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Abstract 
Diffusion tensor imaging (DTI) records random thermal movements of water molecules in 

the body. In tissues with organized microstructure, such as the white matter of the brain, 
water tends to move (diffuse) more easily along the main direction of the fibers than in the 
orthogonal directions, resulting in anisotropic diffusion. The main parameter images of 
interest are the mean diffusivity (MD) describing the strength of diffusion, fractional 
anisotropy (FA) describing the asymmetry of diffusion (due to tissue structures), and 
tractography to visualize the 3D course of fiber tracts.  

This Thesis arose from the methodological needs related to adoption of the DTI method 
into our laboratory. In the first study, mechanical vibrations during DTI were demonstrated to 
be unevenly distributed within the scanner. These vibrations, generally assumed to be 
negligible, thus have to be taken into consideration, as they may affect the image quality and 
accuracy of diffusion measurements. In the second study, pre-processing-effects of voxel-
based analysis (VBA) of DTI data were evaluated using simulated brain lesions in MD and 
FA images. Pre-processing and inter-individual variation remarkably affected the outcome of 
the analysis even to such extent that some lesions were not detected by VBA. The success 
of lesion detection varied between the brain areas, and it was different for MD and FA. The 
third study was the first to demonstrate the feasibility of DTI in tracking distal peripheral 
nerves in both upper and lower limbs. As a continuation, DTI was in the fourth study applied 
to monitor patients with carpal tunnel syndrome, an entrapment of the median nerve at the 
wrist, before and after surgical therapy. Comparisons with healthy young control subjects 
revealed increased MD and decreased FA in patients, whereas results of patients and age-
matched control subjects were rather similar. Post-operative healing was reflected in MD but 
not in FA. Numerous other DTI studies on peripheral nerves, published recently, indicate that 
this research area initiated by us is becoming increasingly popular.  
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Tiivistelmä 
Diffuusiotensorikuvauksella (DTI) mitataan vesimolekyylien lämpöliikettä kehossa ihmiseen 

kajoamatta. Järjestyneissä kudosrakenteissa (esimerkiksi aivojen valkeassa aineessa) on 
säikeitä, joiden suunnassa vesi diffundoituu paremmin kuin kohtisuoraan säikeitä vastaan; 
seurauksena on diffuusion anisotropia eli epäsymmetria. Kuva-analyyseissä mielenkiinnon 
kohteina ovat yleensä keskimääräinen diffuusion suuruus, kudosrakenteiden aikaansaama 
anisotropia ja traktografia eli hermoratojen kartoitus, jolla hermoratoja voidaan visualisoida 
kolmiulotteisesti. 

Tämän väitöskirjan liipaisijana olivat uudet menetelmälliset haasteet, jotka liittyivät DTI-
menetelmän käyttöönottoon laboratoriossamme. Ensimmäisessä osatyössä osoitettiin DTI-
kuvauksen synnyttämän mekaanisen tärinän leviävän epätasaisesti kuvauslaitteen 
rakenteissa. Tämän vuoksi tärinän mahdollinen vaikutus kuvanlaatuun ja diffuusiomittausten 
tarkkuuteen on syytä huomioida, vaikka tärinän on aiemmin yleisesti arveltu olevan 
merkityksetöntä. Toisessa osatyössä tutkittiin kuvien esikäsittelyn vaikutusta 
vokselipohjaisen analyysin (VBA) tuloksiin käyttäen oikeita vaurioita jäljitteleviä keinotekoisia 
muutoksia MD- ja FA-kuvissa. Esikäsittely ja koehenkilöiden väliset eroavuudet vaikuttivat 
analyysien tuloksiin jopa niin suuressa määrin, että osa vauriokohdista jäi kokonaan 
löytymättä. Esikäsittelyn vaikutukset olivat erilaisia eri aivoalueilla ja myös MD- ja FA-
kuvissa. Kolmannessa osatyössä osoitettiin ensimmäistä kertaa DTI:n soveltuvan ylä- ja 
alaraajojen distaalisten ääreishermojen kuvaukseen. Neljännessä osatyössä 
diffuusiotensorikuvauksella tutkittiin potilaita, joilla on todettu karpaalitunnelisyndrooma 
(yläraajan keskihermon pinnetila ranteessa) sekä ennen että jälkeen leikkaushoidon. 
Verrattuna nuorten verrokkihenkilöiden tuloksiin, potilaiden keskihermossa diffuusio oli 
lisääntynyt ja anisotropia vähentynyt, kun taas potilaiden ja samaan ikäluokkaan kuuluvien 
verrokkien tulokset olivat varsin samankaltaisia. Leikkauksen jälkeinen paraneminen näkyi 
diffuusion suuruudessa, mutta ei anisotropiassa. Myös ikä näytti vaikuttavan diffuusio- ja 
anisotropiatuloksiin. Viime aikoina on julkaistu lukuisa määrä ääreishermojen 
diffuusiotensorikuvaustutkimuksia ja vaikuttaa siltä, että tämän käynnistämämme 
tutkimusalueen suosio on nopeasti kasvamassa. 

Avainsanat diffuusiotensorikuvaus, DTI, tärinä, vokselipohjainen analyysi, ääreishermot, 
karpaalitunnelisyndrooma 
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Abbreviations ���
ADC   apparent diffusion coefficient 
BET   brain extraction tool 
CC   corpus callosum 
CHARMED  composite hindered and restricted model for diffusion 
CSF   cerebrospinal fluid 
CST   cortico-spinal tract 
CTS   carpal tunnel syndrome 
DEC   direction-encoded color (map) 
DKI   diffusion kurtosis imaging 
DSI   diffusion spectrum imaging 
DTI   diffusion tensor imaging 
DWI   diffusion-weighted imaging/images 
ECC   eddy current compensation 
EPI   echo planar imaging 
FA   fractional anisotropy 
FACT   fiber assigning by continuous tracking 
FID   free induction decay 
FOV   field of view 
FSE   fast spin-echo 
FWE   family-wise error (rate correction) 
FWHM   full-width at half maximum 
HARDI   high angular resolution diffusion imaging 
MD   mean diffusivity 
MNI   Montreal Neurological Institute 
MR   magnetic resonance 
MRI   magnetic resonance imaging/images 
NMR   nuclear magnetic resonance 
PASMRI  persistent angular structure magnetic resonance imaging 
PDF   probability density function 
QSI   Q-space imaging 
RF   radio-frequency 
ROI   region of interest 
SE   spin echo 
SLF   superior longitudinal fasciculus 
SNR   signal-to-noise ratio 
SPGR   spoiled gradient echo 
SPM   statistical parametric mapping/maps 
SS   single shot 
STIR   short-tau inversion recovery 
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TBSS   tract-based spatial statistics 
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VBA   voxel-based analysis 
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1 Introduction �
 
 
 
Diffusion tensor imaging (DTI), a technique based on magnetic resonance imaging 
(MRI), can reveal tissue microstructure noninvasively by monitoring random 
movements of water molecules in tissues (Basser et al. 1994b, Le Bihan 1995, Le 
Bihan et al. 2001). DTI is an especially advantageous imaging method in tissues 
with organized microstructure, such as the white matter of the brain. Such tissues 
comprise fiber bundles along which the water molecules tend to move more easily 
than in the orthogonal directions, resulting in anisotropy (inhomogeneity of 
diffusion). The measured diffusion-weighted images are typically further analyzed 
to obtain parameter images (maps) that describe different characteristics of 
diffusion. For example, mean diffusivity (MD) is an absolute measure of the 
strength of diffusion, whereas fractional anisotropy (FA) describes the asymmetry 
of diffusion due to tissue structures. Moreover, tractography can be used to 
visualize the 3D course of fiber tracts. Before DTI, this kind of information about 
tissue structures was available only post-mortem. 

DTI was introduced in 1994 by Basser and coworkers (1994b) with ex-vivo 
animal samples as test objects. This innovation was, however, already preceded by 
diffusion recordings and quantitative apparent diffusion coefficient (ADC) maps by 
means of nuclear magnetic resonance (NMR) spectroscopy (Le Bihan et al. 1986); 
the first ADC applications were in brain research (Le Bihan et al. 1986, Moseley et 
al. 1990). The main DTI applications have remained in basic brain research and in 
studies of white matter connectivity in the human brain, although clinical 
applications are emerging as well. Today, DTI is being used for imaging various 
anatomical structures and organs, such as peripheral nerves, spine, muscles, and 
kidneys, mainly with small sample sizes to show the feasibility of the method. The 
main clinical applications of DTI are in neurology, especially in the differential 
diagnostics of stroke patients by means of ADC and MD, and in studies of various 
disorders involving white matter. Moreover, the number of MD recordings of 
structures and organs in the body has recently grown tremendously, and recording 
the direction of diffusion by means of FA could be advantageous and provide 
useful information about tissue structures and pathologies.  

Although DTI has drawbacks, such as limited resolution and image 
distortions due to echo planar imaging (EPI) acquisition, its clear strengths are its 
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quantitative and non-invasive nature without the need for contrast agents or 
ionizing radiation.  

Publications P1 and P2 emerged from methodological development work 
necessary for adopting the DTI method into our laboratory, whereas publications 
P3 and P4 introduce novel applications for DTI. In P1, we quantified mechanical 
vibrations during DTI with various imaging parameters using a laser-based 
interferometer. These vibrations have generally been assumed to be negligible. In 
P2, we evaluated the performance of voxel-based analysis (VBA) using simulated 
brain lesions in MD and FA images. We applied conventional VBA to DTI images, 
ignoring the most recent innovations and improvements to follow mainstream DTI–
VBA applications at that time. In P3, we suggested DTI, as a quantitative and more 
objective analysis method than only the visual inspection of MR images, for studies 
of distal peripheral nerves. As a continuation, in P4, we monitored, by means of 
DTI (and MRI), median-nerve integrity in patients with carpal tunnel syndrome 
before and after surgical therapy. We also studied age effects in healthy subjects, 
and we introduced a novel slice-wise analysis for patient diagnostics. 

This summary first provides the basics of DTI and then briefly summarizes 
the methods and results of Publications P1–P4 that are appended to this thesis. 
Chapter 2 presents the basics of MRI, the concept of diffusion, and the 
methodological core of the thesis, that is, the measurements, image analysis, and 
main DTI applications. Chapter 3 provides the objectives of this thesis. Chapter 4 
summarizes the background, motivation, methods, main results and brief 
conclusions of publications P1–P4. Finally, Chapter 5 summarizes and integrates 
the findings, providing a general discussion for all results of this thesis. 
� �
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2 Background 

 

 

2.1 Magnetic Resonance Imaging (MRI) �
In this Section, the basics of MRI physics are discussed to the extent required for 
understanding the rationale and results of the present thesis. The text is based on 
the books of Liang and Lauterburg (2000), Bernstein and co-authors (2004), 
Westbrook and co-authors (2005), and McRobbie and co-authors (2007).  
 

2.1.1 Nuclear magnetic resonance (NMR) 
�
Nuclei with unpaired protons, neutrons, or both, have a non-zero angular 
momentum � and can therefore produce NMR signal that is measurable by means 
of magnetic resonance imaging. Since approximately 2/3 of human tissues are 
water, hydrogen nuclei 1H are most commonly used in MRI. 

These nuclei with angular momentum �, often referred to as spins, possess a 
magnetic moment � 
 

� � ����,                                                           (1) 
 

where ��is the nucleus-specific gyromagnetic ratio; for the hydrogen nucleus, ���� 
= 42.6 MHz/T. The magnitude of � (with and without external magnetic field) is  
 

� � ���� � � � � ��                                                    (2) 
 
where �� � h/2�, h is Planck’s constant, and � � 1/2 is nuclear spin quantum 
number for 1H.  

In the absence of an external magnetic field, the magnetic moments are 
oriented randomly. However, when spins are placed in an external magnetic field 
��, magnetic moments � take one of the two possible orientations (in 1H parallel or 
antiparallel), and they start to precess, see Figure 1.  
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��
Figure 1: Precession causes the magnetic moment (black arrow) of nucleus (gray 
sphere) to follow a circular path (dashed line) around main magnetic field B0 at 
precession frequency ��. 

The angular frequency of precession ��� also called the Larmor frequency, 
depends on the external magnetic field ��  
 

 �� � ���� � ����.                                              (3) 
 
At 3 T, the hydrogen nuclei thus precess at ��= 127.7 MHz. 

The Zeeman effect splits the magnetic moments � in �� into nuclear energy 
levels  
 

� � ����� � ���������,                                           (4) 
 
where�� = ±� = ±1/2 for 1H. Protons can thus have two energy states, one parallel 
and the other antiparallel to the main magnetic field. The parallel state has lower 
energy and is more stable; therefore, the lower energy state is slightly more 
populated: an excess of approximately 2 protons out of 105 water molecules at 3 T 
are in the parallel vs. the antiparallel (higher energy, or excited) state. The relative 
proportion of these two spin states depends on their energy difference ��� absolute 
temperature �� and the Boltzmann’s constant � 
 

��������� �������	����� � �
��

�� .                                           (5) 
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A change from the low-energy to high-energy state is accomplished by means of 
resonance, which is obtained by exposing the spins to energy in packets of 
 

�� � ����� � ���,                                                       (6) 
  
transmitted at the Larmor (resonance) frequency ��. 

The MRI signal is proportional to the net magnetization of all spins in the 
imaging volume. The net magnetization ��  (at equilibrium) depends on the 
difference between the number of spins in the parallel and antiparallel states, and it 
increases as a function of field strength���.  

 

2.1.2 Image acquisition �
2.1.2.1 Excitation and relaxation �
During MRI, the patient is positioned in the main magnetic field �� of the MRI 
scanner, aligned typically in the z-direction (by assumption, the direction of ��). 
The anatomical area of interest is selected and divided into slices, which are then 
subjected to the radio-frequency (RF) magnetic field ��, applied in short pulses at 
the Larmor frequency ��. These RF pulses excite the protons of water molecules, 
typically in one slice at a time, and tilt the net magnetization �� with respect to the 
main magnetic field �� towards orthogonal xy-plane. The commonly applied 90° 
pulse tilts �� by 90° into the xy-plane. Immediately after excitation, the individual 
magnetic moments are in phase and begin precessing about ��, thereby producing a 
transverse magnetization ���, the basis of the MR signal. As the spins precess, 

they also start to dephase (lose phase coherence) and the spin system returns to 
thermal equilibrium; this return is characterized by transverse and longitudinal 
relaxations.  

Figure 2 (left panel) shows that during transverse relaxation, the precessing 
magnetization decays exponentially with a time constant T2.�This T2 relaxation, 
often referred to as spin–spin relaxation, is due to spin–spin interactions that lead to 
dephasing of spins, and thereby signal decay. Moreover, extrinsic sources of 
dephasing, such as magnetic field inhomogenities, cause slight variations in local 
field strengths, thus affecting the precession frequencies of spins. The signal decay 
that reflects both the spin–spin interactions and field inhomogeneities is called T2* 
decay, utilized in functional MRI.�
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Figure 2: T2-relaxation describes the decay of transverse magnetization Mxy  as a 
function of time (left panel), whereas T1-relaxation describes the recovery of 
longitudinal magnetization Mz  as a function of time (right panel). �

Simultaneously with T2 relaxation, the net magnetization starts to realign 
along the direction of B0 with a relaxation time T1, as is shown in Figure 2 (right 
panel). Longitudinal relaxation T1, often referred to as spin–lattice relaxation, is 
due to energy exchange between spins and lattice.  

During relaxation, spins in the imaging volume transmit a decreasing signal 
(FID, free induction decay) that can be recorded with a receiver coil. Typically this 
immediate signal decay is not recorded but instead, another RF pulse is applied at 
time τ after the excitation to eliminate the spin dephasing. In the spin echo (SE) 
pulse sequence, this RF pulse refocuses the spins so that they will be maximally in 
phase at time 2τ after the initial excitation, producing an echo that can be recorded.  

Relaxation times vary in different tissues, resulting in different contrasts in 
the MR images. Moreover, image contrast can be adjusted by selection of the pulse 
sequence and imaging parameters, mainly with repetition time (TR) and echo time 
(TE).  

 
2.1.2.2 Slice selection, spatial encoding and image formation �
The spatial origin of the MR signal is encoded by means of gradient magnetic 
fields in the x-, y-, and z-directions. The gradients cause a linear change in the 
magnetic field along these three orthogonal directions. The scanned anatomical 
area, such as the whole brain, consists of a stack of 2D slices with a certain 
thickness (3D pulse sequences are beyond this thesis). Figure 3 demonstrates slice 
selection: each slice is selected by applying a magnetic field gradient perpendicular 
to the slice direction, and by applying an RF field at the Larmor frequency band 
(centre frequency ± offset frequency) of spins within the slice.  
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Figure 3: Magnetic field gradient together with RF magnetic field at Larmor 
frequency band excites spins only within a certain slice. The frequency band 
defines the location of the slice, whereas the gradient slope determines slice 
thickness. The slice location along the gradient (i.e. different slice) can be changed 
by shifting the frequency band of the RF pulse. 
 

 
After spin excitation during slice selection, gradients along the two within-

slice directions (x, y) are applied. Phase encoding gradient �� � �changes the 

magnetic field along y-direction resulting in spatial variations in the precession 
frequency � �� � � �� � ���� � � . When the gradient is turned off, the 

precession frequency becomes equal along the y-axis, but the phase difference 
����, accumulated during phase encoding time ���  

 
���� � �������                                                  (7) 

 
remains and the signal is thus phase encoded. Similarly, frequency encoding 
gradient �� �  during the readout causes spatial variations in the precession 
frequency 
 

� �� � � �� � ���� � �,                                     (8) 
 
which is thus linearly related to the spatial location of excited spins. During a 
typical pulse sequence, a slice is first selected, then phase information within the 
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slice is encoded (with one gradient amplitude at a time), and the imaging data is 
sampled with constant frequency encoding gradient on. Different amplitudes of 
phase encoding gradients are applied to obtain a unique phase for each spatial 
location.  

The signal ���� � ���, recorded by a receiver coil and organized in the k-

space, can be expressed as 
 

� �� � �� � � ��� ����� �������� ����,                         (9) 

 
where  
 

�� � � � �� � �� and 
         (10) 

����� � � �� � �� 

 
are integrals over the gradient lobes �� and ��, and ������ is the gray scale MR 

image, obtained as an inverse 2D Fourier transform of the k-space signal ���� � ���. 

The horizontal (��) axis represents frequency information and the vertical axis (��) 
the phase information, as is illustrated in Figure 4.  
 �

 

Figure 4: Schematic illustration of k-space data for a single slice. Each line is 
recorded with a different phase-encoding gradient amplitude. The outer lines are 
recorded with steep gradient amplitudes resulting in large dephasing and thereby 
low signal amplitudes, whereas central lines are recorded with gradual gradient 
amplitudes resulting in high signal, respectively.  
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�
The amplitude of frequency and phase encoding gradients determine the 

size of field of view (FOV) in the corresponding directions, whereas image matrix 
size is defined by the number of phase encoding steps, and by the number of data 
points recorded during the readout period (frequency encoding direction). The 
center of k-space, recorded with gradual phase encoding gradient amplitudes, 
determines the contrast of an image, whereas outer lines, recorded with steep 
gradient amplitudes, determine spatial information and resolution.  
 
2.1.2.3 Signal-to-noise ratio (SNR) in MRI �

Noise in MRI can arise from the subject, receiver coil, and electronics of 
the MRI system. At higher field strengths, such as 3 T applied in this thesis, the 
noise from subject dominates. Noise originates from random motion of electrons 
within conducting electrical parts and human tissues, and as it is random in nature 
(both spatially and temporally), it appears at all frequencies. Noise in the 
reconstructed images is distributed uniformly throughout the image and it makes 
the image look grainy.  

The MRI signal is practically a voltage recorded using receiver coil after the 
RF excitation when net magnetization precesses in the transverse plane. When an 
image has been reconstructed, signal appears as the voxel intensity value 
(brightness). We cannot control the random noise, but we can affect the signal 
level. Larger signals can be obtained at stronger main magnetic field, in anatomical 
areas with higher proton density, and with larger voxel volumes, as well as with 
proper selection of the imaging parameters (TR, TE, flip angle, number of 
excitations/averages, receiver bandwidth) and of the receiver coil. In practice, the 
easiest way to affect the signal is to adjust the voxel size. As large voxels contain 
more spins to contribute to the signal, any parameter that increases the voxel size 
(FOV, matrix size, slice thickness) improves the SNR. Moreover, the receiver coil 
has an important role. Most of the present coils are multichannel phased array 
(surface) coils that add together signals from several coil elements and are 
positioned close to the area to be imaged, thereby optimally recording the signal. 

Mathematically, ���� � �� �, where � is the signal intensity in the tissue 
and � is the standard deviation of the background (voxels out of tissue); the values 
for signal and background noise are obtained using a region-of-interest (ROI) 
analysis. However, in practice, SNR measurement protocol carried out for quality 
assurance may be slightly different, depending on coils, sequences, and scanners.  
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2.2 Diffusion �
2.2.1 Thermal diffusion �
Constant random microscopic motion of water molecules due to thermal energy is 
referred to as thermal diffusion, Brownian motion, or random thermal motion. 
According to Einstein’s equation, the �-dimensional approximation for 
displacement � of water molecules at constant temperature is   
 

� � �����,                                                        (11) 

 
where � = 1, 2, 3  is the dimension of measurement,  �  is the diffusion coefficient, 
and �� is the diffusion time. The diffusion coefficient is sensitive to temperature so 
that a 1 °C change in temperature corresponds to a 2.4% change in diffusion 
coefficient (Le Bihan et al. 1989). For free water molecules (in water) at 37°C, the 
diffusion coefficient is approximately 3 x 10–3 mm2/s. In a free medium, the 
displacement of water molecules follows the 3-dimensional Gaussian distribution.  
 

2.2.2 Diffusion in tissues �
The diffusion coefficient � is valid only for homogeneous fluid with free diffusion. 
For example, in neural tissue, several factors affect the diffusion coefficient, such 
as the cell membrane and its permeability, transport mechanisms, and 
macromolecules. In such case, diffusion can be hindered or restricted, and result in 
decreased diffusion coefficient when diffusion time is increased (Hansen 1971, 
Cooper et al. 1974). Therefore, the term apparent diffusion coefficient (ADC) (Le 
Bihan et al. 1986, Le Bihan 1991) or diffusivity (Basser and Pierpaoli 1996) has 
been used to describe the strength of diffusion in biological tissues.  

Water in the human body is thus constantly moving due to thermal energy 
(diffusion), but the movement is restricted and often has a preferred direction as the 
water molecules collide with other molecules and cell structures and move through 
membranes (Le Bihan 2003). Diffusion is homogeneous in all directions (isotropic) 
in free space and in tissues with random microstructure. However, in tissues with 
ordered microstructure such as tight fiber bundles in the white matter of the brain, 
the water diffuses more along the nerve fibers than transverse to them, and thus the 
diffusion is anisotropic rather than isotropic (Moseley et al. 1990). 
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Several reasons for anisotropy have been suggested, such as myelin, axonal 
membranes, neurofibrils, fast axonal transport, and susceptibility (see Beaulieu 
(2002, 2009) for reviews). However, a general view emerging from both animal 
and human studies suggests that anisotropic diffusion in neural fibers is due to 
tightly-packed axons and axonal membranes that cause a preferential direction for 
diffusion along the fibers and hinder diffusion perpendicular to fibers (Beaulieu 
2009). Myelin is not the primary reason for anisotropy, although it may modulate 
the degree of anisotropy.  

 

2.3 Diffusion MRI �
2.3.1 Diffusion-weighted MRI �
Diffusion-weighted imaging (DWI) provides an image contrast that depends on the 
diffusion of water molecules within tissues. Clinically, DWI is especially 
advantageous in the early detection of acute cerebral ischemia (Weber et al. 2000) 
and in studying the dynamics and phase (acute, subacute, or  chronic) of ischemic 
stroke  (Moseley et al. 1995, Weber et al. 2000). Moreover, DWI has also been 
applied to predict clinical outcome and improvement after the ischemic stroke 
(Warach et al. 1996, Van Everdingen et al. 1998), and to predict the risk of 
intracranial cerebral hemorrhage, a dangerous complication of thrombolytic 
therapy (Tong et al. 2000, Selim et al. 2002). 

However, due to limitations in the clinical DWI pulse sequences (the 
diffusion can be measured only along the three gradient axes, one axis at the time), 
only the strength of diffusion can be defined by means of ADC or MD. To obtain 
information about the direction of diffusion, at least six diffusion gradient 
directions have to be measured with a specific DTI sequence.  

 

2.3.2 Diffusion tensor imaging (DTI) 
 
In diffusion tensor imaging, the measurement is sensitized to diffusion in one 
predetermined direction at a time by using magnetic gradients (Stejskal and Tanner 
1965). The measurement is repeated several times, each in different directions (≥ 
6), and once without diffusion gradients to produce a reference image (b0-image) 
required for quantification of diffusion. The directions are selected by applying 
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diffusion sensitizing gradients along the x-, y-, or z-axis. In contrast to DWI, any 
combination of these axes can be selected to measure oblique planes.  

The most commonly used sequence in DTI recordings is an SE single-shot 
(SS) EPI sequence. The sequence is made diffusion-sensitive by applying a 
dephasing followed by a rephasing diffusion-sensitizing gradient positioned 
symmetrically with respect to a 180° RF refocusing pulse (Stejskal and Tanner 
1965), see Figure 5.  

Both these gradients cause an equal phase difference between the spins. The 
refocusing pulse applied in between the two gradients reverses the phase difference 
caused by the first gradient. If water molecules/spins remain stationary between the 
gradients, the total phase difference cancels out (complete refocusing). However, 
with diffusing spins, the total phase difference is non-zero, resulting in a signal loss 
(incomplete refocusing) that can be measured with MRI equipment. 

DTI typically applies an EPI technique that allows the imaging data for one 
slice to be collected with a single RF excitation, an oscillating readout gradient, and 
a blipped phase-encoding gradient (Figure 5).  

 
 

 
 
 Figure 5: A schematic diagram of SE-SS-EPI (spin-echo single-shot echo planar 
imaging) sequence applied in the DTI studies. The diffusion-sensitizing gradients, 
shown as gray, are controlled by means of G = gradient amplitude, Δ= time 
between successive diffusion-sensitizing gradients, δ = duration of the diffusion-
sensitizing gradient to obtain the desired diffusion-weighting in the images. Figure 
from P1. 

 �  
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Figure 6: An example of diffusion-weighted brain images. Measurement of each 
slice is sensitive to diffusion in one direction only. Strong diffusion (direction 1) in 
the splenium of the corpus callosum (white arrow) and in the ventricles  (all 
directions) appears as dark in the images. Figure from Hiltunen et al. (2007) with 
the courtesy of Duodecim. 
 �
2.3.2.1 Diffusion-weighting �
Each diffusion measurement in a certain direction produces an image that 
characterizes diffusion in that direction. Diffusion in the direction of the diffusion-
sensitizing gradient attenuates the measured MRI signal and is dark in the 
diffusion-weighted images.  Figure 6 shows an example of a diffusion-weighted 
axial brain slice with different diffusion-sensitizing gradient orientations. The 
diffusion is strong in the right–left direction in the splenium of the corpus callosum 
(Figure 6, left panel) which thus appears as dark (area marked with an arrow in the 
image). 

The signal intensity �� along direction i (i = 1, …, N; N ≥ 6)�in diffusion-
weighted images is (Le Bihan 1991)  
 

�� � �� ��� ��� ����� � �� ��� ��� ������ ,                        (12) 
 
where �� and �� are the signal intensities with and without diffusion weighting, 
���� is the apparent diffusion coefficient along direction i (i.e. projection of � 
along ��), �� (s/mm2) defines diffusion weighting in the images, � (mm2/s) is the 
diffusion tensor, and �� �is a unit vector containing the normalized diffusion-
sensitising gradient orientations. In SE-based sequences, the diffusion weighting is  
 

� � ����� ��
�

�
�                                               (13) 
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where � is the gyromagnetic ratio (2.765 x 108 rad/s), � is the amplitude of the 
diffusion-sensitizing gradient, � is the duration of the diffusion gradient, and � is 
the time interval between the diffusion gradients, also referred to as the diffusion 
time (see also Figure 5). Diffusion weighting can thus be increased by 
strengthening the gradient �, increasing the duration of the diffusion gradient �, 
and increasing the diffusion time �.  
 
2.3.2.2 Diffusion-sensitizing gradients �
Several procedures have been used to optimize the parameters of the diffusion 
sensitizing gradients: the gradient orientation and the number of gradients applied 
(Papadakis et al. 1999, Papadakis et al. 2000, Jones 2004). A uniformly 3D-spaced 
diffusion-sensitizing gradient scheme is currently most commonly used and 
generally accepted as optimal (Jones et al. 1999a, Papadakis et al. 1999, Skare et al. 
2000). The distributions of directions have been optimized, for example, by means 
of electrostatic repulsion schemes (Jones et al. 1999a) and polyhedaral schemes 
(Conturo et al. 1996, Hasan et al. 2001). 

Typically, 20 directions are recommended for robust estimation of FA, and 
30 directions for MD and tractography (Jones 2004). In some special applications, 
such as anatomical connections between brain areas with more complex structure 
and fiber crossings, even hundreds of directions have to be recorded. However, 
these applications are beyond tensor model, and more sophisticated methods, such 
as high-angular resolution diffusion imaging (HARDI), are applied instead. 

 

2.3.3 Image analysis and parameter images �
Raw diffusion-weighted images are rarely informative as such. Therefore, 
diffusion-weighted images are usually post-processed on a voxel-by-voxel basis to 
obtain parameter images that characterize the properties of the diffusion in the 
tissue, for example the strength of diffusion, the anisotropy degree, and the 
direction of diffusion.   
 
2.3.3.1 Tensor model �
The direction of diffusion can be defined by first calculating a diffusion tensor �, a 
mathematical model for 3D diffusion, by using the measured DW-images (Basser 
et al. 1994b)  
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D = 
��� ��� ���
��� ��� ���
��� ��� ���

 ,                                                   (14) 

 
where D is a 3 x 3 symmetric, positive definite matrix. Several numerical methods 
exist for forcing the tensor to be positive definite, such as Cholensky, Log-
Cholensky, and Log-Euler methods, as well as for solving the diffusion tensor 
robustly, e.g. maximum likelihood, linear and nonlinear least squares, and Bayesian 
methods (Koay 2011). 

The diagonalization of the tensor by means of eigenvalue decomposition 
results in eigenvectors (v1, v2, v3) and eigenvalues (λ1, λ2, λ3), which represent the 
direction and strength of diffusion along three orthogonal directions, respectively. 
Figure 7 presents the eigenvectors as ellipsoids: the symmetric sphere means 
isotropic diffusion (left panels), whereas anisotropic diffusion results in an ellipsoid 
whose axis, the principal eigenvector, is typically assumed to represent the 
direction of strongest diffusion (right panels) (Basser et al. 1994b, Basser et al. 
1994a). Moreover, Figure 8 shows an FA image (left panel) with isotropic 
diffusion in ventricles as spheres, and anisotropy in white matter of the splenium of 
the corpus callosum as flattened ellipsoids (right panel). 

 

 
 

Figure 7: Isotropic (top left panel) and anisotropic (top right panel) diffusion. The 
blue color indicates tissue structures that restrict and hinder diffusion. Isotropic 
diffusion can be characterized as symmetric sphere (bottom left panel) whereas 
anisotropic diffusion is an ellipsoid (bottom right panel) whose main axis 
represents the direction of diffusion. Figure from Hiltunen et al. (2007) with the 
courtesy of Duodecim. 
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��
Figure 8: Visualization of the direction of diffusion with ellipsoids. Diffusion in the 
brain area surrounded by the blue box (left panel) is visualized with ellipsoids (right 
panel). The brain area includes the fibers of the splenium of the corpus callosum, 
parts of ventricles, and gray matter. Higher anisotropy is shown as red, flattened 
ellipsoids. Black arrow shows the direction of strongest diffusion and thereby the 
direction of a fiber bundle. Figure from Hiltunen et al. (2007) with the courtesy of 
Duodecim. 

 
The tensor model assumes that a single population of fibers within a voxel 

runs in the same orientation. Even though this is not exactly true due to the 
complexity of neuroanatomical structures, the tensor model serves as a good 
approximation in many applications utilizing diffusion of water molecules. 
Moreover, several more advanced methods have been introduced for modelling 
more complex neuroanatomical structures, such as HARDI (Frank 2001), diffusion 
spectrum imaging (DSI) (Wedeen et al. 1999, Wedeen et al. 2001), Q-ball imaging 
(Tuch et al. 2003, Tuch 2004), spherical convolution (Anderson and Ding 2002, 
Tournier et al. 2004), and persistent angular structure MRI (PASMRI) (Jansons and 
Alexander 2003).  

All these approaches aim to resolve the multiple fiber orientations within 
the voxel by means of orientation distributions of fiber populations on the basis of 
multiple recordings. DSI utilizes typically 300–500 recordings, acquired in many 
directions with multiple b-values up to 17000 s/mm2, whereas Q-ball imaging, 
spherical convolution, and PASMRI apply multiple gradient directions (less than 
DSI) with the same, constant b-value, thus providing a more simplified approach 
than DSI. Morever, q-space imaging (QSI), composite hindered and restricted 
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model for diffusion (CHARMED), and diffusion kurtosis imaging (DKI) in turn 
assume that the measured diffusion signals (with several b-values) consist of 
compartments, i.e. free, hindered, and restricted diffusion components (Assaf and 
Cohen 1998, Assaf and Basser 2005, Jensen et al. 2005). The obtained signals are 
modelled with multiple exponential decays instead of a single exponential decay 
and/or provide quantification of the degree to which diffusion is non-Gaussian. 

 

2.3.3.2 Processing DTI data �
The diffusion tensor as such is not, neither in numerical (matrix, Eq. 14) nor 
graphical (ellipsoid, Figure 8) form, optimal for the visualization of diffusion. 
Therefore, tensor information is typically further processed and visualized in the 
form of scalar parametric maps, such as mean diffusivity (MD), fractional 
anisotropy (FA), and direction-encoded color (DEC) map. �
Mean diffusivity (MD) �
Figure 9 (left panels) shows an example of MD maps to quantify the strength of 
diffusion (Basser and Pierpaoli 1996)  �

�� � �
�� � ��� � ��

�
 

                                         (15)�
by means of eigenvalues λ1, λ2, and λ3. MD in cerebrospinal fluid (CSF) is about 3 
x 10–3 mm2/s, whereas in healthy brain tissue, MD is about 0.7 x 10–3 mm2/s, 
without a clear contrast between gray and white matter (Le Bihan et al. 2001).  �
Fractional anisotropy (FA) �
Fractional anisotropy (FA) in Figure 9 (middle panels) shows the degree of 
anisotropy in tissue by means of eigenvalues λ1, λ2, and λ3  (Basser and Pierpaoli 
1996, Pierpaoli and Basser 1996)  �

�� � �
�

�

��������
� � ��������

������������
�

��
� � ��

� � ��
�

��������������������������������������������������(16)��



 22 

and is thus independent of local fiber orientation. Diffusion is strongly directional 
in the bright areas of Figure 9 (middle panels), but approximately symmetric in all 
directions in the dark areas. FA is highest in major white matter tracts with a 
maximum theoretical value of 1, low (0.1–0.2) in gray matter, and approximately 0 
in CSF. �
Direction-encoded color (DEC) map �
One informative way to visualize the direction of diffusion is a direction-encoded 
color (DEC) map in which the principal eigenvector is presumed to represent the 
fiber orientation in a voxel. Each component (x, y, z) of the eigenvector is assigned 
to a different color, e.g. red, blue, green, and the resulting image is weighted by FA 
to exclude the tissues with low-anisotropy diffusion (Pajevic and Pierpaoli 1999). 
The resulting image is thus an FA-weighted vector component image.  

In Figure 9 (right panels), the DEC maps show the directions of anisotropic 
structures in different colors. Some clear anatomical structures are labelled in the 
DEC-images according to an atlas of white matter structures of the human brain 
(Mori et al. 2005). 

Anatomical information in DEC maps can be used in quantitative DTI 
analysis so that the coordinates of regions of interest (ROIs), identified from the 
DEC map, are superimposed on the coregistered MD and FA maps. Values within 
the ROIs are then extracted and subjected to further analysis. 
 
Group-level analysis of parameter images �
Earlier, DTI parameter maps were mainly analyzed on an individual-subject basis 
using visual inspection of images and ROI analysis. In ROI analysis, values of 
parameter maps, typically MD and FA maps, are extracted from selected brain (or 
other anatomical) areas. However, the ROI analysis is observer-dependent and 
time-consuming, requiring frequent input from the analyzer. More automatic and 
objective methods would therefore be desirable. On that basis, voxel-based analysis 
(VBA), developed originally for similar analyses of anatomical T1-weighted MR 
images, has at present increasingly been applied to address group-level differences 
in DTI parameter images. A clear advantage of VBA, compared with ROI- or 
tractography-based analyses, is that the whole brain can be studied rather 
automatically without the need for a priori knowledge about tracts to be tested. 
Also, VBA is assumed to be able to detect small, disease-related changes that are 
still invisible to a radiologist.  
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�

��
Figure 9: Mean diffusivity (MD, left panels) describing the strength of diffusion, 
anisotropy maps (FA, middle panels), and direction-encoded color (DEC, right 
panels) maps in two different axial brain slices. MD in gray and white matter is 
approximately equal thereby showing no contrast. In FA maps, strongly oriented 
diffusion in white matter is shown as bright, whereas isotropic diffusion in gray 
matter is dark. DEC maps show structures of different orientation with different 
colors: red – right-left, green – anterior-posterior, and blue – superior-inferior. As 
an example, a few anatomical structures have been labeled. Figure from Hiltunen 
et al. (2007) with the courtesy of Duodecim. 
 
 
Conventional voxel-based analysis (VBA) with SPM �
VBA, applied to DTI, was first adopted rather directly from its original application 
to anatomical MR image analysis. The VBA analysis chain for DTI consists of 
correction for motion and eddy currents, spatial normalization, smoothing, and 
statistical voxel-by-voxel analysis. The processing steps in VBA, described in more 
detail in the sequel, aim to enhance the images to obtain higher statistical power in 
the statistical analysis. Several computer programs exist for VBA, among which 
Statistical Parameter Mapping (SPM, Wellcome Department of Cognitive 
Neurology, London, UK), mainly used for VBA of anatomical MR images and 
functional MRI analysis, is one of the most commonly used. In P2, we studied the 
sensitivity of conventional DTI–VBA with SPM. 

Eddy currents originate from gradients that are used for diffusion 
sensitizing and for the spatial encoding of MRI signals. When gradients are 
switched on and off rapidly, undesired currents spread to all conducting structures 
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of the MRI scanner and produce residual magnetic fields that distort images. In 
DTI, the strength and appearance of distortions vary depending on the directions of 
diffusion-sensitizing gradients. In practice, the images shear, scale, and shift 
differently, and voxels in different diffusion-weighted images are not coregistered. 
To correct these distortions and small subject movements, linear affine 
transformations are usually used with non-diffusion-weighted b0-image as 
reference image during registration. Next, the images are subjected to spatial 
normalization to deform the individual brain images into a standard anatomical 
space for inter-individual comparisons. In spatial normalization, affine 
transformation alone, or affine transformation followed by non-linear warping has 
been used. The former transformation mainly fits the overall brain shape whereas 
the nonlinear warping also attempts to fit the inner structures. Typically, a non-
diffusion-weighted b0-image or anatomical T1-weighted image is used as the 
reference image that will be fitted into the template image (standard space), and the 
same parameters are then used for transforming DW or parameter (MD, FA) 
images into the same standard space.  

The template (or reference) image used in the fitting may be a general 
template provided by the software or a study-specific template based on the user’s 
own images. Earlier, DTI–VBA studies have commonly used the template provided 
by the Montreal Neurological Institute (MNI), implemented for example in SPM 
software (Borroni et al. 2007, Seok et al. 2007). One obvious disadvantage of the 
MNI templates is the lack of a T2-weighted EPI template. Instead, either a T2*-
weighted EPI template with the same distortions but different contrast, or a T2-
weighted template with the same contrast but different distortions has to be used; 
this may cause coregistration inaccuracies that affect the final statistical results. 
Therefore, study-specific templates (Guimond et al. 2000, Jones et al. 2002, Smith 
et al. 2006), or more recently introduced FA templates (Mori et al. 2008), would be 
preferable. The first one generally reduces the residual variance in coregistration, 
whereas the latter provides more suitable contrast for coregistration compared with 
the MNI template. Study-specific templates are mandatory in studies of children or 
of patients with degenerative diseases. 

After spatial normalization, the images are typically filtered with an 
isotropic smoothing filter to further compensate for inter-subject anatomical 
variation and misregistrations, to assure normally-distributed data for statistical 
testing, and to fulfill the mathematical requirement of spatially-continuous imaging 
data assumed in correction for multiple comparisons. 

Figure 10 shows an example of how MD (top panels) and FA (bottom 
panels) images change during preprocessing: original images (left panels) and 
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spatially normalized images (second panels from left) reveal anatomical 
information and a square-shaped artificial lesion, whereas normalized and 
smoothed images are more blurred (smoothing with 6-mm and 8-mm filter, (full-
width at half maximum, FWHM); two rightmost panels). 

Statistical tests are performed for each voxel separately. Both the MD and 
FA images are often tested using parametric tests, such as the t-test, although FA 
data are known to violate the assumption of Gaussianity and non-parametric 
approaches should be used instead (Jones et al. 2005).  

 

�
Figure 10: Examples of preprocessing of MD (top panels) and FA (bottom panels) 
images: original images (left panels), spatially normalized images (second panels 
from left), and normalized and smoothed images; 6-mm smoothing kernel (second 
panels from right) and 10-mm smoothing (right panels). An artificial lesion has 
been positioned on MD and FA images (dark square in FA and bright in MD); 
lesions from P2. 
�

Recent methodological improvements in VBA �
Several methodological improvements have been suggested for DTI–VBA. 
Realignment of diffusion gradient directions (i.e. b-matrix) using motion-correction 
parameters improves the accuracy of diffusion measures and fiber orientation 
(Leemans and Jones 2009). Improved registration methods aim at utilizing the 
whole tensor information during spatial normalization, thereby requiring tensor 
reorientation (Alexander et al. 2001). This approach enhances the spatial and 
orientational alignment of the data (Alexander et al. 2001, Park et al. 2004, Van 
Hecke et al. 2007). Moreover, other improved methods, such as atlas-based 
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approaches at the individual subject level (Guimond et al. 2000, Jones et al. 2002, 
Park et al. 2004, Smith et al. 2006) or population/group level (Goodlett et al. 2006, 
Van Hecke et al. 2008) may give more reliable statistical results (Sage et al. 2009). 
In the subject-based approach, a single subject is used as the reference for the atlas, 
whereas in group-based atlases, all subjects’ data contribute equally to the atlas. 
Subject-based atlases may thus contain biases due to the individual anatomy of the 
reference image if the differences are large compared with the other subjects 
(Wang et al. 2006, Van Hecke et al. 2008). 

Filtering with an isotropic smoothing filter affects the results of VBA, as 
has been demonstrated in several studies (Park et al. 2004, Jones et al. 2005, Van 
Hecke et al. 2010). Park and coworkers (2004) studied hemispheric asymmetries in 
healthy subjects by means of FA using 3-, 6-, and 9-mm smoothing filters and 
showed differences in statistical values and extents of brain regions. Later, Jones 
and coworkers (2005) derived four different conclusions from the same imaging 
data (schizophrenia patients vs. healthy subjects) depending on the size of 
smoothing kernels, ranging from 3 mm to 16 mm in steps of 1 mm.  

Lee and coworkers (2009) suggested a tissue-specific smoothing-
compensated method that is based on segmentation of imaging data into tissue 
masks of gray matter, white matter and CSF prior to spatial normalization. These 
masks are then utilized to compensate the effects of spatial smoothing. 

Moreover, recently, anisotropic Gaussian smoothing was found to increase 
VBA’s sensitivity and specificity in detecting simulated pathologies in FA images 
(Van Hecke et al. 2010). In contrast to isotropic smoothing, the kernel size in 
anisotropic smoothing varies in different directions so that the smoothing kernel is 
shaped and scaled according to local image properties. In practice, these properties 
are revealed by eigenvalues and eigenvectors such that the imaging data are only 
smoothed in homogeneous areas along the edges, instead of across the edges 
(Sijbers et al. 1999).  
 
Tract-based spatial statistics (TBSS) �
A more recent approach for VBA-type analysis in DTI is tract-based spatial 
statistics (TBSS) (Smith et al. 2006, Smith et al. 2007). In this approach, the 
subjects’ FA images are first transformed into a common anatomical space using 
nonlinear registration. The most typical subject’s image, selected on the basis of 
numerical calculations, is used as a reference for coregistration. Next, the tract 
skeleton is calculated by averaging all registered FA images and by thinning the 
mean FA; this skeleton represents the centers of all tracts common to the 
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population under study. Registered FA images from each subject are then projected 
onto the skeleton in a direction perpendicular to the local tract direction; this 
procedure improves the projection accuracy because the FA values change more in 
the perpendicular than the parallel direction. The final projected FA values are 
obtained from the centers of the original FA images, and are further fed into voxel-
wise statistics. As TBSS-processed data follow a Gaussian distribution, they can be 
analyzed by means of parametric statistical tests.  
 
2.3.3.3 Signal-to-noise ratio in DTI �� Noise in diffusion-weighted images affects the eigenvalues and thereby 
causes bias in eigenvalue-derived parameter images (Pierpaoli and Basser 1996). 
Due to noise, the eigenvalues are unequal even in perfectly isotropic medium, and 
this discrepancy increases at higher noise levels. High noise levels increase spatial 
variance and increase the apparent anisotropy both in isotropic gray and anisotropic 
white matter (Jones and Cercignani 2010). These effects are slight at moderate 
SNRs, but increase as SNR decreases, making isotropic tissue to appear anisotropic 
(Pierpaoli and Basser 1996). Therefore, sufficient SNR is required for reliable DTI 
measurements. Several SNR levels have been proposed, such as SNR > 20 in b0-
image (Pierpaoli and Basser 1996), as well as SNR > 3:1 (Jones and Basser 2004), 
10:1 (Descoteaux et al. 2009), and SNR ≥ 3/exp(–b x 10–3) in diffusion-weighted 
images; b is diffusion-weighting (Jones et al. 2013). 
 Noise may also cause negative bias in anisotropy and mean diffusivity due 
to Rician distribution of noise and thereby rectified noise floor related to the 
reconstruction of magnitude images (Jones and Cercignani 2010). Such bias can be 
obtained with insufficient SNR in b0-image when moderate b-values are applied, 
and even with high SNR in b0-image when high b-values are applied.  

The general principles to increase the SNR in MRI are correct also for DTI 
(see Section 2.1.2.4 “Signal-to-noise ratio (SNR) in MRI”). The main practical 
actions to improve SNR in DTI are optimization of the voxel size, as well as the 
usage of a good receiver coil and parallel imaging. The voxel size has to be 
compromised so that it is large enough to provide a reasonable signal level, and 
small enough to guarantee a reasonable spatial resolution and minimal partial 
volume effect. Even though parallel imaging speeds up the scanning at the expense 
of SNR, it should be applied in DTI. As a whole, the shortened minimum TE 
overcompensates the loss of SNR, and the decreased TE generally improves the 
image quality by reducing distortions.  
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2.3.4 Tractography �
The orientation and 3D course of fiber tracts can be visualized with tractography 
(Conturo et al. 1999, Jones et al. 1999b, Mori et al. 1999, Basser et al. 2000, 
Poupon et al. 2001, Parker et al. 2002, Tench et al. 2002, Parker et al. 2003). As an 
example, Figure 11 shows the tractography of the corpus callosum and 
corticospinal  tract. It is typically assumed that the principal eigenvector represents 
the direction of the fiber tract within the voxel. However, several deterministic (i.e. 
streamline) and probabilistic tractography methods exist, as described briefly 
below. 
 
 
 

��
Figure 11: An example of tractography showing mainly fibers of the corpus 
callosum and corticospinal tract in the upper part of the brain. All voxels with FA > 
0.7 were used as ROIs, and tracking was continued until FA fell below 0.2. Tracts 
are shown with registered T1-weighted anatomical images. Figure from Hiltunen et 
al. (2007) with the courtesy of Duodecim.   
 ��  
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2.3.4.1 Deterministic tractography �
In tract propagation, the fiber orientation in the seed voxel (or rather in an ROI 
consisting of several voxels) is estimated based on principal eigenvector or on the 
diffusion tensor. The tract is then propagated from voxel to voxel on the basis of 
the tensor/eigenvector (Conturo et al. 1999, Mori et al. 1999, Basser et al. 2000). 
The discrete vector information within the voxel is typically converted into 
continuous coordinates for more accurate tract propagation. Moreover, tracts can be 
propagated in small steps to provide more accurate tracking and a more realistic, 
smooth appearance of the tract. Several approaches have been proposed for step 
estimation such as Fibre Assigning by using Continuous Tracking (FACT) (Mori et 
al. 1999, Xue et al. 1999), Euler integration (Conturo et al. 1999), and Runge-Kutta 
(Basser et al. 2000) methods. Both FACT and Euler integration are piecewise linear 
methods with constant (Euler) or varying (FACT) stepsize, whereas Runge-Kutta is 
a nonlinear method utilizing higher-order integration and continuous derivatives 
which is especially advantageous for steeply-curved tracts.  

The fiber tract is followed in both directions from a seed point until the 
tracts are finally combined. The tracking is stopped when certain stopping criteria, 
for example a threshold FA or angle between adjacent eigenvectors is achieved. 
Voxels below a chosen FA value, for example < 0.2–0.3, are considered to indicate 
isotropic diffusion without coherent fiber orientation. A typical angle threshold for 
adjacent eigenvectors is 35–45°, since image resolution in DTI is not high enough 
for reliable tract propagation at larger tract curvatures that may introduce errors to 
tracking results: for example, tracking can escape to an adjacent tract (Mori 2007). 

Tractography results obtained with deterministic tractography often contain 
errors due to the partial volume effect, noise, or crossing fibers. These errors can be 
completely unknowable, thus weakening the confidence of the results, or they can 
be visible as incomplete tracts or single, clearly erroneous fibers escaping from the 
major tract. To correct for these errors, analysis parameters can be adjusted, a 
multi-ROI approach can be applied so that fibers including or excluding the ROIs 
are tracked (Mori et al. 2002b), or more advanced tractography methods can be 
used. Such advanced methods include, for example, tensor deflection (Lazar et al. 
2003), regularization methods (Parker et al. 2000), Gibbs-tracking (Kreher et al. 
2008), and probabilistic methods. Of these, probabilistic tractography methods 
provide quantification of the uncertainty of tracking results. 
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2.3.4.2 Probabilistic tractography �
The orientation information in recorded diffusion-weighted images always has 
uncertainty resulting from noise, limited image resolution, and crossings of fiber 
tracts. The impact of these orientation uncertainties can be considered by defining 
probability density functions (PDFs) for fiber orientation. PDFs describe the 
expected distribution of possible fiber orientations on the basis of DW images. 
PDFs can be defined locally for each voxel (Behrens et al. 2003, Jones 2003, 
Parker et al. 2003), or additional information can be taken into account from the 
local neighbourhood voxels or from the entire tract (Jbabdi et al. 2007). Several 
approaches for defining PDFs have been proposed, such as bootstrapping (Jones 
2003), Bayesian methods (Behrens et al. 2003, Behrens et al. 2007), and calibration 
using synthetic test functions (Parker and Alexander 2003, Parker and Alexander 
2005). Once PDFs have been defined, a variety of methods can be used to generate 
a tract from voxel to voxel through the PDFs (Koch et al. 2002, Parker et al. 2002, 
Parker et al. 2003, Tournier et al. 2003). Of these, the Monte Carlo streamline 
approach runs a deterministic streamline process many times (e.g. 10 000 (Toosy et 
al. 2004)) to test for possible pathways from a single seed point (Koch et al. 2002, 
Parker and Alexander 2003). Front propagation methods in turn attempt to find 
pathways from the seed region through the brain by means of PDFs and a region-
growing type of algorithm (Parker et al. 2002, Tournier et al. 2003). As a result of 
probabilistic tractography, each connection is assigned an index of connectivity 
(with a seed point); on the basis of these indices inferences about probabilities of 
connection may be made (Tournier et al. 2003, Parker 2004). 
 �  
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2.4 DTI applications �
This Section briefly describes DTI applications, typical findings, and the effect of 
subject age on MD and FA. Imaging of peripheral nerves is presented to the extent 
required for understanding the background and results of this thesis.  
 

2.4.1 Assessing white matter tracts �
The main applications of DTI so far have been both in basic research and in clinical 
studies of white matter in the human brain; for reviews, see recent books by 
Johansen-Berg and Behrens (2009) and Jones (2011). In basic research, important 
methodological developments have taken place, for example, in fiber tracking 
methods and in solving the problem of crossing fibers. Moreover, advances have 
been made in forming maps of brain connectivity on the basis of DTI data. 

DTI has been applied to various diseases affecting the brain’s white matter 
tracts, such as Alzheimer’s disease, multiple sclerosis, amyotrophic lateral 
sclerosis, ischemic stroke, epilepsy, tumors, brain injuries, and psychiatric 
diseases/schizophrenia. In most of these applications, the diseased brain areas and 
their connections have been searched or monitored by means of MD and FA to 
clinically evaluate their spatial location and extent, as well as the phase of the 
disease. Findings in normal-appearing brain areas and findings excluding certain 
brain areas may be helpful to a clinician for diagnostics and prognosis of disease.  

Tractography has been advantageous in noninvasive visualization of white 
matter tracts (Catani et al. 2002, Wakana et al. 2004), in segmentation of tracts of 
interest for further analysis of diffusivity and anisotropy (Jones et al. 2005), and in 
pre-operative planning for patients suffering from brain tumors or other lesions to 
show the course of the fiber tracts at or near the surgery area (Mori et al. 2002a, Yu 
et al. 2005).  

In addition to the brain, DTI has also been used for imaging the spinal cord 
(Clark and Werring 2002, Wheeler-Kingshott et al. 2002), kidneys (Ries et al. 
2001), heart (Reese et al. 1995, Dou et al. 2002), muscles (Sinha and Yao 2002), 
and peripheral nerves (see Section 2.4.4 below). The main parameters of interest in 
these DTI studies are MD and FA, as well as tractography for visualizing the 3D 
course of tracts or nerves.  
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2.4.2 Typical findings in DTI �
Increased MD and reduced FA are the most common findings related to brain 
pathologies (Horsfield and Jones 2002, Beaulieu 2009, Bodini and Ciccarelli 2009) 
and injured skeletal muscles (Zaraiskaya et al. 2006).  

Increased MD may be due to inflammation and edema, whereas decreased 
FA may reflect damaged tissue structure, demyelination, axonal loss or increased 
isotropic water volume (Beaulieu 2009, Bodini and Ciccarelli 2009). Decreased 
MD and increased FA may be caused by acute ischemic events in tissue, whereas 
decreased MD and FA may be due to gliosis (Pierpaoli et al. 2001, Sotak 2002).  

 

2.4.3 Effect of subject’s age �
Diffusivity decreases and anisotropy increases in brain white matter throughout 
childhood up to young adulthood (Mukherjee et al. 2001, Engelbrecht et al. 2002, 
Hermoye et al. 2006) because of decrease in water content in the cells, 
myelination, and a more organized architecture of nerve fibers (Neil et al. 1998, 
Hermoye et al. 2006). Changes in diffusivity and anisotropy are local and show 
regional variation (Huppi et al. 1998, Mukherjee et al. 2001, Righini et al. 2003, 
Partridge et al. 2004): rapid changes occur in tightly packed and early maturating 
commissural tracts (e.g. corpus callosum) and deep projection tracts (e.g. cerebral 
peduncle, internal capsule), whereas moderate changes occur in subcortical 
projection and association tracts (Partridge et al. 2004, Hermoye et al. 2006). 
Generally, the maturation-related changes in diffusivity and anisotropy are most 
rapid during the first 12 months of life, followed by slower changes during the 
second year, and reaching relatively stable, near-adult values after the age of 24 
months (Hermoye et al. 2006, Provenzale et al. 2007). However, infants born 
preterm have decreased FA in several white-matter regions at the age of 15 years, 
compared with the matched control group of full-term infants and another matched 
group of full-term but small infants; these low FA values may be due to reduced 
myelination (Vangberg et al. 2006). 

From adulthood to old age, the diffusivity increases and anisotropy 
decreases (Gideon et al. 1994, Virta et al. 1999, Salat et al. 2005a, Salat et al. 
2005b, Sullivan et al. 2006, Sullivan et al. 2010). These age-related changes in 
white matter are regionally variable: they are generally greater in frontal and 
parietal areas, and smaller in occipital and posterior areas suggesting that later-
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maturating areas might be more sensitive to age-related degeneration (Salat et al. 
2005b, Sullivan et al. 2010).  

 

2.4.4 Imaging of peripheral nerves �
Earlier, peripheral nerves have mainly been imaged using MRI neurography that 
utilizes T2-weighted fast spin-echo (FSE) sequences with fat saturation (Filler et al. 
1993) and T1-weighted sequences (Filler et al. 1996). In clinical MRI of peripheral 
nerves, T1-weighted spin-echo sequences with and without intravenous contrast 
agent, and T2-weighted short-tau inversion recovery (STIR) or fat-saturated T2-
weighted sequences have been used (Jarvik et al. 2000, Jarvik and Yuen 2001, 
Grant et al. 2004, Jarvik et al. 2004). T1-weighted images show the fine anatomical 
structure of nerves, and the visibility of mass lesions can be improved by using 
contrast agents. T2-weighted images are generally advantageous in showing 
pathologies, for example, injured peripheral nerves may show up as hyper-intense 
(Grant et al. 2002, Grant et al. 2004).  

Moseley and coworkers (1991) were the first to report diffusion anisotropy 
in the human tibial nerve, computed on the basis of diffusion coefficients. This 
work was done, however, before actual DTI was invented, and at that time, this 
research topic did not proceed further. Since peripheral nerves are of interest in our 
research group, we made an effort to image distal peripheral nerves by means of 
DTI (P3). Further, as a continuation for P3, we started to study whether DTI has 
clinical significance in the entrapments of distal peripheral nerves, concentrating on 
the median nerve in the upper limb, most often vulnerable to entrapments (P4).  

When our feasibility study P3 succeeded and was in reporting phase, the 
first tractography study on thick sciatic nerve was published (Skorpil et al. 2004). 
Between completion of this thesis’ publications P3 and P4, the first DTI feasibility 
studies on nerve injuries were published (Meek et al. 2006, Kabakci et al. 2009, 
Takagi et al. 2009), and later, the first studies on carpal tunnel syndrome were 
reported (Kabakci et al. 2007, Khalil et al. 2008, Stein et al. 2009). Simultaneously 
with P4, several other DTI studies of peripheral nerves were published.  

 �  
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Carpal tunnel syndrome �
Carpal tunnel syndrome (CTS) is a common neuropathy caused by entrapment of 
the median nerve. The symptoms include decreased sensation, tingling or 
numbness, and pain in the upper extremity (Jarvik and Yuen 2001, Jarvik et al. 
2004). Currently, the diagnosis is based mainly on clinical examination and 
electrophysiological findings. Other imaging methods, such as MRI neurography, 
DTI, and ultrasound, have also been suggested for CTS diagnostics. However, due 
to their poorer availability and specificity compared with the gold standard 
electrophysiological recordings, these methods are typically used additionally to 
exclude other pathologies that might contribute to CTS symptoms.  

Findings of MRI neurography in CTS include increased cross-sectional area 
of the median nerve within and proximal to the carpal tunnel, bright signal within 
the nerve in T2-weighted images, swelling of the nerve either distal or proximal to 
the point of maximal compression, flattening of the nerve within the tunnel, and 
thickening and high signal intensities in flexor tendon sheets and deep palmar bursa 
(Monagle et al. 1999, Cudlip et al. 2002, Jarvik et al. 2002). 

In ultrasound measurements, the most frequent finding in CTS is increased 
median-nerve cross-sectional area, although inconsistencies exist regarding the 
classification between normal and abnormal values, general sensitivity of the 
method, and anatomical location of the measurement (Seror 2008, Roll et al. 2011, 
Cartwright et al. 2012, Mhoon et al. 2012). �  
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3 Objectives ���
The objectives of this thesis were 
 

• to quantify the mechanical vibrations during DTI to find out whether 
vibration strengths vary in different parts of the MRI scanner and its 
surroundings (P1) 

 
• to evaluate the performance of conventional voxel-based analysis (VBA) 

using simulated brain lesions in mean diffusivity (MD) and fractional 
anisotropy (FA) images of healthy subjects (P2) 

 
• to study whether distal peripheral nerves can be imaged by means of DTI, 

and to optimize the scanning and analysis parameters (P3) 

 
• to monitor by means of DTI the pre- and post-operative integrity of the 

median nerve in patients suffering from carpal tunnel syndrome (P4) 



 36 
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4 Summary of Experiments ���
This Chapter summarizes publications P1–P4 by describing briefly their 
backgrounds, motivations, and methods, as well as the main results and brief 
conclusions.  
  All magnetic resonance images were acquired with a 3T MRI scanner 
(Signa VH/i, upgraded to Signa HDxt, GE Healthcare, Chalfont St Giles, UK) 
using a quadrature head coil (P1) and an 8-channel brain-array head coil (P2) for 
brain imaging, and a wrist coil (wrists in P3) and an extremity coil (knee and ankle 
in P3, wrists in P4) for imaging of extremities. We applied two SS-SE-EPI 
sequences for DTI with spectral spatial RF-pulse for fat suppression, and prior to 
the DTI series, high-order shimming was applied to reduce the inhomogeneities of 
the main magnetic field. The vendor-supplied sequence was tested in P1, and the 
other sequence was applied in P2–P4. 

Informed consent was obtained from all subjects in P2–P4, and the studies 
had the prior approval of the Helsinki and Uusimaa Hospital District Ethics 
Committee.   

 

4.1 DTI-related mechanical vibrations are unevenly 
distributed in the scanner (P1) �
Background and motivation: During DTI scanning, subjects can clearly sense 
mechanical vibrations, likely originating from diffusion-sensitizing gradients. It has 
been generally assumed that these vibrations are of the same strength and phase in 
all parts of the MRI scanner and can thus be ignored. We quantified mechanical 
vibrations during DTI from several parts of MRI scanner and its surroundings to 
see whether vibrations can affect the image quality. 

Methods: An optical laser-based interferometer (Polytec 3000, Polytec 
GmbH, Germany) was used for quantifying vibrations. The interferometer 
measured the motion of the surface at the measurement point. The motions were 
registered as a Doppler shift, proportional to the velocity of the moving surface. 
The measurement points were covered with reflection tape for the laser beam to 
allow separate recordings in x- (right–left), y- (up-down), and z-directions (along 
the magnet bore); a prism was used in x- and y-directions. The test outputs for 
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gradient power supplies and velocity signals from the interferometer were 
connected to an oscilloscope to record the signals within the same timescale. 

Imaging: We measured altogether 7 diffusion gradient directions to test 
each gradient axis (x, y, z) separately and to test the combinations of gradient axes 
(xy, xz, yz, xyz) with b = 50, 500, 1000, 2000, and 3000 s/mm2. Data were recorded 
from 22 axial slices of 3.5 mm thickness. Other imaging parameters were: TR = 15 
000 ms, TE = 78–108 ms, FOV = 24 cm, matrix 128 × 128. Measurements were 
performed with a spherical phantom positioned in the head coil, with or without a 
subject in the patient bed. Twice-refocused spin-echo method was applied during 
the scanning in some series to reduce the distortions caused by eddy currents. 

Data analysis: The vibrometer voltage signal outputs were analyzed using 
Matlab (version 6.5, MathWorks, Inc., MA); the signals were converted to velocity 
signals and were further integrated numerically to quantify the movement. We 
focused our quantification to the readout period during which the movements were 
at their largest, as shown in Figure 12. 
 

 
 
Figure 12: Vibration measurements (oscilloscope screen) with (left panel) and 
without (right panel) ECC when quantifying vertical movement of body coil with 
respect to a phantom in the head coil. Pink lines – slice selection gradient, green – 
frequency encoding/readout gradient, violet – phase encoding gradient, yellow – 
vibrometer output signal (velocity function, 1 vertical division corresponds to 1 V = 
5 mm/s). 

 
Results: In contrast to the general assumption that the DTI-related 

vibrations are of the same strength and phase in all parts of the scanner and can 
thus be ignored, our results in Figure 13 and 14 show that vibrations are distributed 
unevenly in the scanner structures and should thus be taken into consideration. 
Figure 13 and Figure 14 show clearly that vibration-related movements increased 
with b-value (i.e. diffusion-weighting), the number of diffusion-sensitizing 
gradients (x, y, z, xy, xz, yz, xyz), the usage of online eddy-current correction (ECC; 
on/off), and with weight on the patient table. The online ECC enhanced the 
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vibrations by at least a factor of 1.5 (b = 1000 s/mm2) and by 3 (b = 3000 s/mm2), 
as is evident from Figure 14 (right panel).  

Conclusion: The presence and effect of mechanical vibrations during DTI 
scanning should be acknowledged. Adjustment of the b-value and selection of a 
diffusion-sensitizing gradient scheme are the easiest way to decrease the vibration 
level.   

 
 

Figure 13: Vibration-related movement at different points in the MRI scanner and 
surroundings as a function of b-value. Measurement points on the concrete floor 
(left panel), cryostat (middle panel), and bridge (right panel) are shown with 
different combinations of diffusion-sensitizing gradients. 
 �

�
�

Figure 14: Vibration-related movements of the body coil with respect to the head 
coil (left panel) and with respect to a phantom in the head coil (right panel) as a 
function of b-value. Three measurement conditions demonstrate the movements 
without ECC and weight, with ECC and without weight, and with weight and ECC. �
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4.2 Preprocessing affects the results of DTI–VBA (P2) �
Background and motivation: Today, a growing trend in DTI analysis is VBA to 
address differences in diffusivity and anisotropy maps at group level. Although 
methodological improvements have already been proposed for DTI–VBA, no 
systematic studies exist regarding the performance of mainstream DTI–VBA 
applications analyzed with statistical parametric mapping (SPM) without such 
improvements. We thus employed controlled simulated lesions to determine how 
the VBA analysis chain affects the sizes and intensity values of the detected 
lesions. In addition, we specified detection thresholds for the extent and intensity 
change of lesions that can be found with certain statistical criteria.  

Methods: Twenty healthy subjects (aged 29 ± 5 years) participated in the 
study. To simulate artificial lesions, we increased MD and decreased FA—the most 
typical abnormalities in brain pathologies—in superior longitudinal fasciculus 
(SLF), corticospinal tract (CST), and body of corpus callosum (CC). The�sizes of 
these simulated lesions, computed with Matlab software (MathWorks, Inc., MA), 
varied from 10 to 400 voxels (10, 25, 50, 100, 200, 300, 400), each 10.5 mm3 in 
size, corresponding to volumes of 106–4219 mm3. Intensity changes varied from 
10% to 100% (10%, 30%, 50%, 75%, and 100%).  

Imaging: For DTI, we measured 52 axial slices of 3 mm thickness, with 8 
diffusion gradient orientations, b = 1000 s/mm2; the gradient scheme compensated 
for the cross-terms of imaging and diffusion-sensitizing gradients (Neeman et al. 
1991).  The other imaging parameters were: TR = 12 000 ms, TE = 78 ms, FOV = 
24 cm, matrix 128 × 128, number of replications = 8 times. In addition to DTI, a 
T1-weighted 3D spoiled gradient echo (SPGR) sequence in the axial direction was 
applied with 1-mm isotropic resolution.  

Data analysis: FSL software (version 4.0, www.fmrib.ox.ac.uk/fsl) was 
applied to correct for subject movement and eddy currents, to remove the non-brain 
structures with the Brain Extraction Tool (BET), and to compute the MD and FA 
maps with the DTIFit program.  

The VBA consisted of spatial normalization, smoothing, and statistical 
analysis. The parameters for spatial normalization were estimated by fitting the b0-
image of each subject into standard anatomical space (MNI, Montreal Neurological 
Institute) using the EPI template and affine and nonlinear transformations in SPM2 
(Wellcome Department of Cognitive Neurology, London, UK). These 
normalization parameters were applied to MD and FA images that were further 
filtered with 0 mm (no filtration), 4 mm, 6 mm, 8 mm, and 10 mm FWHM. 
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Differences in MD and FA maps, compared between lesion and non-lesion 
groups, were considered statistically significant if the voxels passed the height 
threshold of p < 0.001 or p < 0.05 (FWE-corrected; family-wise error rate 
correction). 

The performance of VBA was studied 
• without any preprocessing effects: lesions were positioned onto normalized 

FA and MD images, and lesion images (N = 20) were compared with the 
same images without lesion 

• with spatial normalization and smoothing: lesion images (MD, FA) of each 
subject, created in individual imaging space, were spatially normalized and 
smoothed. Lesion (N = 20) vs. non-lesion images, obtained with the same 
transformation into standard space, were compared statistically 

• with spatial normalization and smoothing in the presence of inter-subject 
variation: subjects were divided into two age- and gender-matched groups 
(N = 10 vs. N = 10), one with lesions and the other intact; the spatially 
normalized and smoothed images were statistically compared.�

Results: Without preprocessing, the lesions were found rather well, and only the 
smallest lesions with 10% intensity change were not found robustly. Generally, in 
the presence of preprocessing, lesions with intensity changes of 10–50% and extent 
less than 50 voxels were not detected. Figure 15 shows an example how smoothing 
changed the intensities of lesion MD and FA images from the original values.����

��
Figure 15: Smoothing changed the original voxel values within FA (two left 
columns) and MD (two right columns) lesions so that voxel values were 
remarkably lower than the original ones. The contour lines show the number of 
voxels and their intensity changes (marked as numbers within the lines) after 
filtering at 4 mm, 6 mm, 8 mm, and 10 mm (FWHM). Intensity changes of 30% and 
75% are shown for a lesion size of 200 voxels in CST (single subject). 
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Detection thresholds varied between the three brain areas so that CST 
lesions were the easiest to detect, SLF lesions slightly worse, and CC lesions were 
always hardest to detect. Moreover, detection thresholds were generally lower for 
MD lesions than FA lesions. Spatial smoothing markedly enlarged the estimated 
lesion sizes and decreased the estimated intensity changes.  

Figure 16 shows an example of the statistical result combined with an MD 
and FA image. Anatomical locations of detected lesions were accurate, whereas the 
estimated lesion sizes were mainly inaccurate so that small lesions were 
underestimated in size, and large lesions strongly overestimated, even up to ten 
times the original size. 

Conclusion: Since preprocessing of VBA significantly affected the outcome 
of analysis, the impact of analysis steps should be verified before interpreting the 
findings. Analysis should also be carried out without smoothing. ��

�
�

Figure 16: An example of DTI–VBA results of FA (left panels) and MD (right 
panels) images for SLF and CST (true lesion size originally 200 voxels, intensity 
change 30%, smoothing 8 mm). Two statistical thresholds were applied: yellow – p 
< 0.001, extent threshold 10 voxels; orange – p < 0.05, FWE correction. �  
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4.3 DTI is able to track distal peripheral nerves (P3) �
Background and motivation: No earlier DTI studies on distal peripheral nerves 
existed prior to this study. We studied whether distal peripheral nerves can be 
imaged with DTI and visualized with tractography. 

Methods: Six healthy subjects (aged 22–36 yrs) participated in the study. 
Median, ulnar and radial nerves in 4 healthy upper limbs, and tibial and peroneal 
nerves in 3 healthy lower limbs, were imaged with DTI.  

Imaging: For DTI, we measured 17–23 axial slices with 13 uniformly 
spaced gradient directions (b = 1000 s/mm2) and a non-diffusion-weighted b0 
image. Other imaging parameters: TR = 5000–7000 ms, TE = 82–86 ms, number of 
replications = 3–4 times, slice thickness = 3.5 mm, FOV = 10–12 cm (wrist), 12 cm 
(ankle), and 14–16 cm (knee), matrix 64 × 64 (wrist and knee), and 96 × 96 
(angle). Anatomical reference images were scanned with a gradient echo sequence.  

Data analysis: ADC, FA and DEC maps and tractography of nerves were 
computed with dTV1.5 software (Image Computing and Analysis Laboratory, 
Dept. of Radiology, The University of Tokyo Hospital, Japan). An ROI was 
positioned on T2-weighted EPI image; the position was verified from DEC maps 
and anatomical reference images. Tracking was stopped when FA fell below 0.3 
(lower limb) and below 0.4 (wrist).  

Results: Figure 17 shows tractography results for upper and lower limb 
nerves. Median, ulnar, and radial nerves in upper limb, and tibial and peroneal 
nerves in lower limb corresponded well to known anatomy. The nerves were 
mainly tracked nicely, but in one of the four subjects, the radial nerve was 
untracked, and in the ankle area, only the tibial nerve was tracked, whereas the 
distal peroneal nerve remained untracked in all subjects.  

Conclusion: DTI and tractography can be used to image and visualize distal 
peripheral nerves. 
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Figure 17: Tractography of distal peripheral nerves and corresponding anatomical 
images: (top panels) median, ulnar, and radial nerves in right wrist, viewed from 
proximal direction (FA > 0.4), and (bottom panels) tibial and peroneal nerves in 
knee, viewed from back (FA > 0.3).   
 �
4.4 Age and carpal tunnel syndrome cause similar DTI 
changes in median nerve (P4) �
Background and motivation: As a continuation of our earlier methodological paper 
(P3), we applied DTI in patients with carpal tunnel syndrome pre- and post-
operatively, and studied age effects in healthy age- and gender-matched subjects 
and in healthy young subjects.  
  Methods: Diffusivity (MD, eigenvalues) and FA images along the median 
nerve were compared in 12 patients (mean age 47 years) suffering from CTS, 12 
age- and gender-matched controls (mean age 46 years), and 12 young control 
subjects (mean age 23 years). In these 12 patients, 21 of the 24 wrists were 
examined (1 severe CTS, 9 moderate, 6 mild, 4 previously operated, and 1 healthy 
wrist). Nine of the 12 patients were also scanned post-operatively. All hands 
underwent a clinical examination. 

We compared FA and diffusivity between the groups, studied age effects in 
healthy matched and young groups, and correlated FA and MD with 
electrophysiological neurography measures. In addition to traditional analysis, 
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based on mean values of the whole nerve, we also extracted diffusivity and 
anisotropy values slice-wise and tested the feasibility of such slice-analysis for the 
diagnostics of individual patients. Post-operative follow-up was done 
approximately 1 year after the surgery. Test-retest reliability of MD and FA was 
studied preliminarily with five scans of one subject on different days.  

Imaging: We measured the b0-image and 33 axial slices with 25 uniformly 
spaced diffusion gradient directions (b = 1000 s/mm2, diffusion gradient duration δ 
= 26 ms, diffusion time Δ = 34 ms). The other imaging parameters were as follows: 
TR = 10 000 ms, TE = 86 ms, number of replications = 3, slice thickness = 3 mm, 
FOV = 12 cm, and matrix 64 × 64. In addition to DTI, several anatomical 
sequences were scanned: T1- and T2-weighted images with fast-spin echo and/or 
gradient echo sequences, with and without fat suppression, and in axial and sagittal 
directions (for imaging parameters, see P4). 

Data analysis: The maps for MD, parallel diffusivity along the nerve (first 
eigenvalue), perdendicular diffusivities (second and third eigenvalues) and 
tractography were calculated with DtiStudio (version 2.4.1; (Jiang et al. 2006)). A 
free-hand ROI for tractography was positioned on the median nerve in the DEC-
map. Fibers coursing through the ROI were tracked from slice to slice as long as 
FA > 0.25 and the angle between adjacent eigenvectors was below 40 degrees. 
Minimum, maximum and mean diffusivity and FA values were extracted from 
tractography results slice-wise, and they were also averaged on the basis of 
anatomical location (proximal nerve, carpal tunnel, distal nerve). Two-sample t-
tests (diffusivities), Mann-Whitney U tests (FA) and paired t-tests (pre- vs. post-
operative patients) were used in statistical testing. 

Results: Figure 18 (left panel) shows the MD values that were highest in 
pre-operative patients, 4% lower in matched controls, 10% lower in young controls, 
and 15% lower in post-operative patients. A similar pattern in diffusivity was 
present in carpal tunnel and distal nerves, and also in parallel diffusivity (first 
eigenvalue) and perpendicular diffusivity (second eigenvalue). No significant 
differences between the groups were observed in the proximal nerve. Perpendicular 
diffusivity, measured with the second and third eigenvalue, differed between pre- 
and post-operative patients (carpal tunnel and distal nerve).  

The highest FA values, shown in Figure 18 (right panel), were obtained in 
young controls; FA values were almost equal in pre-operative patients and matched 
controls, and lowest in post-operative patients. FA differed significantly between 
pre-operative patients and young controls (carpal tunnel, distal nerve), post-
operative patients vs. young controls, and matched controls vs. young controls. �
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��
Figure 18: Mean ± SD MD (left panel) and FA (right panel) along the median 
nerve in distal nerve, carpal tunnel, and proximal nerve for pre-operative patients 
(Pre), post-operative patients (Post), matched controls (CM) and young controls 
(CY). Statistically significant (at least p < 0.02) differences compared with pre-
operative patients are marked with an asterisk. �

Figure 19 demonstrates that MD in carpal tunnel correlated positively and 
FA negatively with age. Comparison with electroneurography results showed that 
the motor distal latency correlated positively with the maximum MD and 
negatively with the minimum FA (not shown, see Fig. 5 in P4).  

Figure 20 (three leftmost columns) shows the large inter-subject variation in 
MD (top panels) and FA (bottom panels) values along the nerve and the overlap of 
these values between the groups. The only consistent difference was the higher MD 
in the distal nerve of preoperative patients compared with control groups. Although 
within-subject variability along the nerve was large as well (Figure 20, rightmost 
column), our preliminary test-retest reliability results showed that the mean values 
remained stable across the scanning sessions. 
 

��
Figure 19: Positive correlations between age and MD (left panel), and negative 
correlations between age and FA (right panel). Red squares indicate patients, blue 
squares matched controls, and green squares young control subjects. 
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�
Conclusion: Diffusivity and anisotropy values of pre-operative patients and 

matched control subjects were similar and differed only in the distal nerve. When 
pre-operative patients were compared with young controls and post-operative 
patients, increased diffusivity and decreased anisotropy in carpal tunnel and distal 
median nerve were the clearest findings. Post-operative improvement was reflected 
in diffusivity but not in anisotropy.  

 �

�
Figure 20: Slice-wise analysis of MD (top panels) and FA (bottom panels) in pre-
operative patients, matched controls, young controls, and a single subject 
(scanned five times). Values are shown as a function of slice location from 
proximal to distal nerve indicated as lines below the graphs.  

��  
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5 General discussion ���
This thesis was produced at the time when DTI was introduced in our laboratory. 
The first two methodological publications, P1 and P2, focused on the technical 
challenges resulting from DTI-related mechanical vibrations and pre-processing-
effects on DTI–VBA. Publications P3 and P4 presented a novel application of DTI 
on distal peripheral nerves, and further utilized DTI to study patients with an 
entrapment of the median nerve in the upper limb.   
 

Vibration-related movements, their effect, and correction 
(P1) �
DTI recordings are very sensitive to any motion within the imaging area, and 
therefore are easily disturbed by e.g. subject movement, physiological motion, or 
mechanical vibration of the MRI system. P1 showed that vibrations differ in 
strength and phase within the MRI scanner and surroundings. The vibration levels 
clearly increased with higher b-values, usage of ECC, multiple diffusion-
sensitizing gradient directions, and with a subject on the patient table. The vibration 
originated from gradient coils, and was remarkably enhanced by online ECC, 
probably due to the low-frequency switching rate of diffusion-sensitizing gradients 
that happened to be near the scanner’s specific mechanical resonance frequency. 
The largest movements occurred during the readout period, thus affecting the 
accuracy of diffusion measurements as well as image quality. We focused on 
quantification of vibrations without inspecting the actual images, as no clear effects 
were visible in the brain images, and we did not have a proper fiber phantom for 
further studies. Later Gallichan and coworkers (2010) studied the effect of 
vibrations on image quality and found a strong, localized signal loss in the mesial 
parietal lobe when a diffusion gradient was applied in the right–left-direction; this 
signal loss appeared as high anisotropy in the FA map and as an erroneous tract in 
right–left direction in DEC map and tractography.  

The effect of vibrations: Vibrations can cause blurring, ghosting, and 
general inaccuracies in diffusion quantification; the effect depends on when the 
vibration-related movement occurs during the sequence. Movement during the 
readout period and data sampling can cause spatial translation of spins and thereby 



 50 

result in motional blurring and loss of spatial accuracy in the images (Wedeen et al. 
1989). Moreover, motion between phase-encoding steps can modulate the 
amplitude or the phase MRI signal and manifests as ghosting artefacts in the phase-
encoding direction (Axel et al. 1986). Movement between excitation and readout 
can cause similar signal losses as diffusion of water molecules, as was shown by 
Gallichan and coworkers (2010). However, if the movement is coherent in nature, 
such as blood flow in major vessels, it produces a shift of signal phase that is 
invisible in MR images when only magnitude information is used for image 
formation. In practice, however, as motion patterns are typically complex, they 
may bias the quantification of diffusion towards artificially increased diffusivity. 

How vibrations can be decreased:  Turning off ECC and adjusting the b-
value (b ≤ 1000 s/mm2) were the easiest ways to reduce the vibrations in our 
scanner. More challenging approaches include redesigning the timings and gradient 
waveforms of the DTI sequence to avoid the scanner's mechanical resonances, 
redesigning patient bed, or repositioning the gradient coils in the vacuum. The 
latter two modifications are, however, difficult to accomplish by the user. 

Gallichan and coworkers (2010) applied k-space parallel accelerated 
imaging instead of partial Fourier imaging (with 3/4 coverage) to avoid vibration-
related artifact in their scanner. 

 

 DTI–VBA (P2) �
In contrast to our preliminary assumption for lesion detection at signal intensity 
increase/decrease of 5–20%, far greater intensity increase/decreases were required, 
depending on lesion extent. The detection thresholds were high for MD and FA 
images with spatial normalization and smoothing in the presence of inter-individual 
variation. Generally, to detect a 30% MD increase robustly, lesions larger than 100 
voxels were required, and 200 voxels were required for FA decrease. Therefore, 
conventional DTI–VBA does not outperform the visual inspection of images 
performed by an expert radiologist.  

The main likely reasons for high detection thresholds were the 
coregistration inaccuracies during spatial normalization and isotropic smoothing. 
Therefore, currently available methodological improvements in the analysis chain, 
such as registration methods that better account for the special nature of diffusion 
tensor data (see Section “Recent methodological improvements of VBA”), should 
be applied in the analysis. A comparison study (Zhang et al. 2007) showed that the 
performance of such high dimensional spatial normalization method was superior 
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compared with ordinary SPM2 normalization, and in practice, white matter 
differences in patients vs. control subjects comparisons were detected better. 

According to matched filter theory, the optimal smoothing kernel would be 
the same size as the lesion, but only when background in homogeneous. In DTI, 
this requirement does not fulfill (Lee et al. 2007). During isotropic smoothing, 
smoothed voxel values are calculated as a weighted average of current and adjacent 
voxel values; the FWHM of the filter defines how distant voxels contribute to the 
current voxel value. Therefore, the properties of surrounding tissues affect the 
smoothed values. For example, gray matter has low, and white matter moderate-to-
high FA, whereas the MD is approximately equal in both tissues. The near-zero FA 
and high MD in CSF can also confuse the analysis in the brain areas nearby. 
Partially for this reason, the results in different brain areas were different. Another 
contributing factor to differences in results between the brain areas was likely 
partial volume effect during the scanning. If only isotropic filtering is applied, the 
results should also be inspected without filtering. 

 

DTI of distal peripheral nerves (P3 and P4) �
Our feasibility study (P3) from 2005 on healthy subjects showed that human distal 
nerves in upper and lower limbs can be imaged by means of DTI, quantified with 
ADC (or MD) and FA, and that the course of nerves in 3D can be visualized with 
tractography. More recently, several publications have utilized DTI on peripheral 
nerves, resulting in methodological developments and novel clinical applications 
(Khalil et al. 2008, Stein et al. 2009, Vargas et al. 2010, Chhabra et al. 2012, 
Karampinos et al. 2012, Tanitame et al. 2012, Van der Jagt et al. 2012). For 
example, Karampinos and coworkers (2012) were able to record good-quality DTI 
data from lumbar nerve roots using a novel reduced-FOV SS-SE-EPI acquisition 
that minimized partial volume effects, breathing artifacts, and geometric 
distortions.  

Group comparisons: As a continuation of P3, we applied pre- and post-
operative DTI recordings on the median nerve in patients with carpal tunnel 
syndrome, and on two control groups (age- and gender matched, and young control 
group) in P4. Our group comparisons revealed similar diffusivity levels in pre-
operative patients and matched controls, and in post-operative patients and young 
controls. The only clear CTS-related difference was increased diffusivity in the 
distal nerve in pre-operative patients. However, their MD and parallel diffusivity 
values returned to the normal level of young controls post-operatively. The 
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similarity between pre-operative patients and matched controls indicates that age 
and hand strain may cause similar diffusivity changes as those produced by CTS. 
Our results are well in line with similar reports showing equal diffusivities in 
patients and elder age-matched controls (Khalil et al. 2008, Guggenberger et al. 
2012b, Tasdelen et al. 2012). 

Higher perpendicular diffusion in our post-operative patients than in control 
groups probably reflected loose space, greater isotropic diffusion or incomplete 
recovery of the nerve; this view was supported by similar FA in pre- and post-
operative patients. Young controls had the highest FA due to tight and compact 
nerve structures. Lowest FA in post-operative patients combined with lowered MD 
may also be due to gliosis or surgery-related tissue changes. 

In contrast to our findings, some studies in CTS patients vs. age-matched 
controls demonstrated only lowered FA values or lowered FA and increased MD 
values in carpal tunnel area (Khalil et al. 2008, Tasdelen et al. 2012, Wang et al. 
2012). Moreover, in-line with our results, comparison between patients and young 
control subjects revealed lower FA values and higher ADC values in the carpal 
tunnel of patients (Stein et al. 2009, Guggenberger et al. 2012b).  

Effect of age and correlations: The effect of age was clearly visible in FA 
and MD values and was also revealed by correlation analysis that showed 
decreased FA and increased MD with advancing age, in line with other recent 
studies of median nerve (Guggenberger et al. 2012b, Tanitame et al. 2012).  

We found significant correlation only between motor distal latency and 
maximum MD/minimum FA. However, Wang and coworkers (2012) have reported 
correlations between DTI (ADC, FA) and motor conduction velocity, sensory 
conduction velocity, and motor distal latency. Our results showed mild correlations 
with conduction velocities as well but did not reach statistical significance, 
probably because our patient group contained mostly patients with mild and 
moderate CTS. 

Variation in MD and FA values: MD and FA values varied considerably 
along the nerve within subjects, between subjects, and between scanning sessions 
of the same subject. Similar, rather large variations in these values was recently 
demonstrated along healthy median and ulnar nerves (Zhou et al. 2012). Moreover, 
comparisons of our absolute MD and FA values with those presented in other 
studies showed large between-laboratory variations, similarly to findings reported 
in multicenter brain studies (Zhu et al. 2011), with the best consistency within 
young subjects.  

Since our MD and FA values between patient and control subjects partially 
overlapped, we were unable to define any thresholds for pathological findings. 
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However, Guggenberger and coworkers (2012b), who had larger between-groups 
differences with less overlap, suggested thresholds for pathological MD and FA 
values in CTS. Currently, it is unclear how generalizable these thresholds are, so 
probably laboratories need to record their own reference values. Moreover, large 
variations in these values may hamper the usage of healthy subjects. In this case, a 
patient’s intact hand (if it exists) could possibly serve as a control. Moreover, on 
the basis of our results, the MD and FA in the proximal part of the nerve were 
stable.  

 

Methodological issues  �
The discrepancies in MD and FA between different studies (see above) are 
probably due to several factors including different MRI scanners, coils, imaging 
parameters and analysis methods, as well as differences in subjects (age) and 
patients (CTS degree). Although optimal parameters (b = 1000 s/mm2 at 1.5 T; b = 
1200 s/mm2, FA > 0.2 and angle < 10 degrees at 3 T) for median nerve have 
recently been suggested (Andreisek et al. 2009, Guggenberger et al. 2012a), many 
methodological issues may affect the results.  

The cross-sectional area of a healthy median nerve is approximately 10 
mm2, whereas our in-plane voxel size is about 1.9 mm2 with 3 mm slice thickness 
(P4). Therefore, the current imaging resolution causes partial-volume effects that 
lower the MD and FA. Using maximum (instead of mean) values would probably 
better describe the actual FA values within the nerve, as we proposed in P3. 
Moreover, track-density imaging, a recently proposed interpolation method in brain 
imaging (Calamante et al. 2010), could also improve the tracking of peripheral 
nerves. The basic idea is to interpolate the image to a better resolution than the 
original recorded image by dividing each voxel into subvoxels. During tracking, 
long-range information of fiber tracts is utilized so that besides the fiber 
information in the present voxel, also the direction and density of fibers in the 
neighboring voxels is used. If neighbor voxels show consistent and dense tracts that 
seem to pass through a subvoxel with low FA due to partial volume effect, the tract 
can be interpolated through the subvoxel. 

Eddy current artifacts cause blurring of images and inaccuracies in diffusion 
recordings; their corrections result in improved registration of images. We did not 
utilize eddy current correction (ECC) in our median nerve recordings, as artifacts 
seemed not to influence greatly the position and course of the nerve, as verified by 
the coregistered T1-weighted image. We also checked the quality and approximate 
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registration of diffusion-weighted images recorded with different gradient 
directions by visual inspection. In future recordings, however, we most likely will 
apply ECC during preprocessing, after defining its impact on FA and MD values. 

Generally, to avoid most of the technical pitfalls, quality assurance 
measurements, specifically designed for DTI, should be carried out regularly, and 
proper pilot studies should be done before actual subjects are scanned. 

Our studies evidently suffered from small sample sizes (N = 10 in P2, N = 
12 + 12 + 12 in P4), similarly to most of the DTI studies (N = 2–13 patients) on 
peripheral nerves until recent a study of 38 patients (Tasdelen et al. 2012). In 
addition, we lacked patients with severe CTS, as patients are typically operated 
before severe condition arises to avoid permanent axon damage. If we had more 
patients with severe CTS, we might have had larger differences in the group 
comparisons of patients vs. age-matched controls. Generally, much larger patient 
populations are required to reveal the relationships between CTS degree, DTI 
findings, and underlying disease dynamics and etiology.   

Recent studies on peripheral nerves show good image quality despite 
challenges due to artifacts and CSF. Improved image quality is most likely due to 
multichannel coils, parallel imaging, and sequence development, which we were 
unfortunately unable to utilize. Parallel imaging effectively reduces the artifacts by 
allowing smaller echo times. Moreover, in the future, high-resolution DTI and 
higher field strengths (e.g. 7 T) may further improve image quality.  

 

DTI studies on peripheral nerves emerge �
Our methodological DTI study on distal peripheral nerves may have triggered a 
completely novel research area. Concurrently with our CTS study, several other 
DTI studies on peripheral nerves were published; some of them on CTS. DTI of 
peripheral nerves thus seems to have become popular. Novel applications on 
brachial plexus, sacral plexus and lumbar nerve roots are promising in clinical 
usage to demonstrate tract displacement, deformations, infiltrations, and disruption, 
thereby providing additional information to the current anatomic MR images and 
electrophysiological recordings (Vargas et al. 2010, Karampinos et al. 2012, Van 
der Jagt et al. 2012). Despite obvious challenges in the selection of reference 
values, and intra-subject, inter-subject and between-laboratory variations in MD 
and FA values, DTI is a promising tool for the diagnostics and follow-up of 
different pathologies, trauma, and entrapments, providing new insights to imaging 
of peripheral nerves.  



 55 

In clinical applications, it would be advantageous to combine DTI with 
electrophysiological recordings, MRI neurography, and ultrasound. Moreover, 
other quantitative MRI methods, such as T2 relaxometry and magnetic transfer 
ratio, could provide useful information for the systematic methodological 
evaluation of these methods, as was recently proposed (Gambarota et al. 2012, 
Karampinos et al. 2012). 
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