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Abstract 
At low temperatures, helium offers a unique system for the study of quantum mechanical 

effects on a macroscopic scale. It is the only known condensed matter system, which remains 
liquid down to the absolute zero temperature. For this reason, helium forms a unique quan-
tum liquid, which can be studied in laboratory conditions. The two stable isotopes of helium, 
3He and 4He, obey the two different quantum statistics, 3He being a fermion and 4He a boson. 
They both undergo a transition into a superfluid state at low temperatures. A new interesting 
system is obtained by mixing the isotopes. Remarkably, 3He has a finite solubility in 4He even 
at zero temperature. Dual Fermi-Bose superfluidity of helium mixtures has been predicted to 
exist, but it has not been observed experimentally. The difficulty is the required extremely low 
temperature. 

 
Adiabatic melting of solid 4He in the presence of liquid 3He is a promising new cooling tech-

nique, which is hoped to produce the superfluid transition of helium mixtures. We have been 
preparing an experiment, which would implement this concept, but due to the complicated 
experimental setup, we have not yet been able to harvest the full power of the method. The 
results of this thesis revolve around supporting work for this experiment. In the course of the 
present studies, some aspects have generated deeper interest in their own right. 

 
In this thesis properties of liquid and solid helium mixtures are studied computationally and 

experimentally. Interactions between 3He atoms dissolved in superfluid 4He are investigated 
by analyzing experimental data. These interactions determine the transition temperature of 
the relished superfluid state of helium mixtures. The obtained model for the interactions is 
further used to calculate other quantities of interest. Retrieving the properties of liquid heli-
um requires novel tools. One such tool, which was introduced to helium research not too long 
ago, is the quartz tuning fork. It is a mechanical oscillator, whose resonant behavior depends 
on the surrounding fluid environment. Its complicated geometry presents difficulty in analyz-
ing its characteristics. Numerical methods are utilized in this thesis to understand effects of 
liquid helium on the quartz tuning fork response. 

Keywords helium-3, helium-4, helium mixtures, superfluid, melting pressure, solubility, 
osmotic pressure, quartz tuning fork, acoustic emission, second sound 

ISBN (printed) 978-952-60-5244-1 ISBN (pdf) 978-952-60-5245-8 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Helsinki Location of printing Helsinki Year 2013 

Pages 198 urn http://urn.fi/URN:ISBN:978-952-60-5245-8 





Tiivistelmä 
Aalto-yliopisto, PL 11000, 00076 Aalto  www.aalto.fi 

Tekijä 
Juho Rysti 
Väitöskirjan nimi 
Mikroskooppisia ja makroskooppisia tutkimuksia nestemäisissä ja kiinteissä heliumseoksissa 
Julkaisija Perustieteiden korkeakoulu 
Yksikkö O.V. Lounasmaa -laboratorio 

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 110/2013 

Tutkimusala Teknillinen fysiikka, fysiikka 

Käsikirjoituksen pvm 16.04.2013 Väitöspäivä 19.08.2013 

Julkaisuluvan myöntämispäivä 31.05.2013 Kieli Englanti 

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit) 

Tiivistelmä 
Matalissa lämpötiloissa helium on ainutlaatuinen systeemi kvanttimekaanisten ilmiöiden 

tutkimiseen makroskooppisessa mittakaavassa. Se on ainut tunnettu systeemi, joka pysyy 
nesteenä lämpötilan absoluuttiseen nollapisteeseen asti. Tästä johtuen heliumista muodos-
tuu ainutlaatuinen kvanttineste, jota voidaan tutkia laboratorio-olosuhteissa. Heliumin kaksi 
vakaata isotooppia, 3He ja 4He, noudattavat kahta eri kvanttistatistiikkaa, 3He:n ollessa fer-
mioni ja 4He:n bosoni. Molemmat muuttuvat supranesteiksi matalissa lämpötiloissa. Uusi 
mielenkiintoinen systeemi saadaan aikaiseksi sekoittamalla näitä isotooppeja. Yllättäen 3He 
liukenee 4He:än jopa absoluuttisessa nollapisteessä. Heliumseoksen fermioni-bosoni -
kaksoissupranesteen on ennustettu olevan olemassa, mutta sitä ei ole vielä havaittu kokeelli-
sesti. Vaikeutena sen saavuttamisessa on tarvittava lämpötila, joka on äärimmäisen matala. 

 
Helium-4:n adiabaattinen sulatus 3He:n joukkoon on uusi lupaava jäähdytystekniikka, jonka 

toivotaan mahdollistavan heliumseosten suprajuoksevuuden saavuttamisen. Olemme valmis-
telleet koetta, jossa käytettäisiin tätä menetelmää, mutta monimutkaisen koejärjestelyn 
vuoksi emme ole vielä päässeet hyödyntämään sen täyttä potentiaalia. Tämän väitöskirjan 
tulokset liittyvät kyseistä koetta tukevaan työhön. Tutkimusten edetessä jotkin osa-alueet 
ovat muodostuneet itsessään mielenkiintoisiksi tutkimuskohteiksi. 

 
Tässä väitöskirjassa nestemäisten ja kiinteiden heliumseosten ominaisuuksia tutkitaan las-

kennallisesti ja kokeellisesti. Helium-3 -atomien välisiä vuorovaikutuksia 4He:ssä tarkastel-
laan analysoimalla kokeellisia tuloksia. Nämä vuorovaikutukset määräävät lämpötilan, jossa 
heliumseos muodostaa odotetun supranestetilan. Saadulla vuorovaikutusten mallilla laske-
taan myös muita hyödyllisiä ominaisuuksia. Heliumin ominaisuuksien tutkiminen vaatii 
uudenlaisia työkaluja. Eräs tällainen työkalu, joka on melko uusi heliumtutkimuksessa, on 
ääniraudan muotoinen kvartsivärähtelijä. Se on mekaaninen värähtelijä, jonka resonans-
siominaisuudet riippuvat ympäröivän aineen ominaisuuksista. Näiden värähtelijöiden mo-
nimutkainen geometria vaikeuttaa niiden värähtelyominaisuuksien tarkastelua. Tässä väi-
töskirjassa tutkitaan nestemäisen heliumin vaikutuksia kvartsivärähtelijöihin numeerisin 
menetelmin. 

Avainsanat helium-3, helium-4, heliumseos, supraneste, sulamispaine, liukoisuus, 
osmoottinen paine, kvartsivärähtelijä, akustinen emissio, toinen ääni 
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Introduction 1

Chapter 1

Introduction

I imagine experimental physicists must often look with envy at
men like Kamerlingh-Onnes, who discovered a field like low tem-
perature, which seems to be bottomless and in which one can go
down and down.

Richard Feynman

The field of low temperature physics truly began, when Heike Kamerlingh Onnes
first reached a temperature of 4.2 K and liquefied helium in 1908 [1]. Based on
the understanding of physics at the time, nothing spectacular was expected to
occur at such low temperatures. Soon thereafter, however, surprising and unex-
plainable effects were observed. The electrical resistance of mercury, for exam-
ple, suddenly dropped to zero when cooled with liquid helium. This is a phe-
nomenon known as superconductivity. Later it was observed that liquid helium
itself, when cooled to 2.2 K, shows very peculiar properties. It becomes a su-
perfluid, which can flow without friction. Somewhat ironically, helium is one of
the most trivial substances at room temperature, since it is chemically inert, but
one of the most intriguing substances at low temperatures. Today we understand
these interesting effects as arising from quantum mechanics, the counterintuitive,
but apparently fundamental, underlying characteristic of our Universe.

Helium has two stable isotopes, the more ordinary 4He, which Kamerlingh Onnes
was able to liquefy, and the extremely rare 3He, which must be produced artifi-
cially for any macroscopic quantity. At room temperature, the two helium iso-
topes behave essentially identically, the only difference being in mass. At low
temperatures, however, they act very unequally and reveal a fundamental dif-
ference of nature. This is because, fortunately for physicists, the two isotopes
represent the two fundamental types of particles, 3He behaving like a fermion
and 4He a boson. All known particles in the Universe can be divided into these
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two classes. To which group a particle belongs, depends on its spin. Integer spin
particles are bosons and half-integer spins are fermions. The one unpaired neu-
tron in a 3He nucleus gives the atom an effective spin of 1/2, compared to zero
spin of 4He. Helium thus provides us with an opportunity to study fermions and
bosons in the quantum mechanical regime in a controlled laboratory environ-
ment. The different particle types of helium isotopes do not make a difference
in our everyday room-temperature lives, because quantum effects are largely ob-
scured by such high temperatures. As we go down to colder and colder, quantum
mechanical effects appear and the difference becomes essential. The reason why
helium, in particular, is of such importance is that it is the only substance to re-
main liquid down to low enough temperatures. This is caused by the lightness of
helium atoms, which in turn results in a large zero-point motion, and the weak
interactions between helium atoms due to van der Waals forces. Because he-
lium is the only liquid at low enough temperatures, it is also the only observable
quantum liquid. All other matter is either solid or extremely sparse gas. Helium
can be solidified, but this requires elevated pressures (3.44 MPa for 3He and 2.53
MPa for 4He). Interesting phenomena also exist in solid helium, which can be
regarded as a quantum solid.

Helium-3 also becomes a superfluid, but the required temperature at about 2 mK
is a thousand times lower than for 4He [2]. This is a reflection of the different
quantum statistics obeyed by the two isotopes. Bosonic 4He can directly form a
Bose-Einstein type condensate, which is the superfluid state. The fermionic 3He,
on the other hand, cannot do this due to the Pauli exclusion principle. It must first
form pairs of fermions, known as Cooper pairs, which can then form the conden-
sate. Bardeen, Cooper, and Schrieffer (BCS) developed the microscopic theory
of superconductivity in 1957, more than 30 years after the invention of quantum
mechanics and 45 years after the discovery of superconductivity by Kamerlingh
Onnes [3]. Their theory can be extended to more general Fermi systems, includ-
ing 3He, and the superfluid state of this fermionic helium is understood to be
similar to the BCS state of superconducting electrons. The formation of Cooper
pairs requires an attractive interaction between the constituent particles. This
is also a sufficient condition. That is, if there is an attraction between fermions,
they will form Cooper pairs at low enough temperatures. Electrons in metals, for
example, attract each other through lattice vibrations and thereby form Cooper
pairs.

A remarkable feature of mixtures of the two helium isotopes is that the solubil-
ity of 3He in 4He remains finite down to absolute zero temperature. This opens
up the possibility to do experiments with helium mixtures at very low temper-
atures and also allows, for example, the construction of a dilution refrigerator,
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Fig. 1.1 Phase diagram of helium mixtures at the saturated vapor pressure (SVP),
which is essentially 0 bar at temperatures below 0.3 K, and at 25 bar. In the green area
both isotopes are normal liquids. In the blue area 3He is normal, but 4He is superfluid.
The λ -line indicates the 4He superfluid phase transition. The grey area represents an
unstable region, where a phase separation occurs into 3He-rich and 3He-dilute phases.
The tricritical point is denoted by C. The figure has been created from the data of Ref. 4.

which is the lowest-temperature continuous cooling device invented. Helium
mixtures offer a remarkable Fermi system, where the degeneracy temperature
and interaction energy can be varied. By changing the concentration, one can
study systems from essentially ideal Fermi gas to weakly interacting Fermi liq-
uid. The degeneracy temperature TF, or Fermi temperature, characterizes the
temperature range, where quantum effects become important. For pure 3He one
finds TF ≈ 1 K. In dilute mixtures at low temperatures it can be varied between
zero and approximately 400 mK.

The phase diagram of helium mixtures is given in Fig. 1.1. Below 0.87 K, he-
lium mixtures can separate into two phases, one rich in 3He and the other rich
in 4He. The latter is known as dilute 3He–4He mixture. Molar concentration is
defined as x=N3/(N3+N4), where Ni is the number of atoms i. At low tempera-
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tures the maximum solubility of 3He in 4He is about 6.6% at the saturated vapor
pressure (SVP), which is practically zero pressure at low temperatures. The sol-
ubility increases at elevated pressures. The 3He-rich phase becomes pure 3He in
the zero temperature limit. It is evident from experimental data that an attractive
interaction between the 3He atoms dissolved in 4He exists [4, 5]. Therefore, a su-
perfluid state of the 3He component also exists at some low enough temperature.
This would be an interesting mixture of Bose and Fermi superfluids. Mixtures
have been cooled down to 100 μK with no observation of the superfluid state
[6, 7]. Discovering this state has been called the "holy grail of low temperature
physics" [8].

Cooling helium to temperatures below 100 μK becomes increasingly more dif-
ficult as the thermal boundary resistance between the liquid and the container
wall increases rapidly. To achieve lower temperatures, a cooling method, which
cools the liquid directly, must be devised. The YKI group of the O.V. Lounas-
maa (Low Temperature) Laboratory of Aalto University has been developing a
novel cooling method, known as adiabatic melting of solid 4He, to overcome
the restriction due to thermal resistance. The method is hoped to provide liquid
mixture temperatures well below the current record, low enough to reach the
superfluid state of mixtures.

Measuring low temperatures is not an easy task. Helium mixtures can provide
useful means to measure temperature, besides being an interesting physical sys-
tem in itself. The melting curve of helium mixtures could be used as a thermo-
metric standard in a similar manner as pure 3He [9]. Since the 3He component
in a helium mixture remains normal fluid to lower temperatures than pure 3He,
mixtures have the potential of offering more resolution at temperatures well be-
low 1 mK.

Low temperature helium requires special tools to make observations of its prop-
erties. Vibrating objects can be used as probes of liquid helium, since the vi-
brational characteristics of such resonators depend on the properties of the sur-
rounding medium. Vibrating wires have been traditionally used for this purpose,
but in recent years quartz tuning fork resonators, small mechanical oscillators
used to keep time, have been found to be well suited as probes in liquid helium
[10, 11]. They can be used as thermometers, viscometers, pressure gauges, and
density and concentration sensors. The main advantages of quartz tuning forks
over vibrating wires are their mass production, and thus low cost, good quality
factor, and that they do not require an external magnetic field. The main dis-
advantage is their more complex geometry, which complicates analysis of their
behavior.
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A mechanical oscillator, such as a quartz tuning fork, can couple to different
sound modes of the surrounding medium. This leads to new phenomena, which
can be either a nuisance or be taken advantage of. Ordinary sound, or first sound,
is the common traveling density wave of the medium. Superfluid helium can
also support other kinds of sound waves. It has become customary to label these
modes with ordinal numbers. Zeroth sound is a wavelike change in the shape of
the Fermi sphere in 3He. Second sound can be thought of as being a temperature
wave, or equivalently an entropy wave. Third and fourth sounds are encountered
in restricted geometries.

In this thesis properties of liquid and solid helium mixtures are studied computa-
tionally and experimentally. We present both microscopic and macroscopic ap-
proaches. The microscopic calculations consider the system at the atomic level.
Simulations, which assume a large system from the beginning and experiments
can be categorized as macroscopic studies. The results of this thesis revolve
around supporting work for the adiabatic melting experiment. In the course of
the present studies, some aspects have generated deeper interest in their own
right.

Organization of the thesis

This overview of the thesis is organized in the following manner: The adia-
batic cooling method and our experimental setup are described in Chapter 2.
Interactions between 3He atoms in superfluid 4He, which determine the super-
fluid transition temperature, are discussed in Chapter 3. These results have been
published in I. Knowledge of the interactions allows one to compute various
other properties, besides the transition temperature, such as solubility, osmotic
pressure (II), and melting pressure (III). Chapter 3 considers such properties of
helium. In addition, experimental results for the molar volume of pure 3He are
given and simulations using path integral Monte Carlo are presented. Quartz
tuning forks are introduced in more detail in Chapter 5 (IV). Propagation of dif-
ferent sound modes in helium and their coupling to mechanical oscillators are
studied in Chapter 6 (V-IX). The thesis is summarized and near-future research
activities are outlined in the final chapter. Results, which have not yet been pub-
lished, are presented in sections 4.4, 4.5, and 6.2. These studies will be refined
and published later. Material, which is not covered in the accompanying articles,
is considered in more detail.
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Chapter 2

Refrigeration by Adiabatic Melting

Conventionally helium mixtures have been cooled to low temperatures using
adiabatic nuclear demagnetization of copper and coupling the liquid thermally
to the nuclear stage via a large surface area, employing sintered metal powder
[6, 7]. Achieving liquid temperatures below 100 μK becomes increasingly more
difficult, as the thermal boundary resistance grows rapidly at low temperatures.
The cooling power decreases and even small heat loads, of the order of picowatts,
to the sample prevent reaching lower temperatures.

In some sense, our novel method can be compared to ordinary dilution refriger-
ation. In a dilution refrigerator, liquid helium mixture exists in the phase sepa-
rated state. Helium-3 is continuously circulated and 3He atoms are transferred
from the rich phase to the diluted phase. This results in cooling, as an amount
of energy, the heat of mixing, is absorbed in the process. This is because the en-
thalpy of 3He is larger in the diluted phase than in the rich phase. An equivalent
statement is that entropy per 3He is larger in the mixture than in pure 3He at a
given temperature. Exactly the same principle is used in the adiabatic melting
refrigeration, except that the isotopes are kept separated in a different way. The
separation is achieved by increasing the pressure of the mixture up to the melt-
ing pressure and solidifying the 4He component. At low temperatures, the solid
is practically pure 4He. As it is melted adiabatically and as reversibly as pos-
sible by removing 4He from the cell, the two isotopes mix and cooling occurs.
Helium-4 can be transferred to and from the cell selectively using a superleak
capillary, through which only superfluid 4He can flow. This is possible, since
the crystallization pressure is higher inside the superleak than in bulk. We define
the cooling factor by the ratio of initial and final temperatures, CF = Ti/Tf. The
adiabatic melting method is not continuous like dilution refrigeration, since the
process ends when all solid has been melted.
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Fig. 2.1 Molar entropies of 3He in the pure and dilute phases as functions of temper-
ature. The arrows indicate adiabatic and reversible transitions from the pure phase to
the dilute phase. The resulting cooling factors CF are indicated. The temperature scale
is normalized by the superfluid transition temperature of pure 3He and entropy by the
corresponding value of pure 3He.

The relevant entropies are illustrated in Fig. 2.1. At low temperatures 4He,
whether liquid or solid, is basically in its ground state and its entropy is neg-
ligible in comparison with the 3He component. If the pure 3He is in the normal
state when mixing takes place, the situation corresponds to a dilution refrigerator
and the cooling factor is approximately CF ≈ 3. The crucial point is that the en-
tropy of pure 3He decreases exponentially when it is cooled below its superfluid
transition temperature. Thus, the cooling factor also increases considerably, even
orders of magnitude. By precooling the pure 3He liquid to a low starting temper-
ature, the adiabatic melting process should result in a very low final temperature
for the mixture. The cooling power is determined primarily by the entropy of
the dilute phase. Entropy of a degenerate Fermi system S is proportional to the
temperature T , and the cooling power Q̇ is then

Q̇ = T Ṡ ≈ (100 J/mol ·K2)ṅT 2, (2.1)

where ṅ is the molar rate of 3He transfer between the phases [12]. For a plausible
rate of ṅ = 100 μmol/s and T = 100 μK, the cooling power is 100 pW. Since Q̇
decreases quickly at low temperatures, all possible heat leaks into the sample
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must be eliminated and the melting process must be done as adiabatically and
reversibly as possible.

The adiabatic melting method has been proven to work as expected, but due
to technical problems in the first experiments, the lowest final temperature was
around 300-400 μK [13], [IV]. Those results have prompted several improve-
ments to the experimental design, which is shown in Fig. 2.2. The shape of the
experimental cell is rather flat to reduce the amount of viscous heating. The
superleak in the first experiment did not function properly, which restricted the
achievable melting rate of the solid. The superleak in the current design is not
operated directly from room temperature, since in the previous experiment ap-
parently some uncontrollable oscillations took place in the capillary. This was
likely to occur at the superfluid-normal fluid interface. Therefore, the addition
and removal of 4He from the cell will be performed with cold bellows.

During precooling of the pure 3He, thermal contact to the cold cell walls should
be good. However, when the adiabatic melting is commenced, the sample should
be decoupled from the cell so that cooling power would not be wasted on cooling
the cell structures. To have this in control, the sintered metal powder is located
in a separate volume, which can be thermally isolated from the cell volume by
a "thermal gate", which is essentially a pressure operated cold valve. The ex-
perimental setup will be equipped with quartz tuning fork resonators, a noise
thermometer, Pt-NMR thermometers, and a capacitive pressure gauge. A nucle-
ator is placed inside the cell to ensure solid nucleation at the proper location.
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Thermal gate (1 mK)
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Pt-NMR
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Fig. 2.2 Experimental setup for the adiabatic melting refrigeration.
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Chapter 3

Effective Interactions in Helium

Mixtures

As a noble gas, helium atoms interact directly only through van der Waals forces.
This is weak compared to other elements, allowing helium to remain liquid at
low temperatures, but still strong enough to prevent considering the system as
essentially free particles. In the spirit of Landau [14, 15], it is useful to not
consider the strongly interacting bare atoms, but rather quasiparticles with some
effective mass and weak effective interactions. In pure 3He, the effective inter-
action takes into account the direct interaction, but also indirect effects, such as
those arising from spin fluctuations. The attraction required for the superfluid
state is caused by the exchange interaction. A quasiparticle with a certain spin
orientation causes a local polarization of the neighboring quasiparticles. The
tendency for neighboring quasiparticles to align parallel results in an attractive
potential, which leads to the Cooper instability. The direct spin-spin interaction
between 3He atoms is the dipole-dipole force between spin-1/2 helium-3 nu-
clei. This effect is very small, and would yield a very low superfluid transition
temperature. The Pauli exclusion principle requires that parallel spin particles
remain spatially separated, leading to exchange energy. This exchange energy is
a much stronger effect, and is the dominant spin-spin interaction in 3He. It tends
to favor parallel spins, ferromagnetic alignment. The principle is very similar to
the mechanism which produces ferromagnetism in iron, for example. It is also
the reason why the Cooper pairs in pure 3He have the nuclear spins aligned par-
allel. This is contrary to most metallic superconductors, where the electron pairs
have antiparallel spins. One may ask why the bare van der Waals interaction is
not enough to result in the superfluidity of 3He. Indeed it could cause Cooper
pairing, but it turns out that the transition temperature would be much lower than
what is observed [16].
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When 3He is dissolved into superfluid 4He, the system changes drastically. At
low temperatures 4He is in its ground state and thus only acts as a superfluid
background, through which the 3He atoms move. Because 3He is an isotopic
impurity, the chemical forces between 3He and 4He are identical. The only
way for 3He to distinguish other 3He atoms reside in the mass difference and
in quantum statistics, which produce a residual interaction. The ability of 3He
to polarize other 3He in its vicinity is decreased compared to pure 3He as their
density is lower. However, the mass difference between the two isotopes results
in a new type of interaction, absent in pure 3He. The smaller mass of 3He causes
its zero-point energy to be larger, and thus the volume occupied by the atom to
be larger than by 4He. In a sense, then, 3He atoms in helium mixtures behave
as bubbles or holes. These bubbles tend to combine to minimize pressure due
to 4He. This is the heuristic explanation for the dominant effective interaction
between 3He quasiparticles in helium mixtures. In the language of quantum field
theory, the interaction is mediated by the exchange of virtual 4He phonons.

It is useful to consider the mutual interactions between quasiparticles in momen-
tum space, i.e., the Fourier transform of the real space potential

V (k) =
∫

d3re−ik·rV (r). (3.1)

Here the potential is written in terms of the wave vector k = p/h̄. Quasiparticle
energy can now be written in the Hartree-Fock approximation as [17]

ε(k) =−E3 +
(h̄k)2

2m∗
(
1+ γk2)+n3V (0)−

∫ d3k′

(2π)3V (k−k′) f (k′), (3.2)

where E3 is the binding energy of a single 3He atom in superfluid 4He, m∗ is
the effective mass of a 3He quasiparticle in the zero concentration limit, the γk2-
term is a small correction to the basic effective mass model of Landau Fermi-
liquid theory [18], and n3 is the 3He particle density. Of the interaction terms,
n3V (0) is the direct Hartree interaction energy. As can be seen from the Fourier
transform, Eq. (3.1), V (0) represents a spatial average of the interaction. The
second interaction term in Eq. (3.2) is the exchange energy due to interaction
between particles with parallel spin. In the above dispersion relation, f (k) is the
Fermi-Dirac distribution function

f (k) =
1

eβ (ε(k)−μ) +1
, (3.3)

where β = 1/(kBT ), as usual and μ is the chemical potential. The latter is
determined by demanding

n3 = 2
∫

f (k)
d3k
(2π)3 . (3.4)
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In a general case this is solved numerically. A low temperature series expansion
can be used at sufficiently low temperatures. The chemical potential is very
useful in connecting the interaction potential to many observable quantities.

The idea of mass-difference interaction was developed by Bardeen, Baym, and
Pines (BBP) [19]. The excess volume occupied by the 3He atoms is seen in the
molar volume of mixtures, vm, written in the form

vm = v40(1+αx), (3.5)

where v40 is the molar volume of pure 4He, x is the molar 3He concentration,
and α is the so-called BBP parameter, or the excess volume parameter. From the
mass difference of the two isotopes, one can expect α to be approximately 1/3.
The experimental value at zero pressure is α ≈ 0.28 and at 2.5 MPa α ≈ 0.17
[20]. BBP showed that in the long wavelength limit (zero momentum transfer)
the mass difference results in an attractive interaction between 3He quasiparti-
cles. They also argued that the momentum dependence of the potential should
be quadratic at low momenta.

We have determined the effective interaction potential phenomenologically at
all pressures of liquid mixtures by fitting previously measured solubility [21]
and osmotic pressure [II] data to a chosen functional form for V (k). We used
the zero-temperature osmotic pressure and solubility data and the temperature
dependence of solubility. The interaction was assumed to be independent of spin.
The obtained potential can then be used to calculate many derived properties of
helium mixtures. These are discussed in the following section and chapter.

3.1 Predicted superfluid transition

In their original theory of superconductivity, Bardeen, Cooper, and Schrieffer
considered pairs of electrons with opposite spins (total spin S = 0) and zero
orbital angular momentum (l = 0) [3]. This is called the s-wave pairing, and it
occurs for most metallic superconductors. For pure 3He, only p-wave pairing
(S = l = 1) is observed, since the attractive interaction is between parallel-spin
particles. Because the interaction between fermions in helium mixtures is not
primarily dependent on spin, s-wave pairing, and in principle d-wave, f-wave
etc., is also possible. The original BCS theory can be generalized to include
other possible pairing mechanisms [22, 23]. The transition temperature for a
state with orbital angular momentum l is given by

Tc � TFe1/N(0)Vl , (3.6)



14 Effective Interactions in Helium Mixtures

0 1 2 3 4 5 6 7 8 9
x (%)

10-9

10-8

10-7

10-6

10-5

10-4

T c
 (K

)

p-waves-wave

0 bar
5 bar
10 bar
15 bar
25 bar

Fig. 3.1 Calculated superfluid transition temperatures of dilute 3He–4He mixtures at
various pressures as functions of 3He concentration. The s-wave and p-wave pairing
mechanisms are denoted.

where Vl is the order l coefficient of the Legendre polynomial expansion of V (k),
TF is the Fermi temperature, and N(0) is the density of states at the Fermi sur-
face. The factors N(0)Vl can be connected to the Landau parameters, which in
the Hartree-Fock approximation are some integrals of V (k) over the momentum
space. Since the total wave function of Cooper pairs must be antisymmetric,
the spin part of the wave function must be antisymmetric (S = 0) for symmetric
orbital wave functions (even l), and vice versa. The resulting superfluid transi-
tion temperatures for helium mixtures using our effective interaction potential
are given in Fig. 3.1 The general shapes of the curves are similar to those ob-
tained by others. The s-wave pairing dominates at low concentrations at all
pressures. Above x ≈ 3.5%, p-wave pairing becomes preferable. The maximum
in the s-wave channel can be understood so that the density of states increases
proportionally to x1/3, but as concentration, and momentum transfer between the
quasiparticles, is increased, the potential reaches a repulsive region for s-wave
pairing. The same argument can be applied to p-wave as well, except that the
system never reaches a repulsive momentum range within limits of solubility
where Tc would begin to decrease. The maximum transition temperature accord-
ing to our results is Tc ≈ 200 μK, which is reached at the maximum concentration
at pressures between 5 bar and 10 bar. The transition temperature at 25.3 bar,
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Fig. 3.2 Calculated superfluid transition temperatures of dilute 3He–4He mixtures at
various concentrations as functions of pressure. The dashed lines denote s-wave and
solid lines p-wave pairing. The red color in the graphs for 7% and 8% mixtures indicate
a state of supersaturation.

the operating pressure of the adiabatic melting experiment, is about 40 μK. Our
results are optimistic in the sense that estimates by many orders of magnitude
lower have been proposed [19, 24–28], and our maximum values are in the re-
gion of experimentally achievable temperatures. Higher estimates have also been
given by others, some of which have clearly been excluded experimentally [29–
32]. Dilute 3He–4He mixtures have been cooled to around 100 μK without any
indication of the superfluid transition [6, 13]. We note, however, that the con-
centration in the experiment of Oh et al. at 10 bar pressure was not quite the
maximum 9.5%, but instead 9%. Our calculation gives Tc ≈ 100 μK under these
conditions, about the same as the lowest experimentally obtained temperature.
We should stress that since the transition temperature has an exponential depen-
dence on the interaction strength, it is quite sensitive to the exact shape of V (k).
The observable quantities we have used to determine it, solubility and osmotic
pressure, are not so sensitive to the detailed shape. We must allow our calculated
Tc to have at least an order of magnitude uncertainty.

Fig. 3.2 shows the transition temperatures plotted as functions of pressure at
several concentrations. For low concentrations, only the s-wave channel is given
(dashed lines) and for high concentrations, only p-wave (solid lines) is plotted.
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The red color in the 7% and 8% data indicate supersaturated states, since the
equilibrium concentration is lower than these in the extended pressure ranges.
The amount of supersaturation depicted in the 8% data is impossible to achieve,
but is shown for curiosity. Usually the pure phase is nucleated at ∼ 0.3% super-
saturation at low temperatures.



P
ro
p
er
ti
es

Properties of Helium Mixtures 17

Chapter 4

Properties of Helium Mixtures

The first three sections of this chapter consider various properties of helium mix-
tures, which are calculated using the effective interaction potential discussed in
the previous chapter. The final two sections present other results.

4.1 Solubility

Saturation solubility of 3He in superfluid 4He is determined from the condition
that chemical potential of 3He in the dilute phase equals that in the rich phase.
At low temperatures the rich phase is practically pure 3He, so that we find the
low temperature solubility from μ3 = μ30. Below 500 mK, the solubility of 4He
in 3He has been determined experimentally to be approximately [33]

x4 = 0.15(T/K)3/2e−0.30 (K/T ). (4.1)

Concentration of 4He decreases extremely rapidly below a few hundred mil-
likelvins. In fact, 3He at low temperatures offers undoubtedly the "purest sys-
tem" available for experiments, if purity is defined as the amount of dissolved
impurities in thermodynamic equilibrium.

The Gibbs-Duhem equation ∑i Nidμi =−SdT +V dP is useful in obtaining vari-
ous thermodynamic identities. By integrating this equation, the chemical poten-
tial of pure liquid helium-3 is given by

μ30(T,P) =−L30 −
∫ T

0
s30dT ′+

∫ P

0

v30(0,P′)
NA

dP′, (4.2)

where L30 is the latent heat of vaporization per atom, s30 is the entropy per 3He
atom, v30 is the molar volume, and NA is the Avogadro constant. The chemical
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potential of 3He in the mixture phase is determined from Eq. (3.4) or by using
the low temperature series expansion [I]. We used heat capacity data of Grey-
wall [34] to compute the entropy, and molar volume data of Greywall [35] and
Abraham et al. [36, 37].

The saturation solubility of 3He in superfluid 4He at low temperatures is often
written as

xs = x0(1+βT 2), (4.3)

where both x0 and β depend on pressure. Fig. 4.1 shows the measured and cal-
culated solubilities in the zero temperature limit over the entire pressure range of
liquid mixtures. Agreement is very good, which of course is no surprise, since
the experimental data were used to find the phenomenological interaction poten-
tial in the first place, as was discussed in the previous chapter. The saturation
solubility increases from its zero pressure value of approximately 6.7% up to
about 9.5% at 10 bar, where it assumes its maximum value, and begins to de-
crease. At the melting pressure of helium mixtures, solubility is 8.2%. There is
more scatter in the experimental data of the temperature coefficient, but overall
agreement between experiment and calculation is good.

4.2 Osmotic pressure

Osmosis is a phenomenon encountered in many places in nature. It can oc-
cur, when a system is composed of several distinguishable fluid components and
a semipermeable barrier, which allows only some of the components to pass
through it. A concentration difference over the barrier results in a pressure dif-
ference as well, which is called the osmotic pressure π . The definition of osmotic
pressure in helium mixtures is visualized in Fig. 4.2. Two vessels are connected
by a superleak, which allows only superfluid, in this case 4He, to flow through it.
Superfluid will flow until the chemical potentials of 4He are equal on both sides,
at which point a pressure difference between the two sides exists. The effect of
3He on 4He on one side is balanced by an increase in pressure on the other. Thus,
the condition of equilibrium is

μ4(T,P,x) = μ40(T,P−π). (4.4)

Using the Gibbs-Duhem equation, we can determine the change in the chemical
potential of 4He due to added 3He. It is given by [II]

δ μ4 =
x

x−1
μ3(x)+

∫ x

0

1−ξ 2α ′(ξ )
(ξ −1)2 μ3(ξ )dξ , (4.5)
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Fig. 4.1 Measured and calculated saturation solubility of 3He in superfluid 4He
over the entire pressure range of liquid mixtures. The upper image shows the zero-
temperature solubility and the lower image its quadratic temperature coefficient β from
Eq. (4.3). Experimental data are from Pentti et al. [21], Yorozu et al. [25], Edwards et
al. [38] and Watson et al. [20].



20 Properties of Helium Mixtures

3He-4He
(T, P, x)

4He
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Fig. 4.2 Definition of osmotic pressure π of dilute 3He–4He mixtures. The two vessels
are connected by a superleak, which is permeable only to the superfluid 4He. A pressure
difference, the osmotic pressure, develops between the vessels. Temperature is the same
on both sides.

where a small effect of the concentration dependence of α (BBP parameter) is
also taken into account. The chemical potential of 3He is obtained from Eq. (3.4).
With the aid of a Maxwell relation, this chemical potential difference can be
connected to the osmotic pressure as

π =−n40δ μ4, (4.6)

where n40 is the particle density of pure 4He.

We measured the difference between the crystallization pressures of pure 4He
and dilute 3He–4He mixtures at various concentrations and temperatures. The
melting pressure difference ΔPm is related to the osmotic pressure through [II]

π =
vL

40 − vS
40

vL
40

ΔPm ≈ 0.095 ·ΔPm, (4.7)

where the molar volumes of pure 4He in the liquid and solid phases are indicated.
The temperature dependence of the osmotic pressure as a function of concentra-
tion can be used to estimate the (concentration independent) effective mass of a
3He quasiparticle in superfluid 4He, since the temperature coefficient is primarily
determined by the effective mass and is only weakly dependent on the 3He-3He
interactions. Before determining the interaction potential we found the effective
mass by assuming non-interacting 3He quasiparticles and taking the interactions
into account in an approximate manner. The result of our fit at 2.53 MPa pressure
is m∗ = 2.91m3, which is in agreement with effective masses obtained by others
at lower pressures [39–43]. The measured and calculated osmotic pressures are
given in Fig. 4.3. Calculations for both interacting and non-interacting 3He are
given for comparison.
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Fig. 4.3 The zero temperature osmotic pressure (upper figure) and its low temperature
quadratic temperature coefficient (lower figure). The dots with error bars are the experi-
mental data, the solid lines are the calculated values including interactions between 3He,
and the dashed lines are the calculated results assuming non-interacting 3He quasiparti-
cles. The inserts show the same data on logarithmic scales together with semiempirical
fits.
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4.3 Melting pressure

Solubility saturated helium mixture at the melting pressure consists of one or two
liquid phases and one or two solid phases. At low temperatures solid helium mix-
ture can experience a phase separation to 3He-rich and 3He-dilute phases simi-
larly as a liquid mixture. For three simultaneous phases the system is univariant,
whose properties depend uniquely on temperature. Four coexisting phases cor-
respond to a quadruple point in the phase diagram. Below the tricritical point,
the saturated system is always univariant.

The slope of the melting curve (or in general the coexistence curve of any two
phases) is determined by the Clausius-Clapeyron relation

dP
dT

=
Δs
Δv

, (4.8)

where Δs is the molar entropy difference and Δv the molar volume difference
between the two phases. At low temperatures, the entropy difference essentially
determines the shape of the melting curve of helium, since the molar volumes
do not change much. Because the 3He component of liquid helium mixtures re-
mains normal to lower temperatures than pure 3He, its entropy remains larger,
and thus mixtures have the potential to offer superior resolution at low tempera-
tures compared to pure 3He if used as a thermometric standard. The provisional
low temperature scale from 0.9 mK to 1 K (PLTS-2000) uses the melting pres-
sure of 3He to define the scale [9].

Below 0.5 K, phonon related effects can be neglected and thus all properties
of 4He, whether liquid or solid, can be regarded independent of temperature.
The entropy of cold 4He is negligible compared to 3He and the solid phase is
essentially pure 4He. Therefore 3He in the liquid phases determine the melting
pressure. The entropy of a Fermi system increases quadratically as a function
of temperature at low temperatures. For these reasons, the melting pressure of
helium mixtures increases proportional to T 2. As temperature increases, 3He
begins to dissolve into the solid. This turns the melting pressure down. The
maximum pressure is obtained at around 300 mK. At about 400 mK, the pressure
equals that of pure 4He. A minimum is reached at approximately 1 K, after which
a positive slope is observed again. The preferable crystal structure changes from
hexagonal close-packed (hcp) of pure 4He to body-centered cubic (bcc) of pure
3He during increasing concentration of the solid phase.

To find the equilibrium state, we need the chemical potentials of both 3He and
4He in each of the phases. Since we are considering a saturated mixture at low
temperature, we have three phases, and subsequently four equations of the form
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μA
3,4 −μB

3,4 = 0, where A and B denote two different phases. The four variables,
which are solved from this group of nonlinear equations at a given temperature,
are the melting pressure Pm and the concentrations xD, xR, and xS. The super-
scripts D, R, and S refer to the 3He-dilute liquid, 3He-rich liquid, and the solid,
respectively. We also denote hcp as h, bcc as b, and liquid as L. At temperatures
above 10 mK, ordering of the nuclear spins in solid 3He and the superfluid tran-
sition of pure 3He liquid can be neglected. The magnetic ordering temperature
of pure solid 3He is TN = 0.9 mK. In the following subsections, all the required
chemical potentials in the different phases are discussed. A similar calculation
has been presented by Edwards and Balibar [44], but we have the benefit of some
more recent experimental data and more accurate description of the 3He-3He in-
teractions.

4.3.1 3He-dilute liquid

The chemical potentials of the dilute liquid phase were already discussed in the
previous sections. For 3He it is given by numerical solution of Eq. (3.4). The
chemical potential of 4He is

μD
4 = μL

40 +δ μD
4 , (4.9)

where δ μD
4 is given by Eq. (4.5).

4.3.2 3He-rich liquid

The rich phase is almost pure 3He, so the chemical potential of 3He in the liquid
can be approximated by

μR
3 = μL

30 + kBT lnxR, (4.10)

where μL
30, the chemical potential of pure 3He liquid, is given by Eq. (4.2) and

xR ≈ 1 is the concentration of 3He in this phase. Since xR > 0.98 below 0.5 K,
we can use the Maxwell-Boltzmann statistics to obtain the chemical potential of
4He:

μR
4 = μL

40 +ΔE4 + kBT ln

[(
T ∗

4
T

)3/2

(1− xR)

]
(4.11)

The chemical potential of pure liquid 4He, μL
40, is not actually needed, since it

cancels with the same term contained in μD
4 and it is written in terms of μS

4 ,
when compared to the solid phase. In the above equation ΔE4 is the difference
between one 4He atom in 3He versus in 4He. It is given by

ΔE4 = ΔE0
4 −

∫ P

0

[
v40 − (1+α0

4 )v30
]

dP′. (4.12)
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Edwards et al. found ΔE0
4 = 0.21 K [45]. We have used the values for ΔE4(P)

given by He et al.[46]. The factor α0
4 is the zero-temperature value of the equiv-

alent parameter in rich 3He as the BBP parameter in dilute 3He in Eq. (3.5). Its
value is obtained from [45]. The characteristic temperature T ∗

4 is

T ∗
4 ≡ 2π h̄2

m∗
4kB

(
NA

v30

)2/3

, (4.13)

where m∗
4 is the effective mass of one 4He in 3He. Laheurte found to his ex-

perimental accuracy that m∗
4 ∝ v−2/3 [47]. Thus, T ∗

4 is constant over pressure.
Edwards and Balibar used a value T ∗

4 = 1.114 K. Later measurements indicate,
however, that the effective mass of 4He in 3He is significantly smaller than the
value used by them. Edwards et al. found m∗

4 = 1.1m4 and T ∗
4 = 4.91 K [45]

instead of the earlier value m∗
4 ∼ 4.5m4 [47, 48]. The smaller value was later sup-

ported by a microscopic calculation, which found m∗
4 = 1.21m4 [49]. We used in

our calculations the experimental value m∗
4 = 1.29m4 [46] and thus T ∗

4 = 4.19 K.

When comparing the chemical potentials in the liquid and solid phases, it is
convenient to write pure 3He in the form

μL
30 = μb

30 +
∫ P

Pm
30(T )

[
vL

30(T,P
′)− vb

30(T,P
′)
]

dP′, (4.14)

Where Pm
30 is the melting pressure of pure 3He [9]. The same applies for 4He. We

used the molar volume data for the two isotopes from Grilly [50, 51], Driessen
et al. [52], Halperin et al. [53], and Scribner et al. [54].

4.3.3 Solid phase

The regular solution model has been shown to reproduce experimental results in
solid helium mixtures with good accuracy [44, 55]. This model relates the Gibbs
free energy of a mixture to the free energies of the pure substances. The atomic
arrangement is assumed to be completely random and the ideal solution model
is simply supplemented by an "excess free energy" term. The Gibbs free energy
per atom in the mixture g(T,P,x) ≡ G/N is related to the free energies of the
pure substances by

g(T,P,x) = xg3(T,P)+(1− x)g4(T,P)+T Sm(x)+gE(T,P,x), (4.15)

where Sm is the entropy of mixing of an ideal solution

Sm(x) = kB [x lnx+(1− x) ln(1− x)] (4.16)
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In the regular solution model the excess free energy is assumed to be of a simple
form

gE(T,P,x) = A(P)x(1− x), (4.17)

with some pressure-dependent factor A. This cannot be directly applied to situ-
ations, where the pure systems have different crystal structures, because it is a
continuous function of x. We can, however, write the excess energy separately
for both crystals

gh
E(T,P,x) = Ah(P)x(1− x)+ xΔ3(T,P)

gb
E(T,P,x) = Ab(P)x(1− x)+(1− x)Δ4(T,P),

(4.18)

where Δ3 ≡ gh
3 −gb

3 is the free energy difference between pure hcp and bcc 3He.
Similarly for Δ4 between bcc and hcp. Edwards and Balibar found that Ah and Ab

are very close to one another, and a single factor A suffices [44]. The chemical
potential is found from the Gibbs energy by μi = ∂G/∂Ni. The result for solid
3He is

μb(h)
3 = μb

30 +A(1− xS)2 + kBT lnxS (+Δ3) , (4.19)

where Δ3 is omitted in the bcc phase and included in the hcp phase. Similarly
for 4He we have

μh(b)
4 = μh

40 +A(xS)2 + kBT ln(1− xS) (+Δ4) , (4.20)

where Δ4 is omitted in the hcp and included in the bcc phase. We used the values
for A, Δ3, and Δ4 from Ref. 44.

4.3.4 Results

We solved the melting curve and the concentrations for the two crystal structures
separately over the entire temperature range in question (10 mK . . . 500 mK).
The results are shown in Fig. 4.4. As the melting curves for hcp and bcc intersect
(T = 280 mK, P = 2.63 MPa), it becomes energetically favorable to change the
crystal structure. The intersection forms a quadruple point, where four phases
(hcp, bcc, dilute, rich) coexist. This result agrees well with both Edwards and
Balibar [44] (T = 283 mK, P = 2.63 MPa) and the measurements of Lopatik
[56] (T = 0.28 K, P = 2.63 MPa), and van den Brandt et al. [57] (T = 0.30 K,
P = 2.63 MPa). Tedrow and Lee concluded from their experiments that this
quadruple point is at T = 0.37 K and P = 2.63 MPa [58].

According to our calculation, another quadruple point (dilute bcc, rich bcc, di-
lute liquid, rich liquid) exists at T = 380 mK and P = 2.52 MPa. In Fig. 4.4
this is seen in the lower plot as a discontinuity in the concentration in the bcc
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Fig. 4.4 Calculated melting pressure of a saturated helium mixture (top) and the cor-
responding concentrations of the various phases (bottom). Calculations have been per-
formed separately for the hcp and bcc phases. The melting pressure of pure 4He is also
given for reference. Superscripts D, R, and S indicate the 3He dilute, 3He rich, and solid
phases, respectively. The concentration xR is given in the insert to show its small change
over the range of temperatures. The quadruple point 1 consists of hcp, bcc, dilute liq-
uid, and rich liquid phases. The second quadruple point is indicated by a jump in the
concentration xS, and includes dilute and rich bcc and liquid phases.
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phase xS. This is contrary to the calculations of Edwards and Balibar, who sug-
gest that the quadruple point does not quite exist [44]. Vvedenskii found in his
experiments that it does exist at T = 380 mK and P = 2.60 MPa [59]. Tedrow
and Lee observed a pressure drop and warming at T = 0.25 K when cooling,
which was attributed to supercooling of the system. On warming they had a kink
in pressure and brief cooling at T = 0.37 K. We are preparing measurements
on the melting curve of helium mixtures, where we intend, among other things,
to investigate the hcp-bcc crystal structure transition and the possible quadruple
point at around T = 380 mK.

4.4 Density of pure 3He

In preparation for experiments on the melting pressure, as discussed above, to in-
vestigate some aspects of solubility, and to re-examine the pressure dependence
of density of helium mixtures, which are already under way, we have measured
the molar volume of pure 3He over the entire pressure range of liquid helium
at a low temperature. This has been done in order to calibrate two interdigital
capacitors (IDC), which can be used for detecting the density of surrounding
helium. These capacitors were originally designed to excite and detect crystal-
lization waves in 3He [60]. Since we used 3He for calibration, we weren’t able
to measure the absolute value of the molar volume, but rather the relative den-
sity over the entire pressure range. Temperature was monitored primarily with
a carbon resistor thermometer, and the system was kept at a constant tempera-
ture of about 6 mK, 300 mK, or 600 mK. A capacitive pressure gauge was used
to measure pressure in the experimental cell. It was calibrated against a room
temperature mechanical pressure gauge.

The interdigital capacitors were patterned by a 15 nm layer of chrome and a
50 nm layer of aluminum on high purity crystalline sapphire (Al2O3) substrate.
The digit spacing and width of the digits were 5 μm with a length of 4.6 mm.
The total effective capacitor area was 4.6 mm by 7.4 mm with 740 digits. The
capacitors were glued to a copper grid with Stycast 1266 epoxy and attached to
the cell walls of a cubic enclosure. In the limit of large number of digits, the
capacitance of an IDC can be calculated from

CIDC ≈ Nε0l
ε + εs

2
, (4.21)

where N is the number of digits, ε0 is the vacuum permittivity, l is the length
of the digits, ε is the relative dielectric constant of the medium in contact with
the surface, and εs is the relative dielectric constant of sapphire. The dielectric
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constant of sapphire is εs ≈ 10, so that the above equation gives a vacuum capac-
itance of CIDC ≈ 150 pF. The measured values were 146.22 pF and 155.95 pF
for the two units. From Eq. (4.21) we see that the IDC can be used to measure
the dielectric constant of the helium sample, which, according to the Clausius-
Mossotti relation, is related to the molar volume v by

ε −1
ε +2

=
4παm

3v
. (4.22)

Here αm is the molar polarizability of helium, whose value and density depen-
dence are obtained from literature [61].

The density measurements were performed when the cell had been filled with
3He to the melting pressure and we began to remove it slowly. The removal was
performed gently enough to ensure constant temperature and uniform pressure
in the cell. The capacitances were recorded throughout the process. The cell was
thermally connected to a dilution refrigerator and temperature was kept constant
with a heater using a PID controller. The removal of helium was halted ap-
proximately every 100 kPa and pressures were allowed to equalize between the
cryostat and a mechanical pressure gauge at room temperature. This provided
a calibration for the capacitive pressure gauge. To reduce noise in the data, the
IDC and pressure gauge data were smoothed by averaging five adjacent points.
The capacitances were fitted to experimental data of the molar volume by other
authors using Eqs. (4.21) and (4.22) treating Nε0l and εs for the two capacitors as
fit parameters. The resulting molar volume curve and the used fit data are shown
in Fig. 4.5. The insert shows the difference between our data and the fit data
in more detail. Our data have been extrapolated from 3.364 Mpa to 3.433 MPa
and from 14.1 kPa to zero pressure. As reference data we have used results from
Abraham et al. [36] extrapolated to zero temperature, Greywall’s data [34, 35]
at 5 mK, Halperin et al. [53] at the melting curve at temperatures between 3 mK
and 20 mK, Grilly [50] at the melting curve at 20 mK, and Scribner et al. [54] at
the melting curve extrapolated to 20 mK. We performed similar fitting procedure
for both capacitors. The difference between the two is shown in the insert as a
red curve.

Our results are consistent with previous experiments, considering the scatter in
the available data. Some discrepancy in the previous molar volumes at the melt-
ing pressure and below it was observed, which manifested itself as a difficulty
in fitting a smooth continuous curve to them. Neglecting clearly random effects,
the molar volumes obtained by the two capacitors differ less than 0.04% of one
another over the entire pressure range. The small systematic difference seen in
Fig. 4.5 is a real effect, since plotting the capacitance of one capacitor as a func-
tion of the other is not completely linear. The difference is of the order of 0.5 fF
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Fig. 4.5 Molar volume of pure 3He. The black line shows our experimental points,
when fitted to the data of Abraham et al. [36], Greywall [34, 35], Halperin et al. [53],
Grilly [50], and Scribner et al. [54]. The insert shows the difference, when our data are
subtracted from the fit data. The red curve is for the molar volume obtained with the
other IDC after fitting to the same set of data.

(∼ 4 ppm). This effect was reproduced at 300 mK during a re-pressurization of
the cell nearly half year later. As of now the origin of this effect is not under-
stood.

The obtained fit parameters are Nε0l = 25.98 pF and εs = 10.26 for the first
capacitor and Nε0l = 28.44 pF and εs = 9.991 for the other. The difference in
the first fit parameter can be attributed to different actual geometries of the two
capacitors. The dielectric constant of sapphire for the two should be the same,
as they were fabricated on the same singe-crystal sapphire plate oriented in the
same direction. We can only speculate that the strain caused by different coeffi-
cient of thermal expansion of Stycast compared to sapphire may have deformed
the capacitors upon cooling to some degree, causing εs to deviate. This is sup-
ported by our measurements of surface acoustic waves on the sapphire plates,
which exhibited slightly differing resonant characteristics for the two capacitors.

We also performed temperature sweeps from the few millikelvin regime up to
few hundred millikelvin. The first capacitor displayed some anomalous behav-
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ior in the temperature range of 10 mK, indicating decrease in the molar volume
much faster than the expected quadratic. The other capacitor showed a decrease
in the molar volume approximately quadratic, but the temperature coefficients
were noticeably smaller (about a factor of two) than the ones obtained by others.
There are apparently some temperature dependent effects related to the capaci-
tors themselves even at such low temperatures, because compatible effects were
observed when the cell was empty. The origin of this issue remains unknown.

4.5 First principles simulations

In this section we report some results of work in progress. Instead of a phe-
nomenological method used in the preceding sections, we now consider a more
ab initio approach for determining the properties of helium mixtures. The method
is based on an alternative formulation of quantum mechanics by Richard Feyn-
man, who also formulated quantum statistical mechanics in terms of the path
integral [62]. This concept is well-suited for Monte Carlo methods and the com-
bination of the two is called path integral Monte Carlo (PIMC). In principle,
the PIMC method is exact in the sense that errors can be arbitrarily reduced.
In practice some approximative schemes must be implemented due to limited
computing power.

4.5.1 Path integral Monte Carlo method

Here we briefly outline the idea of PIMC simulations. A system in thermody-
namic equilibrium is described by the thermal density matrix, which represents
the system in a mixed quantum state with each energy state weighed by the cor-
responding Boltzmann factor. The density matrix is given by [62, 63]

ρ = ∑
i

e−βEi |Ψi〉〈Ψi|= e−β Ĥ , (4.23)

where Ψi are the eigenfunctions of the Hamiltonian Ĥ with eigenvalues Ei and
β = 1/kBT . In numerical simulations it is useful to work in the position rep-
resentation, because then all the matrix elements of the density matrix are non-
negative. We consider a system of N particles in three dimensions. The set of
3N coordinates are denoted R = {r1, . . . ,rN}. The density matrix in coordinate
representation assumes a form

ρ(R,R′;β ) = 〈R|ρ|R′〉= ∑
i

ψ∗
i (R)ψi(R

′)e−βEi . (4.24)



4.5. First principles simulations 31

The expectation value of an operator Ô in thermal equilibrium is given by

〈Ô〉= Z−1 ∑
i
〈Ψi|Ô|Ψi〉e−βEi , (4.25)

where the partition function Z is defined as

Z = ∑
i

e−βEi . (4.26)

The expectation value can be written in terms of the position density matrix as

〈Ô〉= Z−1
∫

dRdR′ρ(R,R′;β )〈R|Ô|R′〉, (4.27)

where the partition function is now

Z =
∫

dRρ(R,R;β ). (4.28)

Many important operators are diagonal in configuration space and the expecta-
tion value becomes

〈Ô〉= Z−1
∫

dRρ(R,R;β )O(R). (4.29)

We can stochastically generate a set of configurations {Ri}, which is statistically
sampled from a probability density proportional to ρ(R,R;β ). The expectation
value 〈Ô〉 can then be determined by averaging over the set {O(Ri)}.

The problem is we don’t know the form of ρ(R,R;β ). This is where the path
integral method becomes handy. It allows us to calculate the density matrix
at low temperatures using a density matrix at high temperatures, where good
approximations can be made. This is seen from the fact that the product of two
density matrices is a density matrix:

e−(β1+β2)Ĥ = e−β1Ĥe−β2Ĥ . (4.30)

In position space the above means

ρ(R1,R3;β1 +β2) =
∫

dR2ρ(R1,R2;β1)ρ(R2,R3;β2). (4.31)

We can continue this process of division and we see that the temperature at which
the density matrix is needed, increases. By dividing the density matrix to M−1
parts with equal temperatures, the density matrix in the position space is

ρ(R0,RM;β ) =
∫

· · ·
∫

dR1dR2 · · ·dRM−1×
×ρ(R0,R1;τ)ρ(R1,R2;τ) · · ·ρ(RM−1,RM;τ),

(4.32)
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where τ ≡ β/M is the equivalent of a time step. The large number of integrals
we get can be computed together with the Monte Carlo procedure mentioned for
the expectation value 〈Ô〉.
By dividing the density matrix in many parts, we have many configurations of
the system at different moments in imaginary time nτ , where n is an integer.
A particle can be thought to evolve in imaginary time with steps τ . There is
no real dynamics, since we consider the system in thermodynamic equilibrium.
The path is the sequence of configurations {R0,R1, . . . ,RM} in this "time". In a
sense the particles are described by chains of beads connected by springs. Clas-
sically this resembles a polymer, which in the diagonal case, R0 = RM, forms a
closed ring. Each particle at a given imaginary time interacts only with the other
particles at the same "moment in time" (at the same time slice). A particle is
connected to itself in successive time steps. Sampling proceeds generally in the
following manner: some number of beads of a particle are randomly displaced.
After the random displacement, the density matrix of the new configuration is
computed and either accepted of rejected by comparing it to the old one by the
Metropolis algorithm. Accepted and rejected moves contribute equally to the
thermal averages.

For a quantum mechanical many-particle system, one also needs to consider the
role of identical particles. Fermions have totally antisymmetric wave functions
and bosons have symmetric ones. The density matrix must take into account
the exchange of particles, when simulations in the quantum regime are per-
formed. The density matrix for a boson (B) or a fermion (F) system in terms
of distinguishable-particle density matrix can be written as

ρB/F(R,R′;β ) =
1

N! ∑
P
(±1)Pρ(R,PR′;β ), (4.33)

where P denotes any permutation of the coordinates. Plus sign in the sum are for
bosons and minus sign for fermions. In the "ring polymer" analogy, permuta-
tions allow the polymers to permute at some time slice with each other, forming
larger chains. In boson systems macroscopic chains are understood to indicate
a superfluid state. Permutations are not summed over explicitly, since it would
be a formidable task even for a relatively small number of particles, but are in-
cluded in the Monte Carlo step. For bosons this is no problem, since all the
permutation terms are positive. For fermions, however, the situation is quite dif-
ferent, as there is cancelation between terms of even and odd permutations. This
effectively prevents the use of Monte Carlo evaluation of the integrals. Similar
problem arises in other numerical methods as well, and is known as the fermion
sign problem. An approximate method, known as the restricted path integral
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Monte Carlo (RPIMC) has been developed to a remedy [64]. In this method,
paths which change the sign of the density matrix are rejected, and thus only
positive contributions are included. One uses a trial density matrix, for example
that for free fermions, to estimate, which paths are sign-changing. RPIMC is
expected to be relatively accurate for dilute systems. We have not yet performed
this type of simulations.

Helium is well described by a Hamiltonian, where the atoms interact by a pair
potential v(r):

Ĥ =− h̄2

2m

N

∑
i=1

∇2
i +∑

i< j
v(ri j). (4.34)

For the helium two-body potential we have used that given by Aziz et al. [65].
Efficient PIMC simulations require many subtleties, but these are not discussed
here further. A thorough review of path integral Monte Carlo simulations in
liquid helium can be found in Ref. 66.

4.5.2 Kinetic energy of 3He impurity in superfluid 4He

We have only recently begun to do PIMC simulations on helium mixtures, and
report here just the results for the kinetic energies of the two isotopes. In this
subsection all energies are given in units of kelvin. By placing only a single
3He impurity in 4He, we avoid the fermion sign problem. We placed N = 64
atoms, of which one was 3He, into a cubic volume with periodic boundary con-
ditions to simulate a bulk system. Simulations with 32 atoms were also per-
formed at some pressures and temperatures. It was noted that within statistical
errors the results with the different number of atoms agree. We used a time
step τ = 0.025 K−1, for which we and others have observed convergence, and
computed the system at two temperatures T = 0.25 K and T = 0.5 K, and at
six different densities. In our simulations we have exploited the Universal Path
Integral code of D. M. Ceperley [67]. The obtained kinetic energies for the two
isotopes and computed pressures are given in Table 4.1. It should be noted that
in addition to statistical errors, some effects due to a finite size system also ap-
pear. An effort is made to compensate these, for example, in the case of pressure.
Using PIMC, Boninsegni et al. found the kinetic energy of one 3He in 4He at
temperature T = 0.25 K to be K3 = 17.4(3) K and K3 = 17.5(2) K for systems
with N = 54 and N = 108 particles, respectively [41]. At T = 0.5 K they found
similarly K3 = 18.1(3) K and K3 = 17.5(3) K. Our value for the kinetic energy
is appreciably lower than theirs, by about one kelvin. They used a slightly higher
density (N/V = 0.0218 Å−3), but this explains only a fraction of the difference.
Diffusion Monte Carlo simulations by Boronat et al. resulted in a zero tempera-
ture value of K3 = 18.4(5) K (N/V = 0.0219 Å−3), which is clearly larger than
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T = 0.25 K T = 0.5 K
N/V (Å−3) P (bar) K3 (K) K4 (K) P (bar) K3 (K) K4 (K)

0.02174 0.28(8) 16.5(1) 13.73(2) 0.26(8) 16.6(1) 13.73(2)
0.0229 5.2(1) 18.0(1) 15.07(3) 5.1(1) 18.5(1) 15.12(2)

0.02382 10.3(2) 19.6(1) 16.22(3) 10.1(1) 19.9(1) 16.29(3)
0.02459 15.1(2) 20.7(1) 17.22(3) 15.4(2) 21.1(2) 17.24(3)
0.02526 20.0(2) 21.6(2) 18.12(3) 19.5(2) 22.2(2) 18.14(3)
0.02563 23.1(2) 22.1(1) 18.61(3) 23.0(2) 22.5(1) 18.65(4)

Table 4.1 Kinetic energies of 3He K3 and 4He K4 in units of K at temperatures T =
0.25 K and T = 0.5 K and various densities. The system includes N = 64 helium atoms,
of which one is 3He. Computed pressures are also given. Statistical errors (one standard
deviation) given in parentheses apply to the last digits.

that of Boninsegni et al. [68]. Deep inelastic neutron scattering experiments
place the value at around K3 = 12 K [69–72]. This apparent discrepancy be-
tween various theoretical values [41, 68, 73, 74] and several experiments has not
been resolved. For pure 4He Boninsegni et al. found K4 = 14.3(1) K, compared
to our value K4 = 13.73(2) K. The presence of 3He tends to lower K4.

The kinetic energies can be used to determine the chemical potential difference
between the isotopes. At zero temperature the difference is [66]

μ3 −μ4 =
∫ m4

m3

Km

m
dm. (4.35)

The kinetic energy of 3He is extrapolated to zero temperature. We simply use the
trapezoidal rule to evaluate this integral from our kinetic energy data at the two
masses. The results are given in Table 4.2. By using experimental data for μ4, we
can compute μ3 and further compare it with experiment. The experimental data
are from [75]. Agreement between theory and experiment is quite good. This
comparison is slightly hindered by the possible error in the calculated pressure
due to finite size system.

We are particularly interested in the effective mass as a function of pressure,
but for some, yet unsolved, reason, our obtained effective masses for the 3He
impurity were unexpectedly large by a factor of approximately 1.7 compared to
experiments and earlier calculations. This may be due to some problem with the
effective mass estimator, since all the other quantities seemed sensible. RPIMC
simulations, with larger amount of 3He atoms in the system, might provide infor-
mation about the effective 3He–3He interactions and could perhaps be compared
to our phenomenological results.
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N/V (Å−3) P (bar) μ3 −μ4 (K) μ4 expt (K) μ3 (K) μ3 expt (K)
0.02174 0.28(8) 4.4 -7.17 -2.8 -2.66
0.0229 5.2(1) 4.7 -5.49 -0.8 -0.65

0.02382 10.3(2) 5.1 -3.92 1.2 1.28
0.02459 15.1(2) 5.5 -2.45 3.0 3.00
0.02526 20.0(2) 5.7 -1.00 4.7 4.69
0.02563 23.1(2) 5.9 0.02 5.9 5.73

Table 4.2 Chemical potential difference of the two isotopes, μ3 −μ4, calculated from
Eq. (4.35). The chemical potential of 3He is obtained by utilizing experimental data for
μ4. Experimental values are denoted by "expt". The simulated pressures are also given.
All chemical potentials are in units of kelvin. The statistical error in the computed
chemical potentials are of the order ±0.2 K. Statistical errors for the pressures given in
parentheses apply to the last digits. Experimental data are from Ref. 75.
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Chapter 5

Quartz Tuning Fork

Quartz tuning forks are commercially mass produced components, which are
meant for frequency standards in various devices, such as watches. They employ
the piezoelectric properties of quartz (crystalline SiO2); application of electric
field on the crystal causes mechanical stress. When the crystal is properly cut and
shaped, it can resonate with certain resonant frequencies. These oscillators have
the shape of a traditional tuning fork, hence the name. Large number of possible
resonant modes exist, but the most commonly used is the one, where the two
tines oscillate in antiphase toward each other with no nodes along the tines. The
frequency of this mode varies between different quartz tuning fork models, but
the most common intended frequency is exactly 215 Hz (= 32 768 Hz) at room
temperature. To excite the proper resonant mode, metal electrodes have been
placed on the surface of the tines.

Mechanical resonators of different kinds have long been used to probe the prop-
erties of superfluid helium. When the oscillator is immersed in a fluid medium,
the oscillator response changes due to additional inertia and dissipation com-
pared to vacuum environment. Traditionally conducting wires forming a half
circle and placed in a magnetic field have been used for this purpose [76]. Vibrat-
ing grids [77] and levitating spheres [78] have also been studied. In recent years
quartz tuning forks have gained much popularity over vibrating wires due to their
many advantages. They are easy to operate, since they do not require a magnetic
field, and are in fact very insensitive to external fields. As mass-produced items
they are readily available and they have a superior quality factor and stability.
The quality factor of a resonator is defined as the ratio of the resonant frequency
to the width of the resonance curve at half maximum, Q = f0/Δ f . Smaller
density of quartz (ρq ≈ 2659 kg/m3) compared to metallic vibrating wires offer
larger changes in frequency due to the surrounding medium, thus improving sen-
sitivity. Quartz tuning forks with smaller physical size (smaller oscillator mass)
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Fig. 5.1 Quartz tuning fork and its container. The dimensions correspond to a Fox
Electronics NC38 quartz tuning fork, used in some of our experiments. Dimensions of
the oscillator itself are T = 0.60 mm, W = 0.34 mm, and L = 3.76 mm. The space
between the tines is 0.30 mm. Two holes have been created at the end of the metal
casing to allow contact between the resonator and surrounding fluid. In NC38 quartz
tuning fork, excitation and detection wires are connected on different sides of the base.

can be used in a low viscosity fluid and larger models are more suited at larger
viscosities. The main disadvantage of a tuning fork resonator is its rather com-
plicated geometry, which hinders analytical approaches to the evaluation of its
resonant properties. Since the introduction of quartz tuning forks in low temper-
ature helium research by Clubb et al. [10], they have been used to measure, for
example, temperature, pressure, viscosity, and turbulence in superfluid helium
[11, 79, 80].

In production, quartz tuning forks are encapsulated in hermetically sealed metal-
lic containers, often with a cylindrical shape. A schematic drawing of a quartz
tuning fork with the dimensions appropriate to a Fox Electronics model NC38 is
shown in Fig. 5.1. To make contact between the oscillator and sample, the her-
metic container must be breached. It can either be removed completely, or holes
can be created on it. In Fig. 5.1, holes have been filed on both sides of the top of
the container. This is the main configuration we have used in our experiments.
As will be noted in the following sections, the container has a significant effect
on the resonant characteristics due to first and second sound resonances in the
cavity. The excitation and detection wires have been cast inside a ceramic plug.
In NC38 quartz tuning fork, the wires are connected on different sides of the
oscillator base, but in some models they are on the same side next to each other.

In our measurement setup we apply a sinusoidal excitation voltage from a func-
tion generator to the quartz tuning fork and a reference signal to a lock-in ampli-
fier. The detection signal is filtered and amplified before arriving at the lock-in.
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Another widely used option is to connect a current-to-voltage converter before
the lock-in amplifier. We observed that by connecting a small capacitor between
the excitation wire and ground, the residual width of the resonance could be
reduced. An optimum amount of capacitance exists, which maximizes the Q-
value. It should be noted, however, that this effect is likely due to the properties
of the measurement setup, not the oscillator. Also removing the dielectric insu-
lator from a coaxial cable and replacing it with a fiberglass sleeving reduced the
width. These procedures can increase the quality factor in vacuum at low tem-
perature to such a large value that it is difficult to even measure. Without these
additional width-reduction measures, it is still quite large, typically Q ∼ 106.

The appropriate description of the effect of surrounding fluid on the oscillator
depends on the mean free path of the excitations. At relatively high tempera-
tures, when the mean free path is small compared to the oscillator dimensions, a
hydrodynamical model can be applied. In the hydrodynamical regime, the res-
onant frequency f0 of a mechanical oscillator immersed in a viscous fluid with
viscosity η is given by [11]

f0 = f0vac

[
1+

ρF

ρS

(
B+β

S
V

√
η

πρF f0

)]−1/2

, (5.1)

where f0vac is the resonant frequency in vacuum, B and β are geometry-dependent
dimensionless factors of order one, and ρF and ρS are the densities of the fluid
and the oscillator (solid), respectively. The other geometry factors are defined
as S = 2(T +W )L and V = TWL, representing the area and volume of one tine.
The dimensions T , W , and L are defined in Fig. 5.1. Width of the resonance is
given by

Δ f = Δ finvisc +
1
2

CS

√
ρFη f0

π
( f0/ f0vac)

2

m∗ , (5.2)

where Δ finvisc includes all contributions to the width besides viscosity, such as
acoustic emission and internal damping of the oscillator.

At low temperatures this hydrodynamic description is no longer valid as the
mean free path increases. The quasiparticle gas becomes a collection of ballistic
entities and viscosity is not a suitable concept anymore. At sufficiently low
temperatures and small oscillation velocities in superfluid 3He, the width of the
resonance is ∝ e−Δ/kBT , where Δ is the superfluid energy gap. The zero pressure
value of the gap is Δ = 1.77 kBTc [81], has a linear density dependence [35],
and is Δ = 1.99 kBTc at the melting pressure [82]. Simulations of even simple
geometries, such as vibrating wires, in the fully ballistic regime are cumbersome
[83, 84].
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At small oscillation amplitudes, the motion of a quartz tuning fork can be mod-
eled as a harmonic oscillator with an effective mass. We can use the equation of
motion of a driven damped harmonic oscillator

Fe = m
d2x
dt2 +mγ

dx
dt

+ ksx, (5.3)

where Fe is the excitation force, m is the mass of the oscillator (one tine), x is
the displacement, ks is the spring constant, and γ represents damping. If the
oscillator is in vacuum, γ stands for internal damping of the oscillator. The
resonant frequency is given by

f0 =
1

2π

√
ks

m
. (5.4)

Since the tuning fork is effectively composed of two cantilever beams, we cannot
use Eqs. (5.3) and (5.4) directly with the mass of a tine. Instead we must use an
effective mass [85]

m∗ = 0.2427m, (5.5)

which applies to a uniform rectangular beam fixed at its base. The spring con-
stant is

ks =
E
4

W
(

T
L

)3

, (5.6)

where E is the elastic modulus, which for quartz at room temperature is E =
7.87 ·1010 Pa. Using the dimensions of NC38, the above equation gives a reso-
nant frequency f0 = 37505 Hz, which is 14% larger than the measured value at
room temperature. Some of the discrepancy is likely due to the the added mass
of the electrodes, difference in the actual elastic modulus and deviations of the
real geometry compared to the model [11], but a significant effect is also due to
the assumption of a fixed cantilever beam, as will be noted below.

As was mentioned, a quartz tuning fork can oscillate in a large number of reso-
nant modes with increasing frequencies. We can determine the eigenmodes and
eigenfrequencies by using a linear elastic material model and the finite element
method (FEM). For this purpose we have used Comsol Multiphysics software.
Twelve lowest-frequency tuning fork modes for an oscillator, which is fixed only
from the bottom of its base, are given in Fig. 5.2. The primary mode is the one
with frequency 30 790 Hz. This is 6% smaller than the measured value and 18%
smaller than the one given by the effective cantilever model. The large discrep-
ancy between the two models is explained by the fact that the cantilever model
assumes the tines to be fixed at one end. By fixing the tines similarly in the simu-
lation, the resonant frequency changes to 36 870 Hz, which is only 1.5% smaller
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9 115 Hz 16 847 Hz 26 556 Hz 30 790 Hz 52 247 Hz 85 885 Hz

118 120 Hz 140 612 Hz 143 763 Hz 169 470 Hz 180 209 Hz 226 055 Hz

Fig. 5.2 The lowest twelve eigenmodes of a quartz tuning fork with dimensions con-
sistent with a Fox Electronics NC38. The corresponding eigenfrequencies are given
below each mode. The tuning fork has been fixed at the bottom of the base. Color is a
measure of displacement from the rest position, blue indicating zero displacement. The
amplitudes have been greatly exaggerated to bring out the shapes clearly. The rest posi-
tion is also seen as a black frame. Due to the electrode configuration on the tines, only
the modes with eigenfrequencies 30 790 Hz and 180 209 Hz can be excited.
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than that given by the effective model. If we take into account the actual half
circular shape between the tines, the obtained frequency is 31 770 Hz, which
brings the difference between measured and calculated values to 3%. This can
with confidence be attributed to the effects mentioned earlier.

The electrodes on the surface of the quartz tuning fork tines are manufactured
so that the applied voltage can excite the 31 kHz mode, that is, symmetrically
in antiphase. Therefore, most of the other modes cannot be excited with such
electrode configuration. The next available mode is at 180 209 Hz. We have
performed measurements with this mode as well. The quality factor is not quite
as good as it is for the first mode, and at higher frequency, heat release to the
sample is larger.

5.1 Effect of helium exposure

In this section we briefly note an effect, which was observed when a quartz
tuning fork was exposed to gaseous helium at room temperature. When the os-
cillator was subjected to helium gas, the resonant frequency increased slowly
with a time constant of several hours. At a pressure of approximately one atmo-
sphere, it saturated to about 35 mHz higher frequency. At higher pressures, the
effect was significantly stronger. A four-day exposure to 10 bar room tempera-
ture helium raised the frequency by approximately 2 Hz. When the tuning fork
cavity was evacuated from helium, reverse effect was observed with a different
time constant. For the low pressure exposure, the time constant was shorter, but
it took more than a month for the oscillator to recover from the 10 bar helium
environment. At liquid nitrogen temperature (77 K), the effect was significantly
smaller and slower. This increase in frequency was observed every time the
tuning fork was exposed to room temperature helium, but could not be exactly
reproduced. The width remained almost constant with perhaps a tiny decrease
when in helium. Neon had no such effect on the tuning fork frequency.

One possibility is diffusion of helium into quartz crystal. The diffusion mech-
anism of helium in quartz is not very well understood and measured diffusion
constants differ by orders of magnitude [86]. According to molecular dynam-
ics simulations, structural defects can significantly affect the mobility of helium
atoms in quartz [87]. From Eqs. (5.4) and (5.6) we see that the resonant fre-
quency of a quartz tuning fork in vacuum is

f0vac =
aT
L2

√
E
ρq

, (5.7)
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where a is a constant. From the above equation, one can observe that the vacuum
resonant frequency can increase if E increases, ρq decreases, or all oscillator
dimensions grow by an equal amount. The last case corresponds to the situation,
where the increase in volume occurs only on the surfaces of the tuning fork.
One might think at first that diffusing helium would increase the density and
thus decrease the frequency. But perhaps a stronger effect is an increase in the
elastic modulus. It seems that the rate of diffusion is too slow to explain the
effect, which thus remains unexplained. We did not investigate this in greater
detail, but feel that it is worth noting here.
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Chapter 6

Propagation of Sound in Helium

6.1 First sound

Compressibility of a medium leads to propagation of density (pressure) waves,
called first sound. This is the ordinary sound encountered in many different phys-
ical systems and in everyday life. Compressible fluid also changes the response
of an oscillating object compared to incompressible medium. For simplicity, we
neglect viscosity and set η = 0 in Eq. (5.1) to obtain

f0 = f0vac

(
1+B

ρF

ρS

)−1/2

. (6.1)

When the wavelength of sound in the fluid is much larger than the relevant di-
mensions of the oscillator, the fluid is often assumed to be incompressible. Un-
der this approximation, B is a constant, which depends only on the oscillator
geometry. In precise measurements this assumption cannot be made even if the
wavelength is an order of magnitude larger than the dimensions. The situation
becomes even more tricky if acoustic resonances in the cavity around the oscilla-
tor or within the oscillator geometry are present. When compressibility is taken
into account, the geometrical factor B becomes dependent on the wavelength
(wave vector) of sound in the medium. Knowledge of this factor is essential in
analyzing the resonator response to the surrounding fluid. Unfortunately B can
be determined analytically only for some simple geometries. An example is a
single infinitely long circular beam oscillating in infinite medium. The geometry
of a quartz tuning fork is much too complicated for fully analytical approaches.
We are thus restricted to numerical methods when finding the geometrical factor
in various situations.
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To understand the behavior of quartz tuning forks, or other oscillators, immersed
in compressible fluids, we have performed numerical simulations using the finite
element method. This numerical method is well suited for simulations with com-
plicated geometry. The numerical computations have been performed with Com-
sol Multiphysics using a desktop computer. The surrounding fluid was modeled
as an acoustic medium, which obeys the Helmholtz equation

∇2P− k2P = 0. (6.2)

Here P is the acoustic pressure (small deviation from an equilibrium value) and
k = ω/c = 2π/λ is the acoustic wave vector. The most common resonant fre-
quency of the lowest usable mode of a quartz tuning fork (cf. Fig. 5.2) is about
32 kHz, but a wide range of different-sized oscillators with different frequencies
exist. Speed of first sound in helium liquids vary between 100 m/s and 400 m/s.
Thus, a 32 kHz tuning fork can cover a wave vector range between k = 500 m−1

and 2000 m−1. Higher-frequency oscillators allow one to perform experiments
at wave vector values in the several thousands. Thus, depending on the quartz
tuning fork model, a large range of wavelengths is accessible.

We have simulated various oscillator geometries immersed in infinite medium
and inside a fluid-filled container. Infinite medium is modeled by an artificial
boundary, where the boundary condition results in minimal reflection of acous-
tic waves. We have considered both infinitely long oscillating objects, which
reduces the problem to 2D, and the full 3D quartz tuning fork geometry. The
2D simulations are computationally considerably less demanding than those in
3D. We verified our computational method by solving the case of an infinite cir-
cular cylinder in infinite compressible medium analytically and compared our
simulated results to it. Agreement was found to be nearly perfect. These simu-
lations can help in analyzing the data from quartz tuning forks and to choose a
resonator with appropriate size, relative dimensions, and resonant frequency. In
addition to obtaining the geometrical factor, we can also study acoustic emission
due to the oscillating object in our simulations. The acoustic field of a quartz
tuning fork is shown in Fig. 6.1. Emitted acoustic power is directly related to
the width of the oscillator resonance compared to the width in vacuum. Strong
frequency dependence is a characteristic property of acoustic emission, typically
following a power law at low wave vectors, ∝ kp with p ∼ 5. We investigated
the effect of different resonator geometries on the acoustic emission. These re-
sults are reported in publications V and VI. For a Fox Electronics NC38 quartz
tuning fork, we found an exponent p = 4.87. This is comparable to a value ob-
tained experimentally by Schmoranzer et al. for several different quartz tuning
fork models, p ≈ 5.6 [88]. The scatter in their experimental data does permit
an exponent somewhat below 5. Modeling the tuning fork acoustic emission as
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Fig. 6.1 Acoustic field in 3D quartz tuning fork simulations shown from two direc-
tions. The colors represent the value of the pressure amplitude (red for positive and blue
for negative), which varies sinusoidally in time around an equilibrium value (green). The
boundary condition on the dashed boundaries mimics that of an infinite medium. The
wave vector corresponding to the oscillator’s vacuum resonant frequency in this case is
k = 2550 m−1.

3D and 2D quadrupole source and as emission from two infinite cylinders, these
authors found p = 6 (3D), p = 5 (2D), and p = 5 (two cylinders).

A general property of B for all oscillators in infinite medium is, that it is rather
constant at low wave vectors (incompressible limit), grows as a function of k,
assumes a maximum at some wavelength, and finally begins to decrease. If
there are no acoustic resonant modes within the oscillator structures, the value
of B goes steadily to zero in the limit k → ∞ (infinite compressibility). Acous-
tic resonances within the bound fluid cavity around the resonator complicate the
oscillator response drastically. The geometrical factor can even become multi-
valued and negative due to a resonance. A negative B means that the resonant
frequency of the oscillator is larger than in vacuum. This was suggested by our
simulations and has also been observed experimentally [89]. A complication for
comparison between simulations and experiments is the usually unknown asym-
metrical position of the tuning fork in the container. By removing the casing of
one NC38 quartz tuning fork, it was observed that it had a rather large tilt of ap-
proximately 5 degrees in one direction. Possible tilt in the other direction could
not be resolved. A tilted tuning fork breaks symmetries in the cavity and allows
more resonant modes to be excited by the oscillator. Also the closer proximity
of the container walls to the tine tips tends to increase the geometrical factor.
Comparison between a simulation and experiment is illustrated in Fig. 6.2. The
figure shows the computed results for both symmetrical and realistically tilted
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Fig. 6.2 Simulated and measured geometrical factor B of a Fox Electronics NC38
quartz tuning fork. The solid curve is the computed response of a tilted oscillator, with
α = 4◦ and β = 2◦. The simulation has not been carried out between k = 1250 m−1 and
k = 1750 m−1 and beyond k = 2100 m−1 because this becomes tedious around acoustic
resonances. The dashed curve is for symmetrically positioned tuning fork, which be-
haves regularly enough to be simulated throughout that range. Experimental data are
from [21, 90]. The left-hand figure illustrates one resonant mode, which is not excited
unless the tuning fork is tilted in both directions.

cases. We see that tilting the oscillator in the simulations decreases the degree
of discrepancy to the experiment. It seems likely that some of the features in the
experimental data are due to first sound resonances in the tuning fork capsule.
The figure also depicts as an example one resonant mode in the container, which
is not excited unless the tuning fork is tilted in both directions.

6.2 Second sound

In addition to first sound, liquid helium in its superfluid state can support an-
other type of wave motion called second sound. Motivated by Kapitza’s, Allen
and Misener’s, and others’ experimental results [91–94], Tisza [95–97] and later
Landau [98, 99] postulated that superfluid helium-4 can be considered to be com-
posed of two intermixed fluids, the superfluid component and the normal fluid
component. These two fluids can move freely with respect to each other without
any viscous interaction. This model should not be taken too literally, but it has
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been found to be very powerful. In helium mixtures, the normal fluid compo-
nent consists of a "gas" of the elementary excitations, phonons, rotons, and 3He
quasiparticles in a background superfluid 4He. Second sound is a density wave
of this excitation gas. It propagates so that the total mass density remains con-
stant. At low temperatures (T � 0.7 K) 4He is practically 100% superfluid and
second sound is a 3He concentration wave. Because the superfluid component
does not carry any entropy, second sound can also be considered as an entropy
wave or temperature wave.

When a quartz tuning fork left in its capsule was used to measure helium mix-
tures, strong anomalies in the resonant behavior were unexpectedly observed.
These anomalies were interpreted to result from second sound resonances in the
cavity. Some experimental data are shown in Fig. 6.3. The upper figures show
the resonant frequency and width of a quartz tuning fork in approximately 8%
mixture over a temperature sweep between 100 mK and 1.9 K. Several over-
lapping resonant peaks are observed. The lower images illustrate how the res-
onances change as 3He is added. It seems as if the modes present in pure 4He
disappear and new, stronger ones, appear. The "pure 4He modes" shift slightly to
lower temperatures as x increases and the mixture modes shift to higher temper-
atures. The modes in pure 4He are extremely narrow, and one must be very close
to the correct temperature in order to observe them. All these apparent second
sound resonances are very well reproducible and have a temperature resolution
of order 1 μK. Therefore, these very distinct features offer a possible means of
constructing an accurate thermometer, for example, by sealing a certain compo-
sition of helium isotopes inside a container with quartz tuning forks.

A distinct feature in the data of the upper panels of Fig. 6.3 is a symmetry point
at about T = 1.2 K. This is obviously the result of a maximum in the speed of
second sound as a function of temperature. Thus, the resonance data can be
used to determine the sound speed on one side of this maximum if it is known
on the other side. Results of such analysis are shown in Fig. 6.4. It includes
data for pure 4He and various concentrations of 3He. Pure 4He has a local max-
imum at approximately 1.7 K. At zero temperature the velocity tends to a value
u2 = u1/

√
3 [105], where u1 is the speed of first sound, but second sound be-

comes insignificant in pure 4He below about 0.7 K as the amount of normal fluid
diminishes.

To get a basic understanding of sound modes in a quartz tuning fork container
we can solve the eigenmodes of the Helmholtz equation, Eq. (6.2), in the fluid
volume to find the shapes of the resonant modes in the cavity. This was done in
publication IX. Since the wavelength of second sound in the region of interest
is comparable to the relevant dimensions of the quartz tuning fork, many reso-
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Fig. 6.3 Measured second sound resonances inside a cylindrical quartz tuning fork
capsule. The upper figures display the resonant frequency and width of a Fox Electronics
NC38 in approximately 8% mixture over a large range of temperatures. The bottom
figures depict the width of the resonance as a function of frequency of an ECS-1x5x
quartz tuning fork at many compositions, ranging from pure 4He to 10% mixture, as
temperature is varied between 1.4 K and 2.1 K. Acoustic resonances produce loops in
such a plot. The bottom right figure shows a close-up of the smaller loops.
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Fig. 6.4 Experimental results for the speed of second sound in helium liquids. The
dashed line is for pure 4He at SVP [100–102], while the various points are for different
concentrations of 3He in 4He; 0.32% and 4.3% [103] and 0.15%, 6.28%, 5.76%, and
5.41% [104]. The grey dots are our results for approximately 8% mixture above 1.1 K
based on the assumed dependence below 1.05 K (grey line) [IV].

nant modes exist in close proximity. The eigenmodes have been normalized by
the RMS value of the "pressure field". We can estimate the relative coupling
strength of different modes by integrating the field on the tuning fork tines and
weighing it properly. Some of the eigenmodes are shown in Fig. 6.5, where the
corresponding wavelength is given. As can be seen, the modes at these wave-
lengths are quite complicated. This approach does not consider at all how these
modes are excited by the oscillator. A more complete model can be constructed
with the two-fluid model to be described in the next section.

6.2.1 Hydrodynamical equations

In this and the following subsection we report some preliminary results from
our investigations of second sound excitation by quartz tuning forks. In the two
fluid model it is assumed that superfluid helium-4 behaves as if it were a mix-
ture of two fluids, the normal fluid and the superfluid, freely intermingling with
each other without any viscous interaction [106]. It is assumed that at each point
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Fig. 6.5 Some of the most strongly coupling acoustic modes in a quartz tuning fork
container with the oscillator placed symmetrically in the cavity. Blue and red colors
indicate antinodes of the sound wave. The upper row shows sliced images, while the
lower shows the container surface. The appropriate wavelengths are given below the
images.

in the fluid there are two independent velocity fields. In helium mixtures it is
further assumed that the impurity atoms (3He) move along with the normal com-
ponent of 4He. In the case of dilute mixtures, this has been proven rigorously to
be correct [107]. The above assumption is valid only when 3He remains normal.
Thus, if the superfluid state of helium mixtures is discovered, it is possible to re-
alize three different motions in the fluid; one normal velocity and two superfluid
velocities.

According to the two fluid model, the total density of the liquid is a sum of two
components

ρ = ρs +ρn, (6.3)

where ρs is the density of the superfluid component and ρn the density of the
normal component. It is assumed that the motions of these two components are
decoupled, that is, there are two velocity fields within the fluid; the superfluid
and normal fluid velocities �vs and �vn. The total mass flux is defined as

�j = ρs�vs +ρn�vn. (6.4)
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We consider a small disturbance from a steady state in which �vn = �vs = 0 and
neglect any second order terms. The linearized two-fluid equations without dis-
sipation are, as given by Khalatnikov [107],

∂ρ
∂ t

+∇ ·�j = 0, (6.5)

∂�j
∂ t

+∇P = 0, (6.6)

∂ (ρσ)

∂ t
+ρσ∇ ·�vn = 0, (6.7)

∂ (ρc)
∂ t

+ρc∇ ·�vn = 0, (6.8)

∂�vs

∂ t
+∇

(
μ − Z

ρ
c
)
= 0. (6.9)

These equations are written in terms of the mass concentration

c =
m3N3

m3N3 +m4N4
, (6.10)

which is connected to the molar concentration x through

c =
xm3

m4 − x(m4 −m3)
. (6.11)

The first of the five linearized two-fluid equations represents mass conservation.
The second equation is due to conservation of momentum. Eq. (6.7) is the con-
servation of entropy and Eq. (6.8) is the continuity equation for the impurity
(3He). The last equation states the fact that chemical potential is the driving
force for the superfluid component. Here μ = cμ3 + (1− c)μ4 is the specific
chemical potential (chemical potential per mass), and μ3 and μ4 are the specific
chemical potentials of the components. Further, Z = ρ(μ3 − μ4) and the last
equation can thus also be written as

∂�vs

∂ t
+∇μ4 = 0, (6.12)

which recapitulates that the superfluid component is driven by the chemical po-
tential gradient of 4He. It can be regarded as the "superfluid acceleration po-
tential". The equations above use the specific entropy σ ≡ s/ρ , where s is the
entropy density.
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By using dμ = −σdT + dP/ρ ⇒ ∇μ = −σ∇T +∇P/ρ and eliminating the
velocities from the hydrodynamical equations, we obtain three relations

∂ 2ρ
∂ t2 = ∇2P, (6.13)

ρn

ρsσ
∂ 2σ
∂ t2 = σ∇2T + c∇2

(
Z
ρ

)
, (6.14)

1
c

∂c
∂ t

=
1
σ

∂σ
∂ t

. (6.15)

We choose T , P, and c as our independent variables and consider small perturba-
tions around an equilibrium value. We thus write T = T0 + T̃ (�r, t), and similarly
for all the other variables. The density in terms of the three independent variables
is

ρ̃ =

(
∂ρ
∂T

)
P,c

T̃ +

(
∂ρ
∂P

)
T,c

P̃+

(
∂ρ
∂c

)
T,P

c̃ (6.16)

and similarly for σ̃ and Z̃/ρ . We further assume sinusoidal time-dependence
∝ e−iωt for all the variables. The resulting equations are

1
ω2 ∇2P̃+

(
∂ρ
∂T

)
T̃ +

(
∂ρ
∂P

)
P̃+

(
∂ρ
∂c

)
c̃ = 0, (6.17)

σ̄∇2T̃ − c0

ρ2

(
∂ρ
∂c

)
∇2P̃+ c0

(
∂ (Z/ρ)

∂c

)
∇2c̃

+
ρnω2

ρsσ

[(
∂σ
∂T

)
T̃ +

1
ρ2

(
∂ρ
∂T

)
P̃+

(
σ0 − σ̄

c0

)
c̃
]
= 0,

(6.18)

c0

(
∂σ
∂T

)
T̃ +

c0

ρ2

(
∂P
∂T

)
P̃− σ̄ c̃ = 0. (6.19)

Here we have used the Maxwell relations⎧⎪⎨⎪⎩
∂ (Z/ρ)/∂P =−1/ρ2∂ρ/∂c
∂ (Z/ρ)/∂T =−∂σ/∂c
∂σ/∂P = 1/ρ2∂ρ/∂T

(6.20)

obtained from dμ = 1/ρdP−σdT +(Z/ρ)dc. We have also defined σ̄ ≡ σ −
c0(∂σ/∂c). When we further eliminate c̃ from above, we have equations of the
form

β11∇2P̃+α12T̃ +β12P̃ = 0, (6.21)
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Fig. 6.6 Coupling factor α12 of Eq. (6.23) between second sound and first sound for
various concentrations and temperatures between 1.1 K and 2.1 K.

α21∇2T̃ +β21∇2P̃+α22T̃ +β22P̃ = 0. (6.22)

We see that the coupling term between second sound and first sound is α12,
which is given by

α12 =

(
∂ρ
∂T

)
+

c0

σ̄

(
∂ρ
∂c

)(
∂σ
∂T

)
. (6.23)

The absolute value of this factor represents how strongly second sound couples
to first sound. Its sign only affects the phase between them. Coupling in pure
4He is solely related to ∂ρ/∂T , which is quite small, except around Tλ . In mix-
tures at large concentrations the coupling is governed by the second term. Since
∂ρ/∂T > 0, c/σ̄ > 0, ∂ρ/∂c < 0, and ∂σ/∂T > 0, it is possible that for some
concentration, cancelation occurs and the two sound modes decouple from each
other. Brusov et al. investigated sound conversion in helium mixtures [108], but
they apparently made a sign error in writing α12, which prevented them from
noticing this. The coupling factor, calculated by using the ideal solution approx-
imation and experimental data to be discussed below, is given in Fig. 6.6. For
pure 4He (in the simulation 0.01%), coupling is rather small, except near Tλ . The
coupling factor for 4He should in fact go to zero faster than what is indicated in
Fig. 6.6, because of our inaccurate fit to experimental data. This feature does not
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have much significance to our conclusions of this section. We intend to refine
our preliminary simulations and fix this mistake along with other improvements.
As concentration increases, the coupling factor becomes more negative. It seems
to have a minimum as a function of temperature at large enough concentrations.
Whether this is a real effect or simply due to approximations in our model, is
under investigation. Nevertheless it seems that for some temperatures and con-
centrations the terms in the coupling factor cancel and the sound modes decouple
from one another. The factor for x = 0.8% is almost zero in the important tem-
perature region for strong second sound resonances (∼ 2 K), thus second sound
resonances are expected to be suppressed at that concentration.

For the preliminary calculations presented in this section, we assume that the
helium isotopes form an ideal solution, i.e. a solution, where the components do
not interact with one another. The specific entropy can then be written as

σ = (1− c)σ40 + cσ30 − kB

m4
(1− c) ln(1− x)− kB

m3
c lnx (6.24)

and consequently

σ̄ = σ40 − kB

m4
ln(1− x). (6.25)

Further,

c2
0

∂
∂c

(
Z
ρ

)
=

kBT x
m4

. (6.26)

As noted by Wilks, Khalatnikov has erroneously used the mass concentration in
his equations for the entropy of ideal mixtures [109]. The contribution of 3He to
the normal fluid density is [107, 109]

ρn3 = ρ
m∗

3
m4

x, (6.27)

where m∗
3 is the effective mass of a 3He quasiparticle. The total normal fluid

density is
ρn = ρn3 +ρn4, (6.28)

where ρn4 is the normal fluid density of 4He. It can be approximated by ξ (1−
c)ρ , where ξ is the normal fluid fraction of pure 4He. It should be noted, how-
ever, that with this approximation, the normal fluid density can exceed the den-
sity of the liquid, when ξ ≈ 1. To determine the relevant quantities in the ideal
solution approximation, we used experimental data between 1 K and 2.2 K listed
in Ref. 109; entropy of pure 3He was from Roberts et al. [110], entropy of pure
4He from Kramers et al. [111] and Hill and Lounasmaa [112], and the normal
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Fig. 6.7 Calculated speeds of first (left figure) and second (right figure) sounds using
Eqs. (6.29) and (6.30), the ideal solution model, and experimental data mentioned in the
text. The strong decrease in u2 of pure 4He at T � 1.6 K is contrary to experimental data
(Fig. 6.3). The discrepancy is likely due to poor fit to experimental data on the density
of 4He at lower temperatures.

fluid fraction of 4He from Ref. 113. Temperature dependence of the density of
pure 4He was taken from Ref. 114.

If we consider plane waves, i.e. that the deviations vary as ∝ e−iω(t−z/u), where
z is the direction of propagation of the wave and u is the speed of sound, we
can determine analytical relations for the speeds of sounds using Eqs. (6.13-
6.15). We get two solutions, corresponding to the two sound modes. Ignoring
the coefficient of thermal expansion, they are [107]

u2
1 =

(
∂P
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)
c,T

[
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(
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]
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where u1 is the speed of first sound and u2 the second sound.

The speeds of first and second sounds obtained by using the ideal solution ap-
proximation and Eqs. (6.29) and (6.30) are plotted in Fig. 6.7. Agreement with
experimental values is not very good for pure 4He below 1.6 K. This is likely due
to poor fit to the experimental data of density as a function of temperature below
1.5 K, mentioned already above. The poor fit was not noticed until the simula-
tions had already been done. This does not, however, change our conclusions in
any significant manner. Sound speeds for mixtures are reproduced rather well;
they are in the range of measured values.
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6.2.2 Simulated quartz tuning fork response

We used the hydrodynamical equations of the previous section and solved them
in the quartz tuning fork geometry using the finite element method. Comsol
Multiphysics was used again to perform the numerical computations. The quartz
tuning fork response was determined in a similar manner as the first sound sim-
ulations using an effective harmonic oscillator model described in publication
VI. The tuning fork was coupled directly only to first sound (pressure) by ap-
plying a boundary condition n̂ ·∇P = 0 on the appropriate tuning fork tine sides.
On reflective boundaries all the normal gradients of the variables were set to
zero. Small amount of acoustic and thermal impedance (normal gradients equal
to some complex number) were applied on the container walls to create finite
widths for the resonant modes. Simulated resonant frequency responses of a
quartz tuning fork in mixtures with various concentrations are shown in Fig. 6.8.
Unlike in the experiments, the second sound resonances in the simulation have
not been "tracked", meaning that a constant excitation (measurement) frequency
has been applied on the oscillator. We find at least qualitative explanations for
the effects observed in publication VIII and shown in Fig. 6.3. For pure 4He,
the coupling of second sound to first sound is rather modest, and the resulting
resonances are extremely narrow. Large number of modes exist at low second
sound speeds (short wavelengths), as is expected. The 1.4 K modes in pure 4He
seen in Fig. 6.8 are repetitions of the modes at ∼ 2.1 K and are due to the unreal-
istic behavior of u2 mentioned before. When concentration of 3He is increased,
the coupling term becomes small in the important temperature region T ∼ 2 K,
where the strong modes would exist. In our simple model, at 2 K the coupling
attains its minimum strength for about 0.8% mixture. Adding 3He also shifts the
second sound speed curve to lower temperatures, as Tλ decreases, which results
in the modes being shifted to lower temperatures as well. At some point there
is enough 3He to increase the second sound speed at lower temperatures enough
to bring new resonant modes into view. The coupling is stronger than in pure
4He, so that these modes have more powerful effect on the quartz tuning fork.
Since increasing concentration of 3He increases the speed of second sound at
temperature below ∼ 1.9 K, these mixture modes move to higher temperatures
as a function of concentration. During the experiments it was thought that the
pure 4He modes disappear completely due to added 3He as they seemed to di-
minish. Therefore they were not searched for at larger concentrations. Based on
the results of our present considerations, we now believe they should reappear,
since u2 goes continuously toward zero when T → Tλ and the coupling between
different sound modes increases again.

In our simulations, we also observed a double sound conversion, where first
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Fig. 6.8 Simulated resonant frequency of an ECS-1x5x quartz tuning fork symmetri-
cally inside a cylindrical cavity with the fluid modeled using the hydrodynamical equa-
tions, Eqs. (6.21) and (6.22). A quadratic "background" frequency has been subtracted
from each data set to bring out the second sound resonances more clearly. The lines
are offset by their respective 3He concentration percentage. These data should be com-
pared to the experimental results shown in Fig. 6.3. The coloring of the curves above
are congruent with Figs. 6.3 and 6.6.

sound, excited by the tuning fork, was converted to second sound, which was
further converted to first sound and excited resonant modes in the cavity, which
are not excited by the tuning fork directly. The coupling of these modes to the
tuning fork is very weak, as they must convert back to second sound and again to
first sound before being able to affect the resonator. The simulations described
in this section are still preliminary and further studies are being conducted.
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Chapter 7

Summary and Conclusions

Superfluidity of 4He was apparently reached by Kamerlingh Onnes the same day
he liquefied helium for the first time [1]. This phenomenon was not realized un-
til a few decades later, though. Superfluidity of 3He was discovered 60 years
later, in 1971. This time the effect was observed right away, but not immediately
understood to be the superfluid transition. Now 42 years has passed since then
and the last (expected) superfluid state of helium still remains to be discovered.
This task is by no means trivial, since direct cooling by adiabatic nuclear de-
magnetization is limited to around 100 μK by the increasing Kapitza resistance.
If the superfluid state of helium mixtures is to be found, the adiabatic melting
technique seems to offer about the only possibility to reach it at the moment
by yielding perhaps even an order of magnitude lower temperatures than pre-
viously achieved. Due to the utmost low temperatures, the measurement setup
requires many novel features and even after more than a decade of preparations,
the adiabatic melting experiment has not been able to be carried out without clear
technical shortcomings.

Our proposed effective interaction potential between 3He quasiparticles in dilute
3He–4He mixtures allows, among other things, estimation of the superfluid tran-
sition temperature of mixtures at all pressures and concentrations. This may help
in the search for the superfluid state, as it indicates the optimal conditions for the
transition. Our estimates for Tc are quite optimistic, since they are in the range of
plausible temperatures in the adiabatic melting experiment. The natural pressure
of the experiment, the melting pressure of helium mixtures (2.57 MPa), is not
quite the optimum pressure according to our results (Tc ≈ 40 μK), but rather the
highest Tc is found between 0.5 MPa and 1 MPa (Tc ≈ 200 μK) at the saturation
concentration.

Helium thermometry at low temperatures is challenging due to the same rea-
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son that direct cooling of helium mixtures fails at low temperatures. Thermal
boundary resistance prevents a thermometer from reaching the same tempera-
ture as the liquid. Following the same philosophy as in the cooling technique,
an effective thermometer at low temperatures should somehow probe the prop-
erties of the liquid directly. Melting pressure thermometry of helium mixtures
offers such a possibility in a similar manner as for pure 3He, which has proven
to be very useful. Quartz tuning forks are also sensitive probes, and can be used
to rather low temperatures, especially in helium mixtures, where the 3He com-
ponent remains normal to low temperatures. Approaching the ballistic regime
renders such probes insensitive to temperature at around 100 μK. Second sound
resonances offer means of constructing a new type of thermometer, capable of
extremely good temperature resolution, but only at somewhat higher tempera-
tures.

Our numerical simulations offer better understanding of using quartz tuning fork
resonators as probes of liquid helium and their use as thermometers. In most
applications, one usually wants to avoid coupling of the oscillator to acoustic
resonances in the fluid cavity around the oscillator or within the oscillator geom-
etry. Our results offer guidance in choosing a quartz tuning fork with appropriate
dimensions and frequency. To obtain as "ideal" response as possible, here under-
stood as a constant geometrical factor B, one should use small-sized oscillators,
lower resonant frequencies, tuning forks as narrow as possible and the tines as
close to each other as possible.

The adiabatic melting experiment is being prepared at the moment. While it is
under construction, another cell is used to make experiments with helium mix-
tures. We want to study the solubility, density, and melting pressure of mixtures.
We also continue numerical analysis of quartz forks and especially the work on
second sound. Path integral Monte Carlo simulations are also being improved
and expanded to include many 3He particles.
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