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1. Introduction

The amount of information available on the internet has grown enor-

mously, thus making the extraction and location of information more labo-

rious. Compared to the images and videos, searching for textual informa-

tion is relatively painless. However, search for occurrences of given string

is most common task, and therefore the solutions should be efficient. Good

solutions were already devised several decades ago. On the other hand,

development of hardware offers opportunities and causes needs for bet-

ter solutions. Therefore new methods for string matching are still being

developed.

The string, whose occurrences are searched for is called the pattern. It

can be a word, a partial word, or even a text fragment. The document,

which is examined during the search, is called the text. It commonly con-

sists of some natural language, but it can be any kind of binary data in a

computer.

The worst case computational complexity of many exact pattern match-

ing algorithms on strings is O(mn), where m is the length of the pattern

and n is the length of the text. Nevertheless, it is typically assumed that

the distribution of characters is (discrete) uniform and that characters do

not depend on each other. However, an improvement in the worst case

complexity does not necessarily imply a better average performance in

practice.

The focus in this thesis is on practical search speed. How many mega-

bytes can be processed within a second. All good string pattern matching

algorithms are so fast that for many applications the underlying system

issues such as I/O management are now performance bottlenecks [HuS91].

Therefore, it is not appropriate to consider the real time clock, and it is

better to view the CPU time usage. This work includes tests about prac-

tical speed of algorithms. The measurements have been made on several

1
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computers, because the relative performance of algorithms depends on

computer hardware. The recent development in branch prediction and

speculative execution of processors has improved their performance. We

study whether the reduction of the number of conditional branches im-

proves the search speed. For example, when does unrolling help?

Many existing algorithms utilize (hidden) assumptions about the texts.

These premises offer several ways to speed up searching. For example,

placing a copy of the pattern beyond the end of the text allows an advan-

tageous reformulation of loops. The speed of exact pattern matching algo-

rithms depends heavily on the data and especially on the pattern. Special

care will be paid to the careful implementation of algorithms to prevent

ruining the performance with unfavorable implementation.

1.1 Problem

Let us next define the problem and terminology precisely. A string is a

sequence of characters over a finite alphabet Σ of c characters. A non-

negative integer number 4514799 is a string consisting of seven charac-

ters over the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Given a string P called

pattern and a longer string T called text, the exact string matching

problem is to find all occurrences, if any, of the pattern P in the text

T [Gus97].

Preprocessing means initializations and other processing that is car-

ried out before the actual search begins. Algorithms that can do prepro-

cessing based on the pattern, but nothing that uses information about the

text, are called online algorithms. This work considers only online algo-

rithms.

Nowadays characters are typically presented in computers in one or

more bytes. With variable length character encodings, the pattern and the

text are treated as a sequence of bytes. Fixed length character encodings

consisting of more than one byte are briefly dealt with. So basically we

have the byte1 oriented approach. The UTF-16 character coding can be

handled either in bytes or as two byte words. It is assumed that basic

elements of characters can be accessed in an identical way and speed.

This means that a search in compressed texts is not considered.

1In the programming language C byte is defined ‘addressable unit of data storage
large enough to hold any member of the basic character set of the execution
environment’.
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All the algorithms discussed here are sequential. On the other hand,

so called bit-parallelism (described in subsection 2.5) has been used quite

successfully. During the making of this work the “instructionlevel paral-

lelism” has spread so that nowadays it is a common feature in efficient

processors. To utilize it extensively, it is essential to try to keep the pro-

cessor pipeline running. This can be achieved by avoiding conditional

branches and trying to keep them as predictable as possible, when they

are needed.

The exact string matching problem is often assumed identical to the

default output of GNU grep2 utility. The reporting of line numbers need

laborious additional bookkeeping of line changes (e.g. linefeeds): “The

Boyer–Moore algorithm cannot be used, as far as we know, for most of

the extensions in the previous section; even finding line numbers for all

the matches is not trivial and slows the algorithm down considerably”

[WuM91]. Apparently, they meant that simultaneous bookkeeping would

ruin the performance. Separate search of the linefeed (or carriage re-

turn) characters changes feels better from the user’s point of view, because

search is needed only, when an occurrence was found.

1.2 List of publications

The thesis consists of an overview and the following publications which

are referred in the text by their Roman numerals [I] – [VII].

I Jorma Tarhio and Hannu Peltola: String matching in the DNA al-

phabet. Software: Practice and Experience, 27(7):851–861, 1997. doi:

10.1002/(SICI)1097-024X(199707)27:7<851::AID-SPE108>3.3.CO;2-4

II Hannu Peltola and Jorma Tarhio: Alternative algorithms for bit-

parallel string matching. In Proceedings of the 10th International

Symposium on Information Processing and Information Retrieval,

SPIRE’03, Lecture Notes in Computer Science 2857:80–93, 2003. doi:

10.1007/978-3-540-39984-1_7

III Hannu Peltola and Jorma Tarhio: On string matching in chunked

texts. In Proceedings of the Conference on Implementation and Ap-

plication of Automata, CIAA’07, Lecture Notes in Computer Science

4783:157–167, 2007. doi:10.1007/978-3-540-76336-9_16

2Grep is a command-line utility for searching plain-text data sets for lines match-
ing a regular expression. The operation of Grep utility is defined in POSIX stan-
dard IEEE Std 1003.1.
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IV Petri Kalsi, Hannu Peltola, and Jorma Tarhio: Comparison of ex-

act string matching algorithms for biological sequences. In Proceed-

ing of the 2nd International Conference on Bioinformatics Research

and Development, BIRD 2008, Communications in Computer and

Information Science 13:417–426. Springer-Verlag, Berlin, 2008. doi:

10.1007/978-3-540-70600-7_31

V Branislav Ďurian, Jan Holub, Hannu Peltola, Jorma Tarhio: Tun-

ing BNDM with q-Grams. In Proceedings of ALENEX09, the Tenth

Workshop on Algorithm Engineering and Experiments: 29–37, 2009.

ISBN: 978-0-898719-30-7 URL: http://www.siam.org/proceedings/

alenex/2009/alx09_003_durianb.pdf

VI Branislav Ďurian, Jan Holub, Hannu Peltola, Jorma Tarhio: Im-

proving practical exact string matching. Information Processing Let-

ters, 110(4):148–152, 2010. doi:10.1016/j.ipl.2009.11.010

VII Branislav Ďurian, Hannu Peltola, Leena Salmela, Jorma Tarhio:

Bit-parallel search algorithms for long patterns. In Proceedings of

the 9th International Symposium on Experimental Algorithms, SEA

2010, Lecture Notes in Computer Science 6049: 129–140, 2010. doi:

10.1007/978-3-642-13193-6_12

1.3 Author’s contribution

The author of this dissertation manuscript, M. Sc. Hannu Peltola, was in-

volved in all the research activities leading to these publications, includ-

ing innovation of new ideas, implementation, testing, and writing. The fi-

nal implementations of the algorithms (except BMH2 and BMH2C in [IV]

by Petri Kalsi) and test runs were made by the author including numer-

ous implementations of other algorithms. The author has also made the

necessary modifications to them. The present author and Jorma Tarhio

have written together all the publications with an exception mentioned

below.

Publication I: String matching in the DNA alphabet. This paper introduces

an efficient q-gram method for the Boyer–Moore–Horspool algorithm.

Publication II: Alternative algorithms for bit-parallel string matching. This

is our first study of bit-parallel string matching. The importance of simpli-

fication began to become clear. The author solely invented and developed

all the variations of the SVM algorithms.
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Publication III: On string matching in chunked texts. The article contains

several improvements to the exact string matching on texts with autocor-

related and skew byte distributions.

Publication IV: Exact string matching algorithms for biological sequences.

This paper is partly a continuation of Publication [I]. Experimental tests

showed the relatively poor performance of several recent algorithms. Here

we utilized the idea of reading several bytes simultaneously for the first

time.

Publication V: Tuning BNDM with q-Grams. This article combines success-

fully four methods to families of algorithms: q-grams, bit-parallelism, sim-

plification, and simultaneous processing of two bytes.

UFNDMq algorithm is based on the prototype codes SOFNDM4_ufast

and SOFNDM4_uk developed by Branislav Ďurian. UFNDMq is not pre-

sented in the other papers.

Publication VI: Improving practical exact string matching. This is an up-

dated and shortened journal version of the workshop article [V].

Publication VII: Bit-parallel search algorithms for long patterns. This arti-

cle contains several novel algorithms for the searching for long patterns.

Most of these algorithms are based on the ideas of Branislav Ďurian.

Leena Salmela wrote the complexity analysis.

1.4 Organization

This thesis is organized as follows. Such exact string matching algorithms

that are useful for understanding the novel ones, are presented in Chapter

2. There are also some notes about things that affect their performance.

When designing new algorithms for the exact string matching, the so-

called bit-parallelism has been popular approach during the last decade.

Chapter 3 introduces algorithms, that use q-grams, but do not use bit-

parallelism. In Chapter 4 several bit-parallel algorithms are presented.

Solutions for searching in special kinds of texts are dealt with in Chapter

5. In Chapter 6, we discuss the testing of algorithms and present an

experimental speed comparison of exact string matching algorithms.
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2. Background

Our goal is to improve the practical speed of exact string matching. Cur-

rently many of the fastest algorithms utilize bit-parallelism. Another ef-

ficient idea is to start the comparison with the pattern by reading several

text characters before testing them for the first time. Both approaches

are more or less based on “classical” ideas and algorithms which are in-

troduced in this section.

We start index from one, and therefore we denote the pattern P =

p1p2 . . . pm and the text T = t1t2 . . . tn.

2.1 Boyer–Moore algorithm

Typically, exact string matching is started by aligning the pattern with

the beginning of the text. Then the pattern is compared with the cor-

responding text until a match or a character mismatch is found. Next,

the pattern is moved forward in the text. Obviously it is advantageous

to move more than one position at a time, whether some of these com-

parisons are unnecessary and can be thus avoided. In the best case, this

enables “sublinear”1 time complexity. The first algorithm that took advan-

tage of this approach is the Boyer–Moore algorithm [BoM77]. Quite many

practical exact string matching algorithms are based on it [ChLe04].

The most characteristic feature in the Boyer–Moore algorithm is the

comparison order of character pairs between the pattern and the text: it

starts from the end of the pattern and continues backwards. The intention

of the comparison order is to enable in a straightforward manner a long

shift of the pattern along the text to the next possible position. The orig-

1Strictly speaking time complexity O(n/m) is not sublinear: When the text
length doubles, also the expected search time doubles. However, it is quite com-
mon to use loose speak in this exact string matching case. Perhaps this comes
from the original article [BoM77], where sublinear is in quotation marks.
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inal Boyer–Moore algorithm can be formulated as Algorithm 1. (Boyer

and Moore gave a version that searches only the first occurrence. The

presentation of BM_orig is according to Knuth [KMP77, p. 341].)

Algorithm 1 BM_orig(P = p1p2 · · · pm, T = t1t2 · · · tn)
1: Initialize δ1[∗] and δ2[∗]

/* Searching */

2: k ← m

3: while k ≤ n do

4: j ← m

5: while j > 0 and tk = pj do /* and is conditional */

6: j ← j − 1; k ← k − 1

7: if j = 0 then

8: match found at k

9: k ← k +m+ 1

10: else

11: k ← k + max{δ1[tk], δ2[j]}

The operation of the algorithm can be understood as the sliding of the

pattern along the text. At every alignment it is checked whether the pat-

tern matches the text. Shifting of the pattern is based on two heuristics

that are implemented in the shift tables δ1 and δ2. The first heuristic pro-

duces the occurrence shift. It is implemented as the shift table δ1. It is

often also called the bad-character shift. The basic idea is to skip fast over

parts of the text that cannot contain a match. If the text character at the

end of the pattern does not occur at all in the pattern, it is possible to shift

the pattern forward m positions. So, in the best case the algorithm has to

check only n/m characters of the text. If the text character on the other

hand appears in the pattern, one can shift the pattern by the minimal

length concordant with the matching character. Formally, the occurrence

shift can be defined for each character x of the alphabet by:

δ1[x] = min{s|s = m or (0 ≤ s < m and pm−s = x)}

Let us suppose that on pairwise comparison of the pattern and the text,

all the previous pairs have matched, but then a mismatch is encountered.

Then the shift can be based on the idea that after the shift the whole pre-

viously matching suffix should be aligned compatibly to the new pattern

position. This happens with the previous occurrence of the same pattern

suffix, or if there is not any, then with the longest prefix of the pattern that

8
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matches the matching suffix part. In addition, there must be a change in

the pattern character that initially caused the mismatch. This heuris-

tic is called the matching shift or sometimes also the good-suffix shift2.

Formally the matching shift can be defined as follows [KMP77, p. 342]:

δ2[j] = min{s+m− j | s ≥ 1 and (pj−s 6= pj or s ≥ j)

and ((pk−s = pk or s ≥ k) for j < k ≤ m)}

for 1 ≤ j ≤ m. The matching shift can be extended also to the case when

a match is found. Then δ2[0] is equal to δ2[1]. The verifying order in align-

ments is not necessarily from right to left. Sunday [Sun90] introduced a

version of the matching shift that works for any fixed permutation of the

comparison positions in alignments.

After each mismatch, the original Boyer–Moore algorithm chooses the

larger shift given by the two heuristics. The algorithm also forgets all the

characters examined thus far.

2.2 Skip loop

During execution of the Boyer–Moore algorithm relatively many condi-

tional branches are encountered. This phenomenon constitutes a chal-

lenge in pipeline processors. If something is known or assumed about the

character distribution (e.g. the alphabet), it is possible to reformulate the

algorithm to a more efficient form. Instead of trying every alignment of

the pattern, the Boyer–Moore algorithm skips over typically most of them.

This idea brings efficiency in practice. We use the term skip loop to indi-

cate various looping methods for skipping past immediate mismatches in

the text. The term comes from Hume and Sunday [HuS91], who brought

attention to this too often neglected idea of Boyer and Moore [BoM77, p.

765].

Fast loop

When already the last character of the pattern and the corresponding

text character do not match, δ2[m] gives a shift that is at most as large

as δ1[]. (A formal proof is given by Cantone and Faro [CaF03].) Thus, it

is advantageous to use only the occurrence shift (instead of unnecessarily

maximizing with matching shift) for the last character of the pattern.

2Richard Cole [Col91] was probably the first one to use the terms bad-character
shift and good-suffix shift.
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Already Boyer and Moore noticed that on natural language in general

a randomly picked text character either does not exist in the pattern or

at least is not the same as pm. This assumption holds if both the last

character of the pattern is not fairly common in text and the text does not

have some special unfavorable internal structure.

Boyer and Moore carefully studied the implementation details of their

exact string matching algorithm and gave an enhanced version of the al-

gorithm [BoM77, p. 765] containing a skip loop structure that they called

fast loop. Algorithm 2 BM_fast implements the same idea in a more block

structured style. In the BM_orig algorithm in every alignment (except the

last one) of the pattern at least two tests were made: has the end of the

text already passed (line 3 in the Algorithm 1), and does the last text

character in this alignment match with pm (the second test on line 5)? In

BM_fast, only the end of the text is tested. The basic idea is to set an

Algorithm 2 BM_fast(P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: Initialize δ1[∗] and δ2[∗]
2: for all c ∈ Σ do

3: δX [c]← δ1[c]

/* Searching */

4: large ← n+m+ 1; δX [pm]← large

5: k ← m

6: while k ≤ n do

7: repeat

8: k ← k + δX [tk]

9: until k > n /* end of fast loop */

10: if k ≤ large then

11: return

12: k ← k − large − 1

13: j ← m− 1

14: while j > 0 and tk = pj do /* and is conditional */

15: j ← j − 1; k ← k − 1

16: if j = 0 then

17: match found at k

18: k ← k +m+ 1

19: else

20: k ← k + max{δ1[tk], δ2[j]}

10
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artificially long shift for pm in the occurrence shift. This modified shift

is denoted here by δX [∗]3. If the length of the artificial shift is at least

m+ n, it is easy to distinguish the termination of the text from the artifi-

cially long shift caused by the match. To continue the comparison in the

alignment, an equally long shift backward is made first. Boyer and Moore

called this verifying phase slow loop. The fast loop is actually a while

loop testing for the end of the text and containing shifting the pattern

according to δX [∗].
In the implementation of string matching algorithms, there is a risk

of dangling pointers or indexing out of bounds of an array. The ANSI C

standard requires, that pointers may be compared only if they point inside

or immediately after the same array of characters. To work safely with the

fast loop using pointers, one should reserve after the text extra (unused)

space at least for the n + m characters. (Space requirement depends on

units, which are used in accessing of the text: in practice bytes or 16-bit

words.)

Many implementations of the Boyer–Moore algorithm let pointers (that

are pointing to the text and the pattern) slide during pairwise comparison

to the left of the alignment, and then use either of those pointers. This

may be a non-conforming use of C, especially when a match is located in

the beginning of the text. This can be avoided by placing the text so that it

starts from the second position of the text array. The same applies also to

the pattern. Thus while accessing characters text characters using point-

ers in fast loop at least 2n + m + 1 bytes should be allocated for the text

array. (Actually, in virtual memory the actual cost caused by these space

reservations is very small.)

Least cost loop

While testing the fast loop, Hume and Sunday [HuS91] realized that a

large part of the performance depends on how long the algorithm stays

in the skip loop. Since the pattern can be scanned in any order, the skip

loop character could be any character of the pattern. With a rare skip

character we will, on the average, fall out of the skip loop much more

seldom than with more common characters. (See also related discussion

later in Subsection SLFC.) Naturally, this approach requires at least par-

tial knowledge about the character frequencies in the text. If the skip loop

character is not the same than the last character of the pattern, then the

3Boyer and Moore called δX as δ0. Here δ0 is used for other purpose.
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shifts are shorter on the average. In practice, the shifting is performed in

a similar fashion as with accordingly truncated pattern.

When the probabilities of characters in the text are known, we can

estimate the expected work done in the slow loop. On the other hand it is

possible to estimate the expected skip distance. If the average costs of the

skip loop and the slow loop are known on a given computer, it is possible

to calculate the pattern character with the smallest expected cost. Hume

and Sunday use in their implementation the expected skip distance in

a random string instead of the real skip distances with given particular

pattern. They named this kind of skip loop the least cost loop, or lc for

short [HuS91, pp. 1228–1231].

The relative speed of conditional branches varies among computers.

Therefore, the choice of a character position depends also on the hard-

ware. So it is useful to utilize constant parameter such as tslow (tcmp in

their program codes), which is adjusted by running a calibration program

for given computers.

In Publication [III], it was shown that there are cases where it is bene-

ficial to use a character different from the last character of the pattern as

test character.

Unrolled fast loop

It is also possible to reduce the number of tests required to know whether

the end of the text has been reached. If a copy of the pattern is placed as

a stopper after the text, any kind of skip loop will terminate. Instead of

the whole pattern also m copies of the test character (i.e. pm in other than

the least cost loop) would work out as well, if just a single test character

is used. As was the case with the fast loop, it is possible that after every

shift the skip loop ends and the algorithm enters the slow loop. However,

in practice, several shifts on the average are carried out before exiting

the skip loop. In Subsection SLFC, we will discuss more precisely, how

frequently the control will exit the skip loop.

Setting the shift for pm in δ1[ ] to zero enables both, unrolling the skip

loop and exiting it, when a potential match or the stopper after the end of

the text is encountered. Hume and Sunday [HuS91] named this kind of a

skip loop the unrolled fast loop or ufast loop for short. The idea has been

used before, but Hume and Sunday introduced it to the broader scientific

community. Algorithm 3 BM_ufast implements a 3-fold unrolling factor.

The common unrolling factor 3 is based on Table 2.1 and the following

12
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Algorithm 3 BM_ufast(P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: Initialize δ1[∗] and δ2[∗]
2: for all c ∈ Σ do

3: δ0[c]← δ1[c]

/* Searching */

4: δ0[pm]← 0

5: tn+1 . . . tn+m ← P

6: k ← m

7: while k ≤ n do

8: s← δ1[tk]

9: while s 6= 0 do /* in C plain s suffices in condition */

10: k ← k + s; s← δ0[tk]

11: k ← k + s; s← δ0[tk]

12: k ← k + s; s← δ0[tk] /* this is ufast3 loop */

13: if k > n then

14: return

15: k ← k − 1

16: j ← m− 1

17: while j > 0 and tk = pj do /* and is short circuit */

18: j ← j − 1; k ← k − 1

19: if j = 0 then

20: match found at k

21: k ← k +m+ 1

22: else

23: k ← k + max{δ1[tk], δ2[j]}

reasoning [HuS91, p. 1228]: “The benefits of unrolling are substantially

dependent on the length of the patterns and the system design, for exam-

ple, the size of the instruction cache. After measuring different unrolling

factors (with match=fwd, shift=inc), we picked 3-fold unrolling as the best

compromise across systems.” ‘fwd’ means that pairwise comparison was

performed from the left to the right. The pattern was moved always one

position forward, and therefore pairwise comparison was tried at all align-

ments in the text.

The pattern set and the text are rand.500 and bible by Hume and

Sunday [HuS91]. This becomes evident from the reported average shift

lengths and the numbers of examined characters. It should be noted that
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shift=inc means shifting just one position after verification [HuS91, 4.3.1];

in the skip loop the δ1 shift is used. The lc shifts equally to fast, when the

test character is the last character of the pattern. In lc, the verification is

a little more complicated than in fast, and in order to simplify it, the test

character will be checked again. Actually, in most cases, the test character

in lc is the last character of the pattern as in fast: with the 386 processor

67 patterns out of 500 and with Sparc only 35 out of 500 test characters

were different. Clearly, the performance of lc was better with the higher

values of parameter tslow. It is possible that still higher values of tslow
would have produced still better speed.

On the average, patterns were shifted 191629.1 times and 10178.6

times drifted to the slow loop while using fast shift. With the lc skip, pat-

terns were shifted on 386 processors on the average 203998.1 times, but

only 8971.0 times ended to the slow loop; on Sparc, there were 202458.8

shifts and 9572.1 visits in the slow loop.

Obviously, while using the ufast loop the average number of zero length

shifts increases, when the unrolling factor increases. Also, the statistics

reprinted in Table 2.1 show this clearly. It is evident that the performance

of ufast style unrolling depends on the character distribution. In this case

the relative frequency of the last character of the pattern is a fundamental

element. On the average, the higher frequency, the smaller the optimal

unrolling factor is.

Table 2.1. Execution speeds with fast and lc loops and various unrolling factors listed in
Hume and Sunday [HuS91, p. 1228 and 1231]. The column cmp+jump shows
the total number of text characters read in the skip loop (jump) and pairwise
comparison (cmp).

Algorithm
Execution Speed (MB/s) Statistics

386 sparc mips vax 68k cray step cmp+jump

fast 2.42 6.73 10.92 5.13 3.41 7.68 5.22 202619 (20.3%)

lc 2.27 7.13 12.57 5.71 4.28 9.23 4.93 212909 (21.3%)

unroll1 1.81 6.83 11.91 5.30 4.02 8.37 5.22 202620 (20.3%)

unroll2 2.42 7.06 12.45 5.63 4.12 9.05 5.08 207753 (20.8%)

unroll3 2.66 7.12 12.54 5.84 4.20 9.21 4.95 213048 (21.3%)

unroll4 2.79 7.08 12.48 5.84 4.20 9.16 4.82 218468 (21.8%)

unroll5 2.84 7.00 12.39 5.87 4.15 9.04 4.69 224007 (22.4%)

unroll6 2.86 6.92 12.25 5.79 4.11 8.90 4.57 229648 (23.0%)

tslow 4.91 3.04 3.29 3.86 2.97 3.34
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The best value of the unrolling factor depends on the pattern, the text,

and the computer architecture. The effect of the compiler is perhaps quite

small, because this skip loop is so simple. If the control often leaves the

skip loop, a smaller factor is better. Also the performance deviation in

32-bit and 64-bit modes on modern Pentium processors in Publication [V]

encouraged us to examine the performance of various skip loops by re-

peating tests in Table 2.1. The results are summarized in Table 2.2. Spec-

ifications of the test computers A, B, C, D, and H used in the test are given

in Appendix B.

Table 2.2. Execution speeds with various unrolling factors with newer machines.

Algorithm
Execution Speed (GB/s)

A B C D H

32 32 64 32 64 32 64 32 64

fast .206 1.21 1.21 1.25 1.28 1.56 1.60 .307 .318

lc .201 1.14 1.02 1.23 1.13 1.55 1.50 .334 .316

unroll1 .206 1.17 1.02 1.26 1.16 1.61 1.49 .285 .262

unroll2 .200 1.17 1.04 1.24 1.15 1.56 1.50 .319 .306

unroll3 .199 1.13 1.01 1.22 1.13 1.54 1.51 .332 .316

unroll4 .198 1.09 .976 1.18 1.10 1.51 1.49 .337 .320

unroll5 .196 1.07 .960 1.18 1.08 1.48 1.46 .338 .323

unroll6 .194 1.05 .944 1.16 1.07 1.47 1.44 .337 .319

unroll7 .193 1.03 .920 1.13 1.05 1.44 1.43 .335 .318

unroll8 .191 1.01 .905 1.12 1.04 1.41 1.40 .337 .316

unroll9 .189 .987 .882 1.10 1.02 1.39 1.38 .334 .315

Only computer H uses the Sparc architecture; all others run on the

X86 or X86_64 architectures. Table 2.2 shows that the performance of

ufast depends clearly on the computer architecture. The fast and lc skip

loops seem to be competitive.

One can expect that the performance of the lc skip loop is even better

on customary texts than here, because the text and patterns in the test

above contained no upper case letters.

It is also easy to make a ufast skip loop, where more than one test

character from the pattern is used. Then, there is a smaller probability

that control gets to the slow loop due to a single character match.
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SFC

Quite shortly after the Boyer–Moore algorithm was published, Horspool

examined “circumstances under which it should be employed” [Hor80]. He

also studied alternative implementations using special purpose instruc-

tions.

In the 1980’s many mainframe computers had instructions that were

meant for character strings. A typical instruction did memory search for

the first occurrence of the designated character: The IBM 360/370 series

instruction set had the Translate and Test TRT instruction. It could search

up to 256 bytes for a given character. The Burroughs B-series had the

Search While Not Equal SNEU. The Univac 1100 series had the Search

equal SE instruction [Hor80]. The VAX architecture had Locate Character

LOCC4 instruction. It could search up to 65535 bytes for a given character.

Horspool noted that, if an instruction for searching the next occurrence

of the given character is available, it would be really handy to apply it as a

skip loop. He named this approach SFC loop (Scan for First Character). If

the available instruction cannot examine the whole text once, it is obvious

to do the scan in parts with a tight loop around that instruction.

The x86-architecture provides versatile string instructions. The Scan

String instruction (SCAS) is for searching of a byte (or also word, double-

word or quadword). The Compare String operand (CMPS) can be used

for comparing the contents of two memory addresses. Those instructions

can be preceded by the REP prefix for operations on longer blocks. (Quite

often, however, these instructions will be used in a LOOP construct that

takes some action based on the setting of the status flags before the next

comparison is made.) For example REPNE SCANB seeks for next oc-

currence of given byte (for at most given number of bytes), but REPE

SCANB seeks for next byte that is unequal. These string instructions can

be performed either backwards or forwards according to the setting of the

direction flag (DF) flag.

The Intel Core microarchitecture and AMD K10 (K8L) contain SSE4

(Streaming SIMD Extensions 4) CPU instruction set. Subset SSE4.2 of-

fers PCMPESTRI – Packed Compare Explicit Length Strings, Return In-

dex – instruction than can be used for implementing SFC loop.

Of course it is possible to emulate the SFC loop by examining text

4On most newer VAXes LOCC was emulated and therefore relatively slow. Partic-
ularly VAX 8550, which was used by Hume and Sunday, had a non-VLSI hard-
ware, and thus had LOCC implemented.

16



Background

characters one by one. Another way to implement the idea is to use a

suitable library function, e.g. memchr in C.

SLFC

Horspool observed also that SFC loop does not always “use the search in-

struction in the best possible way” [Hor80]. In natural languages, some

characters are more common than others. On the average, the lowest fre-

quency character in a pattern occurs relatively rarely in the text. A skip

loop utilizing this idea is called SLFC loop (Scan for Lowest Frequency

Character). Horspool has summarized the expected number of characters

that are skipped before finding the lowest frequency character in the pat-

tern [Hor80, Table I, p. 503]. Those numbers may seem amazingly large.

The expected number of characters that are skipped can be approximated

by the geometric distribution (because texts are of finite lengths). If the

frequency of the given character is p, then the expected number of text

characters not matching is 1/p. Let us denote the probability of charac-

ter ci by pi. Then, for randomly chosen character, the expected number of

characters that are skipped is

E(Y ) =
∑

i

pi
1

pi

This is actually the number of different characters appearing in the text!

A collection of American English texts known as the Brown corpus has

been widely used in studying language statistics. The alphabet of the

corpus contains 94 characters [BCW90, p. 79].

Hume and Sunday tested SFC and SLFC with direct implementation

and using memchr library routine, but they did not include in their testing

any computer specific special instructions [HuS91, p. 1231]: “Provided the

preprocessing to find the least frequent character is not onerous, SLFC is

better than SFC. The benefits of using the memchr library routine are quite

system specific.” In the skip loop tests SFC and SLFC were always slower

than lc, fast, and ufast, as expected. The tests of Hume and Sunday were

performed with a set of various length patterns. Horspool reported the

tests with pattern sets that had fixed pattern lengths. The programs were

coded with 370/Assembler. There the SLFC skip loop was competitive on

patterns up to five characters long [Hor80].

If the character distribution is far from uniform, then the probability

of the least frequent character is lower and SLFC falls less frequently to

the slow loop, when the pattern is longer.

The byte distribution may become skewed also in insidious ways. When
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ASCII characters are represented in UTF-16 (16-bit Unicode Transforma-

tion Format) coding, on little-endian machines the rightmost bytes are

zeros [III]. When there are plenty of characters that are not ASCII char-

acters in a UTF-8 coded text, the byte distribution can be surprisingly

different than e.g. from a Latin-1 (ISO 8859-1) coded text. This affects

both shifting and the frequency of exiting the skip loop.

2.3 Boyer–Moore–Horspool algorithm

In 1980, Horspool published a versatile article about exact string match-

ing [Hor80]. His main focus was on natural language texts. The previous

subsection is largely based on his analysis on the effect of character fre-

quencies. Horspool also analyzed the practical behavior of Boyer–Moore

algorithm, and gave a simplified version of it. His central observation was

that “the only purpose of δ2 is to optimize the handling of repetitive pat-

terns (such as ‘XABCYYABC’) and so to avoid a worst case running time

of O(mn)”. So he designed Algorithm 4 BMH, which is a simplified ver-

sion of the Boyer–Moore algorithm. It is also known as the Boyer–Moore–

Horspool algorithm or the Horspool algorithm (or Hor in Publication [III]).

(The original version searched only the first occurrence similarly to the

original Boyer–Moore algorithm.)

A characteristic feature of the Boyer–Moore–Horspool algorithm is to

Algorithm 4 BMH(P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: for all c ∈ Σ do

2: δ1[c]← m

3: for i← 1 to m− 1 do

4: δ1[pi]← m− i
5: lastch ← pm

/* Searching */

6: k ← m

7: while k ≤ n do

8: ch ← tk

9: if ch = lastch then

10: if tk−m+1 . . . tk = P then

11: match found at k −m+ 1

12: k ← k + δ1[ch]
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start in each alignment with the comparison of the last character of the

pattern with the corresponding text character. In Algorithm 4 it is on

line 9. We call it guard test, following Hume and Sunday [HuS91]. There

can be several guard tests, and guard characters can be from any position

of the alignment. Horspool used a special instruction for comparing the

pattern and the text on line 10 [HuS91, p. 502, 505].

Over the years in many articles it has been claimed that the Boyer–

Moore–Horspool algorithm performs more or different tasks than the orig-

inal one. The following are some examples of the points that were at-

tributed to the BMH algorithm:

• Comparison of the alignment is made backwards without the guard test.

The remaining number of alignments is explicitly counted; so two values

need to be updated instead of one.5

• The index points to text positions at the beginning of the alignment

instead of the end of the alignment. Adding m − 1 makes it slower,

when the last character pair does not match. Comparison of the rest

of the alignment is made using the memchr. In tests of Hume and Sun-

day [HuS91, p. 1234], it was slower than self programmed loop.6

• Comparisons at the alignment are made backwards without the guard

test. The last text character in the alignment is fetched again to evalu-

ate the shift. [NaR02, Fig. 2.12 ]

• Comparisons at the alignment are made backwards without the guard

test. Two tests in the comparison are replaced by only one by adding

a character not appearing in the text before the pattern, and adding a

character not appearing in the pattern before the text. Naturally this

requires additional knowledge of the data. The last text character in the

alignment is fetched again to evaluate the shift. [Bae89]

If it is possible to place a copy of the pattern (or m copies of the last

character of the pattern) as a stopper beyond the end of the text, the WHILE

loop in the Boyer–Moore–Horspool algorithm could be implemented with

unrolled fast loop. The program codes by Hume and Sunday using the

5http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
6http://www-igm.univ-mlv.fr/~lecroq/string/node18.html
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md2 shift are implementations with this idea in mind [HuS91]. We have

followed this approach by Hume and Sunday. Another alternative would

be placing the stopper on the end of the text. Naturally the original end

of the text should be saved first. After restoring the end of the text, (at

most) 2m − 1 positions from the end of the text have to be checked with

some other method.

Cantone and Faro [CaF03] present a cross of the Boyer–Moore and the

BMH algorithms. The outer skip loop utilizes only the BMH shift, and the

shift by the matching heuristics is taken after each checking phase.

2.4 Sunday’s Quick Search algorithm

Daniel Sunday has proposed an algorithm related to the Boyer–Moore–

Horspool algorithm. He called it Quick Search algorithm [Sun90], which

is shown as Algorithm 5 QS.

In QS, the shift is based on the text character immediately following

the current alignment instead the last text character of the alignment.

This is possible, because the pattern is moved in any case at least one po-

sition. Thus, the shift for Sunday’s Quick Search algorithm is one position

longer than for the Boyer–Moore–Horspool algorithm on other characters

except possibly for the last character of the pattern: if the last two char-

acters of the pattern are the same, then the shift for that character is the

same (= 1). Otherwise, the shift for the last character of the pattern in

Sunday’s Quick Search algorithm is 1, and thus shorter. Obviously, the

relative increase to the average shift length is larger on shorter patterns.

The fact that QS reads in every alignment one character more than e.g.

Boyer–Moore and Boyer–Moore–Horspool algorithms is often overlooked.

The QS algorithm is quite popular on exact string matching compar-

isons. One reason for that might be that the original article [Sun90] con-

tained the implementation in the C language.

Let us consider an alphabet where characters are statistically indepen-

dent of each other, and where the characters in decreasing frequency order

are a1, a2, a3, . . . Then the length for occurrence shift suffers from most

common characters appearing in the end of the pattern. For the Sunday’s

QS algorithm the worst expected shift length is for pattern am. . . a3a2a1.

For the Boyer–Moore–Horspool algorithm the worst expected shift length

is for pattern am−1. . . a2a1a1. Actually the character appearing in the end

of the pattern is irrelevant for the shift, but the most frequent character
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Algorithm 5 QS(P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: for all c ∈ Σ do

2: TD1[c]← m+ 1

3: for i← 1 to m do

4: TD1[pi]← m− i+ 1

/* Searching */

5: k ← 0

6: while k +m ≤ n do

7: i← 1

8: while i ≤ m and tk+i = pi do /* and is short circuit */

9: i← i+ 1

10: if i = m+ 1 then

11: report occurrence at k + 1

12: k ← k + TD1[tk+m+1]

maximizes the probability of falling to the slow loop.

In this version the verification of the match is made forward; basically

it could be made in any order. However, every time the shift is one po-

sition, the last position in the alignments matches always. Therefore, if

pm is a really common character, the verification backwards (without a

guard) is doubtful.

Longer shifts

In the Boyer–Moore algorithms the maximum function does not take out

all the information behind δ1[ ] and δ2[ ] heuristics.

Apostolico and Giancarlo [ApG86] suggested a 2-dimensional shift ta-

ble, that was indexed by the mismatch position index, and the text char-

acter that caused the mismatch. It produces at least as long shifts than

in the original Boyer–Moore algorithm. Their other contribution was that

the number of character comparisons was bounded by 2n on algorithm

utilizing that 2-dimensional shift table.

If some frequent characters appear in the pattern, the expected shift

length from the δ1[ ] shift is smallish. Use of the shift table based on two

adjacent text characters was suggested by Zhu and Takaoka [ZhT87]. The

δ1[ ] shift of the Boyer–Moore algorithm was replaced by a 2-dimensional

shift table, that was indexed by the text character that caused the mis-

match and the text character before it.
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Cantone and Faro [CaF05] have presented the Forward-Fast-Search

algorithm, which used a new kind of shift table. It was also 2-dimensional,

but was indexed by the mismatch position index and the text character

beyond the current alignment. So the text character position is related

to Sunday’s QS algorithm. The shifts are relatively clearly longer with

short patterns. The use of lookahead character gives advantage on small

alphabets.

2.5 Introduction to bit-parallel algorithms

Parallelism is a powerful way to boost computation. With just one pro-

cessor and without vector instructions, it is sometimes possible to use

Single Instruction, Multiple Data (SIMD) technique. It is achieved with

the bit-parallelism where several values are updated simultaneously in

a register. (The term bit refers to bitwise operations.) Boolean variables

represent the most simple variable type. Probably the earliest use of bit-

parallel techniques can be traced back to Dömölki [Döm64] already in

1964. Another article describing bit-parallel techniques for integers sur-

faced in 1975 by Lamport [Lam75]. Allison and Dix [AlD86] presented a

bit-parallel algorithm for the longest common subsequence problem. As

far as we know, it was the first bit-parallel string processing algorithm. A

few years later, Baeza-Yates and Gonnet presented several variations of

bit-parallel string algorithms [BaG92]. Their Shift-Or algorithm for exact

string matching is fast for short patterns [NaR02, Fig. 2.22, p. 39].

Bit-parallel algorithms can also be interpreted as the simulation of an

automaton – typically a nondeterministic one. The update operations for

all states should be identical; otherwise we must first perform certain op-

erations on a set of states, and then certain operations on some other set

of states. Operands are typically called bit-vectors, and the essential bit-

vector containing the state of the automaton is called the state vector. For

good practical performance, the states of the whole automaton should fit

into a register of a computer. Larger registers in modern processors allow

simultaneous processing of several variables (states) packed into a single

computer word. A natural data type for this purpose is the unsigned in-

teger. It is often silently assumed that signed integers are represented in

the two’s-complement form; especially that the constant −1 has all bits

set.

Another important bit-parallel algorithm is BNDM (Backward Non-
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deterministic DAWG7 Matching) [NaR98]. It simulates a nondetermin-

istic automaton, and uses shifting related to the Boyer–Moore approach.

BNDM is discussed in detail in Section 2.7.

A useful feature of bit-parallel string matching algorithms is the easi-

ness and effectiveness in use of character classes in matching [BaG92]:

• Classes of characters: a given character set, complement, and don’t care

symbol.

• Ignore case. This scheme surely works only when one byte represents

a character and the alphabet is known. Handling of ligatures and di-

graphs8 mostly work correctly. A well known exception is the German

esszett ligature (also called the scharfes s (sharp s)) ß, which expands

when uppercased to the sequence of two characters “SS”.

These straightforward techniques do not expand to the Unicode char-

acter encoding, when the matching of the pattern and the text is done

byte by byte: e.g. mathematical, musical, and currency symbols do not

have uppercase, titlecase9, and lowercase versions.

We use the following notations. The register width (or word size infor-

mally speaking) of a processor is denoted by w. If not otherwise stated

we assume that the rightmost bit of the computer word represents the

value 20 = 1. A bit mask of s bits is represented as bs · · · b1. The most

significant bit is on the left. To distinguish the normal unsigned integers

from binary numbers base 2 is used in marked as subscript in the end of

binary number. A superscript stands for bit repetition (e.g. 10212 = 10012)

i.e. run-length encoding. The C-like notations are used for bit operations:

“|” bitwise (inclusive) OR, “&” bitwise AND, “∧” bitwise exclusive OR, “∼”

one’s complement, “<<” bitwise shift to the left with zero padding, and

“>>” bitwise shift to the right with zero padding. For the shift opera-

tions, the first operand is unsigned and the second operand must be non-

negative and less than w.

7DAWG – Directed Acyclic Word Graph
8 http://unicode.org/faq/ligature_digraph.html
9 http://unicode.org/reports/tr21/tr21-3.html
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2.6 Shift-Or

The Shift-Or algorithm is a short and simple bit-parallel string match-

ing algorithm. The name comes from the operations used in updating the

state vector: first the state vector is shifted, and then an Or operation is

applied between it and and the bit-vector of the corresponding character

in the current text position. Bit-vectors in table C have clear bits on posi-

tions, where the corresponding character occurs in the pattern. Shift-Or

reserves only one bit per pattern character in the state vector D.

The Shift-Or algorithm for exact string matching is shown as Algo-

rithm 6. Sometimes it is also called Bitap. This name comes from the

generalization that is used in the source code of the agrep tool for ap-

proximate string matching [WuM92]. The time complexity of the Shift-Or

algorithm is Θ(n · dm/we). This algorithm is on its best with quite small

values of m. Then the time complexity of the Shift-Or algorithm is Θ(n),

when m ≤ w. Therefore, the search speed does not depend of pattern

length m, but in practice the number of found occurrences affects slightly.

Algorithm 6 Shift-Or(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do C[c]← (∼0) >> (w −m) /* 1m2 */

2: for j ← 1 to m do

3: C[pj ]← C[pj ] & ∼(1 << (j − 1)) /* 1m−j01j−1
2 */

/* Searching */

4: epos ← 1; D ← ∼0; mm ← 1 << (m− 1) /* 10m−1
2 */

5: while epos ≤ n do

6: D ← (D << 1) | C[tepos]

7: if (D&mm) 6= mm then /* = 0 does the same */

8: report an occurrence at epos + 1−m
9: epos ← epos + 1

The original version of the Shift-Or algorithm [BaG92, Fig. 4, p.78]

uses a loop for scanning for the first character of the pattern (SFC loop),

but it is often omitted, e.g. [NaR02, Fig. 2.6, p. 20], [Smy03, Fig. 7.4.1, p.

204], [FrG05, Alg. 1, p. 378].

The placement of the actually used successive m bits in bit-vectors

not fixed; left (least significant bits) or right are most useful. Because

we assume that shift operations have zero padding, it is possible to for-
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mulate the algorithm so that the shifting (in the search phase) is per-

formed to the right instead of left. Naturally, the bit-vectors based on

the pattern must be reversed. Similarly, the Or operation can be re-

placed with And; then the algorithm actually becomes Shift-And. Care

should be taken that the filling bits produced in shift operations are suit-

able. Correcting them for example in the following way demands extra

work:

6: D ← (D << 1 | 1) & C[tepos]

Checking for a match (on line 7) is an important part of the innermost

loop. A small change in testing may cause a large change to practical per-

formance. Fredriksson and Grabowski [FrG05] noticed that the unused

bits of the state vector could be utilized: found matches can be stored and

then checked for several positions at same time. Instead of a single one

character at a time being processed, U consecutive text characters are

processed, and then the non-existence of matches can be checked from U

consecutive alignments. This is beneficial, if there are clearly less occur-

rences of the patterns than at every Uth position on the average. This

idea has been implemented in Algorithm 7 called Fast-Shift-Or [FrG05,

Alg. 4, p. 381], [FrG09, Alg. 4, p. 583]10.

The shifts on lines 1 and 2 are made in two parts, because the shift

length must be less than w. If U > 1, shifts can made in one opera-

tion:

1: for all c ∈ Σ do C[c]← (((∼0) >> (w − U + 1)) /* 1U−1
2 */

2: << m) ∧ (∼0) /* 0U−11m2 */

The Fast-Shift-Or algorithm may examine at most U − 1 characters af-

ter the last text character. This can be easily avoided by exiting while loop

earlier and processing the rest with the Shift-Or algorithm. Alternatively

the possible found erroneous matches can be rejected during check phase.

Fredriksson and Grabowski report that Fast-Shift-Or gives about a

2 − 5 times speedup compared to the standard Shift-Or [FrG05]. Their

original implementation just counted the number of matches, but did not

determine their exact locations. Fredriksson and Grabowski noticed that

the For-loop starting on line 7 of Algorithm 7 is automatically inlined by

compilers for a small constant U .

The Fast-Shift-Or algorithm checks the state vector so rarely that other

10In original versions the meaningful bits were located to the left end of the bit-
vectors, but here they are on the right. The correct initialization of the state
vector D in the original versions is (∼0) << (w − U −m).
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Algorithm 7 Fast-Shift-Or(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: U ≥ 1 and m+ U − 1 ≤ w

/* Preprocessing */

1: for all c ∈ Σ do C[c]← (((((∼0) >> (w − U)) >> 1) /* 1U−1
2 */

2: << (m− 1)) << 1) ∧ (∼0) /* 0U−11m2 */

3: for j ← 1 to m do

4: C[pj ]← C[pj ] & ∼(1 << (j − 1)) /* 1m−j01j−1
2 */

/* Searching */

5: epos ← 1; D ← ∼0; mm ← ((∼0) >> (w − U)) << (m− 1) /* 1U0m−1
2 */

6: while epos ≤ n do

7: for j ← 0 to U − 1 do

8: D ← (D << 1) | C[tepos+j]

9: if (D&mm) 6= mm then

10: Check and report occurrences

at positions epos + 1−m..epos + U −m
11: epos ← epos + U

related bit-parallel string matching algorithms have to examine consider-

ably less text characters to achieve even the same performance.

2.7 BNDM

An elegant way of reaching the asymptotic optimum average time com-

plexity is the Backward DAWG Matching algorithm (BDM) [CrR94]. Nev-

ertheless, the algorithm is complicated to implement and it is not fast

enough for practical text searching tasks [NaR00, pp. 29–30]. Its asymp-

totic optimality is reached only when searching for very long patterns.

The Backward Oracle Matching algorithm [ACR99, FaL08], a simplified

version of BDM, is faster in practice. Another faster variation is BNDM

(Backward Nondeterministic DAWG Matching) by Navarro and Raffinot

[NaR00]. BNDM is a cross between the BDM and Shift-Or [BaG92] algo-

rithms. The idea is similar to that of BDM, but instead of building a de-

terministic automaton, a nondeterministic automaton is simulated with

bit-parallelism even without constructing it.

In BNDM [NaR00] (see Algorithm 8) the precomputed table B[ ] as-

sociates each character with a bit mask expressing its locations in the

pattern. (Table B[ ] and table C[ ] in the Shift-Or algorithm are logical

complements on essential parts.) At each alignment of the pattern, the
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Algorithm 8 BNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 < m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0

2: for j ← 1 to m do

3: B[pj ]← B[pj ] | (1 << (m− j))
/* Searching */

4: i← 0

5: while i ≤ n−m do

6: j ← m; last← m; D ← (∼0) >> (w −m+ 1) /* 1m−1
2 */

7: while D 6= 0 do

8: D ← D & B[ti+j ]; j ← j − 1

9: if D&(1 << (m− 1)) 6= 0 then

10: if j > 0 then

11: last← j

12: else

13: report occurrence at i+ 1

14: D ← D << 1

15: i← i+ last

algorithm reads the text from right to left until the whole pattern is rec-

ognized or the processed text string is not a substring of the pattern. Be-

tween alignments, the algorithm shifts the pattern forward to the start

position of the longest found prefix of the pattern, or if no prefix is found,

over the current alignment. With the bit-parallel Shift-And technique

the algorithm maintains a state vector D, which has one in each position

where a substring of the pattern starts such that the substring is a suffix

of the processed text string. The standard BNDM works only for patterns

which are not longer than w.

The inner while loop of BNDM checks one alignment of the pattern in

the right-to-left order. At the same time the loop recognizes prefixes of

the pattern. The leftmost one of the found prefixes determines the next

alignment of the algorithm.

The Boyer–Moore algorithm stops pairwise comparison of the pattern

and the text after the whole pattern matches or the examined characters

are not a suffix of the pattern. The BNDM algorithm does not stop that

early: it continues as long as the examined characters form a substring

of the pattern. Therefore at a given alignment the BNDM algorithm may
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examine more text characters than the Boyer–Moore algorithm. On the

other hand, the BNDM algorithm takes at least as long shifts as the

Boyer–Moore algorithm, because BNDM finds always the longest suffix

of the alignment, which is a prefix of the pattern.

2.8 Recombinations and reinventions of ideas

Several research papers are published every year about exact string match-

ing. Often it is quite hard to judge the value of their findings in practical

situations. If an algorithm works better in some situation, it may also

work slower in several other more common cases. Many useful innova-

tions have been found out on some other—often related—research field.

The (large) number of publications makes it quite hard to be informed of

all of them. Some ideas are also not clearly expressed. Therefore many

ideas have been invented several times. Next some examples are pre-

sented.

If the alphabet is small or if some characters are very common, it may

be advantageous to process more than one character together. Already

Knuth [KMP77, p. 331] mentioned this idea.

Starting of a slow loop is typically quite laborious (compared to a skip

loop). Therefore it might be faster to add some additional test before start-

ing complete pairwise comparison of the pattern and the text. This idea

appears for example in [Rai92, Rai99, SSA04, TVS06].

The Knuth–Morris–Pratt algorithm [KMP77] has linear performance

also with potential occurrences while for example the Boyer–Moore algo-

rithm [BoM77] works faster while running in a skip loop. It is tempting to

combine these features. The Knuth–Morris–Pratt algorithm was merged

with the Boyer–Moore–Horspool algorithm by Baeza-Yates [Bae89w], and

with the Boyer–Moore algorithm in Exercise 8.2.4. by Smyth [Smy03, pp.

211–212], and also with with Sunday’s Quick Search algorithm [FJS07].

On the other hand, some useful suggestions are frequently omitted.

For example the BM_fast is rarely included in speed tests although its is

faster in practice than the BM_orig.
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3.1 Introduction

While applying a Boyer–Moore type algorithm [BoM77], most often only

the occurrence heuristic is applied for shifting. Algorithms of this type are

greedy in the sense that the pattern is moved forward after the first char-

acter mismatch of an alignment is observed. Shifts by occurrence shift

may then be unnecessarily short, if shifting is based on a single character.

On the other hand, the probability of having the algorithm to enter to the

slow loop is almost always higher, when the decision is based on a single

character. (See Section 2.2.) Therefore, it is advantageous to apply strings

of the q characters, instead of single characters. This technique was al-

ready mentioned in the original paper of Boyer and Moore [BoM77, p.

772], and Knuth [KMP77, p. 341] analyzed theoretically its gain. Zhu and

Takaoka [ZhT87] presented the first algorithm utilizing the idea. Their

algorithm uses two characters for indexing a two dimensional array. They

also gave another version based on hashing. This section describes meth-

ods that are especially useful with small alphabets such as DNA.

A q-gram, (or a q-tuple) is a continuous substring of q characters. In a

way, a q-gram represents a character of a larger alphabet.

Baeza-Yates [Bae89] introduced an extension to the Boyer–Moore–Hor-

spool algorithm [Hor80] where the shift array is indexed with an integer

formed from a q-gram with shift and add instructions. For this kind of

approach, the practical upper limit with 8-bit characters is two charac-

ters, because q · 8 bits are needed. Thus, the shift table would contain 224

items for q = 3.

Berry and Ravindran [BeR99] suggested a 2-gram algorithm that was

inspired by the Sunday’s Quick Search algorithm [Sun90] (Algorithm 5).
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The shift is based on a two-dimensional table, which is indexed with

the two text characters following the current alignment. The Berry–

Ravindran algorithm suffers from a frequent character at the end of the

pattern, because in that case, the shift is only one position. One may think

that this happens so rarely that the slowdown is insignificant. In Publica-

tion [IV], it was shown that both the expected shift length and the practi-

cal performance suffer from this greedy approach. It was also shown how

to fix the inefficiency of the Berry–Ravindran algorithm by using more

conservative shifting. In the modified Berry–Ravindran algorithm the

shifts are based on the last character of the current text alignment ts and

the next character ts+1, instead of ts+1 and ts+2 as in the original Berry–

Ravindran. The maximum shift in the original algorithm is m+ 2, and in

the modified version m+ 1. Let us assume that text characters are statis-

tically independent. With the discrete uniform distribution of c different

characters, the probability of a shift of the pattern by one position is ap-

proximately 1/c for the original and 1/c2 for the modified algorithm. This

is due to the inherent weakness of Sunday’s QS algorithm [Sun90]: if the

last character of the pattern is common, then the probability of a shift of

one is high (= 1 − 1/c). In such a case, ts+2 is useless in the computation

of shift in the Berry–Ravindran algorithm. The expected shift length of

the modified version is longer. This is clearly visible in practical tests es-

pecially with small alphabets. Our test results in Publication [IV] show

that this weakness of is noticeable even with amino acids.

For the DNA alphabet, Kim and Shawe-Taylor [KiS94] introduced an

alphabet compression by masking the three lowest bits of ASCII charac-

ters. In addition to the a, c, g, and t, one gets distinguishable codes also

for n and u. Even the important control code such as \n=LF has distinct

value, but \r=CR gets the same code as u.1 With this method they were

able to use q-grams of up to six characters. Indexing of the shift array was

similar to Baeza-Yates’ approach [Bae89].

With a small alphabet the probability of an arbitrary short q-gram ap-

pearing in a long pattern is high. This restricts the average shift length.

Kim and Shawe-Taylor [KiS94] introduced a boosting variation for the

cases where the q-gram in the text occurs in the pattern. Two additional

characters are checked one by one to achieve a longer shift.

1There are codes also for other incompletely specified bases in nucleic acid se-
quences except n, but they are very rare: URL: http://www.chem.qmul.ac.uk/
iubmb/misc/naseq.html
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In most cases, the q-gram that is taken from the text does not match

with the suffix of the pattern, and the pattern can be shifted forward.

For efficiency one should use a skip loop [HuS91]. The easiest way to

implement this idea is the unrolled fast loop.

3.2 Fingerprint method

As stated above, the Boyer–Moore algorithm is able on the average to

take longer shifts by examining a q-gram at a time instead of a single text

character [BoM77, KiS94, Bae89, Sed83, ZhT87]. The Baeza-Yates algo-

rithm [Bae89, KiS94] uses this idea. We will consider variations of the

Baeza-Yates algorithm and suggest implementation techniques, which

will improve the total speed of the algorithm in the case of the DNA al-

phabet.

From a q-gram a0 . . . aq−1 we compute a fingerprint id =
∑q−1

i=0 c
i · ai,

which is a (reversed) number of base c, where c is the size of the alphabet.

At each alignment of the pattern, the last q-gram of the pattern is com-

pared with the corresponding q-gram in the text by testing the equality

of their fingerprints. If the fingerprints match, we have found a poten-

tial occurrence of the pattern, which has to be checked. Let us call the

fingerprint of the last q-gram of the pattern also the fingerprint of the

pattern. In the BMH algorithm (Algorithm 4), which works with un-

igrams, lastch is the fingerprint of the pattern and ch is a fingerprint

computed from the text. This algorithm can be easily modified to han-

dle larger values of q than 1. In Publication [I, p. 853] it is presented

as Algorithm 2. There fingerprints are computed using Horner’s rule:

t = a0 + c(a1 + c(a2 + · · · c(aq−2 + caq−1) · · ·)).
Note that a straightforward implementation cannot process patterns

shorter than q, but this problem is easy to avoid by incorporating Algo-

rithm 4 to the implementation.

The shifts are taken according to the precomputed shift table D in-

dexed by fingerprints. The computation of D is based on the definition:

D[x] = min(m, min{m− d |

1 ≤ d < m, pd−e+1 · · · pd = suffix(x, e), e = min(q, d)}),

where suffix(x, e) is the string of the last e characters of x. Baeza-Yates

[Bae89] as well as Kim and Shawe-Taylor [KiS94] use a simpler alterna-
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tive for the shift table D, which is faster to compute during preprocessing

but which leads to slightly shorter shifts: D′[x] = min(m−q+1,min{m−d |
q ≤ d < m, pd−q+1 · · · pd = x}). We use mostly D in our algorithms.

At the implementation level, we use unrolled code instead of a loop for

computing fingerprints, because a loop would make the algorithm slower.

Kim and Shawe-Taylor [KiS94] use a loop where q is a constant. A com-

piler could unroll it to the straight code, and therefore the efficiency of

this solution depends on the optimization skills of the compiler.

3.3 Alphabet transformation

The straightforward implementation of fingerprints contains a space prob-

lem, because the shift table D is indexed by the fingerprints. If the alpha-

bet contains characters a, c, g, and t, whose ASCII codes are 97, 99, 103,

and 116, respectively, the size of the actual alphabet is not four but 117

or 256. In order to handle the case q = 4, we might need a shift table

of at least 1174 elements. A large shift table also makes the preprocess-

ing phase of the algorithm slow, because the table must be initialized. In

practice, the initialization time of the table D with large values of q dom-

inates the preprocessing time and even the total running time for short

texts.

An alternative for multiplication in the computation of a fingerprint

is to round the alphabet size c upwards to a power of two and to apply

bitwise shifting [Bae89]. Bitwise shifting is considered faster than mul-

tiplication (of integers) in most computers [Knu11, p. 153], and the gain

depends on the computer architecture. If c is not originally a power of two,

this bitwise shifting approach requires a larger table D.

A third alternative is to replace multiplication by a table look-up. For

example for q = 4 we have

a0 + a1 ∗ c+ a2 ∗ c2 + a3 ∗ c3 = a0 + s[a1 + s[a2 + s[a3]]],

where s[a] = a · c. This method needs additional space and preprocessing

time of order O(cq) for the look-up table s.

One solution to the space problem is to apply hashing, which, however,

makes the searching phase slower than table access. Zhu and Takaoka

[ZhT87] present in addition a hashing scheme for q = 2. The size of the

hash table is only twice the pattern length. In case of collision they use

another hash function.
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Another approach to save space is to cluster the alphabet by mapping

input characters to a narrow range. The simplest mapping is to subtract

97 from the ASCII codes of characters a, c, g, and t to get 0, 3, 7, and

19, respectively, which means that the size of the resulting alphabet is

20. In Kim and Shawe-Taylor’s [KiS94] mapping the last three bits of the

character code are extracted, which means that the size of the resulting

alphabet is eight. However, the initialization of the shift table is still la-

borious for large values of q in the alphabet of eight characters. Note also

that the transformation of Kim and Shawe-Taylor does not work (without

verification) for arbitrary character codes, because mapping may not be an

injection. It would be also possible to to assign all other characters except

a, c, g, and t to a code value of their own. Then the probability of false

positives would decrease. Generally, if we know that certain characters

do not occur in patterns, these characters can be safely mapped together.

Most of these simple approaches may produce errors, if the input hap-

pens to contain improper symbols. A safe way for mapping is to apply

a direct alphabet transformation. We map the ASCII codes to the range

of 4: 0 ≤ r[j] ≤ 3 such that characters a, c, g, and t get different codes

and possible other characters get e.g. code 0. In this way we are able to

limit the computation to the effective alphabet of four characters. We use

a separate transformation table hi for each position i of a q-gram and in-

corporate multiplications into the tables: hi[j] = r[j] · 4i. For q = 4, the

fingerprint of a0 . . . a3 is then computed as

h0[a0] + h1[a1] + h2[a2] + h3[a3].

It also possible to carry out the mapping of characters dynamically.

Actually only characters appearing in the pattern matter: all other char-

acters can be mapped to one code. This is often very efficient, because in

the pattern there can exist at most m different characters.

Algorithm PP (shown as Algorithm 9) describes the preprocessing of

the transformation tables and the shift table D for q = 4. The algorithm

can be implemented so that there is a different code for each value of q (q

can be a compilation parameter in C). Note that equations r[j] = h0[j] and

h3[x] = h0[x] · c3 hold.

Note that when the data contains more than four different characters,

the mapping r is not an injection. So this mapping defines a simple hash-

ing scheme. In algorithms using fingerprints with injective mapping, the

q-grams never needs to be re-examined in the checking phase. In the case
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Algorithm 9 PP(P = p1p2 · · · pm)

/* Initializing transformation tables */
1: c← 4; q ← 4

2: for all i ∈ Σ do

3: h0[i]← 0

4: h0[′a′]← 0; h0[′c′]← 1; h0[′g′]← 2; h0[′t′]← 3

5: for all i ∈ Σ do

6: h1[i]← c · h0[i]; h2[i]← c · h1[i]; h3[i]← c · h2[i]

/* Initializing shift table D */

7: u← cq

8: for i← 0 to u− 1 do

9: D[i]← m

10: s← 0; a← u

11: for i← 1 to q − 1 do

12: s← s div c+ h3[pi]

13: a← a/c

14: for j ← s to s+ a− 1 do

15: D[j]← m− i
16: s← s div c+ h3[pq]

17: for i← q + 1 to m do

18: D[s]← m− i+ 1

19: s← s div c+ h3[pi]

of a non-injective mapping the q-gram must be re-examined, if the fin-

gerprints are equal and p1p2 · · · pm−q match with the text. However, the

slowdown due to this is insignificant in the average case when pairwise

comparison is made forward.

When the data contains more than four different characters, there is

also another problem. Namely, if a q-gram of the text contains a rare char-

acter, the shift for it is possibly shorter with the mapping r than without

it. For example, if the pattern is cacgtcccc and the q-gram is xcgt and

r[a] = r[x], the shift for this q-gram is 5 with the mapping and 9 without it.

Nevertheless, the frequency of other characters than a, c, g, and t is very

low in real DNA data so that this slow down is insignificant in practice.

When the character transformation is applied to a larger alphabet,

where there are several text characters that do not occur in the pattern,

all these characters can be mapped together. If the total frequency of

these characters is low, the size of the effective alphabet is the number of
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different characters in the pattern, otherwise one more.

An example of applying alphabet transformation in fingerprints is Al-

gorithm 3 in Publication [I, p. 856].

A perfect hash function for a set S is a hash function that maps distinct

elements in S to a set of integers, with no collisions. A minimal perfect

hash function is a perfect hash function that maps r keys to r consecutive

integers. For ASCII characters a, c, g, and t, a minimal perfect hash

function is in the C language

inline int symtocode2(int sym)

{return (((sym+sym+sym) & 0x18) >> 3);}

This is slightly more laborious than the approach by Kim and Shawe-

Taylor.

3.4 Applying skip loop

The BMH algorithm makes at least two tests at every alignment: has

the pattern reached the end of the text and does the last character of the

pattern match the last text character in current alignment? The situation

is similar while using fingerprints. The main loop would be faster, if one

of the tests could be removed. The unrolled fast skip loop is ideal for this

situation. During preparation of the Publication [I] even higher unrolling

factors than 3 seemed competitive in the tests. In the Publication [IV] a

newer and different kind of computer was used, and the unrolling factor

1 was found the best on DNA and amino acid texts. Increasing the

fingerprint size typically increases the probability that the algorithms do

not fall to the slow loop.

Algorithm 10 (called BMHq) implements fingerprint method with un-

rolling factor 1.

In Algorithm 10, f(T, k, q) denotes the fingerprint of tk−q+1· · · tk. The

pattern needs to be copied beyond the end of the text, so that the unrolled

fast skip loop will end when the search is complete. Initialization of the

shift table D similar as in Algorithm PP (Algorithm 9) is slower than just

using full q-grams existing in the pattern. Then the maximal shift length

is m − q + 1 instead of m. This has practical consequences when q gets

larger or when the pattern is relatively short.

In Publication [I] the Algorithm 10 with the unrolling factor 3 was

called A4.4. A potential explanation to the difference in the relative speed
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Algorithm 10 BMHq(P = p1p2· · · pm, T = t1t2· · · tn)
Require: n ≥ m ≥ q > 0

1: Initialize D[∗] /* executing e.g. Algorithm PP */

2: tn+1· · · tn+m ← P /* adding stopper */

3: p← f(P,m, q)

4: r ← D[p]; D[p]← 0; k ← m

5: s← D[f(T, k, q)]

6: loop

7: while s > 0 do

8: k ← k + s

9: s← D[f(T, k, q)]

10: if k > n then exit

11: Check the potential occurrence

12: s← r

of A4.4 and KS algorithm (by Kim and Shawe-Taylor) in Publications [I]

and [IV] is the change in the value of the optimal unrolling factor. How-

ever, the effect of unrolling is rather small for long DNA patterns.

3.5 Simultaneous read of several bytes

Some CPU architectures, notably the x86, allow unaligned memory reads

of several bytes. This inspired us to try reading several bytes in one in-

struction, instead of separate character reads. One may argue that it is

not fair to apply such multiple reading, because all CPU architectures do

not support it. But because of the dominance of the x86 architecture, it is

reasonable to fine-tune algorithms for that. Of course the results may be

different on other platforms.

Fredriksson [Fre03] was probably the first one who applied reading

several bytes simultaneously to string matching. However, we have not

seen any other comparison with standard byte wise reading than in our

article [PeT11].

When considering 4-grams, they fit into a 32-bit word in 8-bit char-

acters. This inspired us to try reading several bytes in one instruction,

instead of four separate character reads. During the preprocessing phase,

we have to take care of endianess (the order in which integer values are

stored as bytes in the computer memory). Also the fingerprint from the

pattern must be formed accordingly.
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Reading more than two bytes simultaneously does not seem to give ex-

tra advantage. Based on the tests in Publication [IV], unaligned memory

reads on x86 processors incur a speed penalty of up to 70% when compared

with aligned reads. This unfortunately reduces the speed of reading four

bytes, because then 75% of the reads are unaligned on the average.

3.6 Variations of fingerprint method

3.6.1 Variations for DNA

As in Publication [IV] we will call the BMHq algorithm with q = 4 BMH4.

We tested several ways to compute the fingerprint from DNA alphabet

in order to make faster versions of the BMH4 algorithm. BMH4b reads

a 32-bit word, and BMH4c reads two consecutive halfwords. Because

in BMH4b we have access to an integer consisting of four characters, it

would be inefficient to use the old character-based fingerprint method.

The fingerprint calculation arrays of BMH4 are replaced with hashing

expression, where the input is a whole 4-gram as a 4-character long in-

teger. ASCII codes for a, c, g and t are distinguishable by the last three

bits. The following expression packs the unique bits of the four charac-

ters together in a few instructions, to form an integer in the range of

2313 . . . 16191 = 001001000010012 . . . 111111001111112.

FP(x) = ((x >> 13) & 0x3838) | (x & 0x0707)

Preprocessing of BMH4b is similar to the earlier algorithm, we just

calculate the fingerprints of the 4-grams in the pattern with the new hash

function. So the main difference between BMH4b and BMH4 is in the

computation of f . In BMH4b this is done with masking, shifting, and

bitwise OR. Hashing receives the current text location pointer as an ar-

gument, and reads the 32-bit integer from that address with FP(*(k-3)).

D[x] contains the preprocessed shift values for each hashed q-gram of the

pattern.

75% of the reads are unaligned on the average. So we made another

variation BMH4c, which reads two consecutive halfwords. In the case

of BMH4c, only 25% of the reads are unaligned ones getting the speed

penalty (while crossing the border of 4 bytes). In BMH4c, the value of a

fingerprint is obtained as a1[x1] + a2[x2] where xi is a halfword and ai a

preprocessed transformation table, for i = 1, 2.
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3.6.2 Variations for Amino Acids

The q-gram approach is valid also for larger alphabets, although with a

larger alphabet the optimal value of q is smaller. A larger alphabet size

requires only minor changes to the algorithm. A new variation BMH2 was

created based on BMHq with q = 2. The range of the ASCII code mapping

r[x] is increased from 4 to 20, to cover the amino acid alphabet “ACDEF

GHIKL MNPQR STVWY” instead of the DNA alphabet. Otherwise the

algorithm is the same as BMHq.

We also designed BMH2c, which reads a 2-gram as a 16-bit halfword.

The shift array is indexed directly with halfwords.

These algorithms can be used with any text, e.g. English text. For

this kind of data we mapped each character to a smaller range with a

modulo function in preprocessing. The best results for English text were

obtained with modulo 25. Because the mapping tables are created in the

preprocessing phase, the modulo operation does not affect the search time

directly.

3.7 Lecroq’s hashing scheme

Recently, Lecroq [Lec07] presented a related algorithm using hashing. Its

implementation is based on the Wu–Manber algorithm [WuM94] for mul-

tiple string matching, but as suggested above, the idea is older [BoM77,

ZhT87]. Originally, the algorithm was called ‘New’, but lately a more de-

scriptive name ‘Hashq’ was used [FaL10]. The hashing scheme is based

on computing fingerprints of q-grams. Lecroq’s Hashq algorithm is closely

related to BMHq. Moreover, the maximal shift of his algorithm ism−q+1,

while that of BMHq is m, because BMHq is able to handle all prefixes of

the first q-gram of the pattern. With q = 3, the shift in HASHq is com-

puted from the hashvalue in the following way:

12: h← tj−2; h← 2 · h+ tj−1; h← 2 · h+ tj

13: sh← D[h mod 256]

In the original article, only divisor 256 is mentioned. Lecroq’s hashing

scheme is extremely simple and fast to evaluate. However, collisions are

quite probable. DNA alphabet consists mostly of characters a, c, g, and t.

Their decimal values are 97, 99, 103, and 117, respectively. 2-grams ‘ag’
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and ‘cc’ produce the same value:

97 · 2 + 103 = 297

99 · 2 + 99 = 297

One of the consequences is that with the DNA alphabet about 1/8 of the

q-grams hash to same value. Also 3-grams ‘agc’, ‘cag’ and ‘ccc’ hash to the

same value:

97 · 4 + 103 · 2 + 99 = 693

99 · 4 + 97 · 2 + 103 = 693

99 · 4 + 99 · 2 + 99 = 693

With the alphabet {a, c, g, t}, there are 4q q-grams, and at most m − q + 1

different of these are in the pattern. Table 3.1 lists the number of colli-

sions on various values of q and various divisors. It is very probable that

with larger alphabets more collisions might occur. If the divisor operand

of modulo is small, the expected shift length will increase only slightly

after a certain pattern length. This happens gradually when the number

of possible q-grams exceeds the hash table size. The results clearly sug-

gest that even on a small alphabet a larger divisor than the original 256

would work clearly better when q > 4. The Hashq algorithm would work

Table 3.1. Collisions with the alphabet {a, c, g, t} in the Lecroq’s hashing scheme. Per-
centages of collisions in the second column are counted without any divisor i.e.
the final value of h was the same.

q

percentage divisor 256 divisor 1024 divisor 4096

of unique unused unique unused unique unused

collisions elements elements elements elements elements elements

3 43 203 43 971 43 4043

32.81 16.80% 79.30% 4.199% 94.82% 1.050% 98.70%

4 90 100 94 856 94 3937

63.28 35.15% 39.06% 9.180% 84.47% 2.295% 96.12%

5 33 25 165 609 165 3681

83.89 12.89% 9.766% 16.11% 59.47% 4.028% 89.87%

6 10 4 173 119 237 3122

94.21 3.906% 1.562% 16.89% 11.62% 5.786% 76.22%

7 2 1 33 25 309 1955

98.11 0.781% 0.391% 3.223% 2.441% 7.544% 47.72%

8 1 0 10 4 175 120

99.42 0.391% 0.000% 0.977% 0.391% 4.272% 2.930%
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with reasonable preprocessing time even without any division when q ≤ 9.

The experimental results given in the original article [Lec07] suggest that

larger divisor, than 256 have been used at least on the longest patterns.

In a pattern there can be at most m−q+1 different q-grams. In the binary

alphabet there are at most 2q different q-grams. Whenm−q+1� 2q there

will be relatively more collisions. The practical performance will increase

only little, when the pattern length increases. This phenomenon can be

seen in Table 5 [Lec07, p. 233]. On the other hand, the relative number of

collisions increases, when m− q + 1 exceeds the hash table size. In Table

6 [Lec07, p. 233] using DNA patterns there seems to be no slowdown with

values q ≥ 5. With this small hash table there should happen a minimal

number of cache misses in the data cache.

Of course the divisor in hashing could be different from 256. The use

of 256 as the divisor is practical since the remainder can be stored in

one byte. For example, in the programming language C, the type of the

variable h can be unsigned char. And the code optimizer removes the un-

necessary modulo operation; this happens at least with the gcc compiler.

Also, masking the lower bits from h seems to be faster than the modulo op-

eration. The optimizer of gcc is able to do that when the divisor is a power

of 2. So, divisors that are powers of 2 seem to be the best in practice.
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The register width of a processor has recently quite commonly grown

from 32 to 64 bits. The relative number of 64 bit computers has lately

increased. Therefore, the bit-parallel algorithms are in practice able to

work efficiently on longer patterns than before.

In the x86 and x86-64 architecture MMX brought registers having 64

bit, SSE (Streaming SIMD Extensions) offers 128-bit registers, and in

AVX (Advanced Vector Extensions) register size increased to 256 bits.

Generally, these special registers are used for operating several smaller

size data types. For example a 128-bit SSE register can work on sixteen

8-bit bytes or four 32-bit integers. In essence, we can regard the sub-

fields of a register as if they were elements of an array of independent mi-

croprocessors, acting independently on their own subproblems yet tightly

synchronized, and communicating with each other via shift instructions

and carry bits [Knu11, p. 151]. However, the width of the memory bus

may then become a bottle neck resource in the application of bit-parallel

algorithms.

Our first efforts in developing bit-parallel algorithms took their form

during the preparation of Publication [II]. Especially the usefulness of

simplification became clear. The relatively high number of conditional

branches in the BNDM algorithm seemed to be questionable for the per-

formance. However, during the same time the branch prediction of pro-

cessors developed quickly. After we got the source code of SBNDM2, the

original version of still more simplified version of BNDM1, we quickly pro-

duced versions reading more and more text characters at the beginning of

each alignment. However, the best number of text characters on various

pattern lengths was often unexpected in test runs for Publication [V].

1Jorma Tarhio noticed a shift inefficiency in the first version of SB-
NDM2 [HoĎ05].

41



Bit-parallel string matching

The notations used here were introduced in Section 2.5.

4.1 Shift-Vector Matching

A problem with the BNDM algorithm, the Boyer–Moore algorithms, and

the most related algorithms related to them, is that they do not remem-

ber from previous alignments which text positions cannot start a match.

When the shift is shorter than the pattern length m, some alignments

of the pattern may be checked in vain. In this section, we introduce an

algorithm with partial memory. The key idea is simple: We keep track

of end positions corresponding to those start positions mentioned above.

We maintain a bit-vector, called a shift-vector, which keeps track of the

positions where an occurrence of the pattern can or cannot end. When

shifting is based on this shift-vector, we are able to manage without any

shift table.

While moving the pattern forward and shifting the shift-vector, the old

knowledge of already handled positions drops off the shift-vector. Then

the bit corresponding to the end of the pattern must be the highest or the

lowest bit. We chose the lowest one, because it makes masking on some

processors slightly faster. (Often the fastest way to load the specific bit

mask 1 to a register is loading the constant 1 with some instruction, which

is not referring to the memory.) This decision implies that the shifting

direction is to the right. The new bits entering to a bit-vector during a

bitwise shift are zeros, and therefore it is natural to use the convention

where zero denotes a text position not yet rejected.

In preprocessing, a bit-vector is created for each character of the al-

phabet. These bit-vectors have the zero bit on every position where that

character occurs in the pattern and one elsewhere. So the characters that

do not appear in the pattern have the bit-vector 0w−m1m2 . Note that the

essential parts of these vectors are complements of those used in BNDM.

We keep track of possible end positions of the pattern in the shift-vector

S. It is simply updated by taking OR with the bit-vector corresponding

to text character aligned with the last character of the pattern. If the

lowest bit in S is one, a match cannot end at the corresponding position

and we can shift the pattern. The length of the shift is simply obtained

by searching the lowest zero bit in S which is above the lowest position.

In addition to shifting the pattern, we also shift bits in S with the same

number of positions to the right.
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If the lowest bit in S is zero, i.e. pm has been found, we have to con-

tinue checking for the match. Our first implementation performed a clas-

sical pairwise comparison of pattern and text characters. In addition,

S was updated with all characters that were fetched during verifying

of alignments. Naturally the scope of text characters is relative to the

end of pattern. To correctly update S with bit-vectors of text charac-

ters, that are aligned with pattern, their values have to be shifted to

the right depending on how far they are from the end of the pattern:

S ← S | (C[tepos−j ] >> j). Because the lowest bit remains zero as long as

a mismatch has not been found, we could remove the pairwise compari-

son. Text characters that are on the left-hand side of the alignment give

less information for shifting than those which are close to the right end of

the alignment. That is why we chose to check, if there is a match, in the

reverse order, i.e. from right to the left.

The pseudo-code of SVM (short for Shift-Vector Matching) for m ≤ w

is shown as Algorithm 11. The function BSF (short for Bit Scan Forward)

Algorithm 11 SVM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do C[c]← (∼0) >> (w −m) /* 1m2 */

2: for j ← 1 to m do

3: C[pj ]← C[pj ] & ∼(1 << (m− j)) /* 1j−101m−j2 */

/* Searching */

4: epos ← m; S ← 0

5: while epos ≤ n do

6: S ← S | C[tepos]

7: j ← 1

8: while (S&1) = 0 do

9: if j ≥ m then

10: report an occurrence at epos + 1−m
11: goto Over

12: S ← S | (C[tepos−j ] >> j)

13: j ← j + 1

14: Over:

15: last← BSF(∼(S >> 1))+1

16: S ← S >> last /* if m = w, see implementation remark */

17: epos← epos + last
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scans the bits in the operand bit-vector starting from the lowest bit and

searches for the first set bit. The function returns the number of zero

bits before the first set bit. At the end of this section, we discuss various

implementation alternatives of BSF.

We demonstrate the execution of SVM with an example in Table 4.1.

After a long shift, the shift-vector S becomes zero or almost zero. Then

the subsequent shift is more likely shorter. Fortunately after a short shift,

there will normally be several ones in S, and so the subsequent shift will

likely be longer again. For example, after reading G on the second row of

the example, S becomes full of ones enabling a full shift of 5 positions.

In SVM, there is an obvious trade-off between the number of fetched

characters and searching for a set bit in the shift-vector. The run times

depend on the relative speed of these functions. It is straightforward to

extend this algorithm for longer patterns.

Table 4.1. Simulation of SVM. P = ATCGA; T = GCAGCTATCGAG· · ·; bit-vectors C: C[A] =
01110, C[C] = 11011, C[G] = 11101, C[T] = 10111. The last fetched charac-
ter has been underlined. The snapshots correspond to lines 9 and 15 of the
SVM algorithm.

Text S j epos last

GCAGCTGATCGAG· · · 11011 1 5 2

GCAGCTGATCGAG· · · 11111 1 7 5

GCAGCTGATCGAG· · · 01110 1 12 (5)

GCAGCTGATCGAG· · · 01110 2 12 (5)

GCAGCTGATCGAG· · · 01110 3 12 (5)

GCAGCTGATCGAG· · · 01110 4 12 (5)

GCAGCTGATCGAG· · · 01110 5 12 5

Navarro and Raffinot [NaR00, p. 14] also use the method of searching

for a certain bit in a bit-vector describing the state of the search. However,

they consider only one alignment at a time and they initialize the bit-

vector for each alignment. In SVM, we initialize the bit-vector only once

and so we are able to exchange information between alignments. SVM

searches only for complete matches and does not recognize substrings of

the pattern like BNDM.

The weakness of SVM is the laborious shifting of the pattern. For SVM

it is easy to utilize text characters that are ahead from current alignment.

All information can be incorporated to shift-vector S from the characters

that are at most w − m forward from the end of the alignment. Then
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it is possible to make longer shifts. We have made some tests with this

approach. Shifts became longer, but the performance improved only a

little.

Complexity. Let us assume that m ≤ w holds and BSF is O(1). Then

the preprocessing time is O(m + |Σ|) and the worst case complexity is

clearly O(nm). SVM is sublinear on the average, because at a given align-

ment it fetches the same text characters as the Boyer–Moore–Horspool

algorithm [Hor80] (assuming the right-to-left examining order) and can

never make a shorter shift than that algorithm, which is known to be

sublinear on the average. If a constant time BSF is not available, there

will be an extra work of logm or logw for each alignment.

Search for the lowest zero bit

From the previously examined characters we usually know some positions

where the pattern cannot end. All these positions with reference to the

end of the pattern have the corresponding bit set in the shift-vector S of

SVM. The lowest bit represents the current position. To get the length of

the next shift of the pattern, one has to find the rightmost zero bit in S.

Alternatively, one can complement the bits and search for the lowest set

bit. This problem is often also called the number of trailing zeros.

There are several possibilities [War03, p. 6, pp. 84–87] for searching

the rightmost set bit. Presumably, many solutions have not been docu-

mented and published. Below, we consider five alternatives: BSF-0, . . . ,

BSF-4. If we first shift the contents of the word one position to the right

and if we are using unsigned variables in C, we get zero padding and there

will always exist at least one zero bit. This simplifies BSF and ensures

that the shift length in shift-vector S is less than w.

BSF-0. Many computer architectures have instructions for scanning bits;

for example Intel’s x86 has instructions for scanning both forward (Bit

Scan Forward) and backward (Bit Scan Reverse)2. A suitable implemen-

tation can be found in Arndt’s collection [Arndt] of x86 inline asm3 ver-

sions of various functions as function asm_bsf. For 32-bit bit-vectors, the

bsfl instruction is suitable, and in the 64-bit architecture, there is the bsfq

instruction for 64-bit bit-vectors.
2AMD’s Barcelona microarchitecture offers the SSE4a instruction group. There
is the LZCNT – Leading zero count – instruction, which work similarly as BSR –
Bit Scan Reverse.
3http://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
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Bit Scan Reverse instruction actually returns “integer logarithm” from

an unsigned integer, which means blog2 xc. Standard function ilogb in

the programming language C (starting year 1999 standard) returns also

this same value. It is also highly portable. To use these in SVM, we should

reverse the shift-vector S and the bit-vectors of text characters in C[ ].

If this kind of machine instruction is available, using it likely gives the

best performance.

BSF-1. The simplest way to seek for the lowest zero bit is by shifting

the bit-vector bit position by bit position to the right and testing the low-

est bit. If the lowest zero bit can be found with a few iterations—e.g. when

m is small—the performance is acceptable. Navarro and Raffinot [NaR00]

have used this technique in their implementation of BM_BNDM and Tur-

boBNDM. Warren [War03, code 5-16, p. 86] presents a similar code. Start-

ing from the mth text character BSF-1 tests every position either once or

twice. Therefore over the whole text, the total work required by BSF-1

is Θ(n). The relative performance decreases while the average length of

shift increases.

Every now and then one finds the usages of likely() or unlikely().

They resemble function calls but are actually macro definitions for the gcc

compiler. They hint4 which alternative of the boolean expression given as

a parameter is more probable. Both likely() and unlikely() were tried

in the alternative implementations of BSF-1. Test results on the Pentium

D processor seemed to have a negative effect in most cases.

BSF-2. Search for the lowest set bit becomes easier, if we assume that

at most one bit is set. This can be achieved with an expression x& −x.

The rightmost, i.e. least significant set bit remains set [War03, p. 11].

This process assumes that signed integers are in the two’s complement

representation.5

If at most one bit is set, it is possible to apply bit masking: we divide

different sized groups in the bit-vector to an upper and lower half. If

4The Pentium 4 Processor introduced new instructions for adding static hints
to conditional branches: it informs whether or not a branch is assumed to be
taken. In static branch prediction, a forward branch defaults to ‘not taken’, in
other words, processor assumes that the jump is not made; whereas a backward
branch defaults to ‘taken’.
5In the C language this can always be achieved by using ‘Exact-width integer
types’, e.g. define bit-vectors to be of type uint32_t or uint64_t. Then the cor-
responding signed types are int32_t, and int64_t, which must always have the
two’s complement representation.
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some even bit is set, then we can increase the bit number by one. If some

even bit-pair is set, then we can increase the bit number by two. If some

upper half of byte is set, then we can increase the bit number by four; etc.

Finding the set bit this way requires logw tests with different bit masks.

This idea is presented in the function lowest_bit_idx of Arndt [Arndt].

The masking method described above requires large (i.e. w bits wide)

bit masks. If they are built from smaller pieces, their construction takes

considerable work.

BSF-3. This approach is similar to the previous one. Here we clear all

other but the lowest set bit. If an unsigned integer after shifting l posi-

tions to the right is not zero, it is obvious that the only set bit is higher

than l bits. The search goes most efficiently by halving: first w/2 bits, then

w/4 bits, etc. The shifting could be made also to the left, but in this way

the optimizer of the compiler can produce more efficient code by reusing

the results of the shifts. Examining the last byte goes faster and easier

with table lookup in a precomputed constant array. Altogether log w
8 shift-

ing tests are needed. Actually, the same holds also for m dlog m
8 e because

one can tailor the routine for different pattern lengths. Relative perfor-

mance improves clearly when patterns get longer. Warren [War03, code

5-6, p. 78] presents a similar shifting code for the number of leading zeros,

but without a precomputed array.

Branch optimizations have a significant impact on performance. The

first part of BSF-3 can be implemented in C with 32 bit bit-vectors in the

following way. x is a bit-vector having at most one set bit, and j gets the

offset to the byte having the set bit.

j = 0;

if(x >> 16) {j += 16; x >>= 16;}

if(x >> 8) {j += 8; x >>= 8;}

This can also be implemented without any conditional or unconditional

jump instructions:

j = (((x >> 16)==0)-1)&16; /* j gets 0 or 16 */

j += (((x >> j+8)==0)-1)&8;

It turned out that the latter version works slower than the former version.

BSF-4. We can also utilize the fact that at least one bit is set. The basic

idea is that when we shift to the left and the result is zero, we can con-

clude that the lowest set bit was in the part that fell off. Because we try
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to isolate the lowest bit to smaller and smaller area, for the next step we

have to shift the bit-vector to the right whenever the result is zero after

shifting. Examining the last byte is made with a table lookup in a pre-

computed constant array. A similar code without a precomputed array is

presented by Warren [War03, figure 5–14, page 85].

Typically, SVM takes a couple of shorter shifts and then a longer one,

usually the maximum m. In our experimental tests, we used the version

BSF-0 utilizing the inline asm function.

Implementation remark. When m = w, the value of last may become

w, which is too large for the shift on line 16. Then the shifting must

be made in two parts. This can be made efficiently with the following

changes:

14: Over: S ← S >> 1

15: last← BSF(∼S)

16: S ← S >> last

17: epos← epos + last + 1

The performance of all the BSF versions depends a lot on the com-

piler, the computer architecture, and the size of bit-vectors. Besides AMD

Athlon, we tested BSF on the following configurations: Sun Enterprise

450 (4 UltraSPARC-II 400MHz processors, 2048 MB main memory with

4 MB Ecache, Solaris 8) with Sun WorkShop 6 update 2 C 5.3 and gcc

3.2.1 compilers, and Digital Personal Workstation 433au (Alpha 21164A-

2 (EV56 433 MHz) processor, 256 MB main memory; OSF1 V5.1 [Tru64

UNIX]) with Compaq C V6.5-011 and gcc 3.3 compilers.

Table 4.2 shows the relative performance of SVM with various BSF ver-

sions on the English text, where BSF-4 is used as the reference version (so

its relative performance is 1). Smaller values denote faster performance.

Table 4.2. Relative performance of various BSF versions

CPU AMD Athlon UltraSPARC-II Alpha 21164A-2

Compiler/w gcc/32 gcc/64 Sun/32 gcc/32 Sun/64 gcc/64 Compaq(64) gcc(64)

BSF-0 0.888 − − − − − − −
BSF-1 1.001 0.817 1.346 1.191 1.146 0.972 0.730 1.036

BSF-2 1.044 1.157 1.420 1.126 1.211 1.348 1.011 1.217

BSF-3 0.999 0.999 0.992 0.999 1.123 1.109 1.005 1.001
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With longer patterns, the relative performance of BSF-1 got worse. Al-

though Ultra-Sparc-II has 64-bit instructions, the use of bit-vectors of 64

bits showed to be more than 60% slower than with 32 bits. The Alpha

Compaq C-compiler produced code that worked rather slowly with BSF-2,

BSF-3, and BSF-4.

Because the maximum value of BSF is the pattern length m, we could

speed up the BSF-functions by using different specialized versions form ≤
8, 8 < m ≤ 16, 16 < m ≤ 32, and 32 < m ≤ 64.

4.2 Two-way variant of BNDM

Next we introduce a two-way modification of the BNDM algorithm. If the

text character aligned with the end of the pattern is a mismatch, we con-

tinue by examining text characters after the alignment. Let us consider

TNDM (short for Two-way Nondeterministic DAWG Matching) in detail.

Furthermore let us consider the first comparison of an alignment of the

pattern: ti vs. pm. There are three cases:

1. ti = pm;

2. ti 6= pm and ti occurs elsewhere in P , i.e. there exists j 6= m such that

ti = pj ;

3. ti does not occur in P .

The TNDM algorithm works as BNDM in Cases 1 and 3, but the operation

is different in Case 2, where the standard BNDM continues examining

backwards until it finds a substring that does not occur in the pattern or

it reaches the beginning of the pattern. TNDM will scan forward in Case

2. Our aim is to reduce the number of examined characters. In a way, this

approach is related to Sunday’s idea [Sun90] for using the text position

immediately to the right of an alignment for determining the shift in the

Boyer–Moore algorithm.

The cache memories constitute a very important part of the current

computers. The data from adjacent bytes in memory is mapped to cache

in blocks called a cache line. Their current typical size is 32 or 64 bytes.

When any byte is fetched from the memory, the whole corresponding cache

line is fetched to the cache. To reduce the latency caused by cache misses,

various hardware prefetch mechanisms are used. A common one is ad-
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jacent cache line prefetch6. When it is in use, the content of next cache

line is also fetched to the data cache. Therefore when a program has read

a byte from a text position also some amount of bytes after it also are

fetched to the data cache ready to be read. So the text characters imme-

diately to the right of an alignment are with high probability already in

the cache memory. Thus, the expected time for fetching them is almost

always minimal.

In Case 2, the next text characters that are fetched are not needed for

checking a potential match in the BNDM algorithm, but they are only

used for computing the shift. Because ti 6= pm holds, we know that there

will be a shift forward anyway before the next occurrence is found. The

idea of TNDM is to examine text characters forward one by one until the

algorithm finds the first k such that the string ti · · · tk does not appear in

P or ti · · · tk forms a suffix of P . In the former case, we can shift beyond

the previous alignment of the pattern.

Checking whether the examined characters form a suffix of the pat-

tern, is made by building the identical bit-vector as in BNDM, but in the

reverse order. Note, that the bit-vector is built with the (logical) AND

operations which are commutative. So we can build it in any order—

especially in the reverse order. Instead of shifting the bit-vector describ-

ing the state, we shift the bit-vectors of characters. Thus, if we find a

suffix, we continue to examine backwards starting from the text position

i− 1. This is done by resuming the standard BNDM operation.

The pseudo-code of TNDM for m ≤ w is shown as Algorithm 12. It is

straightforward to extend the algorithm for longer patterns in the same

way as BNDM, see [NaR00]. Because BNDM is a bit-parallel implemen-

tation of BDM, it would also be possible to make a two-way modification

of BDM.

To be able to resume efficiently examining backwards, i.e. jumping in

the middle of the main loop of BNDM, we preprocess the possible values

of the variable last of BNDM for the suffixes of the pattern. With last,

BNDM keeps track of the starting position of the next potential occur-

rence P . By updating the state vector in a clever way during the forward

phase, we keep it ready for the backward phase.

In preprocessing, the values of last are computed with the BNDM al-

6On processors based on the Intel NetBurst microarchitecture this feature
is enabled through the BIOS. URL: http://software.intel.com/en-us/articles/
optimizing-application-performance-on-intel-coret-microarchitecture-using-
hardware-implemented-prefetchers.
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Algorithm 12 TNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0 /* 0m2 */

2: for j ← 1 to m do

3: B[pj ]← B[pj ] | (1 << (m− j)) /* 0j−110m−j2 */

4: Init_shift(P, restore[ ])

/* Searching */

5: epos ← m

6: while epos ≤ n do

7: i← 0; last← m

8: D ← B[tepos]

9: if (D&1) = 0 then /* when D 6= B[pm], */

10: repeat /* forward scan for suffix of pattern */

11: i← i+ 1

12: D ← D & (B[tepos+i] << i)

13: until D = 0m2 and D&10i2 = 0m2

14: if D = 0m2 then /* already last← m */

15: goto Over

16: epos← epos + i; last← restore[i]

17: repeat /* variation of BNDM */

18: i← i+ 1

19: if D&10m−1
2 6= 0m2 then

20: if i < m then last← m− i
21: else report an occurrence at epos−m+ 1; goto Over

22: D ← (D << 1) & B[tepos−i]

23: until D 6= 0m

24: Over:

25: epos← epos + last

gorithm as if there was a full occurrence of the pattern in the text. Algo-

rithm 13 shows the pseudo-code where the values of last are stored in the

array restore7. We demonstrate the execution of TNDM with an example

in Table 4.3.

Our experiments indicate that TNDM examines fewer characters than

BNDM on the average. There are two reasons for that. Let ti · · · tk be the

string examined during the forward phase.

7In the Publication [II] there were two errors on line 6.
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Algorithm 13 Init_shift(P = p1p2 · · · pm, restore[ ])
1: D ← (˜0) >> (w −m) /* 1m2 */

2: last← m

3: for i← m downto 1 do

4: D ← D&B[pi]

5: if D&10m−1
2 6= 0m2 then /* D&(1 << (m− 1)) 6= 0 */

6: if i > 1 then last← i− 1

7: restore[m− i+ 1]← last

8: D ← D << 1

• When ti · · · tk is a suffix of P , we shift the pattern to that suffix. The

suffix need not to be reexamined for a possible match ending at tk. (If

BNDM finds a prefix th · · · ti, that prefix may be reexamined for a possi-

ble match starting at th.)

• If p1 6= pm and ti = p1 hold, TNDM may make a shift one position longer

than BNDM.

It is not difficult to find examples where TNDM examines more char-

acters than BNDM. However, there is always a dual case where the situ-

ation is the other way around. Basically, BNDM searches for a substring

th · · · ti and TNDM for a substring ti · · · tk which do not appear in P . Which

one is more efficient depends on the ratio (k − i)/(i− h).

Further enhancements. If the last character examined does not oc-

cur in P while scanning forward, we are able to shift the pattern en-

tirely over it. This can be done by replacing the following line to TNDM:

15: if B[tepos+i] = 0 then last← i+m; goto Over

This test is computationally light, because after a forward scan only tk of

ti · · · tk can be missing from the pattern. The test clearly reduces the num-

ber of fetched characters. However, the test is beneficial only for alphabets

large enough.

In TNDM we scan forward when ti is not pm and ti occurs elsewhere in

P . This can be generalized as follows. If the backward phase has encoun-

tered v = th · · · ti such that v is not a suffix of P but v appears elsewhere

in P , we will scan forward starting from ti+1. We expect this modification

would improve TNDM a bit in the case of small alphabets.
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Table 4.3. Simulation of TNDM. P = ATCGA; T = GCATCATGATCGAATCAG· · ·; bit-vectors B:
B[A] = 10001, B[C] = 00100, B[G] = 00010, B[T] = 01000. The last fetched char-
acter has been underlined.

Text window Line D i epos last Explanation

GCATCATGA· · · 9 00100 0 5 5 The lowest bit is 0; continue to line

10.

GCATCATGA· · · 13 00000 1 5 5 D = 0; leave the loop and proceed

with lines 14, 15, 24, 25, and 6–.

· · ·ATGATCGAA· · · 9 01000 0 10 5 The lowest bit is 0; continue to line

10.

· · ·ATGATCGAA· · · 13 01000 1 10 5 D 6= 0 and D&10 = 0; continue to

line 10.

· · ·ATGATCGAA· · · 13 01000 2 10 5 D 6= 0 and D&100 = 0; continue to

line 10.

· · ·ATGATCGAA· · · 13 01000 3 10 5 D 6= 0 and D&1000 6= 0; leave the

loop and continue to lines 14, and

16–.

· · ·ATCGAA· · · 17 01000 3 13 4 A suffix is found; epos and last

are updated; the scanning direc-

tion changes.

· · ·ATCGAA· · · 19 01000 4 13 4 D&10000 = 0; not interesting, pro-

ceed with lines 22 and 23.

· · ·ATCGAA· · · 23 10000 4 13 4 D 6= 0; proceed with lines 17, 18,

and 9.

· · ·ATCGAA· · · 19 10000 5 13 4 D&10000 6= 0; something interest-

ing! A prefix or a match?

· · ·ATGATCGAA· · · 21 10000 5 13 4 i = m(= 5); the else branch reports

an occurrence at text position 9;

continue to lines 24, 25, and 6–.

· · ·AATCAG· · · 9 10001 0 17 5 The lowest bit is 1; continue from

line 17 with BNDM.

· · ·AATCAG· · · 19 10001 1 17 5 D&10000 6= 0; a prefix or a match?

· · ·AATCAG· · · 20 10001 1 17 4 i < m(= 5); it was a prefix, update

last.

· · ·AATCAG· · · 23 00000 1 17 4 D = 0; continue to lines 24 and 25.

· · ·CAG·· 25 00000 1 21 4 D = 0; continue to line 6.
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Implementation remarks. Note that on lines 10–13 the TNDM algo-

rithm may address at most m − 1 characters past tn, the last charac-

ter of text. This can be prevented by adding the following test in line

9:

9: if (D&1) = 0 and epos +m− 1 ≤ n then

The other possibility is to ignore spurious suffix and change line 14 in the

following way:

14: if D = 0m or epos + i > n then

and allow references to tn+1, . . . , tn+m−1. The third solution is to store in

tn+1 a stopper character, e.g. null, which does not appear in any pattern.

If the interesting bits do not use the whole word i.e. m < w, then one

has to be careful with tests like ‘D 6= 0k ’. As the result of a shift, some set

bits may move beside the interesting area of bit-vector, and tests cannot

be simplified to form ‘D 6= 0’. If the interesting bits are located on that

edge in the shifting direction, the uninteresting bits fall off during the

shift. Navarro and Raffinot use this concept successfully in their imple-

mentation of BNDM. In the pseudo-code of TNDM, all tests with 0m can

be simplified without extra masking.

Complexity. We consider only patterns that are at most w characters

long. The preprocessing time is O(m + |Σ|). The worst case complexity

of TNDM is clearly O(nm). The average case complexity of BNDM (and

BDM) is O(n log|Σ|m/m). It is not difficult to see that the same is true for

TNDM.

4.3 BNDM with q-grams – BNDMq

The BNDM algorithm (Algorithm 8) starts processing of every alignment

by fetching the last text character in that alignment. If that character

exists in the pattern, the BNDM algorithm falls to the slow loop. This

happens quite often, when the pattern is long or the alphabet is small.

Technically, the state vector D gets the value of bit mask from table

B corresponding to the last text character in the alignment. In the slow

loop, the BNDM algorithm next fetches the penultimate text character

(i.e. the last but one) in this alignment. The algorithm has to continue the

loop, if the text character pair from the end of the alignment exists in the

pattern.

Let us inspect further the behavior of the BNDM algorithm in process-
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ing an alignment. If the last text character in the alignment appears also

in the pattern, then another character from the text is fetched and used

in the indexing of the table B. That bit-vector is then incorporated with

the AND operation to the shifted state vector D, which is then tested.

Let us assume that the two last text characters of an alignment are pro-

cessed together. Then instead of two assignments to the state vector D

and two tests, only one assignment and one test has to be made. As a

consequence, the maximal shift length will decrease by one, because we

cannot tell which one of the characters caused the state vector to become

zero. However, this approach saves work on the average, because the

probability of falling to the slow loop is typically smaller.

This idea extends naturally to more than just two characters. The use

of q-grams is incorporated in Algorithm 14 called BNDMq. It was intro-

Algorithm 14 BNDMq(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ q ≤ m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0

2: for j ← 1 to m do

3: B[pj ]← B[pj ] | (1 << (m− j))
/* Searching */

4: i← m− q + 1

5: while i ≤ n− q + 1 do

6: D ← F (i, q)

7: if D 6= 0 then

8: j ← i

9: first← i− (m− q + 1)

10: repeat

11: j ← j − 1

12: if D ≥ (1 << (m− 1)) then

13: if j > first then

14: i← j

15: else

16: report occurrence at j + 1

17: D ← (D << 1) & B[tj ]

18: until D = 0

19: i← i+m− q + 1
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duced in Publication [V]. F (i, q) is a shorthand notation for instructions

B[ti] & (B[ti+1] << 1) & · · · & (B[ti+q−1] << (q − 1)).

Another difference to BNDM is a more simple instruction flow when

the q-gram is not present in the pattern. This loop has been made as

short as possible in order to quickly advance m− q + 1 positions in such a

case.

Note that BNDMq does not have the last variable storing the found

prefix, but the variable i, which points to the text position corresponding

to pm−q+1 in current alignment, is updated directly.

At the implementation level, the test starting the outer while loop can

be removed by placing a copy of the pattern as a stopper beyond the end

of the text [HuS91]. Then the end of the text is tested every time an

occurrence of the pattern is encountered. When a match is encountered,

it is unnecessary to process one more character from the text. We can

break the loop and continue with shifting of the pattern.

4.4 More straight-forward versions of BNDM

4.4.1 Simplified BNDM: SBNDM

The inner repeat–until loop of BNDM checks one alignment of the pattern

in the right-to-left order. At the same time, the loop recognizes prefixes

of the pattern. The leftmost (and also the longest) one of the found pre-

fixes determines the next alignment of the algorithm. When BNDM finds

th · · · ti which is a match or does not appear in P , there are two options for

shifting. Let j be the smallest index such that h < j ≤ i holds and tj · · · ti
is a prefix of P . Then the next alignment starts at tj . If there is no such

prefix, then the next alignment starts at i+ 1.

In SBNDM, we shift as in BNDM in the case of a match. But if th · · · ti
does not appear in P , we skip examining of prefixes and set h+ 1 to be the

start position of the next alignment. Naturally, this reduces the average

length of shift, but on the other hand, the innermost loop of the algorithm

becomes simpler. Our experiments show that SBNDM is most often faster

than BNDM.

The pseudo-code of SBNDM is shown as Algorithm 15. Table B is ini-

tialized as in BNDM and TNDM. In the case of a match, the shift is s0,

which corresponds to the distance to the leftmost prefix of the pattern in
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Algorithm 15 Simplified BNDM: SBNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */

1: Initialize B and s0

/* Searching */

2: pos ← 0

3: while pos ≤ n−m do

4: j ← m; D ← (∼0) >> (w −m) /* D ← 1m2 */

5: repeat

6: D ← (D << 1) & B[tpos+j ]

7: j ← j − 1

8: until D 6= 0m or j = 0

9: if D 6= 0m2 then

10: report an occurrence at pos

11: pos← pos + s0

12: else pos← pos + j + 1

itself. For example, s0 is three for P = abcab. In the case of a complete

match, the shift is actually restore[1], computed with Algorithm 13. A

more efficient computation of s0 is shown as Algorithm 16. (Value of s0

is actually same as the nett shift given by δ2[1] in the Boyer–Moore algo-

rithm.) If the proportional number of matches is not high, the algorithm

runs equally fast with the conservative value s0 = 1.

Algorithm 16 Computing s0

/* Preprocessing */
1: S ← B[pm] ; s0 ← m

2: for i← m− 1 downto 1 do

3: if S & (1 << (m− 1)) 6= 0 then

4: s0 ← i

5: S ← (S << 1) & B[pi]

Note that it is possible to leave out from the SBNDM algorithm the

test of j on line 8, because state vector D becomes always zero after m

bitwise shifts. However this kind of version will need to examine one

extra character after each match (immediately to the left of a match).

SBNDM was presented in Publication [II]. SBNDM is usually slightly

faster than BNDM, especially for short patterns. Independently, Navarro

[Nav01] has utilized a similar approach already earlier in the code of his
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NR-grep. In the article [Nav01, pp. 1272–1273] there is also a description

about how to apply similar simplified factor based shift in BDM algorithm,

instead of shifts based on the longest prefixes.

4.4.2 SBNDMq

Next, we present SBNDMq, which is a revised version of SBNDM apply-

ing q-grams. The pseudocode, which has been developed from BNDMq, is

shown as Algorithm 17.

The inner loops of BNDM and BNDMq contain two tests per fetched

text character. The inner loop of SBNDMq has only one test. Because

upon removing the tests on lines 12 and 13 in BNDMq (Algorithm 14), the

loop runs in the case of a match one position further to the left. The loop

does not go any further, because the w −m leftmost bits of each B[a] are

zeros, where w is the word length and the m rightmost bits of D are zeros

because of shifting left m times. Note that if there is an occurrence of the

pattern in the beginning of the text, the algorithm reads the character t0,

Algorithm 17 SBNDMq(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ q ≤ m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do B[c]← 0

2: for j ← 1 to m do

3: B[pj ]← B[pj ] | (1 << (m− j))
4: Compute s0 with Alg. 16

/* Searching */

5: i← m− q + 1

6: while i ≤ n− q + 1 do

7: D ← F (i, q)

8: if D 6= 0 then

9: j ← i− (m− q + 1)

10: repeat

11: i← i− 1

12: D ← (D << 1) & B[tj ]

13: until D = 0

14: if j = i then

15: report occurrence at j + 1

16: i← i+ s0

17: i← i+m− q + 1
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which should be accessible or the beginning of the text should be processed

otherwise. (Also BNDMq reads t0 in such a situation. Nevertheless in the

case of BNDMq it can be easily avoided at the implementation level.)

4.4.3 UFNDMq

Algorithms of BNDM and SBNDM and their descendents apply backward

matching. The TNDM algorithm (section 4.2) uses backward and forward

scanning. In this section, we introduce a new variation called FNDM (For-

ward Nondeterministic DAWG Matching) as Algorithm 18. A preliminary

version of FNDM was introduced by Holub and Ďurian [HoĎ05]. The idea

is to read every mth character x of the text while x does not occur in the

pattern. If x is present in the pattern, the corresponding alignments are

checked by the naive algorithm. BNDM and its descendants apply the

shift-and paradigm while FNDM uses shift-or.

Algorithm 18 FNDM(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m ≤ w

/* Preprocessing */

1: for all c ∈ Σ do B[c]← ∼0

2: for j ← 1 to m do

3: B[pj ]← B[pj ] & ∼(1 << (j − 1))

/* Searching */

4: i← m

5: while i ≤ n do

6: D ← B[ti]

7: while D 6= ∼0 do

8: if D < ∼0 << (m− 1) then

9: if j = i then

10: report occurrence at i−m+ 1

11: i← i+ 1

12: D ← (D << 1) | B[ti]

13: i← i+m

Next we extend FNDM to handle q-grams. Let G(i, q) be a shorthand

notation for instructions / expression

B[ti] | (B[ti−1] << 1) | · · · | (B[ti−q+1] << (q − 1)).

If we replace the first occurrence of B[ti] on line 6 in Algorithm 18 by

G(i, q), we get FNDMq.
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We will develop FNDMq further. The resulting algorithm is UFNDMq

which is given as Algorithm 19. The letter U stands for upper bits because

the algorithm utilizes those in the state vector D. Like FNDM, UFNDMq

is a filtration algorithm. A candidate is checked by the naive algorithm

only if at least q characters are correct. The reading step is q instead of

m or 1 after a candidate has been processed. Checking can be done in any

order.

Algorithm 19 UFNDMq(P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: 1 ≤ q ≤ w −m+ 1

/* Preprocessing */

1: mask← (1 << (q − 1)− 1) /* mask← 0w−q+11q−1
2 */

2: for all c ∈ Σ do B[c]← ∼(mask << m)

3: for j ← 1 to m do

4: B[pj ]← B[pj ] & ∼(1 << (j − 1))

/* Searching */

5: tn+1tn+2 . . . tn+m ← P

6: i← 0; D ← ∼0 /* D ← 1w2 */

7: while 1 do

8: while (D|mask) = ∼0 do

9: i← i+m; D ← (D << m) | G(i, q)

10: F ← (D | (1 << (m− 1)− 1))

11: if F then

12: Scan through unset (=0) upper bits in F

13: and check candidates starting at corresponding positions

14: if end position > n then

15: Return

16: i← i+ q; D ← (D << q) | G(i, q)

Checking is done if any of the higher than the q − 1 lowest bits in D is

not set. Those bits correspond to candidate positions.

Let us study an example. Let abcdefgh be the pattern, and let q be 4.

Let us assume that the marked 4-grams have been read.

...xxxxabcdefghxxxx...

Then the rightmost bits of D are computed as shown in Fig. 4.1. So the

candidate abcdefgh should be checked.

Let us consider another example. Let q be 2. When bc of an occurrence

of the same pattern has been read, i is advanced by 2 until the end of the

pattern is recognized.
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x: ...00011111111

x: ...100011111111

a: ...1100011111110

b: ...11100011111101

g: ...1111111100010111111

h: ...11111111110001111111

x: ...111111111100011111111

x: ...1111111111100011111111

D: ...1111111111110111111111

Figure 4.1. Computation of D.

Notice that unlike the other q-gram algorithms UFNDMq works rea-

sonably also on “undersized” patterns i.e. when q > m. Then it must be

allowed to access characters before the beginning of text or better by eval-

uating the first value of D separately. A disadvantage of UFNDMq is that

the pattern length is limited by q +m ≤ w + 1.

4.5 Simultaneous two byte read

We adopted a similar approach as in Section 3.5 to BNDMq and SBNDMq.

We developed three versions for both. BNDM2b/SBNDM2b reads a 2-

gram as a 16-bit halfword. The value of B[ti]&(B[ti+1] << 1) is stored in a

precomputed table g for each halfword. In BNDM4b/SBNDM4b the corre-

sponding value of 4-gram is computed as g[x1] & (g[x2] << 2) where x1 and

x2 are the halfwords and g is the same table used in the 2-gram version. In

BNDM6b/SBNDM6b the value of 6-gram is computed as g[x1] & (g[x2] <

< 2) & (g[x3] << 4). From SBNDM4b, we made a modified version SB-

NDM2+2b, where a 4-gram is tested in two parts. If the first 2-gram does

not exit in the pattern, we can shift m− 1 positions instead of m− 3 with

4-gram. Actually the table g is mostly zero. In the pattern there are m− 1

character pairs, and thus there are at most m− 1 nonzero entries in g.

During the preprocessing phase, we take care of endianess. The index-

ing of the table g is different. On a little endian machine, the bit-vector is

stored to (ti+1 << 8) + ti and on a big endian machine to (ti << 8) + ti+1.

Simultaneous 4 byte read (as in Section 3.6) would cause mostly cross

border read and would thus slow down. These kinds of algorithms would

also need tables with 232 entries and would be too big for practice. How-
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ever, the space can be reduced by a transformation (Publication [IV, p.

421]).

4.6 Complexity

Provided that m ≤ w, the worst case time complexity of BNDM is O(mn),

but the average time complexity is sublinear. The space complexity of

BNDM is O(|Σ|). It is straightforward to show that BNDMq and SBNDMq

inherit these complexities. Also, UFNDMq is sublinear on the average and

O(mn) in the worst case.

We did not develop linear versions of our algorithms, because they

would likely be in practice slower on the average than the standard ver-

sions as it is the case with BNDM [NaR00].
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5.1 String matching in chunked texts

We study exact string matching in special texts, which consists of consec-

utive fixed-length chunks where each position of a chunk has a character

distribution of its own. This kind of setting can also be interpreted so that

a chunk represents a character of a larger alphabet. If texts and patterns

are of this kind, it may ruin the efficiency of common algorithms. We ex-

amine anomalies related to the Boyer–Moore–Horspool and Sunday’s QS

algorithms in this setting. In addition, we present two new algorithms.

This section is mostly based on Publication [III].

5.1.1 Introduction

In most exact string matching algorithms, it is assumed that the charac-

ters are statistically independent of each other. If the text and the pattern

contain similar regularities, well-known string matching algorithms may

loose their efficiency. Lecroq [Lec98] considered string matching in texts

with strong regularities. His texts were dumps of memory structures:

arrays of numbers. Thus, the texts consist of consecutive fixed-length

chunks where each position of a chunk has a character distribution of

its own. In this section, we will use the term chunked string to indicate

strings of this kind. Though Lecroq’s texts were chunked, he did not con-

sider the effects caused by chunks. He was more interested in the effect

of the alphabet size. In what follows, we will present refinements to his

work. We denote here the size of the alphabet with c.

We discovered anomalies in Lecroq’s test results. Namely, with the

two data sets he used, the Boyer–Moore–Horspool algorithm [Hor80] was

unexpectedly slower than Sunday’s QS algorithm [Sun90] (Sections 2.3
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and 2.4), although these algorithms should behave in a similar way. We

analyzed the reasons in detail. We found out that this phenomenon is

due to the characteristics of the test data. This observation helped us to

construct examples where the Boyer–Moore–Horspool algorithm works in

O(n/m) and QS in O(nm) and vice versa.

5.1.2 Lecroq’s experiments

Lecroq tested how well-known exact string matching algorithms behave

on dumps of memory structures. He studied the effects of the alphabet

size. Besides the traditional byte oriented approach, he considered alpha-

bets where several consecutive bytes represent a character. So a chunk

can be regarded as one character of a larger alphabet. Lecroq’s algorithms

and data are available on the Web1.

We shortly describe Lecroq’s two data sets [Lec98] which we use in

our tests. Shorts or short integers consist of consecutive chunks of two

bytes. Doubles or double precision numbers consist of consecutive chunks

of eight bytes. Each chunk in Lecroq’s data sets has been stored such that

the high-order byte of the number is at the lowest address and the low-

order byte at the highest address (i.e. bytes of the numbers are stored in

big-endian order). The number of distinct values, counts of the most com-

mon values (max. frequency), and counts of zero for each byte are shown

in short and double chunks in Table 5.1, where r denotes the probability

that two randomly chosen bytes (in the given position or overall) are the

same. In the shorts, the first byte follows a discrete uniform distribution.

In the doubles, the proportion of zero bytes is considerable. The overall

1/r is moderate, but the different frequencies of zeros among positions of

chunks makes searching more challenging. Lecroq’s patterns were con-

secutive chunks extracted randomly from the texts.

Lecroq’s conclusion was that the byte-oriented approach in searching

was more efficient than the approach with extended alphabet (exclud-

ing the two shortest patterns of doubles). So we consider only the byte-

oriented approach here. Lecroq used in his experiments the following

algorithms: Boyer–Moore [BoM77], Boyer–Moore–Horspool [Hor80], Sun-

day’s Quick Search [Sun90], and Tuned Boyer–Moore [HuS91]. We de-

note these algorithms by BM, BMH, QS, and TBM, respectively. Pairwise

matching in the Boyer–Moore algorithm works inherently in the reverse

1URL: http://www-igm.univ-mlv.fr/~lecroq/esmms.tar.gz
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Table 5.1. Statistics of the bytes of chunks.

DOUBLES 1 2 3 4 5 6 7 8 Overall

symbols 5 215 256 256 256 4 1 1 256

max.frequency 100152 6371 863 1344 9667 124889 200000 200000 536705

zeros 3 4 798 1344 9667 124889 200000 200000 536705

1/r 2.00 48.07 255.71 254.40 113.98 2.29 1.00 1.00 8.11

SHORTS 1 2 Overall

symbols 256 44 256

max. frequency 1564 12500 14064

zeros 1559 12500 14059

1/r 248.25 32.00 86.01

order, but the other implementations use C’s library routine memcmp for

matching. Quick Search and Tuned Boyer–Moore use an additional guard

test [HuS91, pp. 1224–1225] before pairwise comparison (so called Raita’s

trick [Rai92]). Only the Tuned Boyer–Moore algorithm uses an unrolled

fast skip loop (see Section 2.2) with factor 3. All the other implementa-

tions apply a simple skip loop searching for the last character of a pattern.

Following pairwise matching, it is tested whether the potential occurrence

of the pattern is at a correct alignment (phase) and does not extend be-

yond the end of the text.

Lecroq’s data sets are big-endian. If Lecroq’s tests were repeated with

data corresponding to the same numbers on a little-endian machine, the

results would be similar to those for texts of natural language. The length

of the text of shorts is 400 000 bytes, and the length of the text of doubles

is 1 600 000 bytes.

5.1.3 Why QS was faster than BMH?

Chunked texts and patterns may ruin the efficiency of common algorithms.

Moreover, two algorithms may be inefficient in different cases. We illus-

trate this with the algorithms BMH and QS. These algorithms are closely

related, and in practice their performances are similar on data which is

not chunked.

In Lecroq’s experiments QS used on the average 37% less processor

time than BMH on the doubles, but he did not give any explanation for

this phenomenon. The inspection of shift lengths reveals that something

odd has happened: the average shift is over 14 for QS and less than 8
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for BMH. From the characteristics of these algorithms, we know that if

successive bytes do not (statistically) depend on each other, the expected

length of shift for QS should be at most one longer than that for BMH.

A similar behavior was observed in the case of the short integers. QS

was considerably faster than BMH for long patterns. Again there is a

difference in the average length of shift. We show that the behavior in

both cases is due to the characteristics of data.

In addition to BMH, the TBM does not perform well with Lecroc’s data.

Because TBM follows closely the behavior pattern of BMH, we decided not

to consider it in detail.

The speed of QS and BMH should be almost equal

Theoretically, the speed of QS and BMH should be similar for long pat-

terns in the case of random data. Let ti be the text character aligned

with the last character of the pattern. The main difference between the

algorithms is that the shift is based on ti in BMH and ti+1 in QS. If we

assume that characters are independent of each other, the expected shift

length [Bae89] of BMH is

1− (1− r)m
r

,

where r is as in previous subsection. Similarly, it is straightforward to

show that the expected shift length of QS is

1− (1− r)m+1

r

When the pattern becomes longer, the expected shift lengths of both algo-

rithms approach 1
r . This means that the performance of BMH should get

closer and closer to the performance of QS when patterns get longer. Note

that pairwise comparisons of these algorithms are equally laborious.

If the characters come from the uniform discrete distribution of c differ-

ent characters, the average shift approaches c in the case of long patterns.

The improvement on expected lengths of shift should be quite clear while

the pattern length m grows but still m < c holds.

Anomaly of shorts

Lecroq’s test data of short integers is not uniformly distributed. The text

and patterns consist of chunks of two bytes. The second byte has a skew

distribution among 44 values. A hexadecimal dump of the beginning of

the text is given in Table 5.2.

In order to explain the different behavior of QS and BMH, let us con-

sider a simple example. Let T = (#a#b)n/4 and P = (#a#b)m/4 be the

66



String matching on special data

Table 5.2. The beginning of shorts.

bf04 5be9 a100 2051 38c4 60a1 3e10 7599

f6a4 edf9 6640 fe81 fea4 71f1 cf90 1909

36c4 ba89 1000 8331 6504 f5c1 9d90 5af9

2f64 b199 ce40 1e61 1be4 dc11 d810 ab69

9084 c329 d100 4011 d344 14e1 af10 7a59

0a24 df39 4840 5841 3b24 9031 5290 37c9

4c44 f5c9 6400 d6f1 0384 3e01 f290 53b9

06e4 f6d9 5440 2c21 dc64 0e51 bf10 3e29

ea04 d269 4900 c7d1 75c4 f121 e810 6719

text and the pattern, where # represents any character, e.g. T = xayb-

cadbsayb, P = cadbfaxb. In this case, a typical shift of BMH is two or

four, but the average shift of QS is longer for long patterns. However, for

a pattern P = (a#b#)m/4 aligned differently, a typical shift of QS will be

two or four, whereas the average shift of BMH would be longer.

In order to verify that this is the cause of the difference in Lecroq’s

test results, we ran a test with two possible alignments of patterns. The

pattern set of Alignment 1 is the original one (patterns start on even

bytes). Another set of 100 patterns, which start on odd bytes, was ran-

domly picked from the text. This set is denoted Alignment 2. The results

are shown in Table 5.3. BMH is clearly faster than QS in the latter case.

Table 5.3. Running times per pattern in seconds for short integers.

Alignment 1 Alignment 2

m BMH QS BMH QS

4 0.286 0.251 0.240 0.243

6 0.200 0.199 0.174 0.193

8 0.197 0.170 0.148 0.164

10 0.151 0.149 0.127 0.140

12 0.144 0.133 0.115 0.126

14 0.130 0.122 0.105 0.118

16 0.131 0.117 0.098 0.111

18 0.109 0.110 0.088 0.101

20 0.107 0.100 0.079 0.091

40 0.078 0.062 0.043 0.055

80 0.065 0.038 0.024 0.039

160 0.056 0.025 0.014 0.032

320 0.054 0.016 0.010 0.031

640 0.053 0.011 0.008 0.030

1280 0.058 0.011 0.010 0.032
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The anomaly caused by Lecroq’s data is not exceptional. When ASCII

characters are represented in the UTF-16 (16-bit Unicode Transformation

Format) coding, a similar situation appears on little-endian machines:

rightmost bytes are zeros.

Anomaly of doubles

The double data is far from uniformly distributed. The text and patterns

consist of chunks of eight bytes. In a chunk, the two last bytes are zeros

and the value of the first byte is either 65 or 193 in practice. Because the

penultimate character (i.e. the last but one) of each pattern is also zero,

the shift of BMH on zero is one. Because the frequency of 193 and 65 is

high in the first byte, the shift of BMH on 65 or 193 is likely seven and the

shift on the other alternatives is 7+s, where s is a multiple of eight. These

characteristics lead BMH to a repetitive behavior in shifting where BMH

has approximately two alignments of the pattern for each alignment of

QS.

Moreover, the location of the double zero in the chunks of the pattern is

critical. Table 5.4 shows the results with differently aligned patters. Note

that BMH is clearly faster in five cases out of eight.

Table 5.4. Running times per pattern in seconds in Sparc for different alignments of dou-
bles (patterns of 320 bytes).

offset BMH QS

0 1.389 1.016

1 0.884 0.257

2 0.181 0.237

3 0.176 0.230

4 0.172 0.237

5 0.178 0.264

6 0.238 2.133

7 2.060 2.016

The difference between QS and BMH can be even larger. Let us assume

that at each alignment, the BMH algorithm checks the characters under

the pattern in the order pm, p1, p2, ..., pm−1 and QS in the order p1, p2, ..., pm

until a mismatch is found. Moreover, QS reads an extra character pm+1

at each alignment for shifting. It is known that the worst case complex-

ity of the both algorithms is O(nm), whereas the best case complexity is

O(n/m). Let us consider two examples:

(1) P = am, T = (am−1b)n/m

(2) P = am−4ca3, T = (bam−2cb)n/m.
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It is straight-forward to show that in the case (1) BMH performs inO(n/m)

and QS in O(nm), but in the case (2) QS performs in O(n/m) and BMH

in O(nm). These examples were tuned for forward pairwise checking in

BMH and QS. It is not difficult to modify the examples for backward

checking.

5.1.4 New algorithms

Fork. For long patterns, it is advantageous to base shifting of pattern

on several characters (q-grams) in order to get longer shifts. There are

several variations of Boyer–Moore and Boyer–Moore–Horspool algorithms

which use 2-grams [Bae89, BeR99, KiS94, ZhT87]. 3-grams are not prac-

tical if no transformation is used for reducing the shift table. According to

our experiments, consecutive characters yield a longer shift on the aver-

age than 2-grams with a gap, when the distribution of all bytes is uniform.

Lecroq’s double data is an example where also 2-grams, which are not con-

secutive, produce good results. We developed a variation which applies

2-grams which are not consecutive. The left character of the 2-gram is

under the last position of the pattern and the right character is at a fixed

distance from it to the right in order to make shift longer. This test can be

combined with a skip loop. In the case where the character under the end

of the pattern yields a shift that does not reach the other character, that

shift is the final shift. This algorithm, shown as Algorithm 20 is called

Fork. The parameter h is the offset of the right character of the 2-gram.

The value h = 1 corresponds to a 2-gram of consecutive characters.

Fork can be viewed an extension of the Zhu–Takaoka and Berry–Ra-

vindran algorithms [ZhT87, BeR99], which apply 2-grams of consecutive

characters. The worst case complexity of Fork is clearlyO(mn). The appli-

cation of 2-grams never decreases the average shift length, so the average

case complexity is at most the same as for BMH.

Sync. If we know the format of the data beforehand, it is possible to

speed up string matching by taking this into consideration. For example,

let a text and a pattern consist of consecutive chunks of u bytes. Then

the shifts are necessarily multiples of u if non-aligned matches are not

accepted. This was the case in Lecroq’s experiments.

Moreover, the shift can be based on any byte of a chunk. So if the

bytes of a chunk have different distributions, it is advantageous to base

the shift on a byte position with a distribution as uniform as possible over

all possible symbols.
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Algorithm 20 Fork(h, P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: m > h > 0

/* Preprocessing */

1: for all c ∈ Σ do tempd [c]← m

2: for i← 1 to m− 1 do tempd [pi]← m− i
3: shift← tempd [pm]; tempd [pm]← 0

4: for all c1 ∈ Σ do

5: if tempd [c1] < h then

6: for all c2 ∈ Σ do d[c1, c2]← tempd [c1]

7: else

8: for all c2 ∈ Σ do d[c1, c2]← m+ h

9: for i← 1 to h do d[c1, pi]← m+ h− i
10: for i← 1 to m− h do

11: if tempd [pi] ≥ h then d[pi, pi+h]← m− i
/* Searching */

12: tn+1 · · · tn+2∗m ← P + P /* Stopper */

13: j ← m

14: while j ≤ n do

15: repeat k ← d[tj , tj+h]; j ← j + k until k = 0

16: if j ≤ n then

17: if tj−m+1 · · · tj−1 = p1 · · · pm−1 and j is a multiple of u then

Report match

18: j ← j + shift

Algorithm 21 called Sync uses this idea. Sync applies the occurrence

heuristics and is thus related to the Boyer–Moore–Horspool algorithm

[Hor80]. Using the position of the least probable character in the pat-

tern as a test position is also applied in the Least Cost algorithm [Sun90],

where the whole pairwise matching is performed in the increasing order of

probability of the characters. The worst case complexity of Sync is clearly

O(mn), and the average case complexity is at most the same as BMH’s.

Let h be the offset of the examined byte from the end of the pattern.

We assume that h is less than u. By making some changes, it would be

possible to allow larger values for h, but this extension might be useful

only in rare special cases. Actually, the while loop starting from line 6

requires one test more: we need to check that we do not report matches

beyond the end of the text.

On doubles Sync4 outperformed all the other tested algorithms for all
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Algorithm 21 Sync(h, P = p1p2 · · · pm, T = t1t2 · · · tn)
Require: u > h ≥ 0 /* Let u be the width of a chunk */

/* Let h be the distance of the examined byte from the end */

/* Preprocessing */

1: for all c ∈ Σ do d1[c]← m

2: for i← u− h step u to m− h− 1 do d1[pi]← (m− h)− i
/* Searching */

3: s← pm−h

4: tn+1..tn+m ← sm /* Stopper for inner while */

5: j ← m

6: while j ≤ n do

7: while tj−h 6= s do j ← j + d1[tj−h]

8: if tj−m+1..tj = P then Report match

9: j ← j + d1[s]

patterns lengths. Fork4 was the second fastest on the patterns at least

320 bytes long. For the shortest patterns, BM was faster. In these tests

BM is an implementation of Algorithm 2 (BM_fast).

On short integers, TBM is the fastest for short patterns. Sync3 is the

fastest for patterns longer than 13 characters. This takeover point de-

pends on the computing platform. On the AMD Athlon processor, the

takeover point was around 20.

5.2 Long patterns

5.2.1 LBNDM

Navarro and Raffinot [NaR00, p. 12] introduced also a method of search-

ing for patterns longer than w. They partitioned the pattern in consecu-

tive subpatterns. All the subpatterns have w characters except possibly

the rightmost one which gets the remaining characters. The leftmost sub-

pattern is searched with the standard BNDM algorithm. Only when the

match of the leftmost subpattern is found, the rest of an alignment is ex-

amined. The maximum shift is w.

We introduced in Publication [II] another approach called LBNDM for

long patterns. LBNDM is able to make shifts longer than w. The pattern

is partitioned in bmk c consecutive parts, each consisting of k = bm−1
w c + 1
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characters. The m − kbmk c remaining character positions are left to ei-

ther end of the pattern (or to both ends). This division implies k subse-

quences of the pattern such that the ith sequence takes the ith character

of each part. The idea is to search first the superimposed pattern of these

sequences so that only every kth character is examined. This filtration

phase is done with the standard BNDM algorithm. Each occurrence of

the superimposed pattern is a potential match of the original pattern and

thus must be verified.

Note that the shifts of the LBNDM are multiples of k. To get a real

advantage of shifts longer than in the approach of Navarro and Raffinot,

the pattern length should be at least about two times w. On the other

hand, this implies k ≥ 3, which on DNA data turns out to be quite high.

In the case of a small alphabet, a feasible solution could be to use q-grams

instead of single characters, see [KST03].

5.2.2 BXS, BQL, and QF

In Publication [VII] we introduced three novel bit-parallel algorithms for

search for long patterns. All of these algorithms apply q-grams.

The first algorithm is BXS (BNDMq with eXtended Shift). The pattern

is cut into consecutive pieces and a superimposed pattern is formed by

laying these pieces above each other. Constant q defines how many text

characters are processed at the beginning of checking of every alignment.

BXS is practical with large alphabets.

BQL (BNDMq Long) uses overlapping q-grams so that we effectively

search for a pattern of m − q + 1 overlapping q-grams. Similarly to BXS

we cut the q-gram pattern into pieces and superimpose them. Constant s

is the hashing parameter used for q-grams. So the algorithm uses a hash

table with 2q·s entries. Even surprisingly high values of q work well.

The third algorithm, QF (Q-gram Filtering), is similar to the approx-

imate string matching algorithm by Fredriksson and Navarro [FrN04],

which is not a BNDM based algorithm. As preprocessing we store for

each phase i, 0 ≤ i < q, which q-grams occur in the pattern in that phase,

i.e. start at the position i + j · q for any j. During searching we read con-

secutive q-grams in a window and keep track of active phases, i.e. such

phases that all read q-grams occur in that phase in the pattern.

BQL and QF were shown to be optimal on the average.
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6. Algorithm testing

Testing the performances of algorithms may at first seem easy. When

we are interested in time, basically we need to store the clock time in

the beginning, run the algorithm, store the clock time in the end, and

calculate the difference. However, the results are surely valid only for the

given input, for the implementation, compiler and hardware used, for the

same workload, and for several other things.

The comparison of algorithms should of course be performed according

to a good measurement practice. In the case of exact string matching al-

gorithms it could mean following things. Verifying that algorithms work

properly: whether all the matches are found, and whether the search al-

ways stop properly at the end of the text. It is not rare that the match

in the beginning or in the end of the text is not recognized. When the

measuring is focused on performance, it is reasonable to use at least some

level of optimization in the compilation. The measurement should not dis-

turb the work of algorithms. We think that the printing of matches dur-

ing time measurement is questionable. Printing produces also additional

overhead, which is partly unsynchronized. More generally one should in-

vestigate all possibly disturbing things for the measurement, and if pos-

sible, rule them out. It is crucial to measure the essential part of the

algorithms. Typically in the case of string algorithms, the reading of data

belongs merely to an outer part of the test setting. Therefore we think

that times spent to reading should be excluded from time measurements

unless we are comparing whole programs. However, it is not clear if pre-

processing should be included in the measurements. The work required in

preprocessing is a proportion of the whole search task, and the proportion

is depending on the text length. For example Horspool reported that ‘the

timings do not include the work of initializing tables’ [Hor80, p. 506].

It is also important to try to check the validity of the measurement
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method, and the accuracy of results. One should check, if the order of in-

put data or algorithms matters. It is important to find out, how accurately

repeatable the results are.

Generally it is good to realize when comparison is focused to ‘apples

and oranges’: are algorithms doing the same thing, or is some algorithm

utilizing extra information or doing something which could output addi-

tional information.

Use of averages easily hides important details! Averages may tempt to

biased or even wrong conclusions. Especially arithmetic mean is danger-

ous [FlW86].

6.1 Principles of testing

The choice of an implementation language for algorithms usually limits

available features: the number of different data types and the exactness

of requirements given to them varies typically. The programming lan-

guage Java is defined precisely, but it lacks the unsigned integer data

type, which is the best suitable for bit-vectors. On the other hand, the

Java virtual machine adds an additional layer on the top of hardware.

The programming language C is flexible, but its standard states quite

loose requirements for the precision of integers. With assembly languages

it would be possible to produce the most efficient machine code, but then

the portability to another kind of hardware would be lost. We respect the

implementations of algorithms made by others, and therefore avoided do-

ing unnecessary modifications or changes to them. So the selecting of an

implementation language for empirical comparison has been in practice

bound to the language the majority of others uses. There are plenty of

implementations of textbook style in Java. In most of them the practi-

cal performance has not been among the central goals. Nevertheless, the

programming language C seems currently to be the de facto language for

implementing efficient exact string matching algorithms.

The C language standard from year 1999 introduced the header file

stdint.h. (The header file inttypes.h includes it.) The fastest minimum-

width integer types designate integer types that are usually fastest to

operate with among all the types that have at least the specified width.

However, footnote 216 in the standard states ‘The designated type is not

guaranteed to be fastest for all purposes, if the implementation has no

clear grounds for choosing one type over another, it will simply pick some
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integer type satisfying the signedness and width requirements’. For ex-

ample, the choice of certain data type may cause implicit type conver-

sions that may ruin the otherwise fast operation. In our tests, the fastest

minimum-width integer types had no clear effect on the performance. So

they are not used in our implementations.

The exact-width integer types are ideal for use as bit-vectors. The type-

def name uintN_t designates an unsigned integer type with a width of

N bits. These types are optional. However, if the implementation (of a

C compiler) provides integer types with widths 8, 16, 32, and 64 bits, it

shall define the corresponding typedef names. Therefore, the exact-width

integer types should be available in almost all the C compilers conforming

to the C99 standard.

Test environment

We ran all our string matching tests using the test harness of Hume

and Sunday [HuS91]. Recently another test harness SMART, the String

Matching Algorithms Research Tool1 was introduced. It has been built by

Faro and Lecroq, and it contains currently 85 implementations of string

matching algorithms. In addition there is also corpus of test texts and

a testing framework. With SMART it is easy to quite automatically pro-

duce speed comparison of several algorithms and several data sets. The

test harness of Hume and Sunday allows detailed testing of an individual

algorithm and some of its variations even without changing the source

code.

The test harness of Hume and Sunday has the following features:

• The preprocessing and the actual searching in the text are in separate

functions with fixed names: prep and exec, respectively. This separation

allows the precise measurement of the preprocessing time. However in

most algorithms the pattern has to be copied to some local buffer so that

pattern can be used in the verification of an occurrence. This copying is

always made. Therefore all the measured preprocessing times contain

copying.

All data that are transfered from prep to exec are stored in struct

pat. This guarantees for all local data structures in all algorithms a rea-

sonable and equal behavior of the cache memory. Thus the comparison

of algorithms is objective also in relation to the access of data structures.

1URL: http://www.dmi.unict.it/~faro/smart/
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Placement to the structure pat may slightly increase the access time

for individual variables, when they are accessed with a fixed offset from

the base address instead of a direct memory address or even a register.

This was often compensated inside the exec function by using local vari-

ables that were initialized from the value stored in that structure. Thus

the compiler can easily optimize local variables away, if that seems to be

more efficient.

• Each implementation of any algorithm is in a separate file, which forms

a translation unit. It neatly limits the scope of identifiers. Also, the com-

piler’s optimization can be improved upon, because the variables and

other data structures of any search algorithm are not used elsewhere.

When testing several algorithms in the same compiled program, there

is always a risk that they interfere with each other. With this approach

especially the data structures initialized during preprocessing are lo-

cated close to each other, and thus prevent unnecessary cache misses.

Adding a new implementation of a string matching algorithm requires

possibly only an update to the scripts, but no changes to the program

code of the test harness.

• The character type can be explicitly defined as signed or unsigned by

defining the preprocessor macro CHARTYPE at compile time; e.g. in gcc

-D CHARTYPE= ’unsigned char’. This feature is useful if in some pro-

cessor the access times of signed and unsigned character type differ con-

siderably. On the other hand, a related speed penalty may occur when

converting the character type to some larger type and the speeds of zero

extension and signed extension are not the same. Taking that into ac-

count usually triggers other changes in the implementation.

In the programs in the stringsearch package by Hume and Sunday

[HuS91] the use of the signed character type does not always work prop-

erly, because indexing of arrays does not work with negative values.

This could be avoided by casting the value of an index to the unsigned

type.

In practice the use of preprocessor macro CHARTYPE seemed to have

very little effect on the speed of a search.

• The data type used in shift tables can be defined through the typedef

TABTYPE. This allows an easy use of a faster datatype in a particular
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computer by defining a preprocessor macro TABTYPE at compile time;

e.g. in gcc -D TABTYPE=’long int’. The fastest minimum-width integer

types described above might have effect on the performance. In practice,

this typedef seemed to have little impact, so this feature is not always

used in our implementations. This is in agreement with Hume and Sun-

day [HuS91, page 1232] who reported it.

• All printing is done after the time measurements of test runs. Therefore

there should be no possibility of CPU time usage for unsynchronized I/O,

which could be charged during time measurements.

The reading operations are made and the files are closed before the

search (of the first pattern) starts.

• In addition to the time measurements, the test harness offers also a

possibility to collect and report some basic statistics about algorithm

behavior on given data. That feature is enabled by defining the prepro-

cessor macro STAT during compilation (e.g. in gcc -DSTAT). Collecting is

based on counters programmed beforehand.

The following counters in struct stats are used in the collection:

number of character pair comparisons (cmp), number of otherwise fetched

text characters (jump), average shift2 lengths of the pattern (step[]),

number of fallings to a slow loop (slow), number of enterings to other

interesting parts of algorithm (extra, extra2; the latter was not in the

original version), and pattern length (len). Of course len can store only

the most recent pattern length. The name jump of jump may sound mis-

leading. It could serve at least the two following purposes: Firstly it

could mean the number of text characters that are used for shifting es-

pecially in skip loop. Secondly it could record the number of text char-

acters that are fetched without fetching the corresponding character in

the pattern. Interpretation of counters differs among algorithms.

To improve locality in struct stats and possible errors caused by in-

dexing past the end of the array step[], we have permuted the latter to

be the last item.

In the unrolled fast skip loop there occurs one or more zero length

shifts, when a potential matching position is found. One can argue that

if zero length shifts are counted, the reported average shift length is

unnecessarily short.

2Some authors use term stride for shift.
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Mhashi [Mha05] measured the number of comparisons, including char-

acter comparison, number comparison, and character access compari-

son. Literally taken, this equals the number of conditional branches.

Even more interesting in processors having branch prediction would be

counting mispredictions and correct predictions (of conditional branches).

The STAT feature has not been added to all implementations that have

been got from other researchers.

• There exist already good quality implementations of search algorithms:

Hume and Sunday compiled their material in stringsearch package. It

contains implementations of 37 search algorithms. About 30 of them

have practical value.

We adapted the buffer sizes to the data sizes in the test harness. In ad-

dition we have added the call to sched_setaffinity function as described

below.

In the implementations of algorithms the occurrences of the pattern

are only counted but not printed out. For the sake of fairness, each algo-

rithm has been implemented so that the exact location of each occurrence

could be printed if wanted.

About implementation

In our implementations, we have tried to use efficient programming tech-

niques. The programming style is similar as in the stringsearch pack-

age [HuS91], and in GNU grep3. Special care is taken of avoiding un-

necessary assignments. In the literature the algorithms are usually pre-

sented with minimal number variables. For clarity this is a good conven-

tion. On the other hand, there are often parts in the expressions that

remain constant in the search loop. For efficiency we have assigned them

to local variables. We feel that this is very useful in boolean valued ex-

pressions. From array indices many compilers remove constant offsets by

moving the base address accordingly: e.g. A[j-1] is probably equally fast

as B[k]. We have also followed the old tradition by putting the register

storage class to the definition of often used variables. Although it does not

nowadays affect compiling according to our knowledge.

We have avoided use of functions. Only the following standard func-

tions are used: The pattern is copied in prep with the memcpy, and if

3Version 2.5.3 and many earlier versions.
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needed, beyond the text in exec. Large memory areas are initialized with

the memset function. The times function is used for collecting CPU time

usage.

In the implementations the characters are accessed using both point-

ers and indexing of array. (In the programming language C the difference

between them is merely in appearance.) We noticed no differences in per-

formance.

The change of the process from one processor core to another empties

cache memories with various degree. (Often L3 and L2 caches are shared

with several cores.) This would slow down reads from memory and induce

annoying variation to the timing of test runs. To avoid it we have used

the Linux function sched_setaffinity to bind the process to only one

processor or core. Our test computer C (see details in Appendix B) had

two separate processors. On it the use of the function sched_setaffinity

reduced substantially variation in time measurements.

Many modern processors are able to use the dynamic CPU frequency

scaling in order to conserve power. Changing the CPU speed during a

performance test changes also the relative speed of CPU and memory

bus. This would favor less CPU intensive algorithm implementations,

but more importantly it would add variance to time measurement. There-

fore the CPUFreq drivers (of Linux) were disabled. HyperThreading is

available in the test computer D. We ran several tests with and without

HyperThreading, but we did not notice any difference. (We suspect that

the scheduling policy was smart enough.) During test runs the comput-

ers were connected to the network, and the cron jobs were running, but

there was no other workload. On test computer A even windowing system

Gnome was not running.

All bit-vectors are coded to use the type Bitv, which is defined to be ei-

ther uint32_t or uint64_t. The aim is to use the largest unsigned integer

type that can be operated with single machine instructions. The number

of bits in bit-vectors can be overridden by defining a preprocessor macro

BITS at compile time; e.g. in gcc -D BITS=32 or -D BITS=64. The following

piece of code is used in defining the type Bitv

#ifndef BITS

# if(4294967295UL==ULONG_MAX)

# define BITS 32

# else

# if(18446744073709551615UL==ULONG_MAX)
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# define BITS 64

# else

# error ’this implementation has not been tested for this number of bits’

# endif

# endif

#endif

#if(BITS==64)

typedef uint64_t Bitv;

#elif(BITS==32)

typedef uint32_t Bitv;

#else

typedef uint32_t Bitv;

# error ’strange value defined for BITS’

#endif

Considerable effort has been put in getting good implementations of

exact string matching algorithms in the C language from their designers,

or publicly available resources, and sometimes even copied from the orig-

inal articles. Many implementations of algorithms seem to be made for

clarifying their operations, and thus are not following a normal efficient

programming technique. The implementations tested in this thesis follow

the same limitations of the problem. For example they use no additional

information; such as a character not occurring in the text. From some

algorithms competing versions were made to verify their efficiency. If dif-

ferent versions had clearly different superiority areas, several versions

were taken to the final test runs.

Necessary modifications were made to the program codes to fit them to

the test harness:

• Replacing the nonstandard features (e.g. C++ I/O);

• Separating the preprocessing (prep) from the searching in the text (exec);

changing the names of functions to those

• Adding fundamental tests for the input parameters (e.g. checking that

the pattern is not shorter or longer than it is possible to handle with the

implementation)
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• Removing of use of global variables by defining all variables local to the

module (with static) or defining them inside the functions.

• Usually all the variables defined in a module were grouped inside struc-

ture pat. This modification may slightly increase the access time for

individual variables as discussed on page 76.

Measuring processor time

The C standard library offers only the clock function for watching the

CPU time usage of processes. To determine the time in seconds, the value

returned by the clock function should be divided by the value of the macro

CLOCKS_PER_SEC. Additionally POSIX4 declares that CLOCKS_PER_SEC is de-

fined to be one million in <time.h>, and also that ‘the resolution on any

particular system need not be to the microsecond accuracy’. On the Linux

platform the typical resolution is 10 milliseconds. Lecroq [Lec07] used the

clock function in his tests.

POSIX offers the times function for getting process (and waited-for

child process) times. The number of clock ticks per second can be ob-

tained using: sysconf(_SC_CLK_TCK)5. The test results by Hume and Sun-

day [HuS91] were given as user time (tms_utime) fetched with the times

function. So the system time was excluded. (Occasionally we have checked

that there is not any hidden use of the system time, but have never no-

ticed.) The times function was used also in the tests results presented

here.

The POSIX function clock_gettime returns the current value tp for

the specified clock, clock_id. The struct tp is given as a parameter. If sym-

bol _POSIX_CPUTIME is defined, implementations shall support the special

clock_id value CLOCK_PROCESS_CPUTIME_ID, which represents the CPU-time

clock of the calling process. The resolution of the given clock at the func-

tion clock_gettime is provided with the clock_getres function.

The POSIX function gettimeofday returns the current time, expressed

as seconds and microseconds since the Epoch. Applications should use

the clock_gettime() function instead of the obsolescent gettimeofday()

function.
4IEEE Std 1003.1-2008
5Hume and Sunday used the symbol CLK_TCK (defined in <time.h>). But in
POSIX.1-1996 it is mentioned as obsolescent.
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Precision of individual search

When the digital clock moves evenly, it is safe to assume that its value

is incremented on regular fixed intervals. These time intervals are called

clock ticks. In computers they are typically so long that during individual

tick several instructions are executed. It this section term clock tick refers

to the precision of time measurements. So it is assumed that the proces-

sor time increases one tick6 at a time. When the measuring of a time

interval starts, we fetch the last updated value of the clock, but a part of

the current clock tick may be already spent. This time follows the con-

tinuous uniform distribution [0, 1]. So its mean is 0.5 and variance 1/12.

Respectively when the measuring of a time interval ends, possibly a part

of the current clock tick may be unspent. This slice follows the continuous

uniform distribution [−1, 0].

Thus the time measurement with clock ticks has an inaccuracy which

is the sum of two error terms following the above mentioned distributions.

When the length of the measured interval is at least one clock tick, the

probability density function of the sum is

f(x) =





1 + x if −1 ≤ x ≤ 0,

1− x if 0 ≤ x ≤ 1,

0 otherwise.

The mean of the inaccuracy caused by clock ticks is 0 and the variance

1/6.

The variance of the inaccuracy caused by clock ticks becomes relatively

smaller, when the count of clock ticks increases. An easy way to achieve

this is to use a longer text, which is at the same time more representa-

tive (statistically). However, it is not advisable to use concatenated mul-

6In Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3B:
System Programming Guide, Part 2, Chapter 17.13 it is told (URL: http:
//download.intel.com/products/processor/manual/253669.pdf: The X86 or
X86_64 architectures have the RDTSC instruction for reading the time-stamp
counter. Processor models increment the time-stamp counter differently:

• On older models the time-stamp counter increments with every internal pro-
cessor clock cycle.

• On recent processor models the time-stamp counter increments at a constant
rate.

Constant time-stamp counter behavior ensures that duration of each clock tick
is uniform.
However, this doesn’t guarantee that the increment is one. Therefore the RDTSC
instruction may return results that are multiples of ‘clock tick’s discussed here.

82

http://download.intel.com/products/processor/manual/253669.pdf
http://download.intel.com/products/processor/manual/253669.pdf


Algorithm testing

tiples of a short text, because it is probable that the shifts of patterns

start to follow similar sequences in such a case. This happens surely, if

the pattern matches the text, assuming that the pattern is moved from

left to right, and the shifting logic does not have any random behavior.

(Nevertheless this does not happen on algorithms using a constant shift

q > 1: e.g. Average-Optimal-Shift-Or and Fast-Average-Optimal-Shift-Or

algorithms [FrG05].) Therefore the text produced with concatenation will

with a high probability show the same statistical peculiarities as the orig-

inal text element.

There are also other causes for inaccuracy. Generally a context switch

from a process to another produces more or less delay. On a single CPU

system it is very hard to minimize them. We have noticed that on modern

multicore processors it is possible to get more accurate measurement of

used CPU time than with singlecore processors spending similar number

of clock ticks. The variance caused by other processes becomes relatively

smaller, when the measured time intervals get longer. Then the results

are more accurate.

Precision of search with a pattern set

The search with a pattern set brings still one source of variance to the

time measurements. Search for some patterns is more laborious. On the

other hand some algorithms work more efficiently on a certain type of

patterns. This joint impact of the patterns and the algorithms can be

seen as samples of the all possible cases between the worst and the best

cases of a given algorithm. This kind of variance is minimal with the

Shift-Or algorithm. In practice with it only a large number of occurrences

causes small variation. One may also argue that if certain algorithms

have a similar search time, the algorithm with smallest variance can be

regarded the best.

When several successive time measurements are done within a rela-

tively short period, it is possible that the unused time slice before the

next clock tick is utilized in the next time measurement. Thus the time

measurements may not be completely independent. In our test setting

preprocessing and search are alternating. If the measured time intervals

are at least a few clock ticks, there is always so much variance, that it is

unlike that these surplus times cumulate more to either preprocessing or

search.

Let us consider the variance of the mean. If the measurements are
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(statistically) independent, then the variance of the sum of times is the

sum of the variances of individual time measurement. If the measure-

ments have the same variance, and if they are independent of each other,

the variance V of the mean of r measurements is

V

(
X1 +X2 + . . .+Xr

r

)
=

1

r2
V (X1 +X2 + . . .+Xr) =

r · V (X1)

r2
=
V (X1)

r

If the measured times contain only a few clock ticks, this could cause

severe bias to the measurements: the results are more likely too large

than too small. Fortunately the preprocessing times have small vari-

ance (especially on patterns of equal length), and they are typically much

shorter than search times7.

6.2 Experimental comparisons

Next we report about experimental tests of the exact string matching al-

gorithms. Our intention is not to make an extensive comparison of the

exact pattern matching algorithms, but to demonstrate the practical per-

formance of the algorithms presented here in a fair test setting. Therefore

we have included several algorithms serving as reference methods.

Artificially generated test data may reveal asymptotic characterization

of algorithms. Especially the commonly used discrete uniform distribu-

tion of characters is quite rare in practice. The exceptions are nucleotide

sequences and compressed data. However, we are not aware of any model

which would in a realistic manner represent some common type of real

data. Another open question is, what numerical values should be used for

representing the characters of the generated alphabet. This has great im-

pact to the algorithms using hashing. Therefore no artificially generated

text data is used in these tests.

Natural language is perhaps most commonly associated with the term

text. Therefore English text is the most essential test data here. It would

be interesting to make tests on a text of some other language with a larger

alphabet. If the characters were coded in UTF-8, and roughly about a

quarter of the codes were longer than one byte, then the byte distribution

would be challenging. For a given language there is often one leading

byte (in the UTF-8 encoding) that is most common. So there would be

7The test harness reports with the flag -% the shortest search time and 20 other
regular interval samples from the sorted search time list. So it is easy to notice
too small tick counts, which would produce unnecessary error variance.
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another common character in addition to the space. Unfortunately we did

not manage to find such a text of at least one megabyte long.

DNA sequences are typically long. So the time spent for string search-

ing is remarkable. Therefore DNA sequences are a beneficial application

area for the exact pattern matching algorithms. The small alphabet and

a nearly uniform character distribution offer a unique platform to study

the variation in search times more closely.

In Publication [VII] we present experimental results on long patterns.

Some of those algorithms would be competitive with long DNA patterns,

but they were not included in the tests of this chapter.

64-bit CPUs have existed in workstations and servers since the early

1990s. Currently numerous computers are working on the x86-64 instruc-

tion set which is a 64-bit extension of the 32-bit x86 instruction set. These

processors have also a so-called 32-bit mode, which is capable to run pro-

grams of the original architecture. The doubled integer width in x86-64

allows efficient operation for the bit-parallel algorithms also on longer

patterns. The larger number of addressable registers speeds up most pro-

grams. To our astonishment in preparation of Publications [V], [VI], and

[VII] it became clear, that there are surprising speed differences in the

programs that were compiled to run in the 32-bit mode compared to the

same programs compiled to run in the 64-bit mode. Therefore we felt nec-

essary to run current tests in both the 32-bit mode and the 64-bit mode.

It should be noted that in the 32-bit mode 32-bit bit-vectors are used, and

in the 64-bit mode 64 bit bit-vectors are used on all pattern lengths. So

the memory area, that is initialized in the 64-bit mode, is almost double.

For the sake of completeness, we have included the technical details

of the computers used in test runs in Appendix B. The naming and short

descriptions of the implementations of algorithms used in tests are listed

in Appendix A.

Comparison on DNA data

The tests with DNA data are divided into two parts. The tests results with

the short patterns are collected in Appendix C. The test results on DNA

with pattern lengths up to 60 nucleotides are collected in Appendix D.

Algorithms TNDM and SVM were left out of the tests because the newer

algorithms are clearly faster.

With short DNA patterns it is possible to get quite accurate estimates

about the variance of search time. The central idea is to use all the pos-
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sible combinations of a, c, g, and t as patterns. Other symbols are ex-

tremely rare in real data. (In RNA u replaces t.) The distribution of the

four most common nucleotides is quite uniform, but the distribution of

oligonucleotides is not as uniform. On the other hand, one may want to

search for the rarest oligonucleotides of given length. An interesting side

effect in this approach is that if the text contains only symbols a, c, g, and

t, then the total number of matches for the whole pattern set is n−m+ 1.

On a DNA text, we tested the pattern sets separately for m = 2, 3, 4, 5, 6.

(For larger values of m the number of patterns grows unpractically large.)

The fastest algorithms in the 32-bit mode with short DNA patterns on

test computer B:
m = 2 : FAOSO(1,24), EBOMb, SBNDMq2b, Shift-Or

m = 3 : Fast-Shift-Or, FAOSO(1,24), Shift-Or, FAOSO(1,16), EBOMb

m = 4 : Fast-Shift-Or, FAOSO(1,24), FAOSO(1,16), Shift-Or, SBNDMq2

m = 5 : Fast-Shift-Or, SBNDMq4b, FAOSO(1,24), BMH4b

m = 6 : SBNDMq4b, Fast-Shift-Or, BMH4b, FAOSO(2,14)

The fastest algorithms in the 64-bit mode with short DNA patterns on

test computer B:
m = 2 : Shift-Or, SBNDMq2b, EBOMb, EBOM, Fast-Shift-Or

m = 3 : Fast-Shift-Or, UFNDM3, Shift-Or, UFNDM4, EBOMb

m = 4 : Fast-Shift-Or, UFNDM4, UFNDM3, UFNDM5, SBNDMq2+2b

m = 5 : Fast-Shift-Or, UFNDM4, SBNDMq4b, UFNDM5, SBNDMq3

m = 6 : SBNDMq4b, UFNDM4, UFNDM5, Fast-Shift-Or, SBNDMq3

Fast-Shift-Or is the fastest algorithm with short DNA patterns of length

3–5. The implementation uses unrolling factor 8, which seems to be too

large on dinucleotides. On test computer D results are practically the

same, but Shift-Or is the fastest also in the 32-bit mode on dinucleotides.

(Times are not shown here.) Test computer A can execute only 32-bit code.

There SBNDMq2b is the fastest algorithm with DNA patterns of length

2–4. On pattern length 5 BMH3b and BMH are the fastest, and on pat-

tern length 6 SBNDMq4b is still faster than them. (Times are not shown

here.)

With DNA patterns longer than 32 nucleotides in the 32-bit mode the

algorithm KS is the fastest. Lecroq’s hashing scheme follows quite close

behind, but old BMH4 and newer BMH4b are equally fast as HASH4 and
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HASH5. Up to 32 nucleotides long patterns the bit-parallel algorithms

are the best: on pattern lengths between 20–30, SBNDMq6b is the fastest.

From previous test we know that Fast-Shift-Or is the fastest up to 5 nu-

cleotides, but after that SBNDMq4b takes the lead.

Notice the huge speed up of FAOSO with a sample distance larger than

3 (i.e. the first parameter), when patterns get longer. Clearly FAOSO

would need larger than 32 bits long bit-vectors. Unfortunately we do not

have a 64-bit version of FAOSO.

Results for UFNDM4, UFNDM5, and UFNDM6 are quite good on nu-

cleotide patterns of length 10 and 20 on test computer D. (Times are not

shown.) On test computer A BMH4 and BMH4b are the two fastest, while

HASH4 and KS are following them on pattern lengths longer than 32.

In the 64-bit mode the bit-parallel algorithms are the best. On 5 nu-

cleotides long patterns Fast-Shift-Or is best, but UFNDM4 is quite close

to its performance. (Here in the pattern set containing 5 nucleotides long

patterns there are 200 patterns, of which 176 are unique.) Starting from

20 nucleotides long patterns SBNDMq6b is the fastest. On the area be-

tween SBNDMq4b is the fastest. The modified Berry–Ravindran algo-

rithm was always faster than the original. Results are similar also on

test computer D; (times are not shown here.) Interestingly BMH4 is faster

than BMH4b with patterns longer than 30 on test computer B, but not on

test computer D.

In Table D.2 (in Appendix D) are shown also the sample variances. The

coefficient of variation is defined as the ratio of the standard deviation to

the mean. The coefficient of variation is considered an objective indicator

of variation. Therefore one should note that the search times are largest

with the shortest patterns. Still there is a lot of variation with so uniform

distribution that DNA sequences have.

Comparison on English data

The space character separating words in texts in many natural languages

adds an essential spice to the exact string matching. The space character

is very frequent and its occurrences have an own kind of distribution. In

Publication [VI] (in Section 4.1) we reported that the performance of algo-

rithms changes when patterns of same length are any kind of substrings

instead of words. Even the relative performance order of algorithms some-

times changes. One may argue that patterns used in search in natural

language texts are typically words, and therefore they are statistically
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more representative. Nevertheless, it is also quite common to search two

(or even more) consecutive words. We feel that generally randomly picked

substrings make a biased pattern set for searches from natural language

texts.

The test with English text is reported in Appendix E. The pattern sets

consists of full words. In the 64-bit mode EBOMb was the fastest one,

and in the 32-bit mode among the three best implementations on pat-

tern lengths up to 12. SBNDM2+2b was among the three best on pattern

lengths longer than 3 characters and fastest or second fastest on pattern

lengths longer than 10. SBNDM2b was mostly even more competitive;

up to 10 characters it was always faster than SBNDM2+2b. UFNDMq is

much faster in the 64-bit mode than in the 32-bit mode. Also SBDNMq2 is

better in the 64-bit mode. FSBb+ and SBNDMq2uf are extremely similar

algorithms. With the shortest patterns the use of the lookahead character

seems beneficial. Lecroq’s hashing scheme can be successfully applied to

2-grams: HAHS2c and HAS2i are clearly faster than HASH3.

In the modified Berry–Ravindran algorithm, BRX, the shifts are based

on the last character of the current text alignment ts and the next char-

acter ts+1, instead of ts+1 and ts+2 as in the original Berry–Ravindran.

To our surprise the BRX is slower than BR on English text. We are not

aware of any report about so strong dependence of adjacent characters,

that it would explain this phenomenon. Moreover it is possible that blank

characters that do not exist in the patterns may also affect this way. It

is clearly questionable that the discrete uniform distribution would be a

realistic model for English texts and generally for natural language texts.

On test computer D the SBNDM2+2b was fastest or second fastest on

all pattern lengths longer than 3 characters both in the 32-bit and the

64-bit mode. EBOMb was among the three best on all pattern lengths.

(Times are not shown.)

Test computer A has old 32-bit hardware (so the preprocessing was re-

peated 2000 times and searches 10 times). On it HASH2i was the fastest

on pattern lengths 9–13. The versions on FSB showed good performance

on longer patterns than 5 characters. (Times are not shown.)
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7. Discussion and conclusions

Several new algorithms for exact string matching have been presented

in this thesis. Among the created algorithms are novel ones and varia-

tions of previous algorithms. Our extensive practical experiments show

that many of our algorithms are faster than earlier algorithms in several

cases. In our tests we used English, DNA, and (in the publications) ran-

dom binary text with a wide range of pattern lengths. In addition, we

discuss the principles of fair testing of string matching algorithms.

Many of our algorithms start treatment of every alignment by pro-

cessing a q-gram. This approach saves plenty of tests and accelerates

the moving to the next alignment. This shift may be shorter than other-

wise, but on the average this speeds up processing. The q-gram technique

can also be regarded as an example of the power of branchless computa-

tion [Knu11, pp. 180-181].

Based on the results of speed tests on various kinds of data, we noticed

that the following rule of thumb holds roughly in the case of many algo-

rithms: start processing an alignment with at least two characters when

m ≥ √e, where 1/e is the probability that two random characters are the

same (i.e. e is the size of the effective alphabet). The EBOM algorithm is

an exception. It works excellently even with short patterns.

For different kind of text types and for different pattern lengths the

best algorithms are also different. The same applies also to some extent

for different kind of computer hardware. It is unlike that there would

ever be a single best exact string matching algorithm except perhaps some

specialized machine instruction (discussed in subsection 2.2).

The performance of processors has lately increased, because of develop-

ment in branch prediction and speculative execution of processors. There-

fore the pipeline of processors should not stop so often as before. Never-

theless, it has been shown here that reducing the number of conditional
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branches improves the search speed.

The Boyer–Moore–Horspool algorithm has perhaps unnecessarily low

esteem. Its performance clearly suffers, when the pattern contains com-

mon characters. Our BMHq modification smoothens the performance and

makes it competitive especially on DNA texts.

Shift-vector matching, SVM, is a novel approach to bit-parallel string

matching. It examines quite few text characters, but shifting of the pat-

tern is laborious. The SVM algorithm has potential in search in repetitive

texts.

The BNDM algorithm utilizes bit-parallelism, which works very well

on modern processors. Various simplifications of it have been shown to be

faster in practice than the original algorithm. The use of q-grams can be

successfully incorporated to both BNDM and SBNDM variations. At least

with these algorithms simplification and use of q-grams interact well.

When the pattern length is close to register width w, the FSB algo-

rithm performs well especially on natural language. The SBNDMq algo-

rithm family is competitive in pattern lengths up to the register width

w. Use of simultaneous 2-byte read speeds up all of these algorithms fur-

ther [PeT11].

In Publication [VII] there was a comparison on long patterns that are

at least 25 characters long. The QF algorithm was the fastest except on

the random data with a large alphabet. BXS was in that case sometimes

a little slower and in other times a little faster than QF. It should be

noted that EBOM was once the fastest and always competitive with a

large alphabet.

Two essential guidelines of exact string matching became clear also

during this work. It is important to keep the skip loop running. And

secondly the number of fetched text characters matters very little to the

practical speed. “Clearly, the run time metric is unrelated to the character

comparison metric.” [HuS91, p. 1242] It is also worthwhile to notice the

difference between fetching a byte (as in bit-parallel algorithms) and a

comparison of characters from the pattern and the text.
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A. List of algorithms used in test runs

BMH4 BMH4 is a Boyer–Moore–Horspool type algorithm with the

unrolling factor 3 and using 4-grams. It was presented as

Algorithm 4 in Publication [I]. This same code was in tests

called A4.4 and in Publication [IV] BMH4. (There exist

versions also for other q-gram lengths.)

BMH4b BMH4b is a Boyer–Moore–Horspool type algorithm with

the unrolling factor 1. It is using 4-grams and simultane-

ous 2 byte read. It was presented in Publication [IV].

BR

BRX

BR is our implementation of the Berry–Ravindran algo-

rithm [BeR99]. BRX is our less greedy version, which is

described in Publication [IV]. (In Section 3.1 there is some

discussion about them.)

EBOM

EBOMb

EBOM (Extended-BOM) is an efficient algorithm based

on the oracle automaton [FaL09]. It is utilizing 2-grams.

EBOMb is our modification using simultaneous 2 byte

read.

Fast-Shift-Or Fast-Shift-Or (Algorithm 7) is a bit-parallel algorithm in-

troduced in [FrG05]. This implementation uses the un-

rolling factor 8. Because the speed of Fast-Shift-Or de-

pends quite little on the pattern, this implementation acts

also as a reference level of performance.
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List of algorithms used in test runs

FAOSO(k,r) FAOSO is a bit-parallel algorithm introduced in [FrG05].

The first parameter k is the sampling rate: every kth text

character is processed. (Therefore k ≤ m.) If a potential

match is found, then it is verified. The second parame-

ter r is the unrolling factor. Note that FAOSO(1,*) is like

Fast-Shift-Or (Algorithm 7), but makes actually unneces-

sary verification. This version based on the original imple-

mentation expects null-characters in the end of text.

FAOSO uses “integer logarithm”, which means blog2 xc.
The usual hack is using conversion to a IEEE float and

extracting exponent part [War03, p. 215, 83]. This im-

plementation uses Intel’s x86 architecture instruction BSR

(Bit Scan Reverse).

FSB

FSBb

FSBb+

Forward-SBNDM is a lookahead version of the SBNDM2

algorithm. It was introduced by Faro and Lecroq [FaL08,

FaL09].

FSB is our implementation of the Forward-SBNDM algo-

rithm. FSBb is a modification using simultaneous 2 byte

read. FSBb+ is a modification of FSBb with a tighter skip

loop.

HASHq HASH is the implementation of Lecroq’s hashing scheme

(Section 3.7). The numeral describes the number of text

characters used to compute the hash value.

HASH3, HASH4, HASH5, HASH6, HASH7, and HASH8

are based on the original implementations. HASH2c is

a modification of HASH3, where the hash value is evalu-

ated to a character variable. HASH2i is a modification of

HASH4, where the hash value is evaluated to an integer

variable.
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List of algorithms used in test runs

KS Kim and Shawe-Taylor [KiS94] introduced an algorithm

for searching in the DNA or RNA alphabet. The alphabet

is compressed by masking the three lowest bits of ASCII

characters.

KS is an implementation adapted from the original report.

It first processes a 5-gram at the end of the current align-

ment. If that 5-gram does not appear in the end of the pat-

tern, the pattern is moved forward based on the 5-gram.

Otherwise two additional characters are checked one by

one to achieve a longer shift. Only the prefix of the pat-

tern is matched with the text.

QS QS is the original implementation uf.rev.sd1 of Sunday’s

Quick Search algorithm (Section 2.4). Because this imple-

mentation is easily available, QS serves well as a reference

level of performance.

SBNDMq

SBNDMqb

SBNDMquf

SBNDMq is an implementation of Algorithm 17.

SBNDMqb versions use simultaneous 2 byte read.

SBNDMquf is a newer implementation with unrolled fast

skip loop. SBNDM2+2b reads first simultaneously the

two last text characters from an alignment. If needed,

it processes backwards two text characters more, and

continues then like SBNDM4b.

Shift-Or Shift-Or (Algorithm 6) is a bit-parallel algorithm intro-

duced in [BaG92]. The implementation is our fastest ver-

sion. Because the speed of Shift-Or depends quite little on

the data, this implementation acts also as a reference level

of performance.

UFNDMq UFNDMq is an implementation of Algorithm 19.
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B. Specifications of the computers used
in test runs

Ki (=210) and Gi (=230) are prefixes of the IEEE 1541 standard.

A CPU Model: AMD Athlon Thunderbird [A4-A8] 1000 MHz (Family: 6

Model: 4 Stepping: 2, Instruction set: x86)

Memory: 256MiB PC133A (SDRAM)

Cache: L1 Instruction cache: 64KiB, 2-way associative. 64 byte line

size.

L1 Data cache: 64KiB, 2-way associative. 64 byte line size.

L2 cache: 256KiB, 16-way associative. 64 byte line size.

Motherboard: Asus A7A266

C compiler: gcc (Debian 4.4.5-8) 4.4.5 (configured --with-arch-32=

i586 --with-tune=generic --target=i486-linux-gnu) with GNU

C Library (Debian EGLIBC 2.11.3-4) stable release version 2.11.3

including i686 optimized version 2.11.3

Operating system: Debian GNU/Linux 6.0.6 (squeeze), Kernel: 2.6.32-

5-686 #1

B Dell Optiplex 755

CPU Model: Intel Core2 Quad Q9300 2.5GHz (“Yorkfield-6M”), 4 cores,

(cpu Mhz: 2000, bus width: 64 bits, Instruction set: x86/x86-64)

(Family: 6 Model: 23 Stepping: 7)

Memory: 4GiB DDR2 SDRAM dual symmetric 800 MHz

Cache: L1 Instruction cache: 32KiB, 8-way associative. 64 byte line

size.

L1 Data cache: 32KiB, 8-way associative. 64 byte line size.

L2 cache: 6MiB (3MiB/2 cores), 12-way associative. 64 byte line

size.
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Specifications of the computers used in test runs

Chipset: Intel Q35 Express (ICH9D0)

C compiler: gcc (Debian 4.4.4-8) 4.4.5 (configured --with-arch-32=

i586 --with-tune=generic --target=x86_64-linux-gnu) with

GNU C Library (Debian EGLIBC 2.11.3-4) stable release version

2.11.3

Operating system: Debian GNU/Linux 6.0.6 (squeeze), Kernel: 2.6.35-

5-amd64 #1 SMP

C Dell Optiplex 740

CPU Model: AMD Athlon 64 X2 Dual Core Processor 5000+ 2200MHz

(K9 “Windsor”), 2 cores (cpu Mhz: 1000, bus width: 64 bits) (Family:

15 Model: 75 Stepping: 2, Instruction set: x86/x86-64)

Memory: 2GiB DDR2 SDRAM non-ECC memory (667/ 800 MHz) ?

Cache: L1 instruction cache: 128KiB (64KiB/core). 2-way associative.

64 byte line size.

L1 data cache: 128KiB (64KiB/core). 2-way associative. 64 byte

line size.

L2 cache: 512KiB (256KiB/core). 16-way associative. 64 byte line

size.

Chipset: NVIDIA Quadro NVS 210S with NVIDIA nForce 430 MCP

C compiler: gcc (Ubuntu 4.4.1-4ubuntu9) 4.4.1

Operating system: Ubuntu GNU/Linux 9.10 (karmic), Kernel: 2.6.31-

22-generic #68-Ubuntu SMP

This computer was in test runs for Publications [III]–[VI]. After that the

computer broke irreparably, and it cannot be used anymore.

D Dell Precision T1500

CPU Model: Intel Core i7-860 2.8GHz, 4 cores, 1 or 2 threads/core (cpu

Mhz: 1200, bus width: 64 bits) (Family: 6 Model: 30 Stepping: 5,

Instruction set: x86/x86-64)

Memory: 16GiB DDR3 non-ECC memory (1333MHz)

Cache: L1 instruction cache: 8KiB / core. 4-way associative. 32 byte

line size.

L1 data cache: 8KiB / core. 8-way associative. 64 byte line size.

L2 cache: 256KiB / core. 8-way associative. 64 byte line size.

L3 cache: 8MiB. 16-way associative. 64 byte line size.
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Specifications of the computers used in test runs

Chipset: Intel P55

C compiler: gcc (Ubuntu / Linaro 4.6.3-1ubuntu5) 4.6.3 (configured

--with-arch-32=i686 --with-tune=generic --target=x86_64-

linux-gnu) with GNU C Library (Ubuntu EGLIBC 2.15-0ubuntu10)

stable release version 2.15

Operating system: Ubuntu 12.04 LTS (wheezy/sid) Kernel: 3.2.0-27-

generic

H Virtual server running at Sun SPARC Enterprise T5240 server, Sun

SPARC V9 architecture

CPU Models: Two 1.165GHz UltraSPARC T2 Plus processors (per sys-

tem), each having 6 cores, each running at most 8 threads.

Memory: 16GiB (8 x 2GiB) DRAM. Supports 128 bits of write data and

16 bits ECC per SDRAM cycle, and 256 bits of read data and 32

bits ECC per SDRAM cycle. ECC generation, check, correction.

Cache: L1 instruction cache: 16KiB / core. 8-way associative. 32 byte

line size.

L1 data cache: 8KiB / core. 4-way associative. 16 byte line size.

L2 cache: shared 4MiB integrated on chip (8-banks), 16-way asso-

ciative. 64 byte line size.

C compilers: C-compiler: gcc (GCC) 4.4.4 (configured -mcpu=v9 Target:

sparc-sun-solaris2.10) and Sun C 5.6 (in hutcs-old)

Operating systems: SunOS 5.8 Generic_Virtual (hutcs-old) and SunOS

5.10 Generic_142900-15
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C. Test results with short DNA patterns

The text is the genome of Escheria Coli1. Its size is 4,638,690 bytes.

The pattern sets are all the possible combinations of a, c, g, and t for

m = 2, 3, 4, 5, 6. So the pattern sets contain 16, 64, 256, 1024, and 4096

patterns, respectively.

The preprocessing was repeated 4000 times and the search times are

averages of 20 searches. All the implementations were compiled with the

gcc compiler (listed in Appendix B). For the 32-bit code the flags -O3 -m32

were used, and for the 64-bit code the flags -O3 -m64 were used.2

These pattern sets produce an enormous number of matches for each

pattern. Fast-Shift-Or seems to suffer a lot of it. The used unrolling factor

8 is the main cause for it. With the shortest patterns, the algorithm goes

very often to verification.

1The file was from Canterbury Large Corpus
URL: http://corpus.canterbury.ac.nz/descriptions/
2Recent blog article ‘GCC x86 performance hints’ at http://software.intel.
com/en-us/blogs/2012/09/26/gcc-x86-performance-hints reports about con-
siderable performance improvements with use of some flags. On our tests using
those flags and their subsets the changes on exact string matching algorithms
were quite small: on some algorithms the performance improved while on some
others it degraded.
In gcc version 4.2 a new handy value native was introduced to flag -march. ‘Us-
ing -march=native enables all instruction subsets supported by the local machine
(hence the result might not run on different machines).’ Use of this value in speed
tests enables risk that some algorithms may get relatively better performance on
some CPU model than on other similar computers. It seemed that gcc was able
to utilize SSE instructions on few string matching algorithms, while the tuning
of floating point arithmetic flags had no effect.
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Test results with short DNA patterns

Table C.1. Average preprocessing (leftmost numbers) and search times (after ‘+’ the
rightmost numbers) per pattern for short DNA sequences in milliseconds with
the 32-bit code on the test computer B.

patterns→ m = 2 m = 3 m = 4 m = 5 m = 6

↓algorithm

SBNDMq1 .000+23.06 .000+16.67 .000+12.76 .000+10.50 .000+ 8.91

SBNDMq2 .000+18.31 .000+12.94 .000+10.00 .000+ 8.78 .000+ 7.79

SBNDMq3 — .000+15.64 .000+ 8.86 .000+ 6.29 .000+ 5.08

SBNDMq4 — — .000+18.82 .000+ 9.80 .000+ 6.68

SBNDMq2b .033+ 8.88 .033+ 8.58 .033+ 6.74 .033+ 6.20 .033+ 5.63

SBNDMq4b — — .033+ 8.40 .033+ 4.50 .033+ 3.03

UFNDM2 .000+25.69 .000+21.09 .000+18.20 .000+16.02 .000+14.21

UFNDM3 .000+29.75 .000+17.73 .000+14.19 .000+11.92 .000+10.28

UFNDM4 .000+33.31 .000+21.30 .000+15.18 .000+12.35 .000+10.41

UFNDM5 .001+36.63 .000+24.69 .000+18.00 .000+14.17 .000+11.79

FSB .000+22.50 .000+14.59 .000+11.55 .000+ 9.38 .000+ 7.91

FSBb .033+20.00 .034+13.66 .034+10.73 .034+ 8.76 .034+ 7.43

FSBb+ .034+18.63 .034+12.84 .034+10.09 .034+ 8.32 .034+ 7.06

FAOSO(1,8) .001+12.00 .000+ 8.66 .000+ 7.55 .000+ 7.27 .000+ 7.18

FAOSO(1,16) .000+ 9.75 .001+ 7.09 .000+ 6.04 .000+ 5.73 .000+ 5.66

FAOSO(1,24) .000+ 8.06 .000+ 6.22 .000+ 5.24 .000+ 4.96 .000+ 4.88

FAOSO(2,8) .000+35.31 .000+36.30 .000+ 9.78 .000+ 9.83 .000+ 5.61

FAOSO(2,11) .000+33.50 .000+34.39 .000+ 8.88 .000+ 8.93 .000+ 5.17

FAOSO(2,14) .000+32.38 .000+33.27 .000+ 8.42 .000+ 8.46 .000+ 4.84

Shift-Or .000+ 9.50 .000+ 6.98 .000+ 6.23 .000+ 6.07 .000+ 6.04

Fast-Shift-Or .000+11.75 .000+ 6.16 .000+ 4.60 .000+ 4.24 .000+ 4.14

BR .083+14.50 .083+12.75 .083+11.04 .083+ 9.85 .083+ 8.88

BRX .082+13.94 .081+11.39 .081+ 9.53 .081+ 8.13 .081+ 7.19

BMH4 .000+19.75 .000+16.36 .001+ 8.54 .001+ 6.61 .001+ 5.41

BMH4d .000+19.94 .000+16.34 .109+ 7.29 .109+ 5.61 .109+ 4.61

EBOM .056+10.44 .056+ 9.25 .056+ 7.64 .056+ 7.28 .057+ 6.79

EBOMb .057+ 8.88 .057+ 8.05 .057+ 6.82 .057+ 6.60 .058+ 6.29

HASH2c — .000+13.42 .000+ 9.43 .000+ 7.28 .000+ 6.05

HASH2i — .000+13.50 .000+ 9.36 .000+ 7.33 .000+ 6.07

HASH3 — — .000+13.89 .000+ 9.39 .000+ 7.13

HASH4 — — — .000+12.33 .000+ 8.29

QS .000+16.69 .000+13.84 .000+12.44 .000+11.46 .000+10.84
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Test results with short DNA patterns

Table C.2. Average preprocessing (leftmost numbers) and search times (after ‘+’ the
rightmost numbers) per pattern for short DNA sequences in milliseconds with
the 64-bit code on the test computer B. The variances of search time measure-
ments are given in parentheses below them.

patterns→ m = 2 m = 3 m = 4 m = 5 m = 6

↓algorithm

SBNDMq1 .000+20.84 .000+15.91 .000+12.48 .000+10.37 .000+ 8.82

(516.6) (320.5) (273.7) (175.9) (127)

SBNDMq2 .000+13.13 .000+ 9.89 .000+ 7.96 .000+ 7.25 .000+ 6.59

(75) (170.9) (159.6) (84.9) (34)

SBNDMq3 — .000+12.10 .000+ 7.03 .000+ 5.04 .000+ 4.16

(51.2) (11.3) (11.1) (28.1)

SBNDMq4 — — .000+15.17 .000+ 7.94 .000+ 5.43

(102.5) (137.8) (91.7)

SBNDMq2b .034+ 8.53 .034+ 8.65 .034+ 6.91 .034+ 6.33 .034+ 5.74

(19.1) (76) (127.1) (93.5) (61.9)

SBNDMq2+2b — — .034+ 6.57 .034+ 5.71 .034+ 5.07

(35.6) (57.4) (21.3)

SBNDMq4b — — .034+ 8.32 .034+ 4.47 .034+ 3.02

(107) (81) (3.4)

UFNDM2 .001+13.19 .000+12.02 .000+10.87 .000+ 9.67 .000+ 8.61

(120.6) (42.6) (180.8) (80.5) (47.2)

UFNDM3 .000+13.97 .000+ 6.88 .000+ 5.81 .000+ 5.09 .000+ 4.50

(281.6) (108.7) (74.7) (20.9) (87.5)

UFNDM4 .000+15.22 .000+ 7.88 .000+ 5.09 .000+ 4.23 .000+ 3.61

(154.7) (120.9) (19.6) (39.3) (17)

UFNDM5 .000+16.41 .000+ 8.95 .000+ 0.59 .000+ 4.48 .000+ 3.78

(285.3) (162) (96.7) (83.1) (42.3)

FSB .000+23.56 .000+15.33 .000+11.96 .000+ 9.73 .000+ 8.20

(192.5) (238.3) (230.6) (95.6) (71.4)

FSBb .035+19.41 .035+13.70 .035+10.71 .035+ 8.71 .035+ 7.31

(370.9) (144.8) (105.4) (80.2) (94.9)

FSBb+ .035+18.56 .034+13.29 .034+10.41 .035+ 8.47 .035+ 7.11

(107.5) (193) (181.6) (163.7) (36.5)

Shift-Or .000+ 7.34 .000+ 7.34 .000+ 7.35 .000+ 7.35 .000+ 7.35

(99.7) (99.7) (101.4) (101.2) (101.9)

Fast-Shift-Or .000+11.38 .000+ 5.92 .000+ 4.39 .000+ 4.01 .000+ 3.92

(187.5) (102.5) (66.9) (2.5) (63.5)

BR .083+14.47 .083+12.56 .083+11.05 .083+ 9.81 .083+ 8.86

(275.3) (37.2) (27.7) (125.2) (131.1)

BRX .083+13.97 .083+11.16 .083+ 9.39 .083+ 8.04 .083+ 7.11

(260.9) (74.2) (149) (16.6) (33.7)

Continued on next page
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Test results with short DNA patterns

Table C.2 – Continued from previous page

patterns→ m = 2 m = 3 m = 4 m = 5 m = 6

↓algorithm

BMH4 .000+18.88 .000+15.30 .002+ 9.16 .002+ 7.17 .002+ 5.84

(313.8) (255.5) (61.2) (49.2) (78.5)

BMH4d .000+18.88 .000+15.88 .121+ 8.51 .121+ 6.52 .121+ 5.40

(323.8) (319.9) (6.5) (5.9) (83.2)

EBOM .017+10.31 .017+ 9.08 .017+ 7.54 .017+ 7.17 .018+ 6.75

(138.8) (57.2) (33.4) (67.9) (82.4)

EBOMb .017+ 8.91 .017+ 8.37 .018+ 7.10 .018+ 6.80 .018+ 6.39

(149.1) (147.1) (50.9) (97.8) (111.3)

HASH2c — .000+14.48 .000+10.05 .000+ 7.85 .000+ 6.52

(287.5) (24.6) (111.7) (8.6)

HASH2i — .000+14.63 .000+10.16 .000+ 7.96 .000+ 6.60

(84.2) (69.3) (146.7) (28.8)

HASH3 — — .000+15.47 .000+10.33 .000+ 7.85

(291.5) (138.7) (109.2)

HASH4 — — — .000+14.07 .000+ 9.44

(38.8) (163.6)

QS .000+17.63 .000+14.84 .000+13.30 .000+12.29 .000+11.62

(116.9) (259.8) (235.1) (241) (181.4)

There is quite a lot variation in the search time variances. The trend

seems to be that the variances become slowly smaller when the patterns

get longer. It is good to remember that the variance is counted from

squared differences. Therefore one should summarize them by basing

on the standard deviation or using the geometric mean. Surprisingly

Shift-Or and Fast-Shift-Or do not have the smallest variances. It is also

interesting that QS has a large variance, which slowly increases, when

patterns get longer. On the other hand, the stability with SBNDMq and

UFNDMq shows as low variances. However, some of their variance values

seem to be outliers.
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D. Test results with medium length DNA
patterns

The text is the genome of Escheria Coli1. Its size is 4,638,690 bytes.

The patterns come from test data by Hume and Sunday [HuS91]. They

have been extracted from the GenBank DNA database. Every pattern set

contains 200 patterns. The sets with 5 and 60 long patterns where taken

from longer pattern sets with the cut command.

The preprocessing was repeated 3000 times and the search times are

averages of 30 searches. All the implementations were compiled with the

gcc compiler (listed in Appendix B). For the 32-bit code the flags -O3 -m32

were used, and for the 64-bit code the flags -O3 -m64 were used.

The results for all the bit-parallel algorithms are missing the pattern

lengths 40, 50 and 60, because in the 32-bit mode the largest integer data

type is also 32 bits long.

The longest of the average preprocessing times in the 32-bit mode

were: BMH4b 21.9 ms, BR 16.6 ms, BRX 16.3, EBOMb 12.6, EBOM 12.5

ms, FSBb+ 7.0 ms, FSBb 6.8 ms, SBNDMq6b 6.6 ms, SBNDMq4b 6.6 ms,

and SBNDMq2b 6.6 ms. The average preprocessing times of all other

implementations were less than 0.09 ms. On the other hand, the pre-

processing times that are shorter than 1.5 ms are inaccurate and may be

biased.

The longest of the average preprocessing times in the 64-bit mode

were: BMH4b 24.1 ms, BR 16.6 ms, BRX 16.6, FSB+ 7.0 ms, FSB 7.0

ms, SBNDMq2b 6.8 ms, SBNDMq6b 6.8 ms, SBNDMq4b 6.8 ms, EBOMb

3.9, EBOM 3.8 ms, and KS 3.5 ms. The average preprocessing times of

all other implementations were less than 0.2 ms. On the other hand, the

preprocessing times that are shorter than 1.5 ms are inaccurate and may

be biased. Note that on bit-parallel algorithms the bit-vectors are 64 bits

1The file was from Canterbury Large Corpus
URL: http://corpus.canterbury.ac.nz/descriptions/
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Test results with medium length DNA patterns

Table D.1. Average search times of moderate length DNA patterns in milliseconds with
the 32-bit code on the test computer B. For each length, the pattern set con-
tains 200 patterns.

pattern length

↓algorithm 5 10 20 30 40 50 60

SBNDMq1 2111 1149 636 448 — — —

SBNDMq2 1753 1074 615 437 — — —

SBNDMq3 1265 639 423 340 — — —

SBNDMq4 1960 631 319 245 — — —

SBNDMq2b 1235 820 489 353 — — —

SBNDMq4b 907 321 213 189 — — —

SBNDMq6b — 499 205 175 — — —

SBNDMq2uf 1470 963 584 424 — — —

UFNDM3 2396 1377 837 632 — — —

UFNDM4 2474 1297 709 — — — —

UFNDM5 2841 1433 740 — — — —

UFNDM6 3278 1645 837 — — — —

FSB 1871 1019 553 390 — — —

FSBb 1755 967 529 379 — — —

FSBb+ 1664 940 523 370 — — —

FAOSO(1,8) 1449 1431 1429 — — — —

FAOSO(2,8) 1966 749 — — — — —

FAOSO(3,7) 7559 900 — — — — —

FAOSO(4,4) 8225 1728 560 — — — —

FAOSO(5,3) 8133 1701 615 — — — —

FAOSO(6,1) — 8779 937 635 — — —

Shift-Or 1215 1216 1225 1224 — — —

Fast-Shift-Or 850 824 823 — — — —

KS 3901 688 297 216 199 186 179

BR 1953 1310 937 794 719 704 666

BRX 1627 1019 696 600 550 529 514

BMH4 1322 645 349 259 217 201 197

BMH4d 1127 556 307 239 215 203 208

EBOM 1450 1061 680 510 412 362 321

EBOMb 1324 991 640 491 401 344 309

HASH3 1883 754 391 297 262 237 225

HASH4 2469 733 333 238 210 199 193

HASH5 — 905 368 253 209 199 200

QS 2225 1829 1777 1762 1804 1785 1757
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Test results with medium length DNA patterns

Table D.2. Average search times of moderate length DNA patterns in milliseconds with
the 64-bit code on the test computer B. For each length, the pattern set con-
tains 200 patterns.

pattern length

↓algorithm 5 10 20 30 40 50 60

SBNDMq1 2082 1136 619 432 339 282 243

SBNDMq2 1445 973 582 409 326 275 239

SBNDMq3 1013 551 397 333 289 255 229

SBNDMq4 1591 523 280 226 207 195 186

SBNDMq2b 1263 823 489 359 291 248 233

SBNDMq4b 897 321 216 188 177 174 173

SBNDMq6b — 500 206 178 166 155 149

SBNDMq2uf 1419 933 566 413 332 282 245

UFNDM3 1026 658 450 358 304 260 232

UFNDM4 850 475 293 241 222 206 199

UFNDM5 900 475 272 210 198 187 178

UFNDM6 999 515 289 214 194 184 —

FSB 1943 1053 570 402 320 270 233

FSBb 1741 926 514 374 307 268 244

FSBb+ 1693 905 498 364 297 260 233

Shift-Or 1470 1470 1470 1470 1470 1469 1471

Fast-Shift-Or 805 779 780 779 779 779 —

KS 3754 663 290 218 197 190 179

BR 1954 1302 932 790 717 705 669

BRX 1610 1007 697 596 544 528 505

BMH4 1428 703 374 271 227 205 196

BMH4d 1306 650 353 266 233 218 211

EBOM 1426 1047 669 493 410 357 315

EBOMb 1349 996 647 488 406 358 319

HASH3 2068 828 423 318 277 254 235

HASH4 2813 834 375 264 220 207 199

HASH5 — 1001 404 275 222 204 198

QS 2382 1955 1905 1887 1934 1913 1883

long. Therefore the number of bytes that has to be initialized is about two

times that with 32-bit bit-vectors.

The search time of UFNDMq is much slower in the 32-bit mode than

in the 64-bit mode. The preprocessing of EBOM and EBOMb goes much

slower in the 32-bit mode. We have not found any good explanation for

these.
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E. Test results with patterns of English
words

The text is the The King James version of the English Bible1. Its size is

4,047,392 bytes.

The patterns are the w.n pattern sets of the test data by Hume and

Sunday [HuS91, p. 1224]. Each pattern set contains 200 English words of

the same length m. The length varies from 3 to 13. 40% of them are from

the whole bible, and the rest from the 1MB test subset.

The preprocessing was repeated 3000 times and the search times are

averages of 30 searches. All the implementations were compiled with the

gcc compiler (listed in Appendix B). For the 32-bit code the flags -O3 -m32

were used, and for the 64-bit code the flags -O3 -m64 were used.

The longest average preprocessing times in the 32-bit mode were: BR

16.6 ms, BRX 16.3, EBOMb 11.6, EBOM 11.5 ms, FSBb+ 6.8 ms, FSBb 6.8

ms, SBNDMq2b 6.6 ms, SBNDMq2+2b 6.6 ms, SBNDMq6b 6.6 ms, and

SBNDMq4b 6.6 ms. The average preprocessing times of all other imple-

mentations were less than 0.08 ms. On the other hand, the preprocessing

times that are shorter than 1.5 ms are inaccurate and may be biased.

The longest average preprocessing times in the 64-bit mode were: BR

16.6 ms, BRX 16.6, FSB 6.9 ms, FSB+ 6.9 ms, SBNDMq2b 6.8 ms, SB-

NDMq6b 6.8 ms, SBNDMq2+2b 6.8 ms, SBNDMq4b 6.8 ms, EBOM 4.3,

and EBOMb 3.6 ms. The average preprocessing times of all other imple-

mentations were less than 0.04 ms. On the other hand, the preprocessing

times that are shorter than 1.5 ms are inaccurate and may be biased.

The search time of UFNDMq is much slower in the 32-bit mode than in

the 64-bit mode. Also the preprocessing of EBOM and EBOMb goes much

slower in the 32-bit mode.

1The file was from Canterbury Large Corpus
URL: http://corpus.canterbury.ac.nz/descriptions/
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Test results with patterns of English words

Table E.1. Average search times of English word patterns in milliseconds with the 32-bit
code on the test computer B. For each length, the pattern set contains 200
patterns.

pattern length

↓algorithm 3 4 5 6 7 8 9 10 11 12 13

SBNDMq1 1019 913 847 811 745 691 637 599 561 532 502

SBNDMq2 1369 938 725 597 517 453 405 371 342 321 306

SBNDMq3 2627 1327 901 683 559 469 409 364 329 299 281

SBNDMq4 — 3279 1654 1114 843 681 572 496 439 391 358

SBNDMq2b 463 330 275 239 221 201 195 185 183 179 177

SBNDMq2+2b — 381 310 265 243 219 206 193 183 181 177

SBNDMq4b — 1431 733 487 374 311 265 238 215 192 181

SBNDMq6b — — — 2139 1080 711 547 443 371 329 289

SBNDMq2uf 725 511 409 347 313 283 260 241 225 217 211

UFNDM2 2169 1651 1345 1144 1005 898 807 734 685 636 596

UFNDM3 2741 2077 1675 1399 1205 1060 945 851 777 714 665

FSB 941 743 595 517 455 409 369 345 316 301 284

FSBb 612 513 419 380 336 311 285 271 249 243 236

FSBb+ 589 480 389 353 316 290 268 247 239 226 219

FAOSO(1,20) 885 883 875 883 879 879 879 888 878 888 888

FAOSO(2,11) 2879 603 599 565 563 561 561 559 559 560 559

FAOSO(3,7) 3184 3107 3162 499 498 500 463 459 461 456 444

FAOSO(4,6) 2519 3213 3271 3211 3205 417 417 421 415 379 380

FAOSO(5,5) 2497 2448 3294 3232 3222 3325 3253 378 378 380 371

FAOSO(6,4) 2486 2439 2475 3378 3372 3484 3402 3386 3419 360 357

Shift-Or 1056 1055 1058 1055 1061 1062 1058 1059 1061 1062 1061

Fast-Shift-Or 725 719 717 716 716 715 715 715 717 717 715

BR 885 770 648 581 521 479 437 410 384 353 342

BRX 1020 835 694 603 539 485 440 405 377 358 329

EBOM 587 425 341 300 271 254 235 220 213 209 200

EBOMb 462 341 279 245 229 212 199 191 191 185 188

HASH2c 1781 1203 919 743 629 547 487 441 398 368 343

HASH2i 1782 1207 918 741 630 547 483 439 400 366 343

HASH3 — 2258 1518 1145 921 776 665 587 526 478 436

QS 1025 826 676 600 541 499 452 432 412 389 373
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Test results with patterns of English words

Table E.2. Average search times of English word patterns in milliseconds with the 64-bit
code on the test computer B. For each length, the pattern set contains 200
patterns.

pattern length

↓algorithm 3 4 5 6 7 8 9 10 11 12 13

SBNDMq1 911 818 765 741 685 643 597 570 536 512 486

SBNDMq2 869 599 469 392 346 305 280 257 238 226 216

SBNDMq3 1982 1007 681 520 424 359 314 282 257 237 222

SBNDMq4 — 2627 1327 895 679 549 463 402 357 320 294

SBNDMq2b 504 364 304 265 244 224 215 203 199 190 192

SBNDMq2+2b — 398 322 279 250 231 216 204 198 189 184

SBNDMq4b — 1570 807 560 429 350 300 264 237 214 204

SBNDMq6b — — — 2266 1181 823 613 507 425 371 330

SBNDMq2uf 726 510 406 345 309 279 258 239 226 214 208

UFNDM2 822 635 528 458 410 371 341 317 294 281 267

UFNDM3 891 671 539 457 396 349 316 289 266 250 238

FSB 1046 819 658 567 497 444 399 370 337 319 301

FSBb 677 566 459 406 370 332 305 269 251 251 242

FSBb+ 614 511 415 370 334 302 280 266 251 238 232

Shift-Or 1281 1280 1280 1281 1280 1280 1280 1280 1280 1280 1281

Fast-Shift-Or 687 679 677 676 677 677 678 678 677 677 677

BR 993 872 740 663 598 549 498 466 428 410 383

BRX 1169 957 800 698 624 559 507 463 432 405 381

EBOM 577 416 342 297 273 248 231 217 211 207 199

EBOMb 448 332 285 245 233 214 210 199 192 187 184

HASH2c 2033 1374 1044 844 714 618 549 497 451 413 386

HASH2i 2067 1393 1061 857 725 627 558 505 458 421 391

HASH3 — 2503 1680 1268 1022 857 738 649 580 526 481

QS 1162 929 758 675 610 556 508 482 457 431 410
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F. Corrections to the publications

Publication [I]

On the page 853 on second line below the Algorithm 2 the term m − k

should be m− q.

In the middle of the page 854 ‘They maintain synonym links, . . . ’ should

be ‘In case of collision they use another hash function’.

Publication [II]

On page 83 the initialization of array restore in Algorithm 2 is here in

corrected form as Algorithm 13. The If-clause on line 6 had an error.

Publication [III]

On page 163 the name ‘Least cost algorithm’ should be ‘Optimal mismatch

algorithm’.

Publication [IV]

On page 420 the line 10 of Algorithm 1 BMHq should be:

10: if k > n then exit

11: Check the potential occurrence

12: s← r

Publication [V]

On page 31 the title of Algorithm 4.3 should be SBNDM2.c (instead of

BNDM2.c). Also the sixth line of Algorithm 4.3 should be ‘i += m-2;’

or ‘i += m-q;’ (instead of ‘i += m-1;’).
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Corrections to the publications

The title of the reference [4] should be ‘An Algorithm for Syntactic

Analysis’.

Publication [VI]

The page numbers in the reference [1] should be 295–310.
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