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Abstract 
Complex systems consist of a large number of elements that interact in a non-trivial way; for 

example the human brain, society, Internet, and biological organisms can all be modelled as 
complex systems. Complex systems can be naturally represented as networks, mathematical 
objects that consist of nodes and edges connecting these nodes, and the study of large networks 
based on empirical data has become known as complex networks. Since the first articles on 
complex networks appeared in the end of the 1990's, various technological, biological, and 
social networks have been analyzed. In recent years introductory text books on the subject have 
also been published.  

The study of social networks of course has a longer history. Small social networks have been 
studied for decades in sociology, social psychology and anthropology, and the influence that 
social networks have on both performance and well being of individuals has been well 
documented. The availability of electronic communication records—mobile phone calls, 
emails, online social networking sites and even multiplayer computer games—have changed the 
scale and detail at which social networks can be analyzed. The largest data set studied so far 
includes over 700 million individuals, and the mobile phone call records studied in this Thesis 
contain information of over 6 million people. The combination of powerful computers and large 
data sets have enabled the emergence of computational social science. 

Several aspects of large social networks are studied in this Thesis. Models of social networks 
are commonly used as a way to gain insight about the structure of these networks. The first 
article studies a number of models suggested for social networks and discusses their 
advantages and shortcomings. The community structure of various networks has also been a 
subject of great interest. It is widely accepted that nearly all networks have modular structure, 
evidenced by local densifications of connectivity. However, identifying communities in 
empirical data has turned out to be difficult both theoretically and in practice. We apply three 
state-of-art community detections methods to a large social network and evaluate the quality 
of the identified communities.  

One important aspect of human interactions is omitted when analyzing networks: time. 
Temporal networks have become a common framework for studying data sets where the 
relations between nodes vary with time, and this framework can be readily applied to study 
mobile phone calls. The last part of this Thesis introduces the concept of temporal motifs—
recurring patterns of events in temporal networks—that can be used to analyze the meso-scale 
structure of temporal networks. 
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Preface

I began working on social networks in the summer of 2007 when I joined

the Laboratory of Computational Engineering, the predecessor of BECS,

as a summer student. Those first steps eventually lead to a Master’s the-

sis, and as my knowledge of complex systems increased, so did my interest

in studying them further. The doctoral studies I started four years ago are

now coming to an end.

I want to thank my supervisor, professor Jari Saramäki for all his sup-

port and advice during the journey. I have had an exceptional freedom of

carrying out research from the birth of new ideas to the final steps of pub-

lishing. There can hardly be a better way to learn what science is. Doing

a doctoral thesis is not always easy, but that you told me before I started.

I also wish to express my gratitude to professor Kimmo Kaski for creat-

ing such an excellent research environment. BECS has the most favorable

circumstances for scientific activities, and I have greatly enjoyed my time

here. The bureaucracy has been kept to the minimum, and funding has

not been an issue. I know that this is not something that simply happens.

I am also grateful for all the opportunities to attend conferences and visit

other universities, and all the discussions covering everything between

life, science and politics.

Even though this Thesis has only one author, many people have con-

tributed to the research that lies behind. I greatly appreciate the com-

ments and instructions I have received from professor János Kertész, the

informal discussions with professor Jukka-Pekka Onnela, the happiness

and diligence of Riitta Toivonen, and the accurate and timely results from

Gergely Tibély.

I am also grateful to my fellow doctoral students Mikko Kivelä and Ger-

ardo Iñiguez for your company during these years, and all the practical

and non-practical discussions we have had. And a great thank you to
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everyone in the research group during these years. You have made it en-

joyable to come to work every day: Talayeh Aledavood, Arnab Chatterjee,

Richard Darst, Pietro Della Briotta Parolo, prof. Santo Fortunato, Tapio

Heimo, Darko Hric, Jörkki Hyvönen, Hang-Hyun Jo, Markus Karppinen,

Márton Karsai, Rainer Kujala, Jussi Kumpula, Marija Mitrović, Vasyl

Palchykov, Raj Kumar Pan, Juan Perotti, and Taha Yasseri. And all the

other people in BECS who have made it so much better to work here:

Enrico Glerean, Julio Hernández Pavón, Riku Linna, Hanna Mäki, Tiina

Näsi, Margareta Segerståhl, Jarno Vanhatalo, Panu Vesanen, Mikko Vi-

inikainen, and everyone else I have talked with during all these years. I

am supposed to call you colleagues, but you have become my friends.

I also wish to thank the administration for their kind help with the bu-

reaucracy: Katri Kaunismaa, Katja Korpinummi, Eeva Lampinen, Laura

Pyysalo, and Marita Stenman, and also the people who kept the compu-

tational resources running: Jukka Merinen, Mikko Hakala, Timo Aarnio,

Jarkko Salmi, and Jari Siven. This work would not have been possible

without your effort.

The people at the CABDyN Complexity Centre in Oxford were generous

with their hospitality, and I much enjoyed my stay: Felix Reed-Tsochas,

Elizabeth Leicht, Eduardo López, Jianguo Liu, and Griffith Rees. I also

acknowledge the support of the Doctoral program Brain&Mind. Neuro-

science is not my main topic, but it surely was an interesting digression.

And for widening my scope outside techonology, I am grateful to everyone

I have had the pleasure to meet in Aallonhuiput, Aalto Doctoral Student

Association.

Finally, I wish to thank my dear Johanna for her support during these

years. I did not always come home on time.

Espoo, April 19, 2013,

Lauri Kovanen
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1. Introduction

1.1 Complex systems

Current interest in complex systems was sparked by two research ar-

ticles published in the turn of the millennium. In 1998 Duncan Watts

and Steven Strogatz observed that many systems—biological, social, and

technological—had features that had so far been observed only in either

random or regular systems, and therefore appeared to lie somewhere be-

tween these two extremes [1]. A year later Albert-László Barabási and

Réka Albert showed that the distribution of node degrees in networks—

the number of connections each element has—is very similar in a diverse

set of empirical systems and provided a simple model to explain their ob-

servation [2]. These two articles, together with a sudden availability of

data from large empirical systems, contributed to the birth of a new field

that is today known as complex networks.

The idea of studying complex systems is not without predecessors. In

fact, the classification of problems by their inherent complexity, put for-

ward by Warren Weaver in 1948, is still relevant today [3]. According to

Weaver, until the 20th century science was mostly concerned with prob-

lems of simplicity. Such problems contain relatively few variables and can

typically be solved exactly, like calculating the paths of colliding billiard

balls. In the 20th century statistical physics began addressing problems

of disorganized complexity by calculating statistical properties of large

systems with high accuracy. In some cases the same approach can also be

applied to social systems: even though it is nearly impossible to predict

when any single person will die, the average death rate can be predicted

with high accuracy. In both cases we can make accurate claims about

the system as a whole even though we have little knowledge of its con-
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stituents.

The third kind of problems described by Weaver, and the ones primarily

addressed by this Thesis, are the problems of organized complexity. These

problems also typically involve a large number of entities, but now the

interactions are organized; we are “dealing simultaneously with a sizable

number of factors which are interrelated into an organic whole.” Many im-

portant problems fall into this category, for example the surprising emer-

gence of economic crises as a result of mostly uncoordinated but organized

behavior of individuals. Biological systems also give rise to several prob-

lems of organized complexity. Determining the cause of cancer is notori-

ously difficult precisely because it involves a large number of non-trivial

interactions.

Just like economic crises, other social phenomena also take us by sur-

prise even though we ourselves make up the social system. A classic ex-

ample is the small-world phenomenon, also known as “six degrees of sep-

aration”, famously illustrated by a series of experiments carried out by

Jeffrey Travers and Stanley Milgram in the late 1960’s [4]. In one exper-

iment 296 individuals in the US were asked to deliver a letter to a tar-

get person in Massachusetts by passing it on to a personal acquaintance

they thought to be closer to the target. For the 64 letters that eventually

reached the target, the average number of intermediaries was only 5.2.

Even though this experiment is far from proving the exact number of in-

termediaries, the fact that we live in a small world has since been verified

over and over again [5].

It is hard to draw exact lines between the three different types of prob-

lems identified by Weaver. There is no theoretical difference between

problems of simplicity and those of disorganized complexity: a system

consisting of 1023 gas molecules follows the same laws of physics as a sys-

tem of only two molecules, but it is impossible to study the larger system

by tracing the paths taken by all molecules. In similar vein, the differ-

ence between disorganized and organized complexity is practical rather

than theoretical. When the interactions are numerous and organized, the

system cannot be treated with methods developed for problems of sim-

plicity or disorganized complexity. It was also organized complexity that

Herbert Simon studied in his seminal article on complexity [6], defining

complex system as

. . . one made up of a large number of parts that interact in a nonsimple way. In

10
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such systems, the whole is more than the sum of the parts, not in an ultimate,

metaphysical sense, but in the important pragmatic sense that, given the prop-

erties of the parts and the laws of their interactions, it is not a trivial matter

to infer the properties of the whole.

It might seem that by defining complex systems as those with nonsim-

ple interactions we at the same time define them to be outside the scope

of what can be studied. In addition, many researchers studying complex

systems have background in statistical physics, and are effectively us-

ing methodology originally developed for disorganized complexity to study

problems of organized complexity. How can we possibly answer problems

of organized complexity? The fact is, we cannot—not in the same way as

science answers problems of simplicity and disorganized complexity. Be-

cause of the intrinsic, pervasive complexity, we might never be able to

model and predict complex systems with accuracy comparable to that re-

quired to send a man to the Moon—a task that is mostly a combination of

problems of simplicity and disorganized complexity.

Even if exact predictions seem unlikely at the moment, there is still a

lot to be gained. In fact, there exists already a complex systems mea-

sure that is being used daily by hundreds of millions of people. In the

complex system terminology this measure falls into the category of eigen-

vector centrality measures and is best known as PageRank [7]. Most of

its users, however, are probably more familiar with the name of the com-

pany founded by its inventors Larry Page and Sergei Brin, and the search

engine carrying the same name: Google.

1.2 Scope of this Thesis

This Thesis studies the statistical properties of social networks by ana-

lyzing electronic communication records such as email messages, online

social networks, and mobile phone calls.

Structural properties of small networks are analyzed by studying the

performance of models that have been suggested to reproduce the struc-

ture of social networks. Community detection in social networks is stud-

ied by analyzing the communities detected in a mobile phone communica-

tion network by three state-of-the-art community detection methods.

The last section introduces the concept of temporal motifs that can be

used to study recurring patterns of events in time-dependent networks.

11
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In addition to introducing the necessary concepts and algorithms, I also

discuss how the resulting motif counts can be analyzed.

12



2. Networks

Because complex systems by definition consist of interactions between a

large number of elements, it is natural to represent them as networks. A

network, or graph as they are also known, is a mathematical object that

consists of elements and their pairwise relations.

The origin of graphs is commonly traced back to the great 18th century

mathematician Leonhard Euler who, the story goes, was interested in the

network of bridges in Königsberg and in the process gave birth to the

field of mathematics we today know as graph theory.1 For the modern

audience the best known example of a network is no doubt found online.2

With over 10 % of the world population in Facebook [9], social networking

sites have taken a significant position in our lives. With unprecedented

ease they also allow us to visualize the social structure we are part of, as

illustrated by Figure 2.1 that shows the Facebook contacts of the author.

Indeed, the term “graph” refers to this graphical nature of networks that

is helpful in explaining the basic concepts of graph theory in the next

Section. Unfortunately, large empirical networks are typically less easy

to visualize, and this difficulty is one reason why more advanced methods

are needed to analyze them.

1According to the story, a popular past-time for the citizens of Königsberg,
present-day Kaliningrad, was to stroll about the town and try to find a route
that would allow them to cross each bridge in the city exactly once. Euler recog-
nized that all relevant aspects of the problem—the number of bridges between
different land masses—can be captured in a graph, and proved that no such route
can exist.
2Internet—the physical network of computers, servers and routers on which the
online world exists—is obviously a network in itself, although most users are
unaware of its structure.
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Figure 2.1. The egonet formed by my own Facebook contacts as recorded on January
10 2012. Each node—denoted by circles—is a person I have marked as a
friend in Facebook, and there is an edge between two people if they have
marked each other as friends. Node locations have been calculated so that
densely connected groups of nodes are close to each other. The colors cor-
respond to modules identified by the Louvain method [8] that tries to iden-
tify densely connected groups of nodes. Both the colors and the position-
ing of the nodes reveal the modular structure of the egonet, and looking at
the people in those modules reveals that they correspond to different as-
pects of my life: family and relatives, studying at university, military ser-
vice, student exchange abroad, and various clubs and associations I have
been involved in; one module also corresponds to my colleagues while writ-
ing this Thesis. Only the largest connected component is shown; it in-
cludes 216 out of 224 nodes. The data was extracted with netvizz (https:
//lab.digitalmethods.net/~brieder/facebook/netvizz/) and plotted with
Gephi (https://gephi.org).

2.1 Graph theory

This section briefly introduces the basic concepts of graph theory required

in the Thesis. Formally, a graph G = (V, L) consists of a set of N nodes,

denoted by V = {v1, . . . , vN}, and a set of M edges, L = {e1, . . . , eM},

where each edge is a node pair: ek = (vi, vj). Two nodes with an edge
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between them are said to be adjacent, connected, or neighbors. The term

dyad means a node pair, either connected or not; this term is less used in

mathematical discussions but occurs frequently in sociology.

If the network is undirected the order of the two nodes in ek is irrel-

evant. In directed networks the order does matter, and the two edges

(vi, vj) and (vj , vi) are different entities. When graphs are drawn the

directed edges are commonly denoted by arrows. Figure 2.2a shows an

undirected graph with V = {a, b, c, d} and L = {(a, b), (a, c), (c, b), (b, d)}.

The directed graph in Figure 2.2b has the same set of nodes but edges

L = {(c, a), (a, b), (b, a), (b, c), (d, b)}.

A network is said to be simple if it has neither self-edges like (vi, vi) nor

multiple edges between the same pair of nodes (in the same direction in

the case of directed networks). The graphs in Figures 2.2a and 2.2b are

both simple. An empty graph has no edges, and a full graph has an edge

between every node pair.

One common extension of this basic framework is to associate each edge

with an edge weight wij , resulting in a weighted network G = (V, L,W )

where W defines the weight of each edge. In empirical networks edge

weights are often used to denote the strength of the relation and there-

fore restricted to be strictly positive; in this case wij = 0 is equivalent to

(vi, vj) /∈ L. Other uses do exist, and for example in Section 3 we discuss

networks that have both positive and negative weights.

Because networks are used in various fields of science even the most

central concepts have more than one name. Multiple names for the same

concept are routinely used even within a single research article. As al-

ready mentioned, graph and network are synonyms, although graph tends

to be more commonly used in theoretical discussions and network when

referring to empirical data. The term web has also been used to refer to

networks, but occurs less often nowadays possibly because most people

associate “web” with the World Wide Web. Vertex is a synonym for node,

and both link and tie are synonyms for edge.

The following definitions will also be used in this Thesis:

Node degree The degree of a node is the number of neighbors it has. In

directed networks the number of incoming and outgoing links can

differ and the nodes have both an out-degree kout and an in-degree

kin. For example in Figure 2.2b node a has kout = 1 and kin = 2.

Walk, path and cycle A sequence of nodes where two consecutive nodes
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(a) (b) (c)

(d) (e) (f)

Figure 2.2. (a) An undirected graph with N = 4 and M = 4. (b) A directed graph with
N = 4 and M = 5. (c) A subgraph of the graph in (a). Because the edge (a, c)

is missing this is not an induced subgraph. (d) An induced subgraph of the
graph in (a). (e) This graph is isomorphic to the graph shown in (a). (f) A
bipartite graph with V1 = {a, b, c, d} and V2 = {x, y, z}. All edges have one
end in V1 and another in V2.

are adjacent is called a walk, and the length of a walk is the num-

ber of edges traversed. In directed graphs the walk can typically

progress only in the direction of the edges. A path is a walk where

no node is repeated, and a cycle is a path that begins and ends at

the same node.3 For example, in the graph shown in Figure 2.2b the

path d → b → c → a and the cycle a → b → c → a both have length 3.

The shortest path between two nodes is also called a geodesic path.

Subgraph A graph G′ = (V ′, L′) is a subgraph of G = (V, L) if V ′ ⊆ V

and L′ ⊆ L. We will mostly discuss induced subgraphs where for all

vi, vj ∈ V ′, if (vi, vj) ∈ L then (vi, vj) ∈ L′; in other words, edges of

the original graph are included in G′ whenever possible. Figure 2.2c

shows a subgraph of the graph in Figure 2.2a that is however not

induced; the subgraph in Figure 2.2d is induced.

Clique A subgraph that is a full graph is called a clique, and a clique

with k nodes is called a k-clique. For example the graph in Figure

2.2d is a 3-clique.

Connectivity An undirected graph is connected if there exists a path

3When a walk begins and ends at the same node it is called a tour. In reverence
to Euler’s early contribution to graph theory, a tour that traverses each edge of
the graph exactly once is called an Eulerian tour.
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between any two nodes; for directed graphs the issue of connectivity

is more involved, as there may exist a path from vi to vj but not from

vj to vi [10]. A (connected) component is a maximal sets of mutually

connected nodes.

Graph isomorphism Two graphs G1 and G2 are isomorphic, denoted by

G1
∼= G2, if they only differ by node labels. More formally, G1

∼= G2

if and only if there is a bijection π : V1 → V2 such that π(G1) = G2.

Here π(G) = (π(V ), π(L)) where π(V ) = {pi(v) | v ∈ V } and π(L) =

{(π(vi), π(vj)) | (vi, vj) ∈ L}. For example the two graphs shown in

Figures 2.2a and 2.2e are isomorphic.

Bipartite graph A graph is bipartite if its nodes can be divided into two

disjoint sets, V1 and V2, so that there are no edges between nodes

in the same set. Figure 2.2f shows an example of such a graph.

Many empirical systems can be represented as bipartite graphs. For

example the authorship of scientific articles is captured by a network

where V1 are researchers, V2 are articles, and edges connect articles

to their authors.

2.2 Random graphs

Complex networks research is most closely related to the subfield of ran-

dom graphs, initiated by Hungarian mathematicians Paul Erdős and Al-

fréd Rényi who in 1959 published an article discussing the properties of

graphs obtained by placing edges at random between nodes [11]. It was

this same Erdős–Rényi random graph that appeared in the first two pa-

pers on complex networks 40 years later, and in both cases because it fails

to explain common properties of empirical networks: the high number

of triangles in [1] and the shape of the degree distribution in [2]. Nev-

ertheless, the Erdős–Rényi random graph has been of immense value to

complex networks research. Its apparent simplicity also makes it a good

starting point for discussing random graphs.

The term “random graph” is somewhat misleading; there is nothing ran-

dom in any single graph. Random graph refers to an ensemble of graphs

together with their occurrence probabilities. For example, the Erdős–

Rényi random graph (ER graph) GN,M is the ensemble of all graphs with

N nodes and M edges such that each graph is selected with an equal prob-

ability. An example with N = 3 and M = 2 is shown in Figure 2.3a. This
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same random graph can also be described as a growth process: starting

from an empty graph with N nodes, M times add an edge between two

randomly selected nodes that are not yet connected. This growth process

can be directly used to draw samples from GN,M .

A slightly different variation of the ER graph is also commonly used.

To draw a sample from the random graph GN,p, start with an empty

graph with N nodes, go through each dyad and add an edge independently

with probability p. This growth process corresponds to an ensemble of all

graphs with N nodes where a graph with M edges occurs with probability

pM (1− p)(
N
2 )−M ; Figure 2.3b shows the ensemble when N = 3 and p = 0.2.

Theoretical calculations with GN,p are often easier because edges are inde-

pendent of each other; for example, the probability that two neighbors of

a node are connected is exactly p. In the limit of large N , the two random

graphs GN,M and GN,p become essentially equivalent because the number

of edges in the latter is concentrated around the mean value 〈M〉 = p
(
N
2

)
.

(a) (b)

Figure 2.3. (a) The ensemble of graphs that makes up the Erdős–Rényi random graph
GN,M with N = 3 and M = 2. In the GN,M model each graph with N nodes
and M edges is equally probable. (b) The Erdős–Rényi random graph GN,p

with N = 3 and p = 0.2. Now the ensemble consists of all graphs with
N nodes, and the probability of a graph with M edges is pM (1 − p)(

N
2 )−M ,

shown below each graph.

Although the Erdős–Rényi random graph is simple to describe, it has

surprising properties. These properties are usually analyzed in the limit

N → ∞ so that the mean degree k̄ = (N − 1)p remains constant. One ex-

ample of such a property is that when k̄ > 1, the mean size of the largest

connected component has size proportional to N (giant connected compo-

nent, GCC), but when k̄ < 1 almost no graph has a GCC [10]. This kind of

threshold behavior is typical for the ER graph.
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Figure 2.4. Black dots show the degree distribution of an email network with N = 1133

nodes and mean degree 〈k〉 ≈ 9.62 in (a) linear and (b) log-log coordinates.
The degree distribution of an Erdős–Rényi random graph with the same
mean degree is shown with circles, and the gray line denotes the asymptotic
Poisson distribution. The email data is originally from [12], and the data
shown here is identical to that used in Publication I.

GN,p also goes by the name of Poisson random graph because its de-

gree distribution becomes a Poisson distribution when the mean degree

k̄ = (N − 1)p is constant and N → ∞.4 The Poisson degree distribution

means that most nodes have a degree close to the mean degree, while in

most empirical networks the degrees instead have a very broad distribu-

tion, as shown in Figure 2.4. This discrepancy is one of the reasons why

the ER random graph is not a suitable model for empirical graphs. A

straightforward way to construct a model that takes into account the em-

pirical degree distribution is to create a random graph conditional on the

degrees of the nodes. This random graph is called the configuration model

[13].

Unlike for the ER model, there is no simple algorithm for generating

samples from the configuration model, but two different approaches are

commonly used. The first algorithm starts from a network that has the

required degree distribution and then switches the end nodes of randomly

selected edge pairs; a sufficient number of switches must be made to en-

sure the results are statistically representative [14]. The alternative is to

start with an empty graph where node i has ki stubs, half-edges, with ki

sampled from the degree distribution. Two random stubs are then con-

nected to form an edge until no stubs are left. This algorithm is generally

4To see this, start from the exact binomial degree distribution p(k) =
(
N−1
k

)
pk(1−

p)N−k−1. In the above limit
(
N−1
k

)
pk ≈ (N−1)k

k! pk = k̄k

k! and (1− k̄
N−1 )

N−k−1 N→∞−−−−→
e−k̄, and combining these then gives p(k) → k̄ke−k̄

k! .
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faster, but the produced network is not guaranteed to be simple. However,

when the network is large enough the possible self-edges and multi-edges

can be removed with only minor harm to accuracy.

Because the degree distribution is often considered to be such an impor-

tant property of empirical networks, the configuration model is often used

as a null model, a reference system to compare empirical networks with;

Discussing the configuration model, Newman, Strogatz & Watts suggest

that “it is perhaps best to regard our random graph as a null model—a

baseline from which our expectations about network structure should be

measured” [13].5 Indeed, the configuration model is commonly used to

define communities in combination with modularity (Section 4.1) and to

define statistically significant subgraphs in motif analysis (Section 5.1).

Many properties of the configuration model can also be calculated analyt-

ically, such as the size of the largest component [13]. The

The configuration model is by definition unable to explain the origin

of the degree distribution itself. It is a phenomenological model [16]: it

makes no hypotheses about the mechanism underlying the data. Because

understanding the reasons behind the common properties of various com-

plex networks has been a central goal in the field, it has been common

to create mechanistic models that could offer an explanations for those

properties. One such example is the preferential attachment model that

Barabási and Albert [2] proposed as an explanation for the broad degree

distributions observed in many empirical networks. In this model a ran-

dom network is constructed by starting from a small seed network. New

nodes are added into the network, each connected to m existing nodes so

that these nodes are selected with probability proportional to their degree.

This model was, however, only the beginning of the story. As will be

discussed in the following Sections, many other models produce a simi-

lar degree distribution, and it is not even obvious whether the empirical

distributions really do have the shape produced by these models.

5The idea of comparing empirical data against some suitably randomized version
of it is much older than this. Even though random graphs were introduced in
1959 [11], randomized networks were used in social network analysis already in
the 1930’s [15].
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2.3 Complex networks

Complex networks research has been multidisciplinary since its incep-

tion. Because any system that consists of elements and their relations

can be presented, at least approximately, as a network, it has been rela-

tively easy to analyze data from different fields. The focus of this Thesis,

social networks, will be discussed at length in the next section, but to give

an idea of the generality of the approach this Section introduces a variety

of empirical data studied so far in the complex networks literature.

The human brain is a network of interconnected neurons and a per-

fect example of a complex network in nature. However, it is not possible

to study this network directly because of its extreme size—approximately

100 billion neurons each receiving from 1 to 100000 inputs from other neu-

rons [17]—and the difficulties in obtaining data about the actual connec-

tions. One common way to study the brain network is via the functional

connectivity network where nodes correspond to brain areas measured by

functional magnetic resonance imaging (fMRI) and weighted edges de-

note the correlation of the activity in these areas. Networks like this have

been used to study for example Alzheimer’s disease [18] and the temporal

properties of resting-state brain activity [19].

Other biological networks have also been studied. In food webs the

nodes denote species and there is a directed edge from one species to

another if the latter one eats the former [20, 21]. In protein-protein in-

teraction (PPI) networks the nodes correspond to proteins and there is an

edge between two nodes if those proteins have been observed to appear

together in some protein complex [10]. One of the first identified proper-

ties of PPI networks was their disassortativity: the degree of a node and

its neighbors’ average degree are negatively correlated, which means that

high-degree nodes tend to be connected to low-degree nodes [22]. Disas-

sortativity in fact seems to be true for many biological and technological

networks, but not for social networks [23]. Network motifs have also been

studied extensively on biological networks as discussed in Section 5.1.

In comparison to biological networks, data on man-made networks is

typically more readily available. Consider for example the World Wide

Web whose structure can be extracted using a small program, a web spi-

der, that follows links on web sites [24]. Web spiders are also commonly

used to build data bases for WWW search engines [7]. With even more

ease, air traffic networks can be constructed from flight schedules and
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are useful for studying how global epidemics might spread via air traffic

[25, 26, 27, 28].

Citation networks were among the first complex networks to be studied;

scientists are understandably interested in the structure of science. In

citation networks the nodes correspond to scientific articles and there is

a directed edge from node i to j if article i cites article j. It has long

been known that the number of citations an article has received follows a

broad distribution [29]. A more recent study found that the distribution of

received citations follows a shifted power law p(kin) = (k0 + kin)
−γ , where

γ is between 5.6 and 3.1 [30]. Citation data can obviously also be used to

study the structure of science, such as the division of science into separate

fields [31] and the way these fields change in time [32].

While this section is by no means a complete listing of fields where com-

plex networks can be used, it should give the reader a good idea of the

generality of the approach. This generality, however, can also be a curse.

Even though most methods can be readily applied to any data set, it is

crucial to understand the context in order to be able to interpret the re-

sults. Blindly applying a method simply because it can be done has the

potential to produce false results faster than anyone can counter.
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The credit for inventing social network analysis is commonly given to Ja-

cob Moreno, who in the early 1930’s used network analysis to explain an

epidemic of runaways in a girl school in New York [34]. At the time col-

lecting and analyzing network data was laborous, and studies were nec-

essarily limited to relatively small networks. Figure 3.1 shows one very

famous social network data set from another study, a network formed by

34 members of a karate club in a US university. In order to collect the data

for this network Wayne Zachary observed the club for a duration of three

years, from 1970 to 1972 [33]. What made Zachary’s study so famous was

in fact more or less a coincidence: during the period of observation the

hired karate instructor and the club president fell into disagreement, and

the club effectively split into two factions, one supporting the instructor

and the other the president. These events allowed Zachary to study “how

and why fission takes place in small bounded groups.”

Since Zachary published his karate club study, computers have revolu-

tionized the way social network data can be both collected and studied. A

new field of computational social science has begun to emerge [35]. The

largest social network studied so far includes over 700 million people [9];

a network of this size can only be handled with computers, and even then

only with the most efficient algorithms. Curiously, in this era of compu-

tational science the data collected by Zachary is probably used more than

ever. The division of the club into two factions, together with the small

size of the network, has made it a convenient test bed for community de-

tection algorithms.
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Figure 3.1. The social network formed by 34 members of the karate club studied by
Zachary in the early 1970’s [33]. The two black nodes denote the club pres-
ident and the hired instructor; the network can be seen divided into two
factions around these nodes. Edge widths denote the number of common con-
texts two people have. Eight different contexts were listed by Zachary, and
the highest number of common contexts observed was seven. The data can
be found in the original article, but it has seven non-symmetric edges (with
wij �= wji) even thought the relations are by definition symmetric. In these
cases weight max{wij , wji} was used.

3.1 Social interactions

The common factor in all social networks is that nodes correspond to in-

dividuals and edges to relations between them. There are innumerable

ways to define these relations, and while all networks can be analyzed

with the same methods and share a number of common properties, there

are important differences. Borgatti et al. [34] divided the relations into

four categories, and this division is useful to get an idea of the range of

possible relations:

Similarities of location, membership or attribute. For example in the

weighted version of Zachary’s karate club network the edge weights

denote the number of common contexts, such as frequenting the

same bar or attending the same karate competition [33]. Studying

directors’ co-membership in the boards of companies is useful for

understanding the real structure of decision making in the industry

[36]. Furthermore, it has been shown that recurring co-locations can

be used to predict a social tie [37].

Social relations like kinship or other role, affection (likes, hates, . . . ), or

cognitive relation (knows of, . . . ). Connections in online social net-

works such as Facebook typically denote just acquaintance, knowing
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of the other person [38, 9].

Interactions such as mobile phone calls [39, 40], twitter messages [41,

42], face-to-face contacts [43] and emails [44, 45] have all been used

to construct networks. Each form of communication yields a differ-

ent network, but there is evidence that for example mobile phone

calls and face-to-face interactions are experienced to be similar [46].

Other interactions have also been studied. For example the struc-

ture of sexual contact networks is important for modeling the spread-

ing of sexually transmitted diseases [47, 48].

Flows of information, beliefs and resources can be used to define social

networks directly, but often understanding and modeling such flows

is the goal rather than the beginning of a study. The idea that social

influence can flow along edges is as old as social networks analysis

itself [34]. The spreading of infectious diseases has also received

much attention [25, 49], and similar methods are now being used to

study the flow of information [50, 51, 52, 53].

This classification is certainly not the only thinkable one, but it helps

to clarify the different aspects of defining social networks. In many cases

it is not possible to identify only a single class for the relation. Consider

for example core discussion networks that are commonly used to study

emotionally close friendships and are generated by asking people to name

those with whom they have “discussed important personal matters dur-

ing the last six months” [54]. While the question strictly speaking mea-

sures interaction, the nominations obviously reflect affection and emo-

tional closeness. Similarly when people coordinate meetings by calling

each other with mobile phones, mobile phone communication, face-to-face

interactions, and similarity of location are all correlated [55].

3.2 Common properties of social networks

The structure of a social network naturally depends on how the relation is

defined. However, many properties of social networks are common across

a wide range of different relations, such as the existence of short paths

between individuals discovered by Travers & Milgram [4]. More recent

studies have however shown that we should be speaking of four rather

than six degrees of separation [5]. Short geodesic paths are common also

in other complex systems [1].

25



Social networks

3.2.1 Fat-tailed degree distribution
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Figure 3.2. (a) Degree distribution for a mobile phone communication network with 6.24

million nodes and mean degree 〈k〉 ≈ 5.4. The network is constructed from
mobile phone call records of a single European mobile phone operator, and
there is an edge between two nodes if there has been at least one call or SMS
in both directions during a period of 6 months. (b) The average neighbors’
degree 〈knn | k〉 as function of node degree in the same mobile phone network.
The assortativity coefficient that measures the correlation of the degrees of
neighboring nodes is 0.285.

Nearly all social networks have a broad, fat-tailed degree distribution,

such as those shown in Figures 2.4 and 3.2a; this is in fact true even for

sexual contact networks [47]. Because degree distributions often appear

as straight lines in logarithmic coordinates they have been hypothesized

to be power laws with p(k) ∝ k−γ . Networks with power law degree dis-

tributions have become known as scale-free networks, a term coined by

Barabási and Albert [2].

Whether degree distributions of social networks and many other com-

plex networks are truly power laws is still far from obvious. While sta-

tistical tests do exist [56], they are too rarely put to good use, and when

they are used the evidence is often scarce [57].1 And even though the tail

of the distribution shown in Figure 3.2a does look like a power law, this

is not the case for other large social networks [9, 58]. What makes the

task even more difficult is that most empirical networks are samples of

some larger networks, and the degree distribution of the sample and the

actual network do not necessarily coincide [59]. Given these difficulties,

the term “scale-free” is in practice used for nearly any network with a

1In fact, some published attempts to fit power laws to empirical data are bad
enough to be amusing. You can even order a T-shirt with a bad power law fit
from The Power Law Shop: http://www.cafepress.com/thepowerlawshop.

26



Social networks

fat-tailed degree distribution.

Whatever the exact form of the distribution, the practical implication

of the fat-tailed degree distribution is that there is no typical number of

acquaintances: the majority of the nodes have a small degree, but there

are always nodes with degree significantly higher than the mean. For

example in May 2011 half of Facebook user had less than 100 contacts,

the average number of contacts was about 200, and approximately 1 % of

the users had over 1000 contacts2 [9].

While the number of acquaintances varies from one individual to the

next, this number is difficult to nail down also because it depends greatly

on the definition of the relation. In the smaller end of the scale, core dis-

cussion networks measure the number of emotionally closest friends and

typically place the average number of friends between 2 and 3 [54, 60].

On the other hand, estimates for the average number of acquaintances

people know by name range between 1500 and 2000 [61]. The Facebook

network is obviously somewhere between these two extremes.

A very different aspect of this question was addressed by Robin Dunbar

when he suggested that our cognitive abilities place a limit for the number

of social contacts we may sustain [62]. Dunbar also proposed a numeri-

cal value for this limit by studying the correlation between the neocortex

ratio3 and group size for non-human primates. By extrapolating this re-

lation to humans with neocortex ratio of 4.1, the limiting group size turns

out to be approximately 150 individuals, a value that has become known

as Dunbar’s number.

Dunbar’s hypothesis is enticing, and it is plausible that cognitive con-

straints in some way limit the number of social contacts humans and other

primates can sustain. However, presenting a single value for this limita-

tion is misleading, as the 95% confidence interval for Dunbar’s number

ranges from 22.73 to 446.2.4 As is evident from the discussion above, it is

not even trivial to define what we should count when counting the number

of social contacts, and defining social groups is no easier as we will see in

Section 4. It seems that there is no simple answer to the simple question

2The maximum number of contacts was limited to 5000 at the time of the study.
3The neocortex makes up the majority of the cerebral cortex in the human brain.
It is characterized by six layers of neurons, and is considered to be the most re-
cent part of the cortex in evolutionary terms. Most higher cognitive functions are
located in the neocortex [17]. Neocortex ratio is defined as the ratio of neocortex
volume to the volume of the rest of the brain.
4The confidence interval originally given by Dunbar is smaller but incorrect [63].
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about the average number of friends: it depends too greatly on both the

individual and the definition of a friend.

3.2.2 Assortativity

One feature that sets social networks apart from many other networks

is assortative mixing by node degree [64, 23]: high degree nodes are con-

nected to other high degree nodes, or in other words, popular people have

popular friends. Assortativity is usually quantified either by the Pearson

correlation coefficient for the degrees of neighboring nodes, or by plotting

the average neighbors’ degree 〈knn〉 conditional on the node degree [39, 9],

as shown in Figure 3.2b for the mobile phone data.

It is worth noting that even when there are no correlations between the

degrees of neighboring nodes—as in the configuration model, for example—

we have 〈knn〉 > 〈k〉: on average your friends have more friends than you

do. This is also very much true in social networks. But in uncorrelated

networks 〈knn | k〉 is independent of k, while in social networks it grows

with k as shown in Figure 3.2b.

3.2.3 Clustering

Social networks are also known to have a very high number of triangles.5

Transitivity, as this feature is also called, is often quantified by the clus-

tering coefficient. Two slightly different definitions are commonly used:

the local clustering coefficient Ci is defined as the probability that two

randomly selected neighbors of node i are connected, while the global clus-

tering coefficient C is the probability that two randomly selected adjacent

edges are in a triangle [65]. Depending on the networks and the definition

used, values of the clustering coefficient typically ranges between 0.05 and

0.5; for the network used in Figure 3.2, 〈Ci〉 = 0.26 and C = 0.14.

3.2.4 Contexts and communities

One explanation for the prevalence of triangles is the fact that most so-

cial relations have at least one context, such as family, work, or school,

and those who share a common context are likely to know each other [66].

Contexts results in local densifications in the network and have been sug-

gested to explain both clustering and assortativity [36]. And because peo-

ple are generally knowledgeable of the contexts of their friends, contexts

5This is obviously not true for sexual contact networks.
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might also explain how people were able to pass a message to an unknown

target person in Milgram’s famous experiment [67]. The existence of dif-

ferent contexts is also related to homophily, a widely studied feature of

social networks that people tend to interact with others who are similar

to them with respect to race, religion, education, or other socioeconomic

property [68].

Community structure is central for understanding the structure of so-

cial networks, and the problem of identifying communities in empirical

data has received significant attention in the literature: the review arti-

cle on community detection by Santo Fortunato spans 100 pages and lists

457 references [69]. The challenges involved in defining and detecting

communities will be discussed at length in Section 4.

3.2.5 Reciprocity

Many definitions of a social relationship are inherently reciprocal: if per-

son A is a friend of B, then B is necessarily a friend of A. This is, however,

not always the case, especially if we also limit the number of relations a

single person may have. Consider for example networks constructed us-

ing name generators, that is, by asking subjects to list a small number of

specific acquaintances such as five closest friends, or five collegues they

prefer to go for advice. Because the nominations are not necessarily recip-

rocated, it makes sense to study the extent to which the resulting network

is reciprocal.

The first studies on reciprocity date back to 1930’s [15], and a large

number of different measures for reciprocity have been proposed. One

example is simply the fraction of reciprocated edges out of all edges [44].

More complicated measures can be seen to arise from attempts to put this

simple number into context. For example, a large fraction of reciprocal

edges is more surprising if the network is sparse, since in the limiting

case of a full network all edges are necessarily reciprocal [70]. Similarly,

when using name generators with a fixed number of nominations it makes

sense to consider how the fixed out-degree affects reciprocity [15]; the ef-

fect of degree correlations can also be accounted for [71]. In mobile phone

communication reciprocity has been shown to be a good predictor of the

persistence of edges [72].

Data sets that contain some information on the strength of relationships—

the number of emails between people, for example—allow studying reci-

procity in more detail, and also at the level of individual edges. This kind
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of weighted reciprocity has been studied to a lesser extent, but several

measures have recently been proposed [73, 74, 75]; one measure was also

defined in Publication II. Social networks are generally more reciprocal

than other kinds of networks [75], but as was also shown in Publication

II, there is still a large number of edges that deviate significantly from

perfect reciprocity [73].

3.3 Social network analysis

Even though social network analysis was introduced already in the 1930’s

[15, 34], during much of the 20th century social networks were by and

large missing from mainstream sociology. When social networks eventu-

ally started to gain currency in the 1950’s they were often brushed aside

as a “special method”. Given the everyday observation about the impor-

tance of social relations, this omission now seems astonishing. As elo-

quently described by Mark Granovetter in “The Myth of Social Network

Analysis as a Special Method in the Social Sciences” [76], this was to a

large extent an unfortunate historical coincidence.

3.3.1 Networks, performance and well-being

The importance of social networks has since been confirmed in numer-

ous studies It is has been well established that the position of individu-

als in the network—in addition to their personal properties and societal

norms—often affects both their performance and well-being. The space

here is too limited for even a shallow review of all relevant research—the

Social Networks journal has been published since 1979—but the follow-

ing examples should give some idea about the measurable effects of social

networks.

The term social capital refers to the idea that some people have an ad-

vantage because of their position in the social network. For example,

those who occupy “central” positions in the network might be able to af-

fect the flow of information and therefore wield more power than their

less “central” peers [34]. Because the idea of centrality is so vague, sev-

eral different centrality measures have been proposed [10]. For example

betweenness centrality measures the number of geodesic paths passing

through an individual. Centrality of nodes is also important in other net-

works. PageRank used by Google is also a centrality measure: it gives
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higher centrality to web pages that receive links from other high central-

ity pages [7].

Social capital may also arise from structural holes, a term coined by

Ronald S. Burt to emphasize the importance of missing ties. Studying

the performance of nearly 700 managers of a single US electronics com-

pany, Burt showed that those with more structural holes around them

have higher salary, receive better evaluations from their supervisors, are

more likely to be promoted, and most intriguingly, have better ideas [77].

The explanation proposed by Burt is that these people are members of

multiple groups and thus exposed to a more diverse set of influences, a

crucial ingredient for good ideas.

Several studies also connect social networks to the well-being of indi-

viduals. Evidence about the shrinking average size of the core discussion

network—from three to two close friends between 1985 and 2004 in the

United States—prompted new studies to find the cause of the change, as

it could have wide-ranging social implications [60]. In addition to the size

of this network, the number of contexts these most important contacts

belong to might also play a role. A single strong community might give a

better safety net, but at the cost of an increased pressure to conform to the

common values of the community [54]. One particularly striking example

is the fact that the structure of the friendship network of adolescents has

been linked to suicidality [78].

3.3.2 Social networks and information technology

As illustrated by Zachary’s karate club study, the means of collecting so-

cial network data were rather limited before the advent of electronic com-

munication: questionnaires, interviews, and direct observations were the

most commonly used methods. Since these methods are labor-intensive,

the maximum size of social networks was typically limited to roughly 100

individuals. While this is enough for studying small and relatively iso-

lated communities such as the karate club above, it was not possible to

study empirically the structure and dynamics of social systems at the

scale of the entire society.6 Questionnaires are also limited to what peo-

ple can recall—try listing all people you have talked with during the past

6Researchers of course came up with ingenious methods to circumvent this; even
if it is not possible to measure the entire network, we can still measure some
properties of it. Notable examples are Milgram’s message passing study to esti-
mate path lengths between people [4], and studies using family names in phone
books to estimate the total number of acquaintances [61].

31



Social networks

week—even though there are surely cases when peoples’ perception of re-

ality is more important than reality itself [34]. This can be ameliorated

by asking the subjects to keep a diary on their social life, but most people

find it too laborious to keep this up more than a week and may also alter

their behavior knowing that they are being observed.

While large social networks derived from electronic communication have

only been studied for roughly a decade, many interesting empirical results

have already been obtained—results that would not have been possible

with other methods.

One of the first big results obtained by analyzing large-scale empirical

social networks was the verification of the so-called Granovetter’s hypoth-

esis [79]. The hypothesis, proposed by Mark Granovetter in 1973 in an

article titled “The strength of weak ties”, suggests that there should be a

positive correlation between the strength of a relationship and the num-

ber of shared acquaintances. This correlation leads to the unintuitive re-

sult the title refers to, a network structure where weak ties are more im-

portant than their weight implies because they connect individuals who

have only few common acquaintances. Strong ties, on the other hand, con-

nect individual who have many common friends and therefore these ties

are not as relevant to the large-scale connectivity of the network. In 2007

Onnela et al. [40] showed that this correlation can be observed in a mobile

phone call network where edge weights corresponds to the total duration

of calls between individuals.

Few years later Granovetter’s hypothesis was also confirmed in another

large-scale social network, this time using data from a massive multi-

player online game called Pardus [80]. Online games are a very promising

source of social data since they allow recording and studying all interac-

tions between people. Another study based on the same data verified the

social balance theory that predicts that in a signed social network some

triangles are more common than others (see Figure 3.3) [81]. The same

study found also that the balance was obtained mostly by the addition of

new relations, not by altering existing ones.

Another study showed that network structure, this time the number of

distinct contexts, affects the probability of accepting an invitation to join

Facebook [82]: if two or more of your friends are already using Facebook,

it is more likely that you join if those two friends do not know each other.

The way network structure affects the spreading of diseases is obviously

an important problem. Based on data from a Brazilian web site used for
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Figure 3.3. The four possible triangles when there can be both positive and negative
relations. According to the social balance theory, triangles (a) and (c) are
stable. Triangle (b) is unstable because “the friend of a friend is and enemy”;
it can be balanced by turning one positive link negative or the negative link
positive. Triangle (d) is unstable only in the strong formulation of the social
balance theory. It was found to be underrepresented in the online game data
of [81], but not as strongly as triangle (b). The reason this triangle is expected
to be unstable in the online game is that any two players in it could become
friends after realizing that they have a common enemy.

ranking prostitutes, Rocha et al. concluded that prostitution alone cannot

explain the prevalence of most sexually transmitted diseases [48].

Online social networks also allow carrying out controlled experiments,

sometimes at unprecedented scale. By using the web platform that al-

lows direct control of the structure of the social network, Damon Centola

showed that health behavior is adopted more readily in a clustered net-

work than in a network with only a small number of triangles [83]. The

clustered network allows the messages from acquaintances to synchronize

temporally, and multiple concurrent messages are more effective in elic-

iting a reaction. Another study by Centola showed that health behavior

spreads more efficiently in homophilous networks [84].

The recent experiment carried out by Bond et al. [85] is a good illustra-

tion of the research potential of online social networks. Bond et al. devised

an experiment where 61.2 million US Facebook users were shown an ad-

vertisement to vote in the congressional elections in November 2010. For

most users this ad included the profile pictures of six randomly selected

Facebook contacts who had already reported to have voted. 0.6 million

users saw the same ad without the profile pictures, and yet another 0.6

million users in the control group were shown no ad at all. The mas-

sive size of the experiment allowed detecting a statistically significant

increase of 0.39 % in voting when users where shown the profile pictures;

there was no difference between showing the ad without profile pictures

and the control group.
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3.4 Universal models

Researchers with a background in physics brought in a very different

mindset to social network research. The contribution of the 1999 arti-

cle by Barabási and Albert [2] was not so much the model they proposed

to explain the power law degree distribution,7 but the idea that networks

with very different origins—an actor collaboration network, world wide

web, and a power grid—might have been generated by the same, uni-

versal mechanism. The fact that this common feature was a power law

distribution did little to curb the excitement, as power laws were known

to be signatures of self-organized systems: “[A power law degree distribu-

tion] indicates that large networks self-organize into a scale-free state, a

feature unpredicted by all existing random network models” [2].

This idea of universality is still very much present in complex networks

literature. Therefore, instead of looking at social networks exclusively,

many studies include data from a wide variety of different systems and

hypothesize the existence of a common reason to explain their similarity.

Thus an article titled “Universal features of correlated bursty behavior”

suggests a common explanation for burstiness—the tendency of events to

occur in bursts—that is observed not only in human communication, but

also in the occurrence of earthquakes and the firing patterns of neurons

[87]. In similar vein, “A universal model for mobility and migration pat-

terns” suggests a single model to explain the commuter traffic between US

counties, long-term migration patterns, number of phone calls between

municipalities, and freight traffic in the US [88]. New methods are also of-

ten applied to a variety of different networks to see whether those systems

can be divided into “universality classes”. For example motif analysis has

been used to identify “superfamilies” of networks [89].

When a common underlying mechanism is proposed, it typically takes

the form of a model built on a small set of assumptions. This approach has

been immensely successful in physics, but with complex systems matters

are, as always, more complicated. The fit between the model and em-

pirical data is nearly always only qualitative. While this is hardly sur-

7It soon turned out that the idea of “preferential attachment” had been already
rediscovered several times, as documented by Evelyn Fox Keller [86]. In 1965
Derek de Solla Price used the model to explain the distribution of citations of
scientific articles, calling it the “cumulative advantage” effect. De Solla Price,
however, appears to have been unaware that the same model was studied by
Herbert Simon in 1955, who in turn attributes it to G.U. Yule in 1925.
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prising with complex systems, it means that multiple models with very

different assumptions and mechanisms may fit the data equally well—

or equally badly—making it nearly impossible to decide which model is

correct. Indeed, many models that produce power law degree distribu-

tions have been proposed since the preferential attachment model in 1999

[86, 90]. The inverse logic used by the modeling approach—that the model

is correct because it fits the data—is broken by the imperfect fit and the

existence of multiple, equally plausible models. The degree distribution

might be due to self-organization, or it might not; the models will never

tell.

In fact, in the case of power law degree distributions it is not clear

whether any model is needed at all. As a generalization of the central

limit theorem, power laws are obtained by summing variables with fat-

tailed distributions [86], and a simple multiplicative random process is

enough to produce log-normal distributions that are difficult to tell apart

from power laws [90]. If simplicity is the criterion for the best explana-

tion, both of these should be preferred over any model.

These problems are in no way limited to power law distributions, but

are encountered every time any model is fitted to data [86]. Models of

complex systems, however, are particularly vulnerable because the fits

are nearly always only qualitative, and typically there are also other as-

pects of the data that are not explained by the model. The theoretical and

empirical justificiations for the mechanism being proposed are also often

weaker than in natural sciences. All this, of course, does not mean that

the models are useless. Even false models are useful in many ways [91],

for example to illustrate possible mechanisms and as necessary stepping

stones to better models. These issues should however be kept in mind

when model are proposed to explain empirical observations.
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4. Communities in social networks

(a) (b)

Figure 4.1. (a) An artificial network with non-overlapping communities. The network
has 64 nodes and 4 communities with 16 nodes each. Two nodes in the same
community are always connected, and nodes in different communities are
connected with probability p = 0.05. The resulting network has mean de-
gree 〈k〉 = 17.55. Even though the community assignment is not explicitly
marked, the communities are clearly visible because of the force directed
layout algorithm used to calculate the position of the nodes. (b) The same
network, but the connections between the neighbors (gray nodes) of a single
random node (black node) have been highlighted. Most neighbors are obvi-
ously in the same community as the node itself.

Most of the network properties discussed so far consider either the micro-

scale—properties of individual nodes and their immediate neighbors—or

the macro-scale, such as the degree distribution and other statistics of

the entire network. Nearly all empirical networks also have non-trivial

structure between these two scales, and one of the most studied meso-

scale structures is the division of nodes into communities. Again, given

the popularity of the idea in different fields the terms module and cluster

are commonly used as synonyms for community.

Even though there appears to be a consensus that most empirical net-
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(a) (b)

Figure 4.2. (a) An artificial network with overlapping communities. The network has
64 nodes and 12 communities; each node has been assigned to two random
communities. If two nodes share at least one community they are connected
with probability p = 0.9, otherwise they are never connected. The resulting
network has mean degree 〈k〉 = 18.04. (b) The same network, but the con-
nections between the neighbors (gray nodes) of a single random node (black
node) have been highlighted. Even though it is impossible to discern any
communities in the network as a whole, the modular structure is obvious
around each node.

works do have communities, there is little agreement on their exact defi-

nition. What most researchers do agree on is that communities should be

connected subgraphs that are in some sense “dense”.1 Typically commu-

nities are defined implicitly by the community detection algorithm used

to identify them.

Community structure is qualitatively very different depending on the

number of communities per node. When the network has the kind of mod-

ular structure as shown in Figure 4.1, it is reasonable to assign each node

into exactly one community. The resulting community structure is called

a partition. Most community detection algorithms introduced so far are

partition-based methods [69], and these methods have also been widely

applied to social networks, for example to Facebook data [93, 94, 95] and

mobile phone call networks [8, 96]. As a simple proof-of-concept, most

new partition-based methods are also applied to the unweighted version

of Zachary’s karate club to see if they can detect the two factions described

by Zachary.

When a node may simultaneously belong to multiple communities, the

1Non-connected groups of nodes have also been studied. For example block mod-
els can be used to identify groups of nodes that are similar with respect to their
connectivity to other nodes, but are not necessarily connected themselves [92].
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community structure is called a cover and the communities are said to

overlap. This is for example the case with Facebook contact networks,

as is evident from the egonet shown in Figure 2.1. One problem with

overlapping communities is that they are nearly impossible to visualize at

the network level, as shown in Figure 4.2. Although covers are necessarily

more complicated than partitions, studying them is important because

many empirical data sets appear to have overlapping communities [97].

4.1 Partitions

In a good partition the dense parts of the network should be contained

inside communities. Probably the most widely used measure for the good-

ness of a partition is modularity, first introduced by Mark Newman in

2003 to study assortative mixing in networks [23] and then applied to

community detection by Newman and Girvan in 2004 [98]. Modularity is

motivated by the idea that a good partition should have more edges inside

communities than expected at random. Given a partition P, its quality is

therefore measured by the modularity

Q(P) =
∑
c∈P

lc
M

− E[lc]

M
(4.1)

where lc is the number of edges inside community c and E[lc] is the num-

ber of edges in the community expected at random. This expectation is

usually defined by the configuration model, where the probability of a

link between two nodes with degrees ki and kj is approximately2 kikj
2M ,

and thus the expected number of edges inside community c is E[lc] =

1
2

∑
i∈c

∑
j∈c

kikj
2M = k2c

4M , where kc =
∑

i∈c ki. The modularity then becomes

Q(P) =
∑
c∈P

lc
M

−
( kc
2M

)2
(4.2)

4.1.1 Problems with modularity

At first sight modularity seems like a very reasonable measure of parti-

tion quality. It however has some counter-intuitive properties, the resolu-
2One way to draw samples from the configuration model is to start with an empty
network where each node has ki stubs (half-links) and then connect two randomly
chosen stubs M times. The probability of first selecting any stub of node i is ki

2M ,
and the probability of then selecting any stub of node j is kj

2M . Since we can
select the same nodes in either order, the total probability of adding the link
(i, j) during a single step is 2

kikj

4M2 , and the probability of adding a link at any of
the M steps is approximately kikj

2M .
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tion limit being probably the best known. Fortunato and Barthélemy [99]

showed that if a network has two modules with m edges in each, and these

modules are connected by a single link to each other and the rest of the

network, then in the partition corresponding to the maximum modularity

these two modules are assigned in the same community if m <
√

M/2. In

general, the existence of a resolution limit means that modularity max-

imization cannot identify communities smaller than some threshold, no

matter how good those communities otherwise appear. The basic problem

is that even though modularity can be expressed as a sum of the contribu-

tion of individual communities, the terms in this sum are connected via M

and therefore even distant and seemingly unrelated edges affect the good-

ness of a community. The resolution limit can be circumvented to some

extent by maximizing modularity again in each identified community [99],

or by extending the definition of modularity so that it is possible to adjust

the resolution and detect communities of different size [100, 101]. What

makes this approach less effective is that empirical networks can have

communities with highly varying sizes [102].

Modularity is also notoriously difficult to optimize. Modularity opti-

mization has been proven to be an NP-complete problem [103]; in addi-

tion, there can be multiple local optima that correspond to very different

partitions even though all have a modularity close to the global optimum

[104]. It has also been shown that trees can have a high modularity; thus

high modularity alone does not guarantee a modular structure [105].

4.1.2 The Louvain method

Because of the NP-completeness, modularity can be optimized only with

heuristic methods for all but the smallest networks. To give an idea of

one such heuristic, consider the Louvain method [8]. The Louvain method

builds a hierarchy of partitions, each level a local optimum of modularity.

The algorithm is initialized by creating N communities, each consisting

of a single node. The communities are then processed in a round-robin

manner, joining each with the neighboring community that results in the

largest increase of modularity. When no improvement is possible, one

level of the hierarchical community structure is obtained. The communi-

ties are then turned into “supernodes” and the optimization is repeated for

the new network. The algorithm finishes when modularity can no longer

be improved.

One reason why the Louvain method in particular has become so pop-
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ular is its good performance in the comparison of community detection

methods by Lancichinetti & Fortunato [106]. This comparison also high-

lights another problematic feature of community detection methods: the

heuristic used for optimization affects the result at least as much as the

choice of the target function. The comparison includes four different mod-

ularity optimization algorithms and shows that they all give different re-

sults; in addition, the most direct attempt to optimize modularity, using

simulated annealing, is outperformed by other methods. The Louvain

method performs well not because it optimizes modularity, but because of

the heuristic used in the optimization. The Louvain method has also been

reported to yield partitions where most communities are smaller than the

resolution limit [93], which essentially proves that the detected partition

does not correspond to the optimal modularity.

4.1.3 Infomap

Many other partition-based methods have also been proposed in addition

to those trying to optimize modularity. Another method that performed

well in the comparison mentioned above is Infomap [31]. Infomap is based

on the following idea. Suppose a random walker is released into the net-

work so that at every time step it moves to a random neighboring node. If

the network is modular, the random walker should remain trapped inside

single communities for relatively long consecutive time periods and less

often move from one community to another. Infomap identifies the best

partition by finding the optimal two-level coding scheme for describing

the path taken by this random walker. This coding scheme has one upper

level code book for describing the steps between communities, and a single

code book for each community to describe the walk inside that community.

The optimal code book is a balance between having too many communities

(long codes are used frequently when moving between communities) and

too few (long codes are needed to describe the walks inside communities).

The coding scheme that gives the shortest description corresponds to the

optimal partition.

Infomap is a good example of a recurring pattern in community detec-

tion algorithms: it starts from an intuitive and reasonable idea on what

good communities should be like and then introduces an algorithm to

identify such communities. This approach would be most commendable

if it wasn’t for the disturbing observation that different intuitive ideas

nearly always lead to different algorithms and consequently result in dif-
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ferent partitions. This happens, of course, because there is no single “best”

way to define communities. This offers little consolation for someone who

would like to detect communities in an empirical network, as little re-

search exists on the circumstances under which a given method detects

the communities correctly.

4.2 Overlapping communities

There is a significant problem in using partition-based methods to identify

social communities: the assumption that everyone has only one commu-

nity is blatantly wrong. Some might even consider this to be self-evident,

especially after seeing pictures of Facebook networks such as that in Fig-

ure 2.1. Indeed, the idea that people have multiple social contexts is not

new; already in 1981 Scott L. Feld [66] introduced the term focus to de-

note the various contexts people have in their life and around which their

social relations are organized; family, colleagues and hobby clubs are ex-

amples of different foci.

However, the idea of multiple contexts has been very often ignored.

When this happens, the assumption of a single community is nearly al-

ways implicit, such as using a partition-based method to identify social

communities. Curiously enough, this omission is not limited only to com-

plex networks but appears also in social psychology [107]. The same im-

plicit assumption was also made by Granovetter in his model to explain

the strength of weak ties [79]. The model is based on the assumption that

all strong triangles are closed—that is, any two close friends always know

each other. However, if people have multiple contexts there is no reason

to expect this to be even approximately true: two friends from different

contexts generally do not know each other. In fact, it has been directly

shown that among the emotionally closest relations 40 % of triangles are

not closed [54]. Another direct confirmation of multiple contexts is based

on Facebook data: all 20 subjects interviewed by Lampinen et al. [107]

readily agreed with the idea that their Facebook contacts are divided into

multiple contexts.

In complex networks literature the idea of multiple contexts has become

known as overlapping communities, in contrast to thinking of communi-

ties as disjoint sets of nodes. Ahn et al. [97] coined the term pervasive

overlap to describe the situation where nearly all nodes have multiple

communities and showed that pervasive overlap is not limited only to so-

42



Communities in social networks

cial networks. A similar conclusion was reached by Reid et al. [108] who

showed that in many networks partitions break maximal cliques that one

would intuitively expect to always lie inside communities, and therefore

no partition is likely to correspond to the “real” community structure.

Publication III shows that partitions of social networks are unrealistic

also in other ways.3

Multiple contexts have been shown to have a measurable effect on social

contagion. Ugander et al. [82] showed that the probability of accepting

an invitation to join Facebook depends only on the number of different

contexts the person already has in Facebook, not on the total number of

contacts.4 In a similar vein, Reid & Hurley [52] studied complex conta-

gion, a spreading process where multiple neighbors must be infected for

the spreading to occur, and showed that this kind of spreading is faster in

a network with overlapping community structure.

One particularly useful way to think of overlapping communities is to

represent the social structure as a bipartite network where one set of

nodes corresponds to people and the other to contexts. Newman and Park

[65, 36] studied the theoretical properties of such networks when the con-

texts were independent and two people know each other with some prob-

ability p if they share at least one context (this model was used to create

Figure 4.2). The next step to a more realistic model would be to consider

the contexts to be correlated. As shown in [54], people have a tendency to

unify the context of closest friends, most often by inviting them home. As a

result, the friends from different contexts become acquainted, edges have

multiple contexts, and most people end up having one significant alter

with whom they share both multiple contexts and many mutual friends:

their spouse. Omitting the possibility of multiple contexts per edge could

lead to qualitatively misleading ideas of social networks. Indeed, if the

contexts were distinct, the Facebook network shown in Figure 2.1 would

consist of multiple connected components. The fact that nearly all nodes

3The methods used both in [108] and Publication III are among those with the
best performance in the recent comparison based on artificial benchmark net-
works [106]. The fact that these methods perform well on artificial benchmarks
but badly on empirical networks illustrates one major shortcoming of using arti-
ficial networks to carry out the comparison: it is extremely difficult to verify that
the artificial networks have the properties that are relevant for detecting and
defining communities. Constructing a good benchmark networks is essentially
as difficult as creating a realistic network model.
4The number of different contexts was quantified by the number of connected
components in the network made up of Facebook users who had added the email
address of the invited person into their address book in Facebook.
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belong to the same component shows that every context includes someone

with acquaintances in another context.

4.2.1 Detecting overlapping communities

Community detection methods that identify overlapping communities are

still much more rare than partition-based methods. Introduced by Palla et

al. in 2005, clique percolation was among the first methods proposed [109].

Clique percolation defines communities as subgraphs consisting of perco-

lating k-cliques, as illustrated in Figure 4.3. Unlike the Louvain method

and Infomap, clique percolation is entirely deterministic, and does not

necessarily assign a community for each node: nodes not included in any

k-clique are left outside the community structure. The most notable dif-

ference, however, is that the communities are defined explicitly, not just

as the output of a given algorithm. This has allowed others to develop

faster algorithms that identify exactly the same communities [110, 111],

but most importantly, it means that anyone wishing to identify commu-

nities in an empirical network can judge whether the idea of community

according to clique percolation corresponds to their own idea of a good

community.

(a) (b) (c)

Figure 4.3. (In all Figures k = 3.) (a) Two k-cliques are adjacent if they have k− 1 nodes
in common. In this case the two triangles are adjacent because they share
the two nodes in the middle. (b) A k-clique community (gray background) is
a maximal subgraph consisting of k-cliques such that there is a sequence of
adjacent k-cliques between any two; a k-clique percolates through the com-
munity. The three nodes outside this community do not belong to any com-
munity because they are not included in any triangle. (c) The communities
overlap because the central node belongs to both of them.

Despite these benefits, clique percolation often fails in practice. The only

parameter is the clique size k, which is often too coarse: 3-cliques may per-

colate through the whole network, resulting in one very large community,

but only a small fraction of nodes are included in any 4-clique. The re-

quirement of a complete clique is inflexible; a 5-clique has 10 edges, but

loosing even one of them makes it invisible for clique percolation. For

these reasons clique percolation performs badly when the network is too
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sparse [112]—which is also the case for the mobile phone data used in

Publication III—or when the network contains too few cliques, as the ran-

dom benchmark networks used in the recent comparison of community

detection algorithms [106].

Other methods for detecting overlapping communities have also been

suggested, although they are not as numerous as partition-based meth-

ods. For example, to show that pervasive overlap is common in empirical

networks Ahn et al. [97] introduced a simple hierarchical partitioning of

edges that consecutively joins edge pairs with the highest similarity, with

similarity defined as

S(eik, ejk) =
n+(i) ∩ n+(j)

n+(i) ∪ n+(j)
(4.3)

where n+(i) is the neighborhood of node i including node i itself. Another

method, proposed by Lee et al. [113], uses maximal cliques as seeds for

communities, adds nodes to these seeds according to a local fitness mea-

sure and finally prunes communities that are too similar to each other.

4.3 Community detection in practice

It is worth pointing out that in some cases social communities can be suc-

cessfully identified with partition-based methods. The unweighted ver-

sion of Zachary’s karate club network is commonly used as a simple test

bed for partition-based methods, and most methods successfully recover

the division described by Zachary. This network, however, consists of only

one context: the karate club. Ironically, the overlapping nature of social

communities was well known to Zachary: in the weighted version of the

graph the edge weights correspond to the number of common contexts two

people have. In addition to single context networks, partitions can also be

useful approximations for identifying contexts in egonets, as illustrated

in Figure 2.1.

It is also possible that partitions provide a good approximation for the

social structure at larger scales. Humankind is divided by political bor-

ders into countries, states, and cities, and all of these divisions are par-

titions. Languages divide us even more. Belgium has two large mono-

lingual communities that obviously cannot have much communication be-

tween them, which might explain why modularity optimization works so

well with the Belgian mobile phone data [8]. Whether the boundary be-

tween pervasive overlap and partition is at the level of languages, states,
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or cities is an open question.

Most publications on community structure either introduce new meth-

ods or discuss the performance, properties and limitations of various ex-

isting methods. In this frenzy to publish new algorithms it is easy to lose

sight of the main goal of community detection: to reliably detect commu-

nities in empirical networks. Currently it is very easy to identify com-

munities with a number of different methods, but nearly impossible to

determine which answer is the correct one. Surprisingly little research

exists to help select the correct method, and often the method of choice is

just the most popular method one has heard of [69].
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Although electronic communication records, such as mobile phone calls,

have been used in research for several years now, most studies have not

made use of the calls directly but have instead considered networks where

nodes correspond to people and edge weights denote, for example, the

number of calls, emails, or tweets during some time period [39, 40, 58,

55, 114, 115]. While this approach has certainly revealed many interest-

ing things about the structure of social networks, it leaves out one crucial

dimension of communication: time. Temporal properties of human com-

munication are now known to be highly non-trivial and far from a sim-

ple Poisson process [116, 117, 118, 119], and for example the structure

of email networks has been shown to vary greatly with time [45]. One

common feature is burstiness, the tendency of communication events to

be clustered in time [120, 121, 87], leading to fat-tailed distributions of

inter-events times.

This kind of temporal inhomogeneity has been shown to be important

for spreading dynamics. Consider for example the simple susceptible-

infected (SI) model that is often used to study the spreading of diseases,

fads, and information. In the SI model all nodes are initially susceptible,

except for a small number of infected nodes. The infection then spreads

from the infected nodes to their susceptible neighbors whenever the nodes

interact. Now, if the interactions occur in bursts, the infection is typi-

cally transmitted by the first event in the burs. Because the remaining

events in the burst are redundant, spreading with bursty interactions

is slower when compared to a spreading process with the same number

of non-bursty interactions [122, 123, 51, 124, 119]— unless, of course, re-

peated contacts are necessary for infection [125], something that has been

shown to be true at least for enlisting in a health web site [83].1

1Although there are several studies about spreading via communication events,
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Temporal networks is a formalism for studying the properties of empiri-

cal networks where relations between nodes vary in time. Formally a tem-

poral network GT = (V,E) consists of a set of nodes V —exactly as normal,

static networks—and a set of events E. An event ei = (vi,0, vi,1, ti, di) ∈ E

takes place between the two nodes vi,0 and vi,1, begins at time ti and

has duration di. Extensions of this basic formulation have also been sug-

gested. For example, suppose the events denote the existence of connec-

tions between nodes: when there is an event between two nodes, a mes-

sages may be passed between them. Now we can introduce a latency λi

for each event ei such that when a message is sent from vi,0 to vi,1 at time

t, the message is received only at time t+λi (assuming ti ≤ t ≥ ti+di−λi)

[126].

The aggregate network GT0,T1(GT ) = (V, L) is a static network with the

same set of nodes as the temporal network and an edge between nodes vi

and vj if there is at least one event between them during the time interval

[T0, T1]; edge weights are often used to record the total number or dura-

tion of events during the time interval. When the aggregation period is

the full time interval for which the data is available, the resulting anal-

ysis no longer has any temporal dimension. It is this kind of aggregate

networks that have been often used to study for example mobile phone

communication [39, 40] and Twitter [42].

Alternatively we can create a sequence of networks by aggregating over

consecutive time intervals; such networks have been used to study for ex-

ample face-to-face interactions [127], email communication [45, 127], and

even the transportation of bovines [128]. The advantage of this approach

is that all measures defined for static networks, such as node degree, clus-

tering coefficient and assortativity, can be readily calculated for each ag-

gregate network. For example the evolution of communities in time has

been studied by relating clique percolation communities identified in con-

secutive time intervals [129]. Selecting the length of the time interval is

however a balancing act. If the interval is too long, relevant dynamics

are lost because they take place inside the aggregated networks. If the

interval is too short, the aggregate networks become too sparse and the

relevant quantities cannot be calculated. Both of these problems can be

circumvented if we instead study the temporal networks directly, without

the aid of the aggregate network. This approach, of course, requires new

it seems that in reality intentional information spreading almost never occurs
beyond a few steps [123, 118].
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methods and measures developed specifically for temporal networks.

Many definitions from graph theory have been generalized to temporal

networks. However, because temporal networks are more expressive than

static networks there is often no unique generalization; the problems en-

countered are in many ways similar to those that arise when generalizing

quantities from unweighted to weighted networks [130]. Consider for ex-

ample the concept of path in static networks. First of all, in temporal

networks we are typically interested only in paths that respect the ar-

row of time, called time-respecting paths or journeys [131]. The concept of

shortest path can now be generalized in at least three different ways, as

shown in Figure 5.1.

(a) (b) (c)

Figure 5.1. Example of the different definitions for the most cost efficient journey as de-
fined in [131]. Suppose we start at time t = 0 and want to find the optimal
path from node a to e. (a) The shortest journey uses the smallest number of
events, in this case only two. (b) The foremost journey arrives the fastest,
here at time instance t = 8. (c) The fastest journey takes the least time from
start to finish.

For a thorough discussion on temporal networks, see the review article

by Holme and Saramäki [132]. The rest of this Chapter discusses tem-

poral motifs. Just like paths, temporal motifs can be understood as a

generalization of a concept originally introduced for static networks. The

concepts presented here and originally in Publication IV are most simi-

lar to the “communication motifs” defined by Zhao et al. [133]. The term

“temporal motif” and the related “dynamic motif” occur more often in the

literature but have no established meaning. Thus “temporal motif” has

been used as a synonym for a time-respecting path [128] or to denote the

pattern of consecutive edits in Wikipedia [134]. In similar fashion, “dy-

namic motif” may refer to studying static motifs in consecutive aggregate

networks [45], the stability of different subgraphs in a dynamic process

[135], or the simultaneous activation of edges during a dynamic process

[136].
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5.1 Motifs in static networks

The concept of network motif was introduced in Milo et al. [20] and Shen-

Orr et al. [137] in 2002, and motifs have since become widely used espe-

cially in the analysis of biological networks [138, 139]. As it was origi-

nally defined, network motifs are classes of subgraphs more common in

the data than expected. The expected occurrence is typically defined by

the configuration model, and the class of a subgraphs is defined by graph

isomorphism. For example, let C(m) denote the number of subgraphs that

are isomorphic to a 3-cycle in a given network. If C(m) is so high that it

is unlikely to occur in the configuration model, then 3-cycle is a motif.

They are several open problems in the definition and use of motifs [140].

In particular, using a random graph to define the statistical significance

of motifs is problematic. Because this same problem is faced also when

analyzing temporal motifs, it is to be discussed in more detail in Section

5.3.2. However, because of this problem we adopt the usage of [141] and

use the term “motif” more generally to refer to an equivalence class of

subgraphs, independent of their statistical significance in comparison to

some reference.

5.2 Temporal motifs

Motifs are equivalence classes of isomorphic subgraphs. Therefore, to gen-

eralize this concept to temporal networks we need to generalize both the

concept of “subgraph” and “isomorphism”.

The treatment here, as well as that in Publication IV, is limited to tem-

poral networks where nodes have at most one event at a time, as is the

case with mobile phone calls. This is easily extended to the case where

events have no duration, even if they do sometimes occur simultaneously.

The extension to the general case where events have durations and nodes

may have any number of simultaneous events is more involved, for rea-

sons discussed below. All concepts and methods are defined for directed

events; only small changes are needed to deal with undirected events.

5.2.1 Temporal subgraphs

There are several alternatives for defining the subgraphs being counted

in the static motif analysis, but most studies consider connected, induced
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subgraphs [138]. Connectivity in static networks is a purely topological

concept. In temporal networks time also has a role to play, exactly as

when generalizing paths.

Given a time window Δt, we define two events to be Δt-adjacent if they

have at least one node in common and the time difference between them—

measured from the end of the first event to the beginning of the second—is

no longer than Δt. This definition of adjacency directly leads to a defini-

tion of connectivity: two events are Δt-connected if there is a sequence

of Δt-adjacent events between them. Note that unlike in journeys, the

events in this sequence need not be ordered in time. These concepts are

illustrated in Figure 5.2.

Figure 5.2. A small temporal network with three events. With Δt = 10 the first two
events are Δt-adjacent (t2 − (t1 + d1) = 3 < Δt), as well as the latter two
(t3 − (t2 + d2) = 5 < Δt), and therefore all three events are Δt-connected.

Any set of Δt-connected events is called a temporal subgraph.2 There

is however one problem with this definition, analogous to why static mo-

tifs are based on induced subgraphs instead of all subgraphs: in some

cases the number of temporal subgraphs is not linear with respect to the

number of events. Consider for example an n-star—a single person mak-

ing n consecutive calls—where all events take place within Δt. Because

any two events are Δt-connected, there are
(
n
k

)
temporal subgraphs with

k events. Not only does this distort motif counts, but counting the sub-

graphs becomes infeasible even for reasonable values of n and k.

To avoid these problems we only consider valid temporal subgraphs in

which for any two events ei and ej that share a node we always include all

other events that share the same node and occur between ei and ej in time.

This can be seen analogous to induced subgraphs that always include any

edge between two nodes in the subgraph; in a temporal network the word

between also refers to time, not only topology. This constraint effectively

limits the number of subgraphs in the above example: there are n−k+1 =

2Note that a temporal subgraph need not include all mutually Δt-connected
events.
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O(n) valid temporal subgraphs with k events, instead of O(nk).3

The exact definition of temporal subgraph should ultimately depend on

the purpose of the study. Whatever the definition, it should satisfy two

criteria: there must be an efficient algorithm for counting subgraphs in

the data, and it should allow an intuitive interpretation for the resulting

counts. The definition given here, although certainly not the only one

possible, is sensible for most data where events do not overlap in time. It

is much more difficult to come up with a suitable definition of temporal

subgraph in the more general case when events may overlap in time. The

primary reason for this difficulty is the large number of ways in which

events can overlap both in time and topology.

5.2.2 Isomorphism of temporal subgraphs

To obtain temporal motifs the subgraphs defined above must be divided

into equivalence classes. Because temporal subgraphs are not really graphs—

there is additional temporal information—we cannot use graph isomor-

phism directly. Again, there is no unique way to define this equivalence.

When should two temporal subgraphs be considered similar?

(a) (b)

Figure 5.3. Here we assume ti < tj if i < j; event durations have been omitted for sim-
plicity. (a) Two temporal subgraphs that correspond to the same motif: the
subgraphs have identical topology and the events take place in the same or-
der. (b) Three temporal subgraphs that each correspond to a different motif.
The first two have different topology, and in the latter two the events occur
in different order.

As with static motifs we start by discarding node labels. This is how-

ever not enough: two temporal subgraphs would be equivalent only if they

have the same underlying graph and identical event times and durations.

This requirement is obviously too specific under most circumstances. In-

3The complexity of temporal networks is often considered to be a disadvantage,
but higher complexity also means higher flexibility: the solution presented here
has no counterpart in static networks. An n-star in a static network contains

(
n
k

)
induced subgraphs with k edges if we allow arbitrary overlap of nodes and edges
between the subgraphs. Two ways to limit this number are given in [138]. If we
allow no overlap there is only one subgraph—the central node cannot be reused—
and if we allow overlap of nodes but not edges we obtain �n/k� subgraphs; in this
case a 3-star and a 5-star would both contain only one subgraph with 3 edges.
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stead, we consider two subgraphs to be equivalent if the temporal order of

their events is identical. This definition is illustrated in Figure 5.3.

5.2.3 Implementation

So far we have not discussed how to actually obtain the motif counts; be-

cause the purpose is to study large data sets, inefficient implementations

will not do. Counting the occurrence of motifs consists of two steps: enu-

merating all temporal subgraphs in the data, and identifying the corre-

sponding motif for each subgraph. The first step—detecting all temporal

subgraphs—is easy to solve efficiently: one algorithm for doing this is

given in Publication IV, another in [142].

To identify motifs, temporal subgraphs are first mapped into directed

colored graphs as shown in Figure 5.4. A colored graph is a graph where

each node has an additional property, commonly called color. This map-

ping retains all information about topology and temporal order of events,

but because the result is a normal graph, existing tools developed for solv-

ing graph isomorphism can be used to divide the temporal subgraphs into

equivalence classes. In practice this is done by identifying for each graph

its canonical form that is by definition identical for two graphs if and only

if they are isomorphic. Calculating the canonical form is a non-trivial

task, but efficient tools have been developed for solving it.4

(a) (b) (c)

Figure 5.4. In order to identify temporal motifs the subgraphs are mapped into colored
directed graphs for which the canonical form can be solved with existing tools.
(a) The original temporal subgraph with three events. (b) An additional ver-
tex is created for each event, with a distinct color (here denoted by a square
shape) to distinguish the new vertices from those corresponding to original
nodes. (c) Additional links are added between the event vertices to denote
their temporal order: from the first event to the second, from the second to
the third. This graph is now a normal directed, colored graph that contains
all information about the topology and temporal order of events in the origi-
nal temporal subgraph.

The algorithm we have used for identifying canonical forms, bliss by

4Canonical forms can be directly used to solve graph isomorphism, and no
polynomial-time algorithm is known for solving graph isomorphism. In fact, de-
termining whether two graphs are isomorphic is one of the few problems not
proven to be in either P or NP-complete.
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Junttila and Kaski [143], is an improved version of the algorithm pro-

posed by McKay already in the late 1970’s [144]. Not only are these al-

gorithms efficient, but they are founded on using colored graphs and can

therefore be directly applied to identify the canonical form of the graph

shown in Figure 5.4c. Furthermore, because colored graphs are in any

case being used, there is little extra cost in using node colors already in

the original temporal network to denote different node types. And because

events are also mapped into vertices before calculating the canonical form,

different event types may be used as well.

5.3 Analyzing motif counts

The implementation described above enables counting temporal motifs

in temporal networks with up to 109 events. At this point we face the

same problem that occurs when analyzing static network motifs: the motif

counts alone are not very informative. In order to say whether a given

motif count is high or low we need something to compare with, and very

often no obvious reference is available.

5.3.1 References

Another data set generated by the same—or very similar—process would

be an excellent reference. This approach has been very successful in the

study of brain networks. Functional magnetic resonance imaging (fMRI)

can be used to measure the pattern of functional connectivity between

different brain areas, and by repeating the same measurement with mul-

tiple individuals it is possible to obtain an averaged functional connec-

tivity network of the human brain. These networks can then be used

to study differences in functional brain connectivity for example between

age groups [145] or when performing different tasks [18].

While this approach is good for studying the brain, it is not feasible

when the system under study is a social network formed by millions of

individuals. We cannot obtain multiple samples of Belgium, and compar-

ing two different countries, say France and Belgium, is more like com-

paring the brain of a rooster to that of a lion: while the comparison will

surely reveal differences, most differences are explained by well-known

reasons—population size, demographics, economy, and history—and un-

less we can factor out the effect of these reasons the analysis is unlikely
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to be useful. And even if we were able to account for these differences,

we would still be only comparing the equivalent of two brains, unable to

say whether any differences are real or due to randomness. Yet, while it

does not seem possible to transfer methodology from brain studies to so-

cial systems, the other direction is very much possible: any new method

developed for studying social networks should also make sense when ap-

plied to brain networks.

5.3.2 Null models

As discussed above, the configuration model has been often used as a ref-

erence in the study of static motifs. The general idea is to construct a

“null model,” a suitably randomized versions of the empirical data that

can be used as a target of comparison. Given the empirical motif count

C(m), and the mean μm and standard deviation σm of the counts in the

null model, one usually then calculates the z-score

z(m) =
C(m)− μm

σm
. (5.1)

If the empirical data does not differ from the null model, the z-scores are

expected to have zero mean and unit variance. Statistically significant de-

viation from this expectation suggests that whatever was retained in the

null model—the degree distribution in the case of configuration model—is

not enough to explain the occurrence of motifs.

Null models continue to be used even though the problems of this ap-

proach have been well documented [140].5 The main problem is that us-

ing the configuration model as a reference is arbitrary. Artzy-Randrup et

al. illustrated this with a simple toy network consisting of a 30×30 grid of

nodes where nearby nodes were connected with higher probability. When

compared against the configuration model, the same motifs were found to

be overrepresented in this toy network as in the neural network studied

by Milo et al. [20], even though the toy network is random. Comparing

against a random graph does not reveal non-randomness; the only thing

it reveals is whether the data was generated by that particular random

graph.

5The comment about the problems of null models by Artzy-Randrup et al. [140]
did not come from a void. Similar ideas were used in ecology already in the 1970,
and the validity of the null model approach appears to have been fiercely debated
[146].
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5.3.3 Reductive null models

To better understand the logic of null models it is helpful to write out the

corresponding null hypothesis. Because the only property retained in the

configuration model is the degree sequence of nodes, the null hypothesis

being tested by this comparison is

H0 : Motif counts depend only on the degree sequence.

If H0 is true, we expect the z-scores to be distributed with zero mean and

unit variance; when this is not the case, we can conclude that the null

hypothesis is likely to be false—that is, we can conclude that the data was

not generated by the configuration model. Note that it makes little sense

to study individual motifs separately. A single large z-score is sufficient

evidence to conclude that H0 is false, and if H0 is false, it cannot be the

explanation for motifs with small z-scores either.

In general, when studying the prevalence of measure Q by comparing

against a null model that retains properties P of the empirical system the

null hypothesis always has form

H0 : Q depends only on P .

The only information we can obtain is whether H0 is true or false. In most

cases the answer is already known—all empirical networks differ from

simple random graphs—and therefore the information gained is negligi-

ble. Suppose, however, that we could instead study a null hypothesis of

the form

H0 : Q does not depend on P .

Even if H0 is now found to be false—which is still the most likely outcome

for the same reasons as above—the test still continues to be useful: E[Q],

when calculated using the null model, is the expected value of Q when

the effect of P has been factored out. When the set P is explicitly known

and contains only a small number of elements, the value Q/E[Q] has an

intuitive interpretation: it tells how much larger Q is because of P .

The major difficulty in this approach is that instead of constructing a

null model that includes only P , we need a null model that excludes only

P . This can be tricky, and for many choices of P even impossible. However,

in Publication V we show how this can be done to test the null hypothesis

H0: Motif counts do not depend on node types.
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The constructed null model isolates the effect of node types in the occur-

rence of motifs, and the value C(m)/μm therefore reveals how much more

or less common a motif is because of the node types in it. If the node type

denotes for example gender, we can study the influence that gender has

in time-dependent mobile phone communication patterns.
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6. Results

6.1 Models of social networks

Publication I studies eight models that have been put forth as models of

social networks. The goal of the study was to see whether these mod-

els could match the qualitative features common in nearly all social net-

works, such as a broad degree distribution, high assortativity, clustering

that decreases by degree, large cliques, and the existence of a dense core.

To be able to compare the models their parameters were fitted to low-level

properties of two empirical data sets: the friendship network of Finnish

users of the music recommendation size last.fm (N = 8330, 〈k〉 = 4.2), and

the network of email communication in a single university (N = 1133 and

〈k〉 = 9.6).

None of the models is able to match all of the features of social networks.

The comparison does however reveal common features among the models.

Seven of the eight models studied can be divided into two categories: two

nodal attribute models work by assigning attributes to nodes and then

connect nodes according to these attribute values, whereas five network

evolution models are based on an algorithm that defines how the network

grows or changes in time. The models in each category turned out to be

qualitatively similar. The nodal attribute models are able to reproduce

assortativity and community structure of the empirical networks, while

the network evolution models could match the degree distribution and

clustering spectra. Thus it seems that neither nodal attributes or network

evolution is enough to model the empirical data.

The last model, the exponential random graph model (ERGM), was the

only phenomenological model included in the study; it does not make any

assumptions about why the data is the way it is but only tries to match
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the properties of the data. The main result concerning ERGM is the in-

stability of its parameter space that made it very difficult to match its

features to the empirical networks.

Publication I shows that one should be careful in using models to draw

conclusions about real social networks. False models can, however, still

be useful in many different ways [91]. The models analysed here show

that many properties of social networks can be generated with relatively

simple mechanisms, and it is plausible that several of the proposed mech-

anisms play some role in the formation of social networks.

6.2 Structure of social networks

Publication II studies the reciprocity of mobile phone communication. The

main finding is that non-reciprocal relations are very common: in approx-

imately 40% of edges one partner initiates over 70% of calls. Very simi-

lar results were obtained in [73] for relative instead of absolute number

of calls. Furthermore, it was shown that lack of reciprocity is not only

due to differences in activity, but rather a property of the dyad itself.

High-weight edges are slightly more reciprocal; no connection between

reciprocity and edge overlap was observed when the known correlation

between edge weights and overlap was taken into account.

Lack of reciprocity in communication does not directly imply that the

underlying relationship itself lacks reciprocity. It would be interesting to

study how the measured reciprocity of communication—or the lack of it—

differs from the reciprocity perceived by the people involved, and how the

reciprocity of communication correlates with other ways to measure the

reciprocity of relationships.

Publication III compares three highly regarded community detection

methods: Infomap [31], the Louvain method [8], and clique percolation

[109]. Instead of using artificial benchmark networks to carry out the

comparison as done in [106] we used the three methods to identify com-

munities in a mobile phone call network and then studied whether the

detected communities correspond to intuitive conceptions of what social

communities should be like, and whether the methods identify the same

communities.

In general the identified communities corresponded poorly to ideas of so-

cial communities. Some communities are extremely large with well over

1000 nodes, while others are tree-like. The three methods also identify
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different communities, although the Louvain communities tend to be in-

cluded inside the Infomap communities. The two stochastic methods, Lou-

vain and Infomap, output different communities on different runs.

All of these results confirm that the truthfulness of communities de-

tected by any method should always be taken with a grain of salt. How-

ever, even if the identified communities are not “correct”, analyzing their

properties is useful because it reveals something about the mesoscale

structure of the network: the prevalence of tree-like communities sug-

gests that the network itself has tree-like subgraphs.

It is still not easy to summarize the structure of a large-scale social net-

work, and describing the community structure has proven particularly

elusive. At the moment there is little need for more community detec-

tion methods, even if there are still relatively few methods for identifying

overlapping communities. Instead, two research lines could significantly

advance the field. First, there is a pressing need for a large-scale data

set with explicitly known communities to use as a reference; as shown

in Publication III, methods that work well with artificial benchmarks are

not guaranteed to work with empirical data sets. Second, theoretical work

is needed to define communities more explicitly. On one hand we need to

know what kinds of communities different data sets may contain; on the

other, what kinds of communities are detected by each methods. Such

theoretical work would allow selecting the most suitable community de-

tection method for each data set.

6.3 Temporal motifs

Publication IV introduces the concept of temporal motifs and also the al-

gorithms needed to identify them efficiently. Publication V then shows

how temporal motifs can be used to analyze data where nodes have mul-

tiple types. This includes constructing a reference system that only ex-

cludes the effect of node and edge types. We show that this references

system correctly gives a null result when there are no temporal differ-

ences between node types. All differences identified using this null model

are purely temporal, in the sense that they cannot be observed from the

aggregate network.

Using mobile phone call records and available meta data about the cus-

tomers (age, gender and subscription type) we show that there are sys-

tematic differences between different user types. We find temporal ho-
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mophily, the tendency of similar people to appear in common patterns

more often than expected based on the aggregated network alone. Some of

the identified patterns are easy to explain—for example returned calls are

most common when the first caller is a prepaid customer and the second

postpaid—but other, equally persistent patterns have no equally obvious

explanation: for example motifs where one person calls two others are

more common when the two recipients have similar age. We also identify

temporal differences between dense and sparse neighborhoods. Both re-

peated calls and returned calls are more common on edges where the two

nodes have few common neighbors, whereas temporal motifs that involve

three nodes are more common on edges where the nodes have multiple

common neighbors. As also this result is independent of the weighted, ag-

gregate network, it can be seen as an extension of Granvetter’s hypothesis

to temporal networks.

The work presented in Publication IV and Publication V contains only

the first steps in using temporal motifs to analyze time-dependent net-

works. The methods presented in these articles can be readily applied to

any temporal network where nodes are involved in at most one event at

a time. The generalization to multiple simultaneous events, although not

simple, would significantly extend the applicability of temporal motifs.

Furthermore, by using a null model that takes into account the structure

of the aggregate network we can be sure that our results are independent

of those obtained for static networks. Only time will tell whether these

ideas will prove useful in the analysis of temporal networks.
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7. Discussion

Massive data sets on social systems can be a treasure stash of new infor-

mation. But because these data sets are so different from the small social

networks studied earlier, new methods—and even new kinds of people—

are needed to analyze them. All algorithms used to process massive data

sets must obviously be efficient. Efficiency, however, must be achieved

without sacrificing accuracy: false results that are calculated quickly and

correct results impossible to calculate are both equally useless.

With such unprecedented data sets even statistical analysis requires

more attention. Displaying friends’ photos in a Facebook message was

shown to increases voting by 0.39 %; a small difference, but statistically

significant when the sample size is 61 million. Had the same study been

carried out with pen and paper, arduously collecting up to 1000 replies,

the result would have been exactly the opposite: no statistically signifi-

cant difference between the two groups. With large data sets the focus

of the discussion should be shifted from statistical significance to effect

size—actual real world significance—but the latter term is still rarely

used, in part surely because it is hard to define precisely. These chal-

lenges are in many ways similar to those encountered in genetical studies

where the availability of massive genetic data sets has allowed “hunting

for biological surprises,” often resulting in false positives [147].

Large social data sets have yet another feature that sets them aside

from older data sets: they have not been collected exclusively for research

purposes. Mobile phone call records exist primarily because the operators

need to bill their customers, and Twitter messages are sent to be read,

not to allow their senders to be scrutinized. Consequently, even though

these data sets are unprecedented both in scale and accuracy, they do not

include a large number of demographic variables that are commonly used

in sociology. Large data sets are discovered rather than collected, and this
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might even require us to change the way we come up with research ques-

tions: instead of thinking about what data must be collected to answer a

given question, we need to think up questions that can be answered with

the data that is available.

Yet the most significant problem with the various data sets is not what

they do or do not contain, but who has access to them. Because of privacy

concerns very few, if any, large scale social networks are publicly available

to the research community; the mobile phone data used in this Thesis

came with a strict non-disclosure agreement required by the mobile phone

operator. Facebook and other social networking sites have also financial

reasons not to give out their data: the product they sell is the information

they have about the users. Lack of access to data may significantly slow

down research on large social networks.

When Warren Weaver introduced his classification of problems by their

complexity in 1948, he also made several uplifting predictions about the

future of complex systems research [3]. Weaver was certainly correct in

predicting that computers would come to play a significant role; the re-

search carried out for this Thesis would not have been possible without

computers, nor would the data exist without computer-aided communica-

tion. Surprisingly, one of Weaver’s predictions that is yet to materialize

has nothing to do with technology. Weaver predicted that mixed teams,

multi-disciplinary research groups, would contribute greatly to our un-

derstanding of complex systems. Although inter-disciplinary research cer-

tainly exists, ignorance about the progress made in other fields continues

to be a problem; after all, preferential attachment was discovered inde-

pendently at least three times during a period of 75 years.

While all of these challenges must be addressed, they are hardly too

great to overcome—especially given the high benefits of understanding

complex systems. It seems certain that social science is slowly but perma-

nently being transformed into a computational science where hypotheses

about the structure and dynamics of entire societies can finally be studied

empirically.
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