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Telephone conversation in noisy 
environments is often difficult. Both speech 
intelligibility and quality are degraded by 
ambient noise. Furthermore, most of the 
mobile phone users are provided even today 
only with a limited range (300-3400 Hz) of 
voice frequencies due to the narrowband 
speech coding in cellular networks. This 
bandwidth is much narrower than what is 
necessary for high speech quality. Therefore, 
cellular operators are gradually starting to 
support wideband (50-7000 Hz) speech. 
However, during the transition from the 
existing narrowband systems to true 
wideband transmission narrowband speech 
can be enhanced by artificial bandwidth  
extension (ABE). In this thesis, ABE 
methods that enhance speech quality by 
adding high frequency components to the 
narrowband speech signal in the receiving 
mobile device are studied. The results 
indicate that ABE methods ease speech 
communication, especially in ambient noise, 
by providing the user of the mobile device 
speech of wider bandwidth than what was 
transmitted through the cellular network. 
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Abstract 
Even today, most of the telephone users are offered only narrowband speech transmission. 

The limited frequency band from 300 Hz to 3400 Hz reduces both quality and intelligibility of 
speech due to the missing high frequency components that are important cues especially in 
consonant sounds. Particularly in mobile communications that often takes place in noisy 
environments, degraded speech intelligibility results in listener fatigue and difficulty in 
speaker recognition. The deployment of wideband (50–7000 Hz), and superwideband 
(50–140000 Hz) speech transmission is ongoing, but the current narrowband speech coding 
will coexist with the new technologies still for years. 

In this thesis, a speech enhancement method called artificial bandwidth extension (ABE) for 
narrowband speech is studied. ABE methods aim to improve quality and intelligibility of 
narrowband speech by regenerating the missing high frequency content in the speech signal, 
typically in the frequency range 4 kHz–8 kHz. Since the enhanced speech quality is achieved 
without any transmitted information, the algorithm can be implemented at the receiving end 
of a communication link, for example in a mobile device after decoding the speech signal. 

This thesis presents algorithms for artificially extending the speech bandwidth. The methods 
are primarily designed for monaural speech signals, but also the extension of binaural speech 
signals is addressed. The algorithms are developed such that they incur reasonable 
computational costs, memory consumption, and algorithmic delays for mobile 
communications. These and other implementational issues related to mobile devices are 
addressed here. 

The performance of the methods has been evaluated by several subjective tests, including 
listening-opinion tests in several languages, intelligibility tests, and conversational tests. The 
evaluations have been mostly carried out with coded speech to provide realistic results. The 
results from the subjective evaluations of the methods show that artificial bandwidth extension 
can improve quality and intelligibility of narrowband speech signals in mobile 
communications. Further evidence of the reliability of the methods has been obtained by 
successful product implementations. 
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Preface

This thesis is a story of a long term research collaboration project be-
tween Aalto University, Department of Signal Processing and Acoustics,
and Nokia. The collaboration in the field of artificial bandwidth extension
(ABE) of telephone speech signals, started in 1999, and I have had the
opportunity to be part of it since 2002. The story started from an idea
of an ABE algorithm. During the years, several ABE algorithms were
developed and evaluated by subjective tests. The next step was to imple-
ment them in mobile products, and to evaluate the algorithms in realistic
conversational context. I have enjoyed this project and learned so much
about speech processing technology, scientific research work, and speech
quality, thanks to many supporting and delightful people from both the
university and Nokia.

First of all, I would like to thank Prof. Paavo Alku for giving me the
opportunity to work on ABE in a first place. He hired me to the Labo-
ratory of Acoustics and Audio Signal Processing to work on ABE and to
write a M.Sc. thesis. In 2003 I started my career in Nokia and the same
year, I came up with an idea to start the PhD studies. Fortunately, Paavo
welcomed me to be one of his PhD students. Paavo, without your support
and encouragement this thesis would not have been finished. I appreciate
how you always find time to review, comment, and discuss research work,
no matter how busy you are.

Another important person behind the ABE collaboration project is Jari
Sjöberg, the leader of the Audio Algorithms team in Nokia. Thank you for
letting me concentrate on the ABE research, and writing of this thesis. I
look forward to returning back to work in September.

All the publications of my thesis have been written together with tal-
ented people and I wish to thank all my co-authors. From Juho Kontio I
learned a lot about neural networks. Thanks to Hannu Pulakka, it has
been a pleasure working with you during these years. In addition, thanks
to Martti Vainio, Jouni Pohjalainen and Santeri Yrttiaho for your help
and participation in the publications.

I’m grateful to the pre-examiners, Prof. Gernot Kubin and Prof. Yan-
nis Stylianou for their dedicated work and valuable comments on the
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manuscript. I would also like to thank Luis Costa for proof-reading the
manuscript.

Furthermore, I would like to express my gratitude to the Nokia Audio
Algorithms team in Tampere. Many of my former and current colleagues
have influenced this work. Päivi Valve, from you I learned that it is possi-
ble to find a solution for every problem, one way or another. Ville Myllylä,
I appreciate our discussions, and your innovative ideas. Riitta Niemistö,
I remember you once said, that you believe I can finish my dissertation
some day. I have kept that in my mind during the times when I wasn’t
quite sure myself. Jukka Vartiainen, thanks for your help in many sig-
nal processing questions. In addition, I would like to thank Matti Kajala,
Erkki Paajanen, Antti Pasanen, Anu Lahdenpohja, Jouko Salo, and Eero
Niemelä for your participation in ABE work. I also wish to thank Anssi
Rämö and Henri Toukomaa for listening test arrangements.

In Nokia Helsinki site, I have met many great audio people. I would like
to thank you for inspiring lunch breaks, parties, and discussions during
the years. Especially, I would like to thank my friends Riitta Väänänen,
Julia Turku, Jussi Virolainen and Jarmo Hiipakka.

I would like to thank many acoustics people from Otaniemi. Conference
trips to Philadelphia, Lisbon, and Florence were so much fun because of
you. I remember fun dinners in Philadelphia. In Lisbon, the fado concert
was amazing. And the bus trip across the Europe in the middle of the
night was unforgettable. It’s no wonder I don’t really remember the dis-
cussions on my poster after travelling (and being 7 months pregnant) from
Frankfurt to Florence by bus because the flights to Italy were cancelled.

Finally, I would like to express my gratitude to my family and friends.
Thank you Anna for your friendship. Miika, thank you for everything,
for being so supportive and positive during this project, and for photo-
shooting the cover picture for my thesis on a freezing cold winter day.
Ellen (6 years), Lotta (4 years) and Lauri (1 year), you are the world to
me. I would also like to thank my parents, Elina and Jorma, for all the
encouragement and support. Thanks to my sister Eeva, and my brother
Eero, and their families for all the good times and laughs. And last but
not least, thanks to Merja and Pekka for all the help. Finalizing the thesis
while staying at home with three children would not have been possible
without the help from my whole family.

Espoo, March 22, 2013,

Laura Laaksonen
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1. Introduction

Speech signals in telephone communications have been bandlimited since

the beginning of the history of the telephone. During the days of analogue

telephone, the limited bandwidth was due to the physical restrictions of

acoustic components and the bandwidth capacity. A digital transmission

utilizing pulse code modulation (PCM) adopted a 8 kHz sampling rate and

the speech bandwidth of 300–3400 Hz both for compatibility with the

analogue telephone and also for reasons of bandwidth capacity [1]. For

decades, consumers were offered only narrowband (also called telephone

band) speech transmission. The telephone users got used to the telephone

speech that sounds muffled and has reduced speech quality [2] and intel-

ligibility [3], especially during consonants, due to the missing important

high frequency acoustic cues.

The narrowband PCM quality may have been adequate for landline tele-

phony in the 20th century, but mobile communications has brought new

challenges and demands for speech transmission. In the 1990’s, the num-

ber of mobile phones started to increase rapidly. The first coders designed

for the 2G mobile networks suffered from degraded speech quality com-

pared to the narrowband PCM. Later, the enhanced full rate (EFR) [4]

and adaptive multirate (AMR) [5] codecs reached nearly the narrowband

PCM quality. The first significant improvement to the speech quality and

intelligibility was achieved by increasing the speech bandwidth and the

sampling rate of a speech codec. The adaptive multirate wideband (AMR-

WB) speech codec with a frequency band of 50–7000 Hz was standardized

in 2001 [6], and its deployment started in 2009 [7]. Still today, only a small

portion of end users in mobile telephony are offered wideband transmis-

sion that is marketed as high definition (HD) voice. The upgrade of net-

works and mobile devices for AMR-WB support is time consuming. On the

other hand, in voice over internet protocol (VoIP) applications wideband
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or superwideband speech is often supported, for example in [8].

Speech transmission in mobile networks is characterized by the fact that

mobile phones can be used everywhere. Background noise conditions may

vary from quiet to extremely noisy and complex acoustic surroundings.

From a speech quality perspective, the small mechanical components,

i.e. earpieces and microphones, as well as the variety of possible blue-

tooth, car and other accessories that are used with the mobile devices

are also a challenge. To face these challenges, a proper acoustical design

of the device and speech enhancement methods that modify the speech

signal at both ends of the telephone link are needed. Speech enhance-

ment algorithms aim to improve the quality and intelligibility of speech,

for example, by reducing noise and echo from the signal or by empha-

sizing perceptually important parts of the signal. Noise cancellation and

single-channel and multichannel noise reduction techniques are examples

of such algorithms that are important in mobile communications. These

methods are applied in modern mobile devices and networks.

Motivated by the slow deployment of wideband speech, one of the speech

enhancement research topics since the mid 1990’s has been artificial band-

width extension (ABE). Narrowband speech transmission and coding uses

a sampling rate of 8 kHz that restricts the speech bandwidth to 300–

3400 Hz. ABE methods aim to improve quality and intelligibility by re-

generating the missing high frequency content of a speech signal in the

receiving end of the transmission. An ABE method increases the sampling

rate, typically from 8 kHz to 16 kHz, and adds new frequency components

to the highband, i.e. typically a frequency range of 4–8 kHz. The exten-

sion is completely artificial, indicating that no information related to the

missing highband is transmitted. However, there also are methods that

are not completely artificial but utilize transmitted side information in

the extension procedure [9, 10, 11].

ABE can be seen as a speech enhancement method for narrowband

speech signals that improves quality and intelligibility. Especially in noisy

environments, the wider bandwidth is beneficial. On the other hand, ABE

can be seen as an algorithm that transforms a narrowband signal to wide-

band in the receiving terminal when wideband transmission is not avail-

able. During the transition phase from narrowband to wideband speech

transmission, the speech bandwidth may vary between and even during

phone calls, depending on the available network conditions and telephone

devices. The challenge in ABE methods is to generate as natural sound-
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ing wideband speech as possible. While pursuing this goal, some unnat-

ural highband artefacts might be created in the signal that might annoy

listeners. As for all speech enhancement methods, artificial bandwidth

extension should be as transparent to end users as possible.

Subjective speech quality assessment is extremely important in the field

of ABE research. Both underestimation and overestimation of the signal

level in the artificial highband is likely to produce an audible artefact.

Especially fricatives and plosives, which are characterized by a burst of

frication, are extremely sensitive to unnatural signal components in the

highband, because they have a considerable amount of energy in frequen-

cies above 4 kHz. For implementing an ABE method in a mobile device,

thorough testing and evaluation of the method is needed. The interoper-

ability over the whole signal path, including other speech enhancements

and acoustical properties of the device, has to be taken into account in the

implementation of the ABE feature.

1.1 Aim of the study

This thesis studies artificial bandwidth extension methods for narrow-

band speech signals. Most of the research work has been carried out

within a collaboration research project between Nokia and the Depart-

ment of Signal Processing and Acoustics of the Aalto University. The

project on artificial bandwidth extension started in 1999, but the work

related to this thesis has been conducted during the years 2003–2011 in

Nokia. The thesis addresses four main research topics:

1. Development of ABE algorithms for narrowband telephone speech that

are robust with respect to noisy and distorted (due to speech coding)

input signals

2. ABE of binaural speech signals

3. Comprehensive evaluation of ABE methods by subjective listening-only

tests and conversational tests

4. Implementation of an ABE method in a mobile device

The algorithm development includes new algorithms that improve speech
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quality and intelligibility of narrowband telephone speech. These meth-

ods are presented in Publication I, Publication II, Publication III and Pub-

lication VII. Furthermore, the extension of binaural signals is addressed

in Publication V. The designed methods are evaluated by several listen-

ing opinion tests, including, for example, listening tests addressing poten-

tial language dependency of the algorithm (Publication III) and conversa-

tional tests (Publication VI and Publication VII). Finally, the implemen-

tation of an ABE method in a mobile device is discussed in Publication

IV.
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2. Speech and hearing

2.1 Speech production

In everyday life we say that we speak with our mouths. In fact, the mouth

is needed for speech communication, but by itself it is not at all adequate

for speech production. Actually, speech production starts from the lungs,

where the lung pressure is increased by drawing air into the lungs. While

maintaining some pressure in the lungs, air is forced from the lungs and

passed through the trachea, larynx, and the vocal tract. The organs in-

volved in speech production are shown in the schematic illustration of

figure 2.1.

The larynx is a sophisticated organ that controls the air flow from the

lungs. In the larynx, two horizontal ligaments called vocal folds are at-

tached posteriorly to the arytenoid cartilages that, in turn, are used to

control the size of the opening of the vocal folds. This opening is called the

glottis.

The vocal tract is an acoustic tube that starts from the larynx, ends at

the lips, and consists of the pharyngeal cavity and the oral cavity. The

total length of the vocal tract from the larynx to the lips is about 17 cm for

an adult male and 13.5 cm for a female [12]. By changing the length and

the cross section profiles of the vocal tract, mostly by moving the lips, jaw,

tongue and velum, humans are able to produce different speech sounds.

The influence of the vocal tract on the speech sound is called articulation.

The velum separates an ancillary path, the nasal tract, from the vocal

tract for sound transmission. It starts from the velum and ends at the

nostrils. During nasal speech sounds this path is opened, whereas during

non-nasal sounds the velum is tightly drawn up.

There are three main ways how humans use the speech production or-
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←− lung

←− vocal folds and glottis
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tongue −→ ←− velumoral cavity −→

larynx −→

Figure 2.1. Organs involved in speech production.

gans to produce different speech sounds [13]. These three ways result in

the speech sound categories: 1) voiced sounds, 2) unvoiced sounds, and

3) plosives (strictly speaking, in the classification of [13], plosives can be

either voiced or unvoiced). Voiced sounds refer to quasi-periodic sounds,

such as vowels and nasals, during which the air from the lungs travels

through the larynx, where two vocal folds start to open due to the in-

creased air pressure. After a complete opening, the vocal folds start to

close due to the Bernoulli effect until they are completely closed. The re-

sulting quasi-periodic signal is the source signal for voiced sounds and is

called a glottal pulse. The production of a sound in this manner is called

phonation [14].

A simplified glottal pulse waveform is shown in figure 2.2. The periodic-

ity originates from the vibrating vocal folds that open and close regularly.

The vocal folds are completely open at the maximum amplitude of the

glottal pulse waveform and closed at the minimum. The round shape of

the glottal pulse can be explained by the watery tissue of the vocal folds,

and this round waveform shape results in low-pass characteristics in the

frequency domain. The fundamental frequency, f0, and consequently the

perceived pitch of speech is determined by the vibration rate of the vocal

folds. For females, f0 is typically about 200 Hz and for males, 120 Hz.

In the frequency domain, the spectrum of the glottal pulse has a comb-
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Figure 2.2. Simplified glottal pulse waveform.

shaped structure that shows the fundamental frequency and its harmon-

ics.

During the production of voiced sounds the vocal tract is either com-

pletely or partly open. The vocal tract acts as an acoustic filter that cre-

ates resonances called formants. Since the parameters of the vocal tract

as an acoustical filter are continuous and distributed over the entire tract,

the resulting transfer function depends on the overall length, shape, and

volume of the vocal tract rather than just a single parameter.

During unvoiced sounds that refer to noise-like sounds, such as frica-

tives, the vocal folds are almost completely open, and no periodic glottal

pulse is created. Instead, the source signal is noise generated by a tur-

bulent air flow through a constriction in the vocal tract. The constriction

is formed, for example, by the tongue behind the teeth. The noise source

is further modified by the resonances of the vocal tract and radiated from

the mouth [14].

During plosives, the vocal tract is completely closed at some place, for

example by the lips, and the air flow is blocked. When the obstruction

is suddenly opened, the released airflow from the lungs produces a sud-

den impulse in pressure causing a short, audible sound with a noise-like

waveform.

2.2 Signal characteristics of speech sounds

2.2.1 Voiced sounds

Western languages comprise mostly voiced sounds. For example, about

78 % of speech sounds in standard English have been reported to be voiced

[14]. A typical voiced speech sound is shown in figure 2.3 both as a time-

domain waveform and as a frequency-domain spectrum. The waveform is

characterized by a periodic structure and a large variation in amplitude.
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Figure 2.3. Typical voiced speech sound (Finnish [a]) presented as a time domain wave-
form (top), and its amplitude spectrum (bottom). The spectrum has been
computed with a 1024-point FFT using a Hann window.

The amplitude spectrum shows the clear harmonic structure, especially at

low frequencies. The first harmonic corresponds to the fundamental fre-

quency. The formant frequencies can also be identified from the maximum

peaks of the spectral envelope. The spectrum of voiced sounds typically

has low-pass characteristics, which originates from the excitation signal,

i.e. the glottal pulse.

In a narrowband signal, due to the low-pass characteristics, a great deal

of the energy of a voiced sound is preserved despite the restricted band-

width. In addition, a narrowband signal also contains the most important

harmonics. Although the fundamental frequency may be missing, the hu-

man ear is still able to hear the pitch correctly, a phenomenon called the

missing fundamental. From the bandwidth extension point of view, the

most important aim is to extend the low-pass envelope in the higher fre-

quencies. This low-pass characteristics originating from the glottal pulse

is also one of the justifications for the correlation between the narrow-

band speech signal and missing high frequencies. On the other hand, the

exact regeneration of the harmonic structure at higher frequencies is not

as perceptually important [15].
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Figure 2.4. Typical unvoiced speech sound (Finnish [s]) presented as a time domain
waveform (top), and its amplitude spectrum (bottom). The spectrum has been
computed with a 1024-point FFT using a Hann window.

2.2.2 Unvoiced sounds

A waveform of a typical unvoiced speech sound is shown in figure 2.4. The

small amplitude values and rapid changes of direction in the temporal

signal waveform are due to the noisy source signal. The amplitude spec-

trum in the lower part of figure 2.4 increases with frequency, indicating

that unvoiced sounds are characterized by high frequency components. It

is evident that a large portion of the energy of fricative sounds is miss-

ing from narrowband signals. These speech sounds are especially chal-

lenging for ABE methods, since natural sounding wideband fricatives are

obtained only if an adequate amount of energy is added to the higher fre-

quencies. On the other hand, misplaced strong frequency components in

high frequencies are likely to result in severe artefacts.

2.2.3 Plosives

A waveform and an amplitude spectrum of a typical plosive sound is pre-

sented in figure 2.5. Plosives are characterized by a short silent period

caused by a break in voicing, followed by a short burst of frication as

the pressure in the place of constriction is suddenly released in the vocal
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Figure 2.5. Typical plosive (Finnish [k]) presented as a time domain waveform (top), and
its amplitude spectrum (bottom). The spectrum has been computed with a
1024-point FFT using a Hann window.

tract. After the burst comes a voicing period that leads to the following

vowel. In addition to unvoiced sounds, plosives are also challenging for

ABE methods. If the amplitudes of the added high frequency components

of a plosive are too large, it is easily perceived as a tingle.

2.3 Sounds of speech

Even though speech as an acoustic signal is a continuous waveform, in a

linguistic domain it comprises a finite number of discrete distinguishable

sounds called phonemes. A person who knows a certain language identi-

fies these phonemes because they have a distinctive linguistic function, al-

though the acoustic properties of signals representing a certain phoneme

are both speaker and context dependent. A classification of speech sounds

often starts from a division into vowels and consonants. Then the conso-

nants and vowels are further classified according to the manner and place

of articulation. For example, the Finnish vowels are /a, e, i, o, u, y, ä, ö/.

The Finnish consonants are classified as plosives /k, p, t, g, b, d/, fricatives

/f, s, h/, nasals /n, m, η /, trills /r/, laterals /l/, and semivowels /j, v/.
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Figure 2.6. Block diagram of a source filter model of speech production. The fundamental
frequency, f0 , can be given as a parameter for the voiced excitation. The gain
control, G, is for controlling the energy level of the signal.

2.4 Source filter model

Speech production can be modelled with a source-filter model [16]. Ac-

cording to the model, the two parts, namely the source model and the

filter model, are independent. Although the assumption is not completely

justified, since there is some interaction between the glottal source and

the filter, the model usually yields adequate results. The model consists

of two alternative sources, a quasi-periodic pulse generator modelling the

glottal pulse for voiced sounds and a noise signal modelling a constriction

in the vocal tract for unvoiced sounds, as shown in figure 2.6. The funda-

mental frequency can be given as a parameter to the pulse generator. The

gain control, G, is needed to control the energy level of the signal. The

vocal tract and the nasal tract are modelled independently of the source

signal by a linear time-varying filter.

2.4.1 Linear prediction

The source-filter model has been applied to many areas of speech pro-

cessing, for instance in speech analysis, speech synthesis, and speech cod-

ing. In speech coding, so called vocoders utilize the source filter model to

reduce the number of parameters needed to characterize speech sounds.

The parametrization of the source and the filter separately, instead of the

whole waveform, has been an effective way to reduce the bit rate in speech

coding. The vocal tract filter and the excitation signal can be estimated
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from a speech signal using a well known technique called linear prediction

(LP), or linear predictive coding (LPC) [17].

LP is based on the simple idea that the next signal sample, s(n), can be

estimated as a linear combination of the p previous samples:

ŝ(n) =
p∑

k=1

a(k)s(n− k). (2.1)

The parameters a(k) are unknown, and they are solved by minimizing

the mean square of the energy of the error signal, e(n), between the real

sample s(n) and the estimate ŝ(n). The error signal, also called the resid-

ual, can be written as

e(n) = s(n)− ŝ(n) = s(n)−
p∑

k=1

a(k)s(n− k). (2.2)

As a result from an autocorrelation method, the optimal LPC prediction

coefficients A = ( a(1) a(2) . . . a(p) )T are obtained from

A = R−1 ·R′, (2.3)

where R is an autocorrelation matrix of the form

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

R(0) R(1) . . . R(p− 1)

R(1) R(0) . . . R(p− 2)
...

... . . . . . .

R(p− 1) R(p− 2) . . . R(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

and R′ is an autocorrelation vector

R′ =
(

R(1) R(2) . . . R(p)
)T

. (2.5)

LPC analysis and synthesis

The LPC analysis parametrizes an input speech signal with a residual

signal, p LPC coefficients, and a gain factor, G. First, the order of LPC,

i.e. the parameter p, the frame size, and the window function have to

be defined. Typical window sizes are about 10–30 ms, a period of time

where features such as mean power, frequency spectrum, and probability

density distribution may be considered to remain relatively constant [12].

As an example, a 20-ms frame of the Finnish speech sound [a], windowed

with a rectangular and a Hann window, are shown in figure 2.7.

For the windowed speech frame, the autocorrelation parameters, a(k),

are computed from equation 2.3. The residual signal shown in figure 2.8
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Figure 2.7. 20-ms frame of vowel [a], windowed with a rectangular (thin line) and a Hann
window (bold line).
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Figure 2.8. LPC residual signal, e(n), for vowel [a] is calculated from the signal in figure
2.7.

is obtained by filtering the original un-windowed frame with the obtained

inverse filter of the form

A(z) = 1−
p∑

k=1

a(k)z−k. (2.6)

Finally, the gain factor, G, is calculated from the original frame.

On the synthesis side, the original speech signal is reconstructed by fil-

tering the residual signal with an LPC synthesis filter of the form

H(z) =
1

1−∑p
k=1 a(k)z

−k
. (2.7)

The LPC synthesis filter models the spectral envelope of the signal. In

practice, the order of the LPC, p defines how accurately the filter models

the overall spectral shape, the formants, and the fine structure of the

signal. Therefore, the parameter p is also directly proportional to the
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Figure 2.9. Amplitude spectrum of vowel [a] (thin line) and an LPC spectrum of order 12
(bold line).

prediction gain that is often used to measure the performance of LPC: a

higher LPC order yields a more accurate LPC model. Figure 2.9 shows the

amplitude spectrum of vowel [a] and the corresponding LPC spectrum of

order 12.

2.5 Hearing

The human ear, shown schematically in figure 2.10, can be divided into

the outer ear, the middle ear, and the inner ear. The outer ear consists of

the pinna and the ear canal which terminates at the eardrum. The pinna

protects the ear canal but also facilitates the localization of sound sources

[14]. The ear canal acts as an acoustic tube having its first resonance at

about 4 kHz. The eardrum transforms the pressure variations of incoming

sound waves into mechanical vibrations [18].

In the middle ear, the mechanical vibrations are transmitted to the

inner ear by three bones, the ossicles (the malleus, the incus and the

stapes). The ossicles perform an impedance transformation between the

air medium of the outer ear and the liquid of the inner ear. At the oval

window, where the middle ear ends, the pressure is about 30 times the

pressure at the eardrum. Between the middle ear and the oral cavity is

the Eustachian tube that equalizes the pressure between the middle ear

and the outer ear during, for example, swallowing or during air pressure

changes due to rapid change in altitude.

In the inner ear, the spiral cochlea begins at the oval window, and it

transforms the vibrations into properly coded neural impulses. Vibra-

tions arriving at the cochlea make the basilar membrane vibrate. Next to
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Figure 2.10. Schematic illustration of the human ear.

the basilar membrane, is the organ of Corti that contains hair cells, ap-

proximately 20000–30000 hair cells in several rows. The movement of the

basilar membrane activates the hair cells that, in turn, excite neurons in

the auditory nerve.

2.5.1 Binaural hearing and localization

Communication systems have traditionally used monaural hearing, where

sound is perceived only by one ear or by two ears with no difference be-

tween the signals heard by the two ears. However, when sounds are re-

ceived by two ears, the human hearing system also analyses the spatial

and localization information in the signals. This binaural hearing can be

beneficial in many situations, like noisy, complex auditory environments.

An example of the benefits of binaural hearing is the well-known effect

called the "cocktail party effect". It refers to the fact that human listen-

ers can concentrate on listening to one speaker when others are talking

simultaneously or when background noise is present [19].

From the speech transmission point of view spatial audio could be ben-

eficial, for example, in teleconferencing systems. The participants of a

teleconference might be virtually placed at different positions around the

listener. Since the performance of 3D audio is dependent on the band-

width of the signal, ABE methods for binaural signals could be applied

when wideband speech transmission is not available.
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Figure 2.11. Coordinate system used to describe the position of a sound source with the
listener placed at the origin. The position of a sound source can be defined
by the azimuth, φ, the elevation, δ, and the distance, d.

Sound source localization

The position of a sound source is often described with the coordinate sys-

tem shown in figure 2.11 [19]. When the listener is placed at the origin of

the coordinate system, the position of a sound source can be defined by the

three attributes the azimuth, φ, the elevation, δ, and the distance, d. The

median plane cuts the head of the listener in two symmetrical halves, the

horizontal plane is defined by the interaural axis and the lower margins

of the eye sockets, and the frontal plane is orthogonal to the horizontal

plane intersecting the interaural axis.

The existence of two ears is the main reason behind the ability of hu-

man listeners to identify the direction of a sound source. The auditory

system analyses many temporal and spectral cues from the signals re-

ceived by the ears. If a sound source is not located in the median plane,

the sound signal arrives earlier to the nearer than to the farther ear. In

other words, there is a time difference between the signals, which is usu-

ally referred to as the interaural time difference (ITD). In addition, the

sound shadow of the head attenuates the signal on its way to the farther

ear. This intensity difference between the two ears is called the interaural

level difference (ILD). The maximum ITD, of about 700 μs, and the max-

imum ILD, of about 6 dB, are achieved when the sound source is located

in the horizontal plane in the direction of φ = ±90◦.

ITD and ILD are considered the main cues for the localization of sound
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Figure 2.12. Binaural sound production through headphones. The left and the right
channels are obtained by filtering the mono signal, x, with the HRTF fil-
ters Hl and Hr.

sources, but also the asymmetry of the outer ear, head and torso con-

tribute to the directional hearing. For instance, the front-back separation

is possible mainly because the pinna changes the spectral characteristics

of the sound differently depending on whether the sound source is in front

of or behind the head. Furthermore, the detection of the elevation angle

is possible due to the asymmetry of the outer ear and the reflections from

the shoulders.

The precision of the localization of a sound source, i.e. the localization

blur, depends not only on the azimuth and elevation angles but also on

the frequency and bandwidth of the sound signal. To generalize, the lo-

calization precision is better for low frequencies, whereas at around 1500

Hz, the precision is much worse because the signal wavelength is com-

parable to the size of the head, and the ITD is not a valid cue anymore.

In addition, the localization blur is smallest when the sound source is in

front of the listener, at position φ = 0◦. When the sound source is located

at positions φ = ±90◦, the localization blur is at its maximum [20].

A head-related transfer functions (HRTF) can be used to describe how

an ear receives a sound. The HRTF is a transfer function from a point

sound source to the ear measured in a free field. Typically, the HRTFs are

measured in unechoic chambers using a dummy head.

3D sound

3D sound refers to an attempt to reproduce sound through loudspeakers

or stereo headphones to a listener creating an illusion of a natural envi-

31



Speech and hearing

ronment and sound sources.

With headphones, the perception of a sound depends directly on the sig-

nals that are brought to the ears. Without any differences or with only

time and level differences, the sound is localized inside the head of the

listener. This effect, called lateralization [21], is due to the fact that all

the cues induced by the outer ears and the head are missing. Therefore,

to create 3D sound with headphones, these cues should obviously be in-

cluded in the signals. This can be achieved by processing the signals with

the corresponding HRTFs, as shown in figure 2.12. The left channel, yl, is

obtained by filtering a mono input signal, x, through the left HRTF filter,

Hl, and the right channel, yr, is obtained by filtering the input signal, x,

through the right HRTF filter, Hr, respectively [20].

Achieving the same spatial impression in loudspeaker listening, requires

further processing. The HRTFs have to be modified to compensate the

crosstalk from the other loudspeaker to the farther ear.
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3. Digital speech transmission

The telephone was invented in 1876 by Bill Graham Bell. According to

Oliver Lodge, Graham Bell’s telephone

"took the sounds emanating from the human voice, and sought to reproduce

them at a distance by electrical means; so that at any, even great, distances,

aerial vibrations could be reproduced and interpreted by the human ear, after

the same fashion as the original aerial vibrations could be interpreted by an

ear close to" [22].

Since the early days of the telephone, there have been limitations that

have prevented this aim from being completely achieved. One of the lim-

itations has been the bandwidth of the transmitted speech signal result-

ing in much worse speech quality than in face-to-face conversation. The

human voice contains frequencies from 20 Hz to 20000 Hz, whereas the

traditional telephone bandwidth, also called narrowband, only covers the

range from 300 Hz to 3400 Hz. The limited bandwidth reduces speech

quality [23] and intelligibility [24]. Furthermore, speaker recognition be-

comes more difficult due to the limited frequency band.

The used telephone bandwidth originates from analogue telephony,

where the bandwidth was limited due to the characteristics of the trans-

ducers and other hardware, and due to the analogue frequency-division

multiplexing with a frequency grid of 4 kHz [25]. Digital speech trans-

mission was built around the same principles as the analogue system for

compatibility reasons, and for decades, consumers were offered only nar-

rowband speech transmission. Recently, also wideband speech transmis-

sion (50-7000 Hz) has become available in VoIP applications and grad-

ually also in cellular networks. So far, HD voice has been launched on

41 mobile networks in 33 countries [26]. The transition from narrow-
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Figure 3.1. Average speech spectrum calculated from a 10-s long speech sample of a male
speaker. The narrowband (NB) bandwidth (300-3400 Hz) is coloured red, the
wideband (WB) bandwidth (50-7000 Hz) is coloured blue, and the superwide-
band (SWB) (50-14000 Hz) yellow.

band communications to wideband in cellular networks continues, but it

will take years, because in addition to the networks, also the terminals

have to be upgraded to wideband compatible ones. In addition to wide-

band speech transmission, also superwideband (50–14000 Hz) and full-

band (20–20000 Hz) speech transmission are being developed [27]. An av-

erage speech spectrum calculated from a speech sample of a male speaker

and the different telephone bandwidths are illustrated in figure 3.1.

3.1 Speech coding

At present, speech is mostly transmitted in digital format in telecommuni-

cation networks, such as the public switched telephone network (PSTN),

digital cellular networks, and VoIP networks. For digital transmission,

the analogue speech signal has to be represented in a digital form, and for

this reason speech coding is needed. In other words, speech coding aims

to represent the speech signal in a digital form with as few bits as possible

while maintaining adequate speech intelligibility and quality for the ap-

plication in mind. In addition to the bit rate and quality, speech coders can

be characterized by their complexity and the delay they introduce [27].

The desired bit rate of a speech codec is determined by the channel

capacity of the application. There is a trade off between the bit rate and

the voice quality and intelligibility [28]. In some applications, having a

coder with multiple bit rates is also desirable. The coder may change the

bit rate on the fly depending on the available channel capacity [27].

The quality of a speech coder is usually expressed as a mean opinion

score (MOS) value. It is a five-point scale from 1 to 5 (bad, poor, fair, good,
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excellent) that is obtained from a subject as a result of a subjective lis-

tening test or estimated using an objective measure. It should be noted

that MOS values obtained from separate listening tests or objective eval-

uations should not be directly compared with each other. Especially, care

should be taken when comparing the quality of speech signals of different

bandwidths.

The complexity of a speech coder is usually represented as the com-

putational requirement (millions of instructions per second, MIPS) and

memory consumption. The target is to minimize the complexity, as it di-

rectly affects the cost and energy usage of an application [27].

According to [29], in a telephone conversation, the end-to-end delay

from the far-end user’s mouth to the near-end user’s ear is desired to be

less than 150 ms. This is regarded as the limit for transparent interactiv-

ity, and greater delays hinder the conversation. However, a study reported

in [30] suggests that a much bigger delay could be tolerated in a two-way

conversation. The speech coder is one of the processing steps in the whole

end-to-end processing chain, and it contributes directly to the delay.

3.2 Pulse code modulation

Pulse code modulation (PCM) coding became a coding standard for PSTN

networks in the 1970’s. PCM is a waveform coding method that aims

to represent the time-domain speech waveform as accurately as possi-

ble. It uses a sampling rate of 8 kHz to sample analogue speech signals.

The PCM speech bandwidth (300–3400 Hz) was adapted from analogue

telephone systems, and it is specified in [1]. A non-linear quantization

called A law (Europe, Africa, Australia, South America) or μ law (North

America and Japan) is used. Both quantization laws are logarithmic such

that more quantization levels are reserved for low amplitude values. The

quantized amplitude values are then encoded with 8 bits, which results

in the logarithmic PCM (log-PCM) coding with the 64-kbit/s bit rate, as

specified in the International Telecommunication Union – Telecommuni-

cation Standardization Sector (ITU-T) standard G.711 [31]. The log-PCM

achieves a MOS value of 4.3 that is called the toll quality. Another variant

of PCM is the adaptive differential PCM (ADPCM) at 16/24/32/40 kbit/s

[32].
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3.3 Narrowband speech in cellular networks

The first generation cellular networks, such as the Nordic Mobile Tele-

phone (NMT) in Scandinavia and the Advanced Mobile Phone System

(AMPS) in America, were analogue systems. Various standards existed

around the world, and different mobile phones were needed for each stan-

dard. The speech quality in analogue systems is dependent on the signal

quality. For example, the distance between the mobile phone and the base

station impacts the quality directly so that when this distance increases

the quality drops.

In the mid 1980’s, the work on the European standard for a digital mo-

bile cellular networks was started by the European Conference of Postal

and Telecommunications Administrations (CEPT), and the work was later

moved to the European Telecommunications Standards Institute (ETSI).

The task was known as the Groupe Spécial Mobile (GSM), but the work

was later renamed as Global System for Mobile Communications [33].

Since the commercial launch of GSM in the 1990’s, the number of GSM

and other mobile subscribers began to increase rapidly, reaching 5.6 bil-

lion mobile connections in 2011 [34].

Starting from the 1980’s, the research focus in speech coding was on

developing narrowband low-rate coders for cellular and military commu-

nication [35]. The starting point for the second generation coders was

the narrowband PCM coded signal. The work on speech coding aimed

at developing speech coding algorithms with a much lower bit rate than

64 kbit/s yet having adequate speech quality and tolerable complexity for

mobile communications.

The first codec for the GSM, RPE-LTP (regular pulse excitation with

long term prediction), is based on LPC analysis and operates at a bit rate

of 13 kbit/s. The MOS value of the RPE-LTP codec is approximately 3.5,

which is significantly lower than that of PCM. In addition to the RPE-LTP

codec, many other speech codecs were standardized for GSM, Universal

Mobile Telecommunications System (UMTS), and other 2G and 3G cel-

lular networks. For example, the GSM Enhanced Full Rate (EFR) codec

operating at 12.2 kbit/s, is based on an LPC-based method called alge-

braic code excited linear prediction (ACELP). Another example is a half

rate coder called the vector sum excited linear prediction (VSELP) coder

with bit rate of 5.6 kbit/s. Some of the well-known narrowband speech

codecs are listed in table 3.1.
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The adaptive multi-rate (AMR) coder standardized by ETSI is an exam-

ple of speech coders having multiple bit rates [5]. It is based on ACELP

technology and operates at eight different bit rates from 4.75 kbit/s to

12.2 kbit/s. The highest bit rate corresponds to the GSM EFR speech

coder. The bit rate of the AMR coder adapts to the radio channel con-

ditions so that when more channel capacity is available more bits can be

used for speech coding, and consequently better speech quality is achieved.

Table 3.1. List of the most relevant narrowband (300-3400 Hz) speech codecs, their bit
rates, and trend-setting MOS values [36].

Algorithm Standard Bit rate (kbit/s) Quality (MOS)

log-PCM G.711 64 4.3

ADPCM G.726 16/24/32/40 toll

RPE-LTP GSM FR 13 3.7

VSELP IS-54 5.6 3.6

LD-CELP G.728 16 4

CS-ACELP G.729 8 4

ACELP GSM EFR 12.2 4

3.4 Wideband and beyond

The first speech codec standardized for wideband speech for mobile com-

munications was the Adaptive Multirate Wideband (AMR-WB) codec [37].

The AMR-WB was released in 2001 by the 3rd Generation Partnership

Project (3GPP), and the same speech coder was also selected as a ITU-T

recommendation, G.722.2. The AMR-WB codec is based on ACELP tech-

nology and operates at nine bit rates from 6.6 kbit/s to 23.85 kbit/s. The

main difference to the GSM AMR codec is that it operates at a sampling

rate of 16 kHz, which is required for the nominal range of 50–7000 Hz.

In mobile communications, the speech quality of PSTN was achieved

with GSM EFR and AMR codecs. However, it was not until the AMR-WB

codec that the narrowband PCM quality was finally exceeded. In [37], the

perceived speech quality of the AMR-WB with bit rates starting from 8.85

kbit/s are superior to the quality of narrowband AMR at 12.2 kbit/s.

For wideband telephony in GSM or UMTS networks, either tandem-free

operation (TFO) or transcoder-free operation (TrFO) is required. In TFO,

the compressed wideband speech parameters are transmitted within the

PCM 64 kbit/s bit stream. Wideband speech quality is achieved, but a

64 kbit/s bit rate is required. Another option is to use TrFO, where the
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whole end-to-end link supports the same codec type, and transcoding is

not needed. With TrFO, wideband speech is obtained with lower trans-

mission rates.

The integration of the AMR-WB in 2G and 3G mobile networks is on-

going. The first operator to launch the AMR-WB for consumers in a 3G

network was Orange in Moldova in September 2009 [7]. For consumers,

the better speech quality achieved by AMR-WB coding is marketed as HD

voice, and the number of operators worldwide offering HD voice in 3G

networks is gradually increasing. However, the transition to wideband is

time-consuming, since all terminals and networks have to be upgraded to

wideband before full coverage is achieved. During the transition phase,

the speech bandwidth of each phone call is dictated by the weakest link of

the connection, i.e. the two terminals and the network between them.

Furthermore, the speech quality may vary within a phone call due to

both narrowband-to-wideband and wideband-to-narrowband handovers.

In these situations, ABE methods can be utilized to narrow the quality

gap between narrowband and wideband speech.

The next generation of mobile networks (4G), called Long Term Evolu-

tion (LTE), differs from the PSTN and 2G/3G networks by being a packet

switched network instead of a circuit switched one. LTE was designed

especially to offer higher data rates with lower latency for the increas-

ing number of mobile data services. From the traffic point of view, even

though mobile data volumes exceed voice volumes, conversational tele-

phony will remain an important application in future mobile networks

as well. Various solutions for voice over LTE (VoLTE) have been de-

signed. For example, in GSM/WCDMA, the expected deployment strategy

of VoLTE is three phased [38]. In the first phase, voice is transmitted in

the legacy 2G/3G network, while only data is carried on LTE. This solution

is called the circuit-switched fallback. The next phase uses IP multimedia

system (IMS) based on VoIP solutions that enables handover from IMS-

based VoIP to circuit switched speech when the user equipment is running

out of VoIP coverage, and vice versa. Finally, in the third phase of the de-

ployment strategy, all calls are made over packet-switched networks.

When the LTE was introduced by the 3GPP, the speech codecs were in-

herited from the UMTS [39]. The suitability of the default codecs, AMR

and AMR-WB, have been tested for packet-switched conversational mul-

timedia applications in [40]. However, VoLTE offers new possibilities for

even wider speech bandwidth, and consequently for better speech quality.
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In a telephone conversation, the acoustic signal is perceived by the near-

end user’s ear, causing an auditory event in the brain, which results in a

description of the sound [41]. Both the prior knowledge of the communica-

tion system and the emotions of the listener affect the quality judgement

[42]. In addition, both the content and the form of the signal are analysed

by the listener, and in telecommunications, speech quality usually refers

to the form of the speech signal, i.e. the acoustic signal, although both con-

tent and individual factors affect the quality perception [43]. Speech qual-

ity is complex to define. According to [44], speech quality encompasses at-

tributes such as naturalness, clarity, pleasantness, and brightness. Qual-

ity relates to "how" a speaker produces an utterance. Intelligibility, on the

other hand, is "what" is been said, and it is not a dimension of speech qual-

ity. A similar definition of speech quality is also used in this thesis. There

are, however, other ways to define speech quality, where intelligibility is

considered as a dimension of speech quality [45]. In speech transmission,

the minimum requirement is that speech is intelligible enough, that what

is said is understood. As the intelligibility increases, other factors like

naturalness and recognizability of the voice become more important.

During the last decades, many new speech coding and transmission sys-

tems have been introduced. Besides the traditional narrowband (300–

3400 Hz) speech coding and transmission, also wideband (50–7000 Hz)

and superwideband (50–14000 Hz) speech transmission have been de-

ployed in many telephone applications. In addition, together with VoIP

applications, the number of different degradation types in speech signals,

such as packet loss, has increased. As a result, the need for new effective

and reliable methods for the evaluation of speech transmission systems,

coding standards, and speech enhancement methods has increased.

Speech quality can be assessed by subjective or objective methods. In
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subjective (auditory, perceptual) methods, the evaluation is made by ask-

ing people’s opinions on speech sounds and applying statistical analysis

to the data. Objective (instrumental) methods, on the other hand, are

computational measures that try to predict the subjective speech quality.

4.1 Subjective quality evaluation

Subjective sound quality assessment can be categorized into four groups

as shown in table 4.1 [46, 47]. The vertical categorization is made be-

tween utilitarian and analytic methods. In utilitarian methods, the sub-

jects evaluate the integral quality using a one-dimensional scale. These

tests can be used to compare varying conditions resulting from different

speech coding algorithms. In analytical test methods, the subjects eval-

uate certain features of the perceived sound. The subjects may be asked

to assess one certain feature using a one-dimensional scale or a number

of quality features with several scales. The horizontal classification of

the quality test methods in table 4.1 is made between subject-oriented

methods and object-oriented methods. The former focus on gathering in-

formation on human perception, whereas the latter are used to evaluate

the quality of a certain system.

Table 4.1. Subjective listening quality tests following [46].

Subject-oriented Object-oriented

Utilitarian Psychoacoustic research Sound quality assessment

Analytical Audiological evaluation Diagnostic listening tests

The evaluation methods of speech transmission systems are mainly object-

oriented. The overall speech quality is often analysed with utilitarian

methods. For example, in audio standards, such as ITU-T P.800, P.830

and P.805, most of the methods are utilitarian and univariate tests. How-

ever, also analytical methods may be used, and they could result in more

in-depth understanding of speech quality in digital transmission systems.

An example of such tests is the ITU-T Recommendation P.835, that is a

standard for evaluating speech transmission systems that include a noise

suppression algorithm [48]. In the test, the subjects are asked to assess

the speech signal, the background noise, and the overall effect separately.

Subjective evaluation of speech quality is needed when reliable objective

measures do not exist. Also, subjective evaluation may be employed when

evaluating the overall quality or complex parameters of speech quality.
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However, subjective evaluation is not very effective, because the collection

of each data point requires that a subject grades the performance of a sam-

ple. The resulting data is also prone to variance, since subject’s personal

opinion is involved. To improve the reliability of subjective evaluation,

rigorous testing procedures are required. Formal subjective tests follow-

ing formal methods and standards are more time-consuming to arrange

than informal tests. However, they provide more reliable and repeatable

results. In addition, formal statistical analysis gives information on the

quality of data.

The selection of the listeners for a subjective test depends on the test

type in use. Naive (untrained) test subjects are usually involved in utili-

tarian tests, where the objective is to find out the opinion of the average

telephone user. According to [49], a naive subject has not been involved in

work connected with assessment of telephone circuits, has neither partici-

pated in any subjective test for at least the previous six months nor in any

listening opinion test for at least one year, and has not heard the same

sentence lists before. The subjects should not have any kind of hearing

impairment, and their mother tongue should be the same as the language

in the test [47]. An alternative for naive test subjects is to use expert

(trained) listeners. For instance, in analytical methods, the results of the

test are more reliable if the subjects have been trained for the task.

4.1.1 Listening-only tests

The speech quality of a communication system is most often assessed by

listening-only tests. Usually this refers to using a pre-recorded and pro-

cessed set of speech samples that is presented to the subjects, for example,

through headphones, and the subjects are asked to assess the quality us-

ing a predefined scale given by the experimenter. An advantage of these

methods is that the evaluation is subjective, i.e. subjects listen to real

speech samples and grade them according to their personal opinion. A

drawback is that listening tests are rather directed, meaning that test de-

sign factors and rating procedures affect the subjects perception process.

For example, the samples are pre-recorded and usually quite short (one

sentence, for example), and thus a single artefact in a sample may dictate

the entire grading of the sample. Furthermore, the subject focuses mainly

on the form of the acoustic signal and not the content because he or she

is placed only in a listening context, which is not natural in a normal

telephone conversation situation.
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ITU-T recommendation P.800 describes several test methods and cate-

gory rating scales for listening opinion tests that are often used to evalu-

ate speech transmission systems [49]. The recommendation also describes

reference conditions that are important if two tests arranged in different

laboratories or at different times are to be compared with each other.

Absolute category rating (ACR) is perhaps the most widely used test

to assess the overall speech quality. In the test, the subjects are asked

to assess the speech quality using the 5-point mean opinion scale (MOS)

shown in table 4.2. For instance, the performance of speech codecs is usu-

ally evaluated with ACR tests. Listening effort and loudness preference

may also be evaluated using a 5-point scale from 5 to 1 [49].

Table 4.2. Mean opinion score according to ITU-T P.800 [49].

Score Quality of the speech

5 excellent

4 good

3 fair

2 poor

1 bad

The degradation category rating (DCR) test is designed to compare small

degradations in speech quality compared to a reference system. The sub-

ject is asked to evaluate a degraded signal compared to a reference using

the degradation mean opinion score (DMOS) shown in table 4.3. The ref-

erence signal is always presented first to the subjects followed by the test

signal.

Table 4.3. Degradation mean opinion score according to ITU-T P.800 [49].

Score Degradation is

5 inaudible

4 audible but not annoying

3 slightly annoying

2 annoying

1 very annoying

The comparison category rating (CCR) test is another test where two

signals are compared with each other. In the CCR test, the latter signal

is rated compared to the former with the comparison mean opinion score

(CMOS) shown in table 4.4. This test can also be applicable to assess

small differences between two or more systems. The results of a CCR test

provide information on which sample is better and by how much.
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Table 4.4. Comparison mean opinion score according to ITU-T P.800 [49].

Score Quality of the second compared to that of the first

3 much better

2 better

1 slightly better

0 about the same

-1 slightly worse

-2 worse

-3 much worse

Binary paired comparison can be employed in speech quality assessment

as well. The test signals are presented to the listeners in pairs, and the

subjects are asked to choose the one they prefer. The paired comparison

test is suitable when the differences between the conditions are small.

4.1.2 Conversational tests

Compared to listening-only tests, conversational tests are a step closer

to a real conversation situation. Everyday telephone communication is

mostly conversational, and the quality perception is undirected and indi-

vidual. The listener pays attention to features that the individual person

considers relevant for the communication situation. For example, the tele-

phone user may consider important features like intelligibility, loudness,

listening effort, or naturalness. The significance of semantic information

increases as the user is placed in a conversational context where listening,

talking, double-talk, and periods of mutual silence alternate. Conversa-

tional tests are, however, more expensive and time-consuming to arrange

and therefore quite rare.

A newish ITU-T recommendation P.805 describes a subjective test to as-

sess conversational quality over a telephone transmission [50]. The test

can be used to evaluate either a specific source of degradation, such as

delay or echo, or the overall quality of a transmission system. The target

is to have as realistic a communication environment as possible, where

two people are having a true spontaneous conversation over a telephone

system. In practice, two subjects at a time are placed in separate sound

proof rooms. The subjects can be experts, experienced, or naive partici-

pants, depending on the purpose of the test. During the test, the subjects

have a conversation on a given topic, or task, and then give their opinion

on the voice quality. There can be simulated noise environments either at
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one end of the conversation or at both ends.

4.1.3 Field tests

The speech quality experienced by the end user is affected by the entire

speech link, from the far-end to the near-end user. Field tests offer the

most realistic environment for assessing speech quality of transmission

systems. For example, the speech quality of a mobile phone could be as-

sessed during true phone calls. In practice, field tests are rare and expen-

sive to arrange, especially during the development process of a system,

and therefore quality tests are usually arranged in laboratory conditions.

Laboratory conditions are also easier to design such that the test is re-

peatable.

4.2 Objective quality evaluation

Objective (instrumental) quality assessment methods are computational

tools that have been developed to evaluate the quality of speech signals

and communication systems. Some of the measures analyse only certain

aspect of the signals, whereas others try to model human perception more

precisely. They are fast, repeatable, and automatic tools compared to

time-consuming subjective testing, but still they are only models and can

not replace subjective testing completely.

Objective quality assessment methods are often classified as parameter-

based and signal-based models [43, 47]. Parameter-based models, such

as the E model [51], rate the integral quality of an entire transmission

path. They provide information on the whole network and are useful, for

example, in network planning. Signal-based methods are more useful in

the field of speech enhancement. In such methods, the quality score of

a system is computed directly from the degraded signal and the original

reference signal, or alternatively only from the degraded signal. Some of

the methods measure only one feature of the sound, whereas others model

the overall quality through a perceptual model.

The simplest objective measures include time-domain and spectral-

domain measures, such as SNR ratio, mean square error, or spectral dis-

tance measures. These measures can be useful in many cases, but are not

very good predictors of subjective speech quality. Therefore, perceptual

measures have also been designed.

44



Speech quality and intelligibility

The perceptual evaluation of speech quality (PESQ), standardized in

ITU-T Recommendation P.862 [52], can be used to evaluate narrowband

speech codecs or end-to-end quality. Both the degraded and a reference

signal are necessary. The model calculates several delays between the

two signals and compares them using a perceptual model. The result is

an objective quality score. This score can be mapped to a listening quality

MOS that allows linear comparison with the MOS. An extension of the

PESQ for wideband signals is presented in the recommendation P.862.2

[53]. An upgrade for the PESQ is called the perceptual objective listening

quality analysis (POLQA) and is presented in the recommendation ITU-T

P.863 [54]. The POLQA supports narrowband, wideband and superwide-

band speech signals, and it is intended to cover most of the telephone

network scenarios.

4.3 Intelligibility tests

The first subjective tests focused on measuring intelligibility through sub-

jective tests. In articulation or word tests, intelligibility is measured as

the percentage of correctly recognized speech sounds at the receiving end

of a system. Either short segments of speech, such as monosyllables, or

complete words can be used. In rhyme tests, introduced by Fairbanks

[55], rhyming words are used instead. The diagnostic rhyme test (DRT)

consists of 96 rhyming word pairs that differ in their initial consonant

[56]. The subject hears one word at a time and identifies the word he or

she thinks he or she heard from the pair of words listed. An error rate is

calculated from the results. The modified rhyme test (MRT) contains 50

word lists of six one-syllable words, differing in either the initial or the

final consonant [57]. The subject hears one word at a time and chooses

from the list the word he or she thinks he or she heard. The result of the

test is an error rate of correctly identified words.

Speech intelligibility tests with speech segments longer than single

words take better into account impairment of continuous speech. Speech

reception threshold (SRT) is a test to find a presentation level for test

speech necessary for a listener to understand the speech correctly a spec-

ified percentage of the time, usually 50%. In the SRT, complete test sen-

tences are presented either in silence or in the presence of a reference

noise signal.
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5. Artificial bandwidth extension of
speech

5.1 Background

ABE methods for speech attempt to regenerate the frequency content that

is lost due to narrowband speech coding. Usually narrowband speech

bandwidth refers to the frequency range from 300 Hz to 3400 Hz that

is used in many existing speech coding standards, e.g. in PCM [31], the

AMR codec [5], or the G.729 codec [58]. The ABE method typically dou-

bles the 8-kHz sampling rate of narrowband speech to 16 kHz and adds

new frequency content to the signal. Bandwidth extension towards high

frequencies creates new content in the frequency band from 3.4 kHz (or

4 kHz) to 7 kHz (or 8 kHz). There are also bandwidth extension methods

towards low frequencies, 50–300 Hz [59, 60, 61]. Although the natural-

ness of voice is degraded due to the missing low frequency content, these

methods are not studied in this thesis. High frequencies are more im-

portant from the point of view of speech intelligibility. Furthermore, the

reproduction of the low frequencies with small earpieces of mobile devices

is not always possible.

Bandwidth extension methods can be further classified as artificial meth-

ods and methods with side information. The word "artificial" refers to al-

gorithms that attempt to regenerate the lost frequency content utilizing

only the information available in the narrowband signal, i.e., no informa-

tion about the missing frequencies is transmitted. Since the extension

is solely based on the narrowband signal, these methods can be imple-

mented at the receiving end of the transmission channel. There are also

methods that are not artificial but utilize transmitted side information

in the extension procedure [9, 10, 11]. These methods hide some side

information related to the missing frequency band in the narrowband sig-
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nal. The methods are independent and can be used with any narrowband

speech codecs. A drawback of the bandwidth extension methods with side

information is that their exploitation requires that the same method is

supported at both ends of the communication link. On the other hand,

the performance of such methods can obviously be superior to that of the

artificial bandwidth extension methods, as was stated in [9, 11]. Band-

width extension with side information can be also implemented as a part

of speech coding, as in the AMR-WB codec [6] or in the G.729.1 codec [62].

The motivation for utilizing bandwidth extension techniques in speech

codecs is to obtain better speech quality at very low bit rates, rather than

to overcome limitations due to narrowband speech coding or to enhance

transmitted narrowband speech.

The focus of this section, and of the whole thesis, is on ABE methods that

aim to regenerate the signal at high frequencies. The missing frequency

band from 4 to 8 kHz, i.e. the extension band, is therefore referred to as

the highband.

5.1.1 Correlation between narrowband signal and the missing
highband

Typically, ABE methods are data-driven algorithms that utilize true wide-

band references in the training of the extension procedure. They are built

on the assumption that the narrowband signal and the missing highband

are correlated and the narrowband signal contains enough cues to regen-

erate the missing highband. Especially for voiced speech, the correlation

originates from the low-pass characteristics of the excitation signal.

The dependency between the narrowband signal and the missing high-

band has been addressed in [63, 64, 65, 66]. The upper bound on the

achievable quality of a memoryless bandwidth extension system was dis-

cussed in [64]. In their study, the mutual information between the fea-

tures of the narrowband speech signal and the representation of the miss-

ing frequency band was evaluated with respect to an objective distance

measure, a mean log spectral distortion (LSD), between the ABE output

and the true wideband signal. The results indicate that to minimize the

LSD, the narrowband features should be selected so that the mutual in-

formation (MI) is maximized.

The ratio between the MI of the narrowband and the highband, and the

entropy of the highband was used in [63] to measure the uncertainty of the

highband envelope given the narrowband. The dependency was found to

48



Artificial bandwidth extension of speech

be relatively small, and the authors conclude that a bandwidth extension

method with a memoryless mapping may perform well, not because of an

accurate prediction of the highband, but because the signal bandwidth is

extended such that the signal sounds pleasant. As an interpretation for

the low MI between the narrowband and highband, it was explained in

[65] that instead of one-to-one mapping, the narrowband and highband

spectral envelopes have a one-to-many relationship.

The dependency analysis between the narrowband and the highband

was further extended in [66, 67] by investigating the role of speech mem-

ory in increasing the certainty of the highband. The results showed that

the certainty is increased as measured by the ratio of MI to the highband

entropy, and the bandwidth extension methods can benefit from a short-

term memory.

5.2 General model for artificial bandwidth extension

A general model for ABE that most of the ABE algorithms follow is shown

in figure 5.1. The input signal, snb, is a narrowband signal with a sam-

pling rate of 8 kHz. Through interpolation and lowpass filtering the signal

is up-sampled to 16 kHz. The resulting signal, slo, is a wideband signal

with narrowband content. A feature set is extracted from the input signal

and used to estimate parameters for highband shaping. The excitation

for the highband is first created to regenerate the highband signal. The

highband signal, shi, is obtained after shaping the excitation utilizing the

estimated shaping parameters. Finally, the ABE output, sabe, is obtained

by adding the generated highband signal and the up-sampled and lowpass

filtered original narrowband signal.

The general model for ABE methods presented in figure 5.1 can be fur-

ther modified to describe methods that are even more specifically based

on the LPC-based speech production model. A majority of the ABE meth-

ods in the literature more or less follows the algorithm structure shown

in figure 5.2. The highband excitation signal is obtained by extending

the narrowband LPC residual signal to the highband. Additionally, the

LPC coefficients for the highband envelope are also extended, and they

are used in the LPC synthesis to produce the highband signal.
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Figure 5.1. General model for ABE. The input signal, snb, is a narrowband signal with a
sampling rate of 8 kHz. The ABE output, sabe, with a doubled sampling rate
of 16 kHz, is obtained by adding the up-sampled narrowband signal, slo, and
the regenerated highband signal, shi.
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Figure 5.2. ABE based on LPC. The input signal, snb, is a narrowband signal with a
sampling rate of 8 kHz. The ABE output, sabe, with a doubled sampling rate
of 16 kHz, is obtained by adding the up-sampled narrowband signal, slo, and
the regenerated highband signal, shi.
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Highpass Filter

Delay compensation +

a cos(ΩMn)

snb(n) sex(n)
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×

Figure 5.3. Extension of the excitation by cosine modulation. A delayed version of the
original narrowband signal, snb(n) is added to the modulation output, sM(n),
that has been highpass filtered. As a result, a wideband excitation signal,
sex(n) is obtained. ΩM is the modulation frequency, and a is selected from
aε{1, 2} so that the power of the excitation signal is correct.

5.3 Extension of the excitation signal

The techniques to create the spectral fine structure for the highband are

generally called excitation extension methods. The word excitation signal

originates from the source-filter model of the speech production mecha-

nism, and in many ABE algorithms the extension of the excitation refers

directly to the LPC residual signal, as shown in figure 5.2. However, the

extension of the excitation may cover also spectral widening techniques

used by such ABE methods that widen and shape the spectrum without

specifically exploiting the source-filter model, as shown in figure 5.1. In

addition, the highband excitation can be derived directly from the narrow-

band signal [68, 69] or more popularly from the narrowband LPC residual

[70, 71, 72].

Non-linear processing applied to the narrowband excitation signal, snb(n),

is used in many ABE algorithms as a technique to extend the excitation

signal [68, 73, 74, 75, 76, 77]. The most popular non-linear functions in-

clude a quadratic function, (snb(n))
2, a cubic function, (snb(n))

3, and a

fullwave rectifier, |snb(n)|. These non-linear functions produce harmonic

distortion components without a pitch estimation. A disadvantage of non-

linear functions is that they produce highband excitation having a varying

amplitude spectrum. Therefore, some sort of spectral flattening is needed.

Excitation extension can also be implemented through time-domain mod-

ulation of the narrowband excitation signal, which corresponds to spec-

tral translation and folding methods [78]. Modulation techniques produce

shifted copies of the original subband spectrum in the missing frequency
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range. A block diagram of the modulation with a real-valued cosine func-

tion is shown in figure 5.3. A delayed version of the original narrowband

signal, snb is added to the modulation output, sM(n), that has been high-

pass filtered. The modulation function is of the form

sM(n) = snb(n) · a cos(ΩMn), (5.1)

where ΩM is the modulation frequency, and a is selected from aε{1, 2} so

that the power of the excitation signal is correct. In spectral translation,

the modulation frequency is fixed, and it produces a shifted copy of the

original spectrum in the higher frequency range [79, 78]. If the frequency

band that is to be copied is from Ωlo to Ωup, the modulation frequency, ΩM,

is given as

ΩM = Ωup − Ωlo. (5.2)

The cut-off frequency of the highpass filter is Ωup. As a result, the output

signal, swb(n), is a sum of the original signal and its shifted copy from

Ωup to Ωup + ΩM. The extension starts right where the bandwidth of the

original signal ends.

Spectral folding (or mirroring) is a special case of modulation and cor-

responds to modulation by the Nyqvist frequency, ΩM = π, (i.e. 8 kHz in

narrowband telephony). The output of spectral folding is a mirror image

of the narrowband spectrum in the highband. It has the same effect as

up-sampling the signal by two:

swb = snb(n) + snb(n)(1 + (−1)n). (5.3)

Spectral folding can be applied to the narrowband signal (for example

[68, 69]) or to the LPC residual signal (for example, in [70, 80, 81, 71,

82, 72, 83]). Spectral folding produces frequency components almost up

to 8 kHz, but on the other hand, there is a spectral gap at around 4 kHz

due to the original telephone bandwidth of 300–3400 Hz. The gap could

be avoided by folding the spectrum already at 3.4 kHz. However, it has

been reported that spectral gaps of moderate bandwidth have almost an

inaudible effect in perception of speech [78]. A disadvantage of the mod-

ulation techniques with a fixed frequency is that the harmonic structure

is not preserved in the highband. On the other hand, the human ear is

not very sensitive to the harmonic structure at high frequencies as it is

at low frequencies. In [15], the correction of highband harmonic struc-

ture was found to be unimportant for the perceived quality of ABE pro-

cessed speech. Therefore, for example, spectral folding has been a popular
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choice for excitation extension in ABE methods. The harmonic structure

of the excitation signal can be preserved by utilizing an adaptive modula-

tion frequency that is dependent on the current pitch frequency [79]. The

pitch adaptive modulation has been implemented both in the time domain

[84, 64] and in the frequency domain [85].

Sinusoidal synthesis has also been used to create a harmonic structure

in the missing frequency band [86, 87, 88]. For sinusoidal synthesis, the

harmonic structure for the highband is created by a bank of oscillators

with frequencies, amplitudes, and phases that are determined from the

narrowband speech. In sinusoidal synthesis, no spectral flattening is

needed, since the spectral envelope can be created directly through si-

nusoidal amplitudes.

An excitation extension method of modulated noise is motivated by the

fact that the harmonic structure becomes more noisy above 4 kHz. Fur-

thermore, in the frequency band above 4 kHz the resolution of human

hearing starts to worsen and the pitch periodicity is perceived through

the time-domain envelope of the bandpass speech signal [89]. Therefore,

the excitation can be extended by modulating highband noise with the

time-domain envelope of the bandpass (2.5–3 kHz) signal [90, 91, 92].

5.4 Extension of the spectral envelope

The extension of the spectral envelope from the narrowband to the high-

band is usually made based on some model that maps a narrowband fea-

ture vector onto the wideband envelope. The feature vector may consist

of features that describe the shape of the envelope directly or some other

features that are related to the temporal waveform.

5.4.1 Features

A set of typical features used in ABE methods is given in the following.

Linear predictive coding (LPC) prediction coefficients can be utilized

to describe the spectral envelope.

Line spectrum frequency (LSF) also known as line spectrum pair

(LSP), is an alternative representation for LPC coefficients [93]. LSF

decomposition is used in many speech coding standards as being an

efficient quantization technique. The LSFs are defined as the roots

of the polynomials
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P (z) = A(z) + z−(p+1)A(z−1)

Q(z) = A(z)− z−(p+1)A(z−1),
(5.4)

where A(z) is the LPC inverse filter.

Cepstral coefficients, c(n), are computed as an inverse discrete Fourier

transform of the logarithm of the power spectrum of the signal, s(n),

[13]:

c(n) = F−1{log |F{s(n)}|} (5.5)

Alternatively, cepstral coefficients that are transformed from the

LPC coefficients are also often used in ABE methods. Cepstral coef-

ficients [c0, c1, . . . , cP ] are calculated from the LPC coefficients

[a0, a1, . . . , aP ] using a recursive equation:

c0 = σ2

ci = −ai −∑i−1
n=1

n
i cnai−n,

(5.6)

where σ is the rms value of the signal that is normalized to 1.

Mel frequency cepstral coefficients (MFCC) are computed as cepstral

coefficients, but instead of using a linear frequency scale, a percep-

tually motivated mel frequency scale is used [94].

Energy-based features include different versions of frame energy. En-

ergy can be calculated from the entire narrowband signal or from

subbands. Frame energy for a time-domain frame s(n) with a frame

length N is defined as

xe =
N−1∑
k=0

(s(n)2), (5.7)

Zero crossing is a traditional feature for voiced/unvoiced clustering. It

is calculated from the time-domain frame s(n):

xzc =
1

N − 1

N−1∑
k=1

1

2
|sign(s(k − 1))− sign(s(k))|, (5.8)

where N is the frame length, and the sign operation is defined as

sign(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+1, if x > 0

0, if x = 0

−1, if x < 0.

(5.9)
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Gradient index was originally introduced in [95]. It is a feature for de-

scribing voiced/unvoiced characteristics of a speech frame s(n):

xgi =
1

10

∑N−1
k=1 Ψ(k)|s(k)− s(k − 1)|√∑N−1

k=0 (s(k))
2

, (5.10)

where N is the frame length, Ψ(k) = 1/2|ψ(k) − ψ(k − 1)|, and ψ is

the sign of the gradient s(k)− s(k − 1).

Spectral flatness is a frequency-domain feature calculated from the power

spectrum |S(ejΩi)|:

xsf = log10

Ni

√∏Ni−1
i=0 |S(ejΩi)|2

1
Ni

∑Ni−1
i=0 |S(ejΩi)|2 , (5.11)

where Ni is the length of the discrete Fourier transform (DFT), ejΩi

is the ith DFT frequency, j being the imaginary unit, and e = 2.7182

the base of the natural logarithm [96].

Centroid of the power spectrum is a frequency-domain feature that

results in higher values for unvoiced speech than for voiced speech.

It is defined as:

xsc =

∑Ni/2
i=0 f(i)|S(ejΩi)|

(Ni/2 + 1)
∑Ni/2

i=0 |S(ejΩi)|
, (5.12)

where |S(ejΩi)| is the power spectrum, f(i) refers to the frequency in

the ith DFT bin, and Ni is the length of the DFT [96, 72].

5.4.2 Distance measures

Distance measures play an important role in many ABE algorithms. Typ-

ically, the distance measure between two spectral envelopes is needed in

the training phase of a Gaussian mixture model, codebook, or neural net-

work. In codebook-based methods, a distance measure is also utilized in

the selection of a codeword for each frame. Similar measures have also

been used in objective quality evaluation of ABE methods. Most of the

spectral distance measures are mean square error measures that are ap-

plied either to the spectrum directly or to a parametric representation,

such as the LPC envelope. Examples of typical distance measures are:

Logarithmic spectral distortion (LSD) is mean square error in dB:

dLSD =
1

2π

∫ π

−π
(20 log10

σ

|A(ejΩ)| − 20 log10
σ̂

|Â(ejΩ)|)
2dΩ, (5.13)
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where 1
A(ejΩ)

is the LPC envelope of the original highband speech,
1

Â(ejΩ)
is the LPC envelope of the estimated highband speech, and σ

and σ̂ are the respective relative gains.

Cepstral distance is a commonly used distance measure in speech pro-

cessing that is calculated directly from p cepstral coefficients of the

original wideband signal, c, and the estimated wideband signal, ĉ:

dCEPS =
p∑

i=1

(ci − ĉi)
2. (5.14)

5.4.3 Codebook mapping

Codebook mapping was one of the first approaches for highband enve-

lope estimation in the ABE field [97, 70, 98, 80, 99, 81, 100, 91, 76]. Put

simply, a narrowband codebook consists of a list of codewords, i.e. narrow-

band feature vectors, and corresponding highband envelopes. The feature

vector computed from the input speech is compared with each of the code-

words, and the best match is selected. The best match is decided on the

bases of an error measure, for example the mean square error, between

the input vector and the codebook entries.

The basic codebook mapping can be improved with modifications as pre-

sented in [99, 100, 91]. Separate codebooks were constructed for unvoiced

and voiced fricatives in [100], which improved the performance of the al-

gorithm measured in terms of spectral distortion (SD). Similar results

were obtained in [99], where a split codebook for voiced and unvoiced

speech sounds improved the performance. In addition, a codebook map-

ping with interpolation, i.e. where the highband envelope is calculated as

a weighted sum of the most probable codebook entries, was reported to

enhance the extension quality in [99, 91]. Furthermore, in [91], codebook

mapping with memory was implemented by interpolating the current en-

velope estimate with the envelope estimate of the previous frame.

Typically, both the narrowband feature vectors and the highband code-

words directly represent the spectral envelopes through LPC coefficients

([97, 70, 80]) or LSFs ([98, 100, 91]). MFCCs have also been used in [81].

In [76], a slightly different approach was chosen, where an estimate for

highband energy is first calculated after which the energy is mapped onto

the highband spectral envelope codebook.
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5.4.4 Linear mapping

Linear mapping is utilized in [73, 99, 82] to estimate the spectral enve-

lope of the highband. In linear mapping, the input narrowband envelope

is characterized by a vector of parameters x = [x1, x2, . . . , xn] and the wide-

band envelope to be estimated by another vector y = [y1, y2 . . . , ym]. For

example, LPC prediction coefficients or LSFs can be used as input and

output parameters. The linear mapping between the input and output

parameters is then denoted as

y = Wx, (5.15)

where the matrix W is obtained through an off-line training procedure

with the least-squares approach that minimizes the model error y −Wx

using a training data with narrowband envelope parameters X and cor-

responding highband parameters Y:

W = (XTX)−1XTY. (5.16)

To better reflect the non-linear relationship between the narrowband

and highband envelopes, modifications for the basic linear mapping tech-

nique have been presented. Instead of using a single mapping matrix, the

mapping can be implemented by several matrices. In [82], speech frames

are clustered into four clusters based on the first and the second reflection

coefficients, and a separate mapping matrix is created for each cluster.

The algorithm in [82] hence utilizes hard-decision clustering, whereas a

soft decision scheme is implemented in [73], where the clustering is per-

formed through vector quantization of the input vector, x, and the final

output vector, y, is formed as a weighted sum of the mappings obtained

for all clusters.

The evaluation of the performance of the ABE methods with linear map-

ping is rather concise. In [73], based on an informal listening test con-

ducted in the Japanese language, the quality of narrowband speech was

better than the extended speech. Objective analysis was also provided,

showing that SD for piecewise-linear mapping was smaller than for code-

book mapping and neural network approaches. On the other hand, the

objective comparison given in [99] indicates better performance for code-

book mapping compared to linear mapping.
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5.4.5 Gaussian mixture model

In linear mapping, only linear dependencies between the narrowband

spectral envelope and the highband envelope are exploited. Non-linear

dependencies can be included in the statistical model by utilizing Gaus-

sian mixture models (GMM). GMM is a parametric model for modelling

high-dimensional probability density functions (PDF) of a random vari-

able.

In ABE methods, the GMM is typically utilized to model the joint PDF

between two random variables, x and y. The GMM PDF for variables

x = [x0...xb−1] and y = [y0...yd−1] is represented as a weighted sum of L

Gaussian component densities fG:

fGMM(x,y) =
L∑
l=i

ρlfG(x, y;μx,y,l,Vx,y,l), (5.17)

where L is the number of individual Gaussian components, ρl is the lth

mixture weight, μx,y,l is the mean vector and Vz,l is the covariance matrix.

These GMM parameters can be estimated from training data through an

iterative training procedure, such as the expectation maximization (EM)

algorithm.

The GMM is utilized directly in envelope extension to estimate wide-

band LPC coefficients or LSFs from corresponding narrowband param-

eters [101, 90]. The performance of the GMM-based spectral envelope

extension was then enhanced by using MFCCs instead of LPC coefficients

[87, 102]. Furthermore, the GMM mapping with memory further results

in better performance in terms of LSD and PESQ [103, 104]. In addition

to using GMMs directly in envelope extension, they can be used in HMM-

based ABE algorithms as well. These methods are discussed in the next

section in more detail.

The advantage of the GMM in envelope extension methods is that they

offer a continuous approximation from narrowband to wideband features

compared to the discrete acoustic space resulting from vector quantiza-

tion. Better results were reported for GMM-based methods compared to

codebook mapping in [101] and [90] in terms of SD, cepstral distance, and

a paired subjective comparison.
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Figure 5.4. Hidden markov model with five states. The transition probabilities from
state i to state j are denoted as aij . An observation ot at time instant t,
is created according to the output probability densities of state i, denoted as
bi.

5.4.6 Hidden markov model

Hidden Markov models (HMMs) are statistical models that have been uti-

lized successfully, for example, in speech recognition [105]. A HMM con-

sists of two stochastic processes. The first process is a Markov chain with

N finite states. This process is not directly observable but is hidden, and

it can be observed only through another stochastic process that produces

the sequence of observations. A simple HMM structure with only left-to-

right transitions between the five states is shown in figure 5.4. At each

discrete time instant t, a decision for the next state of the Markov chain is

made based on the transition probabilities from state i to state j, denoted

as aij . After the next state is determined, an observation ot is created

according to the output probability densities of state i, denoted as bi.

HMMs have been utilized in the envelope prediction of ABE methods

[106, 78, 107]. In [78], each state of the HMM represents a typical high-

band spectral envelope. During the bandwidth extension, the narrowband

signal frames are mapped onto the states of the HMM, and the parame-

ters representing the highband envelope are determined using an estima-

tion rule.

The narrowband feature vector in [78] consists of both parameters rep-

resenting the envelope (LPC coefficients) and scalar features (such as the

zero-crossing rate, normalized frame energy, gradient index, local kurto-

sis and spectral centroid) that contain voiced/unvoiced information. The

highband envelope, on the other hand, is represented by cepstral coeffi-

cients.

The parameters of the Markov chain with states representing the spec-

tral envelopes are obtained by vector quantizing the highband spectral
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envelopes using a training data with true wideband speech. As a result,

every state of the HMM corresponds to one entry of the VQ codebook.

The resulting HMM structure is ergodic, indicating that a transition from

a state to any other state is possible. Furthermore, for each state Si, a

statistical model is constructed based on the narrowband features x and

the highband spectral envelopes y. The statistical model consists of the

state and transition probabilities P (Si) and P (Si(m + 1)|Sj(m)), respec-

tively, the observation probability p(x|Si), and the emission probability

p(y|Si). The observation probability, i.e. the PDF of the feature vectors

x, for each state p(x|Si) is estimated by a GMM using the EM training

procedure. Finally, the estimation rule defines how the coefficients repre-

senting the spectral envelope of the missing highband are formed. In [78],

a minimum mean square error (MMSE) rule is applied, and the resulting

highband envelope is the sum of individual codebook entries weighted by

a posteriori probabilities of the corresponding states of the HMM.

An advantage of the algorithm presented in [78] is that, due to the

HMM and the MMSE estimation rule, the algorithm is not memoryless,

as most of the ABE methods, but information from the preceding frames

is exploited. Also, the foundation of the algorithm is strongly based on

a widely used and accepted mathematical model that has been success-

fully exploited in other fields of speech processing. On the other hand, the

method is a "black box" implementation, and the performance is depen-

dent on the feature selection and training.

5.4.7 Neural networks

Neural networks have been utilized in the estimation of the highband pa-

rameters, e.g. in [108, 109, 110, 69, 72]. A multilayer feedforward neural

network (FFNN) is the most common neural network, and it was also used

in [75, 109, 110, 69, 72]. It comprises an input layer of neurons, hidden

layers, and an output layer of neurons. An example FFNN with one hid-

den layer is shown in figure 5.5. A hidden neuron vj has m input signals

xk and an output vj . Each input has a synaptic weight wjk. An adder

sums the weighted input signals and an optional bias, bj , and finally the

output of a neuron, vj , is defined by an activation function ϕ(·) as follows:

vj = ϕ(
m∑
j=1

wjkxk + bj). (5.18)

If every node in each layer is connected to every other node in the adja-
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Figure 5.5. Feedforward neural network with one hidden layer between the input and
output layers. The input layer comprises m input signals xk, the hidden
layer o hidden neurons vj , and the output layer n output signals yi.

cent forward layer, the neural network is said to be fully connected, other-

wise it is partially connected. Furthermore, a basic FFNN can be modified

by adding one or more feedback loops, i.e. by feeding output signals back

to the inputs of the neurons. Such neural networks are called recurrent

neural networks [111].

The parameters for a neural network are determined through a learn-

ing (or training) process, where the connection weights are adjusted iter-

atively. Usually the learning process is based on an example set of input

data for which the network learns to produce the desired output and at the

same time to generalize the results for other inputs. Learning methods

are often divided into three groups: 1) supervised learning, 2) unsuper-

vised learning, and 3) reinforcement learning. In supervised learning, the

the desired behaviour of the neural network is described in terms of a set

of input-output examples. An iterative learning process is implemented

by minimizing an error function, i.e. a measure between the output of

the network and the desired output, of the whole training data. In unsu-

pervised learning, desired outputs are not available, and the learning is

based on the correlations of the input data [112]. A typical use of unsuper-

vised learning is clustering, where the system forms clusters of similari-

ties from the input data. In reinforcement learning, the desired output of
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Figure 5.6. Schematic diagram of neuroevolution methods. Each genotype is tested by
decoding it into a neural network and performing the task, resulting in a fit-
ness value for the genotype. After evaluating all the genotypes in this man-
ner, a new generation of genotypes is created by genetic operations among
the best genotypes. This process is continued until the fitness is sufficiently
high.

the network is also unknown, but the performance of the network can be

measured by a so-called fitness function. The learning process is therefore

reinforced by crediting a desired behaviour of the network and penalizing

an undesired behaviour.

Neuroevolution methods are a special group of reinforcement learning

methods that can be used not only for modifying neural network weights

but also topologies [113]. They are also well suited for recurrent networks.

The basic idea behind most of the neuroevolution methods is shown in fig-

ure 5.6. The first generation of the genotype population is first created.

Each genotype is then tested by decoding it into a neural network and

performing the task, resulting in a fitness value for the genotype. After

all the genotypes are evaluated in this manner, a new generation of geno-

types is created by genetic operations among the best genotypes. This

process is continued until the fitness is sufficiently high.

A three-layer feed-forward neural network is used in [69] to determine

weighting parameters of a folded narrowband spectrum in the highband

(4-8 kHz), quite similarly to Publication II. Instead of utilizing neuroevo-

lution learning, as in Publication II, a supervised learning method, called
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the Levenberg-Marquardt algorithm, is used to train the network. The

input to the neural network is a feature vector of nine narrowband fea-

tures. The neural network is trained to output weights for critical bands

in the highband. The shaping of the folded highband is implemented in

the spectral domain by spline functions that are constructed around the

critical band weights given by the neural network. The method was tested

against both pure wideband and narrwoband references using a CCR test.

The results showed clear preference towards ABE samples compared to

narrowband, but wideband was also reported superior to ABE samples.

Both naive and non-naive listeners were used in the test. In addition to

the quality test, MRT was also utilized in evaluating intelligibility be-

tween narrowband and ABE samples. The reported results showed some

improvement also in terms of intelligibility.

Another approach based on neural networks is introduced in [109]. The

method closely follows the LPC-based algorithm model shown in figure

5.2. The mapping of the narrowband cepstral coefficients derived from the

LPC coefficients onto wideband coefficients is implemented by a FFNN. A

simple supervised learning rule called back-propagation is used. In addi-

tion, in order to use a neural network for envelope extension, an alterna-

tive implementation with linear mapping of the envelope parameters is

presented, and the two methods are compared to each other. Both objec-

tive and subjective comparison tests reported in [109] indicate nearly the

same quality improvement for both neural network and linear mapping-

based ABE versions compared to a narrowband reference.

In [75], a neural network-based ABE algorithm was compared with a

codebook-based method. The neural network topology was rather simi-

lar to the one presented in [109]. A multilayer perception (MLP) network

with three layers and the back-propagation learning algorithm was used.

Both input and output parameters for the neural network were LPC coef-

ficients. The two methods were evaluated with both objective and subjec-

tive methods. Interestingly, the results from the objective and subjective

tests were inconsistent; three of four objective measures indicated better

performance for the neural network algorithm. However, the MOS test

resulted in a clear preference for codebook mapping.

In [72], an ABE algorithm is studied that uses a neural network to es-

timate the mel spectrum for the highband. (This technique is essentially

the same as the ABE2 algorithm in Publication VII.) In this method, the

highband is divided into subbands that, in turn, are weighted to realize
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the mel spectrum. The method uses a neuroevolution algorithm, called

neuroevolution of augmenting topologies (NEAT), to train the neural net-

work. The training starts from a minimum topology of the network that

evolves during the training process. An advantage of the NEAT algo-

rithm is that it can exploit recurrent connections and thus include mem-

ory within the network. According to the CCR listening test results re-

ported in [72], the method improves narrowband-coded AMR speech sig-

nificantly.

Despite their many advantages, neural networks also have disadvan-

tages. In practice, there is an unlimited number of possible network

topologies, training algorithms, and training data sets. Using a large set

of training data is recommended, which easily leads to a slow development

process of the algorithm. Both promising and unpromising results from

evaluations of quality were reported in [108, 75, 109, 69, 72]. The com-

parisons between neural networks with linear mapping and codebooks

[75, 109] indicate that with a simple neural network, the performance

is perhaps not good enough, but with more complex structures and with

perceptual fitness functions, it is possible to obtain good results [72].
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6. Artificial bandwidth extension in
mobile devices

Improved speech quality and intelligibility, achieved through a carefully

designed and implemented ABE algorithm, can be exploited in products

that receive or store narrowband speech. For example, cellular telephony,

car telephony, cellular networks, VoIP telephony, and teleconferencing

systems are potential products that benefit from ABE methods.

The quality experienced by the end user is dependent on the whole

speech processing chain from the far-end user to the near-end user, in-

cluding the acoustic properties of the user terminals. Therefore, when

implementing an ABE method in a product, the properties of the present

product should be taken into account. In addition, whether the product,

and consequently the ABE method, is used in noisy places or not, influ-

ences the quality expectations of the ABE method in use. In a telephone

conversation, intelligibility comes before audio quality, but after excellent

intelligibility is achieved, the importance of quality increases. For ex-

ample, in an extremely noisy environment, it is important to understand

the message that the conversation partner is delivering and to be able to

respond to the conversation. On the other hand, when speaking on the

phone in a quiet place, the naturalness of the voice is valued by the end

user, and being able to recognize the other person on the phone easily is

appreciated.

In this section, the implementation of an ABE method in mobile devices

and car telephony are discussed in more detail.

6.1 Artificial bandwidth extension in a mobile device

The fact that the most of the mobile phone users of the world’s 5.6 bil-

lion mobile connections ([34]) are still offered only narrowband speech

makes mobile devices an attractive target for an ABE method. During
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the transition phase from narrowband to wideband speech communica-

tion, several scenarios for phone calls relative to the speech bandwidth

exist, as illustrated in figure 6.1. If either of the devices in a telephone

conversation support only narrowband coding, speech is transmitted in

narrowband, as shown in figures 6.1 a–d. Only if both devices support

wideband speech coding, true wideband speech is achieved, as illustrated

in figure 6.1 e. ABE can be implemented in both narrowband and wide-

band terminals. In practice, in both cases wideband acoustical design is

needed. However, whether the device is a narrowband or wideband ter-

minal has an influence on type approval tests that are performed for each

mobile device, following the 3GPP specifications [114]. For a narrowband

mobile terminal, passing the narrowband performance requirements is

sufficient, whereas a wideband terminal should meet wideband telephony

performance requirements.

Several issues should be taken into account when implementing an ABE

algorithm in a mobile device. The algorithm has to be suitable for real-

time implementation with a reasonable computational load. The algorith-

mic delay should be small enough so that the overall downlink processing

delay does not exceed 150 ms, because greater delays start to annoy the

end users and make the conversation difficult.

There are thousands of languages in the world. The most spoken lan-

guages that are all spoken by over 100 million people include Chinese,

Hindi, English, Spanish, Arabic, Portuguese, French, Bengali, Russian,

Japanese, and German [115]. The languages differ from each other in

temporal and spectral characteristics, and the ABE method should be as

language independent as possible.

The algorithm should be speaker independent and result in good speech

quality whether the speaker is male or female, an adult or a child. The far-

end user might have a speaking disorder, a quiet or a loud voice. Speaker

dependent methods have been reported to result in superior performance

than speaker independent methods, at least in [78]. Perhaps in the fu-

ture, the fact that a mobile device is often personal could provide an op-

portunity to develop an architecture where the algorithm adapts to special

speech characteristics of the user.

Mobile devices are used everywhere in the world: in homes, in offices, in

outdoor activities, in cars, in concerts, in discos, at construction sites, and

so on. Therefore, the ABE method should be robust against speech signals

with all kinds of background noise having both high and low SNR. The
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Figure 6.1. Different phone call scenarios between narrowband and wideband mobile de-
vices. If both the far-end and the near-end terminals are narrowband devices,
the speech signal is narrowband as well (a). True wideband is achieved only if
both terminals and the network support wideband (e). Otherwise, the speech
signal is narrowband, and ABE can be used to widen the spectrum (b, c, and
d).
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far-end user may be surrounded by any kind of background noise, which

is included in the signal that serves as the input for the ABE method.

The ABE method should be able to enhance the speech quality without in-

creasing the noise level. Babble noise, cafeteria noise, and any other noise

with high frequency content is extremely challenging for ABE methods

because the methods easily start to enhance these high frequency com-

ponents. Background noise around the end user masks possible artefacts

introduced by an ABE method. Therefore, the ABE method is especially

useful in mobile phones that are often used in noisy places.

Different speech codecs and bit rates with varying speech quality are

used around the world. In addition to background noise, codec distortion

deteriorates the quality of the narrowband input signal, and the perfor-

mance of an ABE method should be assessed with distorted input signals

of different kinds.

6.1.1 Signal path in mobile telephony

The voice quality in a mobile device is affected by the whole chain from

the far-end user to the near-end user. The acoustic environment and the

background noise conditions around the far-end user have an effect on

the quality of the input signal that is captured by the far-end telephone

device, which may be a handportable mobile device, a landline telephone,

a car hands-free system, or a VoIP application. Taking a mobile device

as an example, The microphone of the far-end user captures the speech

signal. It is processed through a low-pass filter to remove unwanted signal

components, and an analogue-to-digital conversion. The far-end signal

path is then followed by speech enhancement algorithms such as noise

suppression, echo cancellation, and level control that are implemented in

the mobile device. The digital signal is then coded by a speech codec, like

the AMR codec, and transmitted through a cellular network.

In the near-end device, the decoded signal is first encoded. The result-

ing digital signal is processed through speech enhancement algorithms

such as noise suppression and dynamic level control. ABE processing is

typically implemented after other speech enhancement, and the influence

of the other algorithms on the ABE quality, especially noise suppression

and dynamic range control (compression), should be assessed. After ABE

processing, the frequency response of the speech signal is equalized for

the transducer. Finally, there is a digital-to-analogue converter before the

amplifier and the transducer.
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Figure 6.2. Receiving frequency mask as specified in [114].

6.1.2 Acoustic design of a mobile terminal

The acoustic design of a mobile terminal comprises the hardware compo-

nents and their mounting, i.e. how they are placed in the device. The

requirements for good ABE quality are basically the same as for good

wideband speech, i.e. the earpiece should be able to reproduce a fre-

quency band of 50–7000 Hz with reasonable earpiece distortion. Addi-

tionally, equalizers are required to compensate for the unideal frequency

response of the hardware components, in particular the microphone and

the loudspeaker. For mobile devices, ITU-T specifies frequency masks for

both the receiving and sending quality that has to be met in the hand-

portable mode of mobile devices [114]. There are specified requirements

for both narrowband and wideband telephony. An ABE method can be

implemented in a narrowband device or in a wideband device. In a nar-

rowband device, only narrowband speech transmission is supported, and

the ABE method is regarded as a narrowband speech enhancement fea-

ture. In a wideband device, wideband speech coding is supported and ABE

is used if true wideband speech is not available.

The receiving wideband frequency mask, specified in the 3GPP specifica-

tion 26.131 [114], is shown in figure 6.2. The frequency mask is relatively

loose, which is why an ABE method should always be tested with the

acoustics of the device. For example, if the ABE algorithm in use produces

a spectral gap around 4 kHz, it might not be audible with a flat frequency

response, but a non-flat response might boost the gap and thus increase

audible distortion. The quality of the state-of-the-art ABE algorithms is

not completely comparable with true wideband speech. There are some
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artefacts and distortion in the extended signals, but an adequate ABE

quality in a product can usually be achieved by finding a good balance

between the original narrowband signal and the regenerated highband

one.

6.2 Artificial bandwidth extension in car telephony

In many countries, the use of the hands-free cellular phone is mandatory

while driving a car for road safety reasons. Hands-free cellular phone us-

age improves road safety since the driver can better concentrate on driv-

ing without having to hold the mobile device to the ear with his or her

hand, or even with a shoulder, if both hands are needed for some driving

manoeuvre. Hands-free usage of a mobile phone in a car can be achieved

by, for example, utilizing the speaker mode of a mobile device, using a

wired headphone, through a bluetooth accessory, or by utilizing an inte-

grated in-car hands-free system.

Car telephony is an attractive target for ABE methods, because back-

ground noise degrades speech intelligibility and increases listening fa-

tigue. In addition, the car interior, which typically has noise with low-pass

characteristics, masks possible artefacts generated by ABE processing. In

[116], the usage of a bandwidth extension algorithm improved intelligibil-

ity of narrowband speech of meaningless vowel-consonant-vowel syllables

in a car environment. Some quality improvement was also reported in

low (0 dB) SNR conditions. Furthermore, when utilizing ABE in car tele-

phony through integrated hands-free systems (for example, [117]), the

acoustic environment around the near-end speaker is always known, and

the whole signal processing path can be designed for car usage, such as in

[118].
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7. Summary of the publications

This thesis consists of seven articles four of which were published in inter-

national reviewed journals and three in full-paper reviewed conferences.

All the articles focus on ABE of speech signals.

Publication I: "Artificial bandwidth expansion method to improve
intelligibility and quality of AMR-coded narrowband speech"

The first publication is a conference article that presents an ABE algo-

rithm. The method is based on spectral folding, i.e., the narrowband spec-

trum from the frequency range 0–4 kHz is folded onto the highband (4–8

kHz). The folded spectrum is shaped in the FFT domain by spline func-

tions that are optimized using a genetic algorithm. The performance of

the algorithm is evaluated by an intelligibility test called SRT and by an

ACR test that is often used to assess speech codecs. The results from

the SRT test indicate that the algorithm improves speech intelligibility in

noise. The ACR test results show no statistical improvement in speech

quality compared to narrowband AMR speech. The performance of the

algorithm is further evaluated in Publication III.

Publication II: "Neural network-based artificial bandwidth expansion
of speech"

An ABE algorithm utilizing a neural network is presented in the article.

The algorithm, called neuroevolution ABE (NEABE), is based on spectral

folding. A feature vector is computed from the narrowband signal and

serves as an input to a neural network. As an output, the neural network

provides parameters required to formulate a spline function that, in turn,

is used to shape the highband spectrum. A neuroevolution algorithm is
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Figure 7.1. Main results of the CCR language test presented in the order of preference
— wideband (WB), ABE, and narrowband (NB) processings — in three lan-
guages. Mean scores are indicated by dots and 95 % confidence intervals are
shown with error bars.

used to train the neural network.

The algorithm is evaluated against a clean narrowband reference by a

paired comparison test and with a CCR test. The tests indicate a clear

preference towards NEABE-processed speech compared to the clean nar-

rowband reference. In addition, an objective measure, the SD, between

NEABE outputs and true wideband signals are computed for phonetically

labelled speech data.

Publication III: "Evaluation of an artificial speech bandwidth
extension method in three languages"

In this journal article, a potential language dependency of an ABE algo-

rithm is studied. The algorithm is an enhanced version of the method

presented in Publication I, and it is evaluated against an AMR-coded nar-

rowband reference and an AMR-WB-coded wideband reference. Three

CCR tests are arranged in English, Russian and Mandarin Chinese. All

the languages selected for the evaluation are spoken by millions of people

around the world. Mandarin Chinese is chosen as one of the test lan-

guages because it is a tonal language. Furthermore, Russian is chosen

because of its varied set of fricative sounds that are known to be chal-

lenging for ABE methods. The test results are consistent in all three lan-

guages, indicating that the algorithm is not language dependent. The

main results of three CCR tests are shown in figure 7.1.

72



Summary of the publications

��������	


��
���
�

��

��

	�
	�
�
	�

��

��

	���
�

��

��
�
���
�

��

��

	�
	�
�
	�
�	��� ���

�
���
�


��
���
�

�� �

�� �

�
��
	��
���	
�

�

��
	��
���	
�

�
�����

�
�����

Figure 7.2. Signal path from the far-end user to the near-end user in a telephone conver-
sation between two mobile phone users.

Publication IV: "Development, evaluation and implementation of an
artificial bandwidth extension method of telephone speech in
mobile terminal"

This article discusses the development cycle of an ABE method from an

initial idea to the implementation in a mobile terminal. In addition to

the algorithm development, the process includes several subjective tests

and simulations that verify the proper performance of the algorithm in

different use scenarios.

The article also discusses the utilization of the ABE technology in a mo-

bile device. The signal path from the far-end user to the near-end is illus-

trated in figure 7.2. The sending and receiving mobile terminals have cer-

tain characteristics including the influence of speech coding, other speech

enhancement algorithms, and acoustical design of the devices. In ad-

dition, background noise at both ends of the communication affects the

speech quality experienced by the end user.

Publication V: "Binaural artificial bandwidth extension (B-ABE) for
speech"

In this conference article, the requirements for the ABE algorithm to ex-

tend binaural signals are discussed. An ABE algorithm originally de-

signed for monaural signals is modified for binaural speech signals so

that the algorithm preserves the localization information of the speakers.

A subjective listening test is also organized to analyse the performance

of the method. The test results indicate that the algorithm preserves the

localization information well.

Binaural speech technology can benefit from spatial audio, and if wide-
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Figure 7.3. Teleconferencing system including a conference bridge and a terminal with
the B-ABE function. 3D processing is performed in the conference bridge and
the binaural signal is sent to the terminal where B-ABE processing takes
place.

band speech is not available, ABE can be exploited. An example telecon-

ferencing system with 3D processing implemented in a conference bridge

and B-ABE in a terminal is shown in figure 7.3.

Publication VI: "Evaluating artificial bandwidth extension by
conversational tests in car using mobile devices with integrated
hands-free functionality"

This article reports conversational test results for ABE processing. In

the test, phone calls between two persons are made using mobile devices

over a cellular network. Three connection types are involved in the test:

a narrowband connection with AMR coding, a wideband connection with

AMR-WB coding, and an ABE connection with AMR coding and ABE pro-

cessing implemented in the terminal. The test subjects held short con-

versations in a car with and without simulated car interior noise. The

subject in the car was able to switch between two different connections

during each phone call, and after the conversation, the subject was asked

which connection was better. The placement of the mobile devices in the

car is shown in figure 7.4.

The results show a clear preference for the ABE connection compared

to the narrowband one, whereas wideband was preferred over both nar-

rowband and ABE. To the best of the author’s knowledge, this article is

the first to report conversational testing of an ABE method. In addition,

for the first time, an ABE algorithm is evaluated with an ABE method

running on a true end product and using real cellular networks.
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Figure 7.4. Mobile devices in the test car.

Publication VII: "Conversational quality evaluation of artificial
bandwidth extension of telephone speech"

The last article discusses conversational quality testing of ABE more thor-

oughly. An extensive conversational evaluation consisting of two separate

tests was organized. Two different ABE algorithms, a narrowband refer-

ence (AMR), and a wideband reference (AMR-WB) were included in the

tests. The first test closely followed the ITU-T P.805 recommendation,

whereas the second test was a modification of the first and enabled a

paired comparison and asymmetric conversation tasks. A schematic il-

lustration of the test setup is shown in figure 7.5.

The results indicate that speech processed with one of the ABE methods

is preferred to narrowband speech in noise. However, wideband speech is

superior to both narrowband and ABE-processed speech.

A B

Room 1 Room 2

Subject 1 Subject 2

Simulated

telephone

connection

Figure 7.5. Schematic illustration of the conversation test setup.
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8. Conclusions

Narrowband speech coding that is deployed in many telephone applica-

tions limits the speech bandwidth to the frequency range 300–3400 Hz,

resulting in degraded speech quality and intelligibility. When only nar-

rowband speech transmission is available, ABE can be applied to the

signal at the receiving end of the communication link. An ABE method

aims to improve speech quality and intelligibility by regenerating new fre-

quency components in the signal in frequencies above 3400 Hz. Since the

extension is made without any transmitted information, the algorithm is

suitable for any telephone application that is able to reproduce wideband

audio signals.

In this thesis, ABE towards high frequencies is addressed from the mo-

bile communication perspective. The following issues are addressed:

1. ABE algorithm development for narrowband speech signals.

2. ABE for binaural signals.

3. Evaluation of the ABE methods through subjective listening tests and

conversational tests.

4. Implementation of an ABE method in a mobile device.

The developed ABE algorithms are presented in Publication I (enhanced

algorithms in Publication III and Publication VII), Publication II and Pub-

lication VII. All the three methods are suitable for real-time implementa-

tion with a reasonable computational load and delay due to the algorithm.

The methods are primarily designed for monaural telephone speech sig-

nals, whereas the extension of binaural signals is addressed in Publica-
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tion V.

For evaluating the developed ABE methods, several listening opinion

tests have been conducted. The quality of ABE-processed signals are com-

pared with both narrowband and wideband references through subjective

listening tests in laboratory conditions. The selected test methods include

ACR (in Publication I and Publication IV), CCR (in Publication II and

Publication III) and paired comparison (Publication II). In addition, the

CCR test reported in Publication III addresses language dependency is-

sues of an ABE method. Furthermore, SRT in noise test was utilized to

assess how ABE affects speech intelligibility in noise (in Publication I and

Publication IV). In Publication VI and Publication VII, the ABE quality

is assessed by conversational tests, where the algorithms are evaluated

in a more natural speech communication situation between mobile phone

users. The implementation of the ABE algorithm presented in Publica-

tion I, Publication III, and Publication IV in a mobile phone is discussed

in Publication IV.

A thorough subjective evaluation verifies that narrowband speech qual-

ity and intelligibility can be improved by the novel ABE algorithms devel-

oped in this thesis. The results from the tests are consistent and indicate

no language dependency. Furthermore, the results have been obtained

with realistic speech data, i.e. coded speech from several speakers and

languages have been involved in the tests.

The results from the SRT test and the conversational test reported in

Publication VI indicate that ABE improves quality and intelligibility es-

pecially in a noisy environment where the artefacts are not heard due to

the masking effect. However, the larger scale conversational test in Pub-

lication VII does not completely verify this result, even though the results

indicate that ambient noise increased the effort needed to understand the

conversation partner, and one of the ABE methods reduced the effort to

understand female voices compared with narrowband AMR.

ABE for binaural signals has to be implemented such that the binau-

ral cues are preserved. Especially, the ILD is an important cue at high

frequencies. In Publication V, the ABE processing improved the 3D local-

ization compared to the narrowband signal.

In a mobile phone, the performance of an ABE method depends on the

entire processing chain of the downlink speech signal. If the equalized

frequency response of the earpiece is not sufficiently flat, some artefacts

of the ABE processing may be emphasized. A possibility to tune the algo-
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rithm for each acoustical design separately is beneficial. If the acoustical

properties of a mobile device are not optimal for an ABE method, uplink

noise dependent tuning can be utilized.

Three different ABE algorithms have been developed and evaluated in

this thesis. The results from the tests are consistent, indicating that even

though the extension is completely artificial, speech quality and intelli-

gibility is primarily improved. However, there is still a gap between the

quality of ABE processed speech and true wideband speech. In the future,

it would be interesting to study if the quality gap could be further de-

creased by bandwidth extension for low frequencies. Moreover, the small-

scaled conversational test in Publication VI is the only test to date where

ABE was evaluated using true mobile devices and cellular connections.

The performance of the algorithm was carefully tuned for the particular

acoustical design. Despite the fact that the results are promising, even

more in-depth field studies would be beneficial in finding out whether

the end users adapt to the artefacts introduced by the ABE method or

whether they start to annoy the users. In addition, based on this study,

an open research question is how telephone users experience the hand-

overs for narrowband to wideband speech and vice versa, compared to

hand-overs from wideband to ABE and vice versa.
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Publication VII

In section V, "The frequency response of a speaker phone microphone in

a mobile device differs from the frequency response of high quality head-

phones", should be: "The frequency response of a speaker phone loud-

speaker in a mobile device differs from the frequency response of high

quality headphones".
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