
9HSTFMG*afcech+ 

ISBN 978-952-60-5242-7 
ISBN 978-952-60-5243-4 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Radio Science and Engineering 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 10

9
/2

013 

 

Johannes M
arkkanen 

Integral equation m
ethods for extrem

e-param
eter m

aterials and novel boundary conditions 
A

alto
 U

n
ive

rsity 

Department of Radio Science and Engineering 

Integral equation methods 
for extreme-parameter 
materials and novel 
boundary conditions 

Johannes Markkanen 

DOCTORAL 
DISSERTATIONS 





Aalto University publication series 
DOCTORAL DISSERTATIONS 109/2013 

Integral equation methods for extreme-
parameter materials and novel 
boundary conditions 

Johannes Markkanen 

A doctoral dissertation completed for the degree of Doctor of 
Science (Technology) to be defended, with the permission of the 
Aalto University School of Electrical Engineering, at a public 
examination held at the lecture hall S1 of the school on 8 August 
2013 at 12. 

Aalto University 
School of Electrical Engineering 
Department of Radio Science and Engineering 
Electromagnetics 



Supervising professor 
Professor Ari Sihvola 
 
Thesis advisor 
Doctor Pasi Ylä-Oijala 
 
Preliminary examiners 
Professor Francesco Andriulli, Telecom Bretagne, France 
Professor Stefano Maci, University of Siena, Italy 
 
Opponent 
Professor Ali E. Yilmaz, The University of Texas at Austin, USA 

Aalto University publication series 
DOCTORAL DISSERTATIONS 109/2013 
 
© Johannes Markkanen 
 
ISBN 978-952-60-5242-7 (printed) 
ISBN 978-952-60-5243-4 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 (printed) 
ISSN 1799-4942 (pdf) 
http://urn.fi/URN:ISBN:978-952-60-5243-4 
 
http://lib.tkk.fi/Diss/ 
 
Unigrafia Oy 
Helsinki 2013 
 
Finland 



Abstract 
Aalto University, P.O. Box 11000, FI-00076 Aalto  www.aalto.fi 

Author 
Johannes Markkanen 
Name of the doctoral dissertation 
Integral equation methods for extreme-parameter materials and novel boundary conditions 
Publisher School of Electrical Engineering 
Unit Department of Radio Science and Engineering 

Series Aalto University publication series DOCTORAL DISSERTATIONS 109/2013 

Field of research Electromagnetics 

Manuscript submitted 4 March 2013 Date of the defence 8 August 2013 

Permission to publish granted (date) 16 May 2013 Language English 

Monograph Article dissertation (summary + original articles) 

Abstract 
This thesis aims to develop accurate and efficient numerical methods for modeling 

electromagnetic properties of materials with extreme parameters and nonconventional 
boundary conditions. Materials with the permittivity and permeability dyadics being strongly 
inhomogeneous or anisotropic or having parameters near zero or infinity are considered as 
extreme materials. Nonconventional boundary conditions investigated in this thesis are called 
DB and D'B' boundary conditions, which require the vanishing of the normal components of the 
fluxes (DB) or their normal derivatives (D'B').   

  
This thesis consists of three main topics. In the first part, a surface integral equation-based 

solution for electromagnetic wave scattering by objects with the DB boundary condition is 
developed. The integral equations are solved by the method of moments. The DB boundary 
condition is enforced by restricting the freedom of the unknown surface current densities. The 
developed method is then used for analyzing electromagnetic scattering by the ideal DB objects. 

  
The second part examines properties of different volume integral equation formulations and 

their discretizations. The accuracy and stability of these formulations are analyzed when the 
material parameters are complicated or pushed to the extreme limits. It is shown that 
the formulation with the equivalent volume currents as unknowns is more stable than the 
conventional ones when the material parameters are extremely anisotropic. 

  
The third part focuses on material approximations of the DB and D'B' boundary conditions 

in terms of an interface against some extreme-parameter material. Scattering properties of 
these approximations are investigated by using the volume integral equation method developed 
in the second part. 

Keywords integral equation methods, method of moments, DB boundary condition, D'B' 
boundary condition, anisotropy, extereme materials 

ISBN (printed) 978-952-60-5242-7 ISBN (pdf) 978-952-60-5243-4 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Espoo Location of printing Helsinki Year 2013 

Pages 118 urn http://urn.fi/URN:ISBN:978-952-60-5243-4 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Johannes Markkanen 
Väitöskirjan nimi 
Integraaliyhtälömenetelmät äärimmäisille materiaaleille ja uusille reunaehdoille 
Julkaisija Sähkötekniikan korkeakoulu 
Yksikkö Radiotieteen ja -tekniikan laitos 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 109/2013 

Tutkimusala Sähkömagnetiikka 

Käsikirjoituksen pvm 04.03.2013 Väitöspäivä 08.08.2013 

Julkaisuluvan myöntämispäivä 16.05.2013 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Väitöskirjan tavoitteena on kehittää tarkkoja ja tehokkaita numeerisia menetelmiä 

mallintamaan materiaalien sähkömagneettisia ominaisuuksia. Työssä tutkitaan materiaaleja, 
joiden sähkömagneettista vastetta kuvaavat parametrit permittiivisyys ja permeabiilisuus 
voivat olla voimakkaasti riippuvaisia kentän suunnasta tai saada äärimmäisiä arvoja. Lisäksi 
työssä tutkitaan erikoisia niin sanottuja DB ja D'B' reunaehtoja, jotka rajoittavat kenttien 
normaalikomponenttien tai niiden normaali derivaattojen käyttäytymistä. 

  
Väitöskirja voidaan karkeasti jakaa kolmeen osaan. Ensimmäisessä osassa kehitetään 

pintaintegraaliyhtälöihin perustuvia laskennallisia menetelmiä sähkömagneettisten 
sirontaongelmien ratkaisemiseksi kappaleista, joiden pinnalla DB reunaehto on voimassa. 
Menetelmässä DB reunaehto pakotetaan voimaan rajoittamalla tuntemattomien 
pintavirtatiheyksien käyttäytymistä kappaleen pinnalla. Lisäksi tutkitaan DB kappaleiden 
sähkömagneettisia sirontaominaisuuksia. 

  
Toisessa osassa tarkastellaan tilavuusintegraaliyhtälömenetelmien ominaisuuksia. 

Erityisesti perehdytään diskretoitujen yhtälöiden tarkkuuteen ja stabiilisuuteen kun 
materiaaliparametrit lähestyvät äärimmäisiä arvoja. Työssä näytetään että tilavuusvirtoihin 
perustuva formulaatio käyttäytyy paremmin kuin tavanomaiset formulaatiot kun 
materiaaliparametrit ovat voimakkaasti epäsotrooppisia. 

  
Lopuksi väitöskirja käsittelee DB ja D'B' reunaehtojen realisointia sähkömagneettisten 

materiaaliparametrien avulla. Realisaatiot vaativat voimakkaasti epäisotrooppisia 
materiaaleja, joiden laskennalliseen mallintamiseen käytetään toisessa osassa kehitettyä 
menetelmää. 

Avainsanat integraaliyhtälömenetelmät, momenttimenetelmä, DB reunaehto, D'B' reunaehto, 
anisotropia, äärimmäiset materiaalit 

ISBN (painettu) 978-952-60-5242-7 ISBN (pdf) 978-952-60-5243-4 

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942 

Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2013 

Sivumäärä 118 urn http://urn.fi/URN:ISBN:978-952-60-5243-4 





Preface

This thesis was carried out at the Department of Radio Science and En-

gineering, Aalto University School of Electrical Engineering during 2010-

2013.

First of all, I would like to thank my supervisor Professor Ari Sihvola

and my instructor Doctor Pasi Ylä-Oijala for giving me the opportunity to

work with this interesting topic and also I would like to thank them for all

guidance and help that I have received throughout these years. My grat-

itude belongs to my co-authors, colleagues, and all staff members in the

Department of Radio Science and Engineering, as well as pre-examiners

of this thesis Professor Francesco Andriulli and Professor Stefano Maci

for their effort in reviewing this thesis.

Special thanks belong to one of my co-author Professor Cai-Cheng Lu,

who also invited me for a five-month research visit to the Department of

Electrical and Computer Engineering of the University of Kentucky.

For financial support, I thank the Graduate School in Electronics, Telecom-

munication and Automation (GETA), the Academy of Finland, and the

Cultural Foundation of Finland.

Finally, I wish thank my family and friends who have always been in-

terested in my research and asked lots of difficult questions.

Espoo, June 17, 2013,

Johannes Markkanen

1



Preface

2



Contents

Preface 1

Contents 3

List of Publications 5

Author’s Contribution 7

List of abbreviations 9

List of symbols 11

1. Introduction 15

2. Electromagnetics 19

2.1 Microscopic Maxwell’s equations . . . . . . . . . . . . . . . . 19

2.2 Material interaction and macroscopic Maxwell’s equations . 20

2.3 Time-harmonic equations . . . . . . . . . . . . . . . . . . . . 22

2.4 Interface and boundary conditions . . . . . . . . . . . . . . . 23

3. Method of moments 27

3.1 Choice of basis and testing functions . . . . . . . . . . . . . . 28

4. Surface integral equations 31

4.1 Surface equivalence principle . . . . . . . . . . . . . . . . . . 31

4.2 Surface integral equation formulations . . . . . . . . . . . . . 32

4.3 Enforcing the DB boundary condition . . . . . . . . . . . . . 33

5. Volume integral equations 37

5.1 Volume equivalence principle . . . . . . . . . . . . . . . . . . 37

5.2 Volume integral equation formulations . . . . . . . . . . . . . 38

5.3 Properties of formulations . . . . . . . . . . . . . . . . . . . . 39

3



Contents

6. Material approximations for DB and D′B′ boundaries 43

6.1 DB boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 D′B′ boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7. Novelty of research and summary of the publications 49

Bibliography 53

Publications 57

4



List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I J. Markkanen, P. Ylä-Oijala, and A. Sihvola. Computation of scattering

by DB objects with surface integral equation method. IEEE Transac-

tions on Antennas and Propagation, vol. 59, no. 1, pp. 154–161, January

2011.

II J. Markkanen, P. Ylä-Oijala, and A. Sihvola. Surface integral equation

method for scattering by DB objects with sharp wedges. ACES Journal,

vol. 26, no. 5, pp. 367–374, May 2011.

III J. Markkanen, C-C. Lu, X. Cao, and P. Ylä-Oijala. Analysis of volume

integral equation formulations for scattering by high-contrast penetra-

ble objects. IEEE Transactions on Antennas and Propagation, vol. 60,

no. 5, pp. 2367–2374, May 2012.

IV J. Markkanen P. Ylä-Oijala, and A. Sihvola. Discretization of vol-

ume integral equation formulations for extremely anisotropic materials.

IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp.

5195–5202, November 2012.

V I. V. Lindell, J. Markkanen, A. Sihvola, and P. Ylä-Oijala. Realization

of spherical D′B′ boundary by a layer of wave-guiding medium. Meta-

materials, vol. 5, no. 4, pp. 149-154, December 2011.

5



List of Publications

VI S. Järvenpää, J. Markkanen, and P. Ylä-Oijala. Broadband multilevel

fast multipole algorithm for electric-magnetic current volume integral

equation. Accepted for publication in IEEE Transactions on Antennas

and Propagation, May 2013.

6



Author’s Contribution

Publication I: “Computation of scattering by DB objects with surface
integral equation method”

The first paper is based on the author’s Master’s thesis. The idea to study

electromagnetic properties of the DB boundary by using a surface inte-

gral equation method came from Prof. Sihvola and Dr. Ylä-Oijala. The

computer codes and calculations were provided by the author. The text

was written in collaboration.

Publication II: “Surface integral equation method for scattering by
DB objects with sharp wedges”

This paper is an extended version of a conference presentation by the

author. The idea arose in collaboration. The quasistatic and numerical

analysis for fields near the DB wedge were performed by the author. The

text was mainly written by the author while Prof. Sihvola and Dr. Ylä-

Oijala gave helpful comments and suggestions.

Publication III: “Analysis of volume integral equation formulations
for scattering by high-contrast penetrable objects”

The author implemented most of the codes and performed the analysis.

Prof. Lu and Dr. Cao provided results computed by the D-formulation.

The manuscript was prepared by Dr. Ylä-Oijala and the author while

Prof. Lu and Dr. Cao helped improving the manuscript with comments.

7



Author’s Contribution

Publication IV: “Discretization of volume integral equation
formulations for extremely anisotropic materials”

The author wrote the manuscript, implemented most of the computer

codes, and computed the results. The co-authors helped to choose some

numerical examples and provided useful comments and suggestions on

the manuscript.

Publication V: “Realization of spherical D′B′ boundary by a layer of
wave-guiding medium”

This paper is mainly made by Prof. emeritus I. V. Lindell. The author

provided numerical codes and computations.

Publication VI: “Broadband multilevel fast multipole algorithm for
electric-magnetic current volume integral equation”

Dr. Järvenpää implemented the fast solver for the formulation derived in

Publication IV. The author computed the results and helped to prepare

the manuscript.

8



List of abbreviations

BEM Boundary element method

CFIE Combined field integral equation

DB DB boundary condition

D′B′ D′B′ boundary condition

EFIE Electric field integral equation

GMRES Generalized minimal residual method

MFIE Magnetic field integral equation

MLFMA Multilevel fast multipole algorithm

PEC Perfect electric conductor

PEMC Perfect electromagnetic conductor

PMC Perfect magnetic conductor

RWG Rao-Wilton-Glisson basis function

SIE Surface integral equation

SWG Schaubert–Wilton–Glisson basis function

TEM Transverse electromagnetic

VIE Volume integral equation

9



List of abbreviations

10



List of symbols

b Microscopic magnetic flux density

B Macroscopic magnetic flux density

D Three dimensional domain

D Macroscopic electric flux density

e Microscopic electric field

E Macroscopic electric field

Einc Incident electric field

Es Scattered electric field

f Frequency

F Force

G Green’s function

H Macroscopic magnetic field

H inc Incident magnetic field

Hs Scattered magnetic field

i Imaginary unit
¯̄I Identity dyadic

jb Microscopic bound current density

JB Macroscopic bound current density

J c Conductivity current density

jf Microscopic free current density

JF Macroscopic free current density

Js Electric surface current density

JS Equivalent electric surface current density

jtot Microscopic current density

JTOT Macroscopic current density

JV Equivalent electric volume current density

k Wave number

k Wave vector

11



List of symbols

M PEMC admittance parameter

M Magnetization

MS Equivalent magnetic surface current density

MV Equivalent magnetic volume current density

n̂ Unit normal vector

P Polarization density

q Point charge

r Observation point

r′ Source point

S Surface in three dimensions

t Time

ux,uy,ux Unit vectors of cartesian coodinate system

ur,uφ,uθ Unit vectors of spherical coodinate system

v Velocity vector

V Volume
¯̄ZS Surface impedance dyadic
¯̄α Material parameter dyadic
¯̄β Material parameter dyadic

δ Kronecker’s delta function

ε0 Vacuum permittivity

ε Isotropic permittivity

εr Isotropic relavite permittivity

εrr Radial component of relative permittivity

εtr Transverse component of relative permittivity
¯̄ε Electric permittivity dyadic
¯̄εr Relative electric permittivity dyadic
¯̄ε′ Material parameter dyadic
¯̄ζ Magnetoelectric response dyadic
¯̄ζr Relative magnetoelectric response dyadic

η Wave impedance

λ Wavelength

μ0 Vacuum permeability

μ Isotropic permeability

μr Isotropic relative permeability

μr
r Radial component of relative permeability

μt
r Transverse component of relative permeability

12



List of symbols

¯̄μ Magnetic permeability dyadic
¯̄μr Relative magnetic permeability dyadic
¯̄ξ Magnetoelectric response dyadic
¯̄ξr Relative magnetoelectric response dyadic

ρb Microscopic bound charge density

ρB Macroscopic bound charge density

ρf Microscopic free charge density

ρF Macroscopic free charge density

ρs Surface charge density

ρtot Microscopic charge density

ρTOT Macroscopic charge density
¯̄σ Conductivity dyadic

ω Angular frequency

Ω Domain

Ωs Solid angle

13



List of symbols

14



1. Introduction

In classical electromagnetic field theory, the behavior of electromagnetic

fields can be described by a set of partial differential equations known as

Maxwell’s equations. Maxwell’s equations are based on early observations

by Gauss, Faraday, and Ampère in the 19th century. These empirical laws

were completed and combined by James Clerk Maxwell and published in-

dividually in the four-part paper On Physical Lines of Force [1] between

1861 and 1862. In 1865, Maxwell showed that this new theory allowed

the electric and magnetic fields to propagate across empty space as an

electromagnetic wave and concluded that visible light is a part of electro-

magnetic radiation [2].

A fundamental problem in electromagnetics is to solve scattered fields

from obstacles when the incident fields are known. Such a problem is

called a scattering problem. Properties of these obstacles can be described

by the following material parameters: the permittivity ¯̄ε, permeability ¯̄μ,

and magnetoelectric parameters ¯̄ξ and ¯̄ζ, which, in a general case, can be

complicated functions of position, frequency, direction, and strength of the

fields. In order to solve Maxwell’s equations in a medium, which contains

material objects described by material parameters, the equations have to

be solved both in the background medium and inside the objects such that

the continuity conditions of the fields are satisfied. A scattering problem

can also be formulated as a boundary value problem for Maxwell’s equa-

tions. In this approach, the scatterer is removed, and the field quantities

are forced to satisfy given conditions at the boundary, known as bound-

ary conditions. Boundary conditions are purely mathematical, and they

should not be confused with the physical conditions for fields across ma-

terial interfaces. Nevertheless, they can be useful as approximations of

real material interfaces since they simplify the analysis. On the other

hand, boundary conditions might have some interesting properties for en-
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gineering purposes, and therefore, finding a real material interface that

approximates the boundary condition is of great interest.

Recently introduced boundary conditions known as DB and D′B′ bound-

ary conditions have been found to have some intriguing electromagnetic

properties, for example, zero backscattering [3, 4]. Moreover, the DB

boundary acts as an electromagnetic soft surface and the D′B′ as a hard

surface in the definition of Kildal [5, 6] i.e., electromagnetic power can-

not propagate (soft) or has a maximum (hard) along the surface. The

converses are not necessarily true. The DB boundary requires that the

electric and magnetic flux densities D and B normal to the boundary

vanish [7]. At the D′B′ boundary, the normal derivatives of the normal

components of the flux densities tend to zero [4]. In nature, there are no

materials that mimic these nonconventional boundaries. However, in the

field of metamaterials i.e., artificially engineered materials (see, for exam-

ple [8, 9]), the fabrication of such material interfaces might be possible.

Therefore, these boundaries could give rise to new electromagnetic engi-

neering applications [10]. Particularly, the property of being either a soft

or hard surface finds many micro- and millimeter wave applications, for

example, improving polarization, narrowing beams, reducing side lobes of

antennas, miniaturizing waveguides, etc. [7, 11, 12]. In addition, the DB

boundary condition has proved to be relevant in the cloaking of objects

from electromagnetic radiation [13, 14, 15, 16].

To obtain a better understanding about electromagnetic field interac-

tion with complicated materials and surfaces, a solution for Maxwell’s

equations needs to be found. However, finding a solution for Maxwell’s

equations is not easy. In 1908, Gustav Mie was able to find an analytical

solution for the electromagnetic wave scattering by spherical obstacles

[17]. Yet analytical solutions can be found only for very simple problems,

and therefore, to solve Maxwell’s equations in cases of practical interests

such as antenna design, radar applications, medical imaging, and mate-

rial modeling, sophisticated numerical methods are needed.

Numerical methods for solving Maxwell’s equations can be formulated

as either differential equations for field functions or integral equations for

source functions. The integral equations are well suited for unbounded

problems such as scattering problems since the source function lives in-

side or on the surface of the scatterer, and therefore, only the scatterer

needs to be modeled. In the differential equation methods, however, the

field function is global, and the whole space has to be modeled. In practice,
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it means that the computational domain must be terminated by some ab-

sorbing boundary condition or a perfectly matched layer. In a numerical

point of view, numerical differentiation is more difficult than numerical

integration due to the fact that differentiation decreases the regularity

of a function, and thus, numerical methods based on integral equations

are, in general, more accurate and stable. However, integral equation

methods lead to full matrix systems and thus higher computational costs

than differential equation methods, which give rise to sparse matrices.

Fortunately, the computational costs of integral equation methods can be

decreased by applying sophisticated fast algorithms.

The main objective of this thesis is to develop numerical methods based

on integral equations for analyzing electromagnetic scattering proper-

ties of objects with extraordinary boundary conditions and materials with

complicated responses. The thesis consists of an overview and six peer-

reviewed journal articles. In Publications I and II, the surface integral

equation (SIE) solution for the DB boundary is presented, and the elec-

tromagnetic properties of the ideal DB objects are analyzed. In addition,

the accuracy and stability of the surface integral equation method–based

solution for arbitrarily shaped DB objects is investigated. The material

approximations of boundaries such as DB and D′B′ may require media

with extreme material parameters, which can cause problems for conven-

tional numerical schemes. Different discretizations of volume integral

equations (VIEs) for high-contrast objects are investigated in Publication

III, and a stable discretization of the VIE for highly anisotropic media is

introduced in Publication IV. The method is also applied for the approxi-

mations of the DB and D′B′ objects in Publications IV and V, respectively.

Furthermore, in Publication VI, the multilevel fast multipole algorithm

(MLFMA) is used for accelerating VIE solution, and the method is applied

to the cloaking structure.
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2. Electromagnetics

Electromagnetism is the force that interacts between electrically charged

particles and is one of four fundamental force interactions in nature among

the strong and weak interactions and gravitation. The electromagnetic

theory is formulated as a field theory in which electromagnetism mani-

fests itself as electric and magnetic fields. In this chapter, the basic the-

ory of the classical electromagnetics is introduced. In addition, material

interaction with the electromagnetic field is discussed.

2.1 Microscopic Maxwell’s equations

In classical electromagnetic field theory, a complete description of the be-

havior of electromagnetic fields can be written as a set of four partial

differential equations known as the microscopic Maxwell’s equations [18]:

∇× e(r, t) = −∂b(r, t)

∂t
, (2.1)

∇× b(r, t) = μ0jtot(r, t) + μ0ε0
∂e(r, t)

∂t
, (2.2)

∇ · e(r, t) = ρtot(r, t)

ε0
, (2.3)

∇ · b(r, t) = 0, (2.4)

where e (measured in V/m) is the electric field and b (V s/m2) is the

magnetic flux density. The electric permittivity and magnetic permeabil-

ity of vacuum are denoted by ε0 (As/V m) and μ0 (V s/Am), respectively.

Maxwell’s equations together with the Lorentz force interaction form a

complete theory of the electromagnetic field. The Lorentz force is the force

acting on a point charge due to the electric and magnetic fields given by

F (r, t) = q[e(r, t) + v × b(r, t)], (2.5)

where q is a charge and v is the velocity of the charged particle q.
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Sources of the fields are described by the total electric charge density

ρtot (As/m3) as

ρtot(r, t) =

N∑
n=1

qnδ(r − r′) (2.6)

and the total electric current density jtot (A/m2)

jtot(r, t) =
N∑

n=1

qnvnδ(r − r′), (2.7)

where δ is Kronecker’s delta function and vn is the velocity related to the

point charge qn. The sources obey the equation of continuity:

∇ · jtot(r, t) = −∂ρtot(r, t)

∂t
, (2.8)

which is a direct consequence of equations (2.2) and (2.3). The equation of

continuity states that the charge is conserved which is more fundamental

principle than Maxwell’s equations.

2.2 Material interaction and macroscopic Maxwell’s equations

Since charged particles are sources for electromagnetic fields, it is obvious

that materials, which are complicated structures of charged particles (e.g.,

atoms, molecules, etc.), affect the behavior of electromagnetic fields [19].

To obtain Maxwell’s equations in matter, also known as the macroscopic

Maxwell’s equations [18], the sources are separated into bound and free

parts as
jtot(r, t) = jb(r, t) + jf (r, t),

ρtot(r, t) = ρb(r, t) + ρf (r, t),
(2.9)

and averaged over some suitable volume and time

JTOT (r, t) = JB(r, t) + JF (r, t) = 〈jb(r, t)〉V,T + 〈jf (r, t)〉V,T ,

ρTOT (r, t) = ρB(r, t) + ρF (r, t) = 〈ρb(r, t)〉V,T + 〈ρf (r, t)〉V,T ,
(2.10)

where average is taken over space-time as

〈f(r, t)〉V,T =
1

V T

∫
V

T/2∫
−T/2

f(r + r′, t− t′)dt′ dr′. (2.11)

The bound charge and current densities can be written in terms of an

average polarization P and magnetization M by

ρB(r, t) = −∇ · P (r,E,B), (2.12)
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and

JB(r, t) =
∂P (r,E,B)

∂t
+∇×M(r,B,E), (2.13)

where E and B denote the average electric 〈e〉 and magnetic 〈b〉 fields, re-

spectively. The polarization is caused by bound charges when the electric

or magnetic fields are applied. This is because they cannot move freely

but only shift from their average equilibrium positions. The magnetiza-

tion emerges from the angular momenta of elementary particles or micro-

scopic currents.

By defining auxiliary fields D (measured in As/m2) and H (A/m) in

terms of the polarization P and magnetization M as

D(r, t) = ε0E(r, t) + P (r,E,B), (2.14)

H(r, t) = μ−1
0 B(r, t)−M(r,B,E), (2.15)

the contributions of the bound currents JB and charges ρB can be included

in them. In a general medium, the auxiliary fields can be expressed in

terms of the four material parameter dyadics ¯̄ε′, ¯̄μ, ¯̄α, and ¯̄β as convolu-

tions:

D(r, t) =

t∫
−∞

∫
V ′

¯̄ε′(r + r′, t− t′;E) ·E(r′, t′)dr′dt′

+

t∫
−∞

∫
V ′

¯̄α(r + r′, t− t′;B) ·B(r′, t′)dr′dt′,

(2.16)

H(r, t) =

t∫
−∞

∫
V ′

¯̄μ−1(r + r′, t− t′;B) ·B(r′, t′)dr′dt′

+

t∫
−∞

∫
V ′

¯̄β(r + r′, t− t′;E) ·E(r′, t′)dr′dt′.

(2.17)

The above relations are known as constitutive relations. In electromag-

netic theory, the flux densities (D,B) and fields (E,H) are often consid-

ered as pairs, and the constitutive relations are expressed as follows:

D(r, t) =

t∫
−∞

∫
V ′

¯̄ε(r + r′, t− t′;E) ·E(r′, t′)dr′dt′

+

t∫
−∞

∫
V ′

¯̄ξ(r + r′, t− t′;H) ·H(r′, t′)dr′dt′,

(2.18)

B(r, t) =

t∫
−∞

∫
V ′

¯̄μ(r + r′, t− t′;H) ·H(r′, t′)dr′dt′

+

t∫
−∞

∫
V ′

¯̄ζ(r + r′, t− t′;E) ·E(r′, t′)dr′dt′,

(2.19)
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where ¯̄ε is the electric permittivity, ¯̄μ is the magnetic permeability, and ¯̄ξ

and ¯̄ζ are the magnetoelectric parameters.

Finally, by using the averaged physical and auxiliary fields, the macro-

scopic Maxwell’s equations can be written as

∇×E(r, t) = −∂B(r, t)

∂t
, (2.20)

∇×H(r, t) = JF (r, t) +
∂D(r, t)

∂t
, (2.21)

∇ ·D(r, t) = ρF (r, t), (2.22)

∇ ·B(r, t) = 0, (2.23)

in which the material interactions are embedded in the auxiliary fields

via constitutive relations.

Using the macroscopic Maxwell’s equations allows an analysis of field

behavior inside the matter on average, meaning that some microscopic

details may have been lost. A detailed derivation of the macroscopic

Maxwell’s equations can be found in [18].

2.3 Time-harmonic equations

Often, it can be convenient to analyze electromagnetic problems in the

frequency domain—that is, the time dependency is assumed to be of the

form exp(−iωt), where ω is the angular frequency. Now the field is de-

scribed by a complex-valued function F (r), and a conversion back to time

domain is obtained as follows:

F (r, t) = Re{F (r)e−iωt}. (2.24)

Suppressing the time dependence, the time-harmonic Maxwell’s equa-

tions can be written as

∇×E(r) = iωB(r), (2.25)

∇×H(r) = JF (r)− iωD(r), (2.26)

∇ ·D(r) = ρF (r), (2.27)

∇ ·B(r) = 0, (2.28)

and the constitutive relations in linear medium read as

D(r) = ¯̄ε(r) ·E(r) + ¯̄ξ(r) ·H(r), (2.29)
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B(r) = ¯̄μ(r) ·H(r) + ¯̄ζ(r) ·E(r). (2.30)

The advantage of using the time-harmonic Maxwell’s equations is that

the time derivatives are replaced by algebraic multiplications of −iω. In

addition, the constitutive relations in the frequency domain are multipli-

cations, whereas in the time domain, they are convolutions.

The response of the conductivity current J c = ¯̄σ ·E can also be included

in D by adding the imaginary part to the material parameter since

∇×H(r) = J c(r)− iωD(r) = ¯̄σ(r) ·E(r)− iω¯̄ε(r) ·E(r)

= −iω

(
¯̄ε(r) + i

¯̄σ(r)

ω

)
·E(r) = −iω¯̄εc(r) ·E(r),

(2.31)

in which the complex permittivity is given by

¯̄εc(r) = ¯̄ε(r) + i
¯̄σ(r)

ω
, (2.32)

and ¯̄σ(r) is the conductivity. However, it is important to understand that

the real part and imaginary part of the complex permittivity are not com-

pletely independent. Behaviors of these as functions of frequency are re-

stricted by Kramers-Kronig relations, which arise from causality [20].

In the rest of this thesis, the time dependence exp(−iωt) is assumed and

suppressed, and the complex permittivity is denoted by ¯̄ε.

2.4 Interface and boundary conditions

Consider an interface between the two electromagnetic media D1 and D2,

where n̂ is the unit normal vector of the interface as shown in Fig. 2.1.

The material parameters in D1 are ¯̄ε1 and ¯̄μ1, and in D2, they are ¯̄ε2 and
¯̄μ2. The fields satisfy Maxwell’s equations in both domains, and at the

interface, they satisfy the interface conditions given by

n̂× (E2 −E1) = 0, (2.33)

n̂× (H2 −H1) = Js, (2.34)

n̂ · (D2 −D1) = ρs, (2.35)

n̂ · (B2 −B1) = 0, (2.36)

where Js and ρs denote the surface current and charge densities, respec-

tively.
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n̂ D1

D2

E1,H1

E2,H2

¯̄ε1, ¯̄μ1

¯̄ε2, ¯̄μ2

Figure 2.1. Material interface between two electromagnetic media.

It is important to note that interfaces and boundaries are fundamen-

tally different concepts. The fields interact with each other across the

interfaces through interface conditions (2.33)–(2.36), whereas a boundary

terminates the region of interest by imposing a mathematical condition

known as a boundary condition. Hence, nothing behind the boundary can

affect the other side.

In electromagnetics, the most commonly used boundary condition is a

perfect electric conductor (PEC) boundary condition [21]. It is a good ap-

proximation for highly conducting surfaces, such as silver or copper, at

low frequencies (e.g., microwave frequencies or lower). It states that the

tangential component of the electric field vanishes on the boundary

Etan = 0. (2.37)

Analogously, a perfect magnetic conductor (PMC) boundary condition can

be defined as

Htan = 0. (2.38)

The PEC and PMC boundary conditions are special cases of a more gen-

eral impedance boundary condition (IBC) [22, 23]

Etan = ¯̄ZS · n̂×H, (2.39)

in which ¯̄ZS denotes the surface impedance, or a perfect electromagnetic

conductor (PEMC) boundary condition [24]

n̂×H = M n̂×E, (2.40)

where M is an admittance-type parameter.

24



Electromagnetics

Instead of restricting the freedom of the tangential components of the

fields like in the above cases, we can also require conditions for normal

components of the fields at the surface. The DB boundary condition [7],

originally introduced in [25], requires that the normal components of the

electric and magnetic flux densities D,B vanish on the surface:

n̂ ·D = 0, n̂ ·B = 0. (2.41)

The existence and uniqueness theorems for the solution involving the DB

boundary condition were introduced by Yee [26] for simply connected do-

mains and by Kress [27] for multiply connected domains. In the latter

case, some additional conditions have to be required.

A boundary condition for the derivatives of the flux densities

∇ · (n̂n̂ ·D) = 0, ∇ · (n̂n̂ ·B) = 0, (2.42)

was introduced, and dubbed as a D′B′ boundary condition in [4]. On pla-

nar surfaces, it states that the normal derivatives of the normal compo-

nents of the flux densities are zero:

∂

∂n
n̂ ·D = 0,

∂

∂n
n̂ ·B = 0. (2.43)

However, the existence and uniqueness of the solution is still an open

problem for the D′B′ boundary condition.
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3. Method of moments

Method of moments (MoM) [28] is a projection method to solve linear prob-

lems of the form

Lu = f, (3.1)

where L : U → F is a linear operator from a Hilbert space U to another

Hilbert space F with the given function f ∈ F and the unknown function

u ∈ U . Let us denote the inner product on F as 〈f, g〉F with f, g ∈ F .

The first step is to approximate the unknown function u by expanding

it as a linear combination of so-called basis functions bn, which spans a

finite dimensional subspace BN ⊂ U as

u ≈ ũN =
N∑

n=1

cnbn, (3.2)

where cn are the unknown coefficients.

Next, the residual

RN = LũN − f, (3.3)

is minimized by requiring it to be orthogonal to a finite dimensional sub-

space TM ⊂ F . The space TM is spanned by testing functions tm. There-

fore, by using orthogonality requirement

〈tm, RN 〉F = 0, m = 1, ...,M, (3.4)

we obtain

N∑
n=1

cn〈tm, Lbn〉F = 〈tm, f〉F , for all m = 1, ...,M, (3.5)

from which the unknown coefficients can be solved. In matrix form, equa-

tion (3.5) reads

Ax = b, (3.6)

where

Amn = 〈tm, Lbn〉F , (3.7)
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xn = cn, (3.8)

bm = 〈tm, f〉F . (3.9)

3.1 Choice of basis and testing functions

The accuracy of the numerical solution with MoM strongly depends on

an underlying integral equation as well as a choice of basis and testing

functions. Choosing a proper set of basis functions is relatively easy. The

basis functions should be able to represent the physical properties of the

unknown under approximation. In other words, they should span the do-

main of the integral operator. These physical properties of the unknowns

come from Maxwell’s equations and the finite energy assumption. For the

fields and flux densities, they read as [29]

E,H ∈ Hcurl(Ω) = {u ∈ L2(Ω); ∇× u ∈ L2(Ω)}, (3.10)

D,B ∈ Hdiv(Ω) = {u ∈ L2(Ω); ∇ · u ∈ L2(Ω)}, (3.11)

respectively, in which L2(Ω) is a function space of square integrable func-

tions in Ω. From the definitions of equivalent volumetric polarization cur-

rents JV = −iωε0(¯̄εr − ¯̄I) and MV = −iωμ0(¯̄μr − ¯̄I), it is easy to see that

they are not continuous across material interfaces. Hence, the finite en-

ergy space for the polarization currents reads as [30]

JV ,MV ∈ L2(Ω). (3.12)

The proper function spaces for the surface equivalent currents and tan-

gential traces of the fields are given by

JS ,MS ∈ H−1/2
div (S) = {u ∈ H−1/2(S); ∇s · u ∈ H−1/2(S)}, (3.13)

ES ,HS ∈ H−1/2
curl (S) = {u ∈ H−1/2(S); n̂ · ∇s × u ∈ H−1/2(S)}, (3.14)

where H−1/2(S) denotes the standard fractional order Sobolev space de-

fined on the surface S [31].

The choice of the testing functions is not as obvious as the choice of the

basis functions. If the testing functions are the same functions as the ba-

sis functions, the scheme is called Galerkin’s method, and it has been the

most popular method for discretizing integral equations [32]. However,

Galerkin’s method does not always lead to an accurate and stable solu-

tion, especially when the L2 inner product is employed. It is suggested
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that to obtain convergence in the norm of the solution, the testing func-

tions should span the L2 dual space of the range of the operator [30, 33].

In this case, basis and testing functions do not necessarily have to be the

same functions, but they have to be paired properly. Hence, it is essential

to know mapping properties of the linear operator before choosing testing

functions.

For example, it is well-known that the solution accuracy is poor when

Galerkin’s method is applied for the surface magnetic field integral equa-

tion (MFIE) [34]. In [35], it was theoretically proven and numerically

demonstrated that by testing the MFIE in the dual space of the range,

the solution converges and is more accurate than the Galerkin tested one.

Similar observations were made for other surface integral equations in

[36].
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4. Surface integral equations

A surface integral equation method, also known as a boundary element

method (BEM), is an effective numerical scheme for analyzing scattering

problems involving objects with boundary conditions or homogeneous ob-

jects. The major advantage is that only the surface of the object has to

be discretized, which reduces computational costs. In this section, the

basic formulations are introduced, and how to enforce the DB boundary

condition is shown.

4.1 Surface equivalence principle

Consider an arbitrarily shaped three-dimensional object D1 in a homoge-

neous background medium D2, and incident time-harmonic electromag-

netic fields Einc and H inc. The surface of the object is denoted by S, and

the electromagnetic parameters of the isotropic and homogeneous back-

ground medium are ε0 and μ0.

E
inc, H

inc

E
s,HsJS MS

D1

S

n̂

Figure 4.1. In the surface equivalence principle, the scatterer is removed and replaced
with the equivalent electric and magnetic surface currents JS and MS .
These equivalent surface currents act as sources for the scattered electric
Es and magnetic fields Hs.

Representations for the total time-harmonic electric and magnetic fields

31



Surface integral equations

can be written as [37]

Ωs(r)E(r) = ηL(JS)(r)−K(MS)(r) +Einc(r),

Ωs(r)H(r) =
1

η
L(MS)(r) +K(JS)(r) +H inc(r),

(4.1)

where the relative solid angle subtended by the surface

Ωs(r) =

⎧⎪⎪⎨
⎪⎪⎩

1/2, r ∈ S

1, r ∈ D1

0, r ∈ D2,

(4.2)

JS = n̂×H, and MS = −n̂×E are the equivalent electric and magnetic

surface current densities, respectively, η =
√

μ0/ε0 is the wave impedance,

and n̂ is the outer unit normal vector of the surface. The surface integral

operators are defined as

L(F )(r) = − 1

ik
∇S(∇′

s · F ) + ikS(F )(r), (4.3)

K(F )(r) = ∇× S(F )(r), (4.4)

S(F )(r) =

∫
S
G(r, r′)F (r′)dS(r), (4.5)

where G is the Green function

G(r, r′) =
eik|r−r′|

4π|r − r′| , (4.6)

in which r is the observation point, r′ is the source point, and k = ω
√
εμ

is the wave number.

4.2 Surface integral equation formulations

Two alternative formulations can be derived from (4.1). Taking the tan-

gential component of (4.1) and using the definitions of the equivalent sur-

face currents, the T-formulation is obtained:

γtE
inc(r) = −ηγtL(JS)(r) + γtK(MS)(r) +

1

2
γrMS(r),

γtH
inc(r) = −1

η
γtL(MS)(r)− γtK(JS)(r)− 1

2
γrJS(r),

(4.7)

where γt takes the tangential trace (on a smooth surface γtF = −n̂× n̂×
F ), and γr denotes the rotated tangential trace (γrF = n̂ × F ). Alterna-

tively, taking the cross product with n̂, the N-formulation reads

γrE
inc(r) = −ηγrL(JS)(r) + γrK(MS)(r)− 1

2
MS(r),

γrH
inc(r) = −1

η
γrL(MS)(r)− γrK(JS)(r) +

1

2
JS(r).

(4.8)
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The above formulations can be considered as linear mappings between

two Sobolev spaces as [29]

T-formulation: H−1/2
div (S)×H−1/2

div (S) → H−1/2
curl (S)×H−1/2

curl (S)

N-formulation: H−1/2
div (S)×H−1/2

div (S) → H−1/2
div (S)×H−1/2

div (S).

However, these are not one-to-one mappings since boundary conditions

are not enforced yet.

It is well-known that the above formulations do not give a unique solu-

tion at all frequencies when applied for the exterior boundary value prob-

lems. The reason is that at certain frequencies, eigenfrequencies of the

interior boundary value problem, it is not enough to fix only the tangen-

tial components of either electric field or magnetic field at the boundary,

and thus, the solution belongs to the null space of the operators [38]. A

popular remedy to this problem is to combine the T- and N-formulations

as

1

η
γtE

inc(r) + γrH
inc(r) = −γtL(JS)(r) +

1

η
γtK(MS)(r) +

1

2η
γrMS(r)

−1

η
γrL(MS)(r)− γrK(JS)(r) +

1

2
JS(r),

ηγtH
inc(r)− γrE

inc(r) = −γtL(MS)(r)− ηγtK(JS)(r)− η

2
γrJS(r)

+ηγrL(JS)(r)− γrK(MS)(r) +
1

2
MS(r).

(4.9)

The above formulation is known as a combined field integral equation

(CFIE) formulation or C-formulation.

4.3 Enforcing the DB boundary condition

The integral equations in (4.7)–(4.9) cannot be solved uniquely as they

are. A set of boundary conditions are still needed to reduce the degrees of

freedom. Boundary conditions can be enforced by restricting the freedom

of the equivalent surface currents. For example, at the PEC boundary, the

equivalent magnetic current vanishes because of the boundary condition

MS = −n×E = 0, and only the electric current JS exists.

Enforcing the DB boundary condition is not so straightforward. Using

Maxwell’s equations and certain vector identities, we can find the follow-

ing relations between normal components of the fields and surface diver-

gences of the equivalent surface currents:
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∇s · JS = ∇s · n̂×H = −n̂ · ∇ ×H = iωn̂ ·D,

∇s ·MS = ∇s · (−n̂×E) = n̂ · ∇ ×E = iωn̂ ·B.
(4.10)

Therefore, on the surface of a DB object, the surface divergences of the

equivalent currents vanish (if ω 
= 0), meaning that both the electric JS

and magnetic MS surface currents must be solenoidal.

In MoM, the unknown equivalent electric JS and magnetic MS surface

current densities are represented as linear combinations of known tan-

gential vector basis functions f and g as

JS ≈
N∑
k=1

jkfk,

MS ≈
M∑
l=1

mlgl,

(4.11)

where jk and ml are scalar coefficients.

Representing both the electric and magnetic equivalent surface current

densities with a set of basis functions, which span a solenoidal (null space

of divergence operator) vector space, the DB boundary condition is en-

forced on the surface. In Publications I and II, the DB boundary condi-

tion was enforced by using the RWG loop basis functions [39] to expand

the equivalent currents, and Galerkin’s scheme was used for testing the

equations.

It is interesting to note that by enforcing the DB boundary condition

for the surface integral equations, the hypersingular term ∇S(∇′
S · F ) in

the operator L is identically zero since ∇′
S · JS = 0 and ∇′

S · MS = 0.

This means that there is no low frequency breakdown nor dense mesh

breakdown, which appear in the standard electric field integral equation

(EFIE) formulation for PEC objects [38, 40, 41].

In Publication II, field singularities near the DB wedge were studied

analytically by solving Laplace’s equation in two dimensions, and numer-

ically by MoM in three dimensions. It was concluded that the singularity

at the DB wedge is of the same order as it is at the PEC wedge. Therefore,

the electromagnetic energy is finite at the DB wedge. For example, in the

90-degree DB wedge, the behavior of field strength is of the form ρ−1/3,

where ρ is the distance to the wedge when the excitation is antisymmet-

ric.

In a numerical point of view, the field singularities mean that simi-

lar mesh refinements are needed near DB wedges as they are near PEC

wedges in order to obtain an accurate solution. Fig. 4.2 shows the conver-
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Figure 4.2. Calculated backscattered radar cross section of a cube with edge length a

and wavelength λ = 100 a as a function of the number of unknowns [PII]. T-,
N-, and C- formulations have been applied. The cube is discretized by using
triangular meshes with or without mesh refinement on the edges. Solid lines
correspond to the cases with mesh refinements and dotted lines without mesh
refinements.

gence of the radar cross section of a DB cube as a function of the number

of unknowns. T-, N-, and C-formulations are used either with or without

mesh refinements. The discretizations with the mesh refinements give

more accurate results than the ones without because of the singularities

of the surface currents. It is also notable that the T-formulation is more

accurate than the N- or C-formulation. This is because the T-formulation

is tested in the dual of the range, but the N-formulation is tested in the

range of the operator when Galerkin’s testing procedure is applied. Hence,

the optimal convergence cannot be achieved with the Galerkin-tested N-

or C-formulations.
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5. Volume integral equations

A surface integral equation method cannot directly be applied for inho-

mogeneous and anisotropic materials since the Green function in closed

form is not available in a general case. In volume integral equation meth-

ods, the Green function is that of background, and hence, it is suitable

for scattering problems involving inhomogeneous and anisotropic mate-

rials. In this section, three different types of volume integral equation

formulations are introduced, and their properties are discussed.

5.1 Volume equivalence principle

Consider an electromagnetic wave scattering by an anisotropic, inhomoge-

neous, and linear object bounded by a volume V as shown in Fig. 5.1. The

permittivity ¯̄ε(r) and permeability ¯̄μ(r) dyadics are functions of position

in V . The background is isotropic and homogeneous with the constants ε0

and μ0.

E
inc, H inc

E
s, H

s

JV

MV

D1

¯̄ε ¯̄μ

Figure 5.1. Volume equivalence principle: the scatterer is replaced with the volume
equivalent currents JV and MV .

The scattered fields can be expressed by applying the volume equiva-

lence principle in which the scatterer is replaced with the electric and

magnetic volume equivalent polarization currents JV and MV . The total

time-harmonic electric E and magnetic H fields can be written as [42]
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E(r) = Einc(r) +
−1

iωε0

(
∇∇+ k20

¯̄I
)
· S(JV )(r)−∇× S(MV )(r), (5.1)

H(r) = H inc(r) +
−1

iωμ0

(
∇∇+ k20

¯̄I
)
· S(MV )(r) +∇× S(JV )(r). (5.2)

Here, Einc and H inc are the incident electric and magnetic fields with

sources outside the domain V , and k0 = ω
√
ε0μ0 is the wave number in

the background. The equivalent polarization currents are defined as

JV (r) = −iωε0 ¯̄τε(r) ·E(r) = −iω ¯̄χε(r) ·D(r), (5.3)

MV (r) = −iωμ0 ¯̄τμ(r) ·H(r) = −iω ¯̄χμ(r) ·B(r), (5.4)

in which
¯̄τε(r) = ¯̄εr(r)− ¯̄I, (5.5)

¯̄τμ(r) = ¯̄μr(r)− ¯̄I, (5.6)

¯̄χε(r) =
¯̄I − ¯̄ε−1

r (r), (5.7)

¯̄χμ(r) =
¯̄I − ¯̄μ−1

r (r), (5.8)

where ¯̄εr and ¯̄μr are the relative permittivity and permeability dyadics,

respectively, and ¯̄I is the identity dyadic. The volume integral operator in

(5.1) and (5.2) is

S(F )(r) =

∫
V

G0(r, r
′)F (r′) dV ′, (5.9)

where G0 is the Green function of the background

G0(r, r
′) =

eik0|r−r′|

4π|r − r′| . (5.10)

5.2 Volume integral equation formulations

Three different types of formulations can be derived from (5.1) and (5.2).

The most widely used formulation is the so-called DB-formulation in which

the flux densities D and B are the unknowns [43, 44]. By representing

the equivalent currents in terms of the flux densities and substituting

them into (5.1) and (5.2), the DB-formulation is obtained:

Dinc = ¯̄ε−1
r ·D − (∇∇+ k20

¯̄I) · S( ¯̄χε ·D)− iωε0∇× S( ¯̄χμ ·B),

Binc = ¯̄μ−1
r ·B − (∇∇+ k20

¯̄I) · S( ¯̄χμ ·B) + iωμ0∇× S( ¯̄χε ·D).
(5.11)
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The volume integral equation formulation for the electric and magnetic

fields can be obtained by using the fact that

(∇∇+ k20
¯̄I) · S(F ) = ∇× (∇× S(F ))− F , (5.12)

and analogously, representing the unknowns in terms of the fields E and

H, the EH-formulation [45, 46] can be written as follows:

Einc = ¯̄εr ·E −∇×∇× S(¯̄τε ·E)− iωμ0∇× S(¯̄τμ ·H),

H inc = ¯̄μr ·H −∇×∇× S(¯̄τμ ·H) + iωε0∇× S(¯̄τε ·E).
(5.13)

In a third type of formulation, the equations are written for the un-

known equivalent polarization currents JV and MV . We call this formu-

lation as a JM-formulation, and it reads as

J inc
V = JV − ¯̄τε · (∇∇+ k20

¯̄I) · S(JV )− iωε0 ¯̄τε · ∇ × S(MV ),

M inc
V = MV − ¯̄τμ · (∇∇+ k20

¯̄I) · S(MV ) + iωμ0 ¯̄τμ · ∇ × S(JV ),
(5.14)

or

J inc
V = ¯̄εr · JV − ¯̄τε · ∇ ×∇× S(JV )− iωε0 ¯̄τε · ∇ × S(MV ),

M inc
V = ¯̄μr ·MV − ¯̄τμ · ∇ ×∇× S(MV ) + iωμ0 ¯̄τμ · ∇ × S(JV ).

(5.15)

The above JM-formulations are equivalent in L2.

5.3 Properties of formulations

The main difference in the above-mentioned formulations is the quantity

of unknowns—that is, the flux densities in the DB-formulation, the fields

in the EH-formulation, and the equivalent volume currents in the JM-

formulation. Applying these formulations to media with extreme parame-

ters can be detrimental to the condition of the system. As discussed in [30]

and [47], the well-posedness of the formulations depends on the permit-

tivity and permeability functions. They should be coercive and bounded:

a 〈f ,f〉 ≤ 〈f , εf〉 ≤ b 〈f ,f〉 , (5.16)

for some 0 < a, b < ∞ and any f ∈ L2. At the limits ε = 0 or ε = ∞ ,

these conditions are not valid, and therefore, the JM-, DB-, and EH-

formulations are not equivalent in the sense of the existence and unique-

ness of the solution. The above analysis is also valid for the permeability

μ.
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Publication IV studies the behaviors of these formulations in the case of

extremely anisotropic materials. It turns out that only the JM-formulation

is stable and gives the most accurate solution at a wide range of material

parameters. Because of the constitutive relations D = εE and B = μH

and the finite energy assumption, we can point out the following about

the flux densities and the fields at extreme cases:

lim
ε→0

D = 0, lim
μ→0

B = 0,

lim
ε→∞E = 0, lim

μ→∞H = 0.
(5.17)

In the DB-formulation, the unknown flux densities vanish when ε → 0

and μ → 0, and the system becomes unstable. The same thing happens

to the EH-formulation when ε → ∞ and μ → ∞. The equivalent volume

currents, on the other hand, are linear combinations of the fluxes and

fields, and hence, the unknowns in the JM-formulation do not vanish in

the case of extreme medium.

From the numerical point of view, the main difference in these formula-

tions is the choice of basis and testing functions. Basis functions are used

for representing the unknowns; hence, they should satisfy the continuity

conditions of the unknowns. In particular, it is crucial not to enforce any

extra continuities. In other words, basis functions should span a proper

vector space. As pointed out in [30], [33], and [47] to guarantee the con-

vergence in the norm of the solution, it is essential that testing functions

span the L2 dual space of the range of the integral operator. The mapping

properties of the equations read as follows

DB-formulation: Hdiv(Ω)×Hdiv(Ω) → Hcurl(Ω)×Hcurl(Ω),

EH-formulation: Hcurl(Ω)×Hcurl(Ω) → Hdiv(Ω)×Hdiv(Ω),

JM-formulation: L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω).

Since Hdiv and Hcurl are L2 duals to each other and the L2 is dual to

itself, the equations are tested in the dual spaces of the ranges when

Galerkin’s testing is applied. However, when the local basis and testing

functions are applied, it is not clear that the standard testing functions

span the actual dual space of the range of the discrete operator. This could

lead to a solution space larger than the intended one [30]. To overcome

this problem, the local testing functions should be constructed carefully

or work fully in L2 by using the JM-formulation as suggested in [30].

Publication IV demonstrates numerically that the JM-formulation is
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stable in terms of the system condition when discretized with piecewise

constant basis and testing functions, whereas the standard discretiza-

tions of the DB- and EH-formulations suffer from the breakdown in the

case of a highly anisotropic medium. Fig. 5.2 shows the number of GM-
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Figure 5.2. Number of iterations required to solve the system as a function of radial
permittivity [PIV].

RES iterations required to solve the linear system as a function of radial

permittivity. The stopping criterion of GMRES is 10−4. With increasing

radial permittivity, the EH-formulation becomes unstable, and the DB-

formulation breaks down when the axial permittivity tends to zero. The

JM-formulation is the most stable one in this case. Similar observations

have been made for objects of different shapes and sizes in Publication IV.
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6. Material approximations for DB and
D′B′ boundaries

In this section, we study numerically how well certain extreme materials

approximate the ideal DB and D′B′ boundaries. Material approximations

are not unique, and here, we only consider simple materializations with

the isotropic or anisotropic permittivity and permeability (bianisotropy

is not allowed). By the term “materialization”, we mean an interface of

two media with given material parameters that approximate the ideal

mathematical boundary. Another step of realization is to find practical

metamaterial elements that produce effective material parameters which

would mimic the mathematical boundary condition.

6.1 DB boundary

The DB boundary can be materialized with an interface between the free

space and a uniaxial medium in which the normal components of the per-

mittivity and permeability dyadics vanish:

n̂ · ¯̄ε = 0, n̂ · ¯̄μ = 0, (6.1)

while the transverse components ( ¯̄I − n̂n̂) · ¯̄ε and ( ¯̄I − n̂n̂) · ¯̄μ do not af-

fect the fields outside the object at all [25]. If the conditions of (6.1) are

not exactly zero, the scattered fields are affected by the transverse com-

ponents. Materials with zero permittivity and permeability have been of

great interest among the metamaterial community [48, 49]. A realization

of a metamaterial unit shell that produces the material parameters with

zero axial permittivity and permeability can be found in [50, 51].

The zero axial medium, however, is not the only possible material ap-

proximation. It has been shown that a material interface of the so-called

skewon-axion medium or its generalization, the P-medium, also mim-

ics the DB boundary [52]. The materialization with the skewon-axion
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medium would require bianisotropic materials, and hence, it is out of the

scope of this thesis.

First, we investigate how close to zero the permittivity and permeability

have to be to approximate the ideal DB boundary. Fig. 6.1 shows the

relative difference in the total scattering cross section of a sphere. Two

materializations are considered. The isotropic approximation in which

¯̄ε = αε0
¯̄I, ¯̄μ = αμ0

¯̄I, (6.2)

and the radially uniaxial approximation, with

¯̄ε = αε0urur + ε0uθuθ + ε0uφuφ,

¯̄μ = αμ0urur + μ0uθuθ + μ0uφuφ.
(6.3)

The total scattering cross sections as functions of material parameters are

obtained by the exact Mie solution for either the isotropic or uniaxially

anisotropic spheres [53, 54]. The reference result for the ideal DB sphere

can also be calculated by Mie expansion [3].
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Figure 6.1. A relative difference in the total scattering cross section between the ideal
DB sphere of size ka = 2 and its material approximation either with the
isotropic or radially uniaxial material [PIV].

The results in Fig. 6.1 show that the isotropic material with a small

permittivity and permeability yields a better approximation of the ideal

DB boundary than the uniaxial material. Nevertheless, with decreasing α

the far field scattering of both materials approaches to that of the sphere

with the ideal DB boundary. The field distributions outside are the same

when α is exactly zero.

As discussed in Publication II, nonsmooth DB scatterers with sharp
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wedges and corners can create field singularities. Therefore, it is impor-

tant to look at the fields near a nonsmooth scatterer.

We construct a cube that mimics the ideal DB cube from six blocks in

which the permittivities and permeabilities are defined, as shown in Fig.

6.2.

y

x ε0 ¯̄ε1¯̄ε1

¯̄ε2

¯̄ε2
¯̄ε1 = ε0(

¯̄I − uxux)

¯̄ε2 = ε0(
¯̄I − uyuy)

¯̄ε3 = ε0(
¯̄I − uzuz)

Figure 6.2. A cross section of a cube that approximates the ideal DB cube [PIV]. The
cube is built from six blocks in order to define the material parameters in
which the components normal to the interface vanish. The permeability ¯̄μ is
defined analogously to the permittivity ¯̄ε, except ε0 is replaced with μ0.
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Figure 6.3. The x-, y-, and z-components of the real part of the electric field near the
cube on the electric field plane (xz-plane) [PIV]. The solid curves denote the
ideal DB cube, and stars and circles designate the isotropic and anisotropic
approximations of the DB cube, respectively. The backscattering direction is
at θ = 0 deg.

The edge length of the cube is l = 1m, and the thicknesses of the blocks

are 0.1m. The cube is illuminated by the x-polarized plane wave with the

frequency f = 2GHz propagating along the z-axis. Fig. 6.3 illustrates the

x-, y-, and z-components of the real part of the electric field calculated in

the electric field plane (xz-plane) at a distance r = 1m from the center of

the cube. The computations are done for the ideal DB cube by using the

surface integral equation C-formulation for the ideal DB boundary (solid
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lines). For the isotropic (stars) and anisotropic (circles) approximations,

the volume integral equation JM-formulation is used.

The near field patterns of two approximations and the ideal DB cube

show good agreements. We observe a small deviation between the ideal

DB cube and the uniaxial approximation. For the numerical point of

view, the uniaxial approximation is a more challenging problem since the

fields decay exponentially inside the cube, and therefore, the difference is

mainly due to the inaccuracy of the numerical solution. The accuracy of

the numerical solution can be improved by increasing the discretization

density near the surface where the fields decay exponentially. In addi-

tion, the wedges and corners of the uniaxial approximation may create

some minor differences to the fields near wedges, but overall, the scatter-

ing properties are almost equivalent.

6.2 D′B′ boundary

Let us next consider the D′B′ sphere of radius r = 1m, and an inci-

dent plane wave with the wavelength λ0 = 3.2m. The DB boundary can

be transformed to the D′B′ boundary by a quarter-wave transformer (a

quarter-wavelength layer of the wave-guiding medium) as shown in Publi-

cation V and [55]. The wave-guiding effect can be obtained with a uniaxial

material by letting the axial components of the permittivity and perme-

ability tend to infinity. This property forces the fields to be perpendicular

to the axis of propagation, meaning that the wave is of a transverse elec-

tromagnetic (TEM) type for all excitations. Thus, the thickness of the

layer is independent of excitation, and the quarter-wave transformer can

be obtained.

εr = μr = 0

εr = μr = 0

εrr/ε0 = μr
r/μ0 = ∞

εrr/ε0 = μr
r/μ0 = ∞

εtr/ε0 = μt
r/μ0 = 2εtr/ε0 = μt

r/μ0 = 1

0.2m

0.8m 0.6m 0.4m

Figure 6.4. Two possible approximations for the spherical D′B′ boundary [PV]. The
spherical D′B′ boundary can be realized with the transformer layer upon the
DB sphere. The thickness of the layer can be controlled by the transverse
components of the permittivity εtr and permeability μt

r.
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Fig. 6.4 presents two possible materializations for the D′B′ sphere with

different transverse parameters εtr, μ
t
r. Since the wavelength inside the

wave-guiding medium depends only on the transverse components of the

medium parameters, the thickness of the quarter-wave transformer layer

is 0.8m when εtr/ε0 = μt
r/μ0 = 1, and when εtr/ε0 = μt

r/μ0 = 2, the layer

thickness is reduced to 0.4m. To obtain the DB condition on the surface

of the inner sphere, the permittivity and permeability of the inner sphere

are set to zero (εr = μr = 0).
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Figure 6.5. Scattering cross sections of the materializations of the D′B′ spheres [PV].
The scatterer is presented in Fig. 6.4 (left). Different values of the radial
permittivity and permeability εrr/ε0 = μr

r/μ0 are used to approximate the
quarter-wave transformer. The backscattering direction is at θ = 180 deg.
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Figure 6.6. Scattering cross sections of the material approximations of the D′B′ spheres
[PV]. The scatterer is presented in Fig. 6.4 (right).

Figs. 6.5 and 6.6 show scattering cross sections (SCS) of the coated
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spheres corresponding to those in Fig. 6.4 calculated by using the volume

integral equation method with the JM-formulation. The reference result

for the ideal D′B′ sphere is computed by the exact Mie solution [3]. Both

realizations approximate the ideal D′B′ sphere when the radial compo-

nents of the material parameters grow large in amplitude. However, this

material approximation cannot directly be applied for arbitrarily shaped

objects. In particular, materializations of sharp wedges or corners with-

out rounding them cannot be obtained with the material approximation

based on the quarter-wave transformer. It is also notable that since this

approximation is based on the electrical thickness of the layer, the band-

width cannot be very large. In addition, one should remember that mate-

rial parameters are functions of frequency; hence, the bandwidth is also

restricted by causality.
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7. Novelty of research and summary of
the publications

In this thesis, we developed a numerical method based on surface integral

equations to analyze scattering problems involving arbitrarily shaped 3-

D objects with the DB boundary condition. Such a method has not been

available before. The developed method was then used to obtain better

understanding of scattering properties of objects with the DB boundary

condition.

We also presented a systematic analysis of different types of volume

integral equation formulations for general dielectric and magnetic mate-

rials, as well as a new discretization of a volume integral equation formu-

lation. The scheme was shown to be more stable in terms of conditioning

of the system compared with standard schemes, especially when the ma-

terial parameters are strongly anisotropic.

The developed method was used for examining approximations of the

ideal DB and D′B′ boundary conditions in terms of strongly anisotropic

materials. Finally, the method was accelerated by a multilevel fast multi-

pole algorithm (MLFMA), and applied to the three-dimensional cloaking

structure.

Publication I: “Computation of scattering by DB objects with
surface integral equation method”

The first paper studies the electromagnetic wave scattering of objects

whose surface is characterized by the DB boundary condition. At the DB

boundary, normal components of the electric and magnetic flux densities

vanish.

A numerical method, based on surface integral equations, is developed

for solving scattering problems involving arbitrarily shaped three-dimen-

sional objects with the DB boundary condition. The surface integral equa-
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tions are discretized by the method of moments. It is shown that requir-

ing the unknown electric and magnetic surface currents to be solenoidal

is equivalent to enforcing the DB boundary condition. The unknown sur-

face current densities have been expanded with solenoidal basis functions,

known as loop functions. This solenoidal basis can be constructed from the

standard RWG basis by combining these basis functions properly.

The developed method is validated by investigating the scattering prop-

erties of spheres, in which case the analytical solution is available. It

is shown that the developed method does not suffer from the low fre-

quency breakdown, and thus, analyzing almost static phenomena is pos-

sible. Moreover, the paper describes how to determine the polarizabilities

of DB objects of arbitrary shape by using a dynamical solver. Finally, the

paper discusses the uniqueness of the solution in the case of multiply con-

nected objects.

Publication II: “Surface integral equation method for scattering by
DB objects with sharp wedges”

This paper focuses on the field singularities at the DB wedge. A two-

dimensional quasi-static field solution is derived near the sharp DB wedge

by solving Laplace’s equation with the DB boundary condition in the polar

coordinate system. The analysis shows that the strength of the singular-

ity at the DB wedge is of the same order as that of at the PEC wedge.

However, different components of the field can be singular. At the DB

wedge, only the tangential components of fields can be singular, whereas

at the PEC wedge, both the normal and tangential components of fields

can be singular depending on excitation. Furthermore, the accuracy of the

surface integral equation solution, proposed in Publication I, in the pres-

ence of the DB wedges is investigated. It appears that mesh refinements

are needed near the DB wedges in order to obtain an accurate solution,

which is a well-known result in the case of the PEC boundary condition.

Publication III: “Analysis of volume integral equation formulations
for scattering by high-contrast penetrable objects”

This paper analyzes the properties of different volume integral equation

formulations for electromagnetic wave scattering. Special attention is

paid for the behavior of these formulations when the material parame-
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ters grow large in amplitude. It is concluded that the accuracy of the vol-

ume magnetic field integral equation (VMFIE) is very poor compared with

other discretizations of the volume integral equations. Previously, it was

reported that VMFIE is as accurate as the other formulations; however,

in this paper, it is shown that this is only true for low-contrast objects.

With increasing permittivity contrast, the accuracy of VMFIE becomes

poor. The reason for this is found to be that VMFIE is tested in the range

space of the integral operator when Galerkin’s method is applied. The

formulations, which are tested in the dual spaces of the ranges, give more

accurate results. Hence, by constructing a proper set of testing functions,

the accuracy of VMFIE could be improved.

Publication IV: “Discretization of volume integral equation
formulations for extremely anisotropic materials”

The purpose of this paper is twofold: first, to present a stable discretiza-

tion of the volume integral equation formulation for extremely anisotropic

media, and second, to analyze material realization of the DB boundary

based on a highly anisotropic material interface.

A discretization of the JM-formulation, which is based on equivalent po-

larization currents, is presented. The currents are expanded with piece-

wise constant basis functions which allow the accurate modeling of highly

anisotropic media. It is demonstrated that the JM-formulation is stable

in the presence of extremely anisotropic media, whereas the more con-

ventional volume integral equation formulations, based on the fields or

fluxes, suffer from breakdown.

The second part analyzes electromagnetic properties of material approx-

imations of the DB boundary. Two approximations are considered. One

is based on a uniaxially anisotropic material with vanishing axial com-

ponents of the permittivity and permeability dyadics, and the other is a

simple isotropic approximation with zero permittivity and permeability.

Both material realizations are found to approximate the ideal DB bound-

ary.
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Publication V: “Realization of spherical D′B′ boundary by a layer of
wave-guiding medium”

This paper discusses the material approximation of the spherical D′B′

boundary by a layer of wave-guiding medium. The wave-guiding medium

is obtained by letting the radial components of the permittivity and per-

meability dyadics grow to infinity. It is shown that a quarter-wavelength

layer of such a medium, known as a quarter-wave transformer, lying on

the surface of a DB sphere mimics the ideal D′B′ boundary. The theory is

tested numerically by solving the scattering from a DB sphere coated with

a layer of wave-guiding medium. Then the results are compared with the

scattering of the corresponding ideal D′B′ sphere.

The DB boundary is approximated by a material with zero permittivity

and permeability. This means that materials with extreme parameters

are required, and thus, a stable numerical algorithm is needed to solve

the problem. The volume integral equation method based on equivalent

volume currents, developed in Publication IV, is used in the calculations.

Publication VI: “Broadband multilevel fast multipole algorithm for
electric-magnetic current volume integral equation”

A multilevel fast multipole algorithm (MLFMA) is applied to accelerate a

volume integral equation solution. The volume integral equations are for-

mulated in terms of equivalent volume currents, which are expanded with

piecewise constant approximations. In Publication IV, it was shown that

this formulation is more stable than conventional ones when material pa-

rameters are extremely anisotropic, and thus, suitable for acceleration

with MLFMA.

The developed solver utilizes a broadband version of the MLFMA—

that is, at the subwavelength levels, spectral translators are used, and

at the superwavelength levels, standard high-frequency MLFMA is ap-

plied. Moreover, improved global interpolations based on trigonometric

polynomials are used to reduce the number of sample points compared

with the previous implementations. This also leads to an excellent accu-

racy control when a high number of successive interpolations is required.

Finally, it is shown that the developed method allows efficient and ac-

curate modeling of bodies with strongly inhomogeneous and anisotropic

responses (for example, cloaking devices).
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