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1. Introduction

Continuous but uncertain improvements in general longevity pose sig-

nificant challenges to the insurance industry as well as social security

systems. As the impacts of medical advances, environmental changes or

lifestyle issues on longevity remain unpredictable, the need for effective

tools of quantitative risk management is acute. The requirement has re-

cently been accentuated by the financial crisis, as well as the new Sol-

vency II regulation that leans heavily on risk assessment of individual

financial institutions in calculation of capital requirements.

Various longevity-linked instruments have been proposed for the man-

agement of longevity risk; see e.g. [10, 13, 9, 34, 55]. However, a major

challenge facing the development of a longevity market is hedging the

risk that stems from issuing a longevity-linked instrument. The sup-

ply for longevity-linked instruments might increase if their cash-flows

could be hedged by appropriately trading in assets for which liquid mar-

kets already exist. Such development has been seen e.g. in options mar-

kets, which flourished after the publication of the seminal Black–Scholes–

Merton model. As the cash-flows of mortality-linked instruments have

less to do with existing financial markets than those of simple stock op-

tions, their cash flows cannot be perfectly hedged, and the seller of a

mortality-linked instrument always retains some risk. However, it may

be possible to diminish the residual risk by an appropriate choice of an

investment strategy. Such hedging strategies would also benefit pension

providers and life insurers who need to hedge their longevity exposures.

This thesis presents mathematical models for longevity risk manage-

ment. An overall objective was to develop methods for hedging cash flows

of longevity-linked liabilities on financial markets. To this end, the fol-

lowing issues are addressed:

9



Introduction

1. Modelling the law of a multivariate stochastic process consisting of

mortality and asset returns, with particular emphasis on

• Long-term development of mortality

• Connections between mortality and asset returns

2. Utilizing these connections in designing hedging strategies for mortality-

linked cash flows, using numerical methods.

Modelling of the phenomenon, as described by the first item, is addressed

in Sections 2 and 3. The resulting models are then employed to analyse

the hedging problem in Sections 4 and 5, covering the second item.

Section 2 outlines a user-friendly stochastic framework for mortality

modelling. The logistic transforms of survival probabilities in different

age groups of a given population are modelled by linear combinations of

basis functions across the cohorts. The weights assigned to each basis

function serve as risk factors that vary over time. Survivor numbers are

assumed to be binomially distributed, which, under very lenient assump-

tions about the basis functions, results in a strictly convex log-likelihood

function when calibrating the model.

Based on statistical analysis presented in Publication II, Section 3 pro-

poses a stochastic model for the joint long-term development of mortality

and financial markets, employing the risk factors of a three-parameter

version of the mortality model presented in the previous section. The

model incorporates such features as the eventual stabilization of mortal-

ity rates, long-term link of old-age mortality to GDP, short-term connec-

tion between mortality and GDP, and connection of GDP to interest rates.

The non-systematic component of mortality risk is associated with the

number of members in a population and is theoretically diversifiable,

while systematic mortality risk stems from uncertainty in the future sur-

vival probabilities, and hence does not depend on the number of partic-

ipants in the scheme. Section 4 assesses the effects of non-systematic

and systematic mortality risks on the required initial capital in a pension

plan, again utilizing the mortality model of Section 2. We discover that for

a pension plan with few members the impact of pooling on the required

capital per person is strong, but non-systematic risk diminishes rapidly

as the number of members increases. Systematic mortality risk, on the

10
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other hand, remains a significant source of risk is a pension portfolio.

Building on the work presented in earlier sections, Section 5 inves-

tigates optimal investment from the point of view of an investor with

longevity-linked liabilities. We employ a computational procedure that

constructs diversified strategies from parametric basis strategies, and sug-

gest trading strategies that are motivated by connections between mortal-

ity and financial markets, as observed in Section 3. We notice that the risk

associated with the diversified strategy decreases as these liability-driven

basis strategies are included, as opposed to employing non-liability-driven

strategies only. This hedging approach can be applied to the pricing and

hedging of longevity-linked instruments, as well as the asset-liability man-

agement of pension plans and life insurers.
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2. A user-friendly approach to
stochastic mortality modelling

2.1 Background

A wealth of stochastic discrete-time models have been proposed to cap-

ture the uncertainty in the future development of mortality, see [22] for

a review. The seminal work of Lee and Carter [51] introduced in 1992 is

still widely popular and has subsequently inspired several related works

[17, 52, 15, 32, 31]. More refined models with multiple stochastic factors

were subsequently proposed by Renshaw and Haberman [68] and Cairns

et al. [19], with extensions incorporating cohort effects by Renshaw and

Haberman [69] and Cairns et al. [23]. A slightly different vein of reseach

[28] has applied penalized splines to mortality modelling. Some of the

most recent works utilize Bayesian methods [24, 62].

Publication I complements the previous literature by presenting a stochas-

tic mortality modelling framework which, courtesy of its flexible construc-

tion and the tangible interpretation of its risk factors, is particularly con-

venient in subsequent studies on the relationships between mortality and

economic variables.

2.2 The framework

Let Ex.t be the number of individuals aged [x, x+1) years at the beginning

of year t in a given population. Our aim is to model the values of Ex,t over

time t = 0, 1, 2, . . . for a given set X ⊂ N of ages. We assume that the

conditional distribution of Ex+1,t+1 given Ex,t is binomial:

Ex+1,t+1 ∼ Bin(Ex,t, px,t), (2.1)

13
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where px,t is the survival probability, the probability that an individual

aged x and alive at the beginning of year t is still alive at the end of that

year. A stochastic mortality model is obtained by modelling the logistic

transforms of survival probabilities px,t as stochastic processes, by means

of a linear combination

logit px,t := ln
( px,t
1− px,t

)
=

n∑
i=1

vi(t)φi(x), (2.2)

where φi are basis functions across the cohorts defined by the user, and

vi are stochastic risk factors that vary over time. When modelling the

vector of risk factors v = (v1, . . . , vn) as a R
n-valued stochastic process,

this formulation implies that px,t ∈ (0, 1).

The future values of Ex+1,t+1 are obtained by sampling from Bin(Ex,t, px,t).

The uncertainty in the future values of px,t represents the systematic

mortality risk. Even if the ’true’ survival probabilities were known, fu-

ture population sizes would still be random, which accounts for the non-

systematic mortality risk. However, as the population grows, the frac-

tion Ex+1,t+1/[Ex,tpx+t,t] converges in distribution to constant 1. In large

enough pools the main uncertainty comes from unpredictable variations

in the future values of px,t, and the population dynamics are well de-

scribed by Ex+1,t+1 = Ex,tpx,t. The roles of systematic and non-systematic

risk are discussed further in Section 4.

With appropriate choices of the basis functions φi(·) one can incorpo-

rate chosen properties of p·,t in the model. To illustrate, one may wish

to construct a model where the probabilities px,t behave continuously or

smoothly across ages, as in the classic Gompertz model for mortality. This

can be simply achieved by choosing continuous or smooth basis functions,

respectively. The choice of the basis functions also determines the inter-

pretation of the risk factors. If, for example, the basis functions are such

that φk(x) = 1 but φi(x) = 0 for i �= k for a certain age x, then the risk

factor vk(t) equals the logistic survival probability at age x in year t. Con-

crete interpretations facilitate the modelling of future values of the risk

factors. One may, for instance, be able to deduce dependencies between v

and certain economic factors such as investment returns.

Once the basis functions φi have been chosen, the vector v = (v1, . . . , vn)

of risk factors is modelled as a multivariate stochastic process in discrete

time. The model specification can be based solely on the user’s views about

the future development of survival probabilities, historical data, or both.

The historical values of the risk factors v(t) = (v1(t), . . . , vn(t)) can be eas-

14
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ily constructed by maximum likelihood estimation. It can be shown that

the resulting log-likelihood function lt : R
n → R is concave under very

mild assumptions on the basis functions (see Publication I). Concavity

implies that local maxima of lv are true maximum likelihood estimators.

Strict concavity, in turn, implies that the estimators are unique; see e.g.

[70, Theorem 2.6]. Besides guaranteeing well defined estimators, convex-

ity facilitates the numerical maximization of lt.

2.3 A three-parameter model for adult mortality

We implement a three-parameter version of the mortality model for adult

(ages 18–100) mortality with three piecewise linear basis functions given

by

φ1(x) =

⎧⎪⎨
⎪⎩
1− x−18

32 for x ≤ 50

0 for x ≥ 50,

φ2(x) =

⎧⎪⎨
⎪⎩

1
32(x− 18) for x ≤ 50

2− x
50 for x ≥ 50,

φ3(x) =

⎧⎪⎨
⎪⎩
0 for x ≤ 50

x
50 − 1 for x ≥ 50.

The linear combination
∑3

i=1 v
i
tφ

i(x) will then be piecewise linear and con-

tinuous as a function of the age x. The risk factors vit represent points on

the logistic survival probability curve:

v1t = logit p18,t, v
2
t = logit p50,t, v

3
t = logit p100,t.

It is worth noting that when the historical parameter risk factor values

are obtained by maximum likelihood techniques, v1 is determined by the

mortality of 18–50 year olds, v2 by all ages, and v3 by the ages between 50

and 100.

As an illustration, Figure 2.1 shows the historical values of parameter

v1 that result from fitting the model into female mortality data from six

OECD countries. An interesting feature is that the parameter values of

several of the countries appear to stabilize, in particular during the last

20 years. This phenomenon is examined more closely in next section.
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Figure 2.1. Historical values for risk factor v1, females. Note the different scales.
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3. Stochastic modelling of mortality
and financial markets

3.1 Background

A pertinent question in longevity risk management is whether mortality

will continue to decline, and for how long. It was conjectured already in

[82] that, in the long run, mortality rates will tend to stabilize. Some

experts suggest that lifestyle factors, such as obesity, may soon hinder

further mortality improvements; see [63]. There is also some indication

that the decline in coronary heart disease mortality is levelling out in

some age groups in the UK and the Netherlands [1, 76]. A recent survey

of mortality trends in Europe can be found in [53].

When analysing mortality from the perspective of longevity-linked lia-

bilities, one is also interested in the joint development of mortality and

financial markets, particularly in the long term. Earlier studies provide

evidence of connections between mortality and economic cycles, usually

represented by GDP or unemployment. Some studies suggest that in the

long run, higher economic output results in lower mortality [66, 67]. Oth-

ers report a more immediate link between the phases of the economic

cycle and mortality: Ruhm [71] and Tapia Granados [73, 74] discovered

that mortality rates increase during economic expansions. The connec-

tion of GDP to both short-term and long-term mortality has recently been

studied in [43] and [42]. These studies indicate that short-term mortality

and macroeconomic fluctuations are closely linked.

GDP, in turn, is connected with various sectors of financial markets;

see [72] for an extensive review. For instance, there is strong indication

of a link between economic activity and the term spread of interest rates

[38, 47, 45, 46, 37, 30, 65], although the connection may have weakened

since the mid-80s [81]. Another connection exists between credit spreads

17
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and GDP, as discussed e.g. in [41], [8] and [36]. Although the connection

between stock markets and economic cycle is not unambiguous, there is

evidence that such a link also exists [59, 39, 5, 16, 25, 38].

In Publication II we studied the possible stabilization of mortality rates,

and corroborated earlier findings on the link between mortality and GDP

as well as the connection of GDP to interest rates. A stochastic model

based on statistical analysis was presented.

3.2 The model

Based on the broad statistical analysis of adult (ages 18–100) mortality

and economic factors in Publication II, we propose a model that describes

the long-term joint development of mortality and financial markets. It

incorporates the following features also suggested by others:

• eventual stabilization of mortality rates of the young [82]

• long-term link of old-age mortality to GDP [42]

• short-term connection between mortality and GDP [38, 73, 74, 42]

• connection of GDP to interest rates [81, 36, 72].

To model the the long-term development of mortality and financial mar-

kets, we propose a linear multivariate stochastic difference equation

Δxt = Axt−1 + b+ εt,

where x = [vf,1t , vf,2t , vf,3t , vm,1
t , vm,2

t , vm,3
t , gt, s

T
t , s

C
t ], A ∈ R

9×9, b ∈ R
9, and

εt are R
9-valued random vectors describing the unexpected fluctuations

in the risk factors. The variables vf,it and vm,i
t are the mortality risk fac-

tors of females and males, respectively, gt denotes the logarithm of GDP

per capita, sTt represents the term spread of interest rates, and sCt is the

credit spread. This compact formulation is straightforward to study, both

analytically and numerically.

The equations for risk factors vf,1 and vm,1, corresponding with the sur-

vival probabilities of young ages as described in the previous section, de-

pict mean-reverting behaviour. The risk factors vf,2 and vf,2, correspond-

ing with the survival probabilities of the middle-aged, follow a random

18
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walk with a drift. The equations for v3 for both genders describe a di-

rect link between mortality of ages between 50 and 100 (as v3 depends on

these ages by definition) and GDP. The interpretation is that the drift of

v3t depends on its relation to gt. If v3t lags behind gt, the drift increases.

The per capita log-GDP gt depends on the developments of the term

spread sTt and credit spread sCt . Large term spreads anticipate high GDP

growth rates. On the other hand, large credit spreads precede small GDP

growth rates. This effect is illustrated in Figure 3.1 on US interest rate

and GDP data. The developments of the term spread sTt and the credit

spread sCt are both described with a mean reverting equation, reflecting

the Vasicek interest rate model [77].

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
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0
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4

6
Term spread

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005
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Figure 3.1. Term spread, differenced log-GDP, and credit spread.
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4. Systematic and non-systematic
mortality risk in pension portfolios

4.1 Background

The mortality risk of a population can be decomposed into two compo-

nents: systematic and non-systematic or idiosyncratic mortality risk, as

elaborated in Section 2. Their roles in longevity risk management have

been studied in previous literature. Coppola at al. [26] consider the contri-

butions of mortality and investment risks to the variability in the present

value of liabilities, given annuity portfolios of different sizes. Olivieri [61]

also considers the impact of systematic and random fluctuations on the

present value of future benefit payments under a deterministic financial

structure. Milevsky et al. [58] show how the standard deviation of payoffs

per policy diminishes to a constant as the number of policies increases.

They discovered that when there are dozens of policies, the contribution

of non-systematic risk is still notable, but for portfolios larger than a thou-

sand members it reduces to negligible. Hári et al. [44] have examined the

impact of non-systematic risk on a capital reserve, described as a propor-

tion of the present value of the liabilities, required to reduce the proba-

bility of underfunding to an acceptable level. Donnelly [33] considers the

role of non-systematic risk in a pension plan by studying how the coeffi-

cient of variation for the liabilities of the scheme varies with its number

of participants.

In Publication III, we show how the least amount of initial capital re-

quired to cover the liabilities of pension portfolio varies with the size of

the portfolio. We consider a multi-period model of stochastic asset re-

turns and liabilities, and determine the minimum initial capital needed

to cover the liabilities in terms of a convex risk measure, given a degree

of risk aversion.
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4.2 Valuation of defined-benefit pension liabilities

Consider a defined-benefit pension plan, where the number of members

aged x at time t is denoted by Ex,t. We assume that each alive member

receives an index-linked annual unit benefit at times t = 1, 2, . . . , T , until

termination of the scheme at t = T . The yearly pension claims amount to

ct =
It
I0

∑
x∈X

dxEx,t,

where It is the index value, X ⊂ N is the set of age groups in the pension

plan, and the constant dx depends on the value of the index and accrued

pension benefit at time t = 0. We will look for the least amount of capital

w0 that suffices to cover the liabilities until the termination of the scheme.

In order to study the effects of non-systematic and systematic risks on

capital requirements, we apply the valuation approach described in [49].

At each t, the insurer pays out ct and invests the remaining wealth wt in

financial markets. The investment returns are modelled as a stochastic

process, which is dependent on the chosen investment strategy used by

the insurer. As in [49], we define the value of liabilities as the least initial

capital that enables the investor to hedge the cash flows with given risk

tolerance.

The liabilities (ct)
T
t=0 and returns (Rt)

T
t=0 are modelled as stochastic pro-

cesses, and the problem can be formulated as

min w0 over w ∈ N
subject to wt ≤ Rtwt−1 − ct t = 1, . . . , T

ρ(wT ) ≤ 0,

(4.1)

where N are stochastic processes adapted to a given filtration (Ft)
T
t=0. The

variable Rt =
∑J

j=1R
j
tπ

j
t is the return over period [t−1, t] per unit amount

of cash invested, πj
t is the proportion of wealth invested each of the J

assets, and ρ is the entropic risk measure defined for a random variable X

as

ρ(X) =
1

γ
logE[e−γX ]. (4.2)

In the risk-neutral case where ρ(X) = E[X], it can be shown that the

required initial wealth is

w0 =

∑T
t=1E(ΠT

s=t+1Rsct)

E(ΠT
s=1Rs)

.

Further, in the special case where Rt is independent of both its past values

and liabilities ct, we obtain the actuarial best estimate, the expected value

of discounted claims. This is the valuation method used in Solvency II.

22



Systematic and non-systematic mortality risk in pension portfolios

4.3 Numerical illustrations

In the following simulation study all members in the pension scheme are

females aged 65 at t = 0, and the term of the scheme is T = 35. Each

member receives a unit benefit per year. The risk aversion parameter

value was set to γ = 0.05. We generated N = 500000 scenarios, computed

the final wealth wT in each scenario for a given initial wealth w0, and

approximated the expectation in (4.2) as a Monte Carlo estimate. The

smallest w0 to yield a nonnegative risk for terminal wealths was obtained

with a simple line search.

Investment returns depend both on the returns on individual assets

and the chosen investment strategy. Fixed proportions (FP) is a strat-

egy where, in the presence of J assets, the allocation is rebalanced at the

beginning of each holding period into set proportions given by a vector

π ∈ R
J , the components of which sum up to one. In our example we con-

sider two fixed proportions strategies on bonds and equities, namely

πS = [πbond, πstock] = [0.75, 0.25]

and

πR = [πbond, πstock] = [0.5, 0.5]

In the first, safer strategy πS a 75% weight is placed on bonds and a 25%

weight on equities, whereas in the other, riskier strategy πR the weights

are 50% and 50%.

Figures 4.1 and 4.2 plot the initial capitals per individual for various

numbers of participants E0 for each strategy, and the two different invest-

ment strategies πS and πR. The dotted line indicates the level of initial

capital required in the presence of systematic risk only, that is when the

numbers of survivors are not sampled from binomial distribution but ap-

proximated by their expectation as described in Section 2. Initially the

required capital drops sharply. With a few dozen members, the effect of

nonsystematic risk on the initial capital is already comparatively small.

Levels of initial capital required in the risk-neutral case and the actuar-

ial best estimate, along with capital required in the presence of systematic

risk only for both investment strategies, are presented in Table 4.1. For

the risk-neutral case the required capital is slightly smaller than for the

actuarial best estimate. This difference arises from the fact that the risk-

neutral risk measure takes into account the dependencies in asset returns

and liabilities.
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Figure 4.1. Initial capital requirement per individual, investment strategy πS . Dotted
line indicates the level of initial capital required in the presence of systematic
risk only.
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Figure 4.2. Initial capital requirement per individual, investment strategy πR. Dotted
line indicates the level of initial capital required in the presence of systematic
risk only.

Table 4.1. Systematic risk, initial capital

Risk measure Entropic, γ = 0.05 ρ = E[X] Actuarial best estimate

πS 16.40 15.45 15.50

πR 16.05 14.09 14.12
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5. Liability-driven investment in
longevity risk management

5.1 Background

Earlier research on hedging longevity risk has studied the valuation of

various types of annuities and other life insurance products, see [64] for

an overview of various annuities. Frees et al. [40] have investigated the

valuation of annuities with dependent mortality models. Marceau et al.

[56] have considered calculation of reserves for life insurance policies in a

stochastic mortality and interest rate environment through simulations of

the prospective loss random variable. Brown et al. [18] have explored the

range of practices in the pricing of various annuity products. Wilkie et al.

[83] applied both quantile and conditional tail expectation reserving, as

well as option pricing methodology to hedge a guaranteed annuity option

(GAO). Option valuation theory was also recently applied to GAOs by e.g.

Ballotta and Haberman [3]. Another approach is natural hedging, where

insurers can hedge longevity risks internally between their own business

products [27, 78]. On the other hand, Cairns et al. [21] draw from similar-

ities between force of mortality and interest rates to construct frameworks

for valuation of mortality-linked instruments.

Further, the pricing of mortality-linked instruments has attracted at-

tention, and several approaches have been suggested, see [6] for a recent

review. A popular approach is risk-neutral pricing, which is based on the

theory stating that in an incomplete but arbitrage-free market, there ex-

ists at least one risk-free measure. In risk-neutral pricing one identifies

such a measure, and calculates the corresponding price [12, 35]. How-

ever, this methodology has been questioned on the basis of the illiquid-

ity of the markets [4, 6]. Milevsky et al. [57] and Bayraktar et al. [7]

have developed a theory where mortality risk assumed by the issuer of a
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longevity-linked contingent claim is compensated for by a predetermined

instantaneous Sharpe ratio. Another vein of research employs the Wang

transform [79, 80], distorting the distribution of the survivor index to cre-

ate risk-adjusted expected values for the longevity-linked cash flow [55].

Recent studies on longevity-linked instruments also investigate how such

instruments, once in existence, can be used to hedge mortality risk expo-

sures in pensions or insurance liabilities [12, 11, 20, 54, 29].

Publication IV approaches the hedging problem by studying optimal in-

vestment from the point of view of an insurer with longevity-linked lia-

bilities. We demonstrate how the hedge of a longevity-linked cash flow

can be improved by taking the liabilities into account in investment de-

cisions. This is achieved by optimally diversifying a given initial capital

amongst several investment strategies, some of which employ statistical

connections between assets and liabilities.

5.2 The asset-liability management problem

Consider an insurer with given initial capital w0 and longevity-linked li-

abilities with claims ct over time t = 1, 2, . . . , T . After paying out ct at

time t, the insurer invests the remaining wealth in financial markets. We

look for investment strategies whose proceeds fit the liabilities as well as

possible, in the sense of a given risk measure ρ on the remaining wealth

at time T . Assume a finite set J of liquid assets (bonds, equities, . . . ) that

can be traded at times t = 0, . . . , T . The return on asset j over period

[t− 1, t] will be denoted by Rt,j , and the amount of cash invested in asset j

over period (t, t+1] by ht,j . Then, the asset-liability management problem

of the insurer can then be written as

minimize ρ(
∑
j∈J

hT,j) over h ∈ N

subject to
∑
j∈J

h0,j ≤ w0

∑
j∈J

ht,j ≤
∑
j∈J

Rt,jht−1,j − ct t = 1, . . . , T

ht ∈ Dt, t = 1, . . . , T

(ALM)

The liabilities (ct)
T
t=0 and the investment returns (Rt,j)

T
t=0 are modelled

as stochastic processes. The set N denotes the R
J -valued adapted invest-

ment strategies (ht)
T
t=0. Being adapted means that the portfolio ht chosen

at time t may only depend on information observed by time t. The last
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constraint describes portfolio constraints. The set Dt is allowed to be ran-

dom, but it is known at time t. The risk measure ρ is a convex function

on the space of real-valued random variables. It describes the insurer’s

preferences over random terminal wealth distributions.

5.3 Investment strategies

The trading strategies employed in subsequent simulations can be divided

into two categories. In non-liability-driven strategies the proportions of

wealth invested in different assets are independent of the values of the

liabilities, whereas liability-driven strategies the proportions depend, di-

rectly or indirectly, on the longevity-linked liabilities. The objective is

to compare how liability-driven strategies affect the optimal value of the

ALM problem.

The non-liability-driven strategies included well-know parametric in-

vestment strategies: Buy and Hold, Fixed Proportions, and Target Date

Fund. The set of liability-driven strategies comprises Constant Proportion

Portfolio Insurance as well as Spread strategies, Survival Index strategies

and Wealth strategies, where the proportions invested in certain assets

depend on term and credit spreads, the survival index of a reference pop-

ulation, or remaining wealth, respectively.

5.4 Computational results

In general, analytical solutions to the problem (ALM) are not available.

We will employ the numerical procedure presented in [48, 50], which is

a computational method for constructing a diversified aggregate invest-

ment strategy out of a set of simple parametric strategies called basis

strategies. Initial choices of basis strategies are utilized by adjusting their

convex combination to the given objective and the risk factors of the prob-

lem. It is to be noted that a convex combination of feasible basis strategies

is always feasible, since the optimization problem is convex.

In the following numerical illustrations, the termination date was set

to T = 30, and the cash flows ct were defined as the survival index St

of a cohort of US females aged 65 at time t = 0. The structure of this

instrument is basically the same as in the first longevity bond issued in

2004 by the European Investment Bank (for a more detailed description
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see e.g. [9]). The asset returns Rt and liabilities ct were modelled as a

multivariate stochastic process.

The objective was to investigate if liability-driven investment strate-

gies can lead to reductions in the risk associated with a cash flow of

longevity-linked liabilities. To this end, we used two sets of basis strate-

gies. The first set consisted of non-liability-driven basis strategies, and

the second set encompassed both the non-liability-driven and additional

liability-driven basis strategies. We computed the optimal aggregate in-

vestment strategy and the corresponding value of the risk measure func-

tion ρ for each set, using the computational procedure. We then proceeded

to compare the optimal values of the objective ρ associated with each set.

In order to discern to which extent a possible reduction in risk can be at-

tributed to considering the liabilities, as opposed to merely having a larger

number of strategies, we also regarded a portfolio optimization problem

without liabilities for both sets of basis strategies. The optimal alloca-

tions were computed for different values of risk aversion parameters γ.

The larger the parameter, the more risk averse the investor.

Table 5.1 summarizes the resulting values of the objective function. We

observe that as the risk aversion grows, so does the reduction in risk of

the ALM problem with liabilities when the liability-driven strategies are

included. This is plausible since the higher the risk aversion, the more the

risk measure places importance to the fact that the asset returns conform

to the liabilities. As for the optimization problem with zero liabilities, the

effect of adding the liability-driven strategies was negligible and indepen-

dent of the level of risk aversion.

Table 5.1. Objective function values.

γ = 0.05 γ = 0.1 γ = 0.3 γ = 0.5

ct = St ct = 0 ct = St ct = 0 ct = St ct = 0 ct = St ct = 0

Basis strategies

Non-LDI -27.46 -75.14 -18.64 -60.82 -11.16 -46.73 -9.17 -41.81

All -27.90 -75.14 -19.84 -60.84 -12.40 -46.87 -10.16 -42.14

reduction (%) 1.6 0.006 6.47 0.04 11.14 0.3 10.71 0.8
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6. Concluding remarks

This thesis suggestes quantitative techniques for longevity risk manage-

ment. Our aim is to develop such models and methods that would be

particularly suited for the asset-liability management of longevity-linked

cash flows.

Publication I proposes a framework for stochastic mortality modelling.

The flexible construction is not only easy to accommodate to the prefer-

ences of the user, but also enables the assignment of tangible interpre-

tations to the risk factors of the model, which in turn facilitates mod-

elling their future behaviour. The wide applicability of the framework

is reflected by the fact that it has served as a basis for modelling other

insurance-related phenomena [2].

Publication II proposes stochastic models for the joint development of

mortality and financial markets, utilizing the risk factors of a three-factor

version of the mortality modelling framework of Publication I. Particular

emphasis is placed on the long-term patterns in longevity, and their con-

nections with the economy. Due to its simplicity, the model is easy to study

both analytically and numerically. Since the underlying risk factors in our

model have natural interpretations, its behaviour is easily judged by the

user, which renders the model suitable for the analysis of mortality-linked

cash-flows and associated investment strategies. The model is easy to

calibrate to both historical data and user’s expectations about the future

development of mortality and the economy.

Publication III studies the effects of non-systematic and systematic mor-

tality risks on the required capital reserves for a defined-benefit pension

plan. We compute the required initial capital per person for different

numbers of members in the pension scheme. Our main finding is that for

pension plans with few members the impact of pooling on the capital re-

quirement per capita is strong, but non-systematic risk is offset rapidly in
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pension schemes as the number of members grows. Systematic mortality

risk, on the other hand, remains a significant source of risk is a pension

portfolio.

Publication IV suggestes several liability-driven investment strategies

for longevity-linked liabilities. We are able to show numerically that

liability-driven investment can outperform common strategies that do not

take into account the liabilities. These strategies may help pension insur-

ers and issuers of longevity-linked instruments in asset-liability manage-

ment, reserving, and in underwriting new insurance contracts. Although

promising, the findings of Publication IV still leave substantial room for

further research. The basis strategies employed in the numerical simula-

tions are only an example of liability-driven strategies. Discovering and

employing new connections between longevity-linked cash flows and asset

returns would further improve the diversification strategy.

It remains to be seen if the so far continuous improvements in general

longevity will persist, or if they will slow down or even cease altogether.

Some experts predict that the steady decline in overall mortality during

past decades will continue for the foreseeable future [60, 75, 14], while

others [63] suggest that lifestyle factors, such as obesity, may soon hinder

further mortality improvements. Combined with the changing regulatory

environment, this possible future transition continues to offer unexplored

avenues for novel research.
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