 1] due to the Cauchy-Schwarz in-

equality. The sign is negative when the two variables have an inverse

linear relationship, and positive when the relationship is direct linear.

The magnitude tells how strong the relationship is, in other words, how

close it is to a perfect line.

Plugging this measure of correlation into Equation 4.1 gives

ρ = maximize
u,v

uTΣ12v√
uTΣ11u

√
vTΣ22v

where Σ11 = cov(X), Σ22 = cov(Y), and Σ12 = cov(X,Y). The analytical

solutions for u and v are given by the principal eigenvectors of

Σ11
−1/2Σ12Σ22

−1/2Σ21 (4.3)

and

Σ22
−1/2Σ21Σ11

−1Σ12, (4.4)

respectively. The corresponding eigenvalue ρ, which is common in both

eigendecomposition problems, is the maximized correlation of the uni-

variate projections of the two data sets. Once either of the two vectors

is known, the other can be calculated using

v =
Σ22

−1/2Σ21

ρ
u,

u =
Σ11

−1Σ12

ρ
v.
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The data sets X and Y can be projected to a latent space with R =

min(D1, D2) dimensions by a projection matrix formed by the eigenvec-

tors of matrices (4.3) and (4.4) corresponding to the highest R eigenval-

ues. The projections are orthogonal since (4.3) and (4.4) are symmet-

ric matrices, resulting in projected variates U = [U1, · · · ,UR] and V =

[V 1, · · · ,V R] that are uncorrelated with each other both within and be-

tween data sets [60]

cor(Uk,U l) = 0, k �= l,

cor(V k,V l) = 0, k �= l,

cor(Uk,V l) = 0, k �= l.

CCA can be used for measuring the overall dependence between data

sets. One possible measure is the highest correlation between the uni-

variate projections, which corresponds to the largest eigenvalue of (4.3) or

(4.4). A more robust measure that takes into account multiple projections

is the mutual information [20]

I(X,Y) = −1

2

R∑
i=1

log(1− ρ2i ).

Note that this is a measure of mutual information for views that are

jointly distributed as multivariate normal.

Classical CCA is fast, easy-to-implement, and provides the global max-

imum. One disadvantage of the classical CCA is that it overfits badly for

high dimensions if the number of samples is close to the dimensionality

[65]. Regularization techniques such as adding a value to the diagonals of

the covariance matrices [124]

covreg(Xi) = cov(Xi) + λiI

in a ridge regression fashion partly solve this problem. An alternative so-

lution is adopted in this thesis that brings benefits additional to prevent-

ing overfitting. The problem is formulated within the Bayesian frame-

work, as will be discuss in the next section. This way, a probabilistic in-

terpretation of the outcome is obtained, which enables extensions to more

complex models with little effort, as was done in [2, 39, 55, 123].

CCA has been shown to be useful in a wide range of applications,

such as detecting mental task switches from the correlation of signals in

different parts of the brain [131], clustering samples coming from multi-

ple data sources [23], and combining histological images and additional
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information into a unified space where biochemical recurrence of cancer

patients are more predictable [44]. Classical CCA is used in Publication V

to predict the user’s level of auditory attention to an audio stimulus. The

prediction is performed in an unsupervised manner from the correlation

between biosignals and audio.

4.2.2 Bayesian canonical correlation analysis

CCA can also be formulated as minimization of the distance between the

views projected into a new orthogonal space [49]

minimize
u,v

‖uTX− vTY‖F .

This property inspires its probabilistic interpretation to have the struc-

ture that the samples come from a common latent space consisting of un-

correlated variates. The latent samples are then projected to separate

observation spaces. Gaussian additive noise is assumed in all spaces, re-

taining the Gaussianity assumption of the classical CCA formulation. The

generative process of probabilistic CCA is [6]

z ∼ N (0, I),

x ∼ N (W1z,Ψ1), (4.5)

y ∼ N (W2z,Ψ2)

where z ∈ R
R×1 is the R-dimensional latent representation of the sample,

W1 ∈ R
D1×R and W2 ∈ R

D2×R are projection matrices from the latent

space to the observation space. The view-specific variation is incorporated

by the noise covariance matrices Ψ1 and Ψ2. Assuming a full covariance

sharply increases the number of parameters in the model, which results in

a high risk of overfitting and makes inference very hard especially when

the data are high-dimensional.

We can solve this problem by incorporating priors that induce sparse

projection vectors [125], leading to a Bayesian CCA (BCCA) formulation.

By row-wise concatenating the views, we can formulate the model as

Bayesian factor analysis [14] with a groupwise sparsity prior on the pro-

jection weights

z ∼ N (0, I),

[x1;x2] ∼ N (Wz,Σ)
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where

Σ =

⎡⎣ σ2
1I 0

0 σ2
2I

⎤⎦
is a block diagonal matrix, and the concatenated projection matrix

p(W) =
R∏

r=1

[
N (W1(r)|0, β−1

1r I) N (W2(r)|0, β−1
2r I)

]
is assigned the priors β1 = [β1r, · · · , β1R] and β2 = [β2r, · · · , β2R] with

β1r ∼ G(α0, β0),

β2r ∼ G(α0, β0).

Setting the hyperparameters to very small values (α0 = β0 = 10−14), we

obtain flat Gamma distributions imposing W to have the block structure

W =

⎡⎣ W1 V1 0

W2 0 V2

⎤⎦
where the columns of [W1;W2] denote the latent components shared by

both views, and the columns of V1 and V2 show the ones specific to a

view. This is the well-known automatic relevance determination (ARD)

technique applied separately to the projection weights of each view, in a

similar fashion to Group-lasso [132]. With such a formulation, analyzing

the shared and source-specific variance becomes very easy, unlike previ-

ous Bayesian formulations of CCA, such as [2, 65, 98, 126]. Marginalizing

the source-specific latent components out, we get a model equivalent to

(4.5) with the low-rank noise covariances

Ψ1 = V1V
T
1 + σ2

1I,

Ψ2 = V2V
T
2 + σ2

2I

for the two views. This way, the ARD technique learns the rank of the

noise covariances automatically from data, instead of requiring them to

be explicitly specified. This Bayesian CCA formulation is called Group

Factor Analysis (GFA) [125]. The inference of this model is shown to be

reasonably fast using a mean-field variational approximation procedure.

See [125] for the details.

In GFA, given a set of paired samples from two views X∗ and Y∗,

the correlation between the views on the learned latent space can be es-

timated by cor(E[z|X∗],E[z|Y∗]). This estimate is adopted for calculating

the correlation between biosignals and audio in Publication V.
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4.2.3 Time-dependent Bayesian canonical correlation analysis

Classical CCA and Bayesian CCA both assume that the observed data are

independent and identically distributed (iid). However, in many cases,

the data are time-dependent (i.e. a sample at any time point is dependent

on samples at previous time points). In Publication V, a new variant of

Bayesian CCA is introduced that captures the time dependence in the

data. In particular, CCA is extended to a state-space model by setting the

prior of the latent sample representation to

z0 ∼ N(0, I),

zt ∼ N(Tzt−1, σ
2
0I)

where T is the transition matrix that governs the trend in the state-space

and σ2
0 incorporates an amount of additive noise to this space. This model

is named as time-dependent Bayesian CCA (T-BCCA).

The inference of T-BCCA is very similar to BCCA. All variational

update equations of BCCA are applicable here except the one for Z =

[z1, z2, · · · , zN ]. The time-dependent latent representations can be up-

dated in a forward-backward fashion, as described in Algorithm 1, which

is taken from [10]. In the forward pass, Z is estimated by a Kalman fil-

ter learned on the current estimates of W1, W2, σ2
1, and σ2

1. Then these

estimates are corrected by the Rauch-Tung-Striebel smoother [46] in the

backward pass. The update rule given in [10] for the transition matrix T

is also reusable here

〈T〉 =
[

N∑
t=2

[
At〈Ct〉+ 〈zt−1〉〈zT

t 〉
]] [

N∑
t=2

[
〈Ct〉+ 〈zt〉〈zT

t 〉
]]−1

.

The advantage of T-BCCA is illustrated on simulated data by compar-

ing it with BCCA. The T is restricted to be diagonal, imposing indepen-

dence across latent components, as in BCCA. The σ2
0 is set to 1 for sim-

plicity. The simulated data are generated from three latent components,

two of which are heavily time-dependent and one is white noise with large

variation. The true latent components, and their estimates by BCCA and

T-BCCA are given in Figure 4.1. As seen in the figure, T-BCCA estimates

the time-dependent components more accurately.
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Algorithm 1 The two-pass variational update rule for the latent rep-

resentations zi, as suggested in [10]. Here, 〈B〉 = [〈W1〉; 〈W2〉; I;Ub]

where UT
b Ub =

∑
i=1,2[1/〈σ2

i 〉 〈WT
i Wi〉 − 1/〈σ2

i 〉 〈WT
i 〉〈Wi〉]. The for-

ward pass calculates the new estimates of the latent representations

{〈z1〉, 〈z2〉, · · · , 〈zN 〉}, their individual covariances {〈C1〉, 〈C2〉, · · · , 〈CN 〉},

and a set of temporary matrices {Q1,Q2, · · · ,QN}. The backward pass

takes these values as input, applies the Rauch-Tung-Striebel smoother

[46], and outputs the corrected 〈zi〉’s and 〈Ci〉’s which serve as the varia-

tional estimates for the current iteration.
1: procedure FORWARD

2: L ← I, Q1 ← I, m1 ← 0

3: K ← L〈BT 〉(〈B〉L〈BT 〉+ 〈Σ〉)−1

4: 〈C1〉 ← (I−K〈B〉)L
5: 〈z1〉 ← m1 +K([xt;yt]− 〈B〉m1)

6: for t ← 2, N do

7: Qt ← 〈T〉〈Ct−1〉〈TT 〉+ I

8: L ← Qt

9: mt ← 〈T〉〈zt−1〉
10: K ← L〈B〉T (〈B〉L〈B〉T + 〈Σ〉)−1

11: 〈Ct〉 ← (I−K〈B〉)L
12: 〈zt〉 ← mt +K([xt;yt]− 〈B〉mt)

13: end for

14: end procedure

15: procedure BACKWARD

16: for t ← N − 1, 1 do

17: At ← 〈Ct〉AT (Qt+1)
−1

18: 〈Ct〉 ← 〈Ct〉+At(〈Ct+1〉 −Qt+1)A
T
t

19: 〈zt〉 ← 〈zt〉+At(〈zt+1〉 − 〈T〉〈zt〉)
20: end for

21: end procedure
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True

comp.

BCCA T-BCCA

Figure 4.1. Comparison of time-dependent latent space CCA and iid latent space CCA
on simulated data. The left column shows the components of the true simu-
lated data, two of which are heavily time-dependent and the other is white
noise. The middle column shows the latent components estimated by iid la-
tent space CCA (BCCA), and the right column shows the estimation of time-
dependent CCA (T-BCCA). T-BCCA captures the time-dependent components
more accurately than BCCA. T-BCCA also captures the white noise compo-
nent shown at the bottom row, while BCCA misses it.
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5. Multitask Learning

5.1 Introduction

Many real-world supervised learning tasks are closely related. For in-

stance, handwritten character recognition is a similar problem to digit

recognition. Multitask learning suggests that learning these tasks to-

gether could bring better performance than considering them as indepen-

dent problems [21].

The goal of handling multiple machine learning problems together

is to transfer knowledge across problems to improve performance, which

is called transfer learning. There are many types of transfer learning,

which are explained below adopting the definitions and the dichotomy

given in [112]. A machine learning problem can be defined by a domain

D = {X , p(X)} and a task T = {Y, f(.)}, where X is a feature space,

p(X) is the marginal distribution of data X = {x1,x2, · · · ,xN}, Y is the

output label space, and f(.) is the predictive function we are trying to

learn. Let us suppose we have a source problem {DS , TS}, and a target

problem {DT , TT }. In transfer learning, the goal is to improve the solution

of the target problem by transfering knowledge from the source problem.

Transfer learning problems can be cast into three categories based on

the relationship of source and target problems and availability of output

labels:

• Inductive transfer learning: Source and target tasks are different (TS �=
TT ), while the domains can be either the same or different. Each indi-

vidual task is solved by inductive learning, meaning that a general pre-

diction rule is learned from training data, without using the test data

whatsoever [41]. Multitask learning refers to a specific kind of induc-
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tive transfer, where both source and target labels are available. The

goal is to solve all problems simultaneously by transferring knowledge

mutually. The problems are not in distinct groups as source and target.

Instead, every problem is both the source and the target. Multi-output

(multilabel) learning is a special case of multitask learning, which as-

sumes a single domain and different label spaces for tasks. In Publi-

cation III and Publication VI, some of the learning settings are of this

sort. Another setting where transfer learning has been shown to be very

useful is when gathering labels for the target problem is cumbersome,

while we have abundant unlabeled data for a different but closely re-

lated problem. This setting is called self-taught learning [99].

• Transductive transfer learning: Each individual task is solved by trans-

ductive learning [41], which means that the test input data are used

in learning together with the training data for better estimation of the

data distribution. In this setting, training and prediction are no longer

exclusive processes. For each different test set, a new model has to be

learned, which brings a considerable computational burden. This also

entails the strict assumption that source and target tasks are the same

(TS = TT ) and domains are different (DS �= DT ). This setting has been

introduced in [4].

• Unsupervised transfer learning: Multiple unsupervised learning tasks

are learned together, such as clustering [30] or dimensionality reduc-

tion [127]. Hence, neither source nor target labels are available. Either

the domain or the task or both are different between source and target

problems.

There is no guarantee that knowledge transferred across tasks will

always be useful. When the tasks are uncorrelated, the transfer might

decrease the performance, causing what is called negative transfer. A

proper multitask learning method should avoid negative transfer by al-

lowing knowledge transfer only when the tasks are correlated.

5.2 Examples of multitask learning

In this section, examples of multitask learning are given from previous re-

search. The main focus is put on extensions of SVMs, Gaussian processes,
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and generative models to multitask setups, following the main theme of

the thesis.

Suppose we have T supervised learning tasks on the labeled data sets

(Xt,yt) where Xt = [xt
1,x

t
2, · · · ,xt

N ] is the set of input samples and yt is

the vector of corresponding labels yti for task t.

The pioneer work that extends SVMs to multitask learning [35] trans-

fers knowledge across tasks by binding the parameters of the tasks. It as-

sumes that the hyperplane parameters are decomposed into two additive

components,

w = w0 + vt

where w0 represents the shared structure, and vt the task-specific struc-

ture. The resulting optimization problem for T tasks indexed by t is

minimize
wt,b,ζ

{
1

2

T∑
t=1

λ1

T
‖vt‖2 + λ2‖w0‖2 +

T∑
t=1

N∑
i=1

ζti

}
s.t. yi(w0 + vt) · Φ(xt

i) + b ≥ 1− ζti , ∀i, t (5.1)

ζti ≥ 0, ∀i, t.

Multitask learning on Gaussian processes was first studied by [75]

as an extension the informative vector machine (IVM) [76]. Knowledge

transfer between tasks is made possible by introducing cross-covariances

between samples of different tasks. In a later study [19], Bonilla et al.

followed this line by stacking the data of all tasks together and feeding

into a single Gaussian process with a modified kernel

kMT (x
l
i,x

m
j |θ,T) = Tlm k(xl

i,x
m
j |θ)

where xl
i is the ith data point of task l, xm

j is the jth data point of task

m, k(., .) is a kernel parameterized by θ, and T is a matrix that stores the

correlations between pairs of tasks in its entries. The matrix T is treated

as a kernel parameter and learned together with θ using type II maxi-

mum likelihood. An interesting property of this model is that knowledge

transfer occurs only when the observations have additive noise.

Learning multiple tasks together is also studied within the Bayesian

framework. In an early study, Bakker and Heskes [9] formulate a two-

layer neural network for supervised learning tasks assuming that the

input-to-hidden weights encode the shared knowledge and the hidden-to-

output weights encode the task-specific knowledge. In a later study, Rai

and Daumé III [32] suggest learning the latent hierachical relationships
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of multiple tasks by using Kingman’s coalescent as a prior over task pa-

rameters. Recently Archambeau et al. [3] approach multi-output regres-

sion by introducing a sparse matrix-variate Gaussian prior on the weight

matrix. Titsias and Lázaro-Gredilla [119] propose transferring knowledge

across several multiple kernel learning tasks via the kernel weights. In

Publication III, an extension to SVM-based multiple kernel learning is

introduced that follows the same knowledge transfer strategy, as will be

detailed below.

5.3 Multitask multiple kernel learning for SVMs

The multitask extension of SVM in Equation 5.1 can be shown to be equiv-

alent to the standard SVM with kernel [35]

k̂(xl
i,x

m
j ) = (1/ν + δlm)k(xl

i,x
m
j )

where ν denotes the similarity between tasks and δlm is the delta func-

tion. This model can be extended to the multiple kernel case simply by

replacing k(xl
i,x

m
j ) with a combined kernel. However, this brings severe

drawbacks. For instance, all tasks are forced to share the same feature

and label spaces, which makes the model incompatible to many applica-

tions. In addition, stacking the data of all tasks together heavily increases

the time and space complexity.

Motivated by these shortcomings, in Publication III, a novel method

called multitask multiple kernel learning (MT-MKL) is introduced. This

method transfers knowledge across tasks via feature representations, in-

stead of parameters. The method assumes that the tasks are multiple

kernel learning problems, and transfers knowledge by regularizing the

kernel combination parameters of similar tasks towards each other. In

this model, the model parameters α and the kernel combination parame-

ters η of T tasks are learned jointly in a single min-max problem

minimize
{ηr}Tr=1

Oη =

{
maximize

{αr}Tr=1

Ω({ηr}Tr=1) +
T∑

r=1

Jr(αr,ηr)

}
where Jr(αr,ηr) denotes the optimization function of learner r, which is

given by

Jr(αr,η) =

Nr∑
i=1

αr
i −

1

2

Nr∑
i=1

Nr∑
j=1

αr
iα

r
jy

r
i y

r
j

(
krη(x

r
i ,x

r
j ;η) +

δji
2C

)
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with the constraint

Nr∑
i=1

αr
i y

r
i = 0, αr

i ∈ R ∀i.

Here, C is the regularization parameter as described in Section 3.2. Lin-

ear combinations of kernels are considered

krη(x
r
i ,x

r
j ;η

r) =

P∑
m=1

ηrmkrm(xr
i ,x

r
j)

for simplicity and the parameter space is restricted to convex combina-

tions

P∑
m=1

ηm = 1, ηm ≥ 0, ∀m

for interpretability. The regularization term

Ω({ηr}Tr=1) = −ν
T∑

r=1

T∑
s=1

〈ηr,ηs〉 (5.2)

is applied to push the kernel combination parameters of similar tasks

towards each other. Here, ν is a hyperparameter for tuning the scale of

regularization. Tasks merge into a single task for very large values, and

they become independent for very small values. This hyperparameter is

learned by cross-validation.

An iterative algorithm is applied to solve this optimization problem,

consisting of three steps. In the first step, the combined kernel matrix

Kr
η is computed for each task r with the current value of η. In the second

step, the model parameters αr are updated for each task by training a

standard SVM on the precomputed kernel matrix Kr
η. In the third step,

both the kernel matrix and the model parameters are kept fixed, and the

kernel combination parameters are updated applying projected gradient-

descent. In particular, a step is taken towards the opposite direction to the

gradient of the cost function with respect to ηr, satisfying the convexity

constraint. The gradient of the cost function is

∂Oη

∂ηrm
= −2ν

T∑
s=1

ηsm − 1

2

Nr∑
i=1

Nr∑
j=1

αr
iα

r
jy

r
i y

r
jk

r
m(xr

i ,x
r
j)

for binary classification, and

∂Oη

∂ηrm
= −2ν

T∑
s=1

ηsm − 1

2

Nr∑
i=1

Nr∑
j=1

αr
iα

r
jk

r
m(xr

i ,x
r
j)

for regression.
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MT-MKL allows both feature and label representations of tasks to

be different, since the only coupling of tasks is via kernel combination

parameters. It also tackles the computational infeasibility problem of [35]

since in the optimization problem, the learners of tasks are additively

combined. Although the regularization term in Equation 5.2 makes the

cost function concave, the optimization problem still converges quickly

due to that the kernel weights are bounded to feasible sets.
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Figure 5.1. Test accuracies of the multitask multiple kernel learning model (MT-MKL),
standard multiple kernel learning (MKL), and standard SVM (SVM) on syn-
thetic data as a function of the number of common tasks T are given. The
increase in the accuracy of MT-MKL as a function of T demonstrates that
MT-MKL effectively transfers knowledge across similar tasks.

In Figure 5.1, the knowledge transfer in MT-MKL is demonstrated on

synthetic data. A number of binary classification tasks are generated that

share the same data distribution. Each task contains 12 samples, 6 per

each output label. The sample size is set to such a small value to simulate

a scarce data regime, where multitask learning is the most useful. The

samples are drawn from two overlapping normal distributions of three

dimensions. Two uncommon tasks are also included to test whether the

model avoids negative transfer. The data are generated for each of these

two tasks similarly as above, except that the samples are drawn from dif-

ferent normal distributions. MT-MKL is compared with single-task MKL

and the standard SVM. In MKL and MT-MKL, a Gaussian kernel with

unit length scale is assigned to each of the three input features. For SVM,

a Gaussian kernel with a length scale of
√
3 = 1.73 is used. In all methods,

C is picked from {0.001, 0.01, 0.1, 1, 10, 100, 1000} , and in MT-MKL also ν

from {0.01, 0.1, 1, 10, 100} by cross-validation. Test accuracies of the three

models in comparison are given in Figure 5.1 as a function of the number

of common tasks T . MT-MKL always outperforms the single-task models,
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and its accuracy follows an increasing trend proportional to the number

of common tasks.

In Publication III and Publication VI, MT-MKL is applied to learning

the affective state and mental workload from biosignals coming from mul-

tiple sensors. In this setting, the learning tasks are defined in two ways:

(i) learning a predictor for each mental state, and (ii) given a mental state,

learning a predictor for each user. A multiple kernel learning problem is

set up for each task by assigning one kernel to each sensor.
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6. Biosensing Technology

In this chapter, an overview of the biosensing technology is given, focusing

on the sensors used in the experiments in the thesis. The working mecha-

nisms of these sensors are explained in brief and a list of most frequently

used features of their signals is given.

6.1 Eye tracking

Eye tracker is a device that measures the eye movements. Eye tracking

techniques can be classified into two based on what they monitor [33]:

• the position of the eye relative to the head: This is commonly mon-

itored by the technique called electrooculography (EOG). EOG tracks the

rotation of the eye from the change of the electrostatic field on the skin

caused by the rotation. EOG signal has been used in Publication VI for

recognizing affective states such as valence, arousal, and liking.

• the orientation of the eye in space: Here, the goal is to locate where

in the visual field the subject is looking at, in other words, where the

gaze target is. Hence, this type of eye tracking is sometimes referred

to as gaze tracking [47]. There are two major gaze tracking techniques

[43]:

– Contact lens-based tracking: Eye movements are tracked by con-

tact lenses that have special properties. Tiny planar mirrors are placed

into the lens, and the eye direction is calculated from reflections of the

light [72]. This technique delivers extremely high resolution. How-

ever, the hardware is intrusive.
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– Optics-based tracking: A camera tracks the eye movements from

the light reflecting from the outer surface of the cornea (the first Purk-

inje image) and the center of the pupil. Accuracy could be increased

by using an infrared camera, which is not affected from ambient light

changes. Reflections from both the outer cornea and the back of the

lens (the fourth Purkinje image) could be used for even higher accu-

racy [28]. Optical eye trackers can be used in both stationary and

mobile setups by attaching the infrared camera to a suitable place in

the setup. The eye trackers with cameras placed away from the user,

such as on the monitor frame, are called remote eye trackers, while the

ones whose cameras are attached to the user’s head are called head-

mounted trackers. Optical tracking is the most widespread technology

in commercial eye trackers, since it provides reasonable accuracy us-

ing cheap and unobtrusive hardware. All the eye movement data used

in this thesis have been collected by this technology.

Human visual system operates based on neural adaptation; while

abrupt changes in the visual stimuli cause strong responses, stable stim-

uli fade out [82]. The physiology of the eye is also compatible to this neu-

ral infrastructure. Within a layer of light-sensitive cells in the eye, called

retina, only a tiny spot with a diameter of about 1.0 mm gives high visual

acuity, due to the high concentration of the photoreceptors (cones) it has.

This spot is called fovea. Different images having high resolution at the

centre and blurred off-the-centre are gathered by fast eye movements, and

integrated in the brain. When we desire to get a more detailed view of a

certain location, we restrict our eye movements into a small area. This

is called a fixation. However, the eye keeps on tiny movements, called

microsaccades [54], within that region involutarily. In many applications,

microsaccades are neglected for being too fine-grained. Given an eye tra-

jectory, the fixations are detected by merging closely located consecutive

targets into a single target point. What remains is then the rapid jumps

between fixations, called saccades [33].

Some useful eye movement features for analyzing user behaviour are:

• Fixation duration: Fixation duration is a very good indicator of user

interest, as the eye fixates on a point as long as more information is

needed [1, 66, 103]. Mean and standard deviation of fixation duration

within the object of interest (used in Publication IV), and mean distance
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of fixations to the object center (used in Publication I) are among useful

features for mental state inference.

• Saccade length: Mean and standard deviation of the saccade length

are useful in discriminating differences in the user’s intentions [69]. In

Publication IV, these features are used in inferring whether the paint-

ing the user looks at is relevant.

• Pupil diameter: Pupil size is correlated with mental activity [52]. This

feature is used in detecting mental workload in Publication VI, and as

an auxiliary indicator of user interest and attention in Publication IV

and Publication V, respectively.

• Electrooculogram: The raw EOG signal is the electrostatic field of

the eye measured from the skin near the eye. It is possible to detect

eye blinks from EOG signals [68]. Eye blink rate is a strong indicator

of arousal; high arousal significantly increases the eye blink rate [62].

Features of this signal such as energy, mean, and variance are discrimi-

native in inferring the affect [67].

Eye gaze is correlated with visual attention [61]. This encouraged the

human-computer interaction community to take the user input directly

from eye movements. Bolt introduced this idea [18] and illustrated it on

an eye movement-based interface for selecting and zooming video streams

simultaneously playing on a computer screen. Later on, eye gaze has

been used as a side modality to speed up hands-free gaze-based typing

[128], pan-and-zooming [113], and scrolling [71]. As machine learning

and pattern recognition methods matured, interaction schemes based on

more abstract notions of the user (e.g. interests, preferences, etc.) have

been developed for applications such as text [48] and content-based image

retrieval [69]. The approach of this thesis to eye movement analysis falls

into this last category.

In Publication I, Publication V, Publication III, and Publication VI,

Tobii 1750 remote eye tracker with 50Hz sampling rate and an accuracy

of 0.5 degrees of visual angle has been used (see the monitor in Publica-

tion VI). This eye tracker has an infra-red camera and light attached to

the monitor frame. In Publication II, a head-mounted near-to-eye display

with an integrated eye tracker collected the eye movements with a sam-
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pling rate of 25 Hz and an accuracy of 1 degree of visual angle (see the

image on the left in Figure 4 of Publication II). The device is produced by

Nokia Research Center as a research prototype [59]. And in Publication

IV, gaze data has been collected by the SMI iView X HED head-mounted

eye tracker which has a sampling rate of 50 Hz and an accuracy of 0.5 to

1 degrees of visual angle.

6.2 Electroencephalography

Brain activity causes ionic flow within the brain neurons, which elicits

voltage changes on the scalp [88]. Electroencephalography (EEG) mea-

sures the electric potential on the scalp surface by electrodes placed on

locations over the brain regions of interest. The resulting signal is typi-

cally decomposed into the following frequency bands:

• Delta: 1 to 3 Hz,

• Theta: 4 to 7 Hz,

• Alpha1: 8 to 9 Hz,

• Alpha2: 10 to12 Hz,

• Beta1: 13 to 17 Hz,

• Beta2: 18 to 30 Hz,

• Gamma1: 31 to 40 Hz,

• Gamma2: 41 to 50 Hz

In Publication III, Publication V, and Publication VI, spectral powers of

these bands are used as features in analysis.

EEG has good and bad properties compared to other brain signaling

techniques such as functional magnetic resonance imaging (fMRI) and

magnetoencephalography (MEG). Its greatest advantage is that its equip-

ment is much cheaper and much less intrusive compared to the other two.

It also gives better time resolution than fMRI. Its downsides are its poor
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spatial resolution and low accuracy at inner brain regions. A readily avail-

able data set of eight EEG channels is used from the previously published

DEAP (A Database for Emotion Analysis [67]) data set in Publication VI.

In Publication V and Publication VI, two new data sets are collected by

NeuroSky single-channel EEG sensor with a sampling rate of 512 Hz. The

EEG sensor is placed on a sensor arm connected to headphones. The arm

is placed to the FP1 location of the International 10-20 system (see Figure

2 in Publication VI).

6.3 Motion sensing

Monitoring the mental state of a person by the naked eye from body mo-

tion has been studied for centuries [31], and has been exploited in re-

cent research for developing emotion-aware interaction schemes [13, 114].

Body motion is measured by a device called accelerometer, which senses

the g-force (acceleration relative to free-fall) exerted on a location from

the displacement of a damped mass along a spring. This mechanism can

be extended to three axes, and the resulting three dimensional signal can

be treated as the 3D acceleration vector. In Publication III, Publication

V, and Publication VI, the 3D acceleration vector was measured by a re-

search prototype accelerometer from the nape of the user at 15 Hz (see

Figure 2 in Publication VI). The following features are extracted from

each of the three dimensions of the acceleration signal:

• mean and variance of the signal,

• mean of the derivative of the signal,

• mean, median, and maximum peak-to-peak interval.

6.4 Heart rate monitoring

In an earlier study, it has been shown that high arousal increases heart

rate, and that this increase is higher for low valence (anger, fear, and

sadness), compared to high valence (happiness) and neutral valence (sur-

prise) [34]. Heart signal is an essential element in affective state recogni-
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tion [94]. This signal is also used in Publication III and Publication VI in

the same context.

There are two major techniques for measuring the heart rate:

• Electrocardiography (ECG): Heart activity is monitored from the

electrical changes on the skin by electrodes placed on the chest, simi-

larly to EEG, EOG, and EMG. Typically, electrodes are attached on a

strap which is tied on the chest during data collection. ECG data have

been collected in Publication III and Publication VI using a Suunto heart

belt which records RR-intervals (the time between two consecutive R

waves in the electrocardiogram (ECG)) at 2 Hz.

• Plethysmography: The heart beat changes the blood flux in the ves-

sels. This allows monitoring the heart activity from the volume of an

organ, such as the thumb. Although this signal is less precise than

ECG, it is easier and cheaper to measure. Plethysmograph data taken

from [67] has been used in Publication VI.

Features useful for analyzing heart signals include [67]:

• Raw heart signal: The energy ratio between (0.04-0.15) Hz and (0.15-

0.5) Hz bands of the raw heart signal.

• Interbeat (R-R) interval: The time interval between two heart beats.

It can be calculated from the interval between two R waves, which are

sharp peaks in the beat signal pattern.

• Heart Rate Variability (HRV): Variation in the interbeat interval. It

can be calculated simply by taking the derivative of the interbeat inter-

val by finite-difference approximation. Spectral powers of (0.1-0.2)Hz,

(0.2-0.3)Hz, (0.3-0.4)Hz, (0.01-0.08)Hz (0.08-0.15)Hz, (0.15-0.5)Hz bands

of the HRV signal are known to be informative of the affective state.

6.5 Other useful biosensors

The DEAP data set [67] used in Publication VI contains a number of other

sensors than the ones above. Here, we introduce these sensors briefly:
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• Electromyography (EMG): EMG measures the electrical activity on

muscles. The electrodes can be placed to any muscle depending on the

application. As an example, in [78], the muscular tension at the trapez-

ius is measured, and its correlation with stress is studied. In the DEAP

data set, EMG data from the right trapezius and zygomaticus major are

available. Energy, mean, and variance has been used as the features of

this signal in Publication VI.

• Galvanic Skin Response (GSR): GSR measures the electrical conduc-

tance of the skin. It is a good indicator of arousal, since the sympathetic

nervous system controls the sweat glands [83]. The DEAP data set has

GSR data collected from the middle finger and the ring finger. Some

useful features of this signal are its mean, mean of the derivative, mean

of the positive derivatives, proportion of negative samples in the deriva-

tive, number of local minima, and 10 spectral powers in the (0-2.4)Hz

frequency interval [67].

• Respiration sensor: This sensor measures the moisture level on the

skin. It is usually attached on a belt that is tied on the chest. Respi-

ration is highly correlated with emotions [50]. Some useful features of

the respiration signal are: band energy ratio, average respiration signal,

mean of the derivative, standard deviation, range of the greatest breath,

10 spectral powers between (0-2.4)Hz, average and median peak-to-peak

time.

• Skin Temperature: This signal is highly correlated with emotions

[84]. The DEAP data set includes skin temperature data measured from

the pinky finger. This signal has been summarized with its mean, mean

of the derivative, spectral power in (0-0.1)Hz and (0.1-0.2)Hz.

6.6 Biosensor importance in mental state inference

In this section, relative contributions of the sensors to prediction of men-

tal states are given for the case studies that involve multiple-sensors

measurement setups, and the implications of these contributions are

briefly discussed. It is worthwhile to mention that the sensor impor-

tance results given below are an automatic by-product of the machine

learning model that has been introduced.
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As seen in Figure 2 of Publication III and Figure 4 of Publication VI,

3D body motion made the highest contribution, and pupil dilation the

second highest. This ranking is supports other studies on inferring af-

fective states from these sensors with reasonable success [26, 108]. This

is a very promising result for proactive interaction by biosensors, con-

sidering the low obtrusiveness of especially the accelerometer.

Among the larger and more accurate sensor set used in the public

DEAP data set, the 32-channel EEG sensor clearly dominates the other

sensors in contribution to prediction, while GSR sensor comes the sec-

ond (see Figure 1 in Publication VI). The domination of the EEG sensor

is a sensible result considering that it is significantly data-richer than

the other sensors in the setup. This outcome also reveals the trade-off

between unobtrusiveness and high accuracy of sensors. Better predic-

tion of the mental state is more likely as more accurate sensors are used.

On the other hand, higher accuracy in sensing often comes at the ex-

pense of higher obtrusiveness. In the extreme case, we can think about

functional Magnetic Resonance Imaging (fMRI) as an extremely space-

accurate technique of monitoring the brain activity, which is impossible

to be used in real-life human-computer interaction scenarios today and

in the near future.
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A proactive interface requires a circular information flow between the

user and the system. The system monitors the user, extracts cues about

the user interests, and changes the interface accordingly. The user be-

haviour changes, hopefully improves, in this new interface. Meanwhile,

the system keeps on monitoring the user, extracts new cues, and this in-

terchange of information goes on in a virtuous circle, as illustrated in Fig-

ure 7.1. The success of a proactive interface depends on how accurately

the system is able to infer the user interests from the available cues. The

main contribution of this thesis is a constellation of novel machine learn-

ing models for inferring valuable information about user interests. The

models extract cues from biosensors attached to users who are monitored

under various novel experimental setups. This thesis is a feasibility study

consisting of models covering the first half of the information flow shown

in Figure 7.1 as thick black arrows.

In each of the experiment setups in the thesis, a different aspect of the

user’s mental state is analyzed. Below, these setups are described, posi-

tioned in the existing literature, their novelties are highlighted, and hints

are given about how they can be useful in the future human-computer

interaction systems.

7.1 Inferring the relevance of real-world objects

Relevance has been extensively studied in the context of information re-

trieval for text documents [7] and images [81, 77]. This thesis extends

this term to real-world objects by treating them as information channels

whose relevances to the users are to be predicted. This information is

valuable especially for pervasive information access systems [56, 90, 91].

Since traditional input media, such as keyboard and mouse, are not avail-

71



Inferring Mental State

�������	
��	

����	�

������
���	��


��	����	����


��	����	����

Figure 7.1. The circular information flow in a proactive interface is depicted as a block di-
agram. The user is monitored by sensors, machine learning algorithms infer
the user interests from the monitored signals, and then the system changes
the user interface accordingly. The user’s reactions to the updated interface
are then monitored and handled in the next cycle. In this thesis, the first
half of this flow shown in thick black arrows is investigated as an attempt to
construct a basis for proactive interaction via biosensors.

able in these setups, hands-free solutions are very desirable.

In Publication II we built a pervasive contextual information access

system consisting of goggles with an attached eye tracker and a near-to-

eye display fed by a forward-pointing camera. Real-world objects (faces

and augmented-reality markers) are recognized from the video image of

the field of view gathered by this camera. An information box is then dis-

played near each object the user looks at. The textual information shown

in the box is retrieved from a database based on the context. The con-

text is inferred from the relevance of the previously shown items, which is

estimated by the proportion of the time they are looked at within a fixed-

length time window (gaze intensity [97]). The survey made on the users

reveals that the system successfully infers the context and retrieves use-

ful information about the objects in the scene (Question 3 in Figure 5 of

Publication II).

As a feasibility study for more advanced relevance estimators, in the

next step object relevance is investigated in real-world video scenes, as

an approximation to pervasive scenarios. In Publication I, the users were

monitored by a remote eye tracker attached on a desktop computer while

they were watching a video of a real-world scene where some objects were

augmented with textual information. After the experiment, the users
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were shown snapshots of the video and asked to rank the objects in each

snapshot by relevance. It has been observed that ordinal logistic regres-

sion from a combination of gaze pattern features and visual features to

the relevance rankings of objects predicts the true object relevance rank-

ings with up to 85% accuracy. This accuracy is approximately 10% higher

than ranking based on visual saliency (Figure 2 of Publication I).

Motivated by the results of Publication I, object relevance inference

problem has been investigated on a pervasive setup in Publication IV.

Users explored an experimental painting gallery holding a button in their

hand and clicked that button when they were viewing a picture they

found interesting. The machine learning question has been to predict the

clicks from gaze patterns. The Gaussian process classifier with a time-

series kernel predicted the relevant objects with an area under ROC curve

(AUC) of up to 76%, which is 15% above the accuracy of dwell-time thresh-

olding.

The overall outcome of these studies is that gaze patterns in perva-

sive scenes contain a significant amount of information about the user’s

interests, and this information can be extracted by machine learning tech-

niques. The ideal case where the user’s intentions are predicted with

perfect accuracy would be a zero-effort solution to the well-known Midas

touch1 problem [58] of gaze-based user interfaces. Considering the accu-

racies reported in the studies above, it is not yet possible to claim that

zero-effort commanding is possible. However, the accuracies still suggest

that the amount of relevance feedback is already high enough for building

gaze-based pervasive recommender systems.

7.2 Inferring affective state and mental workload

Affective computing is a field of research, the goal of which is to predict the

affective (or emotional) state of subjects from user actions [95], facial ex-

pressions [133], or biosignals [5, 25, 64, 94]. The outcome of this research

is valuable for developing emotionally intelligent machines [24, 94]. A ma-

chine aware of the user’s affective state is beneficial especially when the

user is exposed to heavy multitasking. For instance, when the user is in

1In gaze-based user interfaces, a mechanism is required to distinguish whether
the user intends to click the object at which she is looking. The absence of such
a mechanism results in a click on wherever the user looks, clearing away all the
charm of gaze-based commanding. The problem is similar to that of the Greek
mythological character Midas who turns every object he touches into gold.
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deep thought, she would not want to be disturbed by e-mail alerts.

In an experiment, desktop users were measured by four sensors (EEG,

body motion, ECG, and pupil dilation) while they were performing natu-

ralistic tasks. These tasks include filling in a personal survey, compar-

ing pictures, and solving logical puzzles (see Figure 3 of Publication VI

for details). Subjects annotated the ground-truth levels of their valence,

arousal, and mental workload during each step of the experiment.

In Publication III, a novel multitask learning multiple kernel learn-

ing algorithm (MT-MKL) is introduced. The model assumes that related

learning tasks are all multiple kernel learning tasks on the same set of

kernels. The model transfers knowledge across tasks by forcing similar

tasks to have a similar combination of kernels (see Section 5.3 for further

details). MT-MKL is observed to perform better than its counterparts on

three benchmark data sets. The first one is a multitask regression prob-

lem, where MT-MKL gives an RMSE of 23, while its existing counterpart

[35] gives 38. The second one is a handwritten recognition data set, where

each task is binary discrimination of visually similar letters such as f and

t. MTMKL improves over single-task learning by 0.5% of accuracy. Its

existing counterpart is not applicable to this learning setup. The third

data set is the one collected by the experiment described above. MT-MKL

improves over single-task learning by 5% here. Its existing counterpart

is not applicable to this setup also. MT-MKL is also observed to demand

significantly less computational time than [35].

In Publication VI, the benefits of MT-MKL in mental state inference

are more thoroughly investigated. The model is applied to two data sets.

The first is the publicly available DEAP [67] data set, which consists of

measurements of seven sensors while subjects were watching video clips.

After the experiment, the ground-truth labels (valence, arousal, and lik-

ing of the subject during each video) are taken from the users by showing

them snippets of the videos. When each subject is taken as a learning

task, MT-MKL gives 65% prediction accuracy, which is 4% higher than

the Naive Bayes classifier of [67]. The second data set is the one collected

by the experiment described above. This experimental setup is less con-

trolled and contains a smaller set of sensors than the DEAP data set.

Hence, it can be considered as a step taken towards the real-life scenar-

ios. When each subject is taken as a task, MT-MKL predicts the affective

state and mental workload with 71% accuracy, which is 2% higher than

the single-task SVM. When each output label (mental state) is taken as a
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task, hence in the multi-output prediction case, MT-MKL gives 64% accu-

racy, while single-task SVM is 4% less accurate. It is also worthwhile to

note that MT-MKL also outputs the contributions of sensors to prediction

as a by-product.

The overall outcome of this line of research has been that it is possi-

ble to predict affective state and mental workload clearly over the chance

level. Furthermore, the prediction gets more accurate as more advanced

models are employed, which motivates further research in machine learn-

ing methods development for this application field. Nevertheless, the ac-

curacies are not yet at the sufficient level for practical applications. There

are two major sources that induce prediction errors. The first is the low

signal-to-noise ratio of sensors, which can be partially overcome as the

instrumentation improves. The second is the ground-truth label noise,

which stems from the fact that subjects cannot remember, nor can they

evaluate, their own mental states perfectly. This problem can be solved

by more extensive experimentation on setups where ground-truth is im-

posed by the setup itself.

7.3 Inferring auditory attention

We manage the excessive information continuously provided by our senses

by focusing our attention on a subset of it. For example, we fixate our eyes

at a location that is visually interesting for us. This is called visual atten-

tion. A very strong indicator of visual attention is the point of regard [61].

Today’s technology allows monitoring the point of regard, hence visual at-

tention to a large extent, with reasonable accuracy. Visual attention has

been observed to be a very useful information for proactive interaction in

previous studies [121].

Attention can be directed to auditory stimuli as well, which is then

called auditory attention [37]. There is no directly observable indicator

of auditory attention, hence it cannot be monitored as easily as visual

attention. Auditory attention can be used in developing very interesting

applications, such as:

• When the user’s attention is detected to be low, media players can put

a bookmark to the played audio book. Then the user can fast-rewind to

those moments later.
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• Parts of the music that the user most enjoyed, hence paid highest atten-

tion, could be used as a query for retrieving similar songs from a data

base.

• Moments of high attention to a dynamic audio content being recorded

by a microphone could be used for meeting summarization.

Despite these potential benefits, recognition of auditory attention has not

so far attracted much interest. Previous work has targeted the low-level

physiology of auditory attention (see [37] for a survey) observed by heavy

hardware such as fMRI on highly controlled setups.

In Publication V, inferring auditory attention is studied for the first

time from a data modeling perspective. Less controlled stimuli, natural-

istic user tasks, and low-quality unobtrusive biosensors have been used

to make the experimental setup as compatible as possible to real-life sce-

narios. Desktop computer users were measured by single-channel EEG

sensor, accelerometer, and eye tracker while they were listening to natu-

ralistic audio content (scientific podcast, music, and radio drama). As a

second simultaneous task, the users solved a visual search puzzle (given a

grid of objects, identifying the odd one in shape and colour). Ground-truth

attention levels were imposed to periods of audio stimuli by varying the

difficulty level of the visual task.

Given a labeled data set as above, auditory attention can be inferred

by any supervised learning algorithm. However, gathering labeled ground-

truth data from end-users would not be as feasible and reliable in a real-

istic end-user scenario as it is in laboratory conditions. To overcome this

problem, a novel machine learning model has been built that does not

require labels in training, but can still predict labels of new instances.

This model calculates the correlation between the audio stimulus and the

biosignals, and predicts the level of attention based on the hypothesis

that the correlation is proportional to the level of attention paid to the

stimulus. The model calculates the correlations using a novel variant of

Bayesian CCA which assumes time-dependence in the latent space, com-

patible to the time-series spirit of biosignals. The prediction accuracy of

this unsupervised model has been 44% in a four-class classification prob-

lem (four attention levels), while the best other CCA variant reached 42%,

and the best supervised model reached 47% (see Table 2 of Publication V

for details). The accuracy of the time-dependent CCA, which is very close
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to supervised models, is not yet high enough for end-user applications.

However, its being significantly above chance level (25%) implies that the

research direction is promising. Better accuracies are very likely with a

more accurate sensor setting, where the same prediction model will still

be applicable.
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8. Conclusions

Proactive user interfaces anticipate the user’s interests and automatically

take actions desirable for the user. The user’s mental state gives strong

cues about the user’s interests. In this thesis, inferring the user’s mental

state from signals such as EEG, heart rate, body motion, and eye move-

ments is studied. The users have been measured by biosensors in various

naturalistic experimental setups, and their various mental states have

been inferred in these setups by novel machine learning models. The in-

vestigated mental states are:

• the affective state,

• mental workload,

• liking,

• real-world object relevance,

• auditory attention.

Biosensing technology allows monitoring many biosignals that cor-

relate with emotions and mental processes. However, these signals are

very noisy and their correlation to valuable information is not easily ob-

servable. Previous studies followed two strategies to reduce the biosignal

noise:

• to incorporate large sets of sensors including ones that are very expen-

sive, obtrusive, and unportable,
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• to simplify experimental setups for better controlling the residual fac-

tors.

It is clear that these two strategies are not generalizeable to end-user

applications. In this thesis, machine learning is approached as an alter-

native strategy for improved mental state inference. Instead of reducing

the sources of noise in the setup by extensively controlled experiments

and extracting the optimal feature sets from the signals, more advanced

machine learning models are built. Relying on the assumption that high

noise levels are inevitable in real-world interaction setups, in the exper-

iments, unobtrusive and cheaper sensors have been used, contrasting to

stationary and very expensive technologies such as MEG and fMRI.

Table 8.1 gives a list of contributions of this thesis, classified into two

as methodological and application oriented. The former refers to the ma-

chine learning algorithms, and the latter to the experimental setups.

8.1 Discussion and Future Directions

This thesis has shown in several case studies that various mental states

of can be inferred at reasonable accuracies. Inferrable mental states in-

clude the user’s emotions, interests, and mental workload, which are very

fruitful pieces of information for building more intelligent proactive in-

terfaces. The fact that all reported prediction accuracies are clearly over

random indicates that biosignals do contain significant information about

mental states. And the fact that the highest accuracies are reached by the

proposed machine learning methods indicate that developing advanced

learning models for suboptimal biosensor sets is a very promising strat-

egy for proactive inferface development research.

The experimental setups reported in the thesis are designed to be nat-

uralistic, and relatively loosely controlled. The prediction models also do

not contain any features closely tied to the studied setups. Hence, it is

sensible to expect the generalization of the outcome to other domains to

be at a large extent. Nonetheless, empirical investigation of the general-

ization issue should still be addressed in future work.

Another future direction is to improve the prediction accuracy by more

customized features and models. The intuitive and simple feature sets

used in the thesis could be replaced by optimal ones that can be con-

structed by dedicated perceptual science experiments. All the models pre-
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Publ. Forum Methodological Application

I ETRA – Inferring object relevance in

video scenes.

II Virtual

Reality

– Experimental study of a

wearable system that uses

object relevance as a con-

textual cue for information

retrieval.

III ICONIP Multitask MKL –

IV ICMI GP classification

using a LTW

kernel

Inferring relevance of real-

world objects

V ECML Time-dependent

CCA

Inferring auditory attention

IV Submitted – • Improving affective state

inference by multitask

MKL.

• Learning biosensor impor-

tance by MKL.

Table 8.1. The methodological and application-oriented contributions of the publications
in the thesis.
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sented in this thesis are trained by batches of samples. Online learning

variants of these models could adapt to trends better, and could be more

suitable for proactive interaction due to reduced training times. On the

way to proactive interfaces, the final challenge is to accomodate the inter-

action environment to the inferred mental state of the user. This problem

is also left to future work.
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