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Hybrid microassembly combines self-assembly technology with traditional robotic pick-and-

place technology or other robotic feeding mechanics to construct microsystems. In a typical 
hybrid microassembly process, a micro part is brought adjacent to the assembly site by a robot 
handling tool at a high speed but with a relatively low precision, and liquid droplets dispensed 
by a dispenser at the assembly site align the part at a higher precision. By combing both the 
robotic pick-and-place technique and self-assembly technique, hybrid microassembly 
technique can achieve high speed and high precision simultaneously. 

  
This thesis explores the adaptability of hybrid microassembly technique by investigating 

different hybrid microassembly methods and different types of the patterns. Three hybrid 
microassembly approaches have been investigated: 1) droplet assisted hybrid microassembly, 
2) water mist induced hybrid microassembly and 3) hybrid microassembly with forced wetting. 
The droplet assisted hybrid microassembly has been studied using patterns with segments and 
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site with super-hydrophobic substrate has been experimentally investigated with two forced 
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counts. 
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10 �� f
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z m z-bias, the difference between the initial position

and the equilibrium position of a part during self-
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�

�
º

J/m2

Pad edge angle

Surface energy. For liquids equal to surface

tension.

SL� , LG� ,

SG�
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�
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1. Introduction

This section briefly introduces the background of the thesis and summarizes

the contributions.

1.1 Background

Assembly refers to “the fitting together of manufactured parts into a

complete machine, structure, or unit of a machine” according to Merriam-

Webster On-line Dictionary. Microassembly commonly refers to assembly

of micro parts, i.e. parts of which one or more dimensions are less than 1 mm

[1]. Microassembly is a rapidly emerging and groundbreaking technology to

build highly integrated micro- and nanosystems. One of the most important

assembly steps is the precise positioning of the micro parts, which normally

requires the alignment of micro objects with features such as edges or surface

structures. The major challenge in microassembly is not only the reduced

size, but also the scaling effect [2].  Adhesion forces, such as van der Waals

forces, electrostatic forces and capillary forces, become more dominant than

inertial and gravity forces between the tiny components. This causes serious

problems in microassembly, e.g. unwanted adhesion between parts and tools

which consequently affect the precision and efficiency of the assembly [3].

Many techniques have been developed to tackle the problems in

microassembly. Those techniques can be categorized mainly in three areas.

The first one is robotic pick-and-place based assembly approach. This

technique is usually based on one or several micromanipulation systems,

having tools such as a microgripper, a micro positioning system, a vision

system, and a control system. To achieve assembly, a bonding or a fixing tool

is also needed. The development of robotic pick-and-place system started in

1990s and many prototypes  have been developed [4–8].  The robotic  pick-

and-place approach has been extensively pursued due to its flexibility and

good adaptability. Currently, microassembly is carried out in industry using

e.g. an automatic flip chip machine aided by machine vision and it can

achieve  high  throughput  up  to  10,000  units  per  hour  at  a  relatively  good
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accuracy of 6μm [9]. However, the assembly towards smaller chips (e.g. 100

�m lateral dimensions) requires much higher alignment accuracy, e.g.

around  1  �m.  Even  though  such  a  requirement  can  be  achieved  using  the

traditional robotic technology, the throughput is severely reduced (e.g. 240

units per hour for 0.5μm accuracy [10]). Furthermore, for robotic pick-and-

place, the final positioning of the object is determined by the manipulation

status before releasing. Without properly designed fixing strategy (e.g. form-

closure, bonding, adhesive), the placing process can be very tedious and

time-costly due to the adhesion between the tool and the object. To enable

easy releasing, it is usually suggested that the end-effector of the tools has a

rough surface and is conductive and grounded [11][12][13]. Various

manipulation strategies have also been proposed, e.g. pick-and-place

strategy using a rod [14] or a high-frequency vibration release [15]. Despite

all those efforts spanning the past ten plus years, the problem remains a

major challenging issue with robotic pick-and-place based assembly

approach.

The second microassembly approach is self-assembly, which is based on

the principle of minimum potential energy, where the gradient of potential

is designed to drive the parts toward desired locations. Different self-

assembly techniques for placing microchips have been proposed based on

e.g. geometrical shape recognition and gravity [16] or surface patterns and

capillary forces [17–24], where the processes are carried out in a fluidic bath.

Some of the self-assembly processes have also been carried out in air, using

different physical principles such as electric field [25], magnetic field [26] or

geometric shape recognition [27–31]. Those self-assembly techniques have

claimed impressive results, e.g. 62500 chips assembled in 45 seconds [24].

Self-assembly technology can also reach very good precision, e.g. sub-micron

range [24]. By careful design, using techniques such as multi-phase self-

assembly [32] [33] and surface tension based self-folding ([34], [35], [36]),

relatively complicated microstructures and even 3D microsystem can be

implemented. The advantage of a self-assembly technique is that the final

positioning of the objects is automatic (by design) which makes massive

parallel operation possible. However, the processes developed so far are

aiming mainly at mass production of simple micro structures. Even though

it is possible to use multi-batch process to extend the complicity of the target

structure, it is not competitive with the flexibility and dexterities of robotic

pick-and-place approach.

To tackle the challenge of achieving good flexibility and high efficiency

simultaneously, a third microassembly technique has been proposed

recently. The technique is the so-called hybrid microassembly technology

[37], [38], which combines self-assembly technology with traditional robotic
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pick-and-place technology or other robotic feeding mechanics to construct

microsystems flexibly. In those hybrid microassembly studies [39–41], a

micro part is brought adjacent to the assembly site by a robot handling tool

at a high speed but with a relatively low precision, and water droplets

dispensed by a dispenser at the assembly site align the part at a higher

precision. The study [39] evaluated the yield, accuracy, capability and speed

of hybrid microassembly. The results have shown that hybrid assembly

technique can achieve more deterministic results and new constructions that

are not possible with self-assembly alone simultaneously. It gives high-yield

(99%) and high-precision (sub-micrometer) that is not possible using robotic

pick-and-place approach. The speed of the hybrid microassembly mainly

depends on the speed of the robotic handling tool. In a recent industrial

demonstration of hybrid microassembly, a throughput of over 40,000 unit

has  been  reported  [42].  In  the  demonstration,  the  dies  were  placed  by  a

robotic pick-and-place tool at the speed of over 40,000 unit per hour, and

the surface tension driven self-alignment occurred subsequently after the

placement. Because the cycle time of robotic pick-and-place (less than 90

ms) may be shorter than the self-alignment duration, the surface-tension

driven self-alignment continued acting while the sub sequential robot actions

were carried out. Micron accuracy positioning was achieved in final

positioning.

1.2 Motivation and objectives

Hybrid microassembly solves the problem of trade-off between robotic pick-

and-place and self-assembly technique. However, it is largely an open

question how well the hybrid microassembly is adaptable to large variety of

micro parts and the corresponding patterns in the potential real-world

applications. In the RFID tag assembly or other low-pin count package

assembly, it is very common that there are several electrical contacts (bumps)

on the chips, and the pattern normally consists of segmented structures

corresponding to the electrical contacts on the chips. Micro parts and

patterns often contains defects on their edges due to the imperfection in low-

cost manufacturing process. Furthermore, the patterns can be hydrophobic

or  hydrophilic,  planar  or  protruded  with  sharp  solid  edges.  In  this  thesis,

experimental investigations were carried out using different types of planar

patterns including segmented patterns, patterns with defects, hydrophilic

patterns, hydrophobic patterns, as well as patterns with sharp solid edges.

The first goal was to investigate what kind of patterns are suitable for hybrid

microassembly.
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In the previous hybrid microassembly studies, water droplet have been

used as  the media  for  alignment  in  hybrid microassembly.  Use of  a  water

droplet is a simple and efficient way to achieve fast-speed and high-precision

alignment. There are, however, also some limitations: 1) a water droplet

cannot provide permanent bonding; 2) a water droplet is dispensed on the

pattern one by one, and therefore parallel assembly is not possible; 3) extra

fabrication steps are needed for fabricating hydrophilic patterns and

hydrophobic substrate. This is the preferable way for water droplet self-

alignment in the air. These limitations hinder the effectiveness of hybrid

microassembly in practical applications. Therefore, the second goal of this

thesis is to develop different hybrid microassembly approaches which can

meet the specific needs in potential applications and relax the fabrication

requirement for patterns.

1.3 Contributions

Firstly, this thesis brings new knowledge about patterns suitable for hybrid

microassembly. Four different types of patterns have been investigated, and

they include (1) segmented patterns, (2) patterns with jagged edges, (3)

oleophilic/phobic patterns and (4) hybrid template. The contributions are

listed based on the type of the patterns used as follows:

(1) Segmented patterns: Self-alignment of microchips has been

demonstrated on segmented patterns. The influence of the key

parameters affecting the self-alignment on segmented patterns has

been studied both theoretically and experimentally.

(2) Patterns with jagged edges: Self-alignment of microchips has been

demonstrated on patterns with jagged edges. Experiments have been

carried out to study the effect of patterns with jagged edges on self-

alignment.

(3) Oleophilic/phobic patterns: First demonstration of a patterned

oleophilic/oleophobic surface for self-alignment of microchips using

an adhesive droplet in ambient air environment.

(4) Hybrid template: Self-alignment of microchips on a simple-to-

fabricate hybrid template has been demonstrated with both water

and adhesive.

Secondly, this thesis provides experimental evidence and theoretical analysis

for evaluation of three different hybrid microassembly handling strategies:

(1) droplet assisted hybrid microassembly, (2) water mist induced hybrid
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microassembly, (3) hybrid microassembly with forced wetting. The

contributions are classified based on the method:

(1) Droplet assisted hybrid microassembly: The droplet self-alignment

has been demonstrated on patterns with segments and patterns with

jagged edges.

(2) Water mist induced hybrid microassembly: Parallel self-alignment

of microchips with water mist induced hybrid microassembly has

been demonstrated for the first time. Investigation has been carried

out to understand the physics of the accumulation process of water

mist.

(3) Hybrid microassembly with forced wetting: Self-alignment on

hydrophobic pattern with super-hydrophobic substrate has been

demonstrated using hybrid microassembly with two forced wetting

techniques: a) introducing excessive amount of water; b) applying

external pressure to force the water to wet the hydrophobic patterns.

1.4 Summaries of the publications

This thesis consists of ten publications, which were published during the

years  2010-2013.  The  publications  include  studies  of  the  hybrid

microassembly technique using different handling strategies and patterns.

PUB1 reports self-alignment of microchips on hydrophobic patterns with

super-hydrophobic substrate using forced wetting, by either introducing an

excessive amount of water or applying external pressure to force the water to

wet the hydrophobic patterns. PUB2 reports the first demonstration of a

patterned oleophilic/oleophobic surface for self-alignment of microchips

using an adhesive droplet in ambient air environment. PUB3 investigates

the influences of the key parameters, such as the volume of the droplet, the

gaps between the pads and the initial bias that may affect the self-alignment

on segmented patterns both theoretically and experimentally. PUB4 reports

the in-depth study of water mist induced hybrid microassembly and

investigates the physics of the accumulation process of water mist. PUB5

reports the fabrication and use of a hybrid black silicon template for self-

alignment of microchips with water or adhesive. PUB6 reports the first

demonstration of water mist induced hybrid microassembly technique used

for massively parallel assembly of microchips. PUB7 investigates the effect

of low precision patterns on self-alignment of RFID chips. Special segmented

patterns having jagged edges have been purposely designed and fabricated

to mimic some real-world RFID antennas. PUB8 reports about the

positioning accuracy of microchips on patterns with regular edge jaggedness
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as well as with random edge jaggedness using droplet assisted hybrid

microassembly technique. PUB9 reports about a novel process of a droplet

assisted hybrid microassembly technique for assembly of RFID chips on

segmented patterns. PUB10 proposed  a  water  mist  induced  hybrid

microassembly technique for self-alignment of microchips.

1.5 Structure of the thesis

The thesis is organized as follows. Chapter 2 introduces the foundation of

droplet self-alignment through surface tension, wetting phenomenon and

contact angles. Chapter 3 presents different hybrid microassembly handling

strategies in order to combine the traditional robotic pick-and-place

technique with the self-alignment technique. Various patterns used for

hybrid microassembly are introduced in Chapter 4. Chapter 5 summarizes

and discusses the main results of the thesis. Finally conclusions are drawn in

Chapter 6.
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2. Foundation of Surface Tension
Driven Droplet Self-alignment

The droplet self-alignment process discussed in this thesis is driven by

surface tension. This section introduces the physical origins of the surface

tension and wetting.

2.1 Surface tension

Droplet self-alignment is driven by surface tension, which can be explained

at the molecular level and defined on a macroscopic scale. At molecular level

(Fig.1), a liquid molecule in the middle of the liquid is pulled in all directions

equally by neighboring liquid molecules, resulting in a net force of zero. On

the other hand, a liquid molecule close to the surface does not have other

liquid molecules on all sides. Therefore it is pulled inwards in the liquid,

where internal pressure is built up around it. This forces the surface of liquid

to contract to a minimal area. The surface tension can be also explained in

terms of energy. A molecule is in a lower state of energy when it is in contact

with a neighboring molecule than if it were alone. The molecules inside the

liquid have as many neighbors as they can possibly have, but the molecules

closes to the surface are missing liquid neighbors and therefore have a higher

energy level. For the liquid to minimize its energy state, the number of higher

energy molecules must be minimized.

Fig.1 A molecule stationed at the surface is missing half of intermolecular attractions.

On a macroscopic scale, surface tension represented by the symbol � can be

defined as the force along a line of unit length which the force acts or as the
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work  must  be  done  to  increase  surface  area  by  one  unit.  Therefore,  the

surface tension can be expressed as
F
L

� 	  ( 1Nm
 ) or
W
A

��
�

	  ( 2Jm
 ), where

F is  the  force, L the length, A is the surface area and W is the mechanical

work. In thermodynamics, surface tension can be defined as the increase in

internal energy or Gibbs free energy per surface area, which can be expressed

as
G
A

��
�

	 , where G is Gibbs free energy. Thermodynamics requires that all

spontaneous changes of state are accompanied by a decrease in Gibbs free

energy. This explains why the liquid decreases its surface area spontaneously

as the Gibbs free energy decreases. When a liquid reaches its equilibrium

state, minimum surface area satisfies the Young-Laplace equation, which

relates the overpressure existing in the interior of the drops to the shape of

the surface.

'
1 1p
R R

� � 
� 	 �� �

� �
 (1)

where R and R’ are  the  radii  of  the  curvature  of  the  surface, p�  is the

pressure difference.

2.2 Wetting and contact angle

Wetting plays a very important role in droplet self-alignment because

alignment requires good wetting and confinement of droplet on the desired

area. Wetting refers to the ability of a liquid to maintain contact with a solid

surface, resulting from intermolecular interactions when the two are brought

together. Adhesive forces between a liquid and solid cause a liquid droplet to

spread.  Cohesive  forces  within  the  liquid  cause  the  droplet  to  ball  up  and

avoid contact with the surface. The wettability is determined by the balance

between the adhesive and cohesive forces. The contact angle that a liquid

droplet forms over a surface is a measure of the tendency of the liquid to wet

the solid, and it is determined by the balance of the solid-gas, solid-liquid

and liquid-gas surface tensions at the interface. As the tendency of a droplet

to spread out over a flat, solid surface increases, the contact angle decreases.

Thus, the contact angle provides an inverse measure of wettability.

2.2.1 Wetting on ideal surface

An ideal solid surface is one that is flat, rigid, perfectly smooth, chemically

homogeneous, and has zero contact angle hysteresis. Zero hysteresis implies
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that the advancing and receding contact angles are equal. In other words,

there is only one thermodynamically stable contact angle. When the surface

is flat and homogenous, the contact angle (CA) �C of a liquid droplet shown

in Fig.2 can be calculated based on Young's equation[43]:

cos SG SL
c

LG

� �
�

�
�

	  (2)

where �SG, �SL and  �LG are the surface tensions between the three phases:

solid-gas, solid-liquid and liquid-gas respectively. The region where three

immiscible coexisting phases meet is called the three-phase contact line

(TCL).

Fig.2  A liquid droplet rests on a solid surface and is surrounded by gas. The contact angle �C

is the angle formed by a liquid at the three phase boundary where the liquid, gas, and solid
intersect.

There are two types of surfaces the liquid can interact, which includes a

high-energy surface and a low-energy surface. The material with high surface

energy exhibits a small contact angle, whereas the surface with low surface

energy shows a high contact angle.

Surface with poor wettability can be realized by coating it with low surface

energy materials, such as Teflon like polymer. However, low surface tension

liquid, such as oil, has a very good wetting property on most of the surfaces

including the surface coated with low surface tension material. Compared to

the surface with poor wettability, the surface with good wettability is rather

easy to find in nature.  For example, most liquids achieve good wetting with

high energy surface, such as metals, glass and ceramics.  A super

hydrophobic  surface  or  oleophobic  surface  can  be  realized  using  a

combination of the low surface energy coating and nano topographical

structures. More details are given in the next section.
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2.2.2 Wetting on patterned surface

When the surface is non-homogenous and contains roughness, it becomes

inhomogeneous and the Young's equation cannot be directly applied in this

situation. Two other models are normally used to explain the wetting

behavior, namely Wenzel [44] or Cassie-Baxter models [45]. Based on these

models the droplet characteristics are shown in Fig.3. The droplet can either

penetrate into the roughness (Fig.3 (a)) or it can pin on top of the structures

forming a higher contact angle (Fig.3 (b)). On an intrinsically hydrophilic

surface, the introduction of roughness leads to an increase in hydrophilicity,

whereas, on hydrophobic surface the roughness increases hydrophobicity

and the droplet usually takes up the Cassie-Baxter state [45]. As shown in

Fig.3 (b), in Cassie-Baxter state, the droplet assumes that the air pockets are

trapped underneath the liquid droplet in a way that the peaks of roughness

features are in contact with the liquid droplet. The apparent contact angle ��
is given by:

cos (cos 1) 1A cf� �	 � 
 (3)

where f is the areal fraction of the solid surface in contact with the liquid

droplet and ��  is the Young's contact angle on the smooth surface.

Fig.3  Liquid droplet behavior on rough surface: (a) Wenzel state (b) Cassie- Baxter state.

Cassie–Baxter model has been widely applied to predict the apparent

contact angles obtained on heterogeneous surfaces. However, validity of the

Cassie-Baxter model has been heavily questioned by various groups. Gao and

McCarthy [46] have challenged the validity of the model by demonstrating

signi�cant differences between the model predictions and their experimental

measurements of the apparent contact angles on heterogeneous surfaces.

Various groups such as [46], [47] and [48] have claimed that the apparent

contact angle is determined by the linear fractions of solid and air calculated

along the three-phase contact line, not by the overall areal fractions. Despite
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the limitation of the Cassie-Baxter model, it can be used to explain the

hydrophobicity of surface with roughness, which is sufficient for this thesis.

In this thesis, another kind of patterned surface refers to the surface with

patterns having geometric solid edges. The edges can be used as a boundary

for liquid confinement. The droplets are first dispensed on top of the pattern.

Then  the  liquid  front  proceeds  towards  the  edges.  The  behavior  of  the

advancing droplet on solid edges can be described with Gibbs' inequality:

(180 )C C� � � �� � �
 � (4)

where � is the droplet contact angle on the edge, ��  is the Young's contact

angle and �  is the edge angle. Based on Gibbs condition and the schematic

in Fig.4, the edges with smaller �  values, have proven to be able to confine

larger amounts of liquid within the target area, before the liquid front is able

to cross the solid edge.

As shown in Fig.4, the contact angle � may extend over a range of angles

based on (4). Studies conducted in [49] assume that the upper limit of � on

the edge that a droplet can attain can be written as:

(180 ) C� � �	 �
 � (5)

Once the droplet reaches��� , the possibility whether the droplet will keep the

contact line or it will tumble along the protrusion is related to �  [49]. At

smaller scales, when the effect of gravity is negligible, if � � ��   then � �

180°. The droplet protrusion stays confined to a point where the effect of

gravity  is  appreciable.  After  that,  it  will  cross  the  edge  and  roll  over  the

protrusion. On the other hand, if � � ��  so that ��180°, the increase in the

droplet volume after droplet reaches ��  will cause the droplet to move over

the edge or its sudden spreading down the protrusion.

Fig.4  Droplet contact angle on the solid edge.
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There are different alternatives (Fig.5)  for  creating  solid  edges  on  the

surface, e.g. protruding patterns and trenched patterns. Recently, it has been

demonstrated that the undercut edge can also prohibit liquid from spreading

[50].

                        (a)                                                        (b)                                               (c)

Fig.5  Alternatives of solid edges on the surface: (a) protruding pattern, (b) trenched pattern,
(c) pattern with undercut edge.

2.2.3 Wetting on planar patterns

Planar patterns refer to the surface consisting of planar patterns on

substrate. The patterns and the substrate are normally made of different

materials and therefore have different wettability. The wetting contrast

between the patterns and substrate can be used to create a boundary for

liquid confinement. The general rule for designing the pattern and the

substrate for droplet self-alignment is that the pattern should be lyophilic

(against the lyophobic background) to the liquid medium between the

pattern and the microchip to be assembled. An example is a hydrophilic

pattern, if water is used as the self-assembly medium in the air as shown in

Fig.6 (a). Here the water droplet is prevented spreading from a hydrophilic

area to hydrophobic substrate in the air. Fig.6 (b) shows that the adhesive

droplet is confined inside a hydrophobic but oleophilic area with hydrophilic

background in water.

Fig.6  (a) a water droplet is confined within a hydrophilic pattern with hydrophobic substrate
in air; (b) an adhesive droplet is confined within a hydrophobic but oleophilic pattern with
hydrophilic substrate in water.
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The poor wettability of the surface can be normally achieved by low surface

energy fluoropolymer coating. Because the low surface energy fluoropolymer

coating changes the chemical composition of the surface [51], it makes hard

for the water droplet to spread on the surface and therefore the droplet

exhibits high contact angle.

2.3 Surface tension driven droplet self-alignment

In surface tension driven droplet self-alignment prcocess, a droplet of a

liquid is placed between a chip and a matching pattern, the droplet forms a

meniscus and aligns the chip to the pattern. This thesis uses the term droplet

self-alignment to represent surface tension driven droplet self-alignment

for simplicity. The term bias is defined as the difference between the initial

position and the equilibrium position of a chip after self-alignment. Droplet

self-alignment uses the principle of minimum surface energy of the liquid

droplet, where the gradient of potential drives the parts toward the desired

alignment locations. A liquid droplet is in a stable equilibrium, when its

surface energy is at a minimum. In turn, the surface energy is at a minimum

when the surface area is minimal. The restoring force is the force that drives

a liquid menisucs to a position where its surface energy is at a minimum. To

calculate the surface energy and restoring forces in droplet self-alignment,

the shape of the liquid meniscus can be approximated with planar surfaces,

as shown in Fig.7.

Fig.7  Approximation of the liquid meniscus between a part and a pattern with the
translational biases.

When gravity of the liquid droplet is not considered in the simulation, the

results are applicable only at the scale smaller than the capillary length. The

capillary length for clean water at standard temperature and pressure is

about 2.7mm. When the initial placement error or biases are introduced, the

restoring force acting on the chip and directing the meniscus to the desired

position can be calculated by:
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( , ) ( , ) ( ( , ))E x y E x y A x y�	 
� 	 
�
�� (6)

where E is the surface energy of the liquid meniscus, �  is the surface tension

and A  is the area of the surface between liquid and air. The surface energy

of the liquid meniscus is approximated as:

2 2 2 2( , ) ( , ) 2 ( )refE x y A x y L x y y h� �	 	 � � � (7)

where x and y are the biases along the corresponding axes, L is the length of

the pattern and the chip, h is the height of the liquid meniscus. Using (7), the

base model for restoring force becomes

2 2 2 2
( , ) 2 ( )ref

x yF x y L i j
x h y h

�	 
 �
� �

� �� (8)

As  the  surface  shape  of  the  liquid  in  reality  is  curved,  a  more  accurate

numerical  model  can  be  created  using  program  ‘Surface  Evolver’  [52].  It

finds the (quasi) static equilibrium for liquid medium by evolving the surface

using the gradient descent method. The software breaks the surface of the

object into smaller elements, and tries to minimize the surface energy of each

element, by optimizing the location of each vertex. It uses gradient descent

method for moving the vertexes.

Fig.8 shows one example of numerical simulation of the droplet self-

alignment using ‘Surface Evolver’, where three elements are used: a chip, a

droplet of water and a pattern on the substrate. In this particular simulation,

the contact angle of the pattern and the substrate is first 30° and then 180°.

The volume of the droplet is 0.9 nanolitres (nL), and the reason for choosing

this amount of water droplet is that it is sufficient to wet the bottom of the

chip and the surface of the pattern.

As shown in Fig.8 (a)-(d), a chip is released above a pattern where a droplet

of water lies, and a meniscus is formed between the chip and the pattern

(Fig.8 (a)). The shape of the meniscus generates a so-called restoring force

that moves the chip towards the pattern to minimize the total surface energy

of the meniscus (Fig.8 (b)-(c)). Finally, the chip stops at the location where

the surface energy of meniscus is minimized and the water evaporates (Fig.8

(d)).

Fig.8 (e)-(f) shows the relation between the energy and the restoring force

with respect to bias in x-axis. Both energy and restoring force curves indicate

that the water meniscus reaches its equilibrium state when the bias in x-axis
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becomes zero. Therefore, the chip keeps moving until the misalignment

disappears.

                               (e)                                                                    (f)

Fig.8  Numerical simulation of water droplet self-alignment of a microchip on a hydrophilic
pattern with volume of water: 0.9 nL, size of chip and pattern: 200μm × 200μm and water
contact angle of pattern, substrate and chip: 30°/180°/80° respectively. (a) a chip is above a
pattern with a droplet of water in middle; (b) and (c) the droplet minimizes its surface area
and moves the chip towards the pattern; and finally water evaporates and alignment is
achieved in (d). (e) Energy curve and (f) restoring force curve of water meniscus with respect
of x-bias.

In the droplet self-alignment numerical simulation, the gravitational force

acting on the chip is neglected because the size of the chip

(200μm×200μm×50μm) is very small. To demonstrate that the gravitational

force is significantly smaller than the restoring force, the gravitational force

of a 200μm×200μm×50μm SU-8 chip has been compared with the restoring

force of 0.9 nL water for self-alignment. The gravitational force of a 200μm

× 200μm × 50μm SU-8 chip can be calculated from

fG mg d V g	 	 � � (9)

where m is the mass of the chip, g is the gravitational acceleration with an

average magnitude of 9.81 m/s2, d is the density of SU-8 2025 (1.219g/ml or

1.219*103kg/m3 based on datasheet from MICROCHEM), V is the volume of

the SU-8 chip. Therefore, the gravitational force of the chip is:
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	 	 � � 	 � 	 (10)

The restoring force acting on the chip consists of lateral and vertical force.

At a later phase of self-alignment process, the volume of the water decreases

as it evaporates. To compare the gravitational force with the restoring force

during evaporation of water, the Surface Evolver is used to simulate both the

lateral (in x-axis) and vertical restoring force (in z-axis) with different volume

of water: 0.9, 0.5 and 0.2 nL. The results are shown in Fig.9 (a) indicating

that the restoring force in x-axis is significantly larger than the gravitational

force (0.0239μN) of the chip.

(a)                                                                      (b)

Fig.9  Numerical simulation of restoring force acting on a microchip with volume of water:
0.9 nL, 0.5 nL and 0.2 nL, size of the chip: 200μm × 200μm × 50μm. (a) Lateral restoring
force with respect to the x bias; (b) Vertical restoring force with respect to the delta z
(difference between the equilibrium position and height of the liquid meniscus).

Fig.9 (b) shows the vertical restoring force with respect to the delta z

(difference between the equilibrium position and height of the liquid

meniscus). When the volume of water is 0.2 nL, the red curve in Fig.9 (b)

shows that the restoring force acting in z-axis is about 7200μN/μm, which

means the gravitational force (0.0239μN) can cause the displacement in z-

axis equivalent to 3.3×10-3nm. This is extremely small and should be

neglected.

In conclusion, the gravitational force acting on a SU-8 chip with size of

200μm × 200μm × 50μm is significantly smaller than the lateral  and vertical

restoring force acting on the chip. Therefore, the gravitational force can be

neglected during the self-alignment process.
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3. Hybrid Microassembly Handling
Strategies

Hybrid microassembly combines the traditional robotic pick-and-place

technique with the droplet self-alignment technique. This technique utilizes

the fast-speed robotic handling tool for the coarse positioning and applies

the droplet self-alignment technique to achieve high-accuracy alignment.

Hybrid microassembly takes advantages of both robotic assembly technique

and the droplet self-alignment technique. In this section, different handling

strategies are investigated and new strategies are proposed. The handling

strategies are grouped into three categories: droplet assisted hybrid

microassembly, water mist induced hybrid microassembly and

hybrid microassembly with forced wetting.

3.1 Droplet assisted hybrid microassembly

The typical droplet assisted hybrid microassembly procedure consists of

initial robotic positioning followed by droplet self-alignment steps, shown in

Fig.10 (a)-(f).

Fig.10 Droplet assisted hybrid microassembly procedure: (a) a pattern is placed at the site
for  assembly;  (b)  a  droplet  of  liquid is  dispensed on the pattern;  (c)  a  microchip is  moved
towards the pattern; (d) the microchip is released from a micro handling tool and liquid wets
the pattern and the bottom of the chip; (e) the chip is self-aligned with pattern due to
minimum surface energy; (f) final bonding is created.
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Bonding can be achieved by the process of evaporation, curing or thermal

compression depending on what kind of liquid and pattern materials are

applied. Releasing of the microchip is normally difficult in microassembly

due to scaling laws in the micro world. When the dimensions of the elements

decrease from the macroscopic to the micrometer size, the effects of gravity

and inertia become negligible compared with adhesive and friction. As the

surface tension of the droplet dominates the gravity during microassembly

process as demonstrated in Section 2.3, the surface tension can drive the chip

to align with the pattern and prevent the chip from sticking to the micro

handling tool.

The patterns for assembly can be either flat or protruded. The shape of the

pattern should match the microchip to be assembled. The key factor in

determination of success or failure in droplet self-alignment is whether the

liquid droplet is confined within the edges of the pattern during the process.

The confinement of the liquid droplet can be achieved on flat patterns

through large wetting contrast or on protruded patterns with geometrically

solid edges. In the case of flat patterns, the substrate should be lyophobic and

the pattern lyophilic with respect to the liquid medium used for self-

alignment. For protruded patterns, geometric solid edges can be used as

boundary to prevent the droplet spreading outside the pattern. The principle

of the droplet confinement is explained in Chapter 2. More details about the

design process and fabrication of the patterns are discussed in Chapter 4.

3.2 Water mist induced hybrid microassembly

The concept of water mist induced hybrid microassembly is similar to droplet

assisted hybrid microassembly. However, it uses water mist instead of a

single droplet to assist the robotic handling tool for microassembly. Water

mist is a cloud of small water droplets suspended in the air. Once they fall

onto the surface, many small droplets will form on it. Water mist, as a

medium for microassembly, has several interesting properties. It can

generate a massive amount of small droplets in the range of microns, which

allows applications in smaller microchips, e.g. less than 100 �m in lateral

dimension. These small droplets are dif�cult to generate in mass using

precision dispensers. The volume of the water droplets can be easily

controlled by regulating the power of the generator and the duration of the

operation. It also allows the self-alignment process to be carried out in a

normal air environment, which is favorable in many applications.

Furthermore, water mist can be applied to parallel microassembly.
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To investigate the water mist induced hybrid microassembly, two different

approaches of microassembly are studied. In the first approach, so-called

water mist-first approach, water mist is introduced first, then the chip is

released from the micro handling tool, and placed on top of the pattern. In

the second approach, so-called water mist-last approach, the chip is first

released from the micro handling tool, then placed on top of the pattern, and

finally water mist is added for precise alignment. These two approaches are

shown in Fig.11 (a)-(b). Water mist can also be applied for parallel self-

alignment as shown in Fig.11(c)-(e). The microchips are first roughly placed

on top of a matrix of patterns fixed on the substrate with placement errors

using fast robotic handling tool. Then water droplets are delivered to the

assembly site in the form of water mist. Finally, all the microchips are aligned

with the corresponding pattern in parallel.

                          (c)                                                     (d)                                                   (e)

Fig.11 Water mist-first approach: (a1) water mist is delivered and water droplets fall onto the
pattern and its surroundings. (a2) a micro handling tool carries a chip near the pattern. (a3)
a meniscus is formed between the microchip when there is a contact between the chip and
water droplet. (a4) - (a6) the chip is released and surface tension aligns the chip to the pattern
according to the principle of minimum surface energy. Water mist-last approach: (b1) - (b2)
A micro handling tool carries a chip near the pattern with a misplacement (bias). (b3) the chip
is released. (b4) - (b6) water mist is delivered and water droplets fall onto both patterns and
their surroundings, and the misplacement is corrected by surface tension driven self-
alignment. (c) – (e) parallel water mist induced microassembly using water mist-last
approach. Note: in the figure a tweezers type micro handling tool is used, which can be replace
by any type of gripper or feeding mechanism.

One problem for the water mist-last approach is that reliable releasing

cannot be guaranteed. The top chip may adhere to the micro handling tool

and can easily tilt during releasing. This typical releasing problem in

microassembly is possible to be solved using a vacuum micro gripper or other
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parallel transferring methods, such as transfer printing [53], which can

achieve a successful release with a reasonable accuracy.

 Water mist induced hybrid microassembly technique has the bene�ts of

the previously reported droplet assisted hybrid microassembly technique,

while requiring less calibration and lower hardware requirements. It has

potentially better scalability due to smaller droplet size. Furthermore, this

technique can be an option for assembling micro components on patterned

surfaces in parallel in the semiconductor industry, such as RFID tags

assembly.

3.3 Hybrid microassembly with forced wetting

Hybrid microassembly requires well-designed pattern where the self-

alignment process will occur. In the case of water as the self-alignment

medium, the general rule is that the pattern should be hydrophilic and the

substrate should be hydrophobic. It is challenging to use hydrophobic

patterns for self-alignment because of its poor wettability with water. To

tackle the problems of poor wetting with the hydrophobic pattern, two forced

wetting methods have been developed. The two forced wetting methods are

presented in Fig.12 (a) and (b): (a) introduce an excessive amount of water,

more than is needed for self-alignment and (b) force the water droplet to wet

the hydrophobic patterns by pushing the chip against the pattern. The forced

wetting in this thesis refers to the spreading of liquid on the pattern beyond

what can be achieved by the wetting of the normal amount of water used in

self-alignment.

Fig.12 Numerical simulation of water droplet self-alignment of a microchip on a hydrophobic
pattern with forced wetting, size of chip and hydrophobic pattern 200μm × 200μm, advancing
contact angle and receding contact angle of water on pattern 118° and 69° respectively: (a1)-
(a4)  drop  self-alignment  with  excessive  amount  of  water  (8 nL); (b1)-(b4) droplet self-
alignment applying external pressure to force the water (0.9 nL) to wet the hydrophobic
pattern, simulated using receding contact angle 69°.
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As shown in Fig.12 (a1)-(a4), the �rst forced wetting technique enables the

water drop pinning at the edges of the patterns by dispensing excessive

amount of water on the pattern. The second technique (Fig.12 (b1)-(b4))

applies normal amount of water for self-alignment, but the water drop is

forced to spread on the hydrophobic pattern by pushing the top chip against

the pattern. Both forced wetting techniques lead to greater wetting area of

the pattern and thus more successful self-alignment.

In the case of the first forced wetting technique, large amount of water (8

nL) is used (Fig.12). With excessive amount of water, the chip should align

with the pattern due to the full wetting. The second forced wetting technique

uses small amount of water (about 0.9 nL) and thus the surface of the pattern

is only partly wetted (Fig.12 (b1)). The gripper pushes the chip against the

pattern and forces the water droplet to wet the pattern (Fig.12 (b2)). Then

the chip is released, and the surface tension drives the chip to align with the

pattern (Fig.12 (b3) and (b4)).

                                    (a)                                                             (b)

Fig.13 (a) Energy and (b) restoring forces on hydrophilic receptor, hydrophobic receptor with
forced wetting and hydrophobic pattern without forced wetting.

Fig.13 (a)-(b) compare the surface energy and restoring force of the self-

alignment process with the same amount of water of 0.9 nL for three cases:

1) on a hydrophilic pattern (simulated using apparent contact angle of 30°);

2) on a hydrophobic pattern without forced wetting (simulated using

advancing contact angle of 118°); 3) on a hydrophobic pattern with forced

wetting (simulated using receding contact angle of 69°). Fig.13 (a) shows

that the receding contact angle of 69° leads to much larger value of restoring

force compared with the much smaller forces created using advancing

contact angle of 118°. In the case of pressing, much larger wetting reduces

the effective contact angle to a value close to the receding contact angle after
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the pressing was ended, and therefore the results of Fig.13 (a)-(b) should

also apply. The small amount of noises appeared in the restoring force curve

(red curve) of Fig.13 (b) are due to the numerical errors in simulation, which

however does not affect the estimation of the level and trend of the force.
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4. Patterns for Hybrid Microassembly

Droplet confinement on patterns is a key process in self-alignment and it can

be achieved both on flat and protruded patterns. In case of a flat pattern, a

droplet can be confined on the pattern based on large wetting contrast

between the pattern and substrate. Self-alignment on protruded pattern uses

geometrically solid edges as a boundary to prevent the liquid droplet

spreading outside of the pattern. This section introduces the nano-structured

and micro-patterned surface for droplet confinement in hybrid

microassembly.

4.1 Oleophilic/ oleophobic nano-structured surface

4.1.1 Porous ormocer functionalized with fluorinated trichlorosilane

Droplet self-alignment with adhesives has the benefit of being able to make

a permanent bonding. However, self-alignment using adhesive droplets in

air is very challenging. The key of droplet self-alignment relies on the contact

angle contrast, i.e., on the difference in contact angle, between the pattern

and the substrate. Most adhesives are oil-like and they have low surface

tension, which typically leads to a low contact angle on most surfaces.

Consequently, for most adhesives, it is difficult to find a pattern and

substrate that would lead to large enough contact angle contrast. Earlier

work avoided the problem by using vertical solid edges to confine the droplet

[27], which is not desirable in many applications. A new

oleophilic/oleophobic nano-structured surface has been developed, where

the oleophobic substrate is made of a topographical microstructure of porous

ormocer functionalized with a fluorinated trichlorosilane and the oleophilic

area consists of gold patterns. Fig.14 shows a SEM image of the structure of

the porous ormocer surface.
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Fig.14 SEM image of the structure of the porous ormocer surface.

The fabricated oleophilic gold patterns are shown on the functionalized

ormocer substrate in Fig.15 (a). The wettability of the fabricated surface has

been tested with both a normal cooking olive oil and a thermal adhesive (Delo

18507).  The  contact  angle  of  the  olive  oil  on  the  oleophobic  part  of  the

fabricated surface is measured as 133º as shown in Fig.15 (b). Contact angles

of  the  adhesive  are  measured  as  53º  on  the  oleophilic  gold  pattern  of  the

surface as shown in Fig.15 (c)  and  119º  on  the  oleophobic  part  of  the

fabricated surface as shown in Fig.15 (d). This leads to a contact angle

contrast of 66º.

Fig.15 (a) Gold patterns of 50nm thickness on the ormocer substrate after functionalization
with trichlorosilane; (b) Oil-drop-contact angle: 133� on oleophobic substrate; (c) Adhesive-
drop-contact angle : 53� on oleophilic pattern; (d) Adhesive-drop-contact angle : 119� on
oleophobic substrate.

4.1.2 Black silicon coated with fluoropolymer

To simplify the fabrication process of making oleophilic/oleophobic

patterns, a simple and fast process has been developed. The process consists
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of only one pass of photolithography, cryogenic deep reactive ion etching

(RIE) and reactive ion etching steps to fabricate oleophilic/phobic patterns.

Fig.16 shows top and side view SEM images of the fabricated template with

a fluoropolymer coating. In Fig.16 (a), the patterns are seen as dark square

patterns. The magnified view image is shown in Fig.16 (b). The substrate

surface consists of nano scale texture, which composes the surface roughness

(see Fig.16 (c)). Fig.16 (d) shows that the pattern is protruded and has a

well-defined  boundary  line  with  the  substrate.  The  side  view  image  of  a

fluoropolymer coated pattern (Fig.16 (e) shows the geometry of the sharp

solid edge and its height from the base of the needles (<4μm). The solid edge

height is a combination of etched silicon, silicon dioxide thickness on the

protruded pattern and fluoropolymer thickness.

Fig.16  SEM images of a hybrid black silicon template: (a) Top view image showing patterns
and black silicon substrate with a fluoropolymer coating; (b) Magnified view image of a
pattern; (c) Top view image showing substrate surface with nano scale texture; (d) Side view
image showing the height of the sharp solid edge and black silicon needles; (e) Magnified side
view image showing the height of the solid edge.

Advancing contact angle measurements with water and adhesive are shown

in Fig.17. The water contact angles were measured as 118° (Fig.17 (a)) on

the patterns and 179 ± 1° (Fig.17 (c)) on the substrate, and adhesive contact

angles were measured as 55° (Fig.17 (b)) on the patterns and 110° (Fig.17

(d)) on the substrate.



Patterns for Hybrid Microassembly

26

Fig.17  Advancing  contact  angle  measurement  of  (a)  Water  droplet  on  a  pattern:  118°  (b)
Adhesive  droplet  on  a  pattern:  55°  (c)  Water  droplet  on  substrate:  179  ±  1°  (d)  Adhesive
droplet on substrate: 110°.

High contact angle or low wettability of plane and homogenous patterns

(Fig.17 (a)) is attributed to the fluoropolymer coating. The low surface

energy fluoropolymer coating changes the chemical composition of the

surface, which makes it hard for the water droplet to spread on the surface

and therefore the droplet exhibits a high contact angle. With adhesive, the

patterns are more wettable (Fig.17 (b)). Higher wettability with adhesive is

due to the lower surface tension of adhesive (32.6 mN/m) compared to water

(72 mN/m).

The reason for the superhydrophobicity of fluoropolymer coated black

silicon substrate is that the substrate surface is non-homogenous and

contains nano-scale black silicon needles. With the introduction of such

roughness, the surface becomes inhomogeneous and the Young's equation

[43] cannot be directly applied in this situation. In the case of

inhomogeneous surface, two other models are normally used to explain the

wetting behavior, i.e. Wenzel [44] or Cassie-Baxter [45]. On an intrinsically

hydrophilic surface the introduction of roughness leads to increase in

hydrophilicity, whereas, on hydrophobic surface the roughness increases

hydrophobicity and the droplet usually assumes a Cassie-Baxter or

composite state [45].

4.2 Hydrophilic/hydrophobic micro-patterned surface

4.2.1 Segmented patterns

In the RFID tag assembly or  other  low-pin count  chip assembly,  it  is  very

common that there are several electrical contacts (bumps) on the chips as

shown in Fig.18. Therefore, the pattern, or the pattern, is required to have a
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segmented structure consisting of electrodes corresponding to electrical

contacts on the chips.

Fig.18  730μm × 730μm × 70μm RFID chips with four electrical contacts: (a) Top view of a
RFID chip; (b) Zoomed image of four electrodes on a RFID antenna; (c) An RFID antenna.

To achieve self-alignment with water, the pattern should be hydrophilic

and its substrate needs to be hydrophobic. In theory, the self-alignment

process can easily reach energy minimum if the pattern has a non-segmented

hydrophilic surface that matches the size of the RFID chips. However, such

design would require  an additional  coating on top of  the  four  pads,  which

brings complexity to the manufacturing process and an additional cost.

Therefore,  the  patterns  are  designed  in  such  a  way  that  only  the  pads  are

hydrophilic  while  the gaps between the pads are  of  the  same hydrophobic

material as the substrate. For easy fabrication, the substrate is coated with

Teflon and the pads are coated by SiO2. Fig.19 shows  the  design  and

fabricated 730�m × 730�m pattern segmented into four pads with 100�m

gap.

(a)                                                                         (b)

Fig.19  (a) Design of a segmented pattern with the gap size of 100�m and the pattern size of
730�m × 730�m. (b) The fabricated 4-pad segmented pattern with a water droplet confined
on each pad.
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The segmented pattern was tested with water. In the tests, the water is

dispensed on each pad separately and the contact angle of the water is about

90� and  30� on  the  substrate  and  on  the  pads.  Due  to  the  surface  energy

difference between the hydrophilic pads and hydrophobic background, the

water was kept well inside the pads and it didn’t spread over the substrate.

4.2.2 Patterns with jagged edges

Many assembly processes, such as integration of RFID tags, are very cost

sensitive. Therefore, low cost fabrication processes are often preferred,

which result in patterns with features that are poorly defined. One of the

phenomena is that the edges of the patterns have significant jaggedness as

shown in Fig.20.

Fig.20 An example of real-world RFID antenna with significant edge jaggedness.

To design the low precision patterns for self-alignment tests with RFID

microchips, we start with some real-world RFID antennas as shown in

Fig.20, which contains four electrodes. It is obvious that each edge of the

electrodes has significant jaggedness. Based on measurements, the

maximum  peak-to-peak  value  of  the  jaggedness  is  about  50μm,  which  is

around 7% of the size of four electrodes (730 μm). However, the peaks are

distributed sparsely and randomly on the edges. The peaks with large

amplitudes, either outwards or inwards the patterns, are quite rare. In our

design, we did not follow exactly the relative jaggedness of the real-world

case for generality. The patterns are designed to have four segments, or pads,

to mimic four electrodes. The dimensions of the whole pattern are 730 μm,

similar to the size of RFID chip used in the test, which is 730 μm × 730 μm ×

70 μm in average. The heights of the peaks of the jaggedness are presented

using the values from normal distribution with standard deviations (std.) of
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10μm and 5μm, resulting in maximum peak-to-peak value of 40 μm and 20

μm in 95% of the cases correspondingly.

To achieve self-alignment, the patterns are hydrophilic, and the

background is hydrophobic. The fabrication process is the same as used for

segmented patterns described in the last section. The substrate is coated with

Teflon  and  the  pads  are  coated  by  SiO2. Fig.21 shows  the  design  and

fabricated patterns with jagged edges, where one can see that the jagged

edges are similar to the real-world RFID antenna in Fig.20.

(a)                                                                                    (b)

Fig.21 (a) Design of the patterns with edge jaggedness of 10μm standard deviation and 40μm
spacing; (b) 730μm x 730μm patterns with the jaggedness of 10μm standard deviation and
40μm spacing.

To  further  study  the  influence  of  the  amplitude  and  pitch  of  the  jagged

edges on performance of self-alignment, two kinds of patterns with jagged

edges have been designed as shown in Fig.22.

(a)                                                      (b)

(c)                                                      (d)

Fig.22 (a) Sketch of a pattern with regular jagged edges, (b) a fabricated 200μm x 200μm
pattern with regular jagged edges of 4μm amplitude and 2μm pitch, (c) sketch of a pattern
with random jagged edges, (d) a fabricated 200μm x 200μm pattern with random jagged
edges of 2μm std of the amplitude and 8μm pitch.
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One with regular edge jaggedness, which has spikes of the same size

pointing outwards the pattern is shown in Fig.22 (a) and Fig.22 (b). The

other  with  random  edge  jaggedness,  which  has  spikes  of  random  sizes

following normal distribution with zero mean along the edges, is displaced

in Fig.22 (c) and Fig.22 (d).

4.3 Patterns with geometric solid edges

When the pattern is hydrophilic, most of the liquids that can be considered

for the self-alignment process will spread out of the pattern. Instead of

making patterns hydrophilic and the substrate hydrophobic, another simple

solution is to create a sharp edge around the pattern to trap the liquid inside

the pattern. One of the simplest ways to create sharp edges is to fabricate

protruded patterns. In the thesis, SU-8 was chosen because it is easy to

fabricate relatively high aspect ratio patterns. The patterns are fabricated on

a silicon substrate. Standard SU-8 lithography (spin coating, baking,

exposure, development, and hard-baking) is used to make the patterns.

Fig.23 shows  a  SEM  image  of  a  square-shaped  SU-8  pattern  with  the

dimension 200 × 200 × 30�m.

Fig.23 SEM image of a fabricated SU-8 pattern with size of 200μm×200μm×30μm.
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5. Results and Discussions

This section summarizes the main results of the publications. The section

consists of 7 sub-sections, and the first sub-section introduces the system set-

up for all the experiments, and the rest of the section is divided into 6 sub-

sections.

5.1 Experimental set-up

The hybrid microassembly experiments were carried out using a

microassembly setup consisting of an assembly system (pick-and-place), a

dispensing system and an imaging system as shown in Fig.24. The assembly

system contains a custom-built microgripper mounted on a motorized linear

stage (Physik Instrumente M111.1DG) for vertical movement; a sample

carrier mounted on a short range motorized linear stage (Physik Instrumente

M-122.2.1DD) for motion in x-axis and a long range motorized linear stage

(Physik Instrumente M-404.8PD) for motion in y-axis between assembly site

and dispensing site. The dispensing system consists of a water droplet

dispenser and an adhesive droplet dispenser, where water dispenser is

mounted in about 45° angle at the assembly site and the adhesive dispenser

is mounted vertically at the dispensing site. The water droplet dispenser is a

noncontact dispenser (Gesim/PicPIP), actuated by a piezoelectric diaphragm

and can dispense droplets at a distance of a few millimeters. The amount of

the liquid can be adjusted in the range of 100–400 picolitres. The adhesive

droplet dispenser is an air-powered contact dispenser (EFD Mikros pen

system), which can deposit droplets as small as 50 μm in diameter. The

imaging system consists of a top-view microscope (Edmund/VZM1000i) and

a side-view microscope (Edmund/VZM1000i) mounted at the assembly site,

a top-view microscope (Edmund/VZM300i) and a side-view microscope

(Edmund/VZM300i) mounted at the dispensing site.
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Fig.24 Hybrid microassembly system, which consists of a sample carrier, a microgripper, a
water dispenser, an adhesive dispenser, two side-view microscopes and one top-view
microscope.

5.2 Self-alignment on hydrophobic patterns (PUB1)

One key aspect of the hybrid microassembly is a well-designed pattern where

the self-alignment process will take place. For example, if water is used for

self-alignment, it is preferable that the pattern is hydrophilic against the

hydrophobic substrate. However, in many applications, the patterns are

made of hydrophobic materials, and it is an open question if the hydrophobic

patterns can be used for self-alignment. PUB1 investigates the self-

alignment on a hydrophobic pattern and water using two forced wetting

techniques. A nano-structured black silicon surface functionalized with

�uoropolymer was used as a super-hydrophobic substrate, while the silicon

dioxide pattern covered with �uoropolymer was served as the hydrophobic

pattern. Contact angle of the water is 118º and 180° on the pattern and on

the substrate respectively.

PUB1 reports droplet self-alignment on hydrophobic patterns using two

forced wetting techniques: (a) introducing an excessive amount of water and

(b) applying external pressure, which are shown in Fig.25 and Fig.26.

Fig.25 (a-d)  shows  the  frames  of  the  self-alignment  processes  for  an

assembly case of a 200 μm × 200 μm × 50 μm chip on a 200μm × 200μm

pattern using excessive amount of water (8 nL). Such large amount of water

is sufficient to fully wet the surface of the pattern, and moreover the water is

still well confined inside the pattern due to super-hydrophobicity of the

substrate. The amount of water increases significantly when compared to the

amount (0.4nL – 1.5nL) used to fully wet the same sized hydrophilic pattern.

Self-alignment has been observed using this technique. Fig.26 shows the
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frames of the self-alignment processes for an assembly case of a 200 μm ×

200 μm × 50 μm chip on a 200 μm × 200 μm pattern using external pressure.

Small amount of water (0.9 nL) is dispensed on the pattern, and the surface

of the pattern is partly wetted (Fig.26 (a)). The microgripper moves the chip

towards the pattern and forces the water droplet to wet the pattern (Fig.26

(b)). Then the chip is released (Fig.26 (c)),  and the surface tension drives

the chip to align with the pattern (Fig.26 (d)). The external pressure can be

easily controlled by adjusting the releasing position of the chip, and thus

there is little additional requirement on the robot handling process.

Fig.25 Self-alignment of a 200 μm × 200 μm × 50 μm SU-8 chip on the corresponding pattern
using excessive amount of water.

Fig.26 Self-alignment of a 200 μm × 200 μm × 50 μm SU-8 chip on the corresponding pattern
using external pressure.

Both forced wetting techniques have been demonstrated for self-alignment

using hydrophobic patterns, however they do require the super hydrophobic

substrate to ensure the water confinement inside the pattern. To relax the

requirement of super hydrophobicity of the substrate, hydrophobic patterns

with sharp edges can also be used, which can also stop the liquid from

spreading outside the pattern.

5.3 Self-alignment using adhesive in air (PUB2, 5)

Adhesives are commonly used for permanent bonding in microassembly.

However  most  of  the  adhesives  have  low  surface  tension,  and  thus  it  is

difficult to find a pattern and substrate that would lead to large enough

contact angle contrast. PUB2 reports a topographical microstructure of

porous ormocer functionalized with a fluorinated trichlorosilane for the

oleophobic area and gold patterns for the oleophilic area. The
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oleophilic/oleophobic patterns show significant wettability contrast for

adhesive (Delo 18507), with a contact angle of 119° on oleophobic part and

53°  on  the  oleophilic  part.  Self-alignment  of  SU-8  microchips  on  the

oleophilic/oleophobic patterns has been demonstrated in Fig.27. The final

alignment accuracy is inspected using optical microscope by measuring the

difference between the geometrical centers of the chip and the pattern. The

accuracy is estimated to be less than 1 μm in x axis and 3.5 μm in y axis, where

the measurement of this accuracy is limited by the accuracy of the

microscopes. The self-alignment process takes about 500ms, which is about

ten times longer than the self-alignment with same amount of the water. This

is partly caused by the high viscosity (400mPa•s) of the adhesive, which

increases both the time for wetting a pattern and reduces the restoring force

in self-alignment [54].”

Fig.27  Self-alignment frames of a 200μm × 200μm × 50μm SU-8 chip on the corresponding
gold patterns. (a) The chip is moving towards the pattern. (b) Release the SU-8 chip with a
releasing bias of 90 μm and 35 μm in x and y axis individually. (c) Self-alignment is realized.
(d) The super imposed image of (b) and (c), where the contour of the chip at the releasing
position is highlighted with white dashed lines and the contour of the pattern is highlighted
with dark line.

PUB5 reports the self-alignment of microchips on a simple-to-fabricate

hybrid template with both water and UV-curing adhesive (EPO-TEK® UVO-

114). The hybrid template consists of a nanostructured black silicon surface

functionalized with fluoropolymer as a substrate and silicon dioxide covered

with fluoropolymer as pattern. Fig.28 shows optical microscope images of

adhesive self-alignment of a SU-8 microchip on a pattern. The process was

recorded from both top (Fig.28 (a,  b,  c))  and side (Fig.28 (d, e, f)). The

amount of the adhesive droplet was carefully controlled with the adhesive
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dispenser and 0.4 nL adhesive has been used in the tests. The accuracy of the

self-alignment is seen in Fig.29 (a, b). The microchip is released with a large

initial bias as shown in Fig.29 (a) (50 �m in x-axis, 40 �m in y-axis, 50 �m

in z-axis, 60% overlapping area). The measured alignment accuracy is 1.2 μm

in x-axis, 2.3 μm in y-axis. The self-alignment process was completed in less

than 110 milliseconds.

The reported oleophilic/oleophobic patterned surface and hybrid template

provide promising solutions for droplet self-alignment of micro parts using

commercial adhesives in ambient air environment. This may lead to

potential applications in packaging of semiconductor devices and 3D

integration of the micro devices, where adhesives are extensively used.

Fig.28  Self-alignment sequences with adhesive.  (a,  d)  The SU-8 microchip is  ready to be
released with the predefined initial bias, (b, e) the microchip is released (c, f) the microchip is
aligned with the pattern.

Fig.29  Measurement of the self-alignment accuracy with adhesive. (a) A SU-8 microchip is
released to the same sized pattern, with a large initial bias (50 �m in x-axis, 40 �m in y-axis,
50 �m in z-axis, 60% overlap). (b) The self-aligned microchip with accuracy of 1.2 μm in x-
axis, 2.3 μm in y-axis.
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5.4 Self-alignment on segmented patterns (PUB3, 9)

It is common in many applications that the pattern consists of segmented

structures corresponding to the electrical contacts on the chips. PUB3 and

PUB9 report an in-depth study of water droplet self-alignment technique

that self-aligns radio frequency identification (RFID) chips on four-pad

segmented patterns. For an easy fabrication, the substrate is coated with

Te�on and the pads are coated by SiO2. As a result, patterns consists of four

hydrophilic pads on a hydrophobic background are obtained. The influences

of the key parameters, such as bias and gaps have been investigated in theory

and experimentally. The gap is the spacing between two pads. The size of the

pattern is 730×730�m, which is the same as the size of the RFID chip.

The self-alignment process of a RFID chip on a segmented pattern with four

pads is simulated using Surface Evolver. Fig.30 displaces the surface energy

of water meniscus on the segmented pattern with gap size of 50μm and

100μm, with respect to the bias in x direction. The simulation indicates the

largest allowable bias with 50μm and 100�m gaps are 380μm and 350�m,

which is about 52% and 48% of the size of the pattern correspondingly.

Fig.30  Surface energy of water meniscus with respect to the x bias using 730�m × 730�m
segmented patterns with two different gap sizes: 50μm and 100μm.

A series of experiments have been carried out to check the yield of the self-

alignment of different biases and gaps, including 50μm and 100�m and

larger gaps up to around 400�m. The yield is the proportion of a successful

alignment out of all tests of a particular initial bias and gap. A successful

alignment is defined as an alignment where the error is indistinguishable

under the optical microscope used in the tests. The x bias and y bias are

varied  in  the  range  of  0μm  to  400μm.  The  yield  as  a  function  of  the

parameters is shown in Table 1. For each setting, the test is repeated for 5
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times. The results show that 100% yield can be achieved with bias less than

400μm in one axis and no obvious difference with 100�m gap and with 50�m

gap regarding the yield of the self-alignment.

Table 1 Yield vs. Gaps
50µm gap 100µm gap

x-bias, y-bias yield yield
50µm,0 µm 100% 100%
100µm,0 µm 100% 100%
300µm,0 µm 100% 100%
400µm,0 µm 100% 100%
500µm,0 µm 80% 60%
600µm,0 µm 0% 0%
50µm,50 µm 100% 100%
100µm,100 µm 100% 100%
200µm,-200 µm 80% 100%
300µm,-300 µm 20% 20%

Fig.31 shows one example of a successful alignment using 730μm × 730�m

patterns with 100�m gap.

Fig.31  Top view and side view of water droplet self-alignment of a 730�m × 730�m RFID
chip on a segmented pattern with 100�m gap. The initial bias is 300�m in the x-axis.

Patterns with larger gap 205 μm and 405 μm were also tested with small bias

in both x and y-axis.  Each test has been repeated 15 times. With 205 μm,

although the bias is rather small compare to the size of the pattern (about 10

% of the size of the pattern) in both x and y axis, possibility of error seems to

increase due to the large gap. However the successful alignment was still

possible with a yield of 73 %. Fig.32 shows that a successful alignment is still

possible when the gap increases to 405�m, although the gap is so large that

the droplet is not able to even touch the pads before the RFID chip on the top

makes the water spread. PUB3 reported large variations (20ms – 250ms) in

the self-alignment speed, this may be caused by the difference in releasing,

or the volume and the position of the dispensed liquid. Those factors can lead

to a very different wetting process and consequently the dynamics of the self-

alignment process can be very different from test to test.
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Fig.32  Top view and side view of water droplet self-alignment of a 730 × 730μm RFID chip
on an segmented pattern with 405μm gap, the initial bias is 40μm in both x and y axis. The
outline of the segmented pattern is highlighted with red lines.

In summary, both theory and experiments indicate that the self-alignment

between the 730μm × 730�m RFID chips and the segmented pattern can be

achieved  when  the  initial  bias  is  as  large  as  50%  of  the  size  of  the  chip.

Although the thesis only investigates the four-pad segmented pattern, self-

alignment on the patterns with more pads should be possible using water or

another liquid, if the size of the whole pattern is same as the chip and the

liquid is able to confine inside the pattern. The result provides a solid basis

for the design of future self-assembly or droplet self-alignment process for

RFID or other chips with multiple electrical contacts.

5.5 Self-alignment with water mist (PUB4, 6, 10)

Water mist used as the liquid for self-alignment brings many benefits, such

as lower hardware requirements, better scalability due to the smaller droplet

sizes and potential parallel assembly. The experimental tests were performed

using the hybrid microassembly system discussed in 5.1.

To deliver the water mist to the test samples, two silicone tubes with inner

diameter  6  mm  and  outer  diameter  9  mm  are  connected  to  the  exit  of  a

humidifier. The ends of the tubes are placed near the sample carrier from two

opposite directions to spread the water mist evenly on the samples as shown

in Fig.33.
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Fig.33  Hybrid microassembly system with water mist.

PUB4 investigates the droplet forming process using machine vision,

where each individual droplet on the microchip surface can be identified and

the volume per surface area can be calibrated at a specific time. The result

reveals that the volume of water droplets on the alignment surface grows

linearly as a function of time as shown in Fig.34. The volume of the droplets

in Fig.34 starts to grow after 1.87 s because of the delay in the silicon tubes.

Fig.34 Linear water droplets accumulation process.

PUB4 investigates the maximum tolerance of the initial placement error in

alignment of SU-8 chips 200μm × 200μm × 70�m in size (see Fig.35).
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Fig.35  Alignment yields versus overlap percentage between the bottom chip and the top chip

with the same dimension.

The  overlapping  area  between  the  lower  chip  and  the  top  chip  can  be

calculated based on the x-bias and the y-bias. Fig.35 shows that the

overlapping area between the lower chip and the top chip correlates with the

alignment yield. 100% yield can be achieved when the overlapping area is

greater than 25% of the size of the chip. Even when the overlapping area is

only 5%, 40% yield can still be reached. One demonstration of successful self-

alignment with rather large bias is shown in Fig.36.

Fig.36 Self-alignment of SU-8 chips of the same size. The x-axis bias is 	130 �m and y-axis

bias is 	130�m. Moreover, time tags of each image frame are shown. The time 0 is when the

microgripper releases the chip.

PUB4 also reports the possibility of stacking two SU-8 chips of different

dimensions as shown in Fig.37.using the proposed self-alignment technique
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Fig.37 Self-alignment of SU-8 chips of different sizes, top chip: 200 × 200 × 70�m, bottom
chip: 200 × 400 × 70�m, biases in x-, y- and z-axes: 	65, 	65 and 20�m, correspondingly.

PUB6 reports the first demonstration of the self-alignment with water mist

for parallel assembly. Fig.38 (a-c) presents parallel alignment of 20 and 30

pairs of misaligned microchips using droplet self-alignment with water mist.

The deposition of water mist plays important role in the self-alignment, and

the uneven distribution will cause a time delay between the self-alignment of

different chips. It may end up with some of the chips aligning and some of

the chips failing to align. Therefore, the water mist deposition process needs

to be calibrated to achieve relatively uniform deposition, so that all the chips

can align simultaneously.

Fig.38 Parallel alignment of 20 pair of microchips using droplet self-alignment with water
mist: (a) 200μm x 200μm x 30μm chips are placed on the top of a matrix of 20 patterns of the
same size with random placement error; (b) water droplets are delivered in the form of the
water  mist;  (c)  the  placement  errors  are  corrected  and  all  the  chips  are  aligned  with  the
patterns.

In summary, the results show that the proposed technique is a promising

solution for assembly of microchips. This technique can be applied to both

parallel self-assembly and robotics-based hybrid assembly. This technique

can be an option for assembling micro components on patterned surfaces in
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the semiconductor industry, such as RFID tag assembly. To utilize this

technique for RFID assembly, the patterns should be carefully designed due

to the fact that the water-mist-induced droplets do not only land on the

patterns but also on the substrate. The height difference between the

patterns and substrate should be taken into account when designing the

process.

5.6 Self-alignment on patterns with jagged edges (PUB7, 8)

Low cost fabrication processes result in micro components with features that

are poorly defined and with defects. PUB7 reports the influence of the

dimension and the edge jaggedness on the yield and accuracy of the droplet

self-alignment with water, using 730 × 730 × 70�m RFID chips as the test

samples. Hydrophilic/phobic patterns with SiO2 served as the pattern and

Teflon as the substrate were fabricated to create wetting contrast for water.

The self-alignment occurs with proper releasing bias, despite the variation

in size of the pattern and edge jaggedness. However variation in size could

affect the alignment accuracy. The better the size of the pattern matches the

chip, the higher the alignment accuracy can be received. For example, the

self-alignment accuracy with a 730μm × 730μm chip was clearly better for

710 μm × 710 μm patterns with edge jaggedness of standard deviation 10 μm

than 710 μm × 710 μm patterns without edge jaggedness. PUB8 reports the

exact relationship between various parameters of jagged edges and the

alignment accuracy of 200μm × 2000μm microchips on patterns with jagged

edges.

The alignment accuracy is calculated by measuring the difference between

the geometry centers of the chip and the pattern after the self-alignment is

finished as shown in Fig.39.

Fig.39  Droplet self-alignment on patterns with regular jagged edges and with random jagged
edges:  Four edges of a pattern are highlighted with blue lines and center of the pattern marked
with a yellow cross. Four edges of a chip are highlighted with red lines and center of the chip
marked with a red circle.

An image analysis based method is implemented using Matlab for detection

of the geometry centers. The results show that self-alignment can be achieved

on the patterns with regular edge jaggedness as well as with random edge

jaggedness. The alignment accuracy decreases as the amplitude of the edge
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jaggedness increases. However, high alignment accuracy of 2μm can still be

achieved even with the edge jaggedness as large as 8μm. Large standard

deviation (STD) in the measurement has been observed, which is due to the

limited resolution of the optical microscope.

The results indicate that self-alignment occurs repeatedly with proper

releasing bias, despite the variation in size of the pattern and edge

jaggedness. Variation in size could affect the alignment accuracy. The better

the size of the pattern matches the chip, the higher the alignment accuracy

can be obtained. Self-alignment can be achieved on the patterns with regular

edge jaggedness as well as with random edge jaggedness alignment. Accuracy

decreases as the amplitude of the edge jaggedness increases. Alignment

accuracy of 2μm can still  be achieved with the edge jaggedness as large as

8μm.
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6. Conclusions

Hybrid microassembly technique utilizes the fast-speed robotic handling

tool for the coarse positioning and applies droplet self-alignment technique

to achieve high-accuracy alignment. By combing both the robotic pick-and-

place technique and droplet self-alignment technique, hybrid microassembly

technique can achieve high speed and high precision simultaneously. As

reported in the related publication of this thesis work [42], throughput over

40,000 unit per hour has been demonstrated with micron accuracy.

This thesis assesses the adaptability of hybrid microassembly by

investigating three different hybrid microassembly handling strategies: 1)

droplet assisted hybrid microassembly, 2) water mist induced hybrid

microassembly and 3) hybrid microassembly with forced wetting. The results

indicate:

� Droplet assisted hybrid microassembly is promising for stacking of

microchips and self-alignment of microchips on patterns with water

or adhesive.

� Water mist induced hybrid microassembly can be used for parallel

self-alignment in the air. Alignment occurs if volume of the water

mist is controlled with a uniform deposition. Alignment accuracy can

reach sub-micrometer range.

� Hybrid microassembly with forced wetting can achieve self-

alignment on hydrophobic pattern with super-hydrophobic substrate

using two forced wetting techniques: introducing excessive amount

of water or applying external pressure to force the water to wet the

hydrophobic patterns.

The thesis investigates what kind of micro parts and patterns are suitable

for  hybrid  microassembly.  Five  different  types  of  patterns  have  been

investigated for hybrid microassembly technique: (1) oleophilic/phobic

patterns, (2) hydrophobic/super-hydrophobic patterns, (3) segmented

patterns and (4) patterns with jagged edges, (5) patterns with sharp solid

edges. The key results are summarized as follows:

� Oleophilic/phobic patterns are suitable for droplet self-alignment

using adhesives in ambient air environment.
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� It is possible to achieve self-alignment with both water and adhesive

droplet using hydrophobic/super-hydrophobic patterns.

� Self-alignment occurs between microchips and segmented patterns

with suitable initial bias as large as 50% and gap less than 10% of

the size of the pattern.

� Self-alignment can be achieved on patterns with regular edge

jaggedness as well as with random edge jaggedness. The alignment

accuracy decreases as the amplitude of the edge jaggedness

increases.

� The solid sharp edges around the pattern are easy to fabricate and

an effective solution to confine the liquid inside the pattern and

achieve self-alignment.

The above discussed handling strategies and patterns provide a good set of

candidates for different potential applications. In some applications, such as

integration of VCSELs (vertical-cavity surface-emitting laser) and RFID tag

assembly, segmented planar patterns may be more suitable with the

component design where each pin corresponds to an individual segment of

the pattern. In some other applications, e.g. die-to-substrate assembly,

patterns with solid sharp edges may be more suitable in confining the

bonding adhesive. Therefore, this thesis explores different possibilities for

potential applications, instead of seeking an optimal design for practical

industry relevant applications, which can be topics of further research.

In the same spirit, robotic sequential feeding is the main methodology used

in the thesis. Serial feeding allows quantitative study of the influence of the

process parameters of e.g. pattern design, liquid medium, and initial

releasing conditions on the results of hybrid microassembly. With the

knowledge of the process parameters obtained, the process can be easily

extended by replacing robotic serial feeding with more high-throughput

feeding techniques, e.g. transfer printing or other parallel pick-and-place

techniques. Already in the thesis, parallel mist self-alignment has been

demonstrated in Section 5.5, which shows the extensibility of the research.

Parallel microassembly with water mist is really promising for assembling

micro components on patterned surfaces in parallel in the semiconductor

industry. It can reach high precision microassembly at high yield, which is

not achievable with the robotic microassembly technique.

There are two major failure modes observed in the hybrid microassembly

process: 1) failed liquid confinement and 2) insufficient wetting. To avoid the

failure, the amount of the liquid should be controlled in a reasonable range,

and it should be sufficient to wet the pattern but still be able to confine inside

the pattern. However, this range is not very sensitive, for example, in water

droplet  assisted hybrid microassembly of  300μm × 300μm SU-8 chips  on
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same sized SU-8 chips, over 98% yield is achieved when the droplet volume

is between 0.9 - 3.1nL [39].

In conclusion, hybrid microassembly is a promising technology to improve

the performance of current robotic systems. This thesis shows that hybrid

microassembly is adaptable to large varieties of patterns. Several new hybrid

microassembly handling strategies are developed and demonstrated. Such a

wide adaptability and a variety of the processes indicate that hybrid

microassembly can be a very promising approach for many potential

applications, such as integration of surface emitting lasers, integration of

small dies and 3D integration of chips with high density pin counts.
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