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Abstract 
Wireless multihop networks are networks without any fixed infrastructure. This thesis 

concentrates on a network consisting of a plethora of immobile nodes communicating with 
each other over a shared wireless channel. The intrinsic nature of the shared wireless channel 
makes it difficult to efficiently avoid interference between the transmissions, and the exact  
capacity of such a network is in many respects an open question. 

At first, we characterize the capacity problem in a massively dense wireless network where 
a separation of scales emerges, and the problem can be separated into two different 
subproblems. The two subproblems loosely correspond to routing at the global scale and 
forwarding at the local scale. We focus on the latter one and study the microscopic level 
multidirectional forwarding capacity problem that considers an infinitely large network's 
capability to relay information. Because of the complexity of analyzing a large random network 
and wireless interference, the main approach is to construct algorithms that produce numerical 
bounds or estimates for the forwarding capacity, and simulate them for large network 
realizations. 

The methods used for studying the forwarding capacity are presented in two parts. The first 
part considers the instantaneous forwarding capacity. The instantaneous forwarding capacity 
can be achieved temporarily but cannot be maintained for a longer time period. It is a natural 
upper bound for the actual forwarding capacity and can be analyzed with more complex ways 
of modeling interference, such as the SINR-based models, in addition to the simple Boolean 
interference model. 

The actual forwarding capacity with multihop traffic under the Boolean interference model 
is considered in the second part. In this part, the upper bound provided by the instantaneous 
capacity is tightened for a small number of neighbor nodes, where it is less accurate. We also 
provide a lower bound that shows a notable improvement compared with previous results for 
uncoordinated opportunistic forwarding. Finally, an estimate is found for the forwarding 
capacity. The dependence of the estimate on the directional distribution of the traffic is studied 
to determine the possible gain from interleaving traffic in different directions compared with 
time sharing between the directions. Eventually, it is illustrated how the results for the 
forwarding capacity can be used with the macroscopic level results to obtain the total capacity 
of a large wireless network. The thesis hence makes it possible to calculate a numerical 
estimate for the total capacity. 
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Tiivistelmä 
Langattomat monihyppyverkot ovat verkkoja, joilla ei ole kiinteää rakennetta. Tämä työ 

tarkastelee verkkoa, joka koostuu suuresta joukosta liikkumattomia päätelaitteita, jotka 
kommunikoivat keskenään käyttäen yhteistä langatonta kanavaa. Tämä jaettu media tekee 
lähetysten välisten häiriöiden tehokkaan välttämisen vaikeaksi, ja kyseisen verkon tarkka 
kapasiteetti on siksi monelta osin avoin kysymys. 

Aluksi työssä luonnehditaan kapasiteettiongelmaa massiivisen tiheässä langattomassa 
verkossa, jossa voidaan erottaa mikroskooppinen ja makroskooppinen mittakaava, ja verkon 
kapasiteetin maksimointi jakautuu kahdeksi erilliseksi ongelmaksi. Nämä kaksi aliongelmaa 
vastaavat löyhästi kokonaistason reititystä ja paikallisen tason välitystä. Tämä työ keskittyy 
jälkimmäiseen ja tutkii mikroskooppisen tason monisuuntaista välityskapasiteettiongelmaa, 
joka käsittelee äärettömän suuren verkon kykyä välittää informaatiota. Suurten satunnaisten 
verkkojen ja langattoman häiriön analysoinnin vaikeudesta johtuen ongelmaa on lähestytty 
konstruoimalla algoritmeja, jotka tuottavat numeerisia ylä- tai alarajoja tai estimaatteja väli-
tyskapasiteetille, ja simuloimalla niitä suurissa verkkorealisaatioissa. 

Välityskapasiteetin tutkimisessa käytetyt menetelmät on esitetty kahdessa osassa. Ensim-
mäinen osa käsittelee hetkellistä välityskapasiteettia. Hetkellinen välityskapasiteetti voidaan 
saavuttaa tilapäisesti, mutta sitä ei voida ylläpitää pidempiä ajanjaksoja. Se on luonnollinen 
yläraja todelliselle välityskapasiteetille, ja sitä voidaan analysoida myös monimutkaisemmilla 
häiriömalleilla, kuten signaalin ja häiriön suhteeseen perustuvilla malleilla, yksinkertaisen 
Boolen häiriömallin lisäksi. 

Toisessa osassa tarkastellaan todellista välityskapasiteettia monihyppyiselle liikenteelle, kun 
häiriömalliksi oletetaan Boolen malli. Tässä osassa hetkellisen kapasiteetin muodostamaa 
ylärajaa tiukennetaan naapurisolmujen lukumäärän ollessa pieni, jolloin se on löyhä. Lisäksi 
annetaan alaraja, joka on huomattava parannus verrattuna aikaisempiin tuloksiin koordinoi-
mattomalle opportunistiselle välitykselle. Seuraavaksi työssä esitetään arvio välityskapasitee-
tista. Arvion riippuvuutta liikenteen suuntajakaumasta tutkitaan, jotta voidaan määrittää 
erisuuntaisten liikennevirtojen yhdistämisestä saatava mahdollinen hyöty verrattuna aikaja-
koon suuntien välillä. Lopuksi havainnollistetaan, kuinka välityskapasiteetille tuotetut tulokset 
voidaan yhdistää makroskooppisen tason tulosten kanssa suuren langattoman verkon koko-
naiskapasiteetin määrittämiseksi. Työ siis paitsi valottaa kapasiteetin muodostumiseen 
vaikuttavia tekijöitä myös mahdollistaa numeerisen arvion laskemisen kokonaiskapasiteetille. 
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1. Introduction

1.1 Wireless multihop networks

Over the past few years, advances in wireless technology and decaying

prices have brought large-scale wireless multihop networks closer and

closer to reality. These are networks without any fixed infrastructure.

Packets are relayed from source to destination in several short hops, and

the network nodes have a dual role, both as terminals and as routers.

Wireless multihop networks are divided into a few main groups. Mo-

bile ad hoc networks (MANETs) are decentralized networks that can be

formed with a minimal amount of planning [RT99, MWH01, SSV12]. A

self-configuring mode of operation is required as the devices are free to

move. Wireless sensor networks (WSNs) consist of sensor nodes that mon-

itor their surroundings and cooperatively forward the collected measure-

ment data typically to a gateway node [ASSC02, TM03, YMG08]. Wireless

mesh networks (WMNs) can be added to the list as a special case. They

may be used to provide additional, more dynamic, connectivity to a fixed

infrastructure in certain areas, but they often have a more planned config-

uration than a typical ad hoc network [VWM13, BHG12, GRDK13]. The

predicted rapid increase of wireless devices that connect to the Internet is

related to the concept of the Internet of Things (IoT). It also encompasses

parts, like WSNs, that operate in a multihop fashion [AIM10].

Naturally, wireless multihop networks have attracted significant inter-

est in the research community. However, the intrinsic nature of the shared

wireless channel has made them a challenging topic. Efficient spatial

reuse of the channel requires multiple links between the nodes to be ac-

tivated simultaneously, but the interference caused by concurrent trans-

15



Introduction

missions makes the scheduling difficult and prone to collisions of trans-

missions, preventing successful packet reception.

The capacity of the network can be defined using throughput. The

throughput describes the sum of the average data rates that are deliv-

ered to all destinations in the network. It is usually measured in bits per

second or its multiples like packets per time slot. As the throughput ca-

pacity depends on many things such as the distances between the sources

and the destinations or delivery semantics (unicast, broadcast, etc.), it is

sometimes more appropriate to study the rate together with the progress

of information. Transport capacity measures the network performance in

bit-meters per second, where one bit-meter means that one bit has been

transported a distance of one meter toward its destination [GK00].

1.2 Contributions of the thesis

This thesis concentrates on networks consisting of a plethora of immobile,

randomly located nodes communicating with each other over a shared

wireless channel. The nearest real counterpart would, consequently, be

a large WSN with message exchange between different parts of the net-

work. The exact capacity of such a network is, in many respects, an open

question. In this thesis, we attempt to shed light on these questions and

on how the total capacity of the network is formed. Especially, we con-

centrate on the network’s capability to relay information. It is measured

using forwarding capacity that gives the density of packets multiplied by

their mean velocity in their given directions (similarly to the transport

capacity per unit area). In summary, the main contributions of this thesis

are the following:

• We characterize the capacity problem in a massively dense wireless net-

work and extend the knowledge on how it can be separated into two

different subproblems.

• We focus on one of the subproblems, namely the microscopic level multi-

directional forwarding capacity, that considers the network’s capability

to relay information.
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• We explore the maximum weight per unit area of an independent set

of links on an infinite plane, which can be used for obtaining an upper

bound for the forwarding capacity.

• We construct new algorithms that produce numerical results on the up-

per and lower bounds of the forwarding capacity.

• We find an estimate for the forwarding capacity under our network

model and study its dependence on the directional distribution of the

traffic.

• We discuss how the forwarding capacity affects the total capacity of a

large wireless network.

The following lists the implemented algorithms in more detail. The

maximum weight independent set problem, corresponding to the instan-

taneous forwarding capacity, is studied using two numerical algorithms:

the moving window algorithm and the simulated annealing algorithm.

An asymptotic analysis is performed to examine the capacity with net-

work densities beyond the capability of the numerical algorithms. The in-

stantaneous forwarding capacity provides an upper bound for the actual

forwarding capacity with multihop traffic. Further bounds are obtained

by constructing two new numerical algorithms. The clique approximation

algorithm and the path scheduling algorithm are both based on the LP

formulation of the problem. The forwarding capacity is estimated using a

greedy maximum weight scheduling (GMWS) algorithm. The algorithm is

improved to be able to better handle traffic with different directional dis-

tributions. The simulated annealing algorithm is applied with the Bool-

ean interference model as well as with SINR-based interference models.

In the rest of the cases, the Boolean interference model is assumed.

The locations of the nodes are modeled using a homogeneous Poisson

point process. In most cases, the same methodologies and algorithms can

be used with other stationary and isotropic point processes as well. As

a result, the algorithms produce estimates for the microscopic level for-

warding capacity. The forwarding capacity describes how much traffic

can be routed through a certain area of the network. Together with the

information about the routing and the resulting loads, the new results on
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the forwarding capacity allow us to calculate a numerical estimate for the

total capacity.

1.3 Outline of the thesis

The outline of the thesis is as follows. In Chapter 2, we introduce the

used models including the graph notations and models for node deploy-

ment and interference. We also review closely related models found in the

literature.

In Chapter 3, we characterize the capacity problem in a massively dense

wireless network and present the state-of-the-art results on the capac-

ity of wireless multihop networks that support our work. This chapter

presents the main research questions and the scope of the thesis. First,

we give a background on the topic and then move on to the literature

review. The main subjects of the review are the methods that in theory

are able to achieve the maximum capacity and the scaling of the capacity

as a function of the network size. We then continue with the very large

networks and consider a situation where the capacity problem can be sep-

arated on two spatial scales. The two subproblems loosely correspond to

routing at the global scale and forwarding at the local scale. At this point,

we introduce the concept of forwarding capacity that is the main topic of

the thesis.

Chapter 4 considers the instantaneous forwarding capacity, i.e., the ca-

pacity that can be achieved temporarily but cannot be maintained for a

longer time period. The instantaneous capacity is, of course, an upper

bound for the actual forwarding capacity. This simplification allows us to

characterize the asymptotic behavior of the capacity when the group of

other nodes that a node is able to communicate with (i.e., the neighbor-

hood) is very large. Another advantage is that we are able to compare

a variety of different interference models. We implement two numeri-

cal algorithms for studying the problem whose results are complemented

by an asymptotic analysis of the instantaneous forwarding capacity. The

moving window algorithm is able to find the instantaneous forwarding

capacity for a network with limited height but unlimited length. Simu-

lated annealing is a probabilistic method suitable for studying a variety

of interference models.

Chapter 5 represents the results on the forwarding capacity and the

techniques used to obtain them. We approach the problem from differ-
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ent angles. On one hand, we tighten the upper bounds obtained from

the instantaneous capacity with small neighborhoods, where they are not

accurate. On the other hand, we provide lower bounds that show a no-

table improvement compared with the uncoordinated opportunistic for-

warding. Finally, we aim for the sharpest possible estimate for the for-

warding capacity and discuss the significance of the results on the overall

capacity of the network. We construct two novel algorithms for assess-

ing the capacity, one for an upper bound and another for a lower bound.

The clique approximation algorithm studies the necessary constraints of

an LP formulation of the problem. The path scheduling algorithm finds

a densely packed set of paths that do not interfere with each other and,

thus, simplify the scheduling problem. A final estimate is obtained by im-

plementing a greedy version of the optimal maximum weight scheduling

algorithm. Solving the maximum weight independent set problem repeat-

edly in a large-scale network is very complex, and a greedy approach is

required for obtaining the results.

Chapter 6 summarizes the work. We conclude by briefly going through

the problem and the used methodology, which, because of the complexity

of the problem, is mainly based on simulations. We also recapitulate the

role of the developed algorithms in obtaining new information about the

quantity of interest: the forwarding capacity.
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2. Network modeling

A mathematical model of a real-life phenomenon is always an attempt to

capture the essential aspects of the system. Building a model involves

a trade-off between simplicity and accuracy, and the model should be se-

lected to match the objectives. When only little is known about the sub-

ject, the tractability of the model is a significant advantage. This chapter

introduces the models used in this thesis and delineates how they relate

to other models typical for analyzing wireless multihop networks.

The most obvious way to model a set of nodes where some pairs are

connected by links is a graph. We start by reviewing the graph definitions

used in this thesis. Next, we define the Poisson point process, which is

used to model the random locations of the nodes. Finally, we study the

interaction between the nodes over the shared wireless medium and the

interference that is intrinsic to wireless networks.

2.1 Graphs

The most common model used with communication networks is probably

a graph. A graph is an abstract representation of a set of vertices where

some pairs of the vertices are connected by edges. Next, we go through

the terminology used in this work.

When the nodes of the network correspond to the vertices, V, of a di-

rected graph G = (V,L), there exists an edge (u, v) ∈ L, u, v ∈ V if node u

is able to transmit data to node v, i.e., u and v form a link. If we denote a

link by l = (u, v), then t(l) and r(l) refer to the transmitting node, u, and

the receiving node, v, respectively. In the interference graph, I, the links

of the network correspond to vertices, and two vertices are adjacent if the

corresponding links interfere with each other. With the term network we
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refer to a pair (G, c) of a digraph and a mapping c : L → R
+. In general,

c(l) is called the capacity of edge l.

Let us consider a network (G, c) where we distinguish between two dis-

joint sets of special vertices: the start nodes S and the terminal nodes T ,

or the sources and the sinks. Now, we have a structure N = (G, c,S, T )

that is often called a flow network, and we can define a flow in the net-

work. A mapping f : L → R
+ is a flow if it satisfies the following condi-

tions:

f(l) ∈ [0, c(l)] ∀ l ∈ L, (2.1)∑
r(l)=v

f(l) =
∑
t(l)=v

f(l) ∀ v ∈ V \ (S ∪ T ). (2.2)

The first, the feasibility condition, guarantees that there is a non-negative

bounded flow through every edge, and the second, the flow conservation

condition, means that flows are preserved (except at the sources and the

sinks). The value of flow f is

w(f) =
∑
t(l)∈S

f(l)−
∑

r(l)∈S
f(l) =

∑
r(l)∈T

f(l)−
∑

t(l)∈T
f(l). (2.3)

A cut Q of N is a partition V = QS +QT where the plus sign denotes the

union of two disjoint sets (V = QS ∪ QT , QS ∩ QT = ∅) such that S ⊂ QS

and T ⊂ QT . The capacity of the cut is

c(Q) =
∑

t(l)∈QS , r(l)∈QT

c(l). (2.4)

Let Tv be the set of all nodes u such that (v, u) ∈ L. Similarly, let Rv

be the set of all nodes u such that (u, v) ∈ L. That is, node v can re-

ceive packets from Rv and transmit packets to Tv. Together they form the

neighborhood Uv = Rv ∪ Tv of node v. Throughout this thesis, we study

cases where Uv = Rv = Tv. The number of neighbors, |Uv|, of node v is

the same as the number of edges incident to v in the simple underlying

graph of the network. A simple underlying graph can be obtained from

G by replacing all directed edges with undirected edges and by removing

all loops and multiple edges. In graph theory, the number of edges inci-

dent to a node is called the node degree. We use the terms node degree

and number of neighbors interchangeably. The mean degree of a node is

denoted by ν.

In a wireless network, not all links can be active simultaneously be-

cause of interference, and thus, the effective link capacity c(l) of a link is

less than the nominal capacity C. The capacity is measured in packets
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per second, unless otherwise stated. To define c(l), we have to establish

a schedule α which tells us how the links are used. All the links that

are active simultaneously have to belong to the same independent set of

links to avoid collisions. A set of links is said to be independent if the

corresponding vertices form an independent set (no two are adjacent) in

I. This is equivalent with forming a clique in the complement of I. A

complement of a graph has the same vertices as the original graph, and

two vertices are adjacent if and only if they are not adjacent in the orig-

inal graph. The independent sets of links are cliques in the complement

interference graph. A clique, C, is a set of vertices such that for every pair

of vertices there is an edge connecting them.

We call the sets of links that are used for transmitting simultaneously

transmission modes (these are independent sets unless otherwise men-

tioned) and denote the set of transmission modes with M = {m1, . . . ,mM}.

A transmission mode is called maximal if the corresponding independent

set in the interference graph of the network is maximal (i.e., not a subset

of any other independent set). The schedule α = {t1, . . . , tM} assigns each

transmission mode mi with the proportion of time ti that it is used. Now

the effective capacity of link l is

c(l) = C
M∑
i=1

ti�{l∈mi}, (2.5)

that is, the nominal capacity multiplied by the time share the link is ac-

tive. Often the time shares are multiples of some t0. We assume (mainly

for simplicity of the presentation) that the time is slotted, and the length

of a time slot, t0, is the time required to send one packet.

The term random geometric graph refers to a graph where the nodes

have some random geographic locations, and two nodes are connected if

the distance between them does not exceed a threshold called transmis-

sion range. We denote the location of node v by the position vector v. The

following sections present models for locating the nodes and defining the

transmission range and the rules of interference.

2.2 Node deployment

The geographical locations of the network devices are an important factor

affecting the performance of a wireless multihop network. If the locations

of the nodes can be chosen arbitrarily, a reasonable selection is usually a

regular grid of some sort. The possibility to choose the node pattern gives
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a possibility to calculate exact values for different performance metrics,

but we deem it outside the scope of this thesis.

In a more typical scenario, we do not have full control on the locations

of the nodes and have to treat them as random. In random networks, the

nodes are randomly distributed, and the node locations are described by a

point process [IPSS08] in time and (two- or three-dimensional Euclidean)

space. We operate in two dimensions, i.e., on plane R
2, and assume that

the nodes do not move. A point process can be seen as a collection of

points, ξ = {xi} ⊂ R
2, or a counting measure, where ξ(A) gives the num-

ber of points in A ⊂ R
2. A set of very general assumptions leads to the

following popular point process for the node locations.

2.2.1 Poisson point process

Assume that we know that there are, on average, n nodes per unit area,

but we do not know anything about their locations. If we have no infor-

mation about the locations of the nodes, we should, a priori, assume that

they are completely random, that is, uniformly distributed. Now we have

points uniformly distributed over the whole plane with density n. A cou-

ple of interesting observations can be made:

1. The number of points in a bounded set A has a Poisson distribution

with mean n|A|.

2. The number of points in disjoint sets are independent.

These two properties characterize the Homogeneous Poisson point pro-

cess.

A (general) Poisson point process (PPP) can be defined as follows. Given

a locally finite non-null measure μ, a Poisson point process ξ of intensity

measure μ is given by its distribution

P(ξ(A1) = N1, . . . , ξ(Ak) = Nk) =
k∏

i=1

e−μ(Ai)
μ(Ai)

Ni

Ni!
,

for every integer k ≥ 1 and all disjoint bounded sets Ai, i = 1, . . . , k. If

μ(A) = n|A|, i.e., μ is a multiple of a Lebesgue measure, ξ is the above-

mentioned homogeneous PPP with intensity n. The definition is also

equal to the following two properties similar to the homogeneous equiva-

lents

24



Network modeling

1. ξ(A) ∼ Poisson(μ(A)) for bounded set A.

2. ξ(Ai) are independent for disjoint bounded sets Ai.

Generating realizations

Later in this work, we use the homogeneous PPP to model the random

locations of the nodes and the following ways to generate realizations.

From the previous it is quite clear that a finite realization of the process

can be generated by uniformly distributing a Poisson distributed num-

ber of points on an area. Another possibility in a rectangular network

is evident after noting that the x-coordinates of the nodes are events of

a one-dimensional Poisson process in a fixed interval. Consequently, the

distance between consecutive nodes has an exponential distribution with

mean 1/nH, where H is the height of the network. Hence, the differ-

ence in two successive x-coordinates is exponentially distributed, and the

y-coordinate of each point is uniformly distributed.

2.2.2 Other models

We limit our studies to the PPP but present here a couple of alternatives

that could also be used and appear often in conjunction with wireless net-

works. Hard-core models are a class of point processes whose points are

separated at least by some given distance d > 0. The points can be seen

as the centers of hard disks with radius d/2. For the PPP there exists

no d > 0 such that the hard-core property for d is satisfied. Hard-core

processes generate relatively regular point patterns with smaller spatial

variability compared with the PPP.

The Matérn hard-core process of type I [Mat86] can be constructed from

an underlying PPP by retaining all points whose distance to their nearest

neighbor is greater than a given d. This means that if two points of the

PPP are close to each other, they are both removed.

Assume that the points of a PPP are marked with uniform random num-

bers distributed over [0,1]. A Matérn hard-core process of type II [Mat86]

can be constructed from the PPP by retaining the points with the small-

est mark within the hard-core distance d. In more detail, a marked point

process can be represented as a collection of pairs ξ̃ = {(xi,mi)}i, where

ξ = {xi} is the set of points and {mi} the set of marks. Using an indepen-

dently marked PPP ξ̃ = {(xi, Ui)}i with marks {Ui} uniformly distributed
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on [0, 1], we have

ξMHC = {xi ∈ ξ |Ui < Uj ∀xj ∈ Bxi(d) \ {xi}},

where Bxi(d) is a disk of radius d centered at xi. A point is removed

if there exists another point in the underlying marked PPP within the

hard-core distance with a smaller mark.

Cluster point processes have higher spatial variability compared with

the PPP as the points interact by attracting other points. A Matérn cluster

process [Mat86] can be constructed in the following fashion. The cluster

heads form a PPP with a given intensity n0, and the actual points are

within a given distance d > 0 from these, as inside these discs PPPs with

intensity n1 are generated.

Furthermore, it is always possible to combine hard-core and clustered

models appropriately or define more general point processes. It is possi-

ble, for example, to define soft-core models where points repel each other,

but there is no hard limit for minimal distance. For more information on

point processes, see, e.g., [IPSS08].

2.3 Interference models

A wireless sensor network may consist of hundreds of terminals spread

over a large area, all using the same channel. Hence, spatial reuse is a

key feature of wireless multihop networks that determines how the scarce

resource, the channel, can be utilized. The significance of the interference

model selection cannot be overstated.

More formally, to apply graph theory, we need a definition for when two

nodes form a link and when and how two links interfere. In the following,

we assume that the nodes are homogeneous, and they have only one radio.

This assumption means that a node can participate in only one transmis-

sion at a time (either as a receiver or as a transmitter), and that all the

links are symmetrical ((u, v) ∈ L ⇔ (v, u) ∈ L).

2.3.1 Boolean interference model

Under the (unidirectional) Boolean interference model, there exists a link

l = (u, v) ∈ L, u, v ∈ V if the Euclidean distance between the nodes, |u−v|,
is less than the common transmission range ρ. A node is able to receive

a transmission if it is inside the transmission radius of only one active
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transmitter. A transmission on link l is, thus, successful if

|rl − tl| ≤ ρ ∧ |rl − tl′ | > ρ ∀ l′ ∈ m \ {l}, (2.6)

where tl is the location of the transmitting node of link l ∈ L, rl is the

location of the receiving node, and m is the set of transmitting links.

2.3.2 SINR threshold model

We assume that all the nodes transmit with constant power P0 and the

attenuation factor between the transmitter of link l and the receiver of

link l′ follows the simple power law

g(l, l′) =

(
|tl − rl′ |

ρ0

)−α

, (2.7)

where ρ0 is a freely choosable reference distance, and α is a given attenu-

ation coefficient.

Under the SINR threshold model, there exists a link l = (u, v) ∈ L, u, v ∈
V if the signal-to-interference-and-noise ratio (SINR) is greater than or

equal to a given threshold, θ. The SINR at rl for link l in transmission

mode m is

SINR(rl,m) =
P0 · g(l, l)∑

l′∈m\{l}
P0 · g(l′, l) + σ2

, (2.8)

where σ2 is the thermal noise power. The spectral efficiency of links with

SINR(rl,m) ≥ θ (2.9)

is assumed constant irrespective of the SINR,

Rl(m) = R(θ) = log2(1 + θ), (2.10)

i.e., the spectral efficiency at the threshold according to Shannon’s for-

mula. The spectral efficiency of other links is assumed to be zero. The

interference model is also referred to as the physical model [GK00].

As the attenuation coefficient α and the threshold θ (and possibly also

the thermal noise power, σ2) are given constants, we can define a length

unit

ρ(P0) = ρ0
α
√
P0/(θσ2), (2.11)

that is, the maximum distance at which a reception is possible if there are

no competing transmissions (zero interference).

Under the SINR threshold model, the interaction between the links can

no longer be described using an interference graph. As the interference
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is additive, a pairwise comparison between two links is not enough to

exclusively determine if the links can be activated at the same time. The

term independent set of links can still be used for a set of links that can

be successfully activated simultaneously.

The difference between the SINR threshold model and the Boolean in-

terference model in an example scenario with three active transmitters

is illustrated in Figure 2.1. The areas where a reception is possible from

each of the transmitters are drawn in the figure. Under the simple Bool-

ean interference model, a node is able to receive a transmission if it is

inside the (fixed) transmission radius of only one active node. The main

difference between the SINR interference model and the Boolean interfer-

ence model is that, although the border of the reception area approaches

the one of the Boolean interference model when α grows, the SINR inter-

ference model is more realistic in always allowing a reception near the

transmitter.

2.3.3 Shannon model

In this model, we still assume that all the nodes transmit with constant

power P0, and that the attenuation factor follows power law (2.7). Now,

any set of links that do not share an endpoint can be activated simultane-

ously. The SINR is calculated using (2.8), but the spectral efficiency of link

l in transmission mode m, is calculated according to Shannon’s formula

Rl(m) = log2(1 + SINR(rl,m)). (2.12)

As the attenuation coefficient, α, and (possibly) the thermal noise power,

σ2, are given constants, we can define a length unit

ρ(P0) = ρ0
α
√
P0/σ2, (2.13)

that is, the distance at which the received signal power equals the noise

power.

In contrast to the previous two interference models, under the Shannon

model, the capacity of a link is not constant. A node can transmit to any

other node in the network, but the spectral efficiency of the link depends

on the SINR. Similarly as with the SINR threshold model, the additive

interference prevents the use of an interference graph as an analyzing

tool. The fact that the interference model cannot be properly modeled

using a graph makes it difficult to examine.
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α = 3 α = 4 α = 5

Figure 2.1. The areas where a reception is possible for three transmitters (dots) under
the Boolean interference model (dashed lines) and the SINR threshold model
with threshold 1 (outermost solid lines). The inner solid lines are contours
for SINR values 7 and 31.

2.3.4 Other interference models

We begin our review of other models with an interference model as simple

as possible. Under the primary interference model, a transmission over a

link is successful if none of the links sharing a node with the transmitting

link is active during the transmission. In wireless systems this basically

means that there are multiple channels available (e.g., FDMA or CDMA),

but each node still has only one transceiver. The interference model is

also known as the node exclusive interference model.

Secondary interference models take into account the interference com-

ing from other transmissions, as is necessary when the communicating

nodes share a single channel. The Boolean interference model and the

SINR based interference models represent the two extremes of secondary

interference models. The Boolean interference model is one of the sim-

plest models while additive interference models attempt to capture the

complex interaction between the nodes.

The next step from the Boolean interference model towards more com-

plex models is to separate the interference range from the transmission

range. In practice, the interference range is typically larger than the

transmission range. Under this interference model a transmission is suc-

cessful if

|rl − tl| ≤ ρ ∧ |rl − tl′ | > (1 + Δ)ρ ∀ l′ ∈ m \ {l},

where m is the set of transmitting links and Δ > 0.

A step further is to make the interference range dependent on the length

of the transmitting link. The shorter the link, the closer the interferers
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are allowed to be, and we have:

|rl − tl| ≤ ρ ∧ |rl − tl′ | > (1 + Δ)|rl − tl| ∀ l′ ∈ m \ {l}.

This interference model is referred to as the protocol model [GK00]. The

protocol model can be written as

P0

(
|rl − tl|

ρ0

)−α

≥ P0

(
ρ

ρ0

)−α

∧

P0(|rl − tl|/ρ0)−α

P0(|rl − tl′ |/ρ0)−α
> (1 + Δ)α ∀ l′ ∈ m \ {l}.

Using (2.7) this can be simplified to be

P0 · g(l, l) ≥ θr ∧ P0 · g(l, l)
P0 · g(l′, l)

> θc ∀ l′ ∈ m \ {l},

where θr = P0(ρ/ρ0)
−α and θc = (1 + Δ)α. Hence, if all the nodes use the

same transmission power and the path loss function is g (2.7), the proto-

col model requires that the received signal is above a certain threshold,

and the signal-to-interference ratio is above another threshold for each

interferer individually.

The final steps towards the SINR threshold model are thus:

• Additive interference from all the interfering transmitters that requires

that the signal-to-interference ratio is above the threshold for the sum

interference.

• Thermal noise power that sets the level for the required received sig-

nal in the absence of interference and combines the two constraints (re-

quired received signal power and signal-to-interference ratio) into one

expression (2.9).

Between the SINR threshold model with a fixed spectral efficiency and

the Shannon model a with continuous spectral efficiency lie the graded

SINR interference models (see, e.g., [SMR+09]), where different SINRs

yield different spectral efficiencies according to multiple theresholds. Fur-

ther information on different interference models can be found in [Car10]

and [IRK09], or from an experimental point of view in [MJD08].

2.3.5 Additional aspects

Power control

In this thesis, we touch the topic of power control under the Boolean in-

terference model. We assume that the nodes can simply use an adjustable

30



Network modeling

transmission radius just large enough to reach the receiving node and

thus minimize the interference.

Bidirectional interference

We also simply model the effect of RTS/CTS handshaking in 802.11 net-

works, during which the transmitter and receiver both need to be able to

hear each other, using a bidirectional interference model. Under the bidi-

rectional Boolean interference model, a successful transmission requires

that both the sender and the receiver are outside the range of competing

transmissions:

|rl − tl| ≤ ρ ∧ |rl − tl′ | > ρ ∧ |tl − tl′ | > ρ ∀ l′ ∈ m \ {l}. (2.14)
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3. Network capacity

In this chapter, we get to the main topic of the thesis, that is, the forward-

ing capacity of a large wireless multihop network. The capacity of a wire-

less network is fundamentally affected by interference, which determines

whether two nodes are able to form a link in the first place and, further,

if two such links can be activated simultaneously. When the tricky behav-

ior of the shared wireless channel is combined with irregular placement

of the nodes, it is certain that the question at hand is not an easy one,

especially so if we are dealing with multihop traffic. With that in mind,

we move from classical, and finite, flow networks towards large-scale net-

works.

Our goal is to introduce the concept of forwarding capacity, the main

topic of this thesis. As the size of the network grows towards infinity, the

effect of local bottlenecks, caused by the individual locations of the ran-

domly placed nodes, begins to average out. This simplifies the problem.

The network can be seen as a medium with a certain capability to carry

information either in a single direction or in multiple directions simulta-

neously. The forwarding capacity describes this characteristic. After hav-

ing defined the forwarding capacity, the scope of the thesis is explained in

detail.

Along the way we cover the methodology that is later used to simulate

relay traffic on an infinite plane to determine the sought-after forwarding

capacity. We also see how our quantity of interest, the forwarding capac-

ity, is connected to the overall capacity of a large wireless network and

review the state-of-the-art research on the related areas. But first, we

briefly cover the topic of connectivity, as without connectivity there is no

capacity.
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3.1 Connectivity

We begin with the most fundamental question of wireless networking,

namely, the one of connectivity. Connectivity creates the basis for positive

capacity in the first place.

From an information theoretic point of view, a wireless network is al-

ways fully connected, and the achievable rate depends on the SINR (2.8).

This is the case only as long as we use the Shannon model (see Sec-

tion 2.3.3) for interference. As soon as we set a minimum value for the

SINR (and there is some thermal noise), we have a transmission range,

ρ, that sets a limit for the transmission distance. If the node locations

follow a homogeneous PPP with density n, the probability that a node

is isolated is e−πnρ2 . To keep the network asymptotically connected, the

expected node degree should grow faster than the logarithm of the num-

ber of nodes [GK98]. For results on asymptotic connectivity, see also

[Bol85, WY04, XK04, Far05].

Nodes can communicate through some multihop route if and only if they

belong to the same connected component. The best one can usually hope

for is that a node can communicate with an infinite number of nodes. The

infinite wireless multihop network is said to be connected if this is the

case, that is, if the network percolates [Gil61].

3.1.1 Percolation

The long range connectivity of the network is related to the existence of an

infinite connected cluster — the so-called giant component. Let G = (V,L)
be an (undirected) graph and K(v) be the set of vertices that are accessible

from v ∈ V. We denote the probability that an arbitrary node belongs to

a cluster of infinite size, |K(v0)| = ∞, by η(p), where p is a parameter

vector, and call it the percolation probability. The percolation threshold

is the critical surface for the parameters of the problem, p, such that the

percolation probability first becomes strictly positive. For example, if we

have just a single parameter, p, this becomes pc = sup{p | η(p) = 0}. If

η(p) > 0, it now follows from Kolmogorov’s zero-one law that there almost

surely is some infinite cluster.

The following theorem ([DTH02], proofs in [MR96]) states that there

exists a finite, positive value nc for the node density in a network model

where the nodes are located according to a 2-dimensional Poisson process

34



Network capacity

with intensity n and have a fixed transmission radius of ρ, under which

the percolation probability is zero and above which it is strictly positive:

Consider a Poisson Boolean model B(n, ρ) in R
2. There exists a critical

density nc > 0 such that when n < nc, all clusters are bounded a.s., and

when n > nc, there exists a unique unbounded cluster a.s.

Instead of n, the transmission range ρ can also be varied since the mod-

els B(γn, ρ) and B(n, ρ√γ), where γ is a constant, are associated with iden-

tical graphs.

The exact value of the critical density is not known. Some analytical

bounds have been found, see, e.g., [Gil61, PPT89, MR96], in addition to

numerical bounds [BBW05] and estimates [QTZ00, QZ07]. For example

[QZ07] gives the estimate φc = 0.6763475±0.0000006 for the critical volume

fraction1, φ = 1− e−πn(ρ/2)2 , from which we get ν = πnρ2 = −4 ln(1−φ) for

the mean node degree (mean number of neighbors) and νc ≈ 4.512 for the

percolation threshold.

The SINR threshold model leads to a similar connectivity graph as the

Boolean models, but because of the additive interference, the links may

only be available (and the above critical value holds) if a single node trans-

mits at a time. In case of multiple simultaneous transmissions, as is the

usual case, a signal to interference ratio graph should be used to analyze

percolation [DT04, DBT05, DFM+06, PMS09].

The critical value for the mean number of neighbors is noteworthy when

we later present the results for the forwarding capacity, since the true per-

formance below the percolation threshold would always be zero. The infi-

nite cluster guaranteeing the long range connectivity exists almost surely

only in the super-critical phase (n > nc).

In what follows, we assume that the flow networks are connected (at

least the sources and the sinks). When studying infinite networks, we op-

erate above the percolation threshold. In this case, some of the nodes are

not connected to any other node, and there are clusters that are separate

from the giant component. We call this kind of network the transport net-

work. It allows the transportation of information around the network, but

to access the network or to deliver the information, the nodes might need

a larger transmission radius. This can be realized in a separate access

phase that does not hinder the operation of the transport network. We

return to the question in Section 3.4.

1Here the transmission range, ρ, is replaced with a disk of radius ρ/2, and com-
munication corresponds to overlapping disks.
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3.2 Network capacity problem

To begin the consideration of determining the capacity of a network, we

introduce the most common form of a network capacity problem. It is

well known that for a given finite network, the capacity maximization can

be expressed as a linear programming (LP) problem. The maximum flow

problem is a classic problem in graph theory and combinatorial optimiza-

tion with a variety of applications. It considers finding a feasible flow

through a flow network N = (G, c,S, T ) that is maximal. The definitions

for graphs are presented in Section 2.1. A flow f is maximal if the value

of the flow, w(f), is greater than or equal to w(f ′) for all flows f ′ on N .

Next, we formulate the maximum flow problem, and then we discuss the

computational aspects of the problem.

3.2.1 Maximum flow problem

The problem is to maximize the value of the flow (2.3) subject to the flow

constraints (2.1-2.2) and a constraint that says that the sum of the time

shares allocated to the transmission modes cannot exceed one. Hence, the

decision variables are the flow, f , and the schedule, α = {t1, . . . , tM}, that

specifies the capacities. The complete LP formulation can be expressed as

max
f,α

w(f) s.t. (3.1)

0 ≤ f(l) ≤ C
M∑
i=1

ti�{l∈mi} ∀ l ∈ L,

∑
r(l)=v

f(l)−
∑
t(l)=v

f(l) = 0 ∀ v ∈ V \ (S ∪ T ),

M∑
i=1

ti ≤ 1, ti ≥ 0, i = 1, . . . ,M.

The previous constraints are the necessary and sufficient conditions for

the flow optimality.

A fundamental result in flow theory considers the duality of this prob-

lem. It turns out that the minimum capacity of a cut (2.4) has a significant

effect on the capacity of the network. A cut Q = (QS , QT ) ∈ Q is called a

minimum cut if c(Q) ≤ c(Q′) for all cuts Q′ of the network. The following

max-flow min-cut theorem [FF56] states that:

The maximum value of a flow on a flow network N equals the capacity of

a minimum cut in N .
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This basically means that the bottlenecks of the network dictate the

amount of traffic the network can carry.

With a fixed schedule the maximal flow in the wireless flow network

equals the capacity of the minimal cut, but to find the overall maximum

value for the flow, we also have to optimize the schedule. The value of the

optimal flow ensues from the problem

max
α

min
Q∈Q

c(Q,α), (3.2)

where c(Q,α) is the capacity of cut Q with schedule α, and Q is the set of

all cuts.

Our formulation for the problem allows multiple sources and multiple

sinks, and so far we have not distinguished among the flow units. That

is, we are not interested in which source generates flow to which sinks.

This formulation is called a single-commodity flow problem, and it is used

later when we study relay traffic whose exact origin and destination are

irrelevant. There is also a class of network flow problems called multi-

commodity flow problems in which it is necessary to distinguish among

the flows in the network. In this case, we have a set of pairs of vertices

where each pair defines a commodity and contains a source node and a

sink node. Each commodity must satisfy flow conservation (2.2) at each

vertex other than its own source and sink. Also, the sum of flows routed

through an edge should not exceed its capacity, cf. (2.1). One can also al-

low a commodity to have more than one source and/or sink. With the term

traffic class, we refer to a commodity that might have multiple sources and

sinks.

The inherent computational complexity of the LP problem can be eased

by relaxing some of the necessary constraints resulting in upper/lower

bounds. Methods utilizing this idea are considered next.

Column generation

If only a subset of the transmission modes is used, we get a lower bound.

In column generation [LD05], the idea is to include only transmission

modes that are part of the optimal solution. A new transmission mode is

added at each iteration of the algorithm, but only if it improves the re-

sult. The transmission mode added to the master problem is solved from

another optimization problem called the sub-problem. In [KWE08], col-

umn generation is utilized for determining the minimum-length schedule

that satisfies certain traffic demands.
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Clique formulation

From the constraint that says that the sum of the time shares of the trans-

mission modes is less than or equal to one, we get that the total capacity

of a set of links all interfering with each other never exceeds the nominal

capacity C. This follows simply from the fact that two interfering links

cannot be used at the same time. A constraint that limits the capacity of

a maximal clique of the interference graph to C is, thus, a necessary con-

dition for a feasible flow. By replacing the constraint considering the time

shares with constraints for the clique capacities, we get an upper bound

for the maximum value of a flow in the network. Since the flow through a

link is bounded by the capacity, these constraints can further be replaced

by similar ones considering the flow. When the flow satisfies these, the

capacities can always be chosen to match the flow. Thus, the only decision

variable is the flow, and we have

max
f

w(f) s.t. (3.3)

f(l) ≥ 0 ∀ l ∈ L,∑
r(l)=v

f(l)−
∑
t(l)=v

f(l) = 0 ∀ v ∈ V \ (S ∪ T ),

∑
l∈Ci

f(l) ≤ C ∀ cliques Ci of the I.

The problem of finding a maximum clique is NP-hard [GJ79]. It is com-

putationally equivalent to finding a maximum independent set through

the concept of complement graph. But while the number of transmission

modes increases rapidly, when the diameter of the network grows com-

pared to the interference range, the growth in the number of cliques is

much more modest. A clique of interfering links is always local; a trans-

mission mode, on the other hand, may contain links from all over the net-

work. This sometimes makes the clique formulation tempting although it

only gives an upper bound.

Limited set of cuts

Also the max-flow min-cut theorem can be used for obtaining upper bounds.

Suppose we now have a wireless network, and we study it under a fixed

schedule α. Let N be the resulting flow network. The maximum value of

a flow on N is equal to the minimum capacity of a cut in N . The number

of cuts in the network is 2|V|−|S|−|T |, which makes finding the minimal cut

an overwhelming task even for relatively small values of |V|. To find the
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overall maximum flow, we would still have to maximize the capacity of the

minimal cut with respect to the schedule.

We can get an upper bound for the performance by limiting our exam-

inations to a smaller set of cuts Q′, because the minimum of a subset is

always greater or equal to the original minimum. This gives us the con-

straint

max
α

min
Q∈Q

c(Q,α) ≤ max
α

min
Q∈Q′⊂Q

c(Q,α) (3.4)

for the maximum value of the flow. Another upper bound can be obtained

by switching the order of minimization and maximization. Since the ca-

pacity of a cut with the optimal schedule, c(Q,α∗), is always less or equal

to the maximum capacity of the cut, maxα c(Q,α), we have

max
α

min
Q∈Q

c(Q,α) ≤ min
Q∈Q

max
α

c(Q,α). (3.5)

The maximum capacity of a cut actually equals the size of the maximum

independent set of links crossing the cut multiplied by C, because the

maximum can be achieved by selecting as many independent links as pos-

sible and using them the whole time. This is always more than the capac-

ity of the cut with the optimal schedule (for the whole network) since the

links cannot be used continuously in order for the flow network to be con-

nected under that schedule (unless the link connects a source and a sink

directly). Thus, the value of the maximum flow is limited by the size of

the smallest maximum independent set of links crossing a cut in Q.

3.3 Achieving maximum capacity

Although the maximum capacity of a large wireless network is not known,

there are methods that are able to achieve this capacity. These methods to

be discussed shortly can even be distributed. However, they tend to be too

slow to be simulated in a large network. This is unfortunate because if it

were possible to run the algorithms in a large enough network, they would

answer our question and reveal the sought-after forwarding capacity.

This section covers methods that are able to achieve the maximum ca-

pacity in a wireless multihop network. They are divided into two groups:

maximum weight scheduling (MWS) algorithms and distributed random

access algorithms. In Chapter 5, we use a greedy version of MWS to esti-

mate the capacity. The distributed random access methods are related to

some of the topics of Chapter 4.
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3.3.1 Maximum weight scheduling

In [TE92], the authors present a maximum throughput policy that stabi-

lizes the network for all arrival rates of multiclass traffic for which it is

stabilizable. The fundamentals of the used network model are as follows.

New packets appear at the nodes of the network with given rates and join

the queue. The packets are divided into classes based on their set of desti-

nation nodes. Once the packets reach any of their destination nodes they

leave the network. As the network is also stable for the arrival rates that

realize the maximum capacity, the policy achieves maximum capacity.

The algorithm has three stages. In time slot t, the first stage is to calcu-

late a weight wt
l for each link l ∈ L as follows,

wt
l = max

j

(
qt−1
j (t(l))− qt−1

j (r(l))
)
, (3.6)

where j is the class index and qtj(u) is the queue length (number of pack-

ets) of class j at node u at time t. In the second stage, a maximum weight

transmission mode is selected

m∗(t) = argmax
m∈M

∑
l∈m

wt
l . (3.7)

Finally, in the third and last stage, if we index the links with i = 1, . . . , |L|,
and denote by j∗ the class for which wt

l = qt−1
j∗ (t(l))− qt−1

j∗ (r(l)), we get the

information about the activated links in binary form, E(t), at time slot t

as follows,

Eij(t) =

⎧⎨
⎩ 1, if li ∈ m∗(t), j = j∗, and qt−1

j (t(li)) > 0,

0, otherwise.
(3.8)

In each time slot the policy finds the transmission mode that is of the

maximum weight. The weight of each link is the maximum (over the

classes) difference in the queue lengths between the transmitting and re-

ceiving end of the link multiplied by the capacity of the link. A link in the

maximum weight transmission mode is activated if the transmitter has

enough packets to send.

Unfortunately, finding the maximum weight transmission mode is NP-

complete and requires global information. Thus, such algorithms are of-

ten too difficult to implement when the problem is large. Randomized

versions of MWS [Tas98] provide a linear complexity implementation of

the algorithm.

A randomized maximum weight scheduling algorithm can be constructed

simply as follows [Tas98]. A transmission mode candidate is selected from
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a certain distribution, p, at random. If the weight of the candidate is

higher than the weight of the current transmission mode, it is scheduled

at the next time slot. Otherwise the current transmission mode is sched-

uled to be used again. As long as the probability of selecting the maximum

weight transmission mode is positive in distribution p, the randomized it-

erative algorithm achieves maximum throughput.

The first distributed scheduling framework that guarantees maximum

throughput [MSZ06] is an implementation of this algorithm that gener-

ates feasible schedules and compares and merges them in a distributed

manner. Despite the fact that the algorithm may sometimes switch to

a worse transmission mode, it has been shown to achieve the optimal

throughput.

The algorithm [MSZ06] is presented for single hop traffic under the pri-

mary interference model, but it is extendable to more general models. Al-

though, transmission modes can be compared and merged in a distributed

manner by collecting information from a few hops away, the algorithm

requires a notable amount of information exchange for each scheduling

decision.

Under some interference models, it is possible to guarantee a fraction

of the throughput region using greedy maximum weight scheduling, see

[CKLS08]. For example, for the primary interference model this fraction

is 1/2, but for the Boolean interference model no such fraction exists.

3.3.2 Distributed random access

Since the introduction of the classical Aloha protocol [Abr70] and its slot-

ted version [Rob75], random access algorithms have been a recurring topic

in wireless network research because of their simplicity and distributed

nature. The fact that each user decides independently when to attempt

to access the channel may cause a lot of collisions and thus deteriorate

the capacity of the system. A class of random access algorithms tries to

avoid this using carrier sense multiple access (CSMA) [KT75]. The users

willing to transmit must first listen to the channel, and if the channel is

not busy, they can choose to transmit.

The performance of such systems has in many respects remained an

open question. An important result was the characterization of the ca-

pacity region of a multi-access network with given access probabilities

[BMP08]. The result is exact when the number of users grows to infinity

but also very accurate in the case of small systems.
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In [MEO11], the authors analyze asynchronous CSMA policies for sched-

uling packet transmissions in wireless multihop networks under the pri-

mary interference model. They present a fixed point approximation for

given routes and arrival rates that is asymptotically accurate for large

networks with small sensing delay. This means that the maximum through-

put can be achieved under the assumption that the network traffic con-

sists of many small flows. Simulations also show that the approximation

is accurate for moderately sized networks.

A recent paper [RSS09] proposes a random access CSMA algorithm in

which the access probability of a node is a function of its own queue length

and the estimate of the maximum queue length in the network. The max-

imum queue length in the network is a global variable but an estimation

of it can be maintained if each node broadcasts exactly one number to all

of its neighbors in every time slot.

The algorithm is throughput optimal assuming that collisions are elim-

inated. This requires that the feedback from the carrier sensing mecha-

nism telling whether the link can be activated in the current transmission

mode is instantaneous.

The paper considers single hop flows, but the authors strongly believe

the algorithm to be expandable to the multihop setting. The authors also

conjecture that, for the algorithm to be throughput optimal, it is enough

if each node chooses its access probability as a slowly varying function of

its own queue length. By ignoring the estimate of the maximum queue

length, the algorithm would be totally distributed.

A similar distributed adaptive CSMA algorithm was proposed in [JW10].

Instead of instantaneous queue lengths, it uses empirical arrival and ser-

vice rates. The algorithm is totally distributed and achieves throughput

optimality assuming the idealized CSMA (no collisions). The paper com-

bines the CSMA scheduling algorithm with congestion control to satisfy a

given fairness criterion among competing (multihop) flows. The effect of

collisions is also discussed.

Both of the algorithms can be seen as continuous-time reversible Markov

chains that operate on the space of transmission modes with adaptive

transition probabilities. The algorithms adjust the aggressiveness (based

on a slowly varying function of instantaneous queue lengths [RSS09] or

empirical arrival and service rates [JW10]) at which inactive links at-

tempt a transmission when they sense the channel free. The process re-
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sembles simulated annealing (see Section 4.4.2), which can be used, for

example, to find the maximum weight transmission mode needed in MWS.

Through changing the CSMA parameters, the algorithms adapt to the

current traffic load of the system. At the same time, they also change the

stationary distribution of the above mentioned Markov chain. The im-

portant observation is that, if the adaptation is slow enough, the Markov

chain remains always close to its stationary distribution, and the algo-

rithms effectively simulate MWS.

3.4 Scaling laws

So far we have covered topics that are usually presented in connection

with networks of very limited size. Now, we start moving towards the kind

of networks that we are mostly interested in this thesis, the very large

ones. When large networks are studied, an arising question of interest is

how the per-node capacity of a wireless multihop network scales as the

number of nodes, N , increases. The results in this area are known as

scaling laws. The fact that, as the network grows, the nodes have to, in

addition to their own traffic, relay an increasing amount of other nodes’

traffic means limitations to the capacity available for originating traffic.

There are two basic ways to approach a very large network. One can

either keep the network area constant and let the node density tend to

infinity or keep the node density constant and let the network area tend

to infinity. These are called a dense network and an extended network,

respectively. In the limit where the size of the network approaches in-

finity, we have what is called a massively dense network and an infinite

network.

In the seminal paper [GK00], the authors show that randomly located

nodes in a finite domain can achieve the throughput of Θ(C/
√
N logN)

bits per second per node for a randomly chosen destination under the pro-

tocol model.2 Later, it was shown that Θ(C/
√
N) can also be achieved

[FDTT07].

The main difference between the two works is that [GK00] assumes that

the nodes use a common transmission range. As all of the nodes act as

sources and participate in the communication, a common transmission

range means that it has to be increased as a function of the number of

2f(n) = Θ(g(n)) as n → ∞ denotes that f is bounded both above and below by g

asymptotically, i.e., f(n) = O(g(n)) and g(n) = O(f(n)).
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nodes to keep the network connected with high probability. This results

in worse spatial reuse as less links can be activated simultaneously. How-

ever, since the network traffic is dominated by the relay traffic, it makes

sense to use a larger transmission range for access and delivery phases

and a shorter one for transport phase to maximize the spatial reuse. Sim-

ilar results have been obtained for interference models with fixed trans-

mission radius as well as the SINR-based ones.

In the previous works, it has been assumed that all the nodes partici-

pate in the communication. If this is not the case, and only one source-

destination pair is active at any given time (all remaining nodes act-

ing only as possible relays), the per-node throughput remains constant

[DFT06]. Also node mobility can be utilized to achieve constant scaling

[GT02]. The cost of this improvement is a substantial delay. In general,

there is a trade-off between throughput and delay [GMPS04, TG04].

3.5 Large network scenario and separation of scales

We continue with extremely large networks and at the very limit where

the number of nodes in the network is infinite. We look at the network

from two different perspectives: the perspective of the whole network,

from which a single node is meaningless, and the local perspective, from

which the events elsewhere in the network bear no significance. These

two viewpoints represent the separation of scales.

If we keep the network area constant and let the node density tend to

infinity, in the limit, we have a massively dense network. Keeping the

node density constant and letting the network area tend to infinity re-

sults in an infinite network. They can be viewed as the two sides of the

same coin. At the global scale, an infinite number of nodes in a closed

domain, A, with infinitesimal transmission ranges and paths that are

smooth geometric curves allow a continuous representation of the net-

work — so-called continuum approximation [Jac04, KS04, CTM09]. From

the local perspective, the nodes see a network of separate nodes that con-

tinues ad infinitum and are concerned about forwarding the relay traffic

that traverses through them.

At this limit, the network capacity problem separates into two scales

[HV09]:
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1. Macroscopic level routing tries to find routes enabling to carry as much

traffic as possible through the network without exceeding the micro-

scopic level capacity constraint.

2. Microscopic level forwarding aims at coordinating the transmissions so

that the packets are relayed hop-by-hop as efficiently as possible and

spatial reuse is maximized.

Hence, the forwarding problem at the microscopic level sets an upper

bound for the amount of traffic that the routing problem at the macro-

scopic level is allowed to direct to an area of the network.

For example, let us consider a network with uniform traffic demand,

where we want to maximize the common per-node capacity. Assume that

packets traversing different directions are handled via time sharing. This

means that, in each time slot, packets are transmitted to one direction,

and the direction changes between time slots so that all the traffic can be

forwarded. The microscopic level capacity constraint is determined by the

used media access control protocol. The macroscopic level routing system

determines the local traffic load at each part of the network. As different

directions are handled via time sharing (the microscopic level capacity

constraint does not depend on the directional distribution of the traffic),

optimal routing balances the load evenly in the network. The common

per-node capacity can be increased until the maximum local traffic load

reaches the capacity constraint. To maximize the capacity, we have to

maximize the microscopic level capacity constraint (forwarding capacity)

and minimize the maximum local load.

The separation of scales can be seen as a version of the combined maxi-

mum flow and scheduling problem. The microscopic level forwarding task

includes scheduling the transmissions and determines the effective capac-

ity of the links. The macroscopic level routing problem attempts to utilize

this capacity while taking into account the flow conservation. In the same

way as the effective capacity of a link sets an upper bound for the possi-

ble flow, the forwarding capacity sets an upper bound for the local load.

The difference is that, while the max flow problem works with individual

links, the network constitutes a continuous medium on the macroscopic

level.

In the following sections, we consider in more detail the two problems.

In particular, the microscopic level one is the main topic of this thesis.
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3.5.1 Macroscopic level problem

The interest at the macroscopic level is in the end-to-end paths that are

smooth continuous curves. As the nodes form a continuum, the traffic

demand is defined as the density λ(x1,x2), where λ(x1,x2)·dA2 is the rate

of flow of packets from a differential area element dA at x1 to a differential

area element dA at x2. We call λ the traffic demand density [pkts/s/m4].

The traffic demand is satisfied by carrying the packets along the paths of

a routing system P. This set of paths contains at least one path for every

pair of a source and a destination. The local traffic load that is formed

as a result is described using the following definitions. Angular flux of

packets in direction ϑ, denoted by ϕ(ϑ), is equal to the rate [pkts/s/m/rad]

at which packets flow in the angle interval (ϑ, ϑ + dϑ) across a small line

segment of the length ds perpendicular to direction ϑ divided by ds · dϑ in

the limit when ds → 0 and dϑ → 0. We write ϕ(ϑ) = Φ · f(ϑ), where Φ

is the scalar flux Φ =
∫ 2π
0 ϕ(ϑ)dϑ and f(ϑ) is the directional distribution∫ 2π

0 f(ϑ)dϑ = 1. The directional distribution of traffic f(ϑ) represents the

fraction of traffic in a given direction ϑ. The local traffic load Φ gives the

total offered traffic intensity in [pkts/s/m] summed over all the angles.

As mentioned, on the macroscopic scale the problem is the following:

given a network area A and the traffic matrix, find a routing system P,

i.e., a set of paths (smooth curves), such that at every point x, the local

microscopic scale capacity constraint is satisfied. With I∗ denoting the

microscopic level variable, the multidirectional forwarding capacity, the

constraint reads,

Φ(x;P) ≤ I∗[f(ϑ,x;P)] ∀x ∈ A, (3.9)

where the scalar flux Φ and the directional distribution f(ϑ) are functions

of x as determined by the routing system P. In particular, the network ca-

pacity problem is to find a routing system P such that the above condition

is satisfied with the maximal possible scalar multiplier of a given form of

the traffic matrix. To be explicit, this leads to the following modified load

balancing problem

max
P

min
x∈A

I∗[f(ϑ,x;P)]/Φ(x;P). (3.10)

When the above maxmin problem is solved with a unit traffic matrix with

the total traffic of 1 pkts/s, then the maxmin value gives the network

capacity. While solving the maxmin problem is outside the scope of the
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thesis, we will return to the question of the impact of the microscopic

level constraint on the macroscopic level problem later.

3.5.2 Microscopic level problem

From the local perspective, only the direction of each packet is relevant,

and at the microscopic level the nodes are concerned about forwarding a

given packet to this direction that is defined by the chosen routing. Do-

ing this as efficiently as possible is referred to as the microscopic level

forwarding problem, and it is the main focus of this thesis. At the micro-

scopic level, the network appears to be infinite. We assume that node loca-

tions are distributed according to a stationary and isotropic point process

that is also ergodic [Hae12] (such as the homogeneous PPP used through-

out the thesis). In this “locally infinite” network, the traffic is solely re-

lay traffic and the directional distribution of the traffic appears the same

everywhere in the network. A special emphasis is given to the single-

directional traffic as it gives a guaranteed lower bound for the problem.

In what follows, we go through the bases for the above problem formula-

tion and other characteristics of the microscopic level.

The local directional distribution of the traffic, which is determined by

the routing system P, is the only parameter coming to the microscopic

level problem from the macroscopic level. The task at the microscopic

level is to find a coordinated forwarding scheme that handles traffic with

this directional distribution as efficiently as possible. The capability of

the microscopic level to forward traffic going in different directions in the

seemingly infinite network sets an upper bound for the allowed macro-

scopic level load. This microscopic level characteristic, the capability to

forward traffic with given directional distribution in an infinite network,

is called the multidirectional forwarding capacity.

The multidirectional forwarding capacity I∗ is defined as the maximum

sustainable mean density of progress [pkts/m/s], i.e., the density of pack-

ets multiplied by their mean velocity in their respective directions.3 It

depends on the directional distribution, f(ϑ), of the traffic, and we denote

it by I∗[f(ϑ)], using square brackets to emphasize the functional depen-

dence on f(ϑ). As the point process is ergodic, it is possible to obtain a

statistically meaningful estimate for the forwarding capacity by analyz-

ing an appropriately large sample of one network realization, as if we

3Information could also be measured, e.g., in bits.
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were analyzing one part of a very large network. It is equivalently possi-

ble to study multiple network realizations.

The multidirectional forwarding capacity, when studied as a function of

the node degree, remains zero until the network percolates. Currently,

not much more is known about I∗[f(ϑ)], but on general grounds one can

state that for any f(ϑ)

I∗1 ≤ I∗[f(ϑ)] ≤ I∗∞, (3.11)

where I∗∞ is the limit for the case where the directional distribution is

uniform, f(ϑ) = 1/2π, and I∗1 is the limit with traffic in a single direction

with f(ϑ) = δ(ϑ), i.e., the Dirac delta function.

The first inequality (3.11) is the following sufficiency condition: If the

traffic flow of intensity I∗1 can be sustained in a single direction, then a

traffic load Φ with an arbitrary directional distribution f(ϑ) satisfying

Φ ≤ I∗1 can be handled by a simple time-sharing, by allocating the traffic

in the direction increment (ϑ, ϑ + dϑ) the time share f(ϑ)dϑ. While the

stated constraint is sufficient, it is not a necessary condition. Namely,

when the traffic consists of a mixture of flows in different directions, it is,

in general, possible to carry more traffic by properly interleaving the use

of links for flows in different directions in the same time slot. This is not

generally true if the assumption about the isotropy of the point process is

dropped.

The second inequality (3.11) is rather obvious after this. The multidi-

rectional forwarding capacity for isotropic traffic is at least as great as

that for any other traffic pattern, as the uniform distribution can be con-

structed as a linear superposition of rotated (by dϑ) copies of any other

distribution and correspondingly served in time-sharing manner. That is

to say that the interleaving advantage is greatest for isotropic traffic. It

should be noted that all the quantities depend also on the network pa-

rameters, suppressed here for clarity. The next subsection outlines how

the number of parameters is controlled using dimensional analysis.

Dimensional analysis

In the microscopic level problem, the number of parameters needed to de-

scribe the problem can be reduced by dimensional analysis [Buc14]. The

maximum sustainable density of flow (obtained with optimal global co-

ordination of the transmissions) depends on the physical parameters at

hand: density of nodes n [1/m2], (maximum) transmission range ρ [m],
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and nominal capacity4 of a link C [1/s]. For a given directional distri-

bution f(ϑ), the multidirectional forwarding capacity, I∗[f(ϑ)], can be ex-

pressed as any combination of the parameters having the dimension 1/m/s

multiplied by a function of all the independent dimensionless parameters

that can be formed. A combination of parameters of dimension 1/m/s is

provided by C
√
n, and there is only one dimensionless parameter, namely

the mean degree of a node ν = πnρ2 (the constant π is unimportant as it

can be absorbed in the definition). Thus,

I∗[f(ϑ)](C, n, ρ) = C
√
nu(ν; f), (3.12)

where u is an unknown dimensionless function to be determined.

The separation of scales exhibits the same C/
√
N behavior as mentioned

in Section 3.4. Given the network domain of area A, the traffic demand

density, and the routing system P, the scalar flux Φ at x is just a constant.

Thus the scaling law for the network capacity per node follows from the

C
√
n factor of I∗ (multiply by A to get the progress/time in the network,

then divide by the mean progress needed to reach the destination node

(∼
√
A), and finally divide per node N = nA).

3.5.3 Justifying the separation

We now discuss when the separation of scales is valid. From the global

point of view, the microscopic level problems (in different parts of the net-

work) are not separate but connected. In a massively dense network, how-

ever, this connection is “small”. As mentioned, from the local perspective,

the events elsewhere in the network are meaningless, and the directional

distribution of traffic appears to be the same all around (uniform, i.e.,

independent of location, but not necessarily balanced). There is still a

mismatch between the directional distributions in different parts of the

network at the macroscopic level. The section at hand illustrates how

this seeming defect can be understood.

The true directional distribution of the traffic is different in different

parts of the network, but it is enough to study the local directional dis-

tributions (one at a time). Consider an N -node network in a unit square

with routing system P. We divide the network into subsquares of size

1/�N1/4� × 1/�N1/4�. Essentially, we now have
√
N subsquares with the

average of
√
N nodes per square. As the number of nodes in the network,

4Under SINR-based interference models, this can be interpreted as bandwidth
[Hz].
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N , grows to infinity, so does the number of nodes in each of the
√
N sub-

squares. At the same time, the number of subsquares tends to infinity

and the area of a subsquare to zero. As the paths are smooth geometric

curves, the directional distribution of the traffic (angular flux) in each sub-

square becomes more and more homogeneous. The adjacent subsquares

also begin to statistically resemble each other. This means that the num-

ber of additional time slots needed to schedule the links near the borders

reduces and becomes negligible.

3.6 Scope of the thesis

The focus of this thesis is on the microscopic forwarding capacity problem.

We begin by studying the instantaneous forwarding capacity, Î, in Chap-

ter 4. We try to find the transmission mode that would maximize the num-

ber of transmissions per unit area multiplied by the distance the packets

are moved in their respective directions. The results are upper bounds

for the forwarding capacity with multihop traffic since the same perfor-

mance cannot be sustained over all time slots. Even the single time slot

version is a difficult problem of stochastic geometry that does not allow

an analytical solution. As we are studying only one transmission mode,

we are able to examine the asymptotic behavior of the quantity though.

Also more complex SINR-based interference models are considered. The

studied cases correspond to a single-directional case and a case where the

directional distribution of traffic is positive for all directions.

In Chapter 5, we study the continuous case and the (actual) forwarding

capacity. As mentioned, the nodes see the network from the local per-

spective as separate nodes that continue ad infinitum and are concerned

about forwarding the relay traffic that traverses through them. The traf-

fic is solely relay traffic and no originating or terminating traffic exists

in the problem. This can be understood as follows. As the number of

nodes in the network tends to infinity the per-node capacity goes to zero,

as described in Section 3.4. The relay traffic is, thus, dominating in the

network. All the originating and terminating traffic can be scheduled in

separate time slots whose number is negligible compared to the amount

of time slots needed to carry the relay traffic similarly as in [FDTT07].

In practice, this means that, in the simulations, we have to generate

the relay traffic somehow. We do this by placing artificial sources and

sinks on different sides of the network. For example, when the sources
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are placed on the left-hand side of the network and the sinks on the right-

hand side, we have a single-directional traffic flow along the x-axis. The

packets are not aimed to a specific sink, but a small deviation from the

optimal direction is allowed or even necessary to avoid local bottlenecks.

The studied networks are large but finite. By studying the forwarding

capacity as a function of the size of the network, we can extrapolate to

infinity.

Much emphasis is given to the single-directional forwarding capacity

problem (i.e., finding I∗1 ) because, as discussed, it represents a guaran-

teed minimum capacity for any directional distribution. Regardless of the

macroscopic level routing and the resulting distribution of directions, time

sharing can be used for handling the directions separately, one per time

slot. The results for the single-directional forwarding capacity are also

compatible with the existing results for the macroscopic level problem,

i.e., the ones studying the simple load balancing problem [HV06, HV07b,

HV07a, HV08, HV09]. Recall that assuming time sharing between di-

rections, the macroscopic level problem is simply that of load balancing

without the sense of direction. Combining the results for the forward-

ing capacity with the macroscopic level routing problem is considered in

Section 5.6.
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4. Instantaneous forwarding capacity

By studying the maximum amount of traffic that can be forwarded in a

single time slot, the instantaneous forwarding capacity (IFC), it is possi-

ble to get a natural upper bound for the capacity of continuous flows. In

this chapter, we concentrate on the microscopic level transport network of

randomly distributed nodes in an infinite plane (see Section 3.5.2). The

upper bound is obtained from the maximum weight independent set of

links, i.e., a single transmission mode of the network that has the maxi-

mum weight per unit area. As a single transmission mode does not consti-

tute a connected flow network, the same performance cannot be achieved

with continuous traffic.

When the transport network is sparse, i.e., when the mean neighbor-

hood size is small, the upper bound is loose. Short range connections can

be formed by all the nodes that have at least one neighbor, but the ac-

tual forwarding capacity requiring long range connectivity becomes non-

zero only at the percolation threshold (see Section 3.1.1). While the upper

bound is poor when ν is small, it gets better when the neighborhood size

grows. In most cases, it is computationally too challenging to obtain re-

sults from dense transport networks in the continuous case. The instan-

taneous capacity offers a possibility to study just these networks, as when

there are a lot of links to choose from, it is possible to use a very good

transmission mode in every time slot.

In what follows, we introduce the IFC in more detail. Then we study

how it behaves asymptotically, i.e., when the network is either very sparse

or very dense. The node locations are assumed to follow a homogeneous

PPP. Two numerical simulation algorithms are presented next for study-

ing the IFC between these extremes. In the last part of the chapter, we

summarize the findings.
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4.1 Instantaneous forwarding capacity problem

We try to find the maximum weight independent set (MWIS) of links in

a network large enough to represent an infinite plane. With an appropri-

ate weight, it gives us the instantaneous forwarding capacity, that is, the

maximum amount of traffic that can be forwarded in a single time slot.

In the single-directional case, the density of progress is maximized when

a link is weighted by the length of the projection of the link in the given

direction, e.g., on the x-axis. We assume that the direction (in the single-

directional case) is always along the x-axis and refer to this case as x-

progress. The length of the projection tells us how much the traffic is

moved in the x-direction or the amount of x-progress. The instantaneous

capacity of the network is maximized by activating the transmission mode

that maximizes the x-progress of the links per unit area.

Alternatively, if we take the length of the link as its weight, we get

another upper bound. The solution of the MWIS problem now bounds

the multidirectional forwarding capacity with any directional distribution

f(θ), since the progress of a packet in one time slot in its intended direc-

tion, whatever it is, cannot exceed the length of the link. In particular, it

gives an upper bound for the forwarding capacity I∗∞ with uniform direc-

tional distribution, which we argued to be the greatest one, cf. (3.11). The

case weighted by the x-progress gives an upper bound (a tighter one) only

for the forwarding capacity I∗1 corresponding to single-directional traffic

or multidirectional traffic handled via time sharing.

In addition to these two cases, we study an unweighted case (weight

equal to one). This allows us, for example, to compare the fraction of trans-

mitting nodes of the weighted cases to the maximum number of transmit-

ting nodes. The three cases are referred to as:

A. Unweighted,

B. Weighted by the x-progress of the links,

C. Weighted by the length of the links.

The IFC is denoted by Î, but we also use the notation U = Î/C as the

nominal link capacity C is unimportant. Note that under the SINR-based

interference models, C can be interpreted as the bandwidth. Also taking
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into account the SINR-based interference models, we measure informa-

tion in bits instead of packets, as used earlier. Hence, the capacity of a

transmission mode is measured either in bits per second (link weight one)

or bit-meters per second (weighted by the x-progress or the length of the

link). The unit of Î is either 1/s/m2 or 1/s/m, respectively. The link weights

are denoted by subindices ι, x and l in the context of Î (and its dimension-

less counterpart u introduced next), while subindex ∗ refers to any of the

weights. Superindices, on the other hand, are later used to refer different

models, e.g., interference. Depending on the definition of the link weight,

Î(ν) can be expressed using dimensional analysis (cf. Section 3.5.2) as

Îι(ν) = C nuι(ν(n, ρ)), (4.1)

Îx(ν) = C
√
nux(ν(n, ρ)), or (4.2)

Îl(ν) = C
√
nul(ν(n, ρ)), (4.3)

where uι(ν), ux(ν), and ul(ν) are dimensionless functions of the indepen-

dent dimensionless parameter ν. Note that functions u∗(ν) are different

for different interference models (denoted by superindices) and their pa-

rameters.

4.1.1 Studying the IFC

The instantaneous forwarding capacity, and case B in particular, has a

connection with the minimum cut problem and the upper bounds that can

be obtained with a limited set of cuts (3.4) and by switching the order of

optimization (3.5). The single-directional forwarding capacity, I∗1 , can be

interpreted as the number of packets crossing a unit length of line perpen-

dicular to the direction of the flow in a unit time. Thus, it is reasonable

to consider cuts that correspond to a straight line in the vertical direction

when the traffic is flowing in the horizontal direction. If the limited set of

cuts consists solely of a single cut, the task equals finding the size of the

maximum independent set of links crossing the given line. Considering

just one cut gives a relatively loose upper bound for the single directional

forwarding capacity (see Publication I). After the maximization of the ca-

pacity is done, the cut does not represent an average cut (and much less

a minimum cut), since the same kind of performance cannot be achieved

with a cut that suffers from the interference caused by the links of this

cut.

As the set of cuts grows, the bound gets tighter. With multiple cuts, the

task becomes maximizing the smallest of the capacities of the cuts. When
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the plane is filled with (infinitely long) straight vertical cuts separated by

a distance d, the situation is symmetric, and by maximizing the sum of the

capacities, we maximize the minimum. As the distance between the cuts

goes to zero, the task of maximizing the number of times a link crosses

a cut (i.e., the corresponding line) becomes maximizing the sum of the

progresses of the links, that is, finding the maximum weight independent

set. The contribution of a link, i.e., the number of times it crosses a cut,

is proportional to its progress, and in order to get the optimal value for

the forwarding capacity, we need to find the independent set of links with

maximal total progress.

For the computational task of finding numerical values for the instan-

taneous forwarding capacity, we have implemented two simulation algo-

rithms. The moving window algorithm (MWA) is able to find the maxi-

mum weight independent set of links in a strip of limited height but un-

limited length. By studying the results as a function of the height of the

strip, we are able to extrapolate to the infinite plane. The method is suit-

able for interference models with fixed transmission/interference range

such as the Boolean interference model. The algorithm is presented and

analyzed in Publications I, III, and V.

Simulated annealing (SA) is a probabilistic method for solving difficult

optimization problems. It is statistically guaranteed to find an optimal

solution. However, in a finite time, it is only possible to find an approx-

imate solution. In addition, the method is time consuming. The main

merit of the method is that it permits the transition from a graph based

interference model to a more realistic modeling of the underlying wireless

medium. Publication VI covers the Boolean interference model and the

Shannon model while Publication VII considers the topic under the SINR

threshold model.

Before introducing the two implementation methods and the results, we

study what happens to the instantaneous forwarding capacity when the

mean neighborhood size is either small or large (as presented in Publica-

tions III, V, VI, and VII).

4.2 Asymptotic characterization

In order to gain a better understanding of how the dimensionless func-

tions u∗(ν), given by (4.1-4.3), behave, it is useful to consider them ana-

lytically under the different interference models. The asymptotic analysis
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studies the performance in small densities, ν � 1, and in high densities,

ν � 1. The obtained theoretical limits provide useful insight and will be

compared to simulations in Section 4.5.

4.2.1 Boolean interference model asymptotics

In this section we consider the asymptotic behavior of the dimensionless

functions u∗(ν) of the Boolean interference model when the mean node

degree approaches zero or infinity. The analysis when ν approaches infin-

ity is rudimentary but believed to capture the essential dependency. We

also consider bidirectional interference (see Section 2.3.5) where both the

transmitter and the receiver have to be outside the range of interfering

transmissions. The regular model where only the receiver has to be free

is referred to as unidirectional interference.

Asymptotics in the limit ν → 0

When the mean degree of a node approaches zero, the same consideration

is valid for both uni- (2.6) and bidirectional (2.14) interference as well as

both fixed and adjustable transmission radius (cf. Section 2.3.5). Basi-

cally, it is more about being able to form links than it is about the links

interfering with each other.

In the unweighted case (A), a general upper bound for the function Uι,

the maximum number of links per unit area, is given by

Uι(n, ρ) ≤
1

2
n(1− e−ν).

The reasoning with the above inequality is that there are on the average

n nodes per unit area, and that one obviously gets an upper bound for

Uι(n, ρ) if each node can freely choose the neighbor to form a link with,

without any restrictions imposed by other links. The factor 1/2 accounts

for the fact that it takes two nodes to form a link. The parenthetical

expression is the probability that a node has a neighbor. Written in terms

of uι(ν) the upper bound takes the form

uι(ν) ≤
1

2
(1− e−ν).

It is also obvious that asymptotically when ν → 0 the upper bound be-

comes tight, since in the rare cases when a node has a neighbor within

its transmission radius, they can indeed form a link with a high proba-

bility without any other link interfering. In this asymptotic regime the

probability (1− exp{−ν}) ≈ ν, and we have

uι(ν) ∼
1

2
ν, when ν → 0. (4.4)
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For the case weighted by the x-progress (B), the same reasoning other-

wise applies but instead of the probability of having a neighbor, we have

the mean x-progress of the link to the furthest neighbor. Hence, the gen-

eral upper bound for the function Ux becomes

Ux(n, ρ) ≤
1

2
nρX(ν),

where X(ν) is the mean distance (in units of ρ) from a randomly chosen

node to its most distant neighbor node in the x-direction, i.e., absolute

value of the x-distance (if there is none, the distance is taken to be zero).

For ux(ν), we have

ux(ν) ≤
1

2

√
ν

π
X(ν).

When ν is small, X(ν) ≈ 4ν/(3π), where 4/(3π) is the mean x-distance

to a neighbor, and ν is the approximate probability of having a neighbor.

Thus, we have

ux(ν) ∼
2

3

(ν
π

)3/2
, when ν → 0. (4.5)

The third case (C) is similar to the second case, but we have to replace

the x-distance between the nodes by the actual distance, L(ν). Hence,

L(ν) ≈ 2ν/3, and

ul(ν) ∼
1

3
√
π
ν3/2, when ν → 0. (4.6)

Asymptotics in the limit ν → ∞
We now turn our attention to how U∗(n, ρ) behaves for large n when ρ is

considered to be fixed and present a plausible reasoning for the asymp-

totics. The analysis is different for the unidirectional and bidirectional

interference.

Unidirectional interference leads to the starting observation that if the

end points of a link can be arbitrarily placed on a continuous plane, then

the most efficient way of packing links is to form vertical columns. The

claim is most obvious in the case with x-progress (B), where we assume

single-directional traffic from left to right. There has to be a distance

larger than ρ between two consecutive links, as illustrated in Figure 4.1,

but the vertical distance between the links can be small. In fact, the

Boolean interference model (unrealistically) sets no limit on how densely

the links can be vertically packed: two parallel links of maximal length

ρ, however close, never interfere with each other. This suggests that for

a very high n, when there are nodes almost everywhere, the maximum

weight independent sets consist of links forming vertical columns.
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In cases A and C, that are undirected, the packing can be done even

more efficiently by changing the direction of every other column as shown

in Figure 4.2. This way a small distance ε is enough between the columns

as the endpoints near each other are all either transmitters or receivers.

ρ ρ ρ ρ ρρ+ ε ρ+ ε ρ+ ε ρ+ ε

Figure 4.1. On a continuous plane links can be efficiently stacked in vertical columns
(case B).

ρ ρ ρ ρ ρ ρ ρ ρ ρε ε ε ε ε ε ε ε

Figure 4.2. In cases A and C, links can be packed even tighter since ε margin is enough
between columns transmitting in alternating directions.

The next step is to estimate the expected vertical distance between the

links. Based on the above observation we consider a naive model where,

starting from a horizontal link of length ρ, the end points of the next link

above are determined independently by proceeding in the vertical direc-

tion in the shown areas of Figure 4.3 until next node (from the Poisson

process) is found.

The width x of the area A (gray in Fig. 4.3) between the vertical line

and the circle is for small heights y approximately parabolic, x ≈ y2/(2ρ).

Denote the coordinates (random variables) of the node by (X,Y ). Since

A ∼ Exp(n) and A ≈ Y 3/(6ρ), we have the complementary cumulative

distribution function of Y ,

�{Y > y} = �{A > y3/(6ρ)} = e−ny3/(6ρ),
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A

Figure 4.3. The simplified model for estimating the vertical distance between the stacked
links.

i.e., �{Y k > y} = �{Y > y1/k} = e−ny3/k/(6ρ), from which

�[Y k] =

∫ ∞

0
e−ny3/k/(6ρ)dy

=

(
6ρ

n

)k/3 k

3

∫ ∞

0
sk/3−1e−sds

=

(
6ρ

n

)k/3 k

3
Γ

(
k

3

)
=

(
6ρ

n

)k/3

Γ

(
1 +

k

3

)
,

where, in the second step, a new variable s = ny3/k/(6ρ) has been intro-

duced. In particular, we have

�[Y ] = Γ

(
4

3

)(
6ρ

n

)1/3

, �[Y k] =
Γ(1 + k

3 )

Γ(43)
k
�[Y ]k,

whence the variance is

Var(Y ) =

(
Γ(53)

Γ(43)
2
− 1

)
�[Y ]2 ≈ 0.132�[Y ]2.

The distribution of X is determined by that of Y , X ∼ Uniform(0, Y 2/(2ρ)),

from which

�[X] = �[�[X|Y ]] = �[
Y 2

4ρ
] =

Γ(53)

4ρΓ(43)
2
�[Y ]2

and

Var(X) = �[�[X2|Y ]]−�[X]2 = �[
1

3
(
Y 2

2ρ
)]−�[Y

2

4ρ
]2

=
1
3Γ(

7
3)−

1
4Γ(

5
3)

2

4Γ(43)
4ρ2

�[Y ]4 ≈ 0.0759

ρ2
�[Y ]4.
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Now, consider the random walk Xk =
∑k

i=1(Xi, Yi), k = 1, 2, . . .. When

n → ∞ this random walk tends to a deterministic motion along the ver-

tical line with constant rate. This is because both �[X] and Var(Y ) go

to zero quadratically in �[Y ]. Thus, over a finite interval y, which takes

on the average k = y/�[Y ] steps, the expected total displacement in the

x-direction is k�[X] ∼ y�[Y ], which goes to zero with �[Y ] as n → ∞.

Similarly, the total variance of the displacement in the y-direction after k

steps is kVar(Y ) ∼ y�[Y ] and goes to zero as n → ∞ (the total variance

of the x-displacement goes to zero even faster as the one step variance

Var(X) ∼ �[Y ]4).

The fact that the independent random walks of both the end points tend

to constant deterministic motion along the vertical lines, in the hindsight

justifies considering each step starting from a vertical link of maximal

length ρ; the wiggle and contraction of the added links tend to zero.

Finally, we are able to calculate the asymptotic behavior in the three

cases starting from the unweighted one (A). From the above it follows

that �[Y ] defines the vertical packing distance. As there is one vertical

link in every rectangle of height �[Y ] and width (1 + ε)ρ, cf. Figure 4.2,

the reward per unit area is asymptotically Uι(n, ρ) ≈ 1/(ρ�[Y ]),

Uι(n, ρ) ≈
1

Γ(43)

(
n

6ρ4

)1/3

,

uι(ν) ≈
1

Γ(43)

(√
6

π
ν

)−2/3

. (4.7)

Similarly in the weighted case (B), as there is one vertical link of length

ρ in every rectangle of height �[Y ] and width (2+ ε)ρ, the weight per unit

area is asymptotically Ux(n, ρ) ≈ 1/(2�[Y ]),

Ux(n, ρ) ≈
1

2Γ(43)

(
n

6ρ

)1/3

,

ux(ν) ≈
1

2Γ(43)

(
36

π
ν

)−1/6

. (4.8)

Finally in the third case (C), Ul(n, ρ) = 2Ux(n, ρ), and ul(ν) = 2ux(ν) as

the number of links compared to the packing in Figure 4.1 can be doubled.

Hence,

Ul(n, ρ) ≈
1

Γ(43)

(
n

6ρ

)1/3

,

ul(ν) ≈
1

Γ(43)

(
36

π
ν

)−1/6

. (4.9)
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For more realistic interference models, one can conjecture that the as-

ymptotic tail of u∗(ν) comes down more rapidly than for the unidirectional

interference model due to the fact that this model unrealistically allows

multiple transmissions just outside the interference range of a receiving

node.

� �

� �
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� �

� �

� �
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� �

Figure 4.4. Short links forming a triangular lattice maximize the number of transmis-
sions (case A).

Bidirectional interference prevents the links from packing very close to

each other. In the unweighted case (A), short links are preferred because

then the interference ranges of the origin and destination overlap, and the

exclusion area of the link is minimized. In the limit, the length of the links

tends to zero, and the link constellation approaches equilateral triangular

lattice with one transmission range between the links, see Figure 4.4.

Hence,

Uι(n, ρ) ≈
2√
3ρ2

,

uι(ν) ≈
2π√
3
ν−1. (4.10)

In the weighted cases (B) and (C), the end points of the links form the

same lattice as depicted in Figure 4.5. Hence, we have the reward ρ per

area of
√
3ρ2, and

Ux(n, ρ) = Ul(n, ρ) ≈
1√
3ρ

,

ux(ν) = ul(ν) ≈
√

π

3
ν−1/2. (4.11)

The presented asymptotic behavior of u∗(ν) presumably gives every-

where an upper bound of the true curve. We return to the comparison

with the numerical values later in Section 4.5. The above asymptotics for

ν→∞ apply when the transmission radius is fixed. If adjusting the trans-

mission radius is allowed, the neighborhood size is calculated using the

maximum value of the transmission radius. Though the number of poten-

tial neighbors increases with a greater ρ, it is always possible to use the
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Figure 4.5. When the end points of the links form a triangular lattice (with bidirectional
interference in cases B and C), the number of transmitting nodes at the min-
imum distance from a node is maximized.

previous link configuration unless a better one becomes available. Thus

in these cases, u∗(ν) approaches some limit.

4.2.2 SINR threshold model asymptotics

Now, we move to the SINR-based interference models. Under these in-

terference models, the analysis is more difficult because of the additive

interference that has no fixed range. The dimensionless functions corre-

sponding to the first of the models, the SINR threshold model, are denoted

by uα,θ∗ (ν), and they are different for different values of α and θ.

Let us rewrite (2.8) as follows,

SINR(rl,m) =
ḡ(l, l) να/2∑

l′∈m\{l}
ḡ(l′, l) να/2 + 1

, (4.12)

where ḡ is the dimensionless function

ḡ(l′, l) =
(√

πn |tl′ − rl|
)−α

. (4.13)

An important observation is that, because of insertion of the factor
√
πn,

for any realization of the spatial Poisson process the function ḡ(l, l) is in-

dependent of the scale. That is, if all the distances are stretched or con-

tracted by some factor, the value of ḡ(l, l′) remains unchanged for any

pair of links {l, l′}. Thus, the dependence on the density is fully incorpo-

rated in the factors να/2 in (4.12). Since this factor controls the ratio of

the two terms in the denominator, the low and high density limits may

equivalently be called the noise-limited and interference-limited cases, re-

spectively.

Curves uα,θ∗ (ν) defined in (4.1) through (4.3) are increasing functions of

ν. This stems from the fact that SINR(rl,m) of (4.12) is an increasing

function of ν. The total capacity of any transmission mode is constant,
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but the maximizing mode, and thus the maximum capacity, may change

as ν increases and makes more transmission modes feasible.

Let us now consider the interference-limited case ν � 1. In this case,

the one in the denominator of (4.12) may be neglected, whence the factors

να/2 cancel out. Therefore, provided that ν is large enough, the problem

becomes completely scale-free, independent of ν. No matter how the scale

is stretched or contracted, it is always the same mode of active links that

realizes the optimum.

Next we turn our attention to the noise-limited case ν � 1. Now, the

interference term in the denominator of (4.12) may be neglected, whence

the SINR(rl,m) reduces to the numerator of the expression on the right

hand side. Without interference, reception is possible anywhere in the

transmission region as it is under the Boolean interference model in the

absence of an interfering transmitter, and the two interference models

coincide if the spectral efficiency is assumed to be equal. In the noise-

limited case, a higher SINR threshold θ directly leads to better spectral

efficiency (2.10) as there is no interference and the system is studied as a

function of ν.

Under a reasonable assumption that θ > 1, reception is only possible

from the closest transmitting node. Now, strong attenuation (large α)

increases the capacity independent of ν. As α tends to infinity, the inter-

ference is dominated by the interfering transmitter closest to the receiver

of the link (or the noise if there are no interfering transmitters within the

distance of ρ) that is still farther than the transmitter of the link. Hence,

the SINR (4.12) tends to infinity as α → ∞. The effect is stronger when ν

is large, and there are more competing transmissions.

4.2.3 Shannon model asymptotics

As with the threshold model, the curves uα∗ (ν) are increasing functions of

ν since SINR(rl,m) of (4.12) is an increasing function of ν. Now, also the

total weight of transmission mode m,

w(m) =
∑
l∈m

wlRl(m), (4.14)

where wl is the weight of link l,

wl =

⎧⎪⎪⎨
⎪⎪⎩

1, unweighted

|[tl]1 − [rl]1|/ρ0, x-progress

|tl − rl|/ρ0, length,

(4.15)
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is an increasing function of ν. It follows that this property is inherited

also by the optimum, i.e., the maximum over m ∈ M, even though the

mode that realizes the maximum may change as ν increases. Another

view to the result is provided by the observation that an increase in ν

may be realized by decreasing the noise power σ2, everything else being

held unaltered. It is obvious that this leads to an increase in the capacity.

Again in the interference-limited case ν � 1, the one in the denominator

of (4.12) may be neglected, whence the factors να/2 cancel out. Therefore,

provided that ν is large enough, the problem becomes completely scale-

free, independent of ν. No matter how the scale is stretched or contracted,

it is always the same mode of active links that realizes the optimum.

When also α is large, the capacity of a transmission mode (that is pro-

portional to the sum of the weighted spectral efficiencies) is dominated by

the links with high SINR. Thus, (2.12) may be approximated by

log2

(
ḡ(l, l)/

∑
l′∈m\{l}

ḡ(l′, l)
)
.

Furthermore, the interference is dominated by the closest interfering trans-

mitter, and the capacity of the transmission mode is proportional to

α
∑
l∈m

wl

(
log2 |rl − tl′ | − log2 |rl − tl|

)
,

where tl′ is the nearest interfering transmitter. In all, uα∗ (ν) is approxi-

mately a linear function of α � 1.

Finally, we turn our attention to the noise-limited case ν � 1. As before,

the interference term in the denominator of (4.12) may now be neglected,

whence the SINR(rl,m) reduces to the numerator of the expression on the

right hand side. Moreover, because of the assumption ν � 1, it is small.

Then, the logarithm function in (2.12) may be approximated by log2 e ·
ḡ(l, l) να/2, and να/2 may be taken out of the sum of the link capacities

(see (4.14)) as a common factor, everything else being independent of ν. We

can again reason that the optimum is always obtained by a given mode,

independent of ν, provided that this is small enough. Furthermore, as

only the sum
∑

l∈mwl ḡ(l, l) depends on the transmission mode, one can

conclude that in the noise-limited case every node should be an end point

of a link, i.e., the fraction of transmitting nodes should approach 50 %,

when ν → 0. The value of the function uα∗ (ν), however, does not tend to

constant as ν → 0 but to a constant multiplied by the common scale factor

να/2.
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4.3 Moving window algorithm

In this section, we derive an algorithm similar to Retrospective optimiza-

tion introduced in a study of reservation systems [Vir92]. The moving

window algorithm (MWA) is able to find the maximum weight indepen-

dent set of links in a strip of limited height but unlimited length. By

studying the results as a function of the height of the strip, we are able

to extrapolate to the infinite plane. The algorithm can be used with inter-

ference models that have a finite transmission/interference range such as

the Boolean interference model studied here. The algorithm is presented

using an illustrative example. A pseudocode of a reference implementa-

tion can be found from Publication V.

The algorithm considers a small portion of the network at a time, a rect-

angular window that moves, and regarding the strip that the moving win-

dow covers during a simulation, the result is exact. The algorithm uses a

binary tree to enumerate all the possible link combinations in the window

area to find the maximum size or weight of an independent set of links per

unit area so far conditioned on the choice of the combination of conflict-

free links. The length of the simulation is not limited, and the covered

strip can be of any desired length. We repeat the simulation for windows

of different height to extrapolate the value of the maximum weight per

unit area for an infinitely large network.

Because the height of the window in practice is limited, the top and the

bottom of the strip can be connected to diminish the border effect and rep-

resent an infinite dimension, see Figure 4.6. The perimeter of the formed

cylinder needs to be large enough for the results to be meaningful. The

other direction can be handled by moving the window along the cylindri-

cal network. The width of the window (i.e., the length of the cylindrical

window) needs to be large enough for the window to contain all the links

that can possibly interfere with the links that are going to enter the win-

dow in the future (that is, 3ρ which is the maximum length of two links

and a ρ + ε margin). The possible combinations of these links are main-

tained in the binary tree. The links that have already left the window do

not affect the possible on/off-state of the links entering the window and

can thus be removed by a procedure explained next.

A rooted binary tree represents all the possible link combinations in

the window area. Every edge of the tree describes whether the link cor-

responding to that level is active or not, and the value assigned to each
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Figure 4.6. The top and the bottom of the window are connected together to diminish the
border effect. The formed cylinder is moved in the direction of its axis.

leaf shows the maximum size or weight of the independent set thus far

(starting from the initial position of the window) conditioned on the com-

bination of active links in the window represented by the leaf. This is

illustrated in Figure 4.7. The figure represents an example of a situa-

tion where the simulation of the unweighted case (A) (the values in the

vertices represent the size of the independent set of links) with unidirec-

tional interference has just started, and the first four nodes have entered

the window making it possible to form six links. The maximum size of

an independent set of links is two corresponding to transmission mode1

{uv, xw} or {vu,wx}.

When the window of Figure 4.7 is being moved to the right, the first

event is the node u leaving the window. Since the entering and exiting

links are independent, we can combine the on- and off-branches corre-

sponding to a link whose endpoint has been dropped out of the window

1Here, a shorter notation uv is used for link (u, v).
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Figure 4.7. A window containing 6 links and the corresponding binary tree with 6 levels
representing the links (in alphabetical order) in the window.

and choose the greater values for the new tree. That is, we compare

leaves2 that only differ in the dropped link and choose the maximum of

those to be the value of the same node in the new tree where the level

corresponding to the dropped link has been eliminated in this way. For

example, when the first link to leave the window, uv, is being eliminated

from the tree, the leaf with value 2 corresponding to the transmission

mode {uv, xw} (first from the left in Figure 4.7) is compared to the leaf

with value 1 corresponding to the transmission mode {xw} (second from

the right), and the value of leaf {xw} in the new tree in Figure 4.8 (second

from the right) is thus 2. Also the link vu has to be removed from the tree

when the node u leaves the window.

The next event, when moving the window, happens when node y enters

and makes two new links possible. These new links are then added to the

binary tree, after which the shape of the tree is the same as in Figure 4.7,

but the value assigned to each leaf, except for those with vw or wv, is one

higher since in these cases it is possible to use either the link uv or vu that

2Besides the leaves also the other vertices can be updated, but they hold no
significance to the final result since the leaves cover all the possible link combi-
nations.
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Figure 4.8. The binary tree of Figure 4.7 after the first link to leave the window uv has
been removed. In addition to the leaves, also the other vertices have been
updated.

have already exited the window. At this point, it is not explicitly visible

which dropped links can be activated. Thus, the maximum value in the

tree is the maximum size of the independent set of links so far given the

set of active links in the window area. In this way, we can generate the

network realizations on the fly and progressively find the maximum size

or weight of the independent set of links.

We do not maintain information about the links belonging to the max-

imum weight set, although, this information could be extracted from the

algorithm with the cost of used memory. To further minimize the memory

requirements the links are removed from the window as soon as they stop

interfering with links that are going to enter the window in the future.

When a link does not interfere with future links anymore, the informa-

tion whether the link belongs to the maximum weight independent set is

no longer required in the calculations, but the link can be removed from

the binary tree maintaining the on/off status of the relevant links. In this

way the size of the binary tree, which is the bottleneck limiting the use-

fulness of the algorithm, can be kept as small as possible. The algorithm

limits in no way the length of the simulation in the direction in which the

window moves, and when the execution is continued, the result converges

(as the process is ergodic) without bias towards the true value. The net-

work realization can be generated on the fly as the window moves, and

there is no need to store any information about the network that has left

the window. When the simulation is ended, the maximum size or weight
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of the independent set of links is the maximum of the values assigned

to the leaves of the binary tree. The simulation is repeated to produce

confidence intervals for the value. In the other direction, we have to rely

on extrapolation and estimate the maximum value for an infinitely wide

cylinder, as discussed in the next section.

4.3.1 Extrapolation

This section concentrates on extrapolating the maximum weight per unit

area for the infinite plane from the measurements considering only strips

of the network with limited height.

The simulations with the MWA produce values u∗(ν, p), where p (in units

of ρ) is the perimeter of the cylinder. For a given ν, a range of p are needed

to extrapolate u∗(ν) to an infinitely wide cylinder. Figure 4.9 represents

uι(p) of case A with unidirectional interference and fixed ρ for different

values of ν. As seen from the figure, the narrowest cylinders do not give

a reliable estimate for larger values of ν. The exact number of values of

p required for the extrapolation depends heavily on the case studied as

discussed next related to the x-progress case.

2 3 4 5 6
0.22

0.24

0.26

0.28

0.3

0.32

0.34

p

u ι

 

 

ν = 1
ν = 2
ν = 3
ν = 4
ν = 5
ν = 6
ν = 7
ν = 8

Figure 4.9. Function uι(p) with unidirectional interference and fixed ρ for different val-
ues of ν, and the 95 % confidence intervals.

The second unidirectional case (B) with x-progress differs from the other

unidirectional cases as it is the only directed case. The working principle

of the algorithm does not depend on the direction of the traffic, i.e., the

direction in which the progress of the maximal independent set is cal-

culated, but it has to be fixed. We have two extremes: the direction is

parallel with the direction in which the cylinder moves (along the cylin-
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der) or the progress is calculated perpendicular to the movement of the

cylinder (around the cylinder). In the latter case ux(p) depends heavily

on the number of link columns that we are able to fit around the cylinder.

The maxima appear when the perimeter is approximately a multiple of

2ρ, meaning that we are able to fit full-length links and the margins ρ+ ε

between them. When the direction of the progress is turned by a right an-

gle, we get more stable results as the vertical distance between the links

in a column is more stochastic. This effect is illustrated in Figure 4.10.

The observation supports the assumption made in Section 4.2 about the

most efficient way of packing the links, that is, to form vertical columns.
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Figure 4.10. Function ux(p) with unidirectional interference and fixed ρ for different val-
ues of ν when direction of progress is around the cylinder (dashed lines) and
along the cylinder (solid lines).

With bidirectional interference and fixed transmission radius, the active

links start to form patterns when the network gets denser (recall Fig. 4.5).

The difference to the towers formed in the unidirectional case is that the

distance between the links is more deterministic, and u∗(ν, p) is thus more

sensitive to the perimeter of the cylinder. The undulation is the heaviest

in the weighted cases and with large values of ν, and the interesting pa-

rameter region of case B is thus the most difficult to reach. When the

transmission range is adjustable, u∗(ν, p) is more stable as the effective

number of neighbors is smaller.

4.3.2 Computational complexity

For large window sizes and dense networks, the running time of the al-

gorithm is dominated by the time required to update the binary tree. Let

W be the set of nodes in the window and L the set of links between the
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nodes in the window. In the worst case, the nodes communicate in pairs,

i.e., the links do not interfere with each other (except for the two links

between the same two nodes in the undirected cases), and the size of the

binary tree is of the order of O(2|L|) (i.e., O(
√
2
|W |

)) in case B and O(
√
3
|L|

)

(i.e., O(
√
3
|W |

)) in cases A and C. As in our case the underlying network is

random, there is usually heavy interference between the links. If all the

links in the window interfere with each other, the size of the tree behaves

as O(|L|2), i.e., O(|W |4).

4.3.3 Half-space considerations

Here we study the maximum weight problem by considering the Poisson

process in a half-space configuration. We show that the maximum weight

over the whole plane can be related to a local additive contribution from a

single node added on the border of the half space. The result also allows

an alternative way of justifying the MWA algorithm.

Consider the problem of the maximum weight of an independent set of

links per unit area in a half-space configuration, see Figure 4.11. The

border introduces a boundary effect but far from the boundary, inside the

body of the Poisson process, the expected total weight per unit area is

given by U∗(n, ρ).
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Figure 4.11. Poisson process in the half space and an incremental shift of the boundary.

Now, consider moving the boundary incrementally to the right, so that

a new area dA is covered. The increase in the total weight of the maximal

independent set can be evaluated in two different ways: a) one can think

that the slice dA has been added in the body, pushing the boundary to the

right; then the added weight is U∗(n, ρ) dA, b) one can think that the slice

has been added to the right boundary introducing new nodes, as shown

in Figure 4.11; In the limit dA → 0, the added nodes are far apart and
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the increase is the number of nodes, n dA, multiplied by the contribution

from a single added node at the boundary, as illustrated in Figure 4.11.

Equating these two yields the average weight per node

1

n
U∗(n, ρ) = D,

where D is the expected total increase of weight due to a single node added

at the border. This is in itself an interesting result as it relates mean value

over the whole infinite plane to a quantity that has a local character.

To study D, we have to compare two cases. In the first case, there is a

node on the border of the network, and in the second there is not. Now,

the window starts from a point where one side (right) of the window corre-

sponds to the border of the network and moves away (left) from the border.

The top and the bottom of the window are again connected to diminish the

border effect and form a cylinder. The effect of the node is the difference

in the maximum value in the binary tree in these two simulations. The

problem of this formulation is that one simulation produces a single sam-

ple instead of some kind of mean, and this causes a large variance.

From the algorithm point of view, it makes no difference whether the

additional node is the first node of the simulation or the last. We can

draw multiple samples from a single simulation by assuming that every

node entering the window is the node on the border of the network. Not

even the differences need to be calculated separately in this case — the

sum of the differences is simply the total weight of the independent set

(and is given by the maximum leaf value in the tree). Hence, we have

returned to the original algorithm.

4.4 Simulated annealing

In order to determine the IFC of a large network (that represents the en-

tire plane) also for the SINR-based interference models, we find the trans-

mission mode that maximizes the capacity per unit area using simulated

annealing (SA). Simulated annealing is a probabilistic method for solv-

ing difficult optimization problems applicable for finding the maximum

of a target function that may have multiple local maxima. It is based

on [MRR+53], and was later formulated as a more general optimization

technique in [KGV83]. The strength of SA is in its ability to cover a wide

variety of objective functions and constraints.
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The idea of the method comes from the physical process of annealing,

where a material cooled slowly enough approaches the ground state of

the system, i.e., the state with minimum energy (maximum of the neg-

ative energy). As the name indicates, SA tries to simulate this kind of

a process. In this method, the current solution is randomly moved to a

“neighboring” solution with a probability that depends on the height of

the ascent/descent and a parameter called temperature. By allowing the

algorithm to move to a worse solution, it is possible to avoid being stuck at

local optima. When the temperature parameter is properly modified dur-

ing the optimization, the algorithm also eventually reaches the optimal

solution.

The SA algorithm uses the following elements in its operation (physical

analogues in parentheses):

1. A finite set of possible states.

2. A real-valued target function (energy) that defines the set of optimal

states.

3. A set of neighboring states for each state and the rule for randomly

choosing the next state from the neighbors of the current state.

4. A cooling schedule (temperature) that “freezes” the probability distri-

bution of the states to the set of optimal states over time.

Also required are the initial state and the termination condition. In our

case, the set of transmission modes forms the state space of the system.

The order of the states is determined by the weight of the transmission

mode w(m), and the neighboring states are those transmission modes that

differ only by one link.

Let us consider a Markov chain with the state space composed of the

different transmission modes and with the steady-state distribution

π(m) ∼ exp{w(m)/T}, (4.16)

where T is a constant. When T is small, the probability mass is concen-

trated to the maximum we are interested in,

m∗ = argmax
m∈M

w(m). (4.17)
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The time needed for the Markov chain to reach the steady-state with small

T can, depending on the heights of the local maxima, be inordinate. The

idea of simulated annealing is to avoid this problem by slowly decreasing

the temperature T . Even then, the cooling schedule has to be slow enough

for the system to avoid being quenched in a local extremum [Haj88].

4.4.1 Simulated annealing algorithm

A Markov chain Mτ with state space M is formed, and the steady-state

probability of a transmission mode m is chosen to be

π(m) =
ew(m)/T∑

m′∈M
ew(m′)/T

, (4.18)

where T , i.e., the temperature, is a positive parameter and w(m) is the

weight of transmission mode m given by (4.14). For the Boolean inter-

ference model Rl(m) = 1. For the other interference models the spectral

efficiency is given by (2.10) and (2.12). As mentioned, we study three dif-

ferent link weights

wl =

⎧⎪⎪⎨
⎪⎪⎩

1, unweighted

|[tl]1 − [rl]1|/ρ0, x-progress

|tl − rl|/ρ0, length.

When T is small, the probability of the transmission mode with the high-

est capacity is close to one.

To assure the required steady-state distribution, the transition proba-

bilities, p(m′,m), are chosen so that π shows detailed balance, i.e.,

p(m′,m)π(m′) = p(m,m′)π(m).

This is achieved using a proposal distribution q(m′,m) along with an ac-

ceptance/rejection procedure. The proposal distribution q(m′,m) gives the

probability that transmission mode m is the candidate to be selected as

the next transmission mode when the current transmission mode is m′.

When a proposal m with a higher capacity is accepted with probability 1,

a transition to a lower capacity, w(m) < w(m′), is accepted with probabil-

ity, r, that can be solved from the detailed balance equation,

p(m′,m)π(m′) = p(m,m′)π(m)

⇔ r · q(m′,m)π(m′) = 1 · q(m,m′)π(m)

⇔ r =
q(m,m′)π(m)

q(m′,m)π(m′)
,
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and is rejected otherwise. Note that r is always defined since a transition

from m′ to m can only occur if both q(m′,m) and π(m′) are nonzero.

When the proposal m is obtained by randomly choosing a link, l ∈ L,

and adding it to m′ if l is feasible and does not belong to m′ and removing

it from m′ if it does, we have q(m′,m) = q(m,m′) = 1/|L|, and

r = e−(w(m′)−w(m))/T . (4.19)

This equation is referred to as the Metropolis (acceptance) criterion.

Markov chain Mτ with the known steady-state distribution is simulated

to find transmission modes with near optimal capacity. As the tempera-

ture T is decreased, the samples come from a process that more and more

heavily favors modes with a large capacity.

4.4.2 Implementation aspects

In this section, we discuss implementation aspects of the simulated an-

nealing algorithm and some considerations that need to be taken into ac-

count in setting up the simulations.

General parameters

A key parameter of the simulated annealing algorithm is the temperature

of the system. When the temperature parameter is properly modified dur-

ing the optimization, the algorithm also eventually reaches the optimal

solution. One way to properly modify the temperature is to use logarith-

mic cooling, T (t) = γ/ log(1 + t), where t is the time and γ is a constant

that needs to be large enough [Haj88].

In order to avoid being stuck at local optima, the initial temperature,

that depends on γ, needs to be large enough. On the other hand, in order

to find the true optimum, the simulation time has to be long. That is, the

temperature at the end of the simulation needs to be very small. Using

the logarithmic cooling schedule this might take a long time (depending

on γ).

A linear cooling schedule, T (t) = γ/t, is faster than the logarithmic cool-

ing schedule and is not guaranteed to “freeze” the process to the optimal

state. However, using a linear cooling schedule it is easier to choose an ini-

tial temperature that is large enough for the process to explore the search

space and still have a low end temperature that “freezes” the process to a

good pseudo-optimal solution. This is a desired property especially when
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the simulation time is limited, and the discovery of the optimum cannot

be guaranteed (even using logarithmic cooling).

Figure 4.12 illustrates the performance of the two cooling schedules,

logarithmic and linear, as a function of the final temperature when the

simulation time is fixed to one million steps. From the figure one can

see that, though both schedules give nearly the same performance with

correctly chosen γ, that fixes the end temperature, the linear schedule is

much less sensitive to the selection of the parameter. The larger error

bars of the logarithmic schedule indicate that some simulation runs have

been unable to escape local maxima and have thus resulted in much worse

performance.
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Figure 4.12. The curves uα,θ
x (Tend) for the logarithmic and linear cooling schedules in a

one million step simulation with parameters α = 3, θ = 7, ν = 6.

As a conclusion, it is to be noted that when the simulation time is lim-

ited, the simulated annealing algorithm cannot be guaranteed to find the

optimal solution. Since both the initial and the end temperature are sig-

nificant to the end result, the parameter selection is easier with a linear

cooling schedule. We use a fixed simulation length and linear cooling.

Hence, the temperatures of the system form a harmonic sequence. The

effect of the end temperature is illustrated in Figure 4.13 for the different

interference models.

For the results to be generalizable to a plane, the simulated network

needs to be large enough. Under the Boolean interference model, the re-

quired size is larger than using SINR-based interference as can be seen

from Figure 4.14 that illustrates the capacity as a function of the expected

network size. This is due to the fact that the active links generate more

deterministic transmission patterns under the unrealistic Boolean inter-
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Figure 4.13. Example effects of tuning the temperature at the end of the simulation.
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Figure 4.14. The effect of the expected network size (number of nodes) on the network
capacity in the simulations.

ference model. To eliminate border effects, we identify the top and the

bottom of the square and the circular edges of the formed cylinder to form

a torus. Additionally, in the SINR-based model, we allow an interfering

signal to travel around the torus for a given number of rounds.

Next, we go through the characteristics of the different interference

models.

Boolean interference model

Under the Boolean interference model, the following version of the method

is more efficient. If we study a Markov process {M(t) ∈ M| t ≥ 0},

M(0) = ∅, where free links, l ∈ F (t) = F (M(t)), become active with rate

λl = λ exp{wl/T}, and active links, l ∈ M(t), deactivate themselves with

constant rate μl = λ, the steady-state probability of transmission mode m

is (4.18). The embedded discrete-time jump chain Mτ has the activation

probability of a free link l equal to

pl =
ewl/T∑

l′∈F
ewl′/T + |M |

. (4.20)

The deactivation probability of an active link l is p̄l = pl/ exp{wl/T}.

By simulating this Markov chain when T goes to zero, we are able to go

through “good” states in the course of the simulation without any rejected

jumps. The drawback comes from maintaining the set of free links, but

this cost is relatively small since the interference is local. If the network is

operated under a MAC protocol where the activation rate of free links and
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the deactivation rate of active links are the ones mentioned above, then

the (fixed) parameter T determines the fairness of the network. Small

T leads to a high capacity, but only the best links are able to catch the

channel, while larger T leads to more random behavior. The SA algorithm

takes the network to a highly unfair territory and finally “freezes” it to the

optimal transmission mode.

SINR-based interference models

We study square B = [0,
√
A]× [0,

√
A] of a plane with nodes placed accord-

ing to a PPP of density n. To estimate the amount of interference that is

not covered by considering the nodes of B, we calculate the fraction of in-

terference coming from outside a circle that can be fitted into B compared

to the interference coming from outside a circle with a radius that equals

the mean distance of a node to its nearest neighbor 1/2
√
n:∫ ∞

√
A/2

z n r−α 2πr dr∫ ∞

1/2
√
n
z n r−α 2πr dr

=
1√
nA

=
1√
N

, (4.21)

where N is the total number of nodes in the simulation area and z is the

fraction of transmitting nodes.

For example, if N = 100, less than 10 % of the interference is caused

by nodes outside the square. Such a residual interference may approx-

imately be taken into account by letting an interfering signal to travel

around the torus for a given number of rounds. Essentially, this is the

same as adding copies of B around it in a network that has not been

wrapped up to a torus (our implementation has 201 × 201 squares). This

way, we are able to accurately take into account most of the interference

coming from outside B.

Under the Shannon model, any two currently inactive nodes are eligi-

ble to form a link. Thus, the set of transmission modes easily becomes

too large to manage. To keep the simulation times feasible in the final

simulations, we limit the number of eligible receivers to, on average, 10

% of the closest nodes by setting the probability of long links to zero in

the proposal distribution. As the interference model heavily favors short

links, this significantly eases the computational burden. This is definitely

true in the interference-limited case, where long links, because of the in-

terference, are doomed to do more harm than they contribute to the total

capacity. In the noise-limited end of the curve, this may cause a small

anomaly to the transmission modes.
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In the noise-limited case, the fraction of transmitting nodes should ap-

proach 50 % as the role of interference is negligible, and it is always prof-

itable to form a link between any pair of free nodes. However, the capacity

of the longest active links is very small, and thus the temperature param-

eter has also to be very small for the steady-state probabilities of two

transmission modes, one with a long link active and one without, to dif-

fer significantly. Temperatures where this happens are no longer suitable

for the simulation as a whole. Hence, the SA algorithm is able to find a

good estimate for the capacity of a transmission mode (by practically ig-

noring the longest links) but is unable to find the optimal transmission

mode. The phenomenon is illustrated in Figure 4.15 where the fraction of

transmitting nodes is shown as a function of ν for the case α = 3. In the

greedy approach, links are activated in the order of their length, starting

from the shortest one, and the next feasible link is always left active if

it improves the total capacity. The greedy approach shows that it is pos-

sible to activate a higher fraction of nodes than what the SA algorithm

suggests without decreasing the capacity — in fact, the greedy approach

gives a marginally (small compared with the confidence intervals) better

capacity than SA. For larger values of ν, the SA algorithm outperforms

the greedy one.
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Figure 4.15. The fraction of transmitting nodes in the chosen transmission mode under
the Shannon model when α = 3 for a greedy approach and simulated an-
nealing.
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4.5 Numerical results for IFC

This section presents the numerical results for the instantaneous for-

warding capacity obtained using the two algorithms of this chapter. We

begin with the moving window algorithm and continue with simulated

annealing.

4.5.1 Results of MWA

In this section, we present the numerical results obtained by the moving

window algorithm and the extrapolation techniques of Section 4.3 for the

three cases: unweighted (A), weighted by x-progress (B), and weighted by

length (C) under both unidirectional and bidirectional Boolean interfer-

ence model. In addition to fixed transmission radius ρ, we consider trans-

mission radii freely adjustable up to this maximum value. In this case,

the parameter ν is defined to correspond to the mean number of neigh-

bors within the maximum range. The nodes are distributed according to

a PPP.

Unidirectional interference

We begin with the unidirectional interference model. Figure 4.16a shows

uι(ν) for the unweighted case (A) with both fixed and adjustable trans-

mission radius. With a fixed transmission radius the maximum occurs at

ν∗ = 2.7 and equals 0.32. The curve with power control is an increasing

one as all configurations that are feasible with a given maximum radius

are also possible with a greater maximum, and upper bounded by the the-

oretical maximum of 1/2, i.e., one link per two nodes, it tends to a limit

when ν → ∞. As can be seen, the limit is relatively close to the theoreti-

cal maximum, implying that the maximum gain (adjustable transmission

radius when ν → ∞ compared with fixed radius at ν∗) from a freely ad-

justable transmission radius in this setting is approximately 50 % (30 %

when both at ν∗).

Figure 4.16b presents u∗(ν) for the weighted cases (B and C) with a

fixed transmission radius and with the possibility to reduce the trans-

mission power to the minimum required. Even though the computational

complexity grows with the number of links, it is possible to simulate x-

progress with a fixed transmission radius up to the optimal size of the

neighborhood. The maximum occurs at ν∗ ≈ 10 and equals 0.20. In the

case of a length-weighted set (C), the number of links in the window is
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Figure 4.16. Function u∗(ν) for unidirectional interference with and without power con-
trol. The values for case A with fixed ρ are those extrapolated from Fig-
ure 4.9.

doubled compared to the second case, since we have to consider both di-

rections separately. Thus, we are not able to find the optimal neighbor-

hood size. As with the unweighted case, the curves corresponding to cases

with power control do not have a maximum but are increasing functions

of ν tending to a limit when ν → ∞. Again, the maximum gain from an

adjustable transmission radius seems to be close to 50 % in case B.

Bidirectional interference

As bidirectional interference (see Section 2.3.5) adds a new constraint for

a succesful transmission, the values of u∗(ν) are less than the correspond-

ing values with unidirectional interference. The unweighted case (A) with

the bidirectional interference model is presented in Figure 4.17a. The
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maximum with fixed transmission radius equals 0.27 and is achieved with

ν∗ = 2. The maximum gain from a freely adjustable transmission radius

is approximately 25 % (15 % when compared at ν∗).
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Figure 4.17. Function u∗(ν) for bidirectional interference with and without power con-
trol.

Figure 4.17b shows how ux(ν) and ul(ν) behave with bidirectional inter-

ference. The maxima are ux(7) = 0.17 and ul(5.5) = 0.21. The correspond-

ing approximate gains from an adjustable transmission radius are 20 %

and 15 % when calculated at ν∗.

Discussion

For reference, the most important numerical results from all cases have

been gathered in Table 4.1. Since the curves are flat near the maximum,

it is harder to determine the optimum neighborhood size than the max-

imum value itself (given with the accuracy of ±0.001). The values of ν∗
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Figure 4.18. Numerically evaluated curve for the functions u∗(ν) along with the low- and
high-ν asymptotic curves.

Table 4.1. Numerical results

unidirectional bidirectional

fixed adjustable fixed adjustable

ν∗ u(ν∗) u(∞) ν∗ u(ν∗) u(∞)

A 2.7 0.322 > 0.46 2.1 0.270 > 0.33

B 10 0.200 > 0.29 7.0 0.170 > 0.20

C > 7 > 0.33 > 0.38 5.5 0.210 > 0.24

are results of parabolic fits near the maximum and given with the accu-

racy of two significant figures. The lower bounds for the cases with an

adjustable transmission radius (and for unidirectional case C with a fixed

transmission radius) are based on the obtained maximum values.

As mentioned, the size of the binary tree places limitations on the fea-

sible simulation parameters (ν and p). Since the process is stochastic, the

number of links in the window may temporarily grow very large, and the

size of the tree may exceed the available memory. Thus, we are only able

to simulate cylinders wide enough until a certain value of ν in each case.

An adjustable transmission radius is always computationally more com-
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plex than a fixed one since it increases the number of conflict-free link

combinations and the size of the tree.

In the unidirectional case weighted by the x-progress (B) and in the

bidirectional cases, we do not have to consider both links between two

nodes. In case B, we never activate a link with a negative weight, and with

bidirectional interference, both the links are equal and only one of them

can be active. In these cases, it is possible to run simulations with higher

values of ν, but the number of links in the window stays continuously on a

high level, and the simulations are slow. The results are presented as far

as it has been possible to proceed in a reasonable time using a computer

with at most 16 GB memory.

Finally, we compare the numerical results with the asymptotic results of

Section 4.2.1. Figure 4.18a presents these for uι(ν) and Figure 4.18b for

ux(ν) with unidirectional interference. Figures 4.18c and 4.18d present

the corresponding curves with bidirectional interference. As can be seen

from these figures, even the rudimentary analysis seems to yield a plau-

sible asymptotic behavior for large ν. However, the figures also show that

asymptotes alone do not characterize the curves accurately in the most

interesting parameter area.

4.5.2 Results of SA

This section presents the results that have been obtained using simu-

lated annealing. The results for the Boolean interference model are com-

pared with earlier results obtained by the MWA in the two studied cases:

weighted by x-progress and weighted by length. The results for the SINR

threshold model are presented for different combinations of α and θ. The

results for the Shannon model are presented last. The nodes are dis-

tributed according to a PPP.

The SA algorithm produces as a result the maximum weight of a trans-

mission mode w(m) (4.14) for a finite network realization. When the refer-

ence distance is chosen suitably, ρ0 = 1/
√
n, the dimensionless functions

can be calculated simply as u∗(ν) = w(m)/N , where N is the expected

number of nodes in the network.

Boolean interference model

Figure 4.19 represents ux(ν) and ul(ν) compared with the corresponding

values from the MWA. As can be seen from the figure, the results are

consistent and verify the operation of the SA method. In addition, SA is
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able to produce results for larger neighborhood sizes than MWA that is

limited by the number of links inside the window (memory requirements

determined by the size of a decision tree grows exponentially with the

number of links).

The data points of Figure 4.19 are averages over ten network realiza-

tions with the average of 1000 nodes. The 95 % confidence intervals are

hardly visible. The temperature at the end of the 5-million-step simula-

tion was selected to be 1/102.5 ≈ 0.003 (see Fig. 4.13). The computer time

required for a single annealing run with the used parameters varies from

10 minutes (with small ν in the case of the second weight model (B), i.e.,

the length of the x-projection of the link) to 5 hours (with large ν in the

case of the third weight model (C), i.e., the undirected length of the link).
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Figure 4.19. Curves ux(ν) and ul(ν) under the Boolean interference model. The results
for SA coincide with the earlier ones and are obtained for a larger range of
ν.

SINR threshold model

Figure 4.20 shows the curve uα,θx (ν) for different combinations of α and

θ. The results are averages over 5 network realizations with the mean

network size of 800 nodes. The 95 % confidence intervals are shown as

error bars. The end value of the temperature parameter T was chosen to

be 0.01 after the 20-million-step simulation. As predicted in Section 4.2.2,

the curves are increasing functions of ν. The figure also matches with the

deductions for α and θ.

Threshold θ has a notable significance when ν is small while α has al-

most no importance. When ν is small, interference has very little role

in constituting the capacity as the problem revolves around being able to
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form the links. Thus, the attenuation coefficient α is less important than θ

that directly affects the spectral efficiency of the links that can be formed.

When the mean number of neighbors, ν, grows, the effect of α increases

as the interfering signals and their attenuation become more important.

In this case, higher α naturally leads to higher capacities. The effect of θ

with larger ν is not straightforward, but the SINR threshold value that

maximizes the capacity depends on the neighborhood size. Figure 4.21

depicts the curve uα,θx (θ) for different values of ν when α is equal to three.

From the figure, it can be seen that when ν is small a higher threshold

leads to better performance, but the optimal θ becomes smaller as ν grows.
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Figure 4.20. The results for the SINR threshold model weighted by the x-progress.
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Figure 4.21. The curve uα,θ
x (θ) for the SINR threshold model weighted by the x-progress

when α = 3 and ν varies.

Figure 4.22 illustrates the percentage of transmitting nodes in the opti-

mal transmission mode as a function of ν. When parameter α grows, the

interference attenuates faster, and more links can be activated. Thresh-
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old θ has an opposite effect. When the threshold grows, a higher SINR

value is required for a successful transmission, and a smaller fraction of

the links can be activated. The curves start leveling off when ν grows in-

dicating that the asymptotically optimal transmission mode starts to be

established already with relatively small values of ν.
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Figure 4.22. The fraction of transmitting nodes under the SINR threshold model
weighted by the x-progress.

Shannon model

In Figure 4.23, the simulation result for the function uαι (ν) are presented

for different values of α. This function captures all the information about

the maximal capacity per node in the considered model as a function of

ν. Figure 4.24 illustrates the corresponding percentage of transmitting

nodes in the optimal transmission mode as a function of ν. Both curves

exhibit a transition around the value ν ≈ 1.

The results are averages over 100 network realizations with the average

of 250 nodes. The 95 % confidence intervals are shown as error bars. The

temperature at the end of the 5-million-step simulation was selected to be

0.1 (see Fig. 4.13b). The computer time required for a single annealing

run with the used parameters was at most one hour.

The deduction of Section 4.2.3 that it is always the same mode of ac-

tive links that realizes the optimum in the interference-limited case is

reflected in Figures 4.23 and 4.24 in that both curves level off for large ν,

becoming independent of it. The difference between the end points of the

curves is almost constant showing that the interference-limit capacity is

approximately linear with respect to α.
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Figure 4.23. The results for the unweighted Shannon model, i.e., the per-node spectral
efficiency.
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Figure 4.24. The fraction of transmitting nodes under the unweighted Shannon model.

In the noise-limited case, the fraction of transmitting nodes should ap-

proach 50 %. The value in Figure 4.24, however, is still less than 45 %.

This is mainly due to the fact that the links left out have a negligible

weight and are thus easily turned off by the algorithm even in small tem-

peratures, and partly due to the discussed artefact in the simulation.

Figure 4.23 verifies that uαι (ν) is an increasing function of ν. Though

also the total capacity of the optimal transmission mode m is increasing

function of ν, the mode that realizes the maximum changes as ν increases.

This can be seen from Figure 4.24 around the value ν ≈ 1. That the

fraction of active nodes goes down when ν increases through the transition

region is quite understandable. For small ν the interference plays no or

only a minor role and it is advantageous to activate as many links as

possible, favoring the good ones, i.e., the short ones. When ν increases and
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interference becomes appreciable, the trade-off changes and it becomes

advantageous to switch off some links in favor of the capacity of some

others.

Figures 4.25 and 4.26 show function uαx(ν) for different values of α and

the corresponding fraction of transmitting nodes in the optimal transmis-

sion mode. The data points of the figures are averages over 100 network

realizations with the average of 250 nodes. The 95 % confidence intervals

are shown as error bars. Though the interval for ν is shorter, the asymp-

totic characteristics start to be similar to the unweighted case. The curves

are an upper bound for curves uα,θx (ν) with the same α and any threshold

θ. They are also an upper bound for graded SINR threshold model that

allows the use of multiple thresholds to better utilize the potential of the

links, and illustrates the gain that can be achieved with perfect adaptive

coding and modulation.
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Figure 4.25. The results for the Shannon model weighted by the x-progress of the links.

4.6 Summary of Chapter 4

In this chapter, we obtained an upper bound for the forwarding capac-

ity by studying the maximum amount of traffic that can be forwarded in

a single time slot. Under the Boolean interference model, the problem

is essentially a maximum weight independent set problem. The SINR-

based interference model cannot be described using a simple interference

graph, but the problem is still to find the asymptotic weight of the max-

imum weight independent set of links per unit area when the network

domain approaches an infinite plane. With an appropriate weight, the

maximum weight independent set of links gives us the IFC, i.e., the above
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Figure 4.26. The fraction of transmitting nodes under the Shannon model weighted by
the x-progress of the links.

mentioned amount of traffic that can be forwarded in a single time slot.

The best transmission mode cannot be used all the time with multihop

traffic, and its performance is thus an upper bound for the performance

with continuous traffic. In the single-directional case, referred to as the x-

progress, the density of progress is maximized when a link is weighted by

the length of the projection of the link on the x-axis. Respectively, in the

multidirectional case, where we have traffic in every direction, the links

were weighted by their length. The case weighted by the length of the

links provides an upper bound for all the cases with continuous traffic.

In addition to the previous two cases, we studied an unweighted case.

This is a problem of stochastic geometry that relates to the question of

the largest possible number of simultaneous successful transmissions, i.e.,

the spatial reuse in wireless multihop networks. In addition to this, the

maximum weight independent set problem appears frequently in the con-

text of wireless networks. For example, the maximum weight scheduling

algorithm in Section 3.3.1 requires solving a MWIS problem, where the

weight of a link is determined by a queue length difference in every time

slot. The sub-problem of the column generation algorithm also involves

solving a MWIS problem (see Section 3.2.1).

To find numerical values for the IFC, we implemented two simulation

algorithms. The moving window algorithm is suitable for the Boolean in-

terference model that has a fixed transmission and interference range. It

is able to find the maximum weight independent set of links in a network

whose height is limited, but the other dimension can be made arbitrar-

ily large. By studying the results as a function of the network height,
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we were able to extrapolate to the infinite plane. The second algorithm,

simulated annealing, allowed us to study more complex SINR-based in-

terference models. Because of its probabilistic nature, SA is only able to

find approximate solutions. Comparisons with the MWA showed that the

results match, and the algorithm is practicable for obtaining numerical

values for the IFC. The numerical results were compared to the asymp-

totic behavior of the IFC.

Later on, we will see how the obtained upper bound compares against

the results for the actual forwarding capacity. It is easy to see that the up-

per bound will be loose when the network is sparse, as a single transmis-

sion mode can have a substantial weight before the network even becomes

connected. When the network gets denser, the upper bound is bound to

get better. As the number of transmission modes grows, a good mode can

be selected for every time slot. Dense networks are also the area where

bounds are needed as simulating continuous flows becomes computation-

ally challenging.
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In the previous chapter, we studied how much information can be relayed

in a single time slot. Now, we study the same question with multihop traf-

fic, i.e., we attempt to find the microscopic level forwarding capacity (FC)

of the network, as defined in Section 3.5.2. The forwarding capacity de-

scribes the network’s capability to relay information. It is defined as the

maximum sustainable mean density of progress, i.e., the density of pack-

ets multiplied by their mean velocity in their respective directions. The

term single-directional forwarding capacity is used in a situation where

all the traffic is flowing in the same direction, in contrast to the multidi-

rectional forwarding capacity that depends on the directional distribution

of the traffic.

Finding a coordinated scheme or schedule that forwards the traffic ef-

ficiently is referred to as the microscopic level problem in the separation

of scales (see Section 3.5). How efficiently the forwarding is done limits

the amount of traffic that can be routed through the network. The macro-

scopic level traffic load cannot exceed the FC at any point of the network.

If time sharing between the directions is used, then the single-directional

forwarding capacity sets the upper bound. In general, the traffic load is

upper bounded by the multidirectional forwarding capacity for the result-

ing directional distribution. Significant gains compared with time sharing

can be achieved by exploiting multidirectional forwarding.

The contents of this chapter are briefly the following. We present three

numerical algorithms to study the maximum achievable forwarding ca-

pacity. The interference is modeled using the Boolean interference model,

and the node locations are assumed to follow a homogeneous PPP. Algo-

rithms based on the LP formulation of the problem are used to obtain

bounds. Finally, a more accurate estimate is obtained using GMWS. We

conclude the chapter with a discussion on how the results on the micro-
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scopic level forwarding capacity can be combined with the macroscopic

level routing problem. We also consider the implications of multidirec-

tional forwarding on the solution of the routing problem. The following

section further elucidates the forwarding capacity problem and the con-

tents of this chapter.

5.1 Forwarding capacity problem

The multidirectional forwarding capacity describes the capability to for-

ward traffic with a given directional distribution in an infinite network.

This sets an upper bound for the allowed macroscopic level load. The lo-

cal traffic load at any point of the network should not exceed the available

capacity. Thus, the task at the microscopic level is to find a coordinated

forwarding scheme that is as efficient as possible. The multidirectional

forwarding capacity is defined as the maximum sustainable mean density

of progress, i.e., the density of packets multiplied by their mean velocity

in their respective directions. It depends on the directional distribution of

the traffic.

Regardless of the directional distribution, it is always possible to use

time sharing between the directions. In this case, traffic is transmitted

to a single direction at a time, and the direction is changed between time

slots to serve the specific directional distribution. As this can be done with

an arbitrary directional distribution, the single-directional forwarding ca-

pacity, I∗1 of (3.11), is of special interest.

Significantly higher capacities can be achieved by exploiting the fact

that traffic flowing in different directions can be interleaved in the micro-

scopic level scheduling. Our objective is to evaluate the gain from the mul-

tidirectional forwarding compared with only single-directional forwarding

in certain special cases, namely balanced bidirectional and balanced four-

directional cases. The corresponding forwarding capacity is denoted by I∗2

or I∗4 , respectively. We use the word balanced to describe a traffic pattern

where the traffic streams are equal in the different directions.

We study the forwarding capacity with the three mentioned traffic pat-

terns. Throughout this chapter we only consider the Boolean interference

model and possibly its variant with an adjustable transmission range.

The methodology is based on the results presented in Sections 3.2 and 3.3.

We specifically apply two LP-based formulations and a greedy version of

maximum weight scheduling. This results in a certain setup for the max-
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imal flow problem, where the sources and sinks lie at the opposite edges

of a large but finite square-shaped network and traffic is relayed through

the network. Under our network assumptions, the forwarding capacity

depends only on the mean number of neighbors, ν. The achieved forward-

ing capacity is evaluated as a function of this, and also of the network size

to allow extrapolation of the results to an infinite network.

The first LP formulation uses the clique constraints to address the single-

directional forwarding capacity. A heuristic polynomial time algorithm is

derived for approximating the complete set of constraints resulting from

identifying all maximal cliques. The approximation still yields an upper

bound for the total achievable single-directional forwarding capacity. The

results significantly tighten the previous single-slot results on the upper

bounds of the single-directional forwarding capacity with small neighbor-

hood sizes. The clique approximation algorithm is presented and analyzed

in Publication II.

The second LP-based approach is to construct an algorithm that searches

for a densely packed set of pairwise non-interfering paths. Within these

paths, scheduling of the links is trivial, as under the used Boolean in-

terference model and fixed transmission radius, every third link can be

active simultaneously in the single-directional case. If there is simulta-

neous traffic in both directions (balanced bidirectional case), every second

link can be activated. The path algorithm is computationally efficient and

can be applied to very large network realizations. As it results in an ac-

tual schedule, it gives a lower bound for the forwarding capacity. The

algorithm is presented and analyzed in Publication IV.

Finally, we apply greedy maximum weight scheduling where we simu-

late a large network in discrete time and the decision about the resource

allocation in each time slot is based on the current queue-length-based

weight of each link. It is well known that maximum weight scheduling

is able to achieve the capacity limit. This means that if it were possible

to realize the scheme ideally, the simulations would result in the actual

value for the sought-after forwarding capacity. However, the ideal applica-

tion of maximum weight scheduling entails solving the maximum weight

independent set problem in every time slot, which is infeasible for the net-

work sizes we consider. Hence, we use a greedy algorithm which can be

realized more efficiently but, being suboptimal, results in a lower bound

for the forwarding capacity. The algorithm is presented in Publication IV

that covers the single-directional case both when the transmission radius
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is fixed and in the case where it can be reduced (by power control) so as

to just reach the destination to minimize the interference. In Publication

VIII, we present the multidirectional case for balanced bidirectional and

balanced four-directional traffic.

5.2 LP formulations

The linear programming formulation (3.1) of the maximum capacity prob-

lem is computationally complex and, in practice, infeasible for large net-

work sizes. By using only a subset of the necessary constraints, it is how-

ever possible to obtain upper/lower bounds. In this section, we present two

algorithms. The first, clique approximation algorithm, produces an upper

bound for the max flow and the corresponding single-directional forward-

ing capacity. The second, path scheduling algorithm, gives a lower bound.

It also gives a separate higher lower bound for balanced bidirectional traf-

fic.

5.2.1 Clique approximation algorithm

Before presenting the algorithm for generating a set of clique constraints,

we briefly recapitulate the main ideas behind the clique formulation of

the max-flow problem (3.3).

Each link in the network corresponds to a vertex in the interference

graph, and two vertices are adjacent if the corresponding links interfere

with each other. Vertices in a clique are all pairwise adjacent, and hence

only one of the corresponding links can be used at a time. This means that

a constraint that limits the capacity of a maximal clique in the interfer-

ence graph to C is a necessary condition for a feasible flow. By replacing

the constraint considering the time shares of the transmission modes with

constraints for the clique capacities, we get an upper bound for the max-

imum value of a flow in the network. These constraints can further be

replaced by similar ones considering the flow. If the flow satisfies these,

the capacities could always be chosen to match the flow, and the only de-

cision variable is the flow.

Although the method only gives an upper bound, the local nature of

cliques makes it usable with large networks. Maximal transmission modes

consist of links from all around the network while the links of a clique are

96



Forwarding capacity

close to each other. Hence, the number of transmission modes can grow

much faster than the number of cliques as the network is made bigger.

The problem of finding a maximum clique is NP-hard [GJ79]. It is com-

putationally equivalent to finding a maximum independent set through

the concept of complement graph. This means that though the clique for-

mulation of the LP problem is simpler, it is still not usually possible to

generate the constraints explicitly for a given large network in a feasi-

ble time. Next, we propose a clique approximation algorithm (CAA) for

reducing the size of the problem.

Algorithm

If the number of constraints (cliques found) in the problem is reduced, the

obtained result is still an upper bound but a looser one. We try to limit

the size of the problem, and the time required for creating it by using the

following algorithm to find a subset of maximal cliques in the interference

graph. For the same reason, to limit the size of the problem, we focus on

the single-directional forwarding capacity. This means that all the traffic

is going to the same direction. As the microscopic level transport network

appears to be infinite, the situation is symmetric for an isotropic point

process such as the PPP, and the choice of the direction is arbitrary. We

assume traffic from left to right. In the simulations we generate this relay

traffic by placing artificial sources on the left side of the network and sinks

on the right side (see Section 5.4.1).

The algorithm works as follows. For every forward link in the network,

i.e., a link that has positive progress in the direction of the packet flow, we

create one maximal clique as explained next. In addition to the original

link, all the links with the receiving node same as the transmitting node

of the original link and all the links with the transmitting node same as

the receiving node of the original link are added to the clique (they always

interfere with each other since the transmitting node of the original link

hears the transmissions from the receiving end). This way we rule out

the possibility of any of three consecutive links to transmit at the same

time. After this other links are added to the clique in some order until the

clique is maximal. The algorithm is also presented in Table 5.1, and its

complexity is of the order of O(|L|3)

Example

Let us consider the following network of 11 nodes and 24 links presented

in Figure 5.1. Nodes 1 and 2 serve as sources while 10 and 11 are sinks.
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Table 5.1. Clique approximation algorithm

0. i := 0

1. forall l ∈ L do

2. if l is a forward link do

3. i := i+ 1

4. Ci := {l}
5. forall a ∈ L \ Ci do

6. if t(a) = r(l) ∨ r(a) = t(l) do

7. Ci := Ci ∪ {a}
8. end if

9. end for

10. forall a ∈ L \ Ci do

11. if forall ã ∈ Ci : {a, ã} ∈ L(I) do

12. Ci := Ci ∪ {a}
13. end if

14. end for

15. end if

16. end for

The interference graph resulting from the Boolean interference model is

depicted in the left subfigure of Figure 5.2. Note that only links with

positive progress (receiving node closer to the sinks) are drawn to make

the figure more readable. The nominal link capacity is normalized to be

equal to one (C = 1).
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Figure 5.1. The example network of 11 nodes.

A schedule resulting in a maximum flow in the network is represented in

Table 5.2. The value of the flow is 7/12. This consists of the capacity of the

upper path, 1/3, and the capacity of the lower path which is 1/4. The clique
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Figure 5.2. The iterference graph and its complement when only forward links are
drawn.

Table 5.2. Schedule

# transmission mode timeshare

1. 1 → 3 2 → 4 8 → 10 9 → 11 1/4

2. 3 → 5 7 → 9 1/4

3. 4 → 6 5 → 8 1/4

4. 1 → 3 6 → 7 8 → 10 1/12

5. 3 → 5 6 → 7 1/12

6. 6 → 7 5 → 8 1/12

formulation (3.3) gives a higher optimum of 2/3. This means that the

optimality gap due to the relaxation is 1/12. The same result is obtained

using only the 12 cliques (10 different) produced by the algorithm of Table

5.1. The total number of maximal cliques is 27, and there exists a total of

74 (maximal) transmission modes.

The results for the original problem with transmission modes and for

the clique formulation of the problem start to differ when the mean node

degree is large enough so that the “paths”, used to transfer packets from

one side of the network to another, begin to interfere with each other. This

can be seen in the example where the upper and lower paths are clearly

visible. The clique approximation algorithm is still able to produce the

same result with the full clique formulation as the number of interfering

paths is only two. When the number of interfering paths grows, the al-

gorithm is only able to describe the interference caused by a single clique

in the interference graph per forward link. If the interfering paths do not

share a common clique then some of the pairwise dependencies might be

missed.
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5.2.2 Path scheduling algorithm

As the clique formulation gives an upper bound for the feasible flow, it

does not result in an actual schedule (as such schedule usually does not

exist). Now, we approach the problem from the opposite direction and try

to find a schedule that is easy to construct yet reasonably efficient. In

this section, we construct an algorithm for finding a densely packed set of

paths whose links do not interfere with the links of other paths and that

connect the sources and the sinks on the opposite sides of the network.

Again, we study the microscopic level relay traffic that has been generated

to the relay network by artificial sources on different sides of the network.

We utilize this idea to obtain a lower bound for the forwarding capacity.

The used methods bear similarities to those of geographic routing [Sto02].

By identifying non-interfering paths, scheduling under the Boolean in-

terference model becomes trivial. When the paths are chosen in the way

that, in addition to the previous and following link, a transmission only

interferes the reception of the link preceding the previous one, every third

link in a path can be activated if all the active links point towards the

sink. Thus, it is possible to schedule a (single-directional) flow of C/3

for a single path. This can be done with only three transmission modes.

Path scheduling also clearly illustrates the benefit of multidirectional for-

warding. With bidirectional traffic, every other link on a path may be

activated, as the direction of the active links alternates. Using four trans-

mission modes, it is possible to schedule a flow of C/2 for a single path.

With respect to the classical max flow problem, this means that we fix the

schedule to consist of the three or four transmission modes. As a result

the capacity of the links that are not between the nodes of a path is zero.

The operation of the path scheduling algorithm (PSA) is presented next.

Algorithm

The transport network with the average of N nodes resides in a unit

square that has a strip of sources added to the left side and another strip

of sinks added to the right side. The width of the added strips is ρ since

it is not possible to form links with the nodes of the network from farther

away, see Figure 5.3a.

The algorithm starts from the uppermost source (towards right) and

then chooses the leftmost neighbor to be the next hop. The leftmost neigh-

bor is the neighbor that forms the largest angle ([−π, π]) with respect to

the current direction of the path. Note, that the neighbors on the right

100



Forwarding capacity

(a) Paths in a small network (b) Paths in a large network

Figure 5.3. Examples of the operation of the path search algorithm.

have negative angles. The leftmost neighbor is chosen with one exception:

the path is not allowed to cross itself, and such neighbors are ignored. The

selection of the next hop is illustrated in Figure 5.4. In the figure, we have

a path traversing through nodes 1 and 2 to node 3 that has four neighbors

(A, B, C, and D) in addition to the used node 2. Continuation to node A

forms the largest angle with respect to the current direction of the path

(marked with an arrow), but would cause the path to cross itself. Instead,

node B is chosen because of the second largest angle. Note that the angle

created with node D is negative.

1

2

3
A

B

C

D

Figure 5.4. Next-hop selection using the path search algorithm.

The algorithm continues the path until it reaches an exception. The

handling of the exceptions is done in the following way:

• If the path comes to a dead end (no available neighbors), the algorithm

returns to the previous node.
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• If the algorithm returns to the source, no path from this source can be

found. The algorithm continues from the next source.

• If the algorithm reaches another source, then no path from this source

and the nodes along the way can be found and they can be ignored later.

The algorithm continues from the next source.

• If the algorithm reaches a sink, we have found a path and continue the

algorithm from the next source. The nodes belonging to the path and

their neighbors are ignored later.

The search is continued until all the sources have been gone through.

The paths that the algorithm finds do not interfere with each other, but

it is still possible that the links of the path interfere with other links of

the same path in a way that it is not possible to schedule a C/3 flow to

the path. Nevertheless, it is always possible to pick a subset of the nodes

from the original path to form the interference-free path. This can be done

by starting from the sink and always choosing the neighbor that has the

smallest index in the path to be the previous node in the interference-free

path. Now, the formed links do not interfere with each other since the

supposedly interfering node would transmit directly to the receiver in-

stead of interfering it. The phenomenon can be seen in the lowest path of

Figure 5.3a, which illustrates the set of paths for a small network, where

the algorithm advances using the dashed lines, but the packets need to be

transmitted along the solid line.

Network size

It is easier to connect the sources to the sinks through a small network.

For example, in a finite network there is always a positive probability for a

non-zero flow, while in an infinite network a positive flow becomes possible

only above the percolation threshold (ν ≈ 4.5). Thus, the simulations

should be done in a network with a sufficient number of nodes for the

results to be meaningful when considering the infinite network. When the

simulations are conducted in a finite network, there are two border effects

causing an error to the quantity of interest, the density of the paths in the

vertical direction, and hence to the achievable forwarding capacity.

The horizontal effect depends on the length (in hops) of the paths. If

the distance between the sources and the sinks is only a few hops, the
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existence of the paths is more probable. When the number of nodes in the

network, N , is increased, the capacity goes down. The vertical effect is

caused by the fact that the top and the bottom of the network confine the

paths to a limited area. Thus, the behavior of the paths is different near

the borders, and the interesting quantity, the number of paths per height

unit, differs from that in the middle of the network. This can be seen in

Figure 5.3b. When the size of the network is increased, the relative area

that is wasted due to the artificial limitations decreases, and the capacity

goes up.

As can be seen from Figure 5.5 (solid lines), horizontal effect, dominat-

ing with small networks, dies out faster than the vertical effect. Thus, the

capacity first goes down rapidly and then slowly starts to increase. The

combined effect of the two is that u(N) approaches the asymptotic value

from below. It is also possible to calculate the number of paths originating

from the middle part of the network, e.g., by adding some extra space on

top of and below the network residing in the unit square. In this case, the

capacity approaches the asymptotic value from above as can be seen from

Figure 5.5 (dashed lines).
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Figure 5.5. The effect of network size on u using the path search algorithm (single-
directional traffic).

5.3 Greedy maximum weight scheduling

In this section, we describe a method for resolving the problems related to

finding a feasible way to schedule the transmissions efficiently. It is based

on the maximum throughput policy presented in Section 3.3.1. While be-

ing suboptimal, greedy maximum weight scheduling offers a practical ap-
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proach to multiclass traffic from the network simulation point of view. The

different traffic classes can be used to represent traffic flows in different

directions. This allows us to study the gain from the multidirectional for-

warding compared with only single-directional forwarding in certain spe-

cial cases. The covered cases include two opposite directions with equal

flows, f(ϑ) = (δ(ϑ)+ δ(ϑ−π))/2, and the four cardinal directions with bal-

anced flows, f(ϑ) = (δ(ϑ) + δ(ϑ− π/2) + δ(ϑ− π) + δ(ϑ− 3π/2))/4. We will

find that the corresponding limits I∗2 and I∗4 indeed can be considerably

greater than I∗1 depending on the network parameters. We also modify

the basic greedy maximum weight scheduling algorithm to be more suit-

able for traffic flowing in the four cardinal directions.

5.3.1 Original algorithm

The maximum throughput policy that stabilizes the network for all ar-

rival rates of multiclass traffic for which it is stabilizable [TE92] was

presented in Section 3.3.1. In our setting, the customer classes of the

algorithm correspond to the traffic flows in different directions. In the

simulations, the classes are discrete. Generally, the traffic in the direc-

tion increment (ϑ, ϑ+ dϑ) is equivalent to a class. The original algorithm

also allows multiple link capacities, but here all the links are assumed to

have the same nominal capacity.

The algorithm has three stages. In time slot t, the first stage is to calcu-

late a weight wt
l for each link l ∈ L as using (3.6). In the second stage, a

maximum weight transmission mode is selected (3.7). Finally, in the third

and last stage, we get the information about the activated links in binary

form, E(t), at time slot t from (3.8).

In each time slot the policy finds the transmission mode that is of the

maximum weight. Since all the links have the same nominal capacity, the

weight of each link is simply the maximum (over the classes) difference in

the queue lengths between the transmitting and receiving end of the link.

A link in the maximum weight transmission mode is always activated if

the transmitter has a packet to send.

In [TE92], the packets arrive to the source nodes at certain rates. At the

beginning, the number of packets in the network is small, and a notable

number of links may have the same weight. As there is no way to differ-

entiate between transmission modes of maximum weight, the scheduling

decision is more random. This leads to suboptimal performance, and the

queue lengths increase. As the queues grow, some of the ties are resolved,
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and eventually the scheduling policy stabilizes the system whenever pos-

sible. This might take a long time.

We use a fixed queue length, q0, at the sources. This, in a way, sets the

network directly at the stability limit. It also fixes the set of possible link

weights and deteriorates the performance if the level is too low. The choice

of q0 is eventually a compromise. Long queues reduce the probability that

the weights of two links are equal but require a longer initial transient in

the simulations.

5.3.2 Basic greedy algorithm

If it were possible to run the maximum weight algorithm properly, we

could find out the true forwarding capacity. Unfortunately, finding the

maximum weight transmission mode (3.7) is NP-complete. Because of the

limitations in the computing capacity and the large network size, it is

necessary to simplify the problem. Therefore, we choose the links of the

transmission mode in a greedy fashion.

In the basic greedy algorithm, the used transmission mode is chosen in

each time slot in the following fashion. The links are sorted in the de-

scending order according to their weigth (3.6). The heaviest link is added

to the transmission mode, and all the links interfering with it are removed

from the list of possible links. The next heaviest link (that does not inter-

fere with first one) is then added to the transmission mode. Again, the

links interfering with the added link are removed from the list. The pro-

cedure is continued until there are no links left to add to the transmission

mode, i.e., the mode is maximal.

The basic greedy algorithm works well in all the cases when ν is small.

When ν is very large, however, better results are obtained in the case

of traffic in four cardinal directions by making time sharing, with equal

shares, between the two pairs of opposite streams and applying the greedy

algorithm for one pair in turn. This behavior can be understood as follows.

According to Section 4.2.1, if links can be arbitrarily placed on a continu-

ous plane, then the most efficient way of packing them for carrying traffic

in the horizontal direction is to form vertical columns of horizontal links.

The Boolean interference model sets no limit on how close two parallel

links of maximal length, ρ, can be. When the direction of the columns

alternates, the endpoints close to each other are all either transmitters or

receivers and a small distance ε is enough between the columns.
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The above suggests that for a high ν, when there are nodes almost ev-

erywhere, a good strategy is to try to form vertical columns. Since the

transport network is very dense, the same kind of transmission mode can

be used in every time slot. The configuration is just rotated and/or moved

by ε resulting in a flow where the same packet is moved once in every

ρ/ε time slots allocated for this pair of opposite directions. Thus, packets

traversing in two opposite directions are transmitted in a single time slot,

and different directions are handled via time sharing.

In order to have a single algorithm that covers all values of ν in the case

of equal traffic streams in the four cardinal directions, we developed an

improved algorithm described in detail in the next subsection.

5.3.3 Improved greedy algorithm

In the basic greedy algorithm, as described, the links are ordered in a list

according to their weights. The links are chosen from this list starting

from the link with greatest weight and skipping links that are in conflict

with some of the already chosen links.

In the improved algorithm we introduce two parameters, one discrete,

k = 1, 2, and one continuous, β ∈ [0, 1]. For given values of k and β, the

algorithm works as follows. First, the greatest weight of all the links,

wmax, is found. Then, priority is given to the pair k of opposite streams,

k = 1 corresponds to the left-right pair, and k = 2 corresponds to the up-

down pair. Weights (3.6) are calculated taking into account only the two

customer classes in the preferred pair of directions. Links are ordered

according to these weights and conflict-free links are chosen as in the basic

greedy algorithm from this list, starting from the link with the greatest

weight, as long as the weight exceeds the value β · wmax. After this point,

the weights (3.6) are calculated for all the remaining links taking into

account all four customer classes and links are chosen as in the basic

greedy algorithm.

For each setting of the parameters (k, β) we get a different algorithm

yielding a different set of selected links with associated total weight. In

principle, we could make an optimization to find the parameters that give

the highest total weight in each time slot, to become as close as possible

to the max weight scheduling. However, making such an optimization in

every time slot for the continuous parameter β would be too time consum-

ing. Therefore, in the algorithm we use a fixed value of β, the same in all

time slots. This value is, however, optimized externally to give maximal
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flow for a given ν. Optimization over the two values of k is done explicitly

in each time slot, i.e., both values are tried, and the one that gives the

higher total weight is selected.

Note that when β = 1 the algorithm reduces to the basic greedy algo-

rithm. One can also see that when β = 0 the result cannot be worse than

time sharing between the two pairs of opposite directions. Hence, with

the optimized k and β, we always get results that are at least as good as

those of the two simpler algorithms.

5.4 Numerical results for FC

This section presents the numerical results for the forwarding capacity

obtained using the algorithms of this chapter. We begin with the two LP-

based algorithms and continue with greedy maximum weight scheduling.

5.4.1 Results of CAA

At the microscopic level the network appears as an infinite one. The idea

is to approximate this network with a finite, but large, one where the

relay traffic flows, e.g., from left to right. A unit square with the average

of N nodes distributed according to a spatial Poisson process represents

the relay network, and a strip of sources is laid on the left side of the

square and a similar strip of sinks on the right. One transmission range ρ

is a sufficient width for the strips since no longer links can be established.

Finally, the top and the bottom of the network are connected to reduce

harmful border effects. An example network with ν = 10 and N = 1000 is

depicted in Fig. 5.6. After solving the optimization problem (3.3) with the

reduced set of clique constraints from the algorithm of Table 5.1, we get

an upper bound for the maximum flow from left to right (note that this is

a single-directional flow). Since the network resides in a unit square, we

have u = w(f)/
√
N .

To properly simulate the operation of an infinite network, N needs to be

as large as possible. Due to the computational limitations, it is not pos-

sible to solve the problem for sufficiently large networks when the mean

degree of a node, ν, is large. Because it is easier to establish a flow through

shorter paths, the price to pay for a smaller network is that we get a looser

upper bound. The border effect caused by the left and the right sides of

the network, where the sources and sinks are located, is illustrated in Fig.

107



Forwarding capacity

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5.6. Transport network with ν = 10, N = 1000.

5.7, which shows u as a function of the system size N for ν = 7. The figure

also shows the rate at which the network starts to resemble an infinite

network.
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Figure 5.7. The effect of the network size on u of I∗1 , when using CAA.

Fig. 5.8 represents u as a function of ν obtained using the CAA with

N = 500 as well as the 95% confidence intervals. The figure also depicts

the maximum capacity achievable in one time slot (see Section 4.5) and

a result from an actual forwarding method, namely the opportunistic for-

warding method [ALV06, Nou07], that is a variant of ExOR [BM05]. As

can be seen from the figure, the upper bound provided by the LP approx-

imation is much tighter than the IFC, the one-slot maximum, when the

mean degree of a node is small. On the other hand, when ν increases even

the relaxed LP problem becomes too complex, and the results of Chapter 4

remain as the only available upper bounds.
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Figure 5.8. The dimensionless function u(ν) of I∗1 with 95 % confidense intervals.

We finally comment on the relationship between the IFC and the achiev-

able flow for large ν. The maximum total progress in one time slot gives

an upper bound for the total progress achievable with feasible flows. This

is intuitive since in a continuous flow the best possible progress cannot be

achieved in every time slot. When the mean degree of a node is relatively

small, the upper bound should be loose. For example, just before the net-

work becomes connected the feasible flow is still zero, but there are plenty

of links that can contribute to the one slot maximum that is quite high.

When the mean number of neighbors increases, the one-slot approxima-

tion becomes better since the difference to the bottleneck-slot limiting the

feasible flows decreases. This is due to the idea that when the network

is very dense, it is always possible to use a relatively good transmission

mode.

5.4.2 Results of PSA

The simulation setup for the PSA is as follows: The nodes are distributed

to a rectangular network area with width 1 + 2ρ and a varying height

according to a PPP with density N . The nodes within one transmission

radius from the left side of the network are assigned the role of a source

and the ones within ρ from the right side of the network are sinks. The

relay network is a unit square with the average of N nodes in the middle

of the network. When N is large enough the results meaningfully repre-

sent the infinite network that appears when a massively dense network

is viewed from the perspective of a single node.
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The path search algorithm gives, as a result, the number of independent

paths connecting the sources to the sinks. With the used network height of

3, the paths beginning from a source with the y-coordinate between 1 and

2 were used as an estimate for the vertical path density n̄paths. From this,

we can calculate the dimensionless component of I∗1 , u = n̄paths/(3
√
N).

Figure 5.9 presents u as a function of ν near the optimum size of the

neighborhood (see also Fig. 5.10 for wider range) with fixed transmission

radius. The maximum of u = 0.09 and occurs at ν = 18. The results

have been obtained with N = 105, and are averages over 100 network

realizations. The errorbars show the 95 % confidence intervals.

The advantage of the algorithm is that it is computationally efficient,

and the simulations can be done with a very large network. This is impor-

tant when the network appears heterogeneous from the point of view of a

single node, i.e., ν is small. Thus, the results of path scheduling for the

smallest values of ν are very accurate. The paths connecting the sources

to the sinks occur so rarely that routing is only possible along these paths,

and different paths do not interfere with each other.
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Figure 5.9. The dimensionless component u of I∗1 as a function of the mean neighborhood
size using path search algorithm.

5.4.3 Results of single-directional GMWS

The simulation setup with the GMWS differs from the one of the path

scheduling in the way that the top and the bottom of the network of unit

height are connected together to form a cylinder. This is done to reduce

the border effects in the vertical direction. The greedy maximum weight

scheduling algorithm gives as a result the number of packets per slot ar-

riving to the sinks, and u can be obtained by dividing it by
√
N . Alterna-
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tively, it is possible to monitor the number of packets leaving the sources

or the progress of the packets in the horizontal direction. When these

three quantities are approximately the same, the simulation can be con-

sidered to have reached steady state.

Figure 5.10 presents the results obtained from the greedy maximum

weight scheduling compared to other bounds for the forwarding capacity

with fixed transmission radius. The results have been obtained with q0 =

100 and N = 1000. They are averages over 10 network realizations and the

errorbars show the 95 % confidence intervals. The values of q0 and N are a

practical compromise between the accuracy and the necessity to keep the

simulation times reasonable. The maximum, u = 0.13, occurs at ν = 18.

Since the studied methods are not particularly good at coordinating the

transmission when the mean degree of a node is large, the true optimum

size for ν is likely to be higher.

When ν is very small, the difference between the results of greedy max-

imum weight scheduling and path scheduling is due to the network size.

The one third flow that the scheduling is able to achieve along a single

path is maximal so the results do not suffer from the greedy heuristic

with the smallest neighborhoods. The smaller network used with greedy

maximum weight scheduling leads to too high capacity as there is more

likely to be better connectivity through a small network.

When ν is larger, the effect of the network size is less relevant since the

network is more homogeneous from the scheduling point of view. That

is to say, there are always multiple possible links to choose from, and

no clear bottlenecks appear as the network is made larger. The capacities

are achievable since the meaningful effects, the greedy scheduling and the

queue length at sources, both move the result downwards. Greedy sched-

uling is not able to coordinate the transmissions efficiently enough when

the number of interfering links is large, and, in addition to the weight,

one should also consider how the links interfere with each other. Also, the

queue length at sources should be made larger when the number of links

grows to allow the weights of the links to be separable.

Power control

In addition to a fixed transmission radius, we consider greedy maximum

weight scheduling in a case where the transmission radius can be reduced

from the maximum value ρ to the length of link l. The idea is that the

transmitting nodes use a radius just large enough to reach the receiving
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Figure 5.10. Comparison of the results for single-directional traffic. GMWS gives an esti-
mate, while the two topmost curves are upper and the two undermost curves
are lower bounds.

node and thus minimize the interference. In this case, the parameter ν

corresponds to the mean number of neighbors with the maximum radius.

Figure 5.11 shows u(ν) for greedy maximum weight scheduling with

both fixed and adjustable transmission radius. With power control, it is

possible to activate more links simultaneously, and the maximum gain

from a freely adjustable transmission radius is a little over 50 %.
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Figure 5.11. Function u(ν) for greedy maximum weight scheduling with and without
power control.

5.4.4 Results of multidirectional GMWS

This section contains the numerical results for the studied two- and four

directional balanced cases, while the discussion on their significance on
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more general directional distributions as well as on the macroscopic level

problem is in Sections 5.5 and 5.6.

Improved greedy algorithm

The performance of the improved greedy algorithm as a function of the

priority threshold parameter β with q0 = 100 is presented in Figure 5.12.

The figure illustrates how the optimal value of β becomes smaller as the

transport network density, ν, increases. The data points are averages

over 10 network realizations and the error bars show the 95 % confidence

intervals. The maximum values of each curve, corresponding to the opti-

mization over β, form the capacity curve of the improved algorithm. This

curve is represented in Figure 5.13 along with the results from the basic

greedy algorithm with two and four directions. The figure shows clearly

how the improved algorithm is able to outperform the basic greedy al-

gorithm with four directions when ν is large, achieving the level of the

two-directional one, but is still able to utilize the multidirectional gain

from all of the four directions when ν is smaller.
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Figure 5.12. The results from the improved greedy algorithm as a function of the thresh-
old β.

Comparison with the single-directional capacity

Figure 5.14 presents the dimensionless components, u(ν) in (3.12), of I∗1 ,

I∗2 , and I∗4 obtained using N = 1000 and q0 = 100 from the basic greedy

maximum weight scheduling algorithm with one and two directions and

the improved greedy maximum weight scheduling algorithm with four

directions. The results are averages over 10 network realizations and the

error bars show the 95 % confidence intervals. The values of q0 and N are
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Figure 5.13. The improved algorithm for traffic in four directions compared with the ba-
sic greedy algorithm with two and four directions.

a practical compromise, based on Figure 5.7, between the accuracy and

the necessity to keep the simulation times reasonable.
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Figure 5.14. Multidirectional forwarding capacity for traffic in one, two and four direc-
tions.

As can be seen from the figure, the multidirectional gain is indeed con-

siderable, ranging from a factor of over 2 in a sparse transport network to

around 1.5 in a dense transport network. After the initial drop the mul-

tidirectional gain is increasing. This is further illustrated in Figure 5.15.

Traffic in two opposite directions is enough to generate the gain in a dense

transport network, as discussed in Section 4.2.1, but having the four-

directional distribution is beneficial in a sparse transport network. In

general, the possibility to use more directions can only improve the result

as it is always possible to regress back to using only a subset of the direc-

tions in a time-shared manner. It is safe to presume that the four cardinal
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directions with equal flows should already be a good approximation for the

isotropic traffic.
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Figure 5.15. The gain from multidirectional forwarding compared with single-directional
forwarding.

The forwarding capacity with two opposite directions is close to 1.5 times

the single-directional when the network is sparse. This can be understood

as follows. When the transport network is operated close to the percola-

tion threshold (ν ≈ 4.5), the number of paths connecting different sides of

the network is small. The small number of paths also implies that they

are far from each other and the interference between two paths is negligi-

ble. When the schedule is chosen in the way that the links of the path only

interfere with the previous and following link of the path, it is possible to

use every third link of the path simultaneously with a single direction.

This idea has been utilized in Section 5.2.2 to construct a lower bound

for the forwarding capacity also when the mean neighborhood size, ν, is

larger. In the multidirectional case, it is possible to activate more than ev-

ery third link. With two opposite directions, every other link can be active

when the directions of the transmissions alternate. A single-directional

schedule consisting of three transmission modes leads to capacity C/3 for

a single path while a two-directional schedule consisting of four transmis-

sion modes leads to capacity C/2 for a path. Hence, the two-directional

case gives 1.5 times the single-directional capacity when the transport

network is sparse.
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5.4.5 On the accuracy of GMWS

For a very small ν, the error in the simulations is mainly due to the net-

work size, N . The C/3 flow that the one-directional scheduling is able to

achieve along a single path is maximal. Also the two-directional greedy

scheme can schedule close to the maximum flow of one half along a path.

Thus, the results do not suffer from the greedy heuristic with the smallest

neighborhoods. The used network size of 1000 nodes leads to a slightly too

high capacity as there is more likely to be better connectivity through a

small network.

When ν is large, the effect of N is less relevant since the network is more

homogeneous from the scheduling point of view. That is to say, there are

always multiple possible links to choose from, and no clear bottlenecks

appear as the network is made larger. The capacities are achievable since

the greedy scheduling moves the result downwards. Greedy scheduling

is not able to coordinate the transmissions efficiently enough when the

number of interfering links is large, and, in addition to the weight, one

should also consider how the links interfere with each other.

This is manifested in Figure 5.13 in that the greedy scheduling performs

worse with four directions than with two when the network is dense. As

concluded in Section 4.2.1, the optimal configuration for a dense network

uses only two opposite directions at a time. The two-directional greedy

scheduling automatically selects transmission modes that have this char-

acteristic, and it is thus able to outperform the four-directional greedy

method that cannot achieve the same spatial reuse. The improved greedy

algorithm is able to rectify this for four-directional traffic, but it is still

unable to coordinate the transmissions further, e.g., to form columns.

5.5 General directional distribution

Now, we consider what can be said about I∗[f(ϑ)] with a general direc-

tional distribution f(ϑ). Assume that the multidirectional forwarding ca-

pacities are known for some set of directional distributions, denoted by

{g1(ϑ), g2(ϑ), . . .}, and let these capacities be {J∗
1 , J

∗
2 , . . .}, respectively. We

can always express the distribution f(ϑ) in the form

f(ϑ) =
∑
i

aigi(ϑ) + b h(ϑ), (5.1)
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where the ai and b are non-negative constants, and the remainder term

h(ϑ) ≥ 0 for all ϑ. Note that also h(ϑ) represents a distribution (with the

integral over the angle equaling one, and hence,
∑

i ai + b = 1).

Given f(ϑ), we try to determine the maximal scalar flux Φ, i.e., the con-

stant multiplier in front of f(ϑ), such that the traffic can be sustained.

Each of the components of the sum in (5.1) can be handled in Φ · ai/J∗
i

fraction of time. The remainder requires a fraction smaller than or equal

to Φ · b/I∗1 , where I∗1 is the single-directional forwarding capacity. The to-

tal traffic can be sustained using time sharing between the components if

the sum of the time shares is at most 1. Then, for this f(ϑ) we have the

following lower bound for the multidirectional forwarding capacity

I∗[f(ϑ)] ≥
(∑

i

ai/J
∗
i + b/I∗1

)−1
.

This is a sure lower bound since the handling of the remainder term is

upper bounded (by only using time-shared single-directional forwarding)

and also since time-sharing among the components i is not necessarily

optimal.

In our case, the directional distributions for which the multidirectional

forwarding capacity is known are the single-, bi- and four-directional bal-

anced traffic patterns. These can be utilized to forward non-balanced four-

directional traffic by first separating the four-directional balanced traffic

pattern, in which case the remaining traffic equals zero in at least one di-

rection. In the other orthogonal direction, the balanced bidirectional traf-

fic can again be extracted. This only leaves two single-directional orthog-

onal flows that can be handled using time sharing with single-directional

forwarding. This yields the lower bound. By rotating this pattern over all

angles (0, π/2), a lower bound is obtained for I∗[f(ϑ)] for any directional

distribution. Explicitly, we have

I∗[f(ϑ)] ≥
(
K1 −K2

I∗1
+

K2 −K4

I∗2
+

K4

I∗4

)−1

,

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K1 =
∫ 2π
0 f(ϑ) dϑ = 1,

K2 = 2
∫ π
0 min{f(ϑ), f(ϑ+π)} dϑ,

K4 = 4
∫ π/2
0 min{f(ϑ), f(ϑ+ π

2 ), f(ϑ+π), f(ϑ+ 3π
2 )} dϑ.

In the next section, we conclude this chapter by examining how the re-

sults for the microscopic level forwarding problem can be combined with

the macroscopic level problem.
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5.6 Combining with the macroscopic level

Finally, we make a remark on the impact of multidirectional forwarding in

the macroscopic level routing problem with a uniform traffic matrix. Un-

der the assumption that only single directional forwarding is used at the

microscopic level, the macroscopic-level routing problem is to determine

the routes so that the maximum local load is minimized, i.e., a problem

of load balancing, see [HV09, PRK+07]. This causes the routes to be long

so that traffic is pushed away from the center towards the edges, in order

to avoid congesting the center of the area. Now, the multidirectional for-

warding capacity increases the capacity compared with single directional

forwarding, especially when the traffic is nearly isotropic. Because the

traffic is naturally more isotropic at the center of the area (e.g., a disk)

than at the border, there is less need to push the traffic away from the

central area, and the optimal paths under multidirectional forwarding

will be straighter. As long as the paths in P are bidirectional, i.e., the

traffic between two locations uses the same route in both directions, the

traffic is also bidirectional. This means that a considerable gain compared

with single-directional traffic can always be achieved with uniform traffic

matrix. We illustrate this with a network on a unit disk. The macroscopic

level routes are not optimized, instead we simply use sortest path routing.

As a numerical example, we consider a circular disk with area A and

uniform traffic demand:

A =
{
x ∈ R

2 | |x| <
√

A/π
}
, λ(x1,x2) = Λ/A2.

The angular flux at x with shortest path routes is [HV09]:

ϕSP(x, ϑ) =
Λ

2A2
a1a2(a1 + a2),

where a1 = a1(x, ϑ) denotes the distance to the boundary from x in direc-

tion ϑ, and a2 in the opposite direction, a2(x, ϑ) = a1(x, ϑ+ π).

The following figures illustrate the quantities when the radius of the

disk has been normalized to one (A = π). Figure 5.16 represents the

angular flux at five points on the x-axis with shortest path routes in units

of Λ. The flux gets smaller and less uniform as we move away from the

origin. Figure 5.17 presents the corresponding local traffic load, i.e., the

scalar flux ΦSP, in units of Λ as a function of the distance from the origin.

The load is further divided into a uniform component and a non-uniform

component based on the directional distribution of the traffic.
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Figure 5.16. Angular flux, ϕ(ϑ), at five points on the x-axis with shortest path routes
(Λ = 1, A = π2).
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Figure 5.17. Traffic load (Λ = 1, A = π2) as a function of the distance from the origin on a
unit disk with uniform traffic demand and shortest path routing. The total
load (highest) can be divided into a uniform component (in the middle) and
a non-uniform component (lowest) based on the directional distribution.

For the scalar flux to be feasible, it is required that Φ(x) ≤ I∗, for all

x ∈ A, where the forwarding capacity is for the used forwarding method.

The scalar flux has its maximum at the origin, ΦSP(0) = (2/
√
πA) · Λ.

As all the traffic can be forwarded using either single- or bidirectional

forwarding, the origin is the bottleneck for both single- and bidirectional

forwarding. Hence, for the total traffic load, we have

Λ ≤
√
π

2
· C

√
nA u(ν).

Let us assume that we are studying a network area of 1 km2 with 10

nodes per square meter (107 nodes total). Let us further assume that

the forwarding capacity is similar to Figure 5.14, we have C = 1 packet

per second for the nominal link capacity, and the transmission range is
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0.5 meters. This results in an average of little under eight neighbors per

node. Thus, we have u1 ≈ 0.08 for the single-directional forwarding ca-

pacity, and we can transmit Λ ≈ 230 packets per second. As the traffic is

uniform, and the shortest path routing is bidirectional, i.e., the path from

x1 to x2 is the same as the path from x2 to x1, we can also directly apply

bidirectional forwarding. Since u2 ≈ 0.12 for the bidirectional forwarding

capacity, we have Λ ≈ 330 packets per second. Based on the decomposition

of Figure 5.17 (the non-uniform component is small), the origin appears to

be the bottleneck also for four-directional traffic. For the four-directional

case u4 ≈ 0.16, and Λ ≈ 440 packets per second.

5.7 Summary of Chapter 5

In this chapter, we studied the capability of an infinite network to relay

multihop traffic with a given directional distribution. The corresponding

quantity was named the forwarding capacity and defined as the maxi-

mum sustainable mean density of progress, i.e., the density of packets

multiplied by their mean velocity in their respective directions. We stud-

ied the forwarding capacity as a function of the neighborhood size with

three traffic patterns and assuming the Boolean interference model. The

term single-directional forwarding capacity was used to describe a situ-

ation where all the traffic was flowing into the same direction. Regard-

less of the true directional distribution, it is always possible to achieve

this capacity by using time sharing between the directions. Because of

this, most effort was spent on the single-directional forwarding capacity,

which was the baseline of the analysis. Notably higher capacities were

achieved by exploiting the fact that traffic flowing in different directions

can be interleaved in the microscopic level scheduling. We evaluated the

gain from multidirectional forwarding compared with single-directional

forwarding in the cases with balanced bidirectional and balanced four-

directional traffic.

The forwarding capacity constitutes half of the network capacity prob-

lem at the limit where the number of nodes in the network is infinite,

and the operation of the network is studied on two levels using the sep-

aration of scales. At the macroscopic level, the selected routing defines

the fraction of traffic that traverses through a certain area of the mas-

sively dense network. The directional distribution of this “fraction”, on

the other hand, gives the setup for the microscopic level problem. At the
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microscopic level, the problem is to find a coordinated scheme or schedule

that forwards the traffic efficiently. While the density of progress obtained

with optimal scheduling is referred to as the forwarding capacity, which is

a functional of the directional distribution of the traffic, the achieved for-

warding capacity of the selected forwarding method sets an upper bound

for the maximal macroscopic level load. The local traffic load at a cer-

tain point of the network must not exceed the available microscopic level

forwarding capacity.

In the simulations, the infinite network was approximated by a large

finite network where the relay traffic was generated by adding strips of

sources and sinks to opposite edges of the network. The forwarding ca-

pacity was evaluated as a function of the network size to determine when

the network starts to behave like an infinite one.

To find numerical bounds for the forwarding capacity, we constructed

two algorithms based on the LP formulation of the problem. The first

algorithm (CAA) gave an upper bound for the single-directional case by

utilizing a subset of the necessary clique constraints. The second algo-

rithm (PSA) identified a densely packed set of pairwise non-interfering

paths connecting the opposite sides of the network. Within these paths,

finding the optimal schedule, which gives a lower bound for the original

problem, was simple. As it was also possible to schedule traffic in both

directions of a path simultaneously (balanced bidirectional case), in ad-

dition to just a single direction, the approach gave the first value for the

multidirectional gain, which in this case was 1.5. Eventually, we applied

a greedy implementation of the maximum weight scheduling algorithm

to obtain more accurate estimates and to evaluate the multidirectional

gain in the selected cases. For balanced bidirectional traffic, the gain with

GMWS was roughly 1.5. With balanced four-directional traffic, a greater

gain was achieved with a small ν, after which it becomes favorable to use

just two directions simultaneously. After an initial drop, the multidirec-

tional gain increased, and the factor should ideally approach the value

(= 2) obtained from the asymptotic analysis of the IFC.

The forwarding capacity remains zero until the network percolates. This

happens around the neighborhood size of 4.5 (see Section 3.1.1 and the ref-

erences thereof). The methods used here are not meant for studying the

percolation threshold, but they complement the result. Near the percola-

tion threshold, the combination of the used methods gives an accurate ap-

proximation, especially for the single-directional forwarding capacity. No-
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tably, an earlier result for the locally coordinated ExOR protocol [BM05]

was improved a by factor of two. When the mean number of neighbors

grows, the estimate becomes less precise, and there remains a gap be-

tween the upper bound, obtained from the IFC, and the lower bound, ob-

tained from the GMWS. It is obvious, however, that the greedy scheduler

cannot be efficient with large neighborhood sizes where coordination is

most relevant, and the IFC becomes more reachable.

We have also studied how the multidirectional traffic patterns can be

used as components when approximating the forwarding capacity for an

arbitrary directional distribution of the traffic. Already the bidirectional

case offers a notable improvement in forwarding capacity compared with

the single-directional case. It is also always possible to use bidirectional

forwarding when the traffic demand is uniform, by selecting bidirectional

routes at the macroscopic level.
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The thesis considers the capacity of a large-scale wireless multihop net-

work. We have presented a separation of scales for the capacity problem

and analyzed the microscopic level forwarding capacity problem that is

one of the two resulting subproblems. When the size of a wireless multi-

hop network approaches infinity, two spatial scales can be identified. At

the global scale, the network appears as a continuous medium consisting

of an infinite number of nodes in a closed domain. From the local perspec-

tive the network appears to be a collection of randomly located nodes that

continue ad infinitum.

In the capacity maximization problem of the infinite network, both of

the viewpoints constitute their own separate subproblem. Locally, at the

microscopic level, the shared wireless channel has to be used as efficiently

as possible so that maximum amount of traffic can be forwarded. Globally,

at the macroscopic level, the traffic load has to be spread across the net-

work by an appropriate routing scheme so that no single area is congested.

How efficiently the traffic is forwarded locally at the microscopic level sets

an upper bound for the amount of traffic that can be routed to the area at

the macroscopic level. On the other hand, the directional distribution of

traffic that results from the macroscopic level routing problem affects the

microscopic level forwarding capacity. The exact microscopic level prob-

lem is finding the maximum sustainable density of progress with a given

directional distribution, which is independent of location, in an infinite

plane.

The separation of scales has already been presented in [HV06]. How-

ever, the previous work on the topic treats the macroscopic level problem

as a simple load balancing problem. This requires that the microscopic

level forwarding capacity does not depend on the directional distribution

of the traffic. For the commonly used interference models, this implies
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that traffic flowing in different directions is handled via time sharing.

This is not optimal, and better performance can be obtained by schedul-

ing packets traversing in different directions in the same time slot. The

capacity obtained via time sharing is thus a lower bound. Naturally, it is

also possible to exploit the multidirectional gain on the microscopic level

with simple, suboptimal, load balancing at the macroscopic level.

We formulate the separation of scales and take into account the effect

of the directional distribution. We then describe the problems that need

to be solved to obtain the network capacity. This results in a modified

load balancing problem (3.10) at the macroscopic level. At the microscopic

level, the problem is to find the forwarding capacity for a given directional

distribution of traffic. Together these two problems can be used to resolve

the open question of the capacity of a large-scale wireless multihop net-

work.

Although the capacity of a wireless network has remained an open ques-

tion, some aspects of it have been previously resolved. The scaling of the

capacity is known in many situations. We reviewed the most relevant lit-

erature on the scaling laws for this thesis in Section 3.4. What is also

known is that the maximum capacity can be achieved using seemingly

simple algorithms. Unfortunately, the simplicity typically means that the

time scale is infeasible, and it would take very long to attempt to reveal

the exact value of the capacity. The related work was reviewed in Sec-

tion 3.3.

Our own work in this thesis was threefold. In the first part, as already

discussed above, we revised the separation of scales to take into account

the possibility to utilize multidirectional traffic. The main contribution of

the thesis was then related to the microscopic level problem of forwarding

capacity. We began this by studying the IFC.

The IFC describes how much traffic, at most, can be forwarded in a

single time slot. Multiple transmission modes are required to create a

continuous flow in the network. Hence, performance of the best transmis-

sion mode, describing the instantaneous capacity, gives an upper bound

for the performance with continuous traffic. By concentrating on a single

transmission mode, we were able to analyze the asymptotic properties of

the quantity. With different formulations for the problem, we obtained

upper bounds for the case with single-directional traffic as well as for the

multidirectional case where we have traffic in every direction.

124



Summary

An estimate of the IFC was obtained under various interference models.

We studied the uni- and bidirectional Boolean interference model, both

with fixed and adjustable transmission radii. We also studied the SINR-

based interference models: the SINR threshold model and the Shannon

model. Two algorithms were implemented for studying the optimal trans-

mission mode. The moving window algorithm was suitable for the differ-

ent versions of the Boolean interference model. The simulated annealing

algorithm allowed us to also study the SINR-based interference models.

After studying the IFC, we turned to the actual forwarding capacity with

multihop traffic. We presented several results on the forwarding capacity

and the techniques used to obtain them. First, we tightened the single-

directional upper bound obtained from the IFC with small neighborhoods,

where it is not accurate, by using a clique formulation of the maximum

flow problem. Then, we provided a lower bound for the forwarding capac-

ity using path scheduling. The same method also offered the first view on

what kind of gains can be achieved using multidirectional forwarding as

the same path can be used either for single-directional traffic or bidirec-

tional traffic. GMWS was then used to obtain an estimate for the forward-

ing capacity with different directional distributions. Finally, we discussed

the significance of the results on the overall capacity of the network.

This thesis still only offers partial results on the capacity of a large-scale

wireless network. There remain numerous research topics that can be

studied further. Different network models constitute their own problems

as, for example, the interference model can have a profound impact on the

performance of the network. The effect of the multidirectional forwarding

on the macroscopic level problem is still widely unknown. No work yet

exists that properly considers the modified load balancing problem.
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