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Abstract 
In neuroscience, functional magnetic resonance imaging (fMRI) has become a powerful tool 

in human brain mapping. Typically, fMRI is used with a rather simple stimulus sequence, aim- 
ing at improving signal-to-noise ratio for statistical hypothesis testing. When natural stimuli 
are used, the simple designs are no longer appropriate. The aim of this thesis is in developing 
data-driven approaches for reliable inference of brain correlates to natural stimuli. 

Since the beginning of the nineteenth century, neuroscience has focused on the idea that dis- 
tinct regions of the brain support particular mental processes. However, modern research rec- 
ognizes that many functions rely on distributed networks, and that a single brain region may 
participate in more than one function. These rapid paradigm changes in neuroscience raise 
important methodological challenges. Purely hypothesis-driven methods have been used ex- 
tensively in functional imaging studies. As the focus in brain research is shifting away from 
functional specialization towards interaction-based functional networks, those approaches are 
no longer appropriate. In contrast to the classic statistical hypothesis testing approaches, mod- 
ern machine learning methods allow for a purely data-driven way to describe the data. They do 
not use the stimuli, and make no assumptions about whether the brain processes are stimulus 
related or not. The recordings for each brain region may contain a complicated mixture of act- 
ivity, which is produced by many spatially distributed processes, and artifacts. Each process 
can be described as a component having a separate time series and spatial extent, and produc- 
ing simultaneous changes in the fMRI signals of many regions. 

The main contribution of the thesis is a reliable independent component analysis (ICA) ap- 
proach, which is available in the Arabica toolbox. The usefulness of the approach was tested 
extensively with fMRI data, showing that the method is capable of providing insights into the 
data that would not be attainable otherwise. The new method was also theoretically analyzed 
and its asymptotic convergence was proven. The theory offers a thorough explanation of how 
the method works and justifies its use in practice. Then, the new method is further developed 
for analyzing networks of distributed brain activity, by combining it with canonical correlation 
analysis (CCA). The extension was shown to be particularly useful with fMRI studies that use 
natural stimuli. The approach is further extended to be applicable in cases where independent 
subspaces emerge, which often happens when using real measurement data that is not guaran- 
teed to fit all the assumptions made in the development of the methods. 
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Tiivistelmä 
Toiminnallisesta magneettiresonassikuvantamisesta (fMRI) on tullut tehokas työkalu neu- 

rotieteessä ihmisaivojen toiminnan kartoittamiseen. Yleensä fMRI-menetelmän yhteydessä 
käytetään melko yksinkertaista ärsykkeiden sarjaa, jolla pyritään hyvään signaali-kohinasuh- 
teeseen tilastollista hypoteesitestausta varten. Kun siirrytään kohti luonnollisia ärsykkeitä, 
tällaiset yksinkertaiset koeasetelmat eivät ole enää päteviä. Tämän väitöstyön tavoite on ollut 
kehittää uusia aineistolähtöisiä menetelmiä luonnollisten ärsykkeiden aiheuttamien aivovas- 
teiden luotettavaan tunnistamiseen. 

Aina 1800-luvun alusta lähtien neurotieteessä on vallinnut käsitys siitä, että erilliset aivoalu- 
eet vastaavat tiettyjä neuropsykologisia toimintoja. Moderni tutkimus on kuitenkin osoittanut, 
että monet toiminnot perustuvat hajautettuihin aivoalueiden verkostoihin ja kukin aivoalue 
voi toimia osana useampaa verkostoa. Puhtaasti hypoteesitestaukseen perustuvat menetelmät 
ovat olleet hyvin suosittuja aivokuvantamisen yhteydessä. Kun tutkimus keskittyy yhä enem- 
män toiminnallisen erikoistumisen sijaan vuorovaikutuksiin perustuviin verkostoihin, tällaisia 
menetelmiä ei voida enää käyttää. Niiden sijaan modernit koneoppimismenetelmät mahdollis- 
tavat puhtaasti aineistolähtöisen tavan mittausten selittämiseen. Nämä menetelmät eivät tar- 
vitse tietoa ärsykkeistä eivätkä tee oletuksia siitä ovatko mittaustulokset ärsykkeistä riippu- 
vaisia. Mittausten oletetaan muodostuvan usean aktivaation sekoituksista, jotka voivat sisältää 
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1. Introduction

In neuroscience, functional magnetic resonance imaging (fMRI) has be-

come a powerful tool in human brain mapping. Typically, fMRI is used

with a rather simple stimulus sequence, aimed at improving signal-to-

noise ratio for statistical hypothesis testing. When natural stimuli are

used, the simple designs are no longer appropriate. The aim of this the-

sis is in developing data-driven approaches for reliable inference of brain

correlates to natural stimuli.

1.1 Current Trends in Neuroscience

The focus in brain research is shifting away from functional specializa-

tion towards interaction-based functional networks [see, e.g., Tononi et al.,

1994, McIntosh, 2000, Friston, 2002, Hari and Kujala, 2009]. At the same

time, interest in the dynamics of large-scale neuronal populations has

gained attraction, for a review see Deco et al. [2008]. Brain connectivity

is studied with both healthy subjects and patients suffering from neu-

rological diseases, such as Alzheimer, schizophrenia, or epilepsy. These

rapid paradigm changes in neuroscience raise important methodological

challenges. In such uncontrolled setups, it is extremely difficult to dif-

ferentiate the stimulus-related processes from ongoing brain activity or,

analogously, the stimulus features related to brain activity from all other

aspects of the natural environment.

Since the beginning of the nineteenth century, neuroscience has focused

on the idea that distinct regions of the brain support particular mental

processes. However, modern research recognizes that many functions rely

on distributed networks, and that a single brain region may participate

in more than one function [Friston, 2002, Hari and Kujala, 2009].

Another emerging field of research, also interested in distributed net-
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works of brain activity, deals with functional imaging of resting subjects,

without a particular task to perform. Studies on resting state networks

often focus on the so-called default-mode network [see, e.g., Damoiseaux

et al., 2006, Raichle and Snyder, 2007]. The default network has been hy-

pothesized to generate spontaneous thoughts during mind-wandering and

to be an essential component of creativity. Alternatively, default mode ac-

tivity may represent underlying physiological processes going on in the

brain that are unrelated to any particular thought.

Up to now, purely hypothesis-driven statistical methods, like general

linear model (GLM), have been used extensively in functional imaging

studies, which have focused on rather simple block designs aimed at op-

timizing stimulus control and signal-to-noise ratio. Currently, the focus

is shifting from simple unimodal stimuli towards integration of multiple

sensory stimuli to study cognitive processes and, generally, brain activa-

tion related to natural stimuli.

The recent interest in more natural setups is evident in experiments

with real-life stimuli. Studies using movies as stimuli have been able to

model signals in one brain with the activity from another brain [Hasson

et al., 2004, Bartels and Zeki, 2005]. The results have revealed a sur-

prising tendency of individual brains to operate coherently during natural

viewing. Moreover, remarkable reconstructions of the viewed images were

produced with a decoder model in another study using video clips [Nishi-

moto et al., 2011]. These results demonstrate that dynamic brain activity

measured under naturalistic conditions can be decoded and provides a

powerful environment to reveal connectivity in the brain. Furthermore,

human interaction has been recently studied using a first-person video

game as stimuli [Kätsyri et al., 2012], showing that winning activates the

brain’s reward circuitry differently depending on whether the opponent is

another human player or a computer.

As natural stimuli are increasingly used in fMRI studies, challenges

arise in analyzing the measurements. It is no longer feasible to assume

that a single experimental variable could account for the brain activity,

and it is extremely difficult to differentiate the stimulus-related processes

from ongoing brain activity. Instead, relevant combinations of a rich set

of stimulus features could explain the more complex activation patterns.
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1.2 Data-driven Analysis

In contrast to the classic statistical hypothesis testing approaches, mod-

ern machine learning methods allow for a purely data-driven way to de-

scribe the data. They do not depend on the stimuli, and make no assump-

tions about whether the brain processes are stimulus related or not. One

of the most widely used methods for data-driven signal decomposition is

independent component analysis (ICA, Hyvärinen et al. [2001b]).

The recordings for each brain region may contain a complicated mixture

of activity, which is produced by many spatially distributed processes, and

may be corrupted by artifacts. Each process can be described as a com-

ponent having a separate time series and spatial extent, and producing

simultaneous changes in the fMRI signals of many regions.

However, some problems exist with the use of ICA. One concern is the

tendency of the estimated independent components to change each time

the analysis is performed. This behavior can be caused by many factors

both in the algorithm and in the data, making it difficult to assess the

reliability of the results.

1.3 Contributions and Organization of the Thesis

The main contribution of the thesis is a reliable ICA approach, made

available in the Arabica toolbox. Unlike previously existing methods that

rely on a single run, the new approach utilizes multiple runs of ICA with

bootstrap. In addition to providing reliable signal estimates, the new

method can provide additional information on the data, that is not pos-

sible with the previous methods. As a second contribution, the method

is further developed for analyzing networks of brain activity, by combin-

ing it with another data-driven method called canonical correlation anal-

ysis (CCA, Hotelling [1936]), which looks for dependencies between two

datasets. The third contribution extends the reliable ICA approach to be

applicable in cases where independent subspaces emerge, which often oc-

curs in practice, when using measurement data that does not completely

fulfill the assumptions made by the algorithm.

The introductory part of the thesis is organized as follows: Chapter 2

gives a quick overview of the human brain and introduces functional brain

imaging, with the focus on fMRI. Then, Chapter 3 describes the stan-

dard preprocessing and statistical analysis that is applied to nearly all
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recorded fMRI data. In Chapter 4, modern machine learning methods for

data-driven analysis are briefly reviewed. They form the basis on which

all the new approaches, developed in the thesis, rely on. The reliable

ICA approach is introduced in Chapter 5. Networked brain activity, and

the extended framework for analyzing activation networks, are described

in Chapter 6. Then, the emergence of independent subspaces is intro-

duced in Chapter 7, together with the extensions making the reliable ICA

method usable with subspaces. The thesis concludes with discussions in

Chapter 8.

The presentation order of the publications reflects the research themes

as follows. The first five publications developed the method for reliable

analysis of fMRI data using ICA. Publication I is a feasibility study test-

ing the consistency of independent components in a multiple run ICA ap-

proach. In Publication II the multiple run approach is further developed,

and it is shown that the approach can be used to gain insight into the data

that is not attainable with single run approaches. In Publication III the

motivation and development of the approach is discussed in detail. The

approach is also applied to multi-subject fMRI data. The method is dis-

cussed in Section 5.3. Publication IV introduces the Arabica toolbox for

reliable ICA of fMRI data. The toolbox is discussed in Section 5.4. Finally,

Publication V proves the asymptotic convergence of the Arabica method

and thoroughly discusses the theory behind the method. This is discussed

in Section 5.5.

The next two publications introduced a new two-step framework for an-

alyzing activation networks. The framework is particularly useful for

studies using natural stimulation. Publication VI introduces the exten-

sion and is discussed in Section 6.3. In Publication VII the framework

is improved and studied with better controlled measurements, which is

discussed in Section 6.4.

The last publication shows the importance of taking the emergence of

independent subspaces into account, to be able to correctly interpret the

components. Publication VIII develops extensions for the Arabica ap-

proach to cover the cases with independent subspaces. They are discussed

in Section 7.2.
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2. Functional Brain Imaging

Understanding how the human brain functions has always been one of

the ultimate goals in science. The human brain is one of the most central

topics in many research fields, including biomedicine, psychology, and in-

formation theory. Current knowledge of brain structure and function is

substantial, and growing fast, due to modern imaging and analysis tech-

niques. In this chapter, the key concepts needed to understand the thesis

are briefly explained. The introduction is based on a great overview on

the human brain by Kalat [2008].

In machine learning, the growing knowledge of the brain can also lead

to new theories in, e.g., signal processing, neural computation, pattern

recognition, machine vision, and artificial intelligence. The theoretical

models can, in turn, be used to describe or predict observed behavior in

the real brain. The mutual benefits have led to the fusion of neuroscience

and information technology into a rapidly growing research field called

neuroinformatics.

The difficulty in understanding the brain has added to the excitement of

the research, but brain research also has a huge economical and societal

impact. In fact, the current WHO studies show that the cost of nervous

system disorders far out-ranks other diseases. Following the successful

footsteps of the Human Genome Project, the proposals of the OECD Mega

Science Forum and Global Science Forum have recently led to the es-

tablishment of the International Neuroinformatics Coordinating Facility

(INCF, http://www.incf.org).

2.1 Background

The principle of localization of function emerged at the beginning of the

nineteenth century [Kalat, 2008], and it is still the basis for most neu-
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roimaging studies. The idea is simply that distinct regions of the brain

support particular mental processes. The early studies were crude and

invasive, often leading to incorrect findings. Modern imaging methods

are typically noninvasive and allow for detailed analysis of brain anatomy

and function, including tracking changes during the lifetime of a subject,

e.g., studying the effects of aging, or the progress of an illness.

The basic anatomical structure of the human brain is depicted in Fig-

ure 2.1. The central nervous system (CNS) is formed by the brain and the

spinal cord. The brain can be divided into neocortex, cerebellum, brain

stem, and other subcortical areas. The brain stem and subcortical re-

gions are mainly involved in lower level functions and signal processing.

Higher level functions, such as conscious thought, are performed on the

cortex, i.e., the surface, of the brain. However, the higher level functions

rely on the functions of the subcortical areas.
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Figure 2.1. Anatomical structure of the human brain. (a) The horizontal view from above
and the sagittal views from (b) the side and (c) middle of the brain show the
basic structures and divisions, including the four lobes separated by sulci and
fissures. Important names and directions are also shown.

The cortex of the brain essentially comprises of two kinds of tissues, the

gray matter and the white matter. The gray matter contains the actual

cell bodies of the neurons and most of it is concentrated on the surface

of the brain. The connecting fibers between the neurons form the white

matter. The inside of the brain is mostly white matter, but there are

some nuclei, which are groups of neurons along signaling pathways. The

surface is heavily folded to increase its area while keeping the volume

of the brain fixed. The folds are called sulci and separate the surface

into small sections, or gyri. Bigger folds that separate larger parts are

sometimes called fissures.

The division of the cortex into the four lobes, as shown in Figure 2.1(b), is

somewhat arbitrary. It is based on major sulci and fissures, visible on the
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surface. Additionally, fine details, like the density of neurons and their

size and shape, differ between the areas. Naturally, the boundaries are

not so clear in a real brain, and can change slightly from one individual

to another.

Functional brain imaging often deals with the surface of the brain, as

the gray matter is mostly there. But the connections are also very impor-

tant. The neuronal configuration is similar throughout the surface, but

different inputs and outputs of the peripheral nervous system are con-

nected to different areas of the brain. Thus, the different areas are spe-

cialized in processing different kind of information. Figure 2.2(a) shows

the location of some of the well-known primary processing areas on the

cortex. These areas are mainly connected contralaterally, meaning that

areas on the left hemisphere are mainly responsible for signals from the

right side of the body. The primary areas are then connected to additional

areas nearby on the same hemisphere, or ipsilaterally. The additional ar-

eas usually perform more complex functions based on the processing done

in the primary areas. The left and right hemispheres of the brain are

functionally quite symmetric, but some tasks have a more dominant side.

The brain is also very adaptive and, e.g. after an injury, nearby areas can

take over some lost functionality.

Broca's
Secondary Auditory

Motor
Somatosensory
Visual
Auditory

Primary Areas:

Additional Areas:

(a) (b)

Figure 2.2. Functional areas of the human brain. (a) Primary areas involved in pro-
cessing different sensory information and (b) areas involved in auditory and
speech signal processing.

2.2 Magnetic Resonance Imaging

Magnetic resonance imaging uses strong magnetic fields to create images

of tissues. The MRI scanner creates a static magnetic field, typically with

field strengths of 3 Tesla or higher. For comparison, Earth’s magnetic

field is around 0.00005T. The scanner uses a pulse sequence of changing
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magnetic gradients and oscillating electromagnetic fields. With a suit-

ably tuned frequency of the electromagnetic field, energy is absorbed by

atomic nuclei. Depending on the types of nuclei present, some amount

of the energy is later emitted, and can be measured by the scanner. Fig-

ure 2.3 shows a typical MRI scanner. Different pulse sequences allow for

the scanner to detect different tissue properties and distinguish between

tissue types, making MRI a flexible and powerful tool. Figure 2.4 shows

examples of MR-images. They are scans of a human head, using a setup

that produces good contrast between different tissue types, thus revealing

the anatomical structure in great detail. Since MRI is virtually noninva-

sive and is able to produce high quality images, it has quickly become very

popular in structural imaging.

The complex physics of nuclear magnetic phenomena are very inter-

esting, but certainly beyond the scope of this chapter. Therefore, only

an overview of the main concepts is given in the following sections, for

the purpose of understanding the signal generation in the MRI scanner.

The overview is based on a more thorough introduction by Huettel et al.

[2008].

Figure 2.3. An MRI scanner at the Advanced Magnetic Imaging Centre (AMI-Centre)
of the Aalto University. The subject lies down on the table in front of the
scanner, placing his or her head inside the volume coil. The table is then
moved into the bore of the scanner, so that the head is positioned at the very
center.

Due to the high water content, hydrogen atoms are by far the most abun-

dant type of atoms in the human body. Therefore, hydrogen nuclei are the
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most commonly targeted nuclei in MRI. Hydrogen nuclei have two key

properties under normal conditions. Thermal energy causes the nucleus,

consisting of a single proton, to spin about its axis. Because the proton

carries a positive charge, the spinning motion generates an electrical cur-

rent on its surface, that creates a small magnetic source. When placed

within a magnetic field, the small magnetic source also generates torque.

The strength of the maximum torque a magnetic source can generate is

called the magnetic moment. The mass of the spinning proton also results

in an angular momentum. A nucleus with these properties is often re-

ferred to as a spin, and only such nuclei can be studied using magnetic

resonance. Different types of atoms have distinct numbers of protons and

neutrons in their nuclei. If a nucleus has an even number of protons, the

magnetic moment can be cancelled out by distributing the same amount

of charges in opposite directions, and if a nucleus has an even atomic

mass, the angular momentum can be cancelled by evenly distributed spin

directions.

The strong static magnetic field is necessary for MRI, since it causes the

atomic nuclei to align with the magnetic field lines. Two critical proper-

ties of the magnetic field are field homogeneity and field strength. The

field needs to be uniform both in space and time so that the measured

signals do not change unexpectedly, depending on when the imaging is

done, or how the body is positioned in the field. Modern MRI scanners use

liquid helium cooled superconducting electromagnets to create the strong

and stable magnetic fields. Since maintaining the field using supercon-

ductivity requires little electricity, the static fields are always active.

The process is called magnetic resonance imaging, because the signal is

actually produced by using radiofrequency coils that generate and receive

electromagnetic fields at the resonant frequencies of the atomic nuclei

within the static magnetic field. At typical field strengths, most atomic

nuclei of interest for MRI happen to have resonant frequencies in the ra-

diofrequency portion of the electromagnetic spectrum. Unlike the static

magnetic field, the radiofrequency fields are turned on, according to the

pulse sequence, only during small portions of the image acquisition pro-

cess. After a body is placed into the strong magnetic field, an equilibrium

state is reached in which the spins become aligned with the magnetic

field. Due to the magnetic moments of the spins, they will actually pre-

cess around an axis parallel or antiparallel to the magnetic field. The

radiofrequency waves that resonate at a suitable frequency perturb the
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equilibrium state. During this excitation, the atomic nuclei absorb the en-

ergy of the radiofrequency pulse. When the pulse ends, the atomic nuclei

return to the equilibrium state, releasing the previously absorbed energy.

The release of energy during relaxation can be detected by the radiofre-

quency coils as the raw MR-signal. The amount of energy that can be

transmitted or received by a radiofrequency coil depends on its distance

from the tissue being measured. Therefore, the radiofrequency coils are

typically placed immediately around the head, as volume coils.

The raw MR-signal does not contain any spatial information. To create

an image, gradient coils are used to generate magnetic gradients super-

imposed on the strong static magnetic field. The gradient magnetic fields

cause the MR-signal to depend on the spatial location in a controlled fash-

ion. Like the radiofrequency coils, the gradient coils are only used briefly

during the image acquisition. Ideally, the main magnetic field would be

perfectly homogeneous and the gradients would be perfectly linear. This is

hardly the case in reality, and modern scanners use additional shimming

coils that generate compensatory magnetic fields that correct for the in-

homogeneities. Unlike the other magnetic fields, the shimming coils are

typically adjusted for each subject, since each person’s head distorts the

magnetic field slightly differently. The shimming coils are also left on for

the whole duration of the imaging session. The magnitudes of the mag-

netic fields generated by the gradient and shimming coils are orders of

magnitude smaller than that of the static magnetic field.

Most MRI scanners construct three-dimensional images from sets of

two-dimensional slices. Restricting the MR-signal to one two-dimensional

slice at a time is called slice selection, and the key element is to ensure

that there is a match only between the precession frequency of the spins

within the targeted slice and the radiofrequency pulse. All excited spins

within a selected slice contribute to the MR-signal, but a pattern of multi-

ple excitations is used with different combinations of weak gradients, ap-

plied immediately after each excitation. The goal is a frequency encoding,

where the frequencies of the spins vary along one direction, and a phase

encoding, where the phases of the spins vary along the other direction of

the two-dimensional slice. The image of the slice is then recovered from

the recorded MR-signals using the inverse Fourier transform. Depending

on the pulse sequence, the resulting image depicts the spatial distribution

of some property of the atomic nuclei within the sample. Typical proper-

ties are spin density, spin mobility, and relaxation times of the tissues in
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which the spins reside.

The scanning speed is determined by the amount of time it takes for

the spin relaxation processes and adjusting of the magnetic fields dur-

ing the pulse sequence. Producing high resolution images, such as the

ones in Figure 2.4, can take several minutes. Naturally, the quality of the

images is strongly affected by the inhomogeneities in the magnetic fields,

internal magnetic interactions within the tissues, and electromagnetic in-

terference from the environment.

(a) (b) (c)

Figure 2.4. Examples of structural magnetic resonance images. The images show slices
of a human head viewed from (a) sagittal, (b) frontal and (c) horizontal direc-
tions.

2.3 Functional Magnetic Resonance Imaging

Much can be learned about the brain from studying its structure. How-

ever, structural studies cannot reveal short-term physiological changes

associated with the active functioning of the brain. Functional neuroimag-

ing studies aim to identify the different parts of the brain where particu-

lar mental processes occur, and to characterize the associated patterns of

brain activation. Typically, functional neuroimaging studies build maps

that link brain activation to mental function.

The idea in functional MRI is to record a sequence of MR images at dif-

ferent time points. Figure 2.5 shows an example of an image sequence

during an onset of neuronal activity. The images produced in fMRI are

not a direct measure of neuronal activity. Instead, fMRI creates images of

physiological changes that are correlated with neuronal activity. The mea-

sure is based on the differing magnetic properties of oxygenated and de-

oxygenated hemoglobin molecules, as further explained in Section 2.3.1.
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The measured signal change is small compared with the total image in-

tensity, and more importantly, the change related to neuronal activity is

very small compared with other sources of spatial and temporal variabil-

ity across and within images. Careful analysis of the whole sequence is

required to detect the activation patterns.

Figure 2.5. Examples of functional magnetic resonance images. A sequence of scanned
slices without processing. The first two images are scanned during rest and
the last two during a task. Note that the images do not show a direct measure
of neuronal activity.

Additional problems arise from the long duration of the scanning. Move-

ment of the head and other physiological changes during the measure-

ments will distort the images. Therefore, the setup used in fMRI is a

careful compromise between fast scanning and high resolution images.

Current fMRI scanners are able to produce full head volumes with a time

interval of a few seconds, but the spatial resolution is much smaller than

that used in structural imaging. The spatial resolution of fMRI deter-

mines the ability to separate adjacent brain regions with different func-

tional behavior. Smaller voxel size leads to reduced signal-to-noise ratio

and the organization of the vascular system introduces additional spatial

constraints. The temporal resolution refers to the ability to estimate the

timing of neuronal activity. Using a short repetition time can improve

temporal resolution and increase statistical power, but the slowness and

variability of the vascular response limits the ability to make precise tem-

poral measurements.

2.3.1 Blood Oxygenation Level Dependent Signal

As the information processing activity of neurons increases their metabolic

requirements, the vascular system provides energy in the form of glu-

cose and oxygen to meet these demands. Since the oxygen in the blood is

bound to hemoglobin molecules, the increased oxygen consumption leads

to a higher concentration of deoxygenated hemoglobin. The hemodynamic

changes are measurable with blood oxygenation level dependent (BOLD)

contrast [Ogawa et al., 1992], visible in certain types of MR images. BOLD
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is actually based on changes in the magnetic properties of water molecules,

which reflect the changes in the concentration of paramagnetic deoxyhe-

moglobin. Thus, fMRI is a very indirect measure of neuronal activity.

The changes in BOLD after a brief neuronal activity, i.e., hemodynamic

response, consists of a short onset delay, a rise to a peak after a few sec-

onds, a return to baseline, and a prolonged undershoot. Sustained neu-

ronal activity results in an additional plateau following the onset peak.

Figure 2.6 shows an illustration of a typical hemodynamic response model.

Early studies [e.g., Mandeville et al., 1999, Logothetis et al., 2001] showed

that the BOLD response is actually shaped by local changes in blood flow

and blood volume, not the extraction of oxygen by active neurons. Oxygen-

rich blood from the lungs is pumped through the heart to the aorta, lead-

ing to several large arteries. Each artery branches into smaller arteries

and to even smaller arterioles that eventually terminate in capillaries.

The extraction of oxygen and glucose from the blood, and the removal of

waste carbon dioxide, occurs at the surface of the capillaries, which are

thin-walled vessels 5 to 10μm in diameter. The red blood cells, with a

width of about 7.5μm, actually need to deform as they move through the

narrowest capillaries.
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Figure 2.6. Illustration of BOLD signal responses to neuronal activity. The shaded area
depicts the time of neuronal activity. On the left, response to a short transient
activation, and on the right, response to a longer sustained activation.

The increased metabolic demands caused by neuronal activation results

in an increased inflow of oxygenated blood, after a short latency. The

vascular system overcompensates by supplying more oxygen to the area

than is extracted, resulting in a decrease of deoxyhemoglobin concentra-

tion. This is visible as the sharp peak in the BOLD response after on-

set. According to most models, such as the balloon model [Buxton and

Frank, 1997], the initially greater blood inflow than outflow leads to the
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expansion of the capillary veins, and an increased blood volume. After

the neuronal activation returns to baseline, the blood flow also decreases

rapidly. However, the blood volume remains elevated for an extended pe-

riod, and the relatively low blood flow compared to the blood volume re-

sults in higher deoxyhemoglobin concentration. This would explain the

undershoot in the BOLD response. Recent studies [e.g., Harshbarger and

Song, 2008] also support models, where continuously elevated regional

metabolism can explain the undershoot.

Early experiments have shown that the hemodynamic responses behave

roughly linearly [c.f., Boynton et al., 1996, Dale and Buckner, 1997]. How-

ever, the hemodynamic responses can be nonlinear at intervals of less

than 6 s, and taking the nonlinearities into account in analysis models

can dramatically improve their sensitivity [Wager et al., 2005]. Small

nonlinearities during this refractory period can reduce the power of ex-

perimental analyses, but large nonlinearities could preclude the study of

short intervals.

2.3.2 Experimental Settings and Stimulation

Traditionally, any experimental scientific study starts with a carefully

chosen research hypothesis. The aim of the experimental measurements

is to provide evidence for or against the hypothesis. In neuroscience, the

research questions can vary from very generic to focused details of known

brain processes. More specific hypotheses can be falsified more easily and

are considered more informative. The way in which the measurements

are set up to test the hypothesis is referred to as the experimental design.

A well-designed experiment has one or many independent variables that

are intentionally manipulated during the measurements using different

experimental conditions. The different conditions can occur between sub-

jects, such that, different groups of subjects correspond to different values

of the variables. This is typical in, e.g., studies comparing patients with

control subjects. More commonly though, the conditions are varied within

subjects using a planned sequence of stimulation. During the experiment,

one or many dependent variables are measured, and the values should

reflect the effects of the independent variables. Typically, BOLD signal

change is the primary dependent variable.

Usually, fMRI studies use a controlled stimulus, like visual patterns or

audible sounds, designed to test a specific hypothesis. The most common

way of building the stimulus is to use a blocked design that alternates
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between two conditions in blocks. Although each block contains multiple

individual stimuli, it is assumed that the cognitive processes of interest

are constant during a block. Typically, one of the conditions is a control

condition during which the subject is not engaged in task performance, e.g.

watching a blank screen. There can also be more than two types of blocks

in a single study. The timing of the blocks and number of repetitions must

be planned carefully.

Another popular type of experimental design is the event-related design,

where the stimuli comprise of discrete short-duration events. To analyze

event-related measurements, it is often required that signals from many

repeated events are averaged to improve the signal-to-noise ratio. Non-

linearities in the hemodynamic response reduce the amplitudes of rapidly

recurring events and present an additional challenge for most studies. In

addition, the refractory effects can also be used to study functional adap-

tation within a brain region.

The challenge in designing the experimental conditions is to minimize

multiple explanations for the measured effects. Any property that co-

varies with the independent variables is known as a confounding factor.

A well-designed experiment has enough conditions to distinguish the con-

founding factors from the independent variables, but this is not always

possible and additional experiments are typically needed to determine

the true cause of an observed effect. Two systematic approaches are of-

ten used to minimize confounding factors. If the order of experimental

conditions can be chosen arbitrarily, randomization of the order of repeat-

ing conditions can make the factors uncorrelated with the independent

variables. When the factors cannot be made completely random, counter-

balancing the order of conditions over several trials can be used to ensure

that the factors would be equally present during all conditions. In either

case, the goal is to make confounding factors influence all conditions sim-

ilarly.
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3. Preprocessing and Statistical
Analysis

The signal-to-noise ratio in fMRI is very low and depends on the field

strength of the scanner. A higher field strength does improve the signal-

to-noise ratio, but also makes the measurements susceptible to contami-

nation by other types of noise. In addition to the intrinsic thermal noise

within both the subject and the scanner, there are also strong sources

of system noise. One particularly important type is scanner drift, which

among other causes is produced by subtle changes in the strength of the

static field that slowly alters the resonant frequency of hydrogen protons.

There are many sources of signal fluctuations in the imaging hardware,

and naturally, the scanner room must be shielded from any extraneous

radiofrequency signals.

Even more important types of noise are motion artifacts and physio-

logical noise, especially under high field strength. Subject motion, such

as moving the head or swallowing, is very common and disruptive for

fMRI studies. In the worst case, it can render the whole recording useless.

There is also oscillatory muscle activity due to breathing and heartbeat,

while inside the brain, blood pulses through arteries and veins. Many

physiological factors cause changes in blood flow, blood volume and oxy-

gen metabolism. The signal effects are usually not produced by motion

during image acquisition, but rather motion causes variability across the

time-series of images. Moreover, movement is often correlated with the

experimental task and motion also introduces both spatial and temporal

correlations in the measured images.

For the hypothesis testing, any task-unrelated neural activity can also

be considered as noise. The task-related responses occur within an active

brain, where other neural processes are altering the BOLD contrast at

every moment. On top of everything, the sampling rate is not fast enough

to fully resolve all the noise effects, leading to aliasing that causes arti-
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factual low frequency signals to appear. Thus, the detection and analysis

of interesting brain processes is very difficult.

3.1 Typical Preprocessing

Essentially, any statistical analysis of the fMRI measurements assumes

that each voxel represents a unique and fixed location in the brain, sam-

pled at regular intervals. Considering the scanning process and the noise

sources described above, these assumptions seem invalid. Therefore, be-

fore analysis the fMRI data is almost always processed using methods

that try to overcome these problems [Worsley and Friston, 1995]. The

aim of preprocessing is to improve the functional resolution of an experi-

ment by removing uninteresting variability from the data and preparing

it for further statistical analysis.

3.1.1 Slice Time Correction

The fMRI scanner acquires images one slice at a time and covers the full

imaging volume by collecting several adjacent slices in rapid succession.

Most fMRI studies use interleaved slice acquisition, where the scanner

first collects every other slice and then the remaining interleaved slices

in between. This helps to avoid cross-slice excitation during the imag-

ing. However, this poses a problem since adjacent parts of the brain are

acquired at non-adjacent time points. The typical approach for correct-

ing the timing discrepancies is to temporally interpolate the values in

every slice to a global offset. This leads to a loss of some information,

especially in event-related experimental designs. Sometimes analysis is

performed for each slice separately to avoid slice time correction, but such

approaches have their own limitations.

3.1.2 Motion Correction

Head motion has a drastic effect on the data. Even very small movements,

the size of a single voxel, can cause signals from very different tissue types

to mix up. Particularly, around the borders of tissues, motion leads to

spurious activations that form a pattern around the edges of the tissues.

It is typical to observe a distinctive ring pattern around the edges of the

brain. Moreover, motion effects that co-occur with stimulus presentation

are difficult to separate from real brain activation. Even though motion is
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mainly a spatial problem, movement that is perpendicular to the imaging

slices can effect the timing of the activation.

A carefully executed study will aim to prevent headmotion, e.g., by using

head restraints or by training of the subjects. Nevertheless, the chances

of acquiring a complete dataset that is not corrupted by motion are very

small. The goal of motion correction is to adjust the images so that the

brain is always in the same position. Generally, the process of aligning two

image volumes is called coregistration. In the case of motion correction,

the time series of image volumes are coregistered to a single reference

volume.

3.1.3 Coregistration

Since the size and shape of the brain does not change during scanning, it

is often assumed that a rigid-body transformation is sufficient, meaning

that two images can be superimposed exactly upon each other by trans-

lations and rotations. In practice, inhomogeneities in the magnetic field

can cause distortions in the images. There are several methods for es-

timating the optimal translation and rotation parameters, e.g., based on

minimizing the mutual information between volumes. Once the realign-

ment parameters are determined, the original image is resampled using

spatial interpolation to estimate the values without head motion. In some

studies, the motion parameters are used in the analysis model to isolate

motion effects.

3.1.4 Functional-structural Coregistration

In most studies, it is important to understand how the activation corre-

sponds to the underlying neuroanatomy. Unfortunately, functional im-

ages have lower resolution and very small anatomical contrast compared

to structural images. Because of these limitations, also high resolution

structural images are typically acquired. Using similar coregistration

approaches as above, the functional images can then be mapped to the

structural ones. However, additional parameters are needed to account

for scaling differences between the images.

3.1.5 Spatial Normalization

Two individuals in the same fMRI experiment may differ in overall brain

size by more than 30%. There is substantial variation in the shape of the
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brain, and the organization of sulci and gyri can vary so much that even

major landmarks have different positions and orientations in different

individuals. This remarkably variable morphology makes combining and

comparing data from different individuals or studies difficult.

Normalization is like coregistration, except that the compared images

are assumed to originally differ in shape rather than as a result of im-

age distortion. The goal is to compensate for the shape differences by

stretching, squeezing, and warping the images of each brain so that they

correspond to those of every other brain. The most widely used normal-

ized space is Talairach space [Talairach and Tournoux, 1988], which was

derived from landmark measurements on a single brain of an elderly

woman. However, since the single brain used was unrepresentative of the

population at large, more recent works have created probabilistic tem-

plates based on hundreds of individuals. A commonly used space is MNI

space [Chau and McIntosh, 2005] that has been scaled to match the land-

marks within the well-established Talairach space. Most automated nor-

malization algorithms are based on such probabilistic templates.

Moreover, nearly all normalization templates are based on samples from

a population of young and healthy adults. Other groups, such as elderly

individuals, young children, and patients with brain lesions, systemati-

cally differ from the template population. By definition, normalization

emphasizes that which is common among individuals and de-emphasizes

that which is unique. Small, but meaningful, variations may be lost in

the process. An alternative is to use individual region-of-interest based

analyses.

3.1.6 Spatial Smoothing

In most fMRI analyses, a low-pass spatial filter, typically a Gaussian fil-

ter, is used to reduce high-frequency components and smooth the images.

Spatial smoothing improves signal-to-noise ratio by preserving signals of

interest, since there are functional similarities between adjacent brain re-

gions and blurring caused by the vascular system, while removing unin-

teresting variation in the data due to noise sources. Moreover, when using

standard statistical approaches, reducing the dimensionality of the data

by smoothing can reduce the problem of many false-positives with multi-

ple statistical comparisons. Additionally, the smoothing can compensate

for small errors made in the coregistration and normalization steps.
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3.1.7 Temporal Filtering

In addition to all the spatial preprocessing, also the time series of the data

can be processed. Temporal filters are typically constructed to reduce the

influence of physiological oscillations, such as breathing and heart beat-

ing. High-pass filtering can also remove slow drift-like trends. When the

experimental setup allows it, filters can also be designed to retain impor-

tant frequency ranges based on repeating stimuli. Using temporal filters

can substantially improve functional signal-to-noise ratio. However, tem-

poral filtering is limited by the slow sampling rate.

3.2 Hypothesis Testing

The standard way of analyzing an fMRI sequence is to perform statistical

significance testing, based on a hypothesis model. Essentially, the anal-

ysis reveals the areas of the brain that most probably fit a given hypoth-

esis. There are many different hypothesis-driven approaches that differ

in their model assumptions. However, they all express significance as the

probability that the results could occur by chance, meaning that a very low

value indicates a reliable finding. More importantly, all hypothesis-driven

methods assume that each time point can be assigned to a particular ex-

perimental condition, or that the whole time series of the hemodynamic

response can be predicted. Furthermore, when using such methods, it can

be challenging to appropriately control for the rates of false positive and

false negative findings.

The most commonly used approach is statistical parametric mapping

(SPM, http://www.fil.ion.ucl.ac.uk/spm), which is a regression analy-

sis based on the general linear model (GLM, c.f., Friston et al. [2006]). The

assumption in GLM is that the data are composed of the linear combina-

tions of several model factors, along with uncorrelated noise. The model

factors are simply given as multiple regressor time series. The following

section describes GLM in more detail.

There are many technical problems with such analysis, but perhaps

most importantly, the stimulation setup has to be simple enough to al-

low for predicting the responses, and forming the reference time series,

in the first place. Therefore, detecting previously unknown phenomena

is extremely difficult, and an expensive dataset may only be suitable for

testing a single hypothesis.
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3.2.1 General Linear Model

The general linear model (GLM, c.f., Worsley and Friston [1995]) is a sta-

tistical multiple regression model. Based on the timing and duration of

events in the stimuli, researchers generate a predicted hemodynamic re-

sponse. These model factors contain the predicted time series for the

entire measurement session. The relative contribution of each of these

regressors to each voxel within the data is then statistically evaluated.

Given the data and a chosen set of regressors the model is, in matrix

form:

X = Gβ + ε . (3.1)

The fMRI data are represented as a two-dimensional data matrix X con-

sisting of N time points by V voxels. The design matrix G, of size N ×M ,

contains the M regressors as columns. The parameter matrix β with di-

mensions M × V contains the parameter weights of each regressor for

every voxel. Finally, the error matrix ε has the same size as X.

The goal of regression is to find the parameter weights that minimize

the error term, typically in the least-squares sense. Note that the spatial

structure of the fMRI data is lost as all voxels in the imaging volume are

rearranged as one row in the matrix. The parameter values and error

term are calculated independently for each voxel.

The regressors represent hypothesized factors that may or may not con-

tribute to the data. To evaluate the statistical significance of a regressor,

the amount of variability it explains is compared with the amount of vari-

ability explained by the error term. All the variability in the data that

cannot be explained with the set of chosen regressors is considered as ad-

ditive noise by the model. Therefore, in some studies, it is crucial to add

so called nuisance regressors that model known artifacts or uninteresting

signals. Adding regressors makes the statistical testing more conserva-

tive, but can improve the validity of the model.
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4. Analysis Based on Dependence and
Independence

The previously discussed analysis methods assume the ability to reliably

estimate the different factors affecting the fMRI time series in advance.

Arguably, under many conditions and for many brain areas, such predic-

tions are very difficult, if not impossible. Even in the simplest experi-

ment, there could be changes in strategy by the subject, changes in task

performance associated with learning, habituation, fatigue, or with other

processes whose temporal behavior cannot be predicted in advance.

The hypothesis-driven methods also have major technical drawbacks.

Typically, voxels in which the signal exceeds a predefined level of signif-

icance are identified as active. However, even in areas of activation, the

task-related hemodynamic signal changes are typically very small, sug-

gesting that other time varying phenomena must produce the bulk of the

measured signals. Typical methods also rely on univariate techniques

that ignore relationships between voxels, hindering the detection of brain

regions acting as functional units during the experiment.

4.1 Motivation

The recordings for each voxel may contain a complicated mixture of activ-

ity, which is produced by many spatially distributed processes, including

task-related and task-unrelated brain activations, as well as motion or

scanner artifacts. Each process can be described as a component having

a separate time series and spatial extent, and producing simultaneous

changes in the fMRI signals of many voxels. The component processes

may or may not be task-related, or they could be only transiently task-

related.

This chapter briefly introduces three data-driven analysis methods that

make minimal assumptions about the data. They are based on identify-
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ing uncorrelated, mutually dependent, or statistically independent signal

components, respectively.

4.2 Principal Component Analysis

Principal component analysis (PCA, c.f., Bishop [2007]) is a classic tech-

nique in statistical data analysis, feature extraction, and data compres-

sion. In some literature, the method is also called the Karhunen-Loève

transform or the Hotelling transform. It has two equivalent formulations

by Pearson [1901], which defines it as the projection that minimizes the

mean squared distance between data points and their projections, and by

Hotelling [1933], which is based on orthogonal projections that maximize

the variance of the projected data. The following uses the maximum vari-

ance perspective in matrix form, since it is easier to relate to the other

methods.

As before, assume a data matrix X consisting of V samples of N dimen-

sional random vectors x as columns, such as, the recorded time series of

each voxel. Without any loss of generality, the vectors x can be assumed

to have zero mean E[x] = 0, or to have been centered as a preprocessing

step, to simplify the formulas. The goal is to find a projection vector w

that maximizes the variance of the projected scalar variable z,

z = w�x , (4.1)

where the norm of the projection vector is constrained to be ‖w‖ = 1, so

that the variance cannot be maximized by simply increasing the length of

the projection vector. By definition, the variance of z is,

var[z] = E[(z − μz)
2] = E[w�xx�w] = w�Cw , (4.2)

where μz = 0 is the mean of z and the matrix C is the estimated covari-

ance matrix C = E[xx�] ≈ 1
V XX�. Maximizing Equation (4.2) with the

constraint ‖w‖ = 1, using a Lagrange multiplier λ, leads to

Cw = λw , (4.3)

which is the eigenvalue equation for matrix C. It is also easy to see from

Equations (4.2) and (4.3) that the variance of the projection is equal to the

eigenvalue. Therefore, the largest variance is attained when the largest

eigenvalue and its corresponding eigenvector are chosen as the princi-

pal component. Since the PCA problem reduces to solving an eigenvalue
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equation, it is possible to look for the components either all at once or one

at a time, by deflation.

Using this formulation, the data variance can be fully described with a

decomposition of N orthogonal principal components by using the eigen-

value decomposition of the covariance matrix C,

CW = WΛ , (4.4)

where Λ is a diagonal matrix containing the eigenvalues in descending

order, and W is a matrix with the corresponding orthonormal eigenvec-

tors as columns. The data can be projected onto the principal components

using the projection matrixW without loss of information, in matrix form

applied to the whole data matrix, as

Z = W�X . (4.5)

The projected decomposition Z found with PCA is the set of uncorrelated

components that contain most of the variance and can reconstruct the

whole data with minimal residual error. The reconstruction model is ac-

tually analogous to the one in GLM, where the matrix W is used instead

of a predefined design matrix.

The properties of PCA make it widely used in dimensionality reduction,

since to reduce the dimensionality of data X to K, while preserving as

much of the variance as possible, the projection matrix W is simply built

using only the eigenvectors corresponding to the K largest eigenvalues.

Usually, the number of principal components required to adequately rep-

resent the data to a specified level of accuracy is much smaller than the

original dimensionality of the data.

Another popular use of PCA is as a preprocessing step for data whiten-

ing, or sphering. In whitening, the projected data is further normalized by

making its variance along all directions equal to one. This is accomplished

simply by dividing each principal component with its standard deviation,

that is, with the square root of the corresponding eigenvalue.

Principal component analysis can be used to isolate uncorrelated acti-

vation patterns in functional imaging data [see, e.g. Moeller and Strother,

1991]. However, as task-related changes in fMRI are only a small part of

the total signal variance, capturing the greatest variance in the data may

reveal little information about task-related activations or other processes

of interest.
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4.3 Canonical Correlation Analysis

Another classic approach is called canonical correlation analysis (CCA,

Hotelling [1936]). Whereas PCA searches for uncorrelated components

within one dataset, CCA looks for dependencies between two datasets.

The method projects both datasets into a common space in such a way

that the dependencies between the two sets are maximized. Just as PCA

is good at dimensionality reduction, CCA can be used to lower the dimen-

sionality of the datasets, while preserving variation that is shared by both

sets and discarding variation present in only one dataset.

As before, denote centered random vectors x1 from dataset X1, with

dimensionality N1. Similarly, assume another related datasetX2, such as

from another trial or subject in the same study, which is represented by

random vectors x2 with dimensionality N2. The goal in CCA is to look for

projection vectors w1 and w2, such that the Pearson correlation between

the projections is maximized

argmax
w1,w2

ρ = argmax
w1,w2

w�1 x1x
�
2 w2 = argmax

w1,w2

w�1 C12w2 (4.6)

with normalization constraints w�1 C1w1 = w�2 C2w2 = 1, where the ma-

trices C1 and C2 are the estimated covariance matrices of the individ-

ual datasets, and the matrix C12 is the estimated cross-covariance matrix

C12 = E[x1x
�
2 ] between the datasets.

To obtain the desired formulation of CCA, the two data vectors can be

concatenated into one (N1+N2) dimensional vector, whose covariance ma-

trix C is

C =

⎛
⎝ C1 C12

C21 C2

⎞
⎠ , (4.7)

where the blocks on the diagonal are the covariances, and the off-diagonal

blocks are the cross-covariances, from above. While PCA leads to an eigen-

value problem, maximizing Equation (4.6) leads to a so-called generalized

eigenvalue problem [Timm, 2002], where λ = 1 + ρ,
⎛
⎝ C1 C12

C21 C2

⎞
⎠

⎛
⎝ w1

w2

⎞
⎠ = λ

⎛
⎝ C1 0

0 C2

⎞
⎠

⎛
⎝ w1

w2

⎞
⎠ . (4.8)
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When denoting the block diagonal of C by D,

D =

⎛
⎝ C1 0

0 C2

⎞
⎠ , (4.9)

Equation (4.8) can be written simply as

CW = λDW , (4.10)

where the columns of the matrix W contain the concatenated projection

vectors. There are several ways to generalize correlation to more than

two random vectors [Kettenring, 1971], leading to several possibilities

to generalize CCA for multiple datasets. This formulation allows for a

straightforward generalization to more than two datasets [Bach and Jor-

dan, 2002], where the vectors and matrices are simply concatenations

of more than two block elements. Solving the generalized eigenvalue

problem is based on the Cholesky decomposition and the symmetric QR-

algorithm [Golub and van Loan, 1996].

In recent years, recording multiple related datasets has become rel-

atively easy in many research fields, making CCA and its generaliza-

tions quite popular. In functional brain imaging, CCA has been used

to search for dependencies between subjects or between stimuli and the

measurements [c.f., Friman et al., 2001, Calhoun et al., 2009, Hardoon

et al., 2007]. Even dependencies between fMRI and electroencephalog-

raphy (EEG) measurements, recorded using the same stimulation, have

been studied [Mantini et al., 2007].

4.4 Independent Component Analysis

Unlike the methods above, independent component analysis (ICA, Hyväri-

nen et al. [2001b]) is a modern machine learning approach, based only on

the assumption that the component signals are statistically independent.

This seems reasonable in many applications and, in fact, does not have

to hold exactly for ICA to be usable in practice. Just like before in GLM,

the generative model used in ICA is an instantaneous linear mixture of

random variables. Again, denoting the observed mixed signals as data

matrix X, the mixture model in matrix form is, neglecting the error term

for simplicity,

X = AS . (4.11)

The mixing matrix A holds the mixing weights and the matrix S con-

tains the corresponding original sources. Unlike before, both A and S
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are unknown in ICA. Typically, the rank of matrix A is lower than the

dimensionality of the data matrix X, so that there are less sources than

observed signals.

The problem of jointly solving both the mixing and the original sources

is not only considerably difficult, but also ambiguous. Since there are no

constraints on the variances of the sources, it immediately follows that

the signs and scaling of the sources cannot be uniquely defined. A source

signal can be multiplied with any scalar, as long as the corresponding

mixing weights are divided by the same value. Additionally, the order

of the sources is not fixed. Fortunately, these ambiguities in the model

are not so crucial in practice. For example, the signs and scaling of the

independent components can often be fixed with simple normalization,

after performing ICA.

Many algorithms have been implemented for ICA, such as, FastICA

[Hyvärinen and Oja, 1997], Infomax [Bell and Sejnowski, 1995, Amari

et al., 1995], and JADE [Cardoso, 1989]. They all work in a clear data-

driven manner, based on the assumption that the original sources are

statistically independent. In recent years, ICA has become very popu-

lar in many research fields, including functional brain imaging [see, e.g.,

Makeig et al., 1995, Olshausen and Field, 1996, Jahn et al., 1998, Vigário

et al., 2000, Tang et al., 2002, Calhoun et al., 2003, McKeown et al., 2003,

Calhoun et al., 2009].

Before estimating the independent components, the observed mixtures

can be whitened, that is, transformed to be uncorrelated and have unit

variances. This does not constrain the estimation in any way due to the

inherent scale ambiguity, and since independence implies uncorrelated-

ness. Whitening simplifies the component estimation by restricting the

structure of the mixing, and is a required step in many ICA algorithms.

Additionally, if the goal is to find K independent components and the

whitening is done using PCA, the complexity of the problem can be low-

ered by reducing the data by retaining only the K strongest principal

components. Assuming that the weakest principal components contain

mainly noise, the dimensionality of the data is reduced in an optimal

manner to improve the signal-to-noise ratio. However, when this does

not hold for the data, as in the case of fMRI, the dimensionality must not

be reduced too much to remove interesting components.
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4.4.1 Blind Source Separation

The idea of solving the underlying source signals in Equation (4.11) us-

ing only the observed signals with unknown mixing and minimal, if any,

information on the sources is called blind source separation (BSS, c.f., Car-

doso [1990], Jutten and Herault [1991]). To make the solution for both the

mixing and sources at the same time identifiable, all approaches need to

make some constraining assumptions, either on the mixing process or the

source signals.

For example, when assuming that the sources contain significant auto-

correlations, the problem can be solved by using temporal decorrelation

algorithms, such as, SOBI [Belouchrani et al., 1993] or TDSEP [Ziehe

and Müller, 1998]. The assumptions in ICA [Jutten and Herault, 1991,

Comon, 1994] are the most widely used approach for solving the BSS

problem. The solutions have many useful applications, such as, identi-

fying signals of interest, removing artifacts, and reducing noise.

4.4.2 Independence and Non-Gaussianity

Theoretically, statistical independence means that the sources do not con-

tain any information on each other. In other words, the joint probability

density function of the sources is factorisable to its marginal probabil-

ity densities p(s1, ..., sK) =
∏

i p(si). Since a direct optimization of in-

dependence would require exact determination of the density functions,

which are generally not available, the sources have to be estimated by

approximating independence with other objective functions. These can be

based on statistical concepts such as mutual information and negentropy

[Hyvärinen et al., 2001b].

Essentially, all objective functions measure how non-Gaussian the es-

timated sources are. An intuitive explanation for this is offered by the

central limit theorem, which states that the distribution of a mixture of

independent and identically distributed (i.i.d.) random variables tends to

be Gaussian, regardless of what the original distributions are. Therefore,

as the sources are made more non-Gaussian they must also become more

unmixed. Commonly used measures of non-Gaussianity are skewness and

kurtosis, or the third and fourth order cumulants.

Negentropy is a basic concept in information theory, measuring how

much smaller the differential entropy of a random variable is when com-

pared to the entropy of a Gaussian variable. Since the entropy of a Gaus-
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sian variable is the largest among all random variables of equal variance,

negentropy is a very natural measure of non-Gaussianity. Negentropy is

defined, using differential entropy H, as

J(y) = H(ỹ)−H(y) , (4.12)

where ỹ is a Gaussian random variable having the same covariance as

the measured variable y. For the purpose of ICA, negentropy also has the

benefit of being invariant for invertible linear transformations. Again,

since using negentropy is computationally difficult, requiring a known

or estimated density function, simpler approximations of negentropy are

needed. The aforementioned higher order cumulants are one way of esti-

mating negentropy, but a more general and robust estimator has the form

J(y) ∝ (E[G(y)]− E[G(ỹ)])2 , (4.13)

where constant terms have been removed and G is any nonlinear non-

quadratic function. Choosing a G that does not grow too fast leads to a

robust estimator, and using G(y) = y4 is identical to the kurtosis based

estimation.

By definition, in the special case of a Gaussian random variable, un-

correlatedness is equal to independence. It is also easy to see from the

intuitive explanation, and commonly used measures of non-Gaussianity,

that theoretically ICA cannot identify Gaussian components. This is due

to the fact that any attempt at unmixing Gaussian components cannot

make them measurably more non-Gaussian. In practice, ICA can identify

one Gaussian component among many non-Gaussian ones, and typically

the interesting signals are not Gaussian.

4.4.3 The FastICA Algorithm

The remainder of this thesis focuses on the use of the FastICA algorithm

(http://research.ics.aalto.fi/ica/fastica, Hyvärinen [1999]), though

most considerations apply also to other ICA algorithms. FastICA is one

of the fastest and most robust ICA algorithms, even with large datasets

and under noisy conditions. FastICA uses a fixed-point optimization of ne-

gentropy, based on an approximative Newton method. FastICA also uses

whitening with PCA as the first step.

Assuming the data has been whitened using the projection in Equa-

tion (4.5) and normalizing the variance along all directions equal to one,

so that the random vector z denotes the samples of the whitened data,
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the goal is to find an unmixing projection vector w that produces an in-

dependent component s = w�z. The gradient of the approximation of

negentropy in Equation (4.13) with respect to w becomes

γ E[zg(w�z)] , (4.14)

where g is the derivative of G and the scaling term is γ = E[G(w�z)] −
E[G(ỹ)])2. Since z is assumed to be whitened, ỹ is a standardized Gaus-

sian random variable, and the optimization can be performed under the

constraint E[(w�z)2] = ‖w‖ = 1. Therefore, the whole scaling coefficient

γ becomes a constant and can be removed.

The gradient in Equation (4.14) could be used directly in a fixed-point

iteration. However, the convergence of the algorithm can be significantly

improved with the Newton method. Typically, this would increase the

computational complexity due to a matrix inversion needed in the Newton

iteration. In FastICA, the matrix inversion is avoided by further approxi-

mating that matrix with its diagonal. This is a reasonable approximation,

since the data is assumed to be whitened, and the resulting fixed-point

update rule in FastICA is

w ← E

[
zg(w�z)− E[g′(w�z)]w

]
, (4.15)

where g′ is the derivative of g. The whole algorithm for finding one max-

imally non-Gaussian component is outlined in Table 4.1. As in PCA, it is

possible to look for many components either all at once or one at a time,

by deflation.

1. Whiten the data to get z.

2. Choose an initial (e.g., random) vector w of unit norm.

3. Let w ← E
[
zg(w�z)− E[g′(w�z)]w

]
, with a suitable g.

4. Let w ← w/‖w‖.
5. Repeat from step 3, if not converged.

Table 4.1. The FastICA algorithm. The steps for estimating one independent component.

In practice, step 3 of the algorithm is estimated from a finite sample

{zi}ni=1 by

ŵn ← 1

n

n∑
i=1

(
zig(ŵ

�
n zi)− g′(ŵ�n zi)ŵn

)
. (4.16)
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4.4.4 Spatial ICA of fMRI Data

The first application of independent component analysis to fMRI data was

done by McKeown et al. [1998], McKeown and Sejnowski [1998]. Since

then, ICA has become a very popular tool for fMRI studies. For recent

reviews, consider reading Calhoun et al. [2003], McKeown et al. [2003].

The ICA model used in fMRI analysis is illustrated in Figure 4.1.

Figure 4.1. Spatial ICA of fMRI data. The rows of the data matrix X and source matrix
S are the vectorized volumes. The columns of the mixing matrix A are the
time series. Note, that the statistical independence applies to the spatial
patterns.

As with GLM, to use fMRI data in the ICA model, all voxels in the imag-

ing volume are rearranged as one row in the data matrix X. Since ICA is

only concerned with the statistics of the observations, the order of the vox-

els can be freely chosen, as long as every volume is reordered in the same

way. Each row of S contains one of the K independent spatial patterns

and the corresponding column of A holds its activation time series. In

contrast to GLM, no assumptions are made on the shape of the individual

time series.
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5. Uncertainty and Exploiting Variability

Independent component analysis has become widely adopted in recent

years for performing blind source separation. However, some method-

ological problems have remained with the use of ICA. One concern is

the tendency of the estimated independent components to change slightly

each time the analysis is performed. Such variability can be caused by

many factors. For example, the theoretical assumption of statistical inde-

pendence may not hold for the data. The particular ICA algorithm used

may also be inherently stochastic. Furthermore, significant noise or other

properties of the data can cause variations in the solutions.

Under expert supervision, such behavior has usually been overcome by

comparing the estimated components with known sources, or with refer-

ences obtained by other analysis methods [see, e.g., Calhoun et al., 2001].

Another used approach is to evaluate the results based on expert knowl-

edge of the potential sources. Such approaches may not be possible in

practice, and effectively cancel the true benefits of data-driven analy-

sis. Recently, bootstrap methods [Efron and Tibshirani, 1994] have been

used successfully to identify consistently reproducible components [see,

e.g., Duann et al., 2003]. Additionally, some methods [c.f., Himberg et al.,

2004] have proposed grouping similar estimated solutions and visualizing

the compactness of the estimates. However, the full potential of analyzing

the consistency has not been exploited before. Moreover, the convergence

of FastICA, especially under bootstrap, has not been properly studied or

theoretically analyzed before.

This chapter presents a novel approach, based on observations made

by the author in Publications I and II, offering a better insight to both

ICA and the data. The approach runs the FastICA algorithm multiple

times with bootstrap sampling, followed by a suitable clustering of the es-

timated solutions. The method easily reveals the consistent independent
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components, but, perhaps more importantly, also helps to interpret the

less consistent phenomena.

All the algorithmic optimization is performed in an optimization land-

scape that is partly defined by the data. Therefore, the data samples will

also affect the convergence of the algorithm. Restricting structure in the

data can also bias the estimated solutions. Perhaps the simplest exam-

ple of such an effect is the increased number of local optima when the

signal-to-noise ratio of the data is low. In addition to solving the relia-

bility problems, consistency analysis of ICA can reveal the properties of

the variability that may actually tell more about the underlying data. For

example, components that are clearly separated from other components,

but contain a high degree of variability could identify an independent sub-

space in the data. On the other hand, consistent components with very

weak signal-to-noise ratios could be reliably discriminated from overfit-

ting.

As explained in Publication III with greater detail, the variability can

be considered on a surface defined by the objective function and the given

data. For illustrative purposes, Figure 5.1 shows an example of a 3-

dimensional optimization landscape, where in addition to the global mini-

mum, the surface contains several local minima. Different starting points

and directions, or the tendency to bias towards a certain solution, cause

the optimization to converge along different paths, illustrated as thick

curves. Ideally, a robust algorithm should always reach the same opti-

mum, but in practice it can get stuck on a local optimum. Even the es-

timates of the same optimum, reached along different paths, can vary

slightly, depending on the implementation of the algorithm. The esti-

mates should still form consistent groups with high similarity. Thus, the

most reliable solution can be found as the mean of a consistent group and

the spread of the group can be used to analyze the properties of the vari-

ability.

5.1 Errors in Assumptions and Estimation

The ICA algorithms are usually derived under strict assumptions, such

as statistical independence, stationarity and noiseless data. With real

measurement data, the assumptions often fail and the behavior of the es-

timation cannot be guaranteed, even if the estimation would seem robust.

The algorithm itself may also be a source of variability. The selected op-
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Figure 5.1. Optimization landscape. Different initial conditions and data properties
cause the algorithm to converge along different paths (illustrated as curves)
on the 3-dimensional optimization surface. The algorithm may get stuck on
a local minimum and even the optimal estimates may be slightly different.

timization schemes and implemented iteration methods are usually tuned

for fast convergence, which can affect the estimation accuracy of the al-

gorithm. The performance of the algorithm in the presence of noise also

depends on the implementation. Particularly, FastICA can search for the

independent components one at a time, by deflation, or all at once. Meth-

ods that solve all the components at once tend to spread the errors evenly

among all components, whereas in deflation, the errors accumulate to the

last components. In FastICA, the sensitivity to outliers in the data can

also be tuned with the choice of the nonlinearity in the update rule. Ad-

ditionally, the initial conditions of the algorithm are usually selected ran-

domly.

5.2 Sparseness and Overfitting

The measures commonly used in the optimization, like kurtosis, give rel-

atively high scores for sparse sources, whether or not they are truly inde-

pendent. Therefore, independence and sparseness are strongly connected

[see, e.g., Li et al., 2004], which results in a natural tendency of any ICA

algorithm to bias towards sparse, rather than strictly independent, so-

lutions. Indeed, when the degrees of freedom in ICA are too high, the

model is likely to overfit to the data, which is known to result in strong

sparse contamination of the estimated components [Särelä and Vigário,

2003]. Additionally, the overfitting contamination can change freely on

each application of the algorithm. On the other hand, a too low model
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order can result in poor separation altogether. Whitening, and a suitable

dimensionality reduction, is important in controlling the complexity and

the size of the decomposition.

Arguably, the good performance of ICA in practice, even under ill con-

ditions, can be in part attributed to the fact that the sparse components

often form a very natural and easily interpreted decomposition of the data

[see, e.g., McKeown and Sejnowski, 1998, Vigário et al., 2000]. In some

cases, the best goal may even be to search for sparse, rather than strictly

independent components. The problem with the natural bias towards

sparse components is that it can easily be confused with the sparseness

produced by overfitting. Thus, it is crucial to fully analyze the properties

of the variability.

5.3 Bootstrap and Combining Estimates

The main idea in bootstrap [Efron and Tibshirani, 1994] is to get many

values for an estimator, to be able to characterize its distribution. This

is achieved by performing the estimation multiple times using a differ-

ently resampled version of the data each time. The goal is to create many

possible versions of the data from a single set of actual measurements.

The resampling is done with replacement, that is, using independently

drawn samples of the data. Perhaps the most common example of boot-

strap is the calculation of the standard deviation of an estimated param-

eter to assess its reliability. Resampling the available data to discover

the distribution of an estimator, while retaining the structure within the

data, has strong connections to Bayesian sampling theory [see, e.g., Ru-

bin, 1981, Clyde and Lee, 2001]. Essentially the same approach is used

also in boosting and bagging [see, e.g., Bauer and Kohavi, 1999].

The majority of previous work on bootstrap in machine learning has

been done with supervised algorithms, where the performance is easy to

verify with the given ground truth [Strother et al., 2002]. The behavior

of unsupervised algorithms, like ICA, is more difficult to quantify, since

there is no ground truth and it is difficult to know which estimates repre-

sent the same component [Baumgartner et al., 2000]. Most commonly the

goal has been to analyze the stability of an algorithm or to select the best

performing model [see, e.g., Rao and Tibshirani, 1997, Breakspear et al.,

2004]. The effects of artificially increasing the level of noise in the data,

on the consistency of the independent components, have also been stud-
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ied [Harmeling et al., 2003, 2004]. However, fMRI data, like many real

datasets, has a poor signal-to-noise ratio to begin with.

A recent approach, proposed by Meinecke et al. [2002], relies on a sin-

gle initial ICA decomposition, and aims at validating the consistency of

those independent components. The consecutive runs are applied on re-

sampled versions of the estimated independent components from the first

run, with the assumption that the consecutive runs should result in an

identity mixing matrix. Therefore, the method is straightforward to im-

plement and sidesteps any issues arising from the sign and permutation

ambiguities. However, since the estimation takes place only in the lo-

cal vicinity of the initial solution, the optimization landscape may not

be covered sufficiently, and the assumptions made in bootstrap could be

violated. Additionally, the initial run essentially defines the set of inde-

pendent components to be analyzed, and a poor solution on the initial run

will render the consecutive runs practically useless.

On the other hand, Himberg et al. [2004] have proposed a visualization

method, based on clustering components from multiple runs of ICA with-

out heavy restrictions. However, their method is computationally heavy

and leaves the user with a nonlinear two-dimensional cluster representa-

tion. Moreover, the visualization itself is unstable and changes every time

the method is applied, making it difficult, or even misleading, to interpret.

A proper combination strategy for ICA has to take into account the sign,

scale and order ambiguities in the model. Even the optimal number of

components is usually not known. Some simple combination strategies, or

validation of manual combinations, have been studied in connection with

the reproducibility of ICA decompositions [see, e.g., Duann et al., 2003,

Ito et al., 2003, Stögbauer et al., 2004]. The combination approach in the

new method is rather simple and efficient, allowing for easy interpreta-

tion of the results. It has strong connections to recently developed cluster-

ing methods based on spectral properties of a similarity matrix [see, e.g.,

Meilă and Shi, 2000, 2001]. There are also some studies analyzing the

stability of clustering solutions [see, e.g., Lange et al., 2004].

As mentioned before, randomizing the initial conditions changes the

starting point and direction of optimization. This allows converging to the

optimum by approaching it from different directions, and actually, some

of the points that are surrounded by local optima, as defined by proper-

ties of the data or noise, may only be reachable from certain directions.

Therefore, starting with different initial conditions is important for com-
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plete analysis, and helps in detecting even the weakest local optima. This

can be crucial for data with poor signal-to-noise ratio, or when the data is

such that it causes a strong bias or overfitting tendency.

5.4 The Arabica Toolbox

Performing FastICA many times under bootstrap resampling is actually

rather difficult in practice, due to such problems as the sign, scaling, and

permutation ambiguities. A toolbox based on all the previous considera-

tions is introduced in Publication IV.

In the Arabica approach, a separate initial run is not used, allowing

for any combination of independent components to be found on each run.

One important benefit is that ICA is free to find the optimal solution on

each run, which allows for the results to include weaker local mimima

that are very difficult to find on all runs. Clearly, this leads to a harder

combination problem. The FastICA algorithm is well suited for such use,

since it is very robust and converges quickly even for large datasets. The

approach is outlined in Table 5.1.

Consistent components are easy to identify, since the number of the

grouped estimates is close to the number of bootstrap rounds performed.

The mean, or centroid, of each cluster can be considered as the best es-

timate of the true decomposition. The mean representatives can also de-

part somewhat from a strictly independent solution, which can be benefi-

cial when the strict independence cannot always be guaranteed. In cases

where the strict independence is more crucial, the estimates from the sin-

gle run closest to the mean solution could be picked instead.

To further characterize the differences among the components, mea-

sures of compactness and discrimination are calculated. Some of the

weaker components appearing only a few times, since they are difficult

for ICA to separate, can still be considered reliable due to a very compact

and well discriminated nature. Ranking based on these measures allows

for the significant components to be shown first, and similarly behaving

ones close to each other. The variability can be fully interpreted by show-

ing it in all of the similarity, mixing, and signal spaces simultaneously.

The additional information can be used to correctly identify the underly-

ing source signals much better than in a single run ICA approach.

The toolbox name was inspired by the finest species of coffee beans,

but can also serve as the acronym for ”Adaptive Reliable Algorithms for
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- Perform the following estimation steps many times.

1. Draw a bootstrap sample of the given data matrix.

2. Whiten the bootstrap sample using PCA, possibly reducing the

dimensionality.

3. Randomize the initial conditions for FastICA.

4. Estimate a reasonable number of independent components.

- Form groups with the estimates corresponding to the same indepen-

dent component.

1. Collect all estimates from the multiple runs.

2. Calculate a similarity matrix of the estimates, taking into account

the ambiguities in ICA.

3. Cluster the estimates, using given similarity threshold and link-

age path length.

- Visualize the independent component with their variability informa-

tion.

1. Calculate the statistical properties of the variability in each clus-

ter.

2. Rank the clusters based on the number of estimates and their

compactness.

3. Show the components, highlighting their spatio-temporal varia-

tions.

Table 5.1. Bootstrap FastICA in the Arabica toolbox. The steps for reliable estimation of
independent components.

57



Uncertainty and Exploiting Variability

Bootstrap ICA”. The toolbox is open source and available at http://

launchpad.net/arabica. It is implemented using Matlab, and supports

execution in the LONI Pipeline environment (http://pipeline.loni.ucla.

edu, Rex et al. [2003]). The design was motivated by the recent shift to-

wards cluster and grid computing, to allow for ever larger datasets to be

collected and analyzed in a feasible manner. The environment allows for

graphical definition of processing flows consisting of connected modules,

that can be executed in one or many computers. Such an environment is

very useful, since it offers the ability to reuse, replace, and modify only

certain parts of a larger processing pipeline. The environment also allows

for easy sharing of parts, or even complete, processing pipelines between

researchers. As an example, Figure 5.2 illustrates typical usage of the

toolbox.

As mentioned before, other considerations include the amount of dimen-

sionality reduction performed during the whitening stage, as well as the

number of independent components estimated on each run. It is com-

mon practice to estimate as many independent components as the num-

ber of retained whitened signals. This causes the demixing matrix to be

square and makes the computations somewhat easier. In the presented

method, it can be beneficial for the number of components to be smaller.

The reason can be considered from a deflation point of view. In the defla-

tion approach, the estimated components are affected by the accumulated

errors of all previously estimated components and the first components

have a higher overfitting tendency. Similarly, in each bootstrap run, all

the simultaneously estimated components affect each other. Overfitting,

or otherwise easy to estimate components, can make matters worse by

appearing in every run. Therefore, the choice of estimating a smaller set

of independent components than the total number of whitened signals al-

lows for more freedom to better account for the estimation errors. In each

run, different sets of independent components can be estimated, resulting

in a total number of reliable components that is typically still larger than

the number of whitened signals.

There is also a theoretically justified way of making the approach even

faster, while allowing for improved identification of weaker phenomena.

The amount of data used on each run can be further reduced in the boot-

strap sampling, by resampling the original data into smaller subsets. The

easiest way of achieving this is by randomly picking less than the total

number of samples available. However, a too strong reduction can even-
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Figure 5.2. An illustrative example of a typical Arabica process in the LONI Pipeline
environment. The interface shows an editable flow chart of a processing
pipeline for multi-subject fMRI data. The popups show selected parameters
for two of the Arabica modules. The illustrated process starts from the top
with the dataset consisting of functional measurements of two subjects in
two trials, followed by the individual skull stripping volume masks. In this
simplified illustration, the datasets are already assumed to be suitably pre-
processed. The datasets are fed to the normalize module, which allows for a
group analysis of multiple datasets. The module also outputs metadata that
is needed in the later stages of the pipeline. The normalized group data is the
input to the robust ICA module that produces the clustered component esti-
mates. The last steps in the example output the final results and visualize
the reliable ICs of the individual subjects.

59



Uncertainty and Exploiting Variability

tually cause an increase in the variability of the estimates. Although the

behavior is easy to confirm in practice, the amount of reduction should be

controlled carefully since suitable values are most likely dependent on the

data.

5.5 Reliable Analysis using ICA

The basic theoretical foundations of ICA, as well as its various implemen-

tations, are rather well understood [c.f., Hyvärinen et al., 2001b, Comon,

1994, Cichocki and Amari, 2002]. In particular, for the FastICA algo-

rithm, some theoretical convergence bounds have been presented earlier

[see, e.g., Hyvärinen, 1999, Oja and Yuan, 2006, Tichavský et al., 2006].

However, a complete proof for asymptotic convergence had not been shown

before, and critically, the bootstrap setup had not been studied before.

The following is a short summary of the new results presented in Publi-

cation V, giving formal theoretical grounds for the practical success of the

bootstrap FastICA approach.

The main result of Publication V is a proof of asymptotic normality of

FastICA and bootstrap FastICA, using the method of empirical process

theory and Z-estimators [van der Vaart and Wellner, 1996]. This means

that the bootstrap FastICA is a consistent estimator whose distribution

around the true parameters approaches a normal distribution, with stan-

dard deviation shrinking in proportion to the sample size. Also, a prob-

abilistic convergence rate is derived. In addition to the theoretical im-

portance, the results of Publication V offer an elegant way to check the

convergence of the bootstrap algorithm in practice, using a multivariate

normality test [Anderson, 2003].

In the following, E[·] is the expectation, Pr denotes a probability, and P−→
means converges in probability. Let z denote the whitened data and w

the demixing vectors in the whitened space from n runs of FastICA. More

specifically w◦ is the true solution, ŵ the sample estimator and ŵ∗ the

bootstrap estimator.

Theorem 1 (Consistency and Asymptotic Normality of FastICA). Let us

assume E[z] = 0 and z has all moments up to the fourth; E[zz�] = Id;

and function G : R → R has bounded and continuous derivatives, and

that G and its first derivative g are Lipschitz. Further, we assume that

the quantities E[g′(si)] �= 0, E[s2i g′(si)] �= 0, E[g2(si)] �= 0, E[s2i g2(si)] �= 0,

E[G(w�z)], ∀w ∈ Sp−1, and i = 1, . . . , p, exist and are bounded. Then
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the sequence of estimates ŵn that is produced by the FastICA iteration, in

Equation (4.16), is consistent and asymptotically normal, as

ŵn
P−→ w◦

√
n(ŵn −w◦)� N (0,Σ) ,

where the covariance of the Gaussian distribution is

Σ = Adiag

[
E[g2(s◦)]
E[g′(s◦)2]

, . . . ,
E[s2◦g2(s◦)]

(E[s2◦g′(s◦))2]
, . . . ,

E[g2(s◦)]
E[g′(s◦)2]

]
A�

and A is the true mixing matrix. In addition, assuming that E[g′2(si)],

E[sig
′2(si)], E[s2i g

′2(si)], E[s4i g
′2(si)], and the source signals, are bounded.

Then the bootstrap FastICA is also asymptotically normal, as

√
n(ŵ∗n − ŵn)� N (0, c2V −1

w◦ Uw◦V
−1
w◦ ) ,

where
Uw◦ = E[zz�g2(w�◦ z)]

Vw◦ = E[zz�g′(w�◦ z)] ,

and c is a positive constant.

The theorem justifies the use of FastICA in a bootstrap and randomly

initialized manner. However, on each run, a different set of independent

components may be estimated and the total number of estimates for each

component will vary. Moreover, the whitening step can change the signs

of individual dimensions of the whitened space on each run, depending on

the bootstrap sampled data. It is, therefore, crucial to correctly identify

and group similar components from the various runs in practical imple-

mentations. Only then, a statistical analysis of each group can then be

performed.
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6. Networks of Related Independent
Components

The purely hypothesis-driven methods, like GLM, have been used exten-

sively in functional imaging studies, which have focused on rather simple

block designs aimed at optimizing stimulus control and signal-to-noise ra-

tio. Currently, the focus is shifting from simple unimodal stimuli towards

integration of multiple sensory stimuli to study cognitive processes and,

generally, brain activation related to natural stimuli. The recent interest

in more natural setups is evident in experiments with real-life stimuli,

such as movies [Hasson et al., 2004, Bartels and Zeki, 2005, Damoiseaux

et al., 2006], video clips [Nishimoto et al., 2011], or human interactions

[Kätsyri et al., 2012].

Modern research recognizes that brain functions can rely on distributed

processing networks, and that a single brain region may participate in

more than one function. As natural stimuli are increasingly used in fMRI

studies, challenges are created in analyzing the measurements. It is no

longer feasible to assume that a single feature of the experimental design

could account for the brain activity. Instead, relevant combinations of a

rich set of stimulus features could explain the more complex activation

patterns.

The simplest approaches to model interactions among different brain

regions are based on pair-wise correlations, often called functional con-

nectivity [Friston, 1994]. Such methods suffer from spurious correlations

due to confounding effects. Recently developed methods, such as dynamic

causal modeling (DCM, Friston et al. [2003], Penny et al. [2004]) and

Granger causality analysis [Granger, 1969, Seth, 2005, Sato et al., 2007],

aim at effective connectivity analysis. They are based on auto-regressive or

non-linear modeling of neuronal interactions. However, these approaches

require a priori hypothesis of the interaction network using a small num-

ber of regions of interest.
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This chapter presents the method first suggested in Publication VI, and

then further refined in Publication VII. The aim of the approach is to in-

fer brain correlates of natural stimuli using both ICA and CCA. In such

uncontrolled setups, it is extremely difficult to differentiate the stimulus-

related processes from ongoing brain activity or, analogously, the stimulus

features related to brain activity from all other aspects of the natural en-

vironment. Statistical hypotheses can no longer be self-evidently derived

from the experimental setup. Instead, identifying the testable hypotheses

can be considered as one goal of the analysis.

6.1 Shared Dependencies Between Datasets

As a data-driven method, ICA looks for the spatially independent pat-

terns of activity without any prior knowledge on the location or temporal

dynamics of the activity. It has quickly become a common analysis tool

in fMRI studies using natural stimuli [see, e.g., Bartels and Zeki, 2005,

Damoiseaux et al., 2006, Malinen et al., 2007]. However, in most studies

the majority of the found independent patterns are left without an expla-

nation in terms of the stimulus features. Some of the unexplained com-

ponents can actually be unrelated to the stimulation, but it is possible

to extend the analysis to identify some of the components as stimulus-

related, by considering temporal correlations between them [see, e.g., Cal-

houn et al., 2002].

In addition to ICA, other modern statistical machine learning methods,

such as support vector machines [Vapnik, 1998], and Gaussian-process

classifiers [Rasmussen and Williams, 2005], have recently been tested for

finding brain correlates of individual stimulus features [see, e.g., Kami-

tani and Tong, 2005, Haynes and Rees, 2005]. It has even been possible to

predict the stimulus features from the brain activity with a well-trained

predictive model [see, e.g., Schneider et al., 2006, Sona et al., 2007, Nishi-

moto et al., 2011]. After training, the methods can be quite accurate, but

they require training data with the correct target classes. Thus, they are

only suited for studies where the experimental design readily defines suit-

able classes of interest, such as visual object categories.

All the above approaches have a practical problem with fMRI data, be-

cause of the huge dimensionality and number of samples in the record-

ings. Without regularization, interpreting the results can be very diffi-

cult and the methods can find strong correlations among the noise in the
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datasets. In many studies, the problem has been solved by actually con-

straining the methods to a manually selected set of regions of interest.

In the presented approach, ICA can be seen as a kind of regularization

that imposes a purely data-driven, and theoretically justified, constraint

on the data.

6.2 Features of Natural Stimuli

Under strict laboratory control, it can be possible to design an experiment

so that all relevant states of the experimental variables are presented in

a well balanced and adequately repeated fashion. However, with natural

stimuli the analysis has to cope with imbalances in the data. Since CCA

is invariant to linear transformations of the stimulus features, it is able

to compensate for such imbalances, as long as the stimuli are expressive

enough to include all relevant combinations of the experimental variables.

Naturally, when the experimental design forces certain stimuli to al-

ways co-occur, it is impossible to distinguish the corresponding brain cor-

relates from each other. Somewhat surprisingly, similar confusion may

happen with stimuli that never co-occur. When the intention is to design

uncorrelated variables by creating a sequence without any overlap, the

regularity of the setup can lead to unexpected negative correlations be-

tween the variables. Such emerging correlations cannot be distinguished

from true negative correlations between the stimuli. Thus, any analysis

could find dependencies that reflect the characteristics of the experimen-

tal design, rather than of the observed brain responses. Due to the impor-

tance of trying to avoid the effects of spurious correlations, the topic has

recently acquired more scientific interest [see, e.g., Aguirre et al., 1998,

Fox et al., 2009, Murphy et al., 2009].

6.3 Semi-blind Approach in Two Steps

The new two-step approach uses ICA, as a first step, to identify spatially

independent brain processes, which are considered to be the functional

elements of brain activity within the measured data. As a second step,

temporal dependencies between stimuli and the functional elements are

identified using CCA. The proposed method is illustrated in Figure 6.1.

Essentially, it looks for combinations of the stimulus features that max-
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imally correlate with combinations of the functional elements. It is par-

ticularly attractive that the results are invariant to aspects of the stimuli

that are not reflected in brain activity and, similarly, to the brain activity

that is unrelated to the stimuli.
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Figure 6.1. Illustration of the analysis framework. As the first step, ICA is applied to the
fMRI measurements to find spatially independent patterns of brain activity.
The second step uses CCA to identify functional combinations based on the
temporal dependencies between the stimuli and the ICA components.

6.3.1 Identifying Functional Elements with ICA

The first step uses the reliable ICA method, discussed before, to find the

functional elements of brain activity in the measurements. The ICA de-

composition forms a natural data-driven basis to further describe the

data, since it does not use the stimuli and does not make any assump-

tions about whether the components should be stimulus related or not.

Unfortunately, some literature has adopted the habit of calling inde-

pendent components with distributed activation patterns as functional

networks. The naming originates from simple region-based correlation

analysis, but can be rather misleading when applied to ICA. The patterns

could be networks, as a special case, when all the regions in the compo-

nent would share the identical activation time series, without any delays.

However, it is more likely that such cases are evidences of the forced co-

occurance under the used stimuli or, even worse, of the spurious correla-

tions, mentioned before. The proposed method makes a clear distinction

between the functional elements and their combination into networks.

6.3.2 Linking Functional Networks with CCA

The second step uses CCA to look for combinations of the functional ele-

ments that are temporally correlated with combinations of the stimulus
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features. This actually serves two purposes, since a typical problem with

ICA is that the majority of the identified components are difficult to ex-

plain in terms of the stimuli. Firstly, the CCA results offer the best de-

scription of each component using the stimulus features. Secondly, when

the stimulus features are better correlated with a combination of the func-

tional elements, instead of just a single one, CCA identifies the best pos-

sible combination.

6.4 Networks of Brain Activation Related to Stimuli

The combination of many functional elements is a clear evidence for com-

plex stimulus-related processes involving several brain regions. Such pro-

cesses can be characterized as networks of brain regions, which dynami-

cally function together in response to particular stimuli, such as networks

responsible for multi-modal integration of sensory inputs.
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7. Subspaces of Independent
Components

The strict assumption of statistical independence used in ICA may not be

completely valid for a given dataset. This is most likely the case for any

fMRI measurement, since it is quite hard to believe that brain processes

would be truly independent of each other. The dependency structure in

the data, whether due to connections between the brain processes or spu-

rious correlations, can lead to the formation of independent subspaces in

addition to the easily separable individual directions. Subspaces can also

form when there are no evidences of dependency among many brain pro-

cesses during the measurement of the data.

Subspace ICA models generalize the assumption of component indepen-

dence to independence between groups of components. Independent sub-

space analysis (ISA) was first introduced by Cardoso [1998] using geo-

metric motivations. The model is quite general, and algorithmic enhance-

ments in this setting have been studied, although identifiability and ap-

plicability to arbitrary random vectors have only been proven for equal

group sizes. Moreover, if the observations contain additional spatial or

temporal structures, these have been used for the multidimensional sep-

aration [Vollgraf and Obermayer, 2001].

In the special case of equal group sizes, Hyvärinen and Hoyer [2000]

have proposed combining ICA with invariant feature subspace analysis,

leading to more efficient algorithms. A related relaxation of the ICA as-

sumption is given by topographic ICA [Hyvärinen et al., 2001a], where

dependencies between all components are modeled along a topographic

structure. On the other hand, Bach and Jordan [2003] formulate ISA as a

component clustering problem using a graphical tree model. However, all

the methods above are limited by the assumption of equal group sizes or

less general semi-parametric models, and hence are not fully blind. Some

recent development has been made towards a non-parametric ISA method
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[see, e.g., Theis, 2006], mainly suitable for dimensionality reduction.

The potential for identifying independent subspaces using the reliable

ICA approach was hinted in Publication II and further studied in Pub-

lication VIII. Not unlike the network analysis discussed previously, the

subspaces also reveal connections between the individual functional ele-

ments, and in a purely data-driven manner.

7.1 Subspaces Emerging from ICA

As explained before, the optimization landscape in ICA is defined by the

structure of the data, additive noise, as well as the objective function used.

When the data cannot be decomposed into purely independent directions,

the landscape has areas with large valleys, or sets of many nearby local

optima, instead of a clearly identifiable optimal point. Each bootstrap run,

of the reliable ICA approach, can result in estimates from different parts

of the valley, since according to the independence criterion used they are

all equally optimal.

The emergence of a subspace in ICA also means that the basis directions

within the subspace cannot be uniquely identified. In fact, independent

components belonging to the subspace can appear with any rotation inside

the subspace. Therefore, even if there is a strong relation between the

subspace and the stimuli, the relation may not be readily visible as a high

correlation between a component and the stimuli.

7.2 Two Ways to Identify Subspaces

The subspace detection is based on analyzing the variability of the esti-

mated independent components. This can, and should, be done using both

the mixing and the spatial patterns. In some cases, there are enough es-

timates of the mixing vectors that cover the whole subspace, so that the

clustering of the mixing vectors can identify a very large group of related

estimates. Sometimes the mixing vectors can form several distict groups,

but the spatial patterns that they produce are still very related.

7.2.1 Estimates Linked Through Correlation

Having the bootstrap results of the reliable ICA approach, the most direct

way of identifying subspaces is by looking for clusters, where the number
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of estimates is much larger than the total number of bootstrap runs per-

formed. This can only happen when many estimates, that produce very

similar spatial patterns, were found during each run of the ICA.

For example, it may happen that the whole subspace is independent

from all the rest of the components and easily separated, but within the

subspace any direction results in roughly the same spatial pattern. Nat-

urally the dimensionality of the subspace needs to be large enough, and

the model order big enough, that more than one estimated component per

run falls within the subspace. In such a case, it is questionable whether

the directions favored by ICA are the best possible basis for the subspace.

7.2.2 Estimates with Shared Variability

It is also possible to identify a subspace by comparing the spatial vari-

ances of the components. When two or more components share the same

spatial variance, that is only present in a few voxels, the estimation of

those components must be dependent on each other. Additionally, the

point of the variance often coincides with a strong point of activation in

one of the components. This happens, for example, when one or more of

the directions within the subspace are so distinct that the clustering does

not directly group them all together. However, when the whole subspace

appears rotated in a certain run of ICA, all the directions within the sub-

space tend to rotate together.

7.3 Further Analysis of Subspaces

Even though any direction within the independent subspace should look

equally good for ICA, it is possible that the algorithm will prefer certain

directions over others. For example, this can be due to the restrictions

imposed by the other components found during the same run. On the

other hand, there may be additional data available that would allow for

more meaningful directions to be identified within a subspace.

The further refinement of the decompositions can be done either blindly

by clustering them into their most consistent constituents, or by using

CCA with some additional data.
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7.3.1 Blind Refinement

A purely data-driven refinement can be done by clustering all the esti-

mates belonging to the same subspace again, but using a much higher

similarity threshold, and perhaps even a different similarity measure.

This identifies the most distinct and consistent directions within the sub-

space. This may not help in interpreting the function of the whole sub-

space, but it could reveal details about the internal structure and depen-

dencies within the subspace.

7.3.2 Refinement Using Additional Data

Another method is based on finding better basis directions inside the sub-

space using CCA. This approach needs additional data for the CCA to find

the linear combinations that maximally correlate among the datasets.

If available, the additional data can be the stimulus features. This leads

to a situation that is similar to the previous network analysis approach,

with the difference that CCA is used to find the rotation of the whole

subspace that best corresponds with the stimuli, regardless of any other

components that may exist outside the subspace. The identified rotation

should make the whole subspace, as well as each component, easier to

interpret and describe in terms of the stimulus.

In a study with multiple trials or subjects, the additional data could

also be a similar subspace identified from another dataset. Then the aim

would be to find the rotations for the two subspaces that best correspond

with each other. This would make identifying commonalities, or differ-

ences, between the trials or subject much more accurate. Such analysis

would be easy to extend to more than two datasets with generalized CCA

methods.
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8. Discussion

In contrast to the classic statistical hypothesis testing approaches, mod-

ern machine learning methods allow for a purely data-driven analysis.

One of the most widely used methods for data-driven signal decomposi-

tion is independent component analysis (ICA, Hyvärinen et al. [2001b]).

However, some problems have remained with the use of ICA. One concern

is the tendency of the estimated independent components to change each

time the analysis is performed.

The main contribution of the thesis was a new reliable method for ICA,

which is available in the Arabica toolbox. It is based on multiple runs of

the FastICA algorithm [Hyvärinen and Oja, 1997] using bootstrap. The

new method was also theoretically analyzed and its asymptotic conver-

gence was proven. Secondly, the reliable ICA method was further ex-

tended by combining it with canonical correlation analysis (CCA, Hotelling

[1936]) to identify networks of distributed brain activity. Thirdly, another

improvement was made by adding ways to cope with independent sub-

spaces, which often emerge when using real measurement data that is

not guaranteed to fit all the assumptions made in the development of the

methods.

Several possibilities for future improvements were also identified, both

in the reliable ICA method itself and in the ways it could be applied to

fMRI datasets, and potentially other kinds of data. The different topics

and potential future research questions are discussed in detail below.

Reliable ICA

The new reliable ICA approach is very fast due to efficient bootstrap sam-

pling and fast clustering. Surprisingly, the amount of samples drawn at

each bootstrap iteration can be reduced quite heavily, making the overall
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performance significantly better. This is mainly possible due to the robust

estimation of the distribution, or more specifically, the non-Gaussianity, of

the sources. The reduced sampling also has another benefit, as it makes

the ICA less susceptible of errors caused by non-stationarity of the data.

However, the minimum number of samples that still leads to good estima-

tion is likely heavily dependent on the data, and should be studied more.

Since ICA has become an important tool for the multivariate analysis

in functional magnetic resonance imaging (fMRI), the usefulness of the

new approach was tested extensively with fMRI data. The tests showed

that the method produces very robust results in practice. Furthermore,

it was shown that the method is capable of providing insights into the

data that would not be attainable otherwise. The method allows reliable

interpretation of even the weaker components, which may be difficult for

ICA to identify.

The phantom study also demonstrated that some components in real

fMRI may stem from scanner artifacts, even though they appear reliable.

Therefore, great care has to be taken when interpreting ICA components.

Better approaches for quality control and functional calibration of the

scanner could be studied in the future. Although other kinds of data were

not studied in this thesis, the benefits should straightforwardly carry over

to any kind of data.

The new method was also theoretically analyzed and its asymptotic con-

vergence was proven. The theory offers a thorough explanation of how the

method works and justifies its use in practice. The new theoretical results

also offer ways to further develop the method in the future. Firstly, the

current approach for clustering the estimated components could be im-

proved by considering the fact that the intra-cluster distances of correctly

grouped estimates should form a Gaussian distribution. The theory can

even provide an estimate for the covariance of the distribution.

Secondly, an online clustering during the bootstrap iterations would al-

low the convergence of each component to be monitored using a normality

test. This could be used as an overall stopping criterion for the algorithm,

but also individually mark directions as sufficiently covered and force ICA

to look in other directions.

Thirdly, if a good enough converge can be guaranteed by monitoring the

bootstrap iterations, an early stopping criterion could be used to make the

multiple runs even faster. Even though this would make any individual

estimate weaker, it should not reduce the accuracy of the method, since
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the final estimate is constructed as the mean of all the corresponding es-

timates.

Network Analysis

The reliable ICA method was further extended by combining it with CCA

to identify networks of distributed brain activity. The extension was shown

to be particularly useful with fMRI studies that use complex or natural

stimuli. This is due to the fact that, unlike any other network analysis

method for fMRI studies, the new approach can identify relevant combi-

nations of both activation patterns and stimuli without requiring a prede-

fined structure for the network. Therefore, the method should be capable

of finding previously unknown network behavior in the brain.

However, the current implementation has no constraints on how the

different activation patterns can be combined. This may not be the best

approach, since in practice there is a difference between combining the

activity of overlapping versus non-overlapping regions. Overlapping pat-

terns could be due to increases in neuronal activation, changes in the

neuronal population, or even inhibitory processes. Moreover, even when

the combination of overlapping areas would correctly reflect changes in

the activation, it is unlikely that the changes would be linear.

Developing a CCAmethod that would be based on a neuronal interaction

model, instead of generic linear summing, could significantly improve the

results in the future.

Subspace Analysis

Another improvement was made to the reliable ICA approach by studying

independent subspaces, which often emerge when using real measure-

ment data that is not guaranteed to fit all the assumptions made in the

development of the methods. A novel approach was introduced for identi-

fying the subspaces using the uncertainty of the estimates from the boot-

strap ICA.

Furthermore, it was shown that it is still possible to improve the inter-

pretability of the subspaces by refining the directions within the subspace

or the rotation of the whole subspace. The refinement can be done both

blindly, without using any additional information, or semi-blindly, by uti-
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lizing the stimulus time series to identify more meaningful directions.

Correct comparisons over multiple datasets, such as, trials or subjects,

are only possible by matching the subspaces in each dataset. The sub-

space analysis would benefit hugely from the ability to identify and cluster

matching subspaces or components from several datasets. This could be

possible by recent multi-way clustering approaches, and should definitely

be studied further.
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