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Abstract 
The selection of a landfill leachate management strategy in order to shorten the aftercare 

period and reduce the leachate management cost is challenging. For decision making, it is 
important to understand 1) the main indicators of long-term leachate performance, 2) the 
target levels of these indicators must reach to indicate the end of the aftercare period and 3) the 
strategy to meet the target level of the indicators within the shortest time. The aim of this thesis 
is to establish a leachate emission prognosis tool for the determination of the length of the 
aftercare period and to use models to test the effects of different leachate management 
strategies on the length and overall leachate management costs of landfill aftercare. The first  
part of the research is a study of municipal landfill stabilization and emissions, made by 
systematically describing the long-term landfill leachate and gas (LFG) emission performance 
achieved by landfill simulators (landfill simulation reactors, LSRs). The results give a  
comprehensive picture of the waste biodegradation progress during the landfill aftercare 
period. The second part of the research is an evaluation of the feasibility of a biological on-site 
process to pretreat the leachate (mainly total nitrogen [TN] removal) for leachate recirculation, 
direct discharge and indirect discharge purposes from both technical and economic points of 
view. It is integrated with a case study of a cost estimation based on a real landfill condition as 
an important part of the study, conducted to define the applicability of the crucial leachate 
management alternatives. 

Based on the results of the LSR and biological leachate nitrogen removal studies, the 
possibility and feasibility of optimizing landfill leachate management and treatment were 
clarified by developing models for the estimation of long-term emissions from landfills of  
different sizes and evaluating the best options for leachate and nitrogen management during 
the aftercare period. The models developed can be used to express the importance of different 
target parameters and estimate the length of the aftercare period for a landfill that is effective 
at optimizing a cost-effective aftercare strategy. The modelling findings show that in 
conventional scenarios, without leachate recirculation, the aftercare period can last up to 
several centuries. With the highest leachate recirculation rate, the aftercare period can be 
shortened substantially, to 25 years and 75 years, in medium-sized and big landfills 
respectively; though this is technically more challenging to do for big landfills. These scenarios 
also showed that the lowest total and average (per m3) leachate management costs can 
be achieved at about 60% of the costs of conventional scenarios during the aftercare period. 
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1 Introduction 

1.1 Background 

Historically, landfills were initiated largely as a result of a need to protect the environment and 

society from adverse impacts of alternative methods of refuse disposal, such as open-air 

burning, open-pit dumping and ocean dumping (Boni et al., 2006). Although landfills 

eliminated some negative impacts of the old alternatives, new problems arose, primarily due to 

gas and leachate formation. 

In year 2008, around 93 million tons of municipal solid waste (MSW) was landfilled in 

European Union (EU) countries, accounting for about 43% of the total produced. This number 

had decreased by more than 30% compared with ten years earlier. However, the cumulative 

amount of waste landfilled in EU countries since the year 2000 exceeds 1000 million tons 

(European Commission, 2011). For example, in Finland the number of closed municipal 

landfills is over 2000, containing 20 – 35 million tons of landfilled waste. Meanwhile, in most 

developing and newly developed countries, landfilling will still be the dominant methodology 

for a long period. Landfills are usually operated for decades (e.g. 30 years is the period adopted 

in the operation of landfills in the US). In ideal scenarios, it is expected that landfills could 

biodegrade to stable conditions within 25 – 30 years after closure. However, in the real-scale 

landfills, especially in big landfills, the required liquid to solid ratio (L/S ratio) needed for 

biodegradation is difficult to achieve in this time, which means that the landfill aftercare period 

is quite long and costly (Christensen et al., 1992). Compared with a 50-year aftercare period 

landfill, the operational cost, i.e. the landfill gas and leachate emission control cost and the 

landfill cover and piping system maintenance cost, will be high if this period is prolonged to 

100 years.  

For decision making concerning landfills, it is important to understand the long term potential 

environmental emissions and to predict the length of the aftercare period. The three aspects to 

consider in regard to this are 1) the main indicators of long term leachate performance, 2) the 

target level for these indicators to reach to indicate the end of the aftercare period and 3) the 

strategy to meet the target level of the indicators with optimized total management costs. 
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In order to achieve the sustainability of landfill operations, there is a need to develop a 

prognosis tool that enables the evaluation of the leachate emission level and prediction of the 

length of the aftercare period with the designed landfill leachate management strategy. The 

strategy directly affects the capacity of designed landfill leachate management facilities. The 

evaluation of the landfill emission level needs to address different aspects significant to 

environmental and economic issues. However, little research has been conducted evaluating the 

crucial elements that affect optimization of aftercare strategies in view of the sustainability of 

closed landfills (Laner, 2011). 

1.2 Objectives of the dissertation  

The challenges of landfill leachate management in the aftercare period raise questions like: 

� What is the length of the landfill aftercare period from the point of view of leachate 

emission limits, leachate characteristics and changing trends in the aftercare period? 

� Can specific leachate treatment strategies be implemented to affect leachate 

management, e.g. leachate recirculation in the aftercare period from environmental 

and economic perspectives in different types of landfills?  

Hence, the major aim of this thesis is to develop a leachate emission prognosis tool for the 

determination of the length of the aftercare period and to use models to test the effects of 

different leachate management strategies on the length and overall leachate management costs 

of landfill aftercare.  

The analysis in this study concentrates on the environmental and economic aspects of closed 

landfills; the social dimensions of long-term landfill management are not addressed. 

The research scope of this thesis can be categorized into the following (Figure 1): 

� Leachate characteristics and emission potentials in the aftercare period: systematically 

describes the long-term landfill leachate and landfill gas (LFG) emission performance 

achieved by landfill simulators (landfill simulation reactors, LSRs), which gives a 

comprehensive picture of the waste biodegradation progress and its interrelated effect 

on the long-term landfill emission potential during the landfill aftercare period 

(publications I and II). 

� Developing leachate treatment strategy to improve leachate management in the aftercare 
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period: The leachate management principles and strategies are developed from the 

technical and economic evaluation of leachate management methods, i.e. an on-site 

process to pretreat the leachate (mainly total nitrogen [TN]) for recirculation, affecting 

the length and costs of leachate aftercare (publications III and IV). 

� Methodology verification and validation: based on the results of LSRs and biological 

leachate nitrogen removal studies, the leachate emission prognosis model for 

determination of the target L/S ratio values and estimation of the length of aftercare 

period was developed. With the developed model, a scenario-based methodology is 

used to assess the leachate management principles and strategies (publication V).  

 

Chapter 1 Introduction

Chapter 2 Literature review

Chapters 3-4 Research methodology and results

Chapter 5 Conclusion

Focus: leachate emission limits, leachate
characteristics and changing trend in the

aftercare period
Methodology: landfill simulators

Output: the target L/S ratios to meet the
discharge limits

Publication: I (2009), II (2012)

Focus: developing leachate treatment strategy to improve
the leachate management in the aftercare period

Methodology: a biological pre-treatment process for
nitrogen and oganics removal

Output: the feasiblity and importance of the designed
leachate treatment process for landfill aftercare

(environmental and economic)
Publication: III (2011), IV (2011)

Focus: the evaluation of the leachate emission level and prediction of the length of the aftercare period
with the designed landfill leachate management strategy

Methodology: modelling
Output: a prognosis tool to evaluate the leachate emission level and predict the length of the aftercare

period with the designed landfill leachate management strategy.
Publication: V (2012)

 

Figure 1 A schematic illustration of the thesis structure and the development steps of the 

solution 
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2 Landfill and Leachate Management – A Literature 

Review 

2.1 Fundamentals of landfill processes 

2.1.1 Introduction 

Until the middle of the 20th century, waste was simply heaped on the ground, and the disposal 

site was called a dump (Nathanson, 2003). These uncontrolled, open dumps quickly posed 

serious environmental concerns including offensive odours, unsightly nuisances, pollution of 

groundwater and surface water, and potential fire risks. Open dumping of solid waste material is 

no longer an acceptable disposal method in the EU countries and in many other countries. 

On the other hand, most municipal waste is now treated in a sanitary landfill, not simply 

deposited in a pile on the ground (Jokela et al., 2002a; Nathanson, 2003). The municipal 

sanitary landfill is distinguished from the open dump because the solid waste is placed and 

compacted in a suitably selected and prepared landfill site in a carefully prescribed manner with 

a daily layer of compacted soil (Nathanson, 2003). 

In the recent past, it was believed that a suitable depth or thickness of naturally occurring soil 

between the bottom of the landfill site and the groundwater table or bedrock would suffice to 

prevent pollution. But, by the 1980s, it was discovered that soil does not necessarily absorb or 

attenuate all the contaminants seeping out from a sanitary landfill, no matter how thick the 

underlying soil layer. In order to prevent potential groundwater pollution, suitable bottom liners 

and leachate collection systems (LCSs) are required at new landfill sites; these two systems are 

major components of a well-engineered landfill site. Most new landfills are constructed with 

composite liners, which collect the leachate for centralized treatment prior to disposal. 

With increasing knowledge of waste biodegradation in landfill sites, moisture content has been 

claimed to play an essential part in stabilization of biodegradable organic fractions (El-Fadel et 

al., 1997a; El-Fadel et al., 2002; Sormunen et al., 2008). In order to increase the biological 

degradation rate and reduce the aftercare period, the operation mode of landfills has undergone 

a dramatic change, evolving from a storage/containment concept to a process-based approach; 

in other words, to a bioreactor landfill (Yuen, 2001; Warith, 2002). The conventional landfill 

approach refers to the placement of waste into landfills with lined bases and caps, intended to 
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preserve the waste in a relatively inactive stage by minimizing the amount of water entering into 

the waste mass in order to reduce the production of LFG and leachate (Yuen, 2001; McBean et 

al., 2007). However, there is a long-term risk that the suppressed biodegradation may turn active 

in the future when the containment system becomes aged, and thus having the long-term 

potential of causing serious environmental damage (Yuen, 2001). In recent years several 

research studies have demonstrated that the application of landfill as a bioreactor could be 

viable (Komilis et al., 1999a, 1999b; Benson et al., 2007; Sormunen et al., 2008; Gioannis et al., 

2009). A bioreactor landfill is an engineered landfill that enhances the biodegradation of waste 

by recirculating some amounts of leachate or adopting other methods including waste shredding, 

waste compaction, pH adjustment and aeration, as well as the addition of nutrients and increase 

in alkalinity (Reinhart et al., 2002).  

Although landfills eliminated some of the negative impacts of the old alternatives (open-air 

burning, open-pit dumping and ocean dumping), new problems arose, primarily due to gas and 

leachate formation. There are three major alternatives for the treatment of landfill leachates; 

leachate channelling, biological treatment and chemical/physical treatment. In addition, several 

alternatives exist to reduce the emission of LFGs, including passive oxidation in the soil top 

covers, combustion in flares and LFG utilization for energy generation (as electricity or 

cogeneration). Markedly, the latter saves emissions to the environment, because emissions are 

avoided that would have occurred if the same amount of electricity/heat produced from LFG 

had been produced from fossil resources (Manfredi et al., 2009a). 

2.1.2 Landfill as a biological system 

Despite landfilled solid waste composition varying substantially, for a lot of reasons (socio-

economic conditions, waste collection strategies and waste disposal methods), the total organic 

content constitutes the highest percentage of solid waste (Boni et al., 2006). The composition of 

organic matter in landfills is site-dependent as well. For example, food waste constitutes over 60% 

of the household waste in China while it is around 25 – 30% in Finland. Additionally, municipal 

solid waste in Finland has a higher proportion of garden waste, whereas the waste in China 

contains little such waste. Most organic materials can be broken down into simpler compounds, 

leading to the formation of gas and leachate. These conversion processes are mainly performed 

by the bacterial activity of aerobic and anaerobic micro-organisms; recent studies have proven 
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that there are a variety of bacterial species involved in the degradation processes of waste solids 

in landfills (Boni et al., 2006).  

In an anaerobic landfill, a multi-step process including hydrolysis, acidogenesis, acetogenesis 

and methanogenesis may happen. Under anaerobic conditions, organic matters are decomposed 

sequentially into complex particulate matters and then into simpler polymers like proteins, 

carbohydrates and lipids. The polymers are further hydrolyzed and finally converted into either 

intermediate by-products, acetic acid or hydrogen. Methane is primarily generated by acetate 

decomposing and then carbon dioxide reduction with hydrogen (El-Fadel and Massoud, 2001). 

For example, under anaerobic conditions, the cellulosic material is converted to methane 

(Zehnder, 1978) by the hydrolytic and fermentative bacteria (from polymers into sugars), the 

obligate hydrogen reducing acetogenic bacteria (from sugars into acetate and hydrogen) and the 

methanogenic bacteria (finally converting it into methane). In the presence of sulphate, the 

sulphate reducing bacteria (SRB) may be active in the degradation process with the production 

of hydrogen sulphide and carbon dioxide (Barlaz et al., 1992). 

Aerobic bioreactor conditions result in organic nitrogen, such as protein, is hydrolyzed and 

fermented to NH4
+. The nitrogen content of municipal waste is less than 1% on a wet-weight 

basis – mainly from yard wastes, food wastes, and biosolids. If dissolved oxygen and sufficient 

alkalinity are present, NH4
+ is further oxidized by nitrification into NO3

-, resulting in the 

destruction of alkalinity and a drop in the pH.  

2.1.3 Leachate and LFG  

Leachate is formed when the waste moisture content exceeds its field capacity. Moisture 

retention is attributed primarily to the holding forces of surface tension and capillary pressure 

(El-Fadel et al., 1997b). Percolation carries soluble compounds through the refuse mass, 

resulting in highly polluted leachate; soluble compounds are generally encountered in the refuse 

at emplacement or are formed in chemical and biological processes. The sources of percolating 

water are primarily precipitation, irrigation and runoff, which cause infiltration through the 

landfill cover; initial moisture and newly produced water due to refuse biodegradation may also 

contribute to leachate formation but in smaller amounts (El-Fadel et al., 1997a). Increased 

moisture content not only significantly contributes to leachate formation, but also enhances 

biodegradation processes in landfills, resulting in reduction of the time required for the return of 

the landfill to beneficial land use. 
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The quantity of leachate generated is site-specific and determined by water availability and 

weather conditions as well as the characteristics of the waste, the landfill surface and the 

underlying soil. In relatively warm climates, for example, the increase in leachate production 

after precipitation is generally quite rapid; in colder climates, it is common for leachate 

production to lag behind precipitation because a large part of it falls as snow. In addition, 

leachate production is generally greater whenever the waste is less compacted, since compacting 

reduces the filtration rate (Lema et al., 1988; Hossain et al., 2003). 

The quality of landfill leachate is highly dependent upon the stage of fermentation in the 

landfill, waste composition, operational procedures and co-disposal of industrial wastes. The 

leachate contains four groups of pollutants: dissolved organic matter, inorganic macro-

components, heavy metals and xenobiotic organic compounds (XOCs). Although it is difficult 

to generalize concerning the particular chemical concentration that a leachate will contain, the 

trend of a continually decreasing concentration is a generally observed phenomenon. In the acid 

phase, concentrations are generally higher due to enhanced formation of dissolved organic 

matter and the release of ammonium. In the methanogenic phase, the content of dissolved 

organic matter significantly decreases and the composition of the organic matter changes, 

indicated by a BOD/COD ratio below 0.1. The ammonium concentration seems not to follow 

the same decreasing trend and may constitute one of the major long-term pollutants in landfill 

leachate. The content of heavy metals in the leachates is generally very low as a result of 

attenuating processes (sorption and precipitation) that take place within the disposed waste. 

Within a time horizon of five centuries, a larger fraction of the organic matter would probably 

leave the system through emissions of gas and leachate, but heavy metals would still be stored 

in the landfill (Manfredi and Christensen, 2009b). Boni et al. (2006) reported the total amounts 

of heavy metals released during the experimental activity represented only a very limited 

fraction (in some cases, lower than 10%) of the initial content measured in the bulk waste.  

Leachate contains a broad variety of XOCs. The most frequently observed compounds are 

aromatic hydrocarbons and chlorinated aliphatic compounds. The XOCs are affected by 

volatilization and degradation as well as leaching and are, in most cases, not believed to be a 

long-term problem (El-Fadel et al., 1997a; Haarstad and Mæhlum, 1999; El-Fadel et al., 2002; 

Kjeldsen et al., 2002). 

When waste is deposited in a landfill, biodegradable organic materials react quickly with the 

available oxygen to form carbon dioxide, water and other by-products (e.g. bacterial cells) as 
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part of aerobic decomposition. The anaerobic decomposition phase starts as oxygen depletes 

within the landfill. Although a landfill ecosystem undergoes an initial, short aerobic 

decomposition phase, the subsequent anaerobic phase is the dominant phase in the landfill’s 

timespan (El-Fadel et al., 1997a).  

Under a stabilized methanogenic condition, which is the stage of interest from a beneficial 

recovery perspective, methane and carbon dioxide are by far the two principal components of 

LFG and form more than 90% of the total gas generated. Nitrogen and oxygen are normally 

present in small quantities primarily as a result of air entrapment during waste deposition, 

atmospheric air diffusion through the landfill cover (especially in the near surface layers) or air 

intrusion from negative landfill pressure when LFG is extracted. Table 1 summarizes the 

composition of a typical LFG. Besides potential adverse health effects and environmental 

pollution, trace compounds, even at low levels, could cause toxicity on microbial populations 

and hence may inhibit gas formation and stabilization processes within a landfill (El-Fadel et al., 

1997a). 

Table 1 Typical LFG composition 

Source: El-Fadel et al., 1997a 

Component Concentration Range Percent Dry Volume Basis 

Methane 40–70 

Carbon Dioxide 30–60 

Carbon Monoxide 0–3 

Nitrogen 3–5 

Oxygen 0–3 

Hydrogen 0–5 

Hydrogen Sulphide 0–2 

Trace Compounds 0–1 

 

Many factors affect the gas generation rate including waste characteristics, the moisture content, 

the temperature, the pH, the availability of nutrients and microbes, and the presence of 

inhibitors (Boltze and de Freitas, 1997). The large size of pieces of MSW is suspected to 
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decrease the ability of microbes to degrade the material. The effect of particle size reduction 

was initially explained by the increase in the surface area available for microbial attach. 

According to Ferguson (1993), the surface area increases only slightly with decreasing particle 

size for fibrous particles, such as paper. Thus, the effect of size reduction on the methane 

production in landfills may be that relatively large pieces of plastic, paper or other materials 

shield the materials beneath them from infiltrating water. The shielded waste may remain too 

dry for biodegradation. Shredding breaks down the impermeable barriers and more of the waste 

is exposed to water (Ferguson, 1993; El-Fadel et al., 1997a). 

2.2 Landfill operational strategy 

2.2.1 Bioreactor landfills 

In recent years, the operation of landfills as bioreactors has been confirmed as an effective way 

to enhance stabilization, mainly because leachate recirculation increases the moisture content 

and stimulates the microbial activity by providing better contact between insoluble substrates, 

soluble nutrients and micro-organisms (Komilis et al., 1999a, 1999b; Benson et al., 2007; 

Giannis et al., 2008; Sormunen et al., 2008; Gioannis et al., 2009).  

The enhanced biodegradation can significantly reduce the required time for waste stabilization 

and, by successive re-uses of the same bioreactor landfill cell, there are overall savings arising 

from not requiring new landfill sites every 15 – 20 years (Warith, 2002; Reinhart et al., 2002). 

Bioreactor landfills can be operated under aerobic anaerobic or combined conditions. In fact, 

there is no entirely aerobic condition in landfills due to the non-uniform distribution of air, 

water and waste; in aerobic bioreactor landfills there are some anaerobic pockets throughout the 

waste mass (Berge et al., 2005, 2006). Operational conditions affect the organic matter 

degradation pathways and rates, the quality of leachate, potential environmental pollution and 

the operational cost (Barlaz et al., 1992; Berge et al., 2005; Giannis et al., 2008). According to 

different operational conditions, bioreactor landfills can be divided into four types: anaerobic, 

aerobic, facultative and hybrid systems. Under anaerobic conditions, there is no degradation 

pathway for ammonium, resulting in accumulated ammonium in leachate with high potential 

environmental toxicity; however, operational costs required by air addition can be saved and 

methane can be captured and reused (Berge et al., 2005). Aerobic bioreactor landfills degrade 

organic compounds (mostly converting them into carbon dioxide) in shorter time periods 
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compared to anaerobic landfills as a result of elevated temperatures; in situ nitrification is 

feasible in an aerated solid waste environment and the potential for simultaneous nitrification 

and denitrification is improved because of the presence of both aerobic and anoxic areas (Berge 

et al., 2005; Berge et al., 2006; Giannis et al., 2008). At the same time, some chemicals that do 

not degrade or transform under anaerobic conditions may do so under aerobic conditions 

(Reinhart et al., 2002). Hybrid bioreactor landfills are operated on a pattern of alternating 

aerobic and anaerobic conditions via sequencing of air injection throughout the life cycle of the 

landfill; this specific degradation condition can serve to treat organic material more completely 

and favour several nitrogen removal processes. Lastly, facultative bioreactor landfills are 

operated with the intent of actively degrading the waste mass and, at the same time, controlling 

the high ammonium nitrogen concentrations typically found in the leachate from bioreactor 

landfills. Ammonium-nitrogen in leachate is converted to nitrite/nitrate in an external treatment 

system prior to recirculation, then the nitrogen content is reduced through denitrification when 

recirculating nitrate and/or nitrite abundant leachate back into the landfill (Berge et al., 2005). 

Waste moisture content is a crucial factor in the design and operation of bioreactor landfills. 

Leachate introduction techniques include surface application and injection through vertical 

wells or horizontal trenches, whereby leachate is recirculated through the waste, as opposed to it 

being treated and released into the environment. Generally, a moisture content of about 40% is 

essential for rapid aerobic degradation; microbial activity will be slowed down by several orders 

of magnitude if the moisture content is lower than 40% (Giannis et al., 2008). Operating the 

landfill as a bioreactor provides opportunities for in situ nitrogen transformation and removal 

processes. When adding air to landfills, biological processes such as nitrification can be 

enhanced because air diffusion may now occur within the waste mass. Additionally, 

recirculation of the pretreated (nitrified) leachate will improve the denitrification processes 

occuring in anoxic areas (Berge et al., 2005). Due to the heterogeneous nature of waste (in 

regard to temperature, oxygen levels and moisture contents), within one landfill cell there may 

be many nitrogen transformation processes occurring simultaneously or sequentially. These 

processes may include biological nitrogen conversion mechanisms such as ammonification, 

nitrification, denitrification, anaerobic ammonium oxidation and nitrate reduction (Berge et al., 

2005). Mertoglu et al. (2006) found nitrification activity in the aerobic bioreactor and this was 

proven by the identification of large amounts of Nitrosomonas-like ammonium oxidizers and 

Nitrospira-related oxidizers with 16S rDNA and amoA based molecular microbiology 

techniques. It should be noted that it is impossible to ensure fully aerobic conditions throughout 

the entire landfill, but what is important is that the conditions within the site are as close to ideal 
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as possible for the majority of the site. Nitrification and denitrification may occur 

simultaneously in an aerobic bioreactor. Some research has been conducted evaluating the 

potential processes of nitrogen transformation and removal in landfills and it is meaningful to 

have a deep understanding of the processes that can be achieved and used to optimize the 

operation of bioreactor landfills. 

2.2.2 Studies on bioreactor landfills 

There have been several reports on bioreactor landfills under aerobic, anaerobic or combined 

conditions at lab-scale and field scale, as well as various process-based stabilization 

enhancement techniques (Reinhart, 1996; Warith et al., 2005; Benson et al., 2007; Sormunen et 

al., 2008). An overview of the studies is summarized in Table 2 and the details are discussed 

hereunder. 

Mehta et al. (2002) investigated waste decomposition in the presence and absence of leachate 

recirculation in a field-scale landfill. After about 3 years of operation, waste was excavated from 

three enhanced cells (E1, E2 and E3) and two control cells (C1 and C2). It was found that 

leachate recirculation resulted in an increase in the waste moisture content, but that the waste in 

the enhanced cell was not uniformly wet. Leachate recirculation resulted in both higher methane 

yields and increased settlement. The extent of decomposition of excavated waste samples was 

determined by the biochemical methane potential (BMP) and the ratio of cellulose plus 

hemicellulose to lignin. The average BMP in the enhanced and control cells were 24.0 and 30.9 

mL CH4/dry g and the corresponding ratios were 1.09 and 1.44 respectively.  

Jiang et al. (2007) studied the performance of pilot-scale anaerobic bioreactor landfills with 

different leachate recirculation volumes. Leachate recirculation with a high rate of 5.3% (v/v) 

per week can be adopted as an effective approach to remove organic pollutants in leachate. 

However, this may result in large amounts of organic matter being washed out of the landfill by 

the leachate, reducing methane production. Therefore, the level of leachate recirculation should 

be adjusted, depending on the different waste biodegradation phases, to achieve the dual 

purpose of high efficiency energy recovery and organic pollutants removal.  
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Table 2 Overview of the studies on bioreactor landfills 

Authors Application Comments 

Mehta et al. (2002) 
A field-scale landfill in the 
presence and absence of 
leachate recirculation 

Leachate recirculation can improve waste moisture 
content, methane yields and waste settlement 

Warith (2002)  
 

An experimental-scale 
LSR and field-scale 
landfill 

Bioreactor landfills allow a more active landfill 
management that recognizes the biological, 
chemical and physical processes involved in a 
landfill environment. The effect of solid waste 
particle size, leachate recirculation and nutrient 
balance on the rate of MSW biodegradation were 
studied and analysed. 

Jokela et al. (2002a) Lab-scale LSRs 

The methane and leachate emission potential of 
various MSW fractions, as well as the effects of 
aerobic treatment on the pollutant potential, were 
discussed. 
 

Sponza and Ağdağ (2004) 

Lab-scale LSRs in the 
presence (recirculation 
rates: 13% and 30% of the 
reactor volume) and 
absence of leachate 
recirculation   

A recirculation rate of 13% of the reactor volume 
resulted in better leachate emissions (e.g. chemical 
oxygen demand [COD], volatile fatty acids 
[VFAs]) and LFG etc. but was not impactful on 
ammonium. 

Sanphoti et al. (2006) 

A simulated landfill with 
leachate recirculation in 
tropical conditions.  
 

Leachate recirculation and supplemental water 
addition resulted in better performance in terms of 
cumulative methane production and the 
stabilization period required. 

Jiang et al. (2007) 
A pilot-scale landfill with 
different leachate 
recirculation volumes  

Leachate recirculation volumes should be adjusted 
with the different biodegradation phases. 

McBean et al. (2007) A demonstration-scale 
bioreactor landfill 

Biogas generation rate and waste settlement were 
studied respectively. 

Benson et al. (2007) Full-scale bioreactor 
landfills 

The effect of leachate recirculation on leachate 
generation rates was found to be little but rather 
affected leachate quality. 

Giannis et al. (2008) 
Long-term lab-scale 
aerobic bioreactor 
simulators 

Over 90% COD and biochemical oxygen demand 
(BOD) reductions were achieved and a low 
BOD/COD ratio of 0.017 showed the simulator 
reached a stable state. Simultaneous nitrification 
and denitrification were observed from the 
effective nitrogen reduction after the adjustment 
phase. 
 

 

Sponza and Ağdağ (2004) studied the effects of leachate recirculation and the recirculation rate 

on the anaerobic treatment of domestic solid waste in three simulated bioreactors, one without 

and the other two with leachate recirculation. The change in the recirculated leachate volume 

from 9 L (13% of the reactor volume) to 21 L (30% of the reactor volume) was selected and the 
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pH, COD, VFA concentrations, methane gas productions and methane percentages in the 

bioreactor with 9 L recirculated leachate were better than bioreactors with 21 L and without 

leachate recirculation. However, leachate recirculation was not effective in removing 

ammonium from the leachate. 

A high temperature results in a large loss of moisture in landfill refuse via evaporation and 

leachate recirculation may be insufficient to maintain the moisture content; supplemental water 

addition into the landfill is then necessary to reach the required moisture value. Sanphoti et al. 

(2006) investigated the effects of leachate recirculation with supplemental water addition on 

waste decomposition in tropical landfills. Anaerobic digestion with leachate recirculation and 

supplemental water addition allowed for the highest performance in terms of cumulative 

methane production and the stabilization period required. It produced an accumulated methane 

production of 54.87 L/kg dry weight of MSW at an average rate of 0.58 L/kg dry weight/d and 

took 180 days to reach the stabilization phase. However, the reactor with only leachate 

recirculation produced 17.04 L/kg dry weight at a rate of 0.14 L/kg dry weight/d and reached 

the stabilization phase on day 290. In comparison, the control reactor provided 9.02 L/kg dry 

weight at a rate of 0.10 L/kg dry weight/d, and reached the stabilization phase on day 270.  

Benson et al. (2007) analysed five bioreactor landfills to provide the performance of bioreactor 

landfills operating in North America by comparing with conventional landfills. Leachate 

generation rates and leachate depths in landfill LCSs appear no different in bioreactor and 

conventional landfills, as are the leachate and liner temperatures. With respect to leachate 

quality, bioreactor landfills generally produce stronger leachate during the first 2 – 3 years of 

recirculation. Thereafter, leachates from conventional and bioreactor landfills appear to become 

similar. While the BOD and COD decreased, the pH remained around neutral and ammonium 

concentrations remained elevated. After about three years of recirculation, the BOD/COD ratio 

began decreasing appreciably. One year later, the BOD/COD ratio reached approximately 0.1. 

Biodegradation of organic material in a landfill is usually stimulated when the water content 

reaches up to 50 – 70% due to leachate recirculation (Lema et al., 1988; Jiang et al., 2007) and 

methane production at the initial moisture content is 0.0003 – 4.5% in a big landfill and 0.2 – 

1.0% in a medium-sized landfill, while at 60% moisture content methane production was 2.3 – 

34% and 0.9 – 32% of BMP in big and medium-sized landfills, respectively (Sormunen et al., 

2008). 

Warith (2002) reported the effect of solid waste size, leachate recirculation and nutrient balance 

on the rate of MSW biodegradation. It was found that the smaller the size of the MSW, the 
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faster the biodegradation rate of the waste, and addition of primary sludge can result in a rapid 

decrease in BOD and COD concentrations in the effluent samples because primary sludge is a 

good source of microbial inoculums. When recirculating leachate into the landfill, the average 

pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale; 

however, the pH value was in the range of 7 – 8 after two years of leachate recirculation. 

Giannis et al. (2008) reported long-term biodegradation of MSW in an aerobic simulated landfill 

bioreactor during 510 days of operation. After 70 days of treatment, there was a COD and BOD5 

reduction of 78% and 97% respectively, while by the end of the experiment it had reached 90% 

and 99.6% respectively, with a low BOD5/ COD ratio of 0.017 suggesting the aerobic reactor 

had reached a stable state. Results suggested that nitrification and denitrification occurred 

simultaneously. The NO3
– concentration increased periodically and took 240 days to reach the 

maximum 33.5 mg/L. Thereafter it started decreasing and, at the end of the experiment, it was 

10 mg/L.  

McBean et al. (2007) described the performance of a 6200 ton demonstration-scale anaerobic 

bioreactor, with respect to the biogas generation rate and waste settlement. The methane 

generation potential was determined to be 167 m3/ton of waste and the methane generation rate 

constant was estimated as 0.51 per year. Landfill settlement over a 28-month period, ranged 

from 4% to 19%, with an average 11% subsidence across the landfill. Subsidence occurred 

rapidly in the first eight months of operation and then decelerated.  

Jokela et al. (2002a) investigated the methane and leachate emission potential of various MSW 

fractions produced in source-separation and mechanical and biological pretreatment processes, 

as well as the effects of aerobic treatment on the pollutant potential. The untreated putrescible 

fraction of municipal solid waste (PFMSW) had a high methane yield and NH4–N leaching 

potential, whereas the composted putrescible fraction of municipal solid waste (CPFMSW) 

produced less, and the emission potential of ammonium and total nitrogen from grey waste (the 

residues after recyclables and biowaste collection) was estimated to be at a similar level to that 

of CPFMSW. Aeration in lysimeters reduced CH4 potential by more than 68% for the PFMSW 

and CPFMSW samples, whereas for the lysimeter landfilled grey waste the reduction was 50%. 

The effective separation and biological treatment of PFMSW can result in reducing the 

environmental impact of waste disposal in landfills. 

The data above illustrates the potential of bioreactor landfills to enhance settlement, methane 

production and solids decomposition on a field-scale. However, high recirculation rates in full-
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scale landfills may cause some operational problems, such as ponding or clogging, especially in 

areas with high precipitation (Jiang et al., 2007). High recirculation volumes may deplete the 

buffering capacity and remove the activity of methanogens. Therefore, a leachate management 

strategy for recirculation, e.g. the volume and strength, should be carefully considered and 

studied in order to maintain the benefit and eliminate the disadvantage of leachate recirculation; 

an optimum leachate recirculation volume can contribute to a COD decrease and effective 

methane gas production. In most of the studies referred to, the leachate management strategies 

for recirculation purposes during the aftercare period have not been addressed before, indicating 

the need for additional studies. 

2.3 Leachate in landfills 

2.3.1 The nitrogen cycle in landfill and leachate nitrogen 

About 0.02% of the global nitrogen that is biologically available is an essential element of life 

and is ranked as the most important element after carbon, hydrogen and oxygen (Jokela and 

Rintala, 2003). Only a relatively small number of organisms are able to utilize N2 in the process 

of nitrogen fixation due to the high amounts of energy required to break the triple bond of N2 

(Brock and Madigan, 1991). Most living organisms, including humans, adopt more easily 

available forms of nitrogen, which are ammonium and nitrate. Nitrogen in the mass of living 

organisms is mostly bound up in amino acids in the form of proteins or in the form of organic 

nitrogen, which can be incorporated as nucleic acids in deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA) (Jokela and Rintala, 2003). Presently, 40% of nitrogen is fixed by 

natural sources and 60% by human-derived sources. Obviously this has drastically increased the 

amount of the more easily bio-available forms of nitrogen (e.g. ammonium and nitrate), 

resulting in increased production and utilization of nitrogenous fertilizer for food production 

(Galloway 1998). Consequently, a lot of the food produced ends up as solid waste and 

wastewater treatment produced sludge, which are frequently disposed of in landfills. Figure 2 

represents the nitrogen flow from the environment to waste management (landfill) (Jokela and 

Rintala, 2003). 

The efficiency of nitrogen in food products versus its input as fertilizer, or as human-induced 

biological nitrogen fixation, in the EU has been estimated to be between 20% and 30%; with 70 
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– 80% of the rest going into the soil or air during cultivation (Isermann and Isermann, 1998). 

MSW has been estimated to be about 4% protein, mostly from food products. Via protein 

conversion, the process of ammonification happens to generate ammonia, which is finally 

dissolved in the leachate (Berge et al., 2005). It is also possible that the ammonia generated 

within landfills may combine with organic matter (i.e. carboxyls, quinine hydroxyls). Ammonia 

is stable under anaerobic conditions, which typically accumulates in leachate (Berge et al., 

2005).  

 

Figure 2 Nitrogen flow from the environment to landfill 

Source: Jokela and Rintala, 2003 

In an aerobic landfill, when air is added, ammonia can be converted into nitrate and/or nitrite via 

biological activity. The nitrate and nitrite produced can be further reduced to nitrogen gas by 

denitrification occurring in the anaerobic conditions (Giannis et al., 2008). The related contents 

are discussed in the section on bioreactor landfills. In bioreactor landfills, because nitrous oxide 

is a potent greenhouse gas, its production is a concern. Nitrous oxide is produced by partial 

denitrification and can also be a by-product of nitrification with a low partial pressure of oxygen 

(Berge et al., 2006). 

Sludge 
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2.3.2 Organics and inorganics of leachate 

Organic components in leachate can be divided into two groups: dissolved organic matter and 

XOCs (Kjeldsen et al., 2002). Although there is little information on the composition of the 

dissolved organic matter in landfill leachate, several bulk parameters (COD, BOD and total 

organic carbon [TOC]) are usually used to cover a variety of organic degradation products, 

ranging from small volatile acids to refractory fulvic- and humic-like compounds. Volatile acids 

are usually accumulated during the acidogenic phase whereas fulvic- and humic-like 

compounds are the main pollutants of methanogenic leachate. On the most general level, the 

BOD/COD ratio is adopted to indicate the biodegradability of dissolved organic matter in 

leachate. 

The most frequently found XOCs are the monoaromatic hydrocarbons (benzene, toluene, 

ethylbenzene and xylene) and halogenated hydrocarbons, such as tetrachloroethylene and 

trichloroethylene. XOCs originate from household or industrial chemicals and are present in 

relatively low concentrations of less than 1 mg/L of individual compounds (Kjeldsen et al., 

2002). These compounds can also be harmful in small concentrations through their acute 

toxicity, low degradation rate, high bioaccumulation and chronic effects, e.g. on the hormone 

composition in humans and reproducibility (Haarstad and Mæhlum, 1999). The old MSW 

landfills usually have a higher level of XOCs than the newer landfills. 

Heavy metals are the main constituent of inorganic matter in leachate. Fe, Cr, Cu, Mn, Mo and 

Zn are part of necessary biological processes; other metals, such as As, Cd, Pb and Hg, are 

considered toxic, even in very small concentrations. The content of toxic metals like Cd, Cr, Zn, 

Hg and Pb can be 100 times higher in landfills than in natural soils (Haarstad and Mæhlum, 

1999). However, most heavy metal concentrations in landfill leachate are at or below the US 

drinking water standards (Kjeldsen et al., 2002). Heavy metal balances for landfills have shown 

that less than 0.02% of heavy metals received at landfills are leached from the landfill after 30 

years; both sorption and precipitation are believed to be significant mechanisms for the metal’s 

immobilization and the subsequent low leachate concentrations (Kjeldsen et al., 2002). Leachate 

recirculation reduces metal concentrations in leachate due to sulphide and hydroxide 

precipitation and reaction with humic-like substances (Warith et al., 2005). 

Other inorganic matter comprises of calcium, magnesium, sodium, potassium, ammonium, iron, 

manganese, chloride, sulphate and hydrogen carbonate. Chloride is a very conservative 

contaminant and it would pass through older layers of the landfill without any significant 
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attenuation. Calcium and sulphate concentrations’ decrease with time was attributed to the 

depletion of these compounds and to the pH increase reducing their solubility in leachate and 

enhancing precipitation (El-Fadel et al., 2002). Leachate recirculation maintains neutral or 

above neutral conditions, as well as stimulating reducing conditions favourable for the reduction 

of sulphate to sulphide (Warith et al., 2005).  

2.3.3 Waste pretreatment impacts on leachate emission 

The EU strategy for waste management strives for the sustainable use of natural resources, 

emphasizing waste prevention, material recycling and energy recovery. Since the adoption of 

the EU waste policies, including the EU framework directive on waste and directives on 

hazardous waste, packaging and packaging waste and landfill of waste (European Commissions, 

1975, 1991a, 1991b, 1991c, 1994, 1996, 1997, 1999), the waste management practices of the 

EU member states have been subject to major changes. 

The Landfill Directive (European Commission, 1999), the Directive 2000/76/EC on waste 

incineration (European Commission, 2000) and the packaging and waste packaging directive 

(European Commission, 2004) are the basis of the current European policy on waste (Buttol et 

al., 2007). Waste minimization and pretreatment before landfilling are encouraged, which in 

turn affects the composition of landfilled waste. The quality of landfill leachate is highly 

dependent upon the stage of fermentation in the landfill, waste composition, operational 

procedures and co-disposal of industrial wastes. So, the adoption of new EU directives on waste 

management will have some impact on leachate quality. Solid waste pretreatment techniques are 

traditionally associated with mechanical, thermal and biological pretreatment. Baling is a 

mechanical alternative for waste pretreatment that reduces the moisture retention capability of 

the waste, hence baled waste starts producing leachate earlier than expected. Leachate from 

baled waste has lower pollutant concentrations and cumulative organic leaching. However, 

baling processes might retard biodegradation due to reduced moisture flow and hindered 

nutrient and biomass exchange (El-Fadel et al., 2002). 

Aerobic pretreatment prior to landfill also has several impacts on leachate: 1) aerobic 

pretreatment removes readily decomposable matter. Thus, a balance between the acidogenic and 

methanogenic stage in landfill occurs and little to no inhibition of methanogens takes place; 2) 

aerobically pretreated MSW acts as a diluent for the organic acids produced, preventing 

consequent methanogenic inhibition due to the low pH; 3) aerobic pretreatment increases the 
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temperature of the waste, making conditions favourable for enhanced methanogenic activity; 4) 

partial decomposition of lignin during aerobic conditions makes cellulose and hemicellulose, the 

primary substrates during anaerobiosis, more readily available for methanogenic conversion 

(Komilis et al., 1999; Berge et al., 2005). Moreover, anaerobic mechanical-biological 

pretreatment is an alternative applied in central Europe, for instance, in Germany etc. 

Moreover, recycling paper and inorganic components can reduce the total leachable COD by 

25% and iron loading by 80% per unit of waste landfilled compared with unsorted refuse. 

Removal of recyclables in combination with aerobic pretreatment can result in a more than 90% 

reduction of both COD and iron leachable loading compared with leachate from unsorted MSW 

(Komilis et al., 1999). 

2.3.4 Old and new landfills leachate situations and problems 

The main difference in organic matter between old and new leachates is that old leachate has a 

low percentage of readily biodegradable material due to a considerable percentage of slow 

biodegradation components in final leachate effluent (Kjeldsen et al., 2002). Slow 

biodegradation components are complex organic compounds such as humic substances and 

XOCs. Leachate composition concentration variation with landfill age is represented in Table 3 

(Farquhar, 1989; Laner, 2011). The data show magnitudes because climate and landfill size etc. 

have a great effect. It is observed that the ammonium-nitrogen concentration tends to be higher 

in the leachate from bioreactor landfills than from conventional landfills. In bioreactor landfills, 

the rate of ammonification is increased by moisture addition, even after the biodegradable 

organic fractions of the waste are removed (Berge et al., 2005). A landfill site may still produce 

leachate with a high concentration of NH4–N over 50 years after filling operations have ceased. 

If not properly treated, the leachate that seeps from a landfill can enter the underlying 

groundwater environment posing a potentially serious hazard to public health because of its 

aquatic toxicity and oxygen demand in receiving waters. Therefore, the treatment of leachate to 

remove ammonium is an important aspect of long-term landfill management (Price et al., 2003). 

In addition, although the biodegradability of leachate organic compounds declines with time, 

complex organic compounds remain in solution. Thus, old leachate requires an adjusted and 

integrated alternation of biological, physical and/or chemical treatment processes to reach 

discharge limits. It is likely that ammonium-nitrogen and organics are the major compounds to 

determine when the landfill is biologically stable and when post-closure monitoring may end 
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(Berge et al., 2007). 

 

Table 3 Leachate concentration changes with landfill age 

Sources: (Farquhar, 1989; Laner, 2011) 

Parameter (mg/L) 
Landfill leachate age (year) 

0 – 5 5 – 10 10 – 20 >20 

BOD 800 – 15 000 200 – 3 000 100 – 1 000 <100 

COD 3 000 – 30 000 1 000 – 15 000 1 000 – 5 000 <1 000 

TN 1 000 – 3 000 400 – 2000 75 – 500 <200 

Nitrogen (ammonium) 500 – 3 000 300 – 2000 50 – 500 <200 

TDS 10 000 – 25 000 5 000 – 10 000 2 000 – 5 000 <1 000 

pH 3 – 6 6 – 7 7 – 7.5 7.5 

Calcium 2 000 – 4 000 500 – 2 000 300 – 500 <300 

Sodium and potassium 2 000 – 4 000 500 – 1 500 100 – 500 <100 

Magnesium and iron 500 – 1 500 500 – 1 000 100 – 500 <100 

Zinc and aluminum 100 – 200 50 – 100 10 – 50 <10 

Chloride 1 000 – 5 000 500 – 4 000 50 – 1000 <200 

Sulphate 500 – 2 000 200 – 1 000 50 – 200 <50 

Total phosphorus 100 – 300 10 – 100 NA <10 

 

2.3.5 Landfill temperature impacts on leachate emission 

The quality of leachate varies significantly between acidogenesis and methanogenesis, so any 

factors affecting the waste biodegradation, such as methane production and the transition from 

acidogenesis to methanogenesis, will have great impacts on leachate quality. The microbial 

degradation rate increases along with temperature increase. In the suitable temperature range, an 
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increase of 10 oC will double the biodegradation rate. Rees (1980) observed that the optimum 

temperature for methane production from domestic waste in a conventional anaerobic digester is 

about 40 oC. Similarly, Hartz et al. (1982) investigated seven different temperatures, ranged 

from 21 oC to 48 oC, and found that 41 oC was the optimum temperature for short-term methane 

production. Mata-Alvares and Martina-Verdure (1986) reported the optimum temperature to be 

between 34 oC and 38 oC, with or without leachate recirculation. Blakey et al. (1997) reported 

that temperature may be an important factor affecting the methane content of LFG. Operation 

of landfills under optimum temperatures will result in faster rates of gas production and refuse 

stabilization. In addition, the transition from the acetogenic to the methanogenic phase can be 

shortened when landfill is operated under warmer weather. Robinson (2007) summarized that 

the transition period from the acetogenic to the methanogenic phase of the landfills in temperate 

countries was double or three times that of the landfills in warmer climates. High methane 

production and a rapid transition from acidogenesis to methanogenesis can reduce the content of 

VFAs in leachate, rendering low BOD and BOD/COD ratios. 

The actual landfill temperature may vary widely within one landfill. In Nordic conditions, 

landfill winter temperatures of 5 – 35 oC and summer temperatures of 10 – 45 oC have been 

measured. The landfill temperature is affected by the size and height of the landfill, climatic 

conditions and landfilling operations, which determine the circumstances in which microbial 

decomposition occurs. Understanding the impact of temperature on landfill emissions, 

especially landfill leachate, is significant for the improvement of long-term landfill management 

strategies in order to minimize landfill emissions, accelerate waste stabilization and shorten the 

landfill aftercare period.  

The temperature impact on microbial growth rate in anaerobic digestion is usually in the range 

of 5 – 7% / °C based on data given in Henze et al. (2002) and Metcalf & Eddy (2003). In a more 

detailed study Siegrist et al. (2002) have shown that from the biodegradation steps hydrolysis 

has lower temperature sensitivity than the methanogenic step and is around 2 – 3% / °C in the 

mesophilic and thermophilic ranges. In the work of Reichel et al. (2007) an equation has been 

used, which clearly indicates an over 10% increase per 1 °C in the range 20 – 35 °C. However, 

this value is connected to one simulator reactor with a single step temperature increase and does 

not reflect a long-term adaptation to temperatures near 20 °C. Hydrolysis was the rate limiting 

step (Vavilin et al. 2003) when the temperatures in landfill reach 55 oC to 66 oC (Berge et al., 

2005). It is inhibitory to nitrification because pure Nitrosomonas cultures have a thermal death 

point between 54 oC and 58 oC (Willers et al., 1998).  
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In most of the studies referred to, a constant temperature was applied and the impact of different 

temperature ranges on long-term emissions of landfilled waste has been addressed 

experimentally in only a few cases, indicating the need for additional studies. 

2.3.6 Landfill L/S ratio’s impacts on leachate emission 

The main premise of bioreactor landfills is the introduction of moisture into the waste through 

recirculation of leachate or liquids, which beneficially enhances the decomposition rate 

(McBean et al., 2007). Measuring the amount of water (in litres) passing through a given waste 

mass (given in kg dry matter of waste), commonly known as the L/S ratio, allows relating the 

LSR results to full-scale landfills. This L/S ratio is also used to determine the remaining 

pollution potential of MSW in landfills and, thus, to estimate the time that would be needed to 

reach the threshold concentration level on the full landfill scale (Fellner et al., 2009). 

Fellner et al. (2009) investigated leachate emission variations with L/S ratios in terms of 

chloride (Cl-), nitrogen and TOC at laboratory LSRs and a landfill. Based on tracer experiments, 

it can be discerned that in laboratory-scale experiments around 40% of pore water participates in 

advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated 

full-scale landfill. At a field-scale, and after 16 years of landfilling, the L/S ratio reached 0.60. 

In a total discharge of 360±50 Cl- mg/kg dry matter was observed, whereas more than double 

that amount had been discharged from the laboratory reactors (840 mg/kg dry matter) at the 

same L/S ratio. At the landfill, the chloride load emitted does not exceed 500 mg/kg dry matter 

at the L/S ratio of 2 (which corresponds to 50 years of landfilling). Assuming no change in 

water flow conditions, this implies that over 70% of soluble chloride remains inside the landfill. 

Comparing the Cl- discharge between laboratory LSRs and landfills, the Cl- load remaining in 

the waste body is larger in landfill. The nitrogen releases at both laboratory LSRs and landfills 

are comparable. When the L/S ratio reaches 0.60, around 400 mg N/kg dry matter has been 

emitted from landfill and reactors; this corresponds to less than 10% of the initial nitrogen 

content (4 – 6 g N/kg dry matter). Results observed at the landfill indicate, however, that future 

nitrogen loads (L/S > 0.6) will be smaller compared to LSR experiments.  

Among the studies referred to, the overall understandings of the L/S ratio’s impact within a 

range higher than 4.0 have been addressed in few cases, indicating the need for further studies. 
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2.4 Leachate treatment 

2.4.1 Leachate treatment alternatives 

The major potential environmental impact related to landfill leachate is the pollution of 

groundwater and surface water (Lema et al., 1988; Manfredi and Christensen, 2009b). In order 

to reduce the potential risk of damage to groundwater and surface water, leachate should be 

disposed of before being discharged to receiving water bodies. 

In the technical system of leachate disposal, there are three major alternatives for the treatment 

of landfill leachates, including leachate channelling (e.g. combined treatment with municipal 

wastewater and recirculation), on-site biological treatment (i.e. aerobic treatment and anaerobic 

treatment) and on-site chemical/physical treatment (e.g. membrane filtration, chemical 

precipitation, chemical oxidation, adsorption onto activated carbon, reverse osmosis and 

ammonia stripping).  

If a nearby sewer system is available, and the municipal wastewater treatment plant (WWTP) 

has adequate capacity, it is popular to treat the leachate at the existing public facility; sometimes 

the leachate requires on-site pretreatment, depending on its characteristics and the local indirect 

discharge regulations. The main difficulties are posed by the high concentrations of organic and 

inorganic components contributed by young and old waste respectively. According to the 

experience of Finnish wastewater treatment plants, when leachate makes up less than 5% of the 

total sewage plant input and the leachate COD concentration is 10 g/L or less, then joint 

treatment is acceptable. Otherwise on-site pretreatment is required before leachate is discharged 

into the sewer system and the hydraulic retention time (HRT) of the sewage plant should be 

increased.  

As discussed in Section 2.2.1, recirculation is one of the least expensive options available, 

allowing the achievement of a considerable reduction of both the concentration of organic 

matter and the volume of leachate. Apart from reducing the leachate strength, biodegradation of 

organic material in landfill is usually stimulated when the water content reaches up to 50 – 70% 

due to leachate recirculation (Lema et al., 1988; Jiang et al., 2007). 

High concentrations of COD and ammonium have led to the application of biological treatment; 

various forms of anaerobic treatment have become quite common, at least as a first stage 

treatment for organic matter in leachate, usually followed by a subsequent aerobic treatment to 
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further remove ammonium as well as organic pollutants (Kabdaşli et al., 2008). Combined 

biological aerobic and anaerobic processes can serve to treat organic material more completely 

and favour several nitrogen transformation and removal processes, including nitrification and 

denitrification, resulting in the complete in situ removal of nitrogen from landfills.  

Relevant chemical/physical methods include membrane filtration, advanced oxidation, activated 

carbon sorption, ozonation, ultrasound and reverse osmosis. The chemical/physical treatment is 

effective immediately from start-up, which is easily automated and is insensitive to temperature 

changes. In most cases, simple materials and a plant are required; but the large quantities of 

waste sludge generated by the addition of flocculants and the high running cost of the plant and 

chemicals limit the application of these methods in some cases. So, sometimes 

chemical/physical methods (e.g. granular activated carbon (GAC) filtration) are only used for 

the pre- or post-treatment of leachate, to complement biological degradation techniques. In this 

role, they are especially useful in the treatment of leachates from old landfills and for the 

elimination of specific pollutants (e.g. humic and fulvic acids) (Lema et al., 1988). 

The selection of a particular treatment process highly depends on the quality and strength of the 

leachate. Generally leachates from the acidic phase are more suitable for biological systems and 

physical-chemical systems are better for old leachates; but even biological treatment has proved 

suitable for nitrogen removal, which is the important issue in regard to old landfill leachate. 

However, the design of a general strategy for the treatment of leachates is hindered by their 

great diversity, which results in the techniques successfully developed for one site not 

necessarily being applicable elsewhere. 

Treatment methods that work well at a young landfill are likely to become progressively less 

effective as the landfill ages (Lema et al., 1988; El-Fadel et al., 1997a; Haarstad and Mæhlum, 

1999). When treating young (biodegradable) leachate, biological techniques can effectively 

remove COD, NH4–N and heavy metals. However, when treating stabilized (low biodegradable) 

leachate, biological treatment may not be able to meet the discharge limits for organic matter 

due to the recalcitrant characteristics of organic carbon in the leachate. In recent years, physico-

chemical treatments have been found to be suitable not only for the removal of slowly 

biodegradable substances from stabilized leachate, but also as a refining step for biologically 

treated leachate. Prior to discharge, additional effluent refinement using physico-chemical 

treatments, such as chemical precipitation, advanced oxidation, activated carbon adsorption and 

ion exchange, can be carried out on-site (Kurniawan et al., 2006). 
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2.4.2 Nitrogen removal processes  

A special feature of landfills is their rather low temperature in winter and a lower 

biodegradation rate of waste. This affects the leachate quality and its treatment. With a low 

degradation rate, the acid phase can continue for 5 to 10 years or more, which means an 

elevated COD concentration and a high COD/N ratio in the leachate for this period (Pelkonen et 

al., 1999). In the EU countries the problem of leachate treatment has existed for some time now, 

but a universal solution has not been found. The leachates are a mixture of high concentration 

organic and inorganic contaminants including humic acids, ammonium-nitrogen, heavy metals, 

xenobiotics and inorganic salts. Taking into account the toxicity of ammonium-nitrogen in 

leachate, major concerns have been expressed about the treatment of it. There are two strategies 

with respect to ammonium removal: in-situ treatment and ex-situ treatment. Currently, 

ammonium treatment is primarily performed via biological co-treatment at municipal WWTPs 

or via on-site treatment using biological nitrification/denitrification and physico-chemical 

processes. Biological nitrogen removal from leachate is a challenging task because of the high 

variation of leachate characteristics and the usually insufficient amount of readily biodegradable 

organics for denitrification (expressed as the carbon to nitrogen ratio – the C/N ratio). The 

availability of readily biodegradable organics usually limits the efficiency of biological nitrogen 

removal, particularly in landfills in the methane phase, resulting in low BOD. Consequently, 

external carbon addition is required in many landfill leachate treatments (e.g. Pelkonen et al. 

2000; Yalmaz and Oztürk, 2001, 2003). 

The biological method of nitrification/denitrification is probably the most efficient and cheapest 

process to eliminate nitrogen from leachate (Abufayed and Schroeder, 1986). Denitrification is a 

vital step in biological nitrogen removal. In the process, organic and other reducing species or 

agents are utilized as electron donors by denitrifying bacteria, nitrate and nitrite are reduced 

finally to nitrogen gas. Denitrification can be carried out either in cooperation with nitrification 

or independently, in municipal and industrial wastewater treatment. The key to successful 

independent denitrification is to maintain high biological activity and concentrated activated 

sludge in the reactor (Peng et al., 2004).  

Nitrification/Denitrification 

The mechanism of the three major biological processes directly involved with biological 

nitrogen removal in wastewater treatment can be expressed as:  
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NH4
+ + 1.5O2 → NO2

−+ 2H+ + H2O    [ G0 = −275 kJ/mol]     (1) 

NO2
− + 0.5O2 → NO3

−                         [ G0 = −75 kJ/mol]        (2) 

Overall: NH4
+ + 2O2 → NO3

− + 2H+ + H2O     [ G0 = −350 kJ/mol]   (3) 

Ammonium is oxidized to nitrate in aerobic conditions by two groups of chemo-lithotrophic 

bacteria that operate in sequence. The first group of bacteria in this process of nitrification, 

represented principally by members of the genus Nitrosomonas [Eq. (1)], oxidize ammonium to 

nitrite, which is then further oxidized to nitrate by the second group, usually represented by 

members of the genus Nitrobacter [Eq. (2)]. 

Denitrification is the second step in the removal of nitrogen by the nitrification/denitrification 

process. This is a process by which nitrate functions as an acceptor of reducing equivalents and 

de-assimilates to nitrogen gas: 

NO3
− → NO2

− → NO → N2O → N2 (4) 

The most important issue concerning N removal is to ensure an appropriate C/N ratio. In the 

activated sludge process, a biodegradable COD/N ratio of around 9 or higher was required in a 

pilot-scale process to achieve 70 – 90% TN removal (Pelkonen et al. 2000), and in a full-scale 

realization at a landfill, 55% TN removal was achieved with a biodegradable COD/ N ratio of 

4.7 (Pelkonen et al. 2000). Meanwhile, Chang (1993) gives a biodegradable COD/N ratio of 4.5 

as sufficient in an activated sludge process. The biological process is especially efficient in 

treatment of young landfill leachates that are rich in VFA. For instance, complete nitrogen 

removal was obtained during treatment of leachate by means of simultaneous 

denitrification/metanogenesis in an anaerobic reactor with nitrification (Wiszniowski et al., 

2004). On the other hand, when treating leachates characterized by a high level of ammonium 

and low levels of biodegradable organics, a supplementary source of organic carbon is needed ( 

and Dzombak, 1991; Ilies and Mavinic, 2001). Also, the development of a control strategy and 

system to optimize the C/N ratio is worth considering. 

In addition, some other biological nitrogen-removal techniques have occurred in the ex-situ 

treatment of ammonium in leachate; such as partial nitrification and nitrite denitrification, and 

Anammox. 

Partial nitrification and nitrite denitrification  

Instead of using full nitrification/denitrification, partial nitrification and nitrite denitrification is 

one noticeable new strategy, especially when leachate with a high ammonium concentration or 
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low C/N ratios is treated. The main micro-organisms responsible for developing nitrification are 

the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria. Then, in denitrification, 

facultative heterotrophic micro-organisms use nitrate and nitrite as oxidants of organic matter to 

obtain energy and carbon. Because nitrite is the intermediary compound of both ammonium 

nitrification and nitrate denitrification, it makes it possible to partially nitrify ammonium to 

nitrite and then denitrify directly from nitrite to nitrogen. Partial nitrification and nitrite 

denitrification is an approach to reduce the activity of nitrite-oxidizing bacteria and keep up the 

activity of the ammonium-oxidizing micro-organisms. Previous studies indicate that partial 

nitrification and nitrite denitrification can reduce oxygen requirements during nitrification and 

organics requirements during denitrification, as well as the operational costs (e.g. Bae et al. 

1997; Fux and Siegrist, 2004; Fux et al., 2006; Spagni and Marsili-Libelli, 2008). 

By controlling operational factors like temperature, dissolved oxygen (DO) and pH, it is 

possible to facilitate ammonium oxidizing and retard nitrite oxidizing, which could restrain the 

oxygen and organics consumption, and then adjust the applied effective C/N ratio during the 

biological processes. The temperature has an impact on the activation and sensitivities of both 

ammonium-oxidizing bacteria and nitrite-oxidizing bacteria. With pure cultures, Grunditz and 

Dalhammar (2001) showed that the optimum temperature was 35 oC for ammonium-oxidizing 

bacteria and 38  oC for nitrite-oxidizing bacteria.  

A low concentration of DO contributes to the activation of ammonium-oxidizing bacteria and 

then ensures nitrite accumulation, since the half-saturation coefficients of DO for ammonium-

oxidizing bacteria and nitrite-oxidizing bacteria are 0.2 – 0.4 mg/L and 1.2 – 1.5 mg/L, 

respectively (Peng et al., 2004; Picioreanu et al., 1997). The control of operational DO is found 

to be critical in affecting the activity of nitrite-oxidizing bacteria and to achieve partial 

nitrification (Garrido et al. 1997; Bernet et al., 2001; Ruiz et al., 2003). The pH value is 

sensitive to partial nitrification and nitrite denitrification since it can influence the concentration 

of free ammonia, free nitrous acid and free hydroxylamine, which are the inhibitors for 

nitrification and denitrification. Some other operational factors, such as the process scheme or 

even feeding modes, can affect the availability of degradable organics (as an electron donor) 

and nitrate or nitrite (as an electron acceptor) in denitrification; in other words, the applied C/N 

ratio in biological nitrogen removal. Indeed, observations by, for example, Andreottola et al. 

(2001), Kim et al. (2004) and Puig et al. (2004) suggest the positive impacts of optimizing the 

biological process scheme and feeding mode on the efficiency of nitrogen removal. 
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The conditions of inhibiting nitrite oxidation and optimizing the use of readily biodegradable 

organics are not yet completely understood. It is thought that the permanent inhibition of nitrite 

oxidation is difficult to maintain in the activated sludge process (Fux and Siegrist 2004); and 

accordingly the consumption of readily biodegradable organics during nitrification and 

denitrification is hard to control. Therefore, more tentative work is required before there is a 

more comprehensive understanding. 

Anammox 

The anaerobic ammonium oxidation process is a novel, promising, low-cost alternative to 

conventional denitrification systems (van de Graaf et al., 1996; Strous et al., 1997). The process 

deals with the conversion of ammonium to nitrogen gas, with nitrite as an electron acceptor, 

according to the following reaction: 

NH4
+ + NO2

− → N2 + 2H2O   [ G0 = −357 kJ/mol]  

The physiology of the anaerobic ammonium oxidizer ‘Candidatus Brocadia anammoxidans’ was 

studied in detail. It has a very high affinity for the substrates of ammonium and nitrite. The 

process is reversibly inhibited by oxygen and irreversibly by nitrite (at concentrations superior 

to 70 mg N/L for several days) and phosphate (Hellinga et al., 1998). ‘Candidatus Kuenenia 

stuttgartiensis’ has a higher tolerance to nitrite (180 mg N/L) and phosphate (600 mg P/L) (Egli 

et al., 2001). Both bacteria have a similar optimum temperature (37 oC) and pH (8). 

The application of the Anammox process to the treatment of high ammonium-nitrogen leachate 

is particularly promising. It leads to potential savings of up to 60% in oxygen generation and 

100% in external carbon, along with significantly reducing the sludge generation and the net 

emission of carbon dioxide (CO2) (van Dongen et al., 2001). However, one challenge is how to 

accelerate the slow growth rate of the bacteria and slow rate of nitrogen removal from these 

systems (Jetten et al., 2001). Compared with conventional nitrification and denitrification, 

partial nitritation/Anammox doesn’t produce nitrous oxide (N2O) and CO2 production and 

requires lower oxygen demand. Also, no external organic carbon source is needed, resulting in 

lower operational costs (Fux et al., 2004).  

Physico-chemical ammonium treatment 

With respect to physico-chemical ammonium treatment, it is found that ammonium stripping 

and precipitation respectively achieved 94% and 98% NH4–N removal, with initial NH4–N 

concentrations of 3260 mg/L and 5618 mg/L (Kurniawan et al., 2006); but the essential issues to 
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limit the application include operational costs, leachate strength and the flue gas treatment 

(Eden, 2000). 

The additional costs associated with ex-situ treatment of ammonium have made in-situ removal 

techniques attractive alternatives. In-situ ammonium treatment is aimed at purifying leachate 

first and then recirculating leachate back to the landfilled waste, which refers to the discussion 

in the previous section. Leachate recirculation is an effective way to enhance waste 

biodegradation and results in a series of positive impacts on the landfill operation, including 

increased methane production and waste settlement. However, it is not effective in reducing the 

ammonium-nitrogen concentration; on the contrary, it increases the NH4-N concentration to 

some extent. A few in-situ, or partially in-situ, studies have been conducted; however, the data 

required to enable the adequate implementation of such processes at field-scale bioreactor 

landfills are lacking. 

2.4.3 Lab-scale and technical scale leachate treatment applications 

Suspended processes have been applied in full scale to nitrification and denitrification of landfill 

leachate (Kettunen et al., 1997). Recently, new methods, such as suspended carrier biofilm 

processes, have also been studied for leachate nitrification, even at low temperatures 5 – 10oC 

(Hoilijoki et al., 2000). These processes are reliable, but they normally require major 

investment, whereas there is also an evident need for low cost and low maintenance systems. 

Moreover, the treatment processes used should also function in colder climates. An overview of 

the studies is summarized in Table 4 and the details are discussed hereunder. 

Table 4 Overview of the studies on landfill leachate treatment 

Application Studies 

Conventional activated sludge process 
via nitrification/denitrification 
 

Toettrup et al., 1994; Zeghal et al., 1995; Zeghal and 
Sibony,1996; Kalyuzhnyi et al., 1999; Puznava et al., 2001; 
Jokela et al., 2002b; Ruiz et al., 2006 

Sequencing batch reactors Mace and Mata-Alvarez, 2002; Teichgräber et al., 2001; 
Steven et al., 2004; Kim et al., 2004; Pochana and Keller, 1999 

Other nitrogen removal processes Third et al., 2005; van der Star et al., 2007  

 

Compact nitrogen removal processes, such as submerged biological aerated filters, have been 

widely applied on full-scale plants in the last 15 years. The efficiency of this biofilter system 
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has been widely demonstrated on full scale plants (Zeghal and Sibony, 1996). It started with a 

down-flow biological aerated filter for carbon removal in the early 80s and, later, up-flow 

biofilters were developed and used in different configurations for nitrogen and carbon removal, 

such as secondary nitrification/denitrification in one cell (Toettrup et al., 1994) or tertiary 

denitrification (Zeghal et al., 1995). Puznava et al. (2001) showed that the biofilter can easily 

reach nearly 100% ammonium elimination efficiency thanks to a real time aeration control 

based on online analyzers. The denitrification removal efficiency was about 65 to 75% during 

all experimental periods.  

Kalyuzhnyi et al. (1999) reported that application of an aerobic/anoxic biofilter as the sole 

polishing step at 10 – 20 oC was acceptable for the elimination of biodegradable COD and 

nitrogen from the anaerobic effluents approaching the current national limits for direct discharge 

of treated wastewater. 

Jokela et al. (2002b) showed that nitrogen can be removed effectively from municipal landfill 

leachate by using a nitrifying up-flow biofilter, with waste material as a filter medium, 

combined with subsequent denitrification of the nitrified leachate in the landfill body. Crushed 

waste brick can be used as a carrier material in up-flow filters for nitrification of municipal 

landfill leachate with loading rates of 100 – 130 and 50mg NH4-N/L/d at 25 oC and 5 oC, 

respectively. The nitrified leachate recirculated to landfill body can be over 3.8 g of total 

oxidized nitrogen (TON)/ton total solids (TS)/day without any adverse effect on the 

methanogenesis of waste. 

Ruiz et al. (2006) also showed that nitrification–denitrification via nitrite may be applied to 

existing treatment installations with no extra investment costs, which has an important 

advantage over other new nitrogen removal technologies such as Sharon, Anammox or 

completely autotrophic nitrogen-removal over nitrite (CANON) processes.  

In recent years, the use of sequencing batch reactors (SBRs) in the biological treatment of 

wastewaters has been widely extended from lab-scale studies to real-scale leachate treatment 

plants (Mace and Mata-Alvarez, 2002). While lab-scale SBRs have been used for research on 

carbon and nutrient removal, and the development of urban/industrial wastewater 

biodegradability assays, real plant applications are still mainly focused on carbon removal. 

Nevertheless, when operating real plant SBRs the efficiency of nitrogen removal sometimes 

turns out to be better than the legally required effluent limits (Teichgräber et al., 2001). 
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Steven et al. (2004) proposed that an on-site wastewater treatment unit, with an upstream 

supplemental treatment tank, a downstream combination flow splitter, sump and pump box, and 

a recirculation system, has the potential to substantially remove carbon and nitrogen from 

wastewater. Though the process was complex, the removal of nitrogen was good. 

Kim et al. (2004) and Pochana and Keller (1999) investigated some important parameters such 

as DO, pH, oxidation reduction potential (ORP), hydraulic retention time (HRT), the C/N 

affecting nitrogen removal in a SBR. The results indicated that both the ORP and pH could be 

control parameters for complete denitrification; the control point on the pH profile was not clear 

using the pulsed pattern of swine waste addition for investigation of denitrification, and with the 

more sharply changing values of dpH/dt on the control profiles for detection of nitrification. It 

was suggested that ORP and pH should be chosen as denitrification and nitrification control 

parameters, respectively.  

The CANON process is an innovative, sustainable nitrogen-removal technology for treatment of 

wastewater containing high concentrations of ammonium nitrogen. In the study by Third et al. 

(2005), they investigated the enrichment of anammox bacteria from activated sludge and its 

application in the CANON process on lab-scale. An anammox culture capable of removing 0.6 

kgN/m3/d was enriched for 14 weeks in a sequencing batch reactor. 

In 2001, the first full-scale anammox reactor in the world was started in Rotterdam (the 

Netherlands). The reactor was scaled-up directly from laboratory-scale to full-scale and treats 

up to 750 kg-N/d. In the initial phase of the start-up, anammox conversions could not be 

identified by traditional methods, but a quantitative polymerase chain reaction (PCR) proved to 

be a reliable indicator for growth of the anammox population, indicating an anammox doubling 

time of 10 – 12 days. Reactors with a high specific surface area, like the granular sludge reactor 

employed in Rotterdam, provide the highest volumetric loading rates. Mass transfer of nitrite 

into the biofilm limits the conversion of reactor types that have a lower specific surface area 

(van der Star et al., 2007). 

Some of the studies have indicated that it is feasible, from a technical point of view, to find 

some specific leachate treatment method to improve the leachate management strategy, e.g. the 

performance of leachate recirculation etc. 
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2.5 Landfill leachate management 

The EU Landfill Directive regulates that landfill aftercare ends only when no activities are 

required to ensure that no adverse effects on the environment will result from the closed landfill 

(EU, 1999). The L/S ratio is the governing measure used to explain the course of landfill 

stabilization, but temperature is also of importance. The results of Heyer’s study (2003) show 

that nitrogen seems to stay longest in the system, for more than 200 years under the 

conventional way of management; thus, it determines the length of the aftercare period. For this 

reason, landfill leachate management alternatives that allow the nitrogen problem to be 

managed in a shorter time and in a more sustainable manner are of great interest. With very long 

aftercare periods, the management of technical systems will be difficult and the total costs 

substantial. 

Leachate recirculation is an effective way to enhance L/S ratios and results in a series of 

positive impacts on the landfill operation. Potential leachate recirculation volumes significantly 

vary depending on waste characteristics, weather conditions, waste compaction and the 

degradation phase. The optimum volume of leachate recirculation for a specific landfill should 

be determined by lab-scale and/or pilot-scale reactors prior to field-scale operation. Moreover, 

the use of leachate recirculation to enhance landfill stabilization is not straightforward and may 

needs to be supplemented with other enhancement methods including waste shredding, pH 

adjustment, nutrient addition and temperature management. 

Leachate management and treatment costs form the biggest part of operational costs (Heyer et 

al., 2005) and are therefore of interest. However, more research is needed to look at leachate 

treatment alternatives and their costs throughout the aftercare period until the stabilization and 

leachate emission criteria have been met. 
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3 Materials and Methods 

3.1 Landfill 

Ämmässuo landfill, as the largest landfill in the Nordic countries, was selected as the test 

landfill in this study. Around 1.4 million tonnes of municipal waste is landfilled annually in 

Finland. One third of this amount is disposed of in this landfill (Ministry of the Environment, 

2002; Statistics Finland, 2005). The old area of the test landfill covers an area of 52 ha and 

approximately 10 million tonnes of waste was landfilled in the period 1987 – 2007. The 

household waste collected in the metropolitan area of Helsinki (with around 1 million 

inhabitants) constituted the major waste input to the landfill. In 2004, it was estimated that 74% 

of the landfilled waste was municipal waste; the rest of the received waste was industrial reject 

or contaminated soil. Regionally, source-separated biowaste collection was adopted since 1996, 

which dramatically decreased the amount of biowaste landfilled.  

As a typical Nordic climate, the highest atmospheric temperature (Figure 3, YTV, 2010) in the 

test landfill is 15 – 20 oC, in July and August. The coldest season is in January and February, 

with a temperature of -5 oC. The change in atmospheric temperature shows obvious impacts on 

the landfill temperatures, especially in the shallow layers. In Figure 4, the selected sample 

temperature measuring point is close to the middle of the old landfilling area. When the landfill 

height is less than 5 m, the landfill temperature is in the range of 0 – 25 oC, which is highly 

variable with the climate and seasons. Then, when the landfill height is greater than 10 m, the 

temperature is 25 – 40 oC; and when the height is 5 – 10 m, the temperature is 15 – 25 oC. This 

trend changed in the winter of 2008 with the progress of the final cover construction and the 

appearance of a thick snow layer. The landfill temperatures increased dramatically; the 

temperature in the shallow layer was over 20 oC as was hoped. It increased quickly to 30 oC at a 

depth of 5 m, and to 40 oC at a depth of 10 m. This change happened at all three temperature 

measuring points with an increase of landfill temperatures; however, at the edge area of the 

landfill, the increase in temperature was not so clear as in the middle area. It was found that 

even at the edge area, a stable landfill temperature of 20 oC could be observed in the shallow 

layer and an average landfill temperature over 25 oC was achieved. 
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Figure 3 Atmospheric temperatures in the test landfill 

 

 

Figure 4 A sample of landfill temperatures in the test landfill, 2003 – 2004 

The mean rainfall in southern and central Finland is between 600 and 700 mm; but, in the 

coastal areas, the rainfall is slightly lower. In northern Finland, where about half of precipitation 

falls as snow, the annual rainfall is about 450 – 600 mm. (The lowest annual rainfall may be 200 

to 300 mm and the highest annual rainfall 700 mm in northern Finland and 900 to 1100 mm 

elsewhere.) The typical precipitation in the test landfill area is illustrated in Figure 5 (YTV, 

2010). The annual variation in rainfall shows that the least rain falls in March. The estimated 

annual precipitation for the test landfill is 700 mm, which is rather representative for southern 

May 2003 
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June 2003 
July 2003 
Nov 2003 
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Finland. Moreover, the infiltration rate of the test landfill area was estimated to be 45% before 

the autumn of 2008, as most of areas were covered by vegetation. Then, the infiltration rate 

decreased to 10% or even lower since the membrane final cover layer was laid in most of the 

areas. For common Finnish landfills, the infiltration rate is estimated to be 20 – 25%. 

 

Figure 5 Precipitation in the test landfill area   

The test landfill has introduced measures to control LFG since 1996. The LFG collection 

system consists of 220 gas wells, four pumping stations and seven regulation stations (Kouvo, 

2005). With the improvement of the gas collection system and the final cover construction 

added in 2006, about 6000 m3 of gas per hour was collected (corresponding to a collection 

efficiency of approximately 75%). From 2004, around 75% of the collected LFG is utilized in a 

district heating boiler through a gas transfer pipe line and the rest is still flared in-situ. The 

closed area of the test landfill has operated under the current regulation, but does not have – as 

is the case for most old landfills – a full monitoring record on emissions caused by gas and 

leachate (Niskanen et al., 2009).  

In this study, all waste and leachate samples were taken from the closed area of the test landfill 

at different periods. Moreover, in the leachate management scenario part of this study, this test 

landfill is used as a major reference of big landfill. 

3.2 Waste 

The total amount of landfilled waste in the test landfill is about 10 million tons with an annual 

rate of around half million tons. 60 – 80% of the landfilled waste is municipal waste. After the 
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1990s, with source-separation (of paper and cardboard, biowaste, glass, and metals) collection 

being adopted gradually, only the residual mixed waste was landfilled. The daily waste load was 

monitored firstly, and then the waste was compacted with a 50-ton landfill compactor in 

horizontal layers with soils or composted sewage sludge as a daily cover. The mean 

characteristics (±standard deviations) of landfilled waste are summarized in Table 5 (Sormunen 

et al., 2008). The waste density measured in landfill simulators is 410 kg waste (dry)/m3. 

Table 5 Mean characteristics (± standard deviations) of landfilled waste in the test landfill 

Source: (Sormunen et al., 2008) 

Waste depth, 

m 

TS, % VSWET, % VS/TS TKN (kg/ ton dry 

matter) 

Methane potential, 

m3/ton TS 

5 – 13 57± 10 35± 7 64± 14 4.6± 2.8 47± 55 

15 – 21 52± 11 33± 9 65± 15 3.5± 2.1 68± 61 

27 – 31 50± 10 27± 1 55± 11 2.4± 1.4 21± 25 

Average 54± 10 33± 8 63± 14 3.9± 1.5 50±55 

3.3 Leachate 

As a big-scale landfill, the test landfill generates large quantities of high-strength leachate. The 

leachate is collected with the bottom liner system and it is led to an equalizing basin. The size of 

the equalizing basin for landfill leachate is 16 000 m3. The mean characteristics of landfill 

leachate are summarized in Table 6 (YTV, 2010). 

In addition, an equalizing basin for the waters from the recycling field, e.g. the composting plant, 

is 3000 m3. Including the surface water, all types of wastewater are mixed in the equalizing 

basin and then pumped to a municipal wastewater treatment plant. The mixture dilutes the 

leachate and lowers the NH4-N strength of wastewater but results in a larger wastewater volume 

and higher loadings. In the year 2009, the amount of wastewater was about 449 000 m3, with the 

average concentrations of 780 mg BOD7/L, 2100 mg COD/L, 360 mg NH4-N/L and 565 mg 

Cl/L (YTV, 2010). Since the treatment fee is derived from the quality of the leachate, the cost of 

the current leachate management is considerable; the high total nitrogen concentration of 

leachate accounts for 65% of the total management cost. 
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Table 6 Mean characteristics of landfill leachate in the test landfill 

Source: (YTV, 2010) 

 NH4-N, 

mg/L 

BOD7, 

mg/L 

BOD28, 

mg/L 

COD, 

mg/L 

Average 

concentrations 

880 330 600 1830 

 

Some leachate recirculation tests were done between the years 2003 and 2004. A full-scale 

recirculation system was started when the landfill closure work was completed with a 

compacted multilayer surface in 2011.  

3.4 Landfill simulators (I, II) 

Seven LSRs, run with different temperatures and L/S ratios, were used in this study. The long-

term landfill leachate and LFG emission performance were systematically simulated, which 

gave a comprehensive picture about the waste biodegradation process and its affect on the long-

term landfill emission potential and landfill aftercare period. 

The LSRs used in this study were cylindrical reactors with an effective volume of 130 L, a 

height of 100 cm and a diameter of 42 cm. A schematic diagram of the LSRs is shown in Figure 

6. The LSRs were hermetically sealed to maintain anaerobic conditions and were kept at a 

constant temperature with the aid of electrical thermostats. From the top gas pipe of the LSRs, 

LFG was collected to analyse its volume and composition. In the bottom section of the LSRs, 

leachate was collected and sampled. Moreover, each LSR was connected with a bottom pump to 

recirculate the leachate every workday. A top feedwater port was used to add deoxygenated tap 

water. 
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Figure 6 Schematic diagram of a LSR 

A sieve plate was installed in the LSRs to support the MSW filling space. The MSW samples 

were taken from the test landfill. Wastes were excavated from different depths (namely 2, 5, 10, 

17, 25 and 30 m) in order to represent the universal composition of waste in the landfill. The age 

of the waste samples was estimated to be from 1 to 9 years and the weighted average was 

around 3.5 years. These (wet) waste samples contained around 48.5% dry matter, of which 45% 

was volatile solids (VS). The mixed wastes were on average divided into seven LSRs: R1 – R7. 

The average waste density was 850 kg waste (wet)/m3. 
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In the start-up phase, all seven LSRs were operated at 20 �C. After around a 9-week initial 

phase, five of them were adjusted to 32 �C (mesophilic), and two reactors were adjusted to 46 

�C (thermophilic). The remaining two reactors were kept at 20 �C (close to psychrophilic). 

Every workday, the leachate was recirculated at a rate of 4.5 or 2.25 L/day. Moreover, some 

leachate was removed weekly from the LSRs, and the same amount of deoxygenated water was 

sequentially added to the LSRs. The parameters of these operations are listed in tables 7 and 8. 

Table 7 Thermal regime and waste charged in the LSRs 

 Psychrophilic Thermophilic Mesophilic 

LSR R1 R4 R2 R3 R5 R6 R7 

Waste load (kg dry waste) 43.7 43.6 43.3 44.4 43.8 43.1 43.9 

Waste loading rate (kg dry waste/m3) 421 422 395 439 408 392 418 

 

In this study, the conditions of the LSRs were monitored by measuring the LFG and leachate. 

All the LFG was collected using aluminium-coated gas bags (Tesseraux, Germany). The LFG 

volume was continuously measured using a Ritter TG 05/5 drum-type gas meter, and its 

composition (methane and CO2) was periodically analysed using an LFG10 LFG analyser. The 

leachate was sampled every two or three weeks. The temperature, pH and conductivity of all the 

leachate samples were measured in-situ using the portable meters: WTW pH 323 and WTW LF 

320. The redox of some leachate samples was measured using a WTW senTix ORP 

combination electrode. The NH4-N, NO2-N, and NOX-N of the leachate were determined using 

flow injection analysis (FIA). These measurements followed the international standard ISO 

11732 (ISO International Standard, 2005) and the Finnish standard procedure SFS-EN 13395, 

ISO 2005 and SFS 1997 (SFS Finnish Standards Association, 1997). The CODCr was analysed 

using SFS 5504 1988 (SFS Finnish Standards Association, 1988). 
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Table 8 Operational parameters of the LSRs 

 Psychrophilic Thermophilic Mesophilic 

LSRs R1 R4 R2 R3 R5 R6 R7 

 Period, days 

Temperature, oC 0 – 63 20 20 20 20 20 20 20 

63 – 100 20 20 32 32 32 32 32 

100  – 1400 20 20 46 46 32 32 32 

Recirculation, 

L/day 

0 – 430 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

430 – 1400 2.25 2.25 2.25 2.25 2.25 2.25 2.25 

Removal/addition,  

L (water)/week 

0 – 63 Start-up phase, 2.0 -0.75 

63 – 810 0.75 0.5 0.75 0.75 0.75 0.75 0.2 

810 – 1250 1.5 1.0 1.5 1.5 1.5 1.5 0.4 

1250 – 1400 0.75 1.0 0.75 0.75 0.75 0.75 0.4 

Average applied annual 
L/S,  

L(water)/kg (dry waste) 

0 – 63 Start-up phase, 1.50 – 1.55 

63 – 810 0.93 0.61 0.94 0.93 0.93 0.95 0.29 

810 – 1250 1.80 1.19 1.83 1.81 1.81 1.84 0.48 

1250 – 1400 1.29 1.22 1.29 1.30 1.29 1.31 0.49 

Simulated real landfill 
time in Finland, years 1) 

0 – 63 Start-up phase 

810 96 67 96 96 95 97 37 

1250 171 117 172 171 170 173 57 

1400 207 151 207 209 206 210 71 
1) related to a big landfill of 25 m height, 700 mm annual precipitation and 25% infiltration – 

rather typical values in many European countries. 

3.5 Biological leachate treatment and cost estimation (III, IV) 

With landfill leachate taken from the test landfill, the lab-scale biological leachate treatment 

processes with a sequential batch reactor were operated for a period of around 800 days. In this 

study, as a crucial leachate management alternative, the feasibility of an on-site process to treat 

the leachate (mainly TN) for both direct discharge and indirect discharge purposes was 

evaluated. More importantly, with a case study of cost estimation based on the test landfill’s 
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conditions, the economic analysis was integrated as an important part of the study to define the 

applicability of the alternative. 

The schematic diagram of the SBR with activated sludge is shown in Figure 7. The SBR process 

is composed of a cylindrical reactor with an effective volume of 9.5 L. This process was 

operated at 25±1 oC in a thermostatic room. pH was controlled and tested in the range of 7.8 – 

8.2 and a buffer addition pump was used to adjust pH as necessary. 

 

 

Figure 7 Schematic overview of a sequential batch reactor with activated sludge 

A data acquisition and control programme was utilized to control these sequences. Feeding was 

divided into six steps in a cycle, and a total of around 0.6 L of the influent leachate was fed into 

the reactor in each cycle. The aeration phase was achieved by injecting compressed air with a 

flexible spiral diffuser. The compressed air supply level was pre-set, based on the organic matter 

concentration of the influent. A DO measurement system was used to monitor the real time DO 

values, which was used as the control indicator of aeration time. If DO values were more than 
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1.1 mg/L, aeration was interrupted. This limitation was adjusted to 0.6 mg/L, as the external 

carbon addition was 6 ml/day for the partial nitrification and nitrite denitrification test. 

A so-called humidity tank was employed within the aeration system in order to reduce intense 

evaporation. A magnetic stirring apparatus continually worked at a speed of 30 rpm to maintain 

homogeneity in the reactor. The other accessory apparatus included a leachate filling pump, a 

pressure-operated emptying valve and an acetate addition system. 100 g/L CH3COO- solution 

was selected as the external carbon addition agent. 

The seed sludge used in this process was taken from a Finnish landfill leachate treatment plant 

and a municipal WWTP. It was incubated within the previous studies (e.g. Wang, 2004) and the 

mixed-liquor suspended solids (MLSS) were kept at approximately 3400 – 6200 mg/L.  

The influent feeding landfill leachate was periodically taken from the test landfill. Many factors, 

such as climate, season, waste character and landfill age, can affect leachate characteristics. As a 

multi-area landfill, 60% of the landfill area in the test landfill has been used for over 9 years, but 

some new areas have also been gradually brought into use in recent years. Hence, the leachate 

quality varied. The raw leachate presented mean values of 831 mg NH4-N/L, which ranged from 

523 – 1108 mg NH4-N/L. The BOD7/NH4-N (BOD/N) ratio fluctuated in the range of 0.2 – 0.5. 

This BOD/N range was comparatively low even for the aged landfills (Farquhar, 1989). 

External carbon was added to adjust the biodegradability of the influent feeding leachate, which 

presented mean values of 2763 mg COD/L and 618 mg BOD7/L, respectively, ranging from 

1300 – 4280 mg COD/L and 105 – 1490 mg BOD7/L. 

Ten stages (tables 9 and 10) were identified according to the external carbon addition levels (ml 

100 g/L CH3COO-/day). From Stage 1 (external carbon addition level: 0) to Stage 7 (10), the 

external carbon addition level was increased step by step to protect the adjustability and 

flexibility of the process, and then it was stepped down to stage 10 (1.5). The aims of this 

arrangement were to minimize the influences of the variety of the leachate quality and to test the 

performance of biological nitrogen removal with the broader C/N range. 

In summary, the operational parameters and applied influent (e.g. the HRT, the applied C/N 

ratio, the organic loading rate [OLR] and applied nitrogen loading rate [NLR]) in different 

stages are listed in Table 10. 
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Table 9 Quality of raw influent landfill leachate (Not analysed [NA]) (Units: External carbon, 

ml/day; others, mg/L) 

  Stage 1 Stage 2 Stage 3 Stage 4 

External carbon  0 0.7 1.5 3 

Influent leachate No. Overall 1 2 3 3 3 4 4 5 6 7 

Average BOD7 327 NA NA 239 239 239 390 390 372 437 315 

Average BOD28 597 NA NA 455 455 455 631 631 507 727 524 

BOD7/BOD28 0.60 NA NA 0.53 0.53 0.53 0.62 0.62 0.73 0.60 0.60 

Average COD 1826 1840 2283 1974 1974 1974 2161 2161 2002 1696 2085 

Average NH4-N* 880 947 1001 847 847 847 960 960 562 919 1014 

continued… 

 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 10 

External carbon 6 8 10 5 3 1.5 

Influent leachate No. 7 8 9 9 10 11 12 13 14 14 14 

Average BOD7 315 434 355 355 361 451 394 321 265 265 265 

Average BOD28 524 749 575 575 563 727 828 637 417 417 417 

BOD7/BOD28 0.60 0.58 0.62 0.62 0.64 0.62 0.48 0.50 0.64 0.64 0.64 

Average COD 2085 2206 1847 1847 1572 2261 1523 1285 1331 1331 1331 

Average NH4-N* 1014 1125 1005 1005 841 1088 664 669 720 720 720 
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Table 10 Operational parameters and influent (average COD, NH4-N concentrations-stages) of 

the sequential batch reactor with activated sludge (mean or mean ± standard deviation)  

Parameters Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

External carbon, ml/day 0 0.7 1.5 3 6 

HRT, days 13.8±0.6 15.0±2.0 14.4±1.4 15.8±4.2 13.5±1.5 

Operational days 84 18 31 91 159 

No. of observations 23 5 8 26 44 

Applied C/N 0.3 0.2 0.4 0.7 1.2 

OLR, mg BOD/g VSS/d 8±4 6±2 15±1 26±12 50±14 

Influent COD, mg/L 2115±163 1977±68 2379±291 2506±220 3157±268 

NLR, mg N/g VSS/day 64±10 63±15 69±6 62±12 68±9 

Influent NH4-N, mg/L 996±62 916±107 895±41 924±34 920±71 

Parameters Stage 6 Stage 7 Stage 8 Stage 9 Stage 10 

External carbon, ml/day 8 10 5 3 1.5 

HRT, days 13.2±0.5 12.7±0.4 13.5±0.9 13.4±0.4 13.6±0.2 

Operational days 113 35 34 28 98 

No. of observations 32 11 11 8 24 

Applied C/N 1.7 2.8 1.6 1.1 0.7 

OLR, mg BOD/g VSS/d 64±13 58±3 27±5 18±7 8±2 

Influent COD, mg/L 3565±394 3442±171 2314±171 1975±44 1601±72 

NLR, mg N/g VSS/day 49±8 31±3 31±3 34±4 37±2 

Influent NH4-N, mg/L 977±146 664±53 694±25 642±40 689±39 

 

Two operational strategies and operational schemes – schemes PA and PB – were studied, 

which are illustrated in Figure 8. Each 24-hour cycle consisted of six sequences: influent 

feeding, mixing, an aeration phase, an anoxic phase, a settlement phase and emptying. Figure 8 

shows the distribution of the aerobic and anoxic phases, scheduled over six anoxic-aerobic 

combinations. A filling event (0.25 – 0.4 min) was carried out at the start of each anoxic-aerobic 
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combination. The filling time was two minutes for each cycle, which is equal to around 0.6 L 

influent filling. With the same C/N ratio, the impacts of two aeration schemes on DO control 

and nitrite oxidation were tested. The step-filling strategy was adopted to enhance 

denitrification, using the easily biodegradable organic matter from the leachate. 

 

Figure 8 Operational cycles of a sequential batch reactor with activated sludge 

The influent and effluent were sampled at least twice a week; and the mixed liquor was sampled 

about once a month. The influent and effluent samples were filtrated with Schleicher & Schuell 

GF50 filter paper. The temperature, pH and conductivity, NH4-N, NO2-N and NOX-N, of all the 

samples were measured (as shown in Section 3.4) and the PO4
- of the samples were determined 

as well, using flow injection analysis (FIA). These measurements followed international and 

Finnish standard procedures (ISO, 2005 and SFS, 1997, 2004, 2005). Moreover, the BOD7 

(European standard EN 1899-1, 1998), CODCr, suspended solids (SFS-EN 872, 1996) and total 

solids (SFS 3008, 1990) of the samples were also periodically detected. The long term BOD28 

was determined using the WTW OxiTop system at 20 ºC. 

The results were analysed statistically with the Stat View programme (SAS Institute, 2001). 

Analysis of variance and a t-test were used to find out the difference of means of two groups. 

Multiple regression analysis was used to model selected independent variables. 

Finally, based on the process developed in this study, the cost-savings from the actual leachate 

management costs were estimated systematically to identify the possibility of optimizing 

operational costs. The raw leachate flow rate was assumed as 500 m3/day and TN concentration 
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as 850 mg/L. Methanol was taken as the external carbon source and its price was set as 365 

€/tonne. The overall leachate management cost estimation includes investment costs, general 

pretreatment operation and maintenance costs, chemical costs and the leachate treatment fee of 

the WWTP. The basic approach is calculated for 60% TN removal (investments). When higher 

than 60% TN removal is targeted, two options are included – one as an extension of the single 

sludge system with higher carbon needs for the additional (over 60%) TN removal, and another 

as a post-denitrification (post DN) system with its own sludge (two sludge systems), also for 

additional TN removal. In this case the carbon need is estimated as 3.7 g COD/g NOx removed 

and the specific denitrification rate of 5 mg NOx/g VSS/h (an average value measured with 

batch tests) has been used for the reactor volume estimation.  

3.6 Leachate management scenario and strategy model (V) 

3.6.1 Forecast modelling for target variables 

The cumulative landfill leachate emission was calculated by treating the leachate 

quality/quantity as a function of temperature and the annual L/S ratio. When the temperature is 

constant, the relationship between the target components and the L/S ratio can be abstracted as 

follows: 

Leachate: 

 

LFG: 

 

where 

y represents the concentration of the target component, e.g. COD, NH4-N, the methane 

generation rate and so forth, 

l represents the L/S ratio and 

a, b, c are the coefficients. 

a, b and c are determined by using linear regression analysis. According to the residual analysis, 

the simulated range can be reasonably extended based on this model. To simplify the modelling, 

blaey �

caly b ��
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the simulation is started from the peak value during the acidic phase and the short initial aerobic 

phase is omitted. 

The L/S ratio in the equation refers to fresh water addition to the system. Or, alternatively, in the 

case of nitrogen leaching, it can refer to the addition of leachate with full nitrification in the 

pretreatment step (discussed in more detail later).  

With a constant L/S ratio rate, the relationship between the target variables and temperature is 

estimated via the temperature coefficient, : 

 

where 

T represents the target temperature [°C], 

y represents the concentration of the target component, e.g. COD, NH4-N, the methane 

generation rate and so forth, at the target temperature, 

t represents the reference temperature [°C] and 

yt represents the concentrations of the target component, e.g. COD, NH4-N, the methane 

generation rate and so forth, at the reference temperature. 

3.6.2 Forecast modelling for the leachate emission integrator 

Based on the emission limit values, with the forecast model it is possible to evaluate the length 

of time needed for the leachate to meet the direct discharge requirement. Some variables, for 

example NH4-N, will take a longer time to descend to the target level, which means that they 

will have heavier impacts on the length of landfill aftercare. Hence, the weight coefficient of 

each target variable is assumed accordingly. The leachate emission integrator LE is defined as: 

 

where 

yi represents the concentrations of the target components, i.e. COD, NH4-N and Cl-  

(representatives of organic and inorganic components),  

Yi represents the emission limit values for the target components and 
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i represents the weighting coefficients for the target components. 

When the concentration of a target component meets the emission limit value, the value of 

is 1 and the value of is α, which is the minimum level. 

3.6.3 Leachate management scenarios 

The integrators are applied and compared in six different forecast scenarios (Table 11). These 

landfill scenarios represent various landfill sizes and annual L/S ratios based on the general 

condition of existing sanitary landfills. The landfill filling period is a 20-year period; no 

leachate recirculation system will be used before landfill closure. The conversion between the 

achieved L/S ratio and real landfill time refers to a typical landfill with 200 mm of annual 

natural infiltration. The selection of the temperature range depends on the landfill size. The 

annual L/S ratio rate was selected accordingly. For big landfills, an annual L/S ratio rate of 

0.013 corresponds to a one-fold infiltration, whereas 0.038 corresponds to a threefold 

infiltration (extra water 400 mm /year). An annual L/S ratio of 0.076 includes 700 mm/year of 

fresh water and 300 mm/year recirculation of treated leachate effluent. For medium-sized 

landfills, an annual L/S ratio rate of 0.034 corresponds to a one-fold infiltration, whereas other 

infiltration rates are similar to those of big landfills. The use of fresh water, such as surface 

water collected in the landfill area, is aimed at chloride washout and the recirculation of treated 

leachate effluent is related especially to nitrogen. 
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Table 11 The general specifications of the six scenarios 

 Recirculation Water infiltration, mm/year Annual, L/S 
(L/kg TS/year) 

Temperature, oC 

Big landfill, average waste height: 25 m (area 50 ha, 10 Million tons, 630 kg TS/m3) 
Scenario A No Natural infiltration, 200 0.013 32 
Scenario B Yes Natural infiltration, 200 + 

Fresh water recirculation,  
400 = 600 

0.038 32 

Scenario C Yes Natural infiltration, 200 + 
Fresh water recirculation, 
700 + on-site treatment 
process effluent 300 = 1200 

0.076 32 

Medium-sized landfill, average waste height: 10 m (area 25 ha, 1.9 Million tons, 580 kg TS/m3) 
Scenario E No Natural infiltration, 200 0.034 20 
Scenario F Yes Natural infiltration, 200 + 

Fresh water recirculation,  
400 = 600 

0.103 20 

Scenario G Yes Natural infiltration, 200 + 
Fresh water recirculation, 
700 + on-site treatment 
process effluent 300 = 1200 

0.207 20 

Scenarios B, C, F and G may need some amount of leachate recirculation. 

3.6.4 Landfill leachate management strategy model 

The above work will produce results that describe the status of the landfill leachate in a 

comprehensive profile, which is combined with different treatment alternatives for the 

evaluation of applicable strategies. On-site and off-site treatment alternatives included in this 

study are shown in Figure 9. 

An on-site biological leachate treatment process has been proven to be feasible from both 

technical and economic points of view in previous studies, and it can be applied before the 

leachate recirculation or as a pretreatment process before indirect discharge. The biological 

process (nitrification, partial denitrification) can also be adopted with/without post DN or GAC 

filtration to meet the direct discharge limit value. 

In the unit cost estimation, a 10 – 30 year depreciation time and a 6% interest rate have been 

used (Wang et al. 2009). The estimated future costs of discharge for a municipal WWTP are 

based on the current unit costs of leachate components and the flow rate. The water infiltration 

costs have been estimated at 3900 €/ha/year, including investment and operation (Okereke, 

2002). When the six scenarios are compared, the aftercare time period comes to hundreds of 

years and the total costs are calculated based on zero interest rates. 
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Figure 9 Leachate treatment options for cost estimation (*advanced treatment needed when 

effluent COD does not meet the limit; **± 25% unit cost changes used for cost estimation) 
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3.7 Landfill leachate discharge limits 

The EU Landfill Directive stipulates that leachate has to be treated properly before it is 

discharged to surface waters, but the directive doesn’t provide any concrete discharge limit 

values. These are left to be formulated by the EU Member States. The decision regarding the 

leachate discharge limit values strongly recommends the strategy of leachate management and 

landfill aftercare. As examples, some general discharge limit values of the major target 

components in this study are presented in Table 12. The regulations in European countries may 

vary from more general regulations to site-specific considerations, which shows the complexity 

behind the aftercare problem and the regulations for dealing with it (Scharff et al., 2011). In this 

study it is assumed that the limit values for leachate discharge determining the end of the 

aftercare period are 200 mg COD/L, 30 mg BOD/L, 70 (70) mg TN (NH4-N)/L and 100 mg/L 

for chlorides. These are mainly based on German limit values (Heyer, 2003; Stegmann et al., 

2006), as there are no such general limit values given in Finland. Based on some local (site-

specific) regulations in Finland, the German limits are at the same level or stricter. Regarding 

LFG emission, it is assumed the limit value to be 1 L/kg waste (dry)/year for big landfills; for 

medium-sized landfills, the emission limit value for aftercare should not exceed 1.5 L/kg waste 

(dry)/year, based on data given by Heyer et al. (2005) and assuming appropriate waste heights. 

Table 12 Major leachate discharge limit values in some countries, mg/L 

(China Environmental Science Institute, 2007) 

 Direct Indirect 

 Germany France China Japan Australia 

COD 200 120 100 90 1500 

BOD 20 30 30 60 600 

TN (NH4-N) 70 (NR) 30 (NR) 40 (25) 60 (60) 150 (100) 
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4 Overview and discussion of results 

In this chapter, the first section is dedicated to lab-scale LSRs, to express the simulated 

tendency of leachate emissions. The second and third sections are a discussion of on-site 

leachate treatment solutions regarding biological nitrogen removal and the related cost 

estimation issues. The last section is to scale up and forecast the long-term leachate emission 

performance in real landfill and landfill leachate management strategies. 

4.1 Leachate emission and biodegradation of waste (I, II) 

Seven LSRs were operated over 175 weeks. Among the seven reactors, which ran at different 

temperatures and with various L/S ratios, two pairs of parallel reactors were operated under the 

same conditions, which showed similar behaviour results with only minor differences. It 

indicates that the aim of careful filling and operation of the LSRs was accomplished and that the 

material in each reactor was very similar. Meanwhile, between the different applied annual L/S, 

LSRs under the same operational temperature, i.e. R1 (achieved L/S ratio: 4.1) – R4 (2.7) and 

R5 and 6 (4.1) – R7 (1.3), the main parameter results were very similar (±7%) with the same 

L/S ratio level. Thus, it can be concluded that the higher annual L/S ratio rate does not seem to 

bias the results. This verifies the feasibility of shortening the experimental time using a higher 

annual L/S ratio rate. To simplify the analysis, the average value of the high annual L/S ratio 

reactors (R1, R5 and R6) were used for the analysis, and the low annual L/S ratio reactors (R4, 

R7) were used as a reference as needed. Based on assumptions shown in Table 8, the time in 

high annual L/S ratio reactors to achieve an L/S ratio of 1 was estimated to correspond to an 

actual landfill period of 47 years. 

4.1.1 Leachate emissions 

NH4-N, COD (organics) and chloride (inorganics) are selected as the key parameters of leachate 

emissions to be discussed, which are summarized in Figure 10. 
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Figure 10 Variation of leachate NH4-N, COD and Cl- as a function of temperature and the L/S 

ratio 
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Not considering the temperature adjustment phase, the NH4-N concentrations decreased from 

1100 – 1500 mg/L to less than 200 mg/L, with an L/S ratio of around 4.3; but they are still 

much higher than the direct or indirect discharge limit value, both in the low and high 

temperature LSRs. To take a mesophilic LSR as an example, with the same L/S ratio level (e.g. 

2), the NH4-N concentration measured in this study was around 1.5 times higher than the 

measurements of Fellner et al. (2009). Also, the L/S ratio levels to reach the estimated NH4-N 

direct discharge limit value were higher than in the studies of Andreas and Bilitewski (1999), 

Andreas (2000) and Heyer (2003); the higher organic fraction in the sampled waste is 

considered to be the main reason for this.  

Owing to the rapid hydrolysis of the organics of MSW, the COD concentrations increased to 

21 000 mg/L, from an initial 15 000 mg/L, within the first six weeks (an L/S ratio lower than 

0.26). Then, the COD concentration started to decrease, reaching the level of 4 000 mg/L, as the 

temperature adjustment phase ended (an L/S ratio of around 0.4), and the level of less than 

1 000 mg/L after 140 weeks (L/S ratio= 2.9). The impact of temperature emerged clearly when 

the L/S ratio increased to 0.55. Higher temperatures obviously impelled the organics’ 

degradation in the LSRs, which resulted in higher leachate COD concentrations in the 

thermophilic and mesophilic LSRs. These COD concentration levels are still much higher than 

the limit level of leachate direct (or even indirect) discharge. The psychrophilic LSRs’ leachate 

reached the indirect discharge level of below 1500 mg/L when L/S=1.1. The mesophilic 

LSRs then achieved it when L/S=1.3; and the thermophilic LSRs with an L/S ratio of around 

1.5. When L/S=4.15, the psychrophilic LSRs’ leachate COD concentration reached a direct 

discharge level below 200 mg/L. Although the effect of the temperature was decreasing, the 

COD concentration of the thermophilic LSR was still far from the limit value. The 

psychrophilic LSRs’ leachate met the limit value for BOD emission when L/S=1.7. The 

mesophilic LSRs then achieved it when L/S=2.3; and the thermophilic LSRs when L/S=2.8. 

Therefore, BOD showed better potential for achieving the limit values, which is in accordance 

with the results Heyer (2003) found in mesophilic simulators. 

In week 28 (L/S = 0.65), the psychrophilic LSRs leachate Cl- concentration was 1635 mg/L, 

which was 85% of the mesophilic (1920 mg/L) LSRs and 84% of the thermophilic (1950 mg/L) 

LSRs. In week 66 (L/S = 1.30), the chloride concentration decreased to 1170 mg/L, which was 

87% and 91% of the mesophilic (1345 mg/L) and thermophilic (1290 mg/L) values, 

respectively. When L/S = 4.15, the psychrophilic LSRs’ leachate was 200 mg Cl-/L, which is 

still much higher than the limit value. Similarly with NH4-N, the Cl- concentration and emission 
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potential were bigger (around 2.3 times bigger) than the measurements of Fellner et al. (2009). 

The difference in the composition of sampled waste may be the main reason. 

4.1.2 Cumulative gas production and methane content 

In week 28 (L/S = 0.65), thermophilic LSRs generated accumulatively 73 L gas/kg TS, which 

was 53% more gas than psychrophilic LSRs and 4% more gas than mesophilic LSRs. When 

L/S=4.15, this value was 110 L gas/kg TS, which was 47% more gas than psychrophilic LSRs 

and 9% more than mesophilic LSRs. Comparing with the reference levels measured by 

Sormunen et al. (2008) and by Laner (2011), this amount was higher than the average but still in 

the range, which is in accordance with the findings of the comparison between field 

investigations and LSRs by Fellner et al. (2009). 

When L/S=4.15, the LFG generation rates at the different temperatures were almost the same: 

psychrophilic condition, 5.4 L/kg waste (dry)/year; mesophilic condition, 4.9 L/kg waste 

(dry)/year; and thermophilic condition, 5.5 L/kg waste (dry)/year. All of them are higher than 

the limit value for aftercare. 

The residual VS contents after an L/S ratio higher than 4.35 were 25% in psychrophilic 

conditions, 28% in mesophilic conditions and 26% in thermophilic conditions. With this L/S 

ratio, the stable CH4 contents of the mesophilic LFG was around 56%, which was higher than 

the thermophilic one (51%) and lower than the psychrophilic one (58%). The generated methane 

volumes were 187 L CH4/ kg VS in the psychrophilic LSRs, 289 L CH4/ kg VS in the 

mesophilic LSRs, and 288 L CH4/ kg VS in the thermophilic LSRs. In general, higher 

temperatures stimulated the waste degradation and methane generation, which is meaningful for 

LFG utilization. A psychrophilic condition results in lower LFG emission and CH4 generation, 

but it seems that it would not extend the waste stabilisation period compared to a thermophilic 

condition. The gap between the LFG emission amounts at different temperatures is mainly 

caused by the different LFG emission rates with an L/S ratio below 1. The temperature 

coefficients of LFG emission are discussed more in Section 4.1.3. 
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4.1.3 Temperature impacts 

The impacts of temperature emerged in all the parameters mentioned. The thermophilic LSRs 

showed the highest cumulative gas production, gas generation rate, leachate COD and NH4-N 

concentrations, whereas the psychrophilic LSRs resulted in the lowest levels. It is clear that 

before the landfill closure (e.g. 30 years) all the parameters of the leachate under all the 

temperatures mentioned are still much higher than the limit values. 

The decreasing rates of COD and NH4-N concentrations were also temperature-dependent, 

which means that the decrease of leachate concentration was faster under higher temperatures; 

however, this impact will decrease when a high L/S ratio is achieved. Meanwhile, the 

thermophilic LSRs had the highest overall degree of degradation (6% higher than the 

mesophilic LSRs and 55% higher than the psychrophilic LSRs). After an L/S ratio over 4, the 

waste degradation degrees under mesophilic and thermophilic conditions were quite close, 

which was around 1.5 times that found under psychrophilic conditions. Hence, the increase in 

temperature can accelerate waste degradation and gas generation but cannot decrease the length 

of the waste stabilisation period since it will extend the waste degradation degree. To 

considerably decrease the stabilisation period, a higher annual L/S ratio rate was verified to be 

an effective factor. 

The temperature coefficients for different parameters as a function of the L/S ratio are shown in 

Table 13. The results indicate that the temperature increase showed a rather similar impact on 

conductivity, chloride and NH4-N. It means that the emissions increased synchronously with the 

increase in temperature, and the rate of increase was approximately the same in psychrophilic, 

mesophilic and thermophilic conditions. 

Higher temperatures obviously impelled the NH4-N release in the LSRs, which resulted in 

higher leachate NH4-N concentrations in the thermophilic and mesophilic LSRs. The 

temperature impact on NH4-N leaching was more obvious at a low L/S ratio; with the increase 

of the L/S ratio, this phenomenon was weakened. The concentration of NH4-N showed a slower 

decline and a long-term consistent tendency in leachate. This suggests that NH4-N will be of 

most concern in the long run and more attention should be paid to the effective removal of NH4-

N from leachate. 

For the COD emission, as the temperature changed from mesophilic to thermophilic, the value 

of the COD increased by 1.5%/oC, which was 67% higher than when the temperature changed 



 

 

57 

from psychrophilic to mesophilic. This confirms that a high temperature is advantageous for 

waste stabilisation and organics leaching.  

For chloride emission, the difference (standard deviation) among the different temperatures 

decreased to 34 mg/L when L/S=4.15, compared with 104 mg/L when L/S=1.30. The higher 

temperature activated the waste degradation and chloride emission, but this phenomenon 

weakened with a L/S ratio above 2. 

A higher operational temperature accelerated the gas generation. The difference caused by the 

temperatures mostly occurred with an L/S ratio lower than 1. This phenomenon faded after the 

L/S ratio was over 1.53. The highest sensitivity to temperature was related to gas generation (1.6 

– 2.8%/oC), which indicates most closely the biological activity. It was found that, as the 

temperature changed from mesophilic to thermophilic, the value of the LFG emission rate 

increased 2.8%/oC, which was 1.75-fold of the impact caused by the change from mesophilic to 

thermophilic conditions. Moreover, the temperature coefficients of the methane generation rate 

were close to each other. 

The temperature coefficient found here differs considerably from the scarce studies of landfill 

simulations related to temperature; but a temperature coefficient related to hydrolysis can be 

expected and the findings of this study are close to the value given by Siegrist et al. (2002). 

Moreover, the LSR results extend experimental data to the lower thermophilic range. The 

temperature range in this study covers rather well the temperature ranges found in field 

conditions, shown before and recently by Hanson et al. (2010). As a result, when estimating 

long-term leachate emission and waste degradation of landfills, one must be cautious and select 

temperature coefficients carefully, based on representative data. Otherwise misleading emission 

development may result, which will affect landfill management options in long-term and life 

cycle inventories. 
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Table 13 Temperature impact coefficients  

L/S ratio Estimated temperature coefficient, θ: C= Ct × θ (T-t) * 

 Chloride, mg/L NH4-N, mg/L COD, mg/L LFG, L/kg TS 

0.6 1.016 (20 – 32oC) 

1.006 (32 – 46oC) 

1.017 (20 – 32oC) 

1.014 (32 – 46oC) 

1.008 (20 – 32oC) 

1.013 (32 – 46oC) 

1.034 (20 – 32oC) 

1.017 (32 – 46oC) 

1 1.014 (20 – 32oC) 

1.006 (32 – 46oC) 

1.014 (20 – 32oC) 

1.012 (32 – 46oC) 

1.011 (20 – 32oC) 

1.013 (32 – 46oC) 

1.028 (20 – 32oC) 

1.016 (32 – 46oC) 

1.5 1.013 (20 – 32oC) 

1.006 (32 – 46oC) 

1.015 (20 – 32oC) 

1.012 (32 – 46oC) 

1.007 (20 – 32oC) 

1.013 (32 – 46oC) 

1.028 (20 – 32oC) 

1.017 (32 – 46oC) 

2 1.009 (20 – 32oC) 

1.009 (32 – 46oC) 

1.009 (20 – 32oC) 

1.010 (32 – 46oC) 

1.009 (20 – 32oC) 

1.013 (32 – 46oC) 

1.027 (20 – 32oC) 

1.017 (32 – 46oC) 

2.5 1.011 (20 – 32oC) 

1.008 (32 – 46oC) 

1.005 (20 – 32oC) 

1.008 (32 – 46oC) 

1.008 (20 – 32oC) 

1.013 (32 – 46oC) 

1.027 (20 – 32oC) 

1.016 (32 – 46oC) 

4 1.003 (20 – 32oC) 

1.007 (32 – 46oC) 

1.011 (20 – 32oC) 

1.016 (32 – 46oC) 

1.008 (20 – 32oC) 

1.019 (32 – 46oC) 

1.026 (20 – 32oC) 

1.016 (32 – 46oC) 

4.2 1.008 (20 – 32oC) 

1.013 (32 – 46oC) 

1.015 (20 – 32oC) 

1.018 (32 – 46oC) 

1.010 (20 – 32oC) 

1.019 (32 – 46oC) 

1.025 (20 – 32oC) 

1.015 (32 – 46oC) 

Average 1.011 (20 – 32oC) 

1.008 (32 – 46oC) 

1.012 (20 – 32oC) 

1.013 (32 – 46oC) 

1.009 (20 – 32oC) 

1.015 (32 – 46oC) 

1.028 (20 – 32oC) 

1.016 (32 – 46oC) 

* where,  

T: target temperature 

C: concentration (or volume) at the target temperature 

t: reference temperature 

Ct: concentration (or volume) at the reference temperature (equation according to Metcalf & 

Eddy, 2003; the exponential equation indicates in practice the same percentage change per 

degree centigrade as the Arrhenius type of equation) 

4.1.4 Discussion 

From the LFG generation and utilisation point of view, the mesophilic condition is optimal for 

increasing methane utilisation efficiency, which is in accordance with the results of Blakey et al. 
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(1997) and Mata-Alvares and Martina-Verdure (1986). For small and medium-size landfills, 

attempts to maintain optimal temperatures for landfill operations are required. A bottom water 

insulating layer or recirculated leachate heating could be considered (Rees et al., 1980; Warith 

et al., 2005). However, if LFG collection and energy recovery were not required, a landfill 

temperature increase offers no significant environmental benefit when considering a long 

aftercare period. 

When considering the post-closure management needs, under psychrophilic conditions, the 

residual COD concentrations with an L/S ratio of 4.3 (which corresponds to 200 years of 

landfilling in field conditions, as mentioned in Table 8) were close to the direct discharge limit, 

which is 200 mg/L. Under thermophilic and mesophilic conditions, the residual COD 

concentration is still clearly higher than the limit. In the case of nitrogen, the same trend can be 

seen, but the limit value is still far below the level achieved in this study, indicating the 

dominating status of nitrogen for the length of the aftercare period. Specific in situ leachate 

management and pretreatment processes (e.g. a nitrification-denitrification plus post DN 

system) are compulsory for countries with leachate indirect discharge limits. 

It verifies that a higher temperature leads to greater and faster LFG emission. The LFG indicates 

most clearly the biological activity and is thus more sensitive to temperature change than other 

parameters (Cl, NH4-N, COD), which have a stronger relation to physico-chemical phenomena 

such as washing. 

This study indicates that the aftercare period may exceed 200 years before the leachate meets 

the mentioned limit values. This period can be shortened to some extent with a suitable leachate 

management and treatment system, including water recirculation, to achieve the target L/S ratio 

faster. To optimize aftercare from the cost point of view, different landfill management 

scenarios and leachate treatment alternatives have to be evaluated in relation to the 

circumstances in question, which is an extensive topic. These issues will be targeted in Section 

4.4. As a whole the results give new information to evaluate applicable long-term strategies in 

various environmental conditions and for modelling. The long duration of the required aftercare 

period in anaerobic conditions indicates that other alternatives, like changing conditions at a 

suitable L/S ratio to a faster aerobic degradation, may also be useful, as shown by Heyer (2003).  
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4.2 Leachate biological treatment: nitrogen removal (III, IV) 

The biological treatment of municipal landfill leachate was studied at 25 oC and with an average 

hydraulic retention time of 12 days. Without external carbon addition, the biodegradability of 

the raw leachate fluctuated and the BOD7/N ratio was in the range of 0.1 – 0.5, which was 

comparatively low even for the aged landfills. In order to comprehensively evaluate the 

feasibility of decreasing the TN of landfill leachate with an on-site leachate pretreatment 

process, by applying low external carbon use and low DO, external carbon was added to 

escalate the OLR from the level of 0.01 g BOD7/g VSS/day to the level of 0.06 – 0.08 g BOD7/g 

VSS/day, with the NLR of 0.03 – 0.08 g N/g VSS/day. The operational schemes and the 

optimum BOD7/N for denitrification were tested and compared as well. 

4.2.1 Nitrification 

In the nitrification phase, excessive carbon may cause an overgrowth of heterotrophic micro-

organisms that then interfere with the growth of autotrophic micro-organisms (Tijhuis et al., 

1994), that is, ammonium-oxidizing bacteria, which similarly agglomerate on the sludge floc 

surfaces. In this study, the high influent NH4-N concentration and progressive increase of 

external carbon level averted the occurrence of this inhibition. 

A 99 – 100% average daily NH4-N removal efficiency was achieved. During the aerobic phase, 

the maximum DO achieved was 2.0 mg/L and on average around 0.4 – 1.0 mg/L; the oxygen 

uptake rate (OUR) was measured at 4 – 13 mg O2/L/hour and varied with different operational 

schemes. The applied C/N ratio (external carbon addition) was kept at the reasonably low level 

of 0.4 – 1.6. The nitrification rate was 2 – 4 mg/g VSS/hour. The results of Pelkonen et al., 

(1999) are close to the range found here, which was tested with a higher applied C/N ratio and 

DO level but at a lower temperature. Moreover, it was found that even with the DO lower than 

0.4 mg/L, more than 98% NH4-N removal efficiency could still be achieved stably. VFAs in the 

influent leachate can interfere with the nitrification (Eilersen et al, 1994). According to the DO 

and pH results, VFA probably concretized a big portion of BOD7 represented in Table 3. Due to 

the limited amount of readily degradable organic content in the leachate, this may not have 

occurred in this study, which is supported by the near complete ammonium removal results. 

These results indicated the potential to reduce the aeration duration or to apply a low oxygen 
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supply as aeration. When the average DO was lower than 0.8 mg/L, the NO2-N/NOX-N ratio 

was around 0.7, which shows that with low DO and at a low external carbon addition level, it 

was possible to maintain an inhibition of nitrite-oxidising bacteria, leading to stable nitrite 

accumulation. More details about the DO control and aeration performance with different 

operational schemes will be discussed further in Section 4.2.4. 

4.2.2 Denitrification 

The highest average TN removal efficiency was achieved with an external carbon addition level 

of 1100 – 1800 mg COD/L, which was on average 55%.  

Because of the variation in the leachate quality, the higher external carbon addition level does 

not necessarily represent a higher applied C/N ratio. To minimize this interference, the overall 

C/N ratio was intended to be used as a criterion of analysis, instead of calculating it based on 

explicit stages (external carbon addition levels). The optimal stable TN removal efficiency 

achieved was over 62% with the C/N ratio above 1.7. This TN removal efficiency is quite 

acceptable with such low C/N ratios, compared with the results shown for different (not only 

leachate) treatment processes (e.g. Ruiz et al. 2001; Obaja et al. 2005; etc.).   

Even with a high C/N ratio, which was sometimes caused by the increase of slowly degradable 

organics or the decrease of NLR, lower OLR (meaning the lower availability of readily 

degradable organic matter (BOD7)) still inhibited denitrification markedly. For example, as the 

C/N ratio increased from 1.4 to 1.6, a 1.5% decrease in the BOD loading rate induced a 4.6% 

consequential decrease in TN removal efficiency. This finding confirms that the availability of 

readily degradable organics determined the high point of biological treatability or 

biodegradability of the leachate (e.g. Peng et al., 2004). 

A denitrification cyclic test was performed when the external carbon addition level reached 280 

mg COD/L. The influent biodegradable COD/N ratio was 1.1, and the BOD/N ratio was half of 

that. This was designed intentionally with carbon limitation, in order to optimize the process so 

that costs are minimized, which will be discussed more in Section 4.3. With such low 

biodegradability of leachate, the average TN and COD removal efficiencies were 52% and 58%, 

respectively. With the intensive monitoring of several anoxic phases, the denitrification rate was 

determined to be 1.2 – 5.3 mg NO3-N/(g VSS·hour). In this case, it was detected that a BOD/N 

ratio greater than 0.9 is already sufficient to achieve a TN removal efficiency of over 60%. 
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Nevertheless, for stability of the treatment, it is still recommended that this ratio is higher than 

1.2 (corresponding C/N level 1.7 – 1.8). 

4.2.3 Partial nitrification and nitrite denitrification test period 

Aiming at the characteristics of the landfill leachate, like high NH4-N concentration and a low 

biodegradable COD/N ratio, a 120-day partial nitrification and nitrite denitrification test period 

(DO: < 1 mg/L and on average 0.4 – 0.6 mg/L, temperature: 26±1oC and pH: 7.8 – 8.0) was 

performed. 

Accumulation of nitrite is usually ascribed to the difference in the affectability of DO between 

ammonium oxidizing bacteria and nitrite oxidizing bacteria. In this condition, no evident 

inhibition to ammonium oxidization was observed and 71 – 89% of NH4-N was converted to 

NO2
-. It can be deduced that at DO 1.2 mg/L or higher, complete nitrification to NO3

- was 

achieved. When the DO was lower than 0.97 mg/L, the NO2
- /NOX

- ratio was greater than 0.5. 

These DO levels are lower than most of those reported by previous researchers (reviewed by 

Peng and Zhu, 2006). The low DO level showed no adverse effects on the ammonia oxidization 

rate or activated sludge quality. Briefly, controlling the aerobic DO level to below 1.0 mg/L 

promoted improved denitrification in the anoxic phase through nitrite accumulation. This 

indicates denitrification via nitrite at a lower DO. Accordingly, the specific nitrogen removal 

rate was highest at a NO2
- /NOX

- ratio above 0.75, namely 23 mg N/(g VSS * d). The nitrite 

denitrification rate was high compared with the denitrification rate via nitrate, which is close to 

the results shown by van Kempen et al. (2001) and Chung and Bea (2002). With the same C/N 

ratio, the TN removal increased to a maximum 13% unit, corresponding to the 28% relative 

change during this period, which is in the range possible for partial nitrification and 

denitrification via nitrite. 

Organic matter removal and carbon consumption during partial nitrification and nitrite 

denitrification test period 

The organic matter removal has varied mostly with the organic loading and the lowest COD 

removal happened during the highest COD loads. With the C/N ratio above 1.7, the optimal 

COD removal efficiency achieved was 74%. When the DO level was under control, a decrease 

of 5 – 8% units in COD removal can be estimated at higher NO2
- /NOx

- ratios.  
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Meanwhile the efficiency of the use of different carbon (COD) fractions can be seen clearly to 

be more efficient with an increasing NO2 fraction of NOX during the nitrite accumulation period 

and the preceding period, changing the conditions to being nitrite dominant. When the NO2-

fraction was over 0.75, the CODdosed/Nremoved ratio was 2.5, which is close to the value found in a 

Sharon process by Fux et al. (2003), namely 2.4 g COD added/g NO2-N removed and slightly lower 

than that shown by Ruiz et al. (2006) in nitrite accumulation experiments. In this study the 

process conditions have been alternated oxic/anoxic, so some carbon loss could be expected. 

However, the ratio found here shows efficient carbon use, comparable to nitrite denitrification 

in permanent anoxic conditions. Possible additional factors aiding the low carbon need can be 

some uptake of carbon as cell internal storage compounds and the use of biodegradable COD in 

the leachate. In alternating carbon feed and anoxic/aerobic conditions with low DO, the readily 

degradable carbon is efficiently taken up as storage polymers and can be used for denitrification 

(Third et al., 2003). 

As a whole, the biodegradable COD of raw leachate is 15 – 30% of dosed COD per one unit 

nitrogen removed, and it shows some increasing trend, together with the increasing nitrite 

fraction. Based on the anoxic biodegradation kinetics with leachate (Plosz et al., 2009) and 

substrate characterisation, it seems probable that part of the slowly degradable COD has been 

used for denitrification – before the next 4-hour period with new substrate feed. However, while 

part of this COD fraction has been consumed aerobically during the aerated period, this may 

have been minimised, especially during periods with a low DO set-point. 

With a lower nitrite fraction of NOx (below 0.3) the carbon need was clearly higher, 

approximately double compared to the range above 0.75. CODdosed/Nremoved was close to 5.5 – 6, 

which is in the conventional range, as also found by Heander (2007) and slightly higher 

compared to the values found by Chang (1993, 1998). 

As a result TN removal close to 60% was achieved at a low BOD/N ratio of 0.7 – 0.75, which 

made it possible to apply a lower external carbon addition to save costs and decrease residual 

COD concentrations.  

4.2.4 Operational strategies 

Two operational strategies and operational schemes, schemes PA and PB as illustrated in Figure 

8, were run for 290 days and 308 days respectively. The main difference between schemes PA 
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and PB was the intervals between aeration; moreover, the PA scheme ran with a longer total 

anoxic period (2.5 hours/4-hour period) than PB (2.0 hours/4-hour period). As the 

biodegradable organics to nitrogen ratio (BOD7/N ratio here) was around 1.2, removal 

efficiencies of 59% for TN and 55% for COD were achieved during scheme PA; in scheme PB, 

removal efficiencies were 61% for TN and 59% for COD. In scheme PB the TN removal 

efficiency was slightly better than during PA. Both of them are quite acceptable with the shown 

BOD7/N ratio, which was kept low intentionally in order to have carbon limitation. COD 

removal was more efficient in scheme PB.  

In this test, for both schemes PA and PB, the average DO was successfully modulated in the 

range of 0.5 – 1.0 mg/L. It was observed that at DO of 0.5 – 0.7 mg/L, a more effective 

inhibition of nitrite-oxidizing bacteria and nitrite accumulation happened.  

Since DO control limitation was utilized in this study, the real time of aeration might be 

different from the design. A longer total non-aerated period occurred in PB in each cycle. At the 

same air supply level, a higher average nitrite concentration after aeration occurred in PB, which 

indicates that the longer total non-aerated period is advantageous to the inhibition of nitrite-

oxidizing bacteria. In the PB scheme, the aeration period was shortened to 0.5 hour, which 

means that each non-aerated period was also short (maximum 1 hour).  

Baumann et al. (1997) and Mota et al. (2005) studied different lengths of non-aerated periods 

and concluded that a reactor with more than 3-hour non-aeration period showed considerable 

nitrite reduction during the non-aeration periods and also reduced the amount of nitrite 

oxidizing bacteria. In this study the NH4-N concentration in the influent was clearly higher and 

the DO concentration was considerable lower than in the study of Mota et al. (2005) – factors 

which favour the build-up of nitrite. Thus the control of DO could improve the selection of 

ammonium-oxidizing bacteria over nitrite-oxidizing bacteria in intermittently aerated schemes. 

The short aeration period (0.5 hour) didn’t affect the virtual presence of the non-aerated period 

and showed even better performance at the inhibition of nitrite-oxidizing bacteria. In addition, it 

has been shown that high ammonium concentration is helpful in selecting ammonium-oxidizing 

bacteria over nitrite-oxidizing bacteria (Tappe et al., 1999). The influent feeding mode was 

significant in aiding ammonium accumulation during the non-aerated period, as the influent 

feed was at the beginning of the non-aerated period. 

Under a low air supply condition, e.g. with the air supply level between 12 and 23 g O2/g 

biodegradable COD and nitrogen (the indicator of air supply level), load PB showed a 
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promising adaptability with the accumulation of nitrite with up to 60 – 70% of nitrogen oxide 

and around 60% TN removal achieved stably. All nitrite ions were oxidized to nitrate ions when 

the air supply level was increased to 42 in PB and 54 g O2/g biodegradable COD and nitrogen 

load in PA. With the same removal efficiency level, the supplied amount of air in PB was lower 

and showed better oxygen utilization efficiency; whereas with a higher air supply level (e.g. air 

supply level >30 g O2/g biodegradable COD and nitrogen load), PA showed greater potential to 

prevent the nitrite oxidizing. 

When the NO2 fraction increased, the carbon needed for denitrification clearly decreased in both 

schemes and the biggest change happened when nitrite had started to accumulate (NO2 fraction 

0 – 0.3). As discussed in Section 4.2.3, the level of the CODdosed/Nremoved ratio in this study was 

rather promising. Similarly, in nitrite dominant conditions, the CODbiodegradable/Nremoved ratio 

measured was lower than 3 in both PA and PB, which is close to values found in permanent 

anoxic conditions aimed at nitrite denitrification in spite of alternating anoxic/aerobic 

conditions. 

The special operation strategies, like step-feeding and intermittent aeration, were effective at 

increasing the availability of readily biodegradable organics for exogenous denitrification 

during anoxic phases. Scheme PB showed better performance at effectively utilizing the 

aeration and preventing the nitrite from oxidizing. However, when considering the complexity 

of the real high-strength influent leachate features, the DO controlling strategy and measures are 

more demanding. It was found that the denitrification performance was improved as the aeration 

DO was kept at a low level: 0.4 – 0.6 mg/L. In the low DO condition, the extended anoxic phase 

and simultaneous nitrification and denitrification alleviated the adverse impacts of the 

inadequate anoxic time in both schemes.  

4.2.5 Discussion 

In general, the purpose of leachate biological treatment study is to verify the feasibility of 

improving leachate management in the aftercare period. For the decisive factor nitrogen (TN), 

the optimum removal targets with the best cost efficiency were determined via a series of 

experiments with different operational conditions (e.g. DO, the C/N ratio, the operational 

scheme). The results found were successful in complementing nitrogen removal with 

denitrification via nitrite and in achieving around 60% TN removal, a level which is reasonable 
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for a pretreatment option with strong carbon limitation. 

With DO and scheme control, the carbon needed for denitrification clearly decreased, and the 

biggest change happened when nitrite had started to accumulate (NO2 fraction 0 – 0.3). The 

level of the CODdosed/Nremoved ratio and the CODbiodegradable/Nremoved ratio, measured in nitrite 

dominant conditions, were encouraging and were even lower than found by Pynaert et al. 

(2002), in a biofilm process with DO limitation, and lower than in the study of Monclus et al. 

(2009), with municipal landfill leachate in a SBR process. When denitrification takes place via 

nitrite it reflects a lower need for carbon (Zeng et al., 2003; Third et al., 2003) and makes the 

low cost considerations feasible. The experimental results are used for the cost estimation, 

which is discussed mainly in Section 4.3. The outcomes support the research purpose well and 

are crucial for the work on landfill leachate scenarios. 

4.3 Cost estimation of leachate treatment (III, IV) 

With a scale-up case study of the cost estimation based on the test landfill condition, the 

economic analysis of the on-site leachate pretreatment process was integrated as an important 

part of the study to define the applicability of the technology. The process developed in this 

study works effectively under low C/N and low DO conditions, which means that the 

operational cost for chemicals could be substantially reduced. 

Currently, the leachate management costs are mainly due to the leachate treatment fee of the 

WWTP. After the on-site pretreatment process is adopted, the overall leachate management 

costs can be divided into two major parts: the leachate pretreatment costs (investment costs and 

general pretreatment operation/maintenance costs – mainly involving personnel, analytics and 

chemical costs) and the leachate treatment fee of the WWTP. 

In the cost estimation, only the main cost items are included in order to compare the alternative 

costs rather than calculate the exact costs. In this estimation the measured performance values 

have been adapted to the full-scale conditions. The basic unit cost of pretreatment investment 

and general operational/maintenance was estimated to be 0.54 – 1.40 (0 – 90% TN removal) 

€/m3, where the investment costs are variable with the treatment process capacity and reactor 

volume, and the operation costs (especially the chemical costs) are variable depending on the 

need of carbon addition and the TN removal target. The actual WWTP treatment fee was 

estimated to be 4.29 – 1.14 (0 – 90% TN removal) €/m3. 
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With 60% TN removal the cost saving potential is 28% and with 90% TN removal it is 38%, 

which indicates that the higher the TN removal in pretreatment, the higher the cost saving 

potential. When over 60% TN removal is targeted, the difference between the two options is 

rather small; the separate post DN (to increase TN removal from 60 to 90%) seems to be 

slightly less costly due to a lesser reactor volume and carbon need. If the whole process is 

working within the conventional range (e.g. Heander, 2007; Chang, 1993: CODdosed/Nremoved –

ratio 5.5 – 6 for 90% TN removal), the best cost saving potential is around 30%, achieved with 

75 – 85% TN removal.  

In a conventional two-stage system the disadvantages are that the influent biodegradable matter 

cannot be utilized in denitrification, and the decreasing pH in the nitrification unit must be 

compensated by a considerable amount of base addition. Both drawbacks increase chemical 

costs, which may be avoided using the option shown here. Moreover, in recent studies a reduced 

chemical (carbon) need has been found with denitrification via a nitrite pathway in two-stage 

systems (Canziani et al., 2006; Bai et al., 2009). 

Referring to the discussion about landfill leachate management strategies in Section 3.6, the 

advanced post-treatment, like GAC filtration, was considered for the targets of direct discharge. 

The costs have been estimated as 4.2 €/m3 for medium-sized landfills and 3.5 €/m3 for big 

landfills, based partially on data provided by Theilen (1995) and Ivashechkin (2006). 

The dominating role of the nitrogen load in wastewater treatment costs is a common feature in 

Nordic countries and elsewhere where the wastewater temperature is low during winter, 

resulting in higher investment costs. Therefore, the cost estimation in this study has wide 

reference value to other cases.  

4.4 Landfill leachate management: nitrogen control and treatment 

(V) 

4.4.1 Landfill emission potentials: NH4-N, COD, chloride and LFG emission 

Based on the results and discussion of leachate emissions in Section 4.1, the forecast models for 

the major emissions were established. The coefficients of the emission potential forecast models 
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are presented in Table 14 and the forecasting curves at the main reference temperatures are 

illustrated in Figure 11. 

Table 14 Coefficients of the leachate emission forecast models 

 
L/S ratio Θ Per cent error 

Temperature ranges 
20 – 32 oC 32 – 46 oC 20 – 32 oC 32- 46 oC 

NH4-N 
0.6 1.017 1.014 0.3% -0.4% 
1 1.014 1.012 0.5% 0.6% 
1.5 1.015 1.012 0.2% -1.1% 
2 1.009 1.010 0.9% 1.3% 
2.5 1.005 1.008 -0.7% -1.1% 
4 1.011 1.016 0.2% -1.0% 
COD 
0.6 1.008 1.013 0.2% 0.9% 
1 1.011 1.013 -0.1% 0.6% 
1.5 1.007 1.013 0.2% 0.8% 
2 1.009 1.013 0.2% -0.4% 
2.5 1.008 1.013 0.1% 0.2% 
4 1.008 1.019 -0.5% -0.5% 
Chloride  
0.6 1.016 1.006 -0.2% 0.0% 
1 1.014 1.006 0.0% 0.5% 
1.5 1.013 1.006 0.3% -0,3% 
2 1.009 1.009 -1.0% 0.7% 
2.5 1.011 1.008 0.5% 1.2% 
4 1.003 1.007 -0.6% 0.7% 

 
Temperatures A b  R-squared value P-value 
NH4-N 
20 1534.28 -0.5264 0.99 0.02 
32 1874.11 -0.5572 0.99 0.04 
46 2022.33 -0.5062 0.99 0.05 
COD 
20 3420.78 -0.7170 0.99 0.01 
32 3794.03 -0.7087 0.98 0.05 
46 4345.57 -0.6417 0.99 0.05 
Chloride 
20 2525.54 -0.5744 0.98 0.05 
32 2871.63 -0.6000 0.98 0.04 
46 2678.90 -0.5432 0.99 0.03 
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Figure 11 Modelled leachate concentrations and gas production 

The NH4-N concentration in the leachate reaches the direct discharge limit value at an L/S ratio 

of 5.9 under psychrophilic and mesophilic conditions, and at an L/S ratio of 6.7 under 

thermophilic conditions. Meanwhile, the total amount of NH4-N discharged in psychrophilic 

conditions is 13% and 28% less than the amount discharged in mesophilic and thermophilic 

conditions respectively. Leachate COD reaches the direct discharge limit value at an L/S ratio of 

4.0 in psychrophilic conditions. In mesophilic conditions, the COD emission concentration 

meets the direct discharge limit value at an L/S ratio of 4.2; whereas in thermophilic conditions 

the required L/S ratio is 4.8. When meeting the direct discharge limit value, the total amount of 

COD discharged in psychrophilic conditions is 12% less than that in mesophilic conditions and 

34% less than that in thermophilic conditions. For chloride emission, in psychrophilic and 

mesophilic conditions, the L/S ratio level required to meet the direct discharge limit value is 

Experimental curve         Forecast curve 

(a) 

Experimental curve         Forecast curve 

(c) 

Experimental curve         Forecast curve 

(b) 

Experimental curve         Forecast curve 

(d) 

Limit value Limit value 

Limit value 
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almost the same as well; that is, 5.6. In thermophilic conditions, the required L/S ratio to reach 

the direct discharge limit value is approximately 6.1. The total amount of chloride discharged is 

lowest in psychrophilic conditions and highest in thermophilic conditions (+13%). 

It indicates that, compared to lower temperatures, the mesophilic conditions will not obviously 

increase the required L/S ratio needed to meet the limit value for the NH4-N emission, but will 

still increase the amount of NH4-N, which then must be taken care of. 

The most active LFG generation and methanization kinetics occurred with an L/S ratio below 1, 

making it more difficult to forecast. The cumulative LFG generation was highest in the 

experimental range in thermophilic conditions, slightly lower in mesophilic conditions and 

clearly lowest in psychrophilic conditions – for which the results are in accordance with the 

leachate emission data. As LFG utilization is the target, increasing the landfill temperature is 

helpful in impelling waste degradation and methane generation and improving the efficiency 

and service life of the LFG utilization facilities. The forecasting model results also show that a 

lower L/S ratio rate can result in a lower target L/S ratio level, but will prolong the time needed 

to achieve the target L/S ratio level. At 20 oC, the required aftercare time is, in principle, 

prolonged by 10%; and, at 32 oC, the aftercare time, in principle, is doubled. It is clear that from 

the landfill aftercare point of view, a high L/S ratio rate is favourable.  

It is expected that with the model developed here clues about the importance of different target 

parameters can be found. The importance may alter as the ranks of different discharge limits 

vary in different countries. According to the literature on the limit values (Table 12), the results 

shown can be applicable for many countries where similar discharge limit values are used. 

Varying recirculation strategies, such as fresh water and treated effluent circulation both in 

bioreactor and conventional landfills, can affect the behaviour of decisive factors (nitrogen, 

organic matters and inorganic matters). Based on the forecasting model results, the weighting 

coefficients of different factors for LE, referring to the equation in Section 3.6.2) are 

summarized in Table 15 and the LE trends at different temperatures are shown in Figure 12. 

There is a clear gap between the thermophilic conditions and the lower temperature conditions. 

When the temperature is lower than 32 oC, the LE value decreases to 1 (direct discharge level), 

with an L/S ratio of 5.9 – 6.0. When the temperature is increased to a thermophilic level, an LE 

of 1 is achieved, with an L/S ratio of 6.7. 
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Table 15 Weighting coefficients of leachate emission integrator 
Te

m
pe

r
at

ur
es

, 

L/S ratio 
rate, 
/reference 
year 

NH4-N, mg/L COD, mg/L Cl-, mg/L 
Direct 
discharge 
limit 

L/S 
ratio @ 
standard 

α Direct 
discharge 
limit 

L/S 
ratio @ 
standard 

Α Direct 
discharge 
limit 

L/S 
ratio @ 
standard 

α 

20 1.175 70 5.9 0.38 200 4.0 0.26 100 5.6 0.36 
20 0.860 5.6 0.41 3.4 0.25 4.5 0.34 
32 1.175 5.9 0.38 4.2 0.26 5.6 0.36 
32 0.411 6.0 0.41 3.4 0.23 5.1 0.36 

 

 

Figure 12 LE integrators at different temperatures 

4.4.2 Post-closure management: a leachate management scenario and strategic model 

Referring to the description in Section 3.6.3, six scenarios were designed and the major 

indictors are the size of landfill, represented by temperature difference, and the annual water 

infiltration, represented by annual L/S ratio difference. In order to make the results of the 

modelling work more widely applicable, the estimation of the landfill size and field conditions 

in this part (referring to Table 11) was different from the estimation in the previous part 

(referring to Table 8). This means that the simulated real landfill years resulted should not be 

compared. The LE integrator forecasts for different scenarios, illustrated in Figure 13, shows the 

different time frames needed to achieve the target L/S ratio.  



 

 

72 

For big landfills with the basic Scenario A, the aftercare period may be as long as 440 years. 

With three-fold infiltration (Scenario B), this period would be approximately 145 years. When 

six-fold infiltration is used (Scenario C), the aftercare period for leachate could be shortened to 

approximately 75 years. For medium-sized landfills, the estimated aftercare period for scenarios 

E, F, and G are approximately 145, 50 and 25 years respectively. Scenarios C and G provide the 

best starting point for highlighting the importance of recirculation. Moreover, the length of these 

periods refers to conventional landfills and, if operated as bioreactors from the beginning, 

shorter periods would result. 

 

 

Figure 13 LE trends in different scenarios 

Medium-sized landfills 

Big landfills 
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Due to recirculation, the biodegradation of organic material in landfill is enhanced, as has been 

verified in simulator experiments, which is in accordance with the results of Lema et al. (1988) 

and Jiang et al. (2007). However, recirculation is not effective in reducing the NH4-N 

concentration; on the contrary, it increases the NH4-N concentration to some extent (Benson et 

al., 2007). Hence, it is favourable to nitrify the NH4-N and to reduce the total nitrogen 

concentration through an on-site pretreatment process. Nitrification is more important, since 

denitrification may happen in the anaerobic conditions of inner landfills together with organic 

waste degradation. Denitrification is also helpful in accelerating the L/S ratio rate compared 

with the recirculation of untreated leachate.  

According to these understandings, a cost estimation is made for different scenarios based on 

the near-real situations of Finnish landfills and applied only to the aftercare period. Chlorides 

are not considered as a decisive factor because of their negligible role in the salt load of the 

municipal wastewater system. In the case of on-site treatment, the recipient can be the same as 

with the WWTP, keeping the salt load comparable for different leachate management 

alternatives. The results show that a single biological treatment, with a low addition of carbon, 

decreases operational costs. The total costs, including capital, operational and maintenance 

costs, as well as the average costs per m3 of leachate and per ton of landfilled waste, are shown 

in Figure 14. 

 

Figure 14 Estimated total and average costs in different scenarios and leachate management 

strategies (The vertical bars indicate the differences of the total costs, with ± 25% unit cost 
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changes for on-site advanced treatment and the WWTP treatment fee considered in the cost 

estimation.) 

In this estimation, post DN with advanced treatment was considered when the effluent’s COD 

does not meet the limit for on-site leachate management alternatives. GAC filtration is a good 

option as an advanced treatment method in the sense that the cost is mostly related to carbon 

material and is not as much connected to plant size, whereas other methods have a much higher 

percentage of capital costs. This makes the estimation of this treatment alternative more 

concrete and more actual. 

In Finland, if a municipal treatment plant is available and has an adequate capacity, it is 

customary to treat the leachate at the existing public facility (Off-site I in Figure 14). With the 

current leachate management approach in Helsinki (municipal WWTP), the high NH4-N 

concentration corresponds to approximately 65% of the unit costs. It can be assumed that in 

many existing landfills, an indirect discharge may be prioritized; however, the costs of this 

indirect discharge strategy without on-site pretreatment (Off-site I management alternative) are 

the highest. Moreover, the total cost of Off-site I was the most sensitive to the fluctuation of 

estimated unit costs (indicated by the vertical bars in Figure 14), which means uncertainty for 

the long-term management strategies.  

Depending on the leachate characteristics and the local indirect discharge regulations, an on-site 

leachate pretreatment process should be considered for the indirect discharge. On-site biological 

pretreatment with post DN (Off-site III management alternative) shows the lowest costs in all 

scenarios, which reflects the importance of nitrogen removal. When minimizing the length of 

the aftercare period, on-site treatment (On-site management alternative) with activated carbon 

filtration shows clear advantages, but it is to some extent more expensive than the alternatives. 

When comparing the different alternatives in the same scenario related to possible changes in 

the estimated unit costs, the costs of Off-site III are still the lowest (Figure 14). Scenario C is 

similar to Scenario G, except that the difference in the on-site treatment alternative is a little 

smaller. This order prevails, excluding the base scenarios (scenarios A and E), in which the 

order of the different treatment alternatives may change with a small fluctuation in the unit 

costs. If temperatures differ from the estimated temperature, for example being 5 – 10 °C 

higher, then the impact on the cost comparison is no bigger than the estimated changes in the 

unit costs. It is worth emphasizing that local circumstances have a strong impact on costs and 

should always be considered. 
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In biological treatment, investment costs form the main part of the unit cost and it is estimated 

that they will increase 1.7-fold when the flow rate decreases one decade, which is considerable. 

There is a rather small difference in unit costs between a big landfill versus a medium-sized 

landfill, as in scenarios C and G. In a medium-sized landfill, the average costs even seem to be 

slightly lower than in a big landfill. The factors affecting this have to do with the fact that the 

difference in the flow rate is not very big (twofold) and that the initial NH4-N concentration in a 

medium-sized landfill is estimated to be 14% lower than in a big landfill when the aftercare 

period starts. The latter brings some advantages by decreasing the total amount of leachate in 

favour of medium-sized landfills. Overall, it is possible to combine the environmental benefits 

(the shortest aftercare) with the economic benefits. 

Berge et al. (2009) estimated that leachate treatment costs will decrease considerably during the 

aftercare period when leachate is re-circulated, assuming that only the leachate fraction not 

recirculated requires treatment. This is not supported by the simulator results in this study, 

where, conversely, the treatment steps shown in Figure 9 are needed when anaerobic bioreactors 

are considered. They used a 30-year period in their study, and so a comparison of the costs 

estimated here would only be partial. 

The experiments by Fellner et al. (2009) showed that leaching related to soluble components 

like chloride can be different in full-scale situations as compared to simulator results. On the 

other hand, nitrogen leaching was comparable at full-scale and at a simulator scale. As nitrogen 

is the factor that determines the targeted L/S ratio, uncertainty regarding the estimated costs 

seem not to be serious, based on the simulator study results. It is also obvious that the structural 

properties of the leachate infiltration system have an impact on the full-scale leaching 

efficiency. Some uncertainty is to be expected, but the leached loads are the same for both on-

site and off-site treatment alternatives. However, when considering interest rates for long-term 

cost estimation and comparison, divergent impacts on the scenarios are to be expected. 

When using a high infiltration rate in medium-sized landfills, the effluent limit values can be 

reached in a reasonable time. For big landfills, this is not the case and other means, like the 

inclusion of an aerobic phase, are necessary. This will include additional investment and 

operational costs, but it does not change the total costs dramatically (Stegmann et al. 2006). 
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4.4.3 Discussion 

With the studied emission limits, nitrogen (NH4-N) is the key decisive factor with the longest 

aftercare time. It corresponds to the results in Section 4.1 and the findings of Andreas (2000) 

and Morris and Barlaz (2011), and with such a long time required in principle for the aftercare, a 

specific treatment and management process for nitrogen is obligatory. To avoid Cl- becoming 

the limiting parameter, fresh water addition must be involved in leachate recirculation, because 

in biological leachate treatment Cl- removal is negligible. The tendency of temperature impacts 

and L/S impacts showed by the forecasting model is also in accordance with the findings of the 

landfill simulators in Section 4.1. 

The scenario results for leachate emissions reveal that the targeted L/S ratio required to end the 

landfill leachate aftercare is 5.7 – 6 and a 30 – 40-year aftercare period is not sufficient for all 

scenarios. The L/S ratios needed to achieve the limit values found here are to some extent 

higher, on average, than the values expressed by Heyer et al. (2005). They found that the highest 

L/S ratios needed for nitrogen are 4.4 on average (maximum 7.7), giving an over 200-year time 

period (450 years maximum). The difference in results between Heyer et al. (2005) and this 

study is caused by a lower organic fraction and some differences in infiltration and landfill size. 

The highest water infiltration (Scenario C) in a big landfill resulted in the shortest aftercare 

period. However, it may be technically problematic to achieve a high infiltration rate, and 

specific measures should be taken, some of which may be more costly than in other cases. With 

lower waste depths (Scenario G), such infiltration rates can be achievable, although such full-

scale realizations may still be scarce.  

On-site biological pretreatment seems to be effective from both technical and economical points 

of view and is recommended. Especially when leachate recirculation has been adopted, a 

considerable increase in plant size and a shorter length for the aftercare period shows a clear 

advantage in unit costs.  

The average unit cost (per m3 leachate) found here (Figure 14) are lower than those found by 

Heyer et al. (2005). The period for which they estimated the costs is obviously shorter, because 

the total costs found here are higher. The lower costs (per m3 leachate) here may be due to the 

selection of treatment techniques being directed at low-cost alternatives. Also, the average costs 

here include periods during which some unit process(es) may not be operating and, at the earlier 

stage, the costs may have been higher. Compared with the calculation for a conceptual sample 
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landfill by Stegmann et al. (2006), the leachate management costs are in the same range (in 

relation to the waste volume) when the lowest costs (Scenario G) are considered. 

According to the estimated leachate management costs shown in Figure 14, it is possible to 

achieve a reasonable cost reduction of 40% in big landfills and 34% in medium-sized landfills 

by the improvement of leachate management strategies. This output is meaningful to answer the 

research questions raised in Chapter 1.  

Validated by the intensive simulation data, the models developed in this study forecast the 

potentials of the leachate emissions very well. This outcome makes it possible to determine the 

length of the landfill aftercare period.  

The forecasting results of different decisive factors give hints of their importance and also the 

weighting coefficients to achieve LEs. The result of LEs principally embodies the specific 

decisive factors (nitrogen, organic matters and inorganic matters). With this tool, it is possible to 

use a single integrated indicator to study the feasibility of leachate management scenarios. 

The model developed here is targeted to be an effective prognosis tool for the indication of 

biodegradation performance (leachate emission) and for the development of the leachate 

management strategies system of real landfills. This methodology takes into account the whole 

lifespan of landfill leachate management rather than only roughly estimating it. 

The approach is based on the LSR data and the site-specific conditions of full-scale landfills 

such as complex waste composition and local climate are not considered. So the model 

developed is facing limitations as to the efficiency (evenness) of infiltration and the 

heterogeneity of the waste. The uncertainty of the models needs to be discussed in the further 

study in view of the sensitivity and utility of model outcomes. 
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5 Conclusions 

Leachate characteristics and emission potentials in the aftercare period 

The results from the long-term anaerobic LSR showed that the impacts of temperature emerged 

clearly in all the parameters studied. At higher temperatures, waste degradation was more 

effective, which is favourable from the LFG management point of view (i.e. more LFG is 

generated). The mesophilic condition showed the optimal efficiency. However, from the 

leachate management point of view, a higher temperature also resulted in higher emission 

concentrations and landfill leachate emission potentials, which means a greater effort in leachate 

treatment is required. After an L/S of over 4, the waste degradation degrees of the mesophilic 

and thermophilic conditions were quite close and much higher than that of the psychrophilic 

condition. Therefore, the increase in temperature can accelerate waste degradation and gas 

generation, but cannot decrease the length of the waste stabilisation since it could extend the 

waste degradation degree. A higher annual L/S ratio rate was verified to be an effective factor in 

considerably decreasing the stabilisation period. 

The results of this study systematically describe the long-term landfill leachate and LFG 

emission performance, but the limit value is still far below the level achieved in the simulators 

with the achieved L/S ratio of 4.35. Even though the results cannot directly answer a question 

like the length of the landfill aftercare period, they give a solid foundation for the estimation of 

long-term landfill leachate emissions in different environmental conditions and forecast 

modelling. 

Leachate treatment strategy to improve leachate management in the aftercare period 

The results of biological leachate nitrogen removal studies showed the feasibility of on-site 

leachate biological pretreatment for treating a high NH4-N concentration and low biodegradable 

COD/N ratio municipal landfill leachate. The denitrification performance was improved when 

the aeration DO was kept at a low level of 0.4 – 0.6 mg/L. Over 99% ammonium nitrification 

and at least 40% partial nitrification to nitrite could be achieved with a BOD7/N of 1.1, and over 

60% TN removal could be achieved with a reasonably low air supply level. In the low DO 

condition, the extended anoxic phase, and simultaneous nitrification and denitrification, 

alleviated the adverse impacts of the inadequate anoxic time and increased the probability of 

utilizing slowly degradable organics for denitrification.  
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The reaction rate of denitrification (both NO2
- and NO3

-) was 4.1 – 7.0 mg/g VSS/hour during 

scheme PA (long non-aerated/aerated sequences) and 3.2 – 6.0 mg/g VSS/hour during scheme 

PB (short sequences). The PB scheme performed better when saving air supply and preventing 

nitrite oxidation under low air supply conditions; it also showed, on average, 5% higher units of 

TN removal and better COD removal. Both tested schemes were successful in complementing 

nitrogen removal with denitrification via nitrite and in achieving around 60% TN removal, 

which is reasonable as a pretreatment option with strong carbon limitation. 

The results are applicable to optimizing the low-cost operational strategies of an on-site 

pretreatment process. The experimental results make comprehensive cost estimation feasible 

and the outcomes support the evaluation of leachate management principles and strategies well, 

from the technical and economic points of view; something that is functional in detecting the 

essentials – the length and costs of leachate aftercare. 

The methodology of landfill leachate management: forecast modelling and post-closure 

management 

Based on the results above, the possibility and feasibility of optimizing landfill leachate 

management and treatment strategies have been clarified, from both a technical and economic 

point of view. As a guideline system to integrate the results and solve the questions, the forecast 

models for major emissions and their integrator (LE) were developed by using a regression 

analysis tool.  

The results expressed the importance of different target parameters and gave clues to the target 

L/S ratio level of landfill needed in order to end leachate management. It indicated the 

dominating status of nitrogen in determination of the length of aftercare period, and thus 

nitrogen is the key indicator of long-term leachate performance. This verified the necessity of 

on-site leachate management and pretreatment processes, e.g. biological nitrification-

denitrification, for the removal and control of the TN of leachate for different purposes, i.e. 

indirect discharge, leachate recirculation and/or on-site advanced leachate treatment. The 

targeted L/S ratio required to end the landfill leachate aftercare was revealed as 5.7 – 6, which 

was determined by studying waste characteristics (the organic fraction) and landfill conditions 

(infiltration and landfill size). 

Most importantly, the tool makes the evaluation of the level of leachate emissions at a certain 

time possible, in order to directly give us an answer for the length of the aftercare period for a 

landfill. Six scenarios are designed, based on the general condition of existing sanitary landfills, 
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to represent the medium-sized and big landfills, with or without recirculation. The forecast of 

six landfill-scenarios showed that in scenarios with the highest infiltration leachate, the aftercare 

period can be shortened substantially to 25 years and 75 years, in medium-sized and big 

landfills respectively. However, this is technically more challenging to do for big landfills. 

Moreover, the leachate management costs during the aftercare period can be reduced by 30 – 

40% compared with conventional landfill leachate management. 

Due to leachate characteristics and local indirect discharge regulations, the alternatives of on-

site leachate pretreatment processes are deliberated and show economic advantages compared 

with the customary leachate management alternative (channelling to the WWTP). Because of 

the importance of nitrogen removal, on-site biological pretreatment with post DN showed the 

lowest costs in all scenarios. On-site treatment with activated carbon filtration is competitive 

within the shortened aftercare period as the alternative with the next lowest costs. Overall, the 

environmental benefits (the shortest aftercare period) and the economic benefits could be 

integrated based on the forecast modelling and cost analysis. 

This methodology is expected to give landfill leachate management some outlook with the 

support of quantifiable data. Temperature and the L/S ratio are deliberated to represent the 

variety of landfill conditions and operation. The methodology is targeted to be widely 

applicable. It can estimate the length of the aftercare period feasibly and give the data support to 

solve the research questions raised in the beginning. The finding is significant for the decision 

makers of landfills in considering how to shorten the aftercare period and make cost plans.  
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