
9HSTFMG*afcjie+

Aalto University publication series
DOCTORAL DISSERTATIONS 130/2013

String Searching Methods
for Bioinformatics

Kalle Karhu

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 (Konemiehentie 2, Espoo) of the school on 20th
September 2013 at 12 noon.

Aalto University
School of Science
Department of Computer Science and Engineering
String Algorithms Group

Supervising professor
Professor Jorma Tarhio

Thesis advisor
Professor Jorma Tarhio

Preliminary examiners
Professor Thierry Lecroq, University of Rouen, France
Dr Marie-France Sagot, Université Claude Bernard, France

Opponent
Professor Esko Ukkonen, University of Helsinki, Finland

Aalto University publication series
DOCTORAL DISSERTATIONS 130/2013

© Kalle Karhu

ISBN 978-952-60-5298-4 (printed)
ISBN 978-952-60-5299-1 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5299-1

Unigrafia Oy
Helsinki 2013

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Kalle Karhu
Name of the doctoral dissertation
String Searching Methods for Bioinformatics
Publisher School of Science
Unit Department of Computer Science and Engineering

Series Aalto University publication series DOCTORAL DISSERTATIONS 130/2013

Field of research Software Technology

Manuscript submitted 12 April 2013 Date of the defence 20 September
2013

Permission to publish granted (date) 20 June 2013 Language English

Monograph Article dissertation (summary + original articles)

Abstract
The cost of obtaining biologically relevant data via sequencing has been declining rapidly, far

surpassing the decline in computing costs. This is highlighting a need for more efficient, and
thus cheaper, ways to analyze all of this data. Analyzing such data commonly requires searching
through the text representing it in one way or another. The focus of this thesis is on improving
the efficiency of the computational approaches that one may wish to use when searching
through such texts. More precisely, it addresses three subproblems related to text searches in
bioinformatics.

First, we consider the approximate, indexed alignment of long sequences. We present an
approach using an index that combines q-sampling and block addressing for the initial
approximate location of promising alignments, which are then studied more carefully using a
multi-pattern, q-gram algorithm. Based on our experimental results, this approach is able to
answer alignment queries notably faster than previous approaches, using only a fraction of the
memory required by them. We additionally show that the quality of alignments and even the
exon mappings produced by this approach are not worse than those produced using previous
approaches.

Second, we consider indexed multi-pattern matching. For this subproblem, a set of multiple
patterns is preprocessed, speeding up our search of this set from an index structure. This thesis
presents the first experimental results on this type of an indexed, multi-pattern matching
setting together with new theoretical insights. Practical approaches to this setting are
presented, and our experimental results suggest that the presented approaches to
preprocessing notably improve later searches from the corresponding index structures.
Namely, compressed suffix arrays and bidirectional FM-indexes are considered in our study.

Finally, we consider protein motif discovery. We present a new graph-theoretical approach
based on de Bruijn graphs. Moreover, we show how to further improve the query times of this
approach using similarity indexing. Our experiments suggest that the presented approaches
produce motif predictions of equal quality notably faster than previous methods.

Keywords sequence alignment, indexed multi-pattern matching, motif discovery

ISBN (printed) 978-952-60-5298-4 ISBN (pdf) 978-952-60-5299-1

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Espoo Year 2013

Pages 132 urn http://urn.fi/URN:ISBN:978-952-60-5299-1

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Kalle Karhu
Väitöskirjan nimi
Merkkijonohaun Menetelmät Bioinformatiikassa
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos

Sarja Aalto University publication series DOCTORAL DISSERTATIONS 130/2013

Tutkimusala Ohjelmistotekniikka

Käsikirjoituksen pvm 12.04.2013 Väitöspäivä 20.09.2013

Julkaisuluvan myöntämispäivä 20.06.2013 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Biologiselta kannalta merkityksellisen datan tuottamisen kustannukset laskevat

ennätyksellistä tahtia sekvensointiteknologian kehityksen myötä. Näiden kustannusten laskun
nopeus ohittaa jopa laskentakustannusten laskun nopeuden. Tästä aiheutuu kasvava kysyntä,
joka kohdistuu uusiin, tehokkaampiin laskennallisiin menetelmiin, joilla pystyttäisiin
vastaamaan kasvavien datamäärien asettamiin haasteisiin. Tyypillisesti tällaisen datan
analysointiin kuuluvat tekstihaut, muodossa tai toisessa. Tämä väitöskirja pureutuu sellaisten
laskennallisten menetelmien tehokkuuden parantamiseen, joita tarvitaan, kun tällaisia
tekstihakuja halutaan suorittaa. Tarkemmin, keskitymme kolmeen bioinformatiikan
tekstihakujen osaongelmaan.

Ensimmäisenä tarkastelemme pitkien sekvenssien indeksoitua, likimääräistä hakua.
Esitämme menetelmän, joka käyttää indeksirakenteita, jossa kaksi konseptia: q-sampling ja
block addressing yhdistetään. Indeksirakenteen avulla löydetyt lupaavat alueet tarkistetaan
usealle q-grammille suunnitellulla algoritmilla. Kokeelliset tuloksemme osoittavat, että tämä
menetelmä vaatii vain murto-osan aikaisempien menetelmien vaatimasta muistista, mutta se
on kuitenkin merkittävästi aikaisempia menetelmiä nopeampi.

Toiseksi, tarkastelemme usean hahmon indeksoitua hakua. Tässä osaongelmassa usean
hahmon joukko esikäsitellään, tarkoituksena nopeuttaa tämän joukon myöhempää indeksoitua
hakua. Tässä väitöskirjassa esitämme ensimmäiset tähän osaongelmaan liittyvät kokeelliset
tulokset. Esitämme myös uusia teoreettisia huomioita tähän asetelmaan liittyen. Kokeelliset
tuloksemme antavat viitteitä siitä, että esitetyt esikäsittelymenetelmät nopeuttavat
hahmojoukkojen indeksoitua hakua huomattavasti. Keskitymme kahteen indeksirakenteeseen:
tiivistettyyn loppuosataulukkoon ja kaksisuuntaiseen FM-indeksiin.

Viimeisenä osaongelmana keskitymme motifien etsimiseen proteiinisekvensseistä.
Esittelemme graafiteoriaan pohjautuvan lähestymistavan, jossa käytämme de Bruijn -graafeja.
Näytämme myös, kuinka tätä lähestymistapaa voidaan edelleen nopeuttaa samankaltaisuus-
indeksointia apuna käyttäen. Kokeelliset tuloksemme osoittavat, että kehitetyt menetelmät
ovat tarkkuudeltaan samaa tasoa, mutta merkittävästi nopeampia kuin aikaisemmat
menetelmät.

Avainsanat sekvenssien rinnastus, usean hahmon indeksoitu haku, motifien tunnistus

ISBN (painettu) 978-952-60-5298-4 ISBN (pdf) 978-952-60-5299-1

ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942

Julkaisupaikka Helsinki Painopaikka Espoo Vuosi 2013

Sivumäärä 132 urn http://urn.fi/URN:ISBN:978-952-60-5299-1

Dedicated to the loving memory of my mother, Sinikka Karhu.

1

2

Preface

First, I would like to thank my supervisor, Jorma Tarhio, for always

having time and good guidance for his students. I also want to thank

Heikki Saikkonen, head of our department, for the wonderful facilities

I have had at the Department of Computer Science and Engineering in

Aalto University. I have had the privilege to work and co-author with

a number of people, including Juho Mäkinen, Jussi Rautio, Hugh Sala-

mon, Simon Gog, Juha Kärkkäinen, Veli Mäkinen, Niko Välimäki, Elena

Czeizler, Tommi Hirvola, Gonzalo Navarro, Travis Gagie, Simon Puglisi,

Jouni Sirén, Leena Salmela, Sami Khuri and Hannu Peltola. I wish to

thank you all. I wish to express my gratitude towards my pre-examiners

Marie-France Sagot and Thierry Lecroq for their feedback and helpful

comments. I would also like to thank anonymous referees for their helpful

notes along the way. I want to thank Tommi Suvitaival, Juuso Parkkinen,

Seppo Virtanen, Eemeli Leppäaho and Jussi Gillberg for increasing my

innovation potential nearly daily through our coffee break tournaments.

I thank the Academy of Finland and the Helsinki Doctoral Programme in

Computer Science for their funding and travel stipends. I am most thank-

ful to my parents for their support throughout my life, making me pursue

what I enjoy. Finally, I want to thank my wife Hanna for still bearing with

me, and our kids Okko and Inna for making me smile every day.

Espoo, August 26, 2013,

Kalle Karhu

3

Preface

4

Contents

Preface 3

Contents 5

List of Publications 9

Author’s Contribution 11

List of Abbreviations 13

1. Introduction 15

1.1 Motivation . 15

1.2 Objectives and Scope . 16

1.3 Outline . 18

2. Background 19

2.1 Common Definitions . 19

2.2 Index Structures . 20

2.2.1 Inverted Indexes . 20

2.2.2 Suffix Trees . 20

2.2.3 Suffix Arrays . 21

2.3 Compressed Index Structures 21

2.3.1 Burrows-Wheeler Transform 21

2.3.2 Wavelet Tree . 22

2.3.3 Compressed Suffix Arrays 23

2.3.4 Compressed Suffix Trees 23

2.3.5 Compressed Bidirectional Indexes 24

2.4 Pattern Set Preprocessing for Indexed Text 25

2.5 Sequence Alignment . 26

2.6 Motif Discovery . 27

5

Contents

3. Indexed Approximate Alignment of Long Sequences 29

3.1 Previous Alignment Approaches 29

3.2 Methods of the Genomic Alignment Search Tool 30

3.2.1 Block addressing Q-sample Index 30

3.2.2 Initial Search . 31

3.2.3 Alignment . 31

3.3 Experiments . 31

4. Multi-pattern Matching with Compressed Suffix Arrays 35

4.1 Methods for Multi-pattern Matching with Compressed Suf-

fix Arrays . 36

4.1.1 Preprocessing of Text 36

4.1.2 Preprocessing of Patterns 36

4.1.3 Searching a Set of Patterns in Text 37

4.2 Experiments . 37

5. Multi-pattern Matching with Bidirectional Indexes 39

5.1 Theoretical Results . 40

5.1.1 Preliminaries . 40

5.1.2 Bidirectional Search 40

5.1.3 Hardness of Subpattern Selection 41

5.1.4 Subpattern Selection Using Affix Trees 42

5.1.5 Subpattern Selection Using Bidirectional Com-

pressed Suffix Trees 43

5.2 Practical Multi-pattern Matching 44

5.2.1 Practical Preprocessing 44

5.2.2 Practical Searching . 46

5.2.3 Adjusting Minimizing Function 46

5.3 Experiments . 47

6. A Graph-theoretical Approach for Motif Discovery in Pro-

tein Sequences 51

6.1 Methods . 52

6.1.1 Graph Construction . 52

6.1.2 Graph Traversal . 54

6.1.3 Scoring of Putative Motifs 56

6.2 Experiments . 57

7. Discussion 61

7.1 Approximate Alignment of Long Patterns 61

6

Contents

7.2 Indexed Matching of Multiple Patterns 62

7.3 Motif Discovery . 63

Bibliography 65

Publications 73

7

Contents

8

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Kalle Karhu, Juho Mäkinen, Jussi Rautio, Hugh Salamon and Jorma

Tarhio. GAST, a genomic alignment search tool. In BIOINFORMAT-

ICS 2011 - Proceedings of the International Conference on Bioinformat-

ics Models, Methods and Algorithms, 82–90, 2011.

II Kalle Karhu. Improving exact search of multiple patterns from a com-

pressed suffix array. In Proceedings of the Prague Stringology Confer-

ence, 226–231, 2011.

III Simon Gog, Kalle Karhu, Juha Kärkkäinen, Veli Mäkinen and Niko

Välimäki. Multi-PatternMatching with Bidirectional Indexes. Accepted

for publication in Journal of Discrete Algorithms, 2013.

IV Elena Czeizler, Tommi Hirvola and Kalle Karhu. A graph-theoretical

approach for motif discovery in protein sequences. Submitted to BMC

Bioinformatics, 2013.

9

List of Publications

10

Author’s Contribution

Publication I: “GAST, a genomic alignment search tool”

The author had a notable role in designing and implementing the ap-

proaches presented in the paper. The major part of the writing was done

by the author. The experiments were performed by the author.

Publication II: “Improving exact search of multiple patterns from a
compressed suffix array”

This paper represents independent research conducted by the author.

Publication III: “Multi-Pattern Matching with Bidirectional Indexes”

This paper resulted from discussions following a presentation of [PII]. The

author had a notable role in taking part in designing the presented meth-

ods. The author designed and implemented the practical variation pre-

sented in the paper. The author performed the experiments presented in

the paper. The author wrote the major parts of the paper.

Publication IV: “A graph-theoretical approach for motif discovery in
protein sequences”

A substantial part of the writing was done by the author, including the

results, conclusions and parts of the methods section. A major part of

the implementation tasks, parts of the initial testing and all of the final

experiments were performed by the author. The author had a notable role

11

Author’s Contribution

in designing the details of the approach, building on the core idea first

presented by Dr Czeizler.

12

List of Abbreviations

AC-probe 12-mer starting with nucleotides adenine and cytosine

BG algorithm BNDM with q-Grams algorithm

BLAST Basic local alignment search tool

BLAT BLAST-like alignment tool

BWT Burrows-Wheeler transform

cDNA Complementary deoxyribonucleic acid

CSA Compressed suffix array

CST Compressed suffix tree

DB De Bruijn approach

DB-SS De Bruijn approach using SS-tree-like similarity in-

dexing

DNA Deoxyribonucleic acid

GAST Genomic alignment search tool

LZ77 Lempel-Ziv ’77 algorithm

NCBI National center for biotechnology information

NP-hard Non-deterministic polynomial-time hard

RAM Random access memory

RNA Ribonucleic acid

SA Suffix array

SDSL Succinct data structure library

SS-tree Similarity search tree

ST Suffix tree

13

List of Abbreviations

14

1. Introduction

1.1 Motivation

Since the beginning of 2008, the decreasing costs of DNA sequencing have

far exceeded Moore’s law, while the speed of producing biological data is

still drastically increasing [78]. This means that, since the cost of obtain-

ing biologically relevant data is declining notably faster than the cost of

computing power, algorithmic means for analyzing the data efficiently are

of increasing importance, possibly more than ever before.

Once one has obtained a biologically meaningful sequence of some sort,

it is common to find out what kind of sequence one is dealing with. This

may involve mapping the sequence onto other known sequences, trying

to find other shorter sequences in this new sequence or trying to find

repetitive patterns within the sequence or possibly within a set of such

sequences. These tasks are the kinds of search problems focused on in

this thesis.

Answering such questions will eventually help in gathering informa-

tion about the biological sample that was initially sequenced. It may

also answer questions about other sequences, samples and genomes that

have been sequenced previously. The end results may provide numer-

ous improvements in genetics and medical sciences. However, the focus

of this thesis is not practical in that sense. The focus is on improving

the computational approaches that one may wish to use when conduct-

ing searches on biologically meaningful data. We will review some theo-

retical improvements that were introduced in the publications associated

with the thesis. Moreover, we describe ways to implement the proposed

approaches and provide experimental results while comparing the pre-

sented approaches to typical, top-of-the-line approaches one would use

15

Introduction

when conducting these kinds of searches. While these computational ap-

proaches are proposed for analyzing biological sequences, our approach

has a strong flavor of theoretical computer science to it. In theoretical

computer science, sequences of letters or symbols are commonly referred

to as strings, while the term sequences is used more often in bioinformat-

ics.

In order to have new, practical and efficient searching tools emerging,

basic research on approaches of new kind is first needed. Let us con-

sider the practical example of a relatively recent improvement in rele-

vant search tools in bioinformatics, the bowtie [40], which was released

in 2009. In terms of citation count, the bowtie can be considered the align-

ment tool that has had the greatest impact on bioinformatics within the

last five years. It is a fast mapping tool that allows for some variation

between the pattern sequence being searched and the portion of another

text sequence that the pattern is to be mapped onto. In bioinformatics,

such variation is typically of critical importance for finding the closest rel-

evant matches for the pattern sequences being searched. This search tool

is based on the concept of FM-index [11], which was first introduced in

2000. It is noteworthy that the FM-index itself does not allow for such

variation, i.e. it only allows for exact matching. Without the FM-index,

though, the bowtie would most likely have never been developed. The

FM-index in turn is based on the concept of the Burrows-Wheeler trans-

form [8] introduced in 1994. Thus, there was a gap of 9–15 years, going

from the initial data structures, applicable only for mapping a pattern

sequence exactly onto an existing text sequence, to an efficient, practical

tool that was capable of performing more biologically relevant searches.

This example demonstrates the importance of basic research and even of

exact matching for bioinformatics.

1.2 Objectives and Scope

An enormous amount of effort is currently being focused on the field of

bioinformatics, meaning that the precise focus of individual studies is es-

sential to any realistic possibility for making meaningful improvements

in the field. This goes for search problems in bioinformatics as well. Thus,

this thesis does not focus on the entire field of searching for biologically

meaningful patterns within a biologically meaningful text. Instead, three

research questions are formulated, which in turn focus on three specific

16

Introduction

problems.

First, we focus on biologically relevant searches for long patterns. In

this setting, we focus on approximate matching, while allowing for some

variation between the pattern sequence and the text sequence. More pre-

cisely, the focus is on sequence alignment and mapping. Alignment and

mapping tools are commonly used when analyzing newly sequenced data.

However, in the case of sequences longer than 200 nucleotides, we argue

that the common methodologies are computationally excessive. Thus, we

formulate our first research question (RQ1) as follows: can we improve the

efficiency of alignment and mapping methods for long patterns?

Second, we focus on relevant searches for short patterns. In this set-

ting, we have identified a gap in the previous research in terms of search-

ing for a preprocessed set of multiple patterns simultaneously in a pre-

processed text. The focus is mostly on sequences of up to 200 nucleotides

(or characters) in length. With these shorter sequences, focusing on ex-

act matching is arguably more relevant than with longer patterns. As

we briefly discussed in Section 1.1, basic research in exact matching can

be considered the foundation for moving towards more bioinformatically

relevant approximate matching. This will be discussed more thoroughly

in Chapter 7. Thus, we formulate our second research question (RQ2) as

follows: can we speed up exact indexed multi-pattern matching?

Lastly, we consider a case involving multiple sequences, some of which

share a common biological feature and for which it would be desirable

to know more about what is possibly causing this particular biological

feature. In this setting, the challenge is essentially to find biologically

relevant shorter sequences in a set of longer sequences, without know-

ing exactly what these short sequences are. Instead of asking ’where are

these sequences?’, as we did in RQ1 and RQ2, here we ask ’what makes

these sequences special?’. This is the general setting for motif discovery,

where one searches for the re-occurring patterns that are associated with

the specific biological functions, or motifs, of a set of sequences. Motif dis-

covery is a widely studied topic, and thus, pinpointing the focus is of great

importance. Our focus is on improving the performance of protein mo-

tif discovery approaches, while aiming to avoid sacrificing the quality of

predictions for putative motifs. Thus, we formulate our third and last re-

search question (RQ3) as follows: can we speed up protein motif discovery

without sacrificing its predictive quality?

17

Introduction

Table 1.1. Connections between the research questions 1–3 (RQ1–RQ3), and the publica-
tions addressing them (marked with an x). We will refer to the publications as
[PX], where X is the roman number of the publication.

Research question [PI] [PII] [PIII] [PIV]

RQ1 x

RQ2 x x

RQ3 x

1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2 we present

common definitions used throughout the thesis and review the back-

ground that is necessary for introducing the approaches and results pre-

sented in the later chapters.

In Chapter 3 we focus on answering the first research question (RQ1)

by reviewing [PI], wherein we introduce a genomic alignment search tool

(GAST) for improving the speed of alignment and mapping tasks with

long pattern sequences over previous approaches.

In Chapter 4 we review initial work on multi-pattern matching with

indexed text, presented in [PII]. This work provides the first experimental

results on indexed multi-pattern matching, setting the background for the

next chapter and answering research question 2 (RQ2).

In Chapter 5 we focus on answering the second research question

(RQ2) by reviewing [PIII], while presenting new theoretical insights into

indexed multi-pattern matching and experimental results with data sets

consisting of short sequences of up to 200 nucleotides.

In Chapter 6 we address the third research question (RQ3) by review-

ing [PIV], while introducing a graph-theoretical approach to protein motif

discovery.

Finally, in Chapter 7 we discuss the contribution of this thesis and the

associated publications, and give recommendations for further research

on string searching methods in bioinformatics.

See Table 1.1, which summarizes the connections between the re-

search questions and the publications addressing them.

18

2. Background

2.1 Common Definitions

A string or sequence S = S[1 . . n] = S[1]S[2] · · ·S[n] of length n is a chain

of symbols (a.k.a. characters or letters). Each symbol is an element of

an ordered, finite alphabet Σ = {1, 2, . . . , σ}. The alphabetical order, also

known as lexicographical order “<” among strings is defined in the obvi-

ous way. A substring of S is defined as S[i . . j] = S[i]S[i+ 1] · · ·S[j], where
i, j ∈ [1, n]. A substring of length k or q can be commonly referred to as

k-mer, q-gram or q-sample. A prefix of S is a substring of the form S[1 . . j],

and a suffix is a substring of the form S[i . . n]. If i is greater than j, then

the substring S[i . . j] is the empty string ε of length 0. A subsequence

of S is defined as a string that can be derived from S by deleting some

symbols of S, without changing the order of the remaining symbols, e.g.

S[i]S[j]S[k]S[l], where 1 ≤ i < j < k < l ≤ n. A text string T [1 . . n] is a

string terminated by the special symbol T [n] = $ �∈ Σ, smaller than any

other symbol in Σ.

The operation rankc[i] on a string S returns the number of occurrences

of character c in the prefix S[1 . . i]. The operation selectc[i] on a string

S returns the position of the ith occurrence of character c in the string S,

counting occurrences from left to right. When confusion is possible, we

will use S.rankc[i] and S.selectc[i] to explicitly denote the string S the

rank and select operations are performed on.

An exact match or occurrence of a pattern P of length m in a text T

occurs at position i if P [1 . .m] = T [i . . i+m− 1]. The operation of locating

all the exact occurrences of a pattern P in a text T and reporting their

positions in the text is referred to as locating. Another operation, where

only the total number of such occurrences is reported, is referred to as

19

Background

counting.

2.2 Index Structures

2.2.1 Inverted Indexes

An inverted index [80] consists of a mapping from a list of words to their

occurrences in a text T . These words can be any collection of substrings of

the text, e.g. all words occurring in a natural language text. When the text

is not naturally split into distinct words, a possible approach is to create

the list of words by collecting all substrings of fixed length k. This ap-

proach is referred to as k-mer indexing or k-gram indexing. It is crucial to

note that the choice of words limits the queries that can be made against

these indexes. For a text of length n, a naive implementation of inverted

index containing pointers to f occurrences of words takes O(f log n) bits

of space [80].

Block addressing indexes. In block addressing [49], the text T is initially

divided into p documents or blocks of size b. Now, the list of pointers for

each word point to individual blocks instead of exact positions in the text

T . Note that in this setting a single block may contain multiple occur-

rences of a single word. Due to this property, the total number of pointers

g ≤ f . Additionally, the number of blocks p is notably less than n, de-

pending on the chosen block size b. Thus, a naive implementation of block

addressing index occupies only O(g log p) bits [80], which is typically sig-

nificantly less than O(f log n) in practice. As both g and p depend on block

size b, the size of the resulting index structure can be easily adjusted by

changing the block size. By adjusting the block size, it is possible to sup-

port sublinear time queries in sublinear space using block addressing [3].

2.2.2 Suffix Trees

The suffix tree [77] S of a string T [1 . . n] represents all substrings of T in

a rooted, directed tree. In this tree, each internal node has at least two

children and at most one outgoing edge for each c ∈ Σ, where c is the first

character of the label of the edge. Edge labels are encoded as a reference

to T , e.g. a pair of starting and ending text positions. For the node v,

S.path(v) is the concatenation of edge labels from the root to the node v

and the string depth S.sdepth(v) is the length of this concatenation. The

20

Background

suffix tree has O(n) nodes and, if T is terminated with a special symbol

$ �∈ Σ, the resulting suffix tree has exactly n leaf nodes, one for each suffix

of T .

A suffix tree of a string T of length n can be built in time O(n) us-

ing negligible working space [26, 75]. The resulting suffix tree requires

O(n log n) bits of space. Assuming constant size alphabet, we can find

the subtree containing the occurrences of a pattern P of length m in time

O(m) by starting from the root and following the edge labels of the suffix

tree.

2.2.3 Suffix Arrays

Suffix array SA is an array of length n with SA[i] corresponding to the

starting position of the lexicographically i-th smallest suffix in the text T

of length n [24, 48]. Suffix array allows one to find the suffix array interval

containing the occurrences of a pattern P of length m in time O(m log n),

using binary search. There is an important connection between the suf-

fix tree and the suffix array: the leaves of suffix tree have a one-to-one

connection to the values of suffix array.

2.3 Compressed Index Structures

The most relevant compressed index structures in the scope of this thesis

belong to the groups of compressed suffix arrays and the compressed suffix

trees. In this section, we will review these compressed index structures.

Additionally, we will review two data structures, which are used and

needed by these compressed index structures, namely Burrows-Wheeler

transform and wavelet tree.

2.3.1 Burrows-Wheeler Transform

The Burrows-Wheeler transform TBWT [1 . . n] [8] of text T is a string of

length n with TBWT [i] = T [SA[i] − 1] if SA[i] > 1 and BWT [i] = T [n] = $

otherwise. In the frame of indexing, one of the key features of a TBWT is

the LF-mapping, allowing access from TBWT [i], corresponding to T [k], to

TBWT [i
′], corresponding to T [k − 1]. For this mapping, we need an array

C[0 . . σ + 1], where C[c] is the number of characters that are lexicographi-

cally smaller than c in the text T . Note that C[0] = 0 and C[σ + 1] = n.

Now, the LF-mapping can be defined as LF (i) = C[TBWT [i]] +

21

Background

TBWT .rankTBWT [i][i] [12]. By following LF-mapping, one can get from any

character TBWT [i] in the BWT to the character TBWT [i
′] = LF (i) that pre-

cedes it in the text T . This comes with the exception that when looking at

the first character of string T , LF-mapping will point to the last character

$ of T , which is lexicographically smaller than any character in Σ. That

is, if SA[i] = 1, then LF (i) = 1.

Using LF-mapping, we can find the interval [s . . e] of TBWT corre-

sponding to the occurrences of a pattern P of length m. We initially

set s = C[P [m]] and e = C[P [m] + 1]. Then, for each remaining char-

acter P [i] in P from right to left, we update s and p by setting s =

C[P [i]] + TBWT .rankP [i][s − 1] + 1 and e = C[P [i]] + TBWT .rankP [i][e] [12].

Thus, finding the interval requires O(m) rank operations. This is com-

monly referred to as backward search.

2.3.2 Wavelet Tree

The wavelet tree W of a text T , with alphabet Σ of size σ, presents T as

a tree of binary strings [25]. This allows one to implement rankc and

selectc, where c ∈ Σ, using multiple constant time, binary rank and

select operations [9], which work on binary strings.

Consider each character c of text T as a sequence of �log σ� bits. Now,
the top level of wavelet tree W consists of the leftmost bits of these bit-

sequences of characters in T . At the second level, the left branch corre-

sponds to all the characters for which the bit at the above level was 0,

while the right branch corresponds to all characters for which the bit at

the above level was 1. Now, the second level consists of the second bits

(counting from left) of the bit-sequences of these characters. Within each

branch, the bits representing the characters are ordered by the order of

the corresponding characters in the text T .

All the remaining levels are constructed identically, splitting each

branch from the level above into two, until the wavelet tree has all �log σ�
levels. The resulting wavelet tree can be navigated using constant time,

binary rank and select operations, in order to answer operations rankc
and selectc in time O(log σ) [25]. The space requirement of a wavelet

tree is n log σ + o(n log σ) bits.

Now, by combining the properties of a wavelet tree and Burrows-

Wheeler transform, we note that it is possible to find the interval [s . . e] of

TBWT corresponding to the occurrences of a pattern P of length m in time

O(m log σ) [12].

22

Background

2.3.3 Compressed Suffix Arrays

Compressed suffix arrays (CSAs) simulate suffix arrays, aiming for re-

duced space [11, 12, 25, 61, 65]. Typically, compressed suffix arrays are

self-indexes, meaning that the text T for which the CSA has been con-

structed does not need to be saved separately, as it can be recreated from

the index. We will go through one of the CSAs in more detail, namely a

wavelet tree based FM-index [55].

FM-index. The FM-index [11] combines samples of suffix array values

with the backward steps made possible by LF-mapping of BWT. As the

sampling, we save the position in the TBWT for every (log1+ε n)th charac-

ter in the text T . We save these positions as ones in a binary string. We

also save the locations for each of these characters in the text, requiring

O(n/(log1+εn) log n) = o(n) bits of space.

Now, for a position i in BWT, we can get the corresponding position in

the text T by taking steps back with LF-mapping until we hit a sampled

position. If the sampled position points to position k in T and we took

s steps back, we know that the character TBWT [i] is at position k + s in

the text T . This takes at most O(log1+ε n log σ) time, as each LF-mapping

operation takes O(log σ) time with wavelet tree of the BWT [12, 55].

Resulting, for a pattern P of length m, the FM-index can retrieve

the interval [s . . e] of TBWT corresponding to the occurrences of P in T ,

i.e. do counting or backward search, in time O(m log σ). Moreover, it

can report all the positions of occ occurrences of P in T , i.e. do locat-

ing, in time O(m + occ log1+ε n log σ). The FM-index described above re-

quires n log σ + o(n log σ) space. This can be further brought down to

nHk + o(n log σ) space without compromising the time bounds [13, 55].

Here Hk is the kth order empirical entropy of TBWT , which is always less

than log σ. Essentially, this means that the FM-index can obtain similar

compression to BWT-based compression tools.

2.3.4 Compressed Suffix Trees

Compressed suffix trees (CSTs) simulate suffix trees, aiming for reduced

space [15, 64, 68]. CSTs typically consist of a presentation of a CSA and

a number of other data structures allowing typical operations of a suffix

tree. A CST may also contain the inverse suffix array SA−1 in a com-

pressed form. For a CST T we denote the operation of accessing these two

arrays as T .SA[i] and T .SA−1[i], where the latter returns the lexicographi-

23

Background

cal rank of T [i].

For navigational operations, a balanced parentheses presentation of

the structure of the tree T is saved. This enables operations such as ac-

cessing the children, parent or siblings of a node in O(1) time. Moreover,

the lowest common ancestor of two nodes and the subtree-size of a node

can also be retrieved in O(1) time [28]. Essentially, CSTs can support

any operations that suffix trees can support, with up to polylog(n) slow-

down [68]. The balanced parentheses presentation occupies 2n+ o(n) bits

of space [21, 33, 52]. In total, compressed suffix tree requires O(n log σ)

bits of space [68].

2.3.5 Compressed Bidirectional Indexes

Bidirectional FM-index. A bidirectional FM-index I of string T consists

of a forward and reverse index. The forward index supports backward

search in T , and the reverse index in TR, where TR denotes the reversed

string of T . Lam et al. [37] and Schnattinger et al. [71] showed how to

synchronize the forward and reverse index to support bidirectional search.

Let P denote a pattern, and let [sf . . ef] denote the SA interval of the

suffixes of T whose prefixes match P , and [sr . . er] denote the suffixes of

TR matching PR. Now a bidirectional search step allows us to find out the

new interval corresponding to either cP or Pc for any symbol c ∈ Σ. The

new interval is empty if the pattern is not found.

We require the following operations. The direction of the operation is

given by the parameter d ∈ {left, right}:

• pushChar(d, c, [sf . . ef], [sr . . er]): Assume that [sf . . ef] and [sr . . er] cor-

respond to the pattern P . The operation returns new intervals corre-

sponding to the concatenated pattern cP if d = left, or Pc if d = right.

The operation returns an empty interval if the concatenated pattern

does not occur in T . Both [37] and [71] show how to support this op-

eration. The latter uses a wavelet tree for the task and supports the

operation in O(log σ) time.

• getBranches(d, [sf . . ef], [sr . . er]): Returns a subset of symbols, that is,

all symbols c ∈ Σ having a non-empty pushChar(d, c, [sf . . ef], [sr . . er])

interval. Let TBWT and TR
BWT be the Burrows-Wheeler transforms of

the text and its reverse, respectively. If d = left, it returns the set of

24

Background

distinct symbols occurring in TBWT [sf . . ef], and if d = right, it returns

the distinct symbols occurring in TR
BWT [sr . . er]. This can be done in

O(log σ) time per distinct symbol with a wavelet tree [20].

The space usage for the bidirectional FM-index is twice that of an FM-

index based on wavelet tree, i.e. 2n log σ + o(n log σ) bits [55] for a text of

length n.

Bidirectional indexing with a CST. A bidirectional search step, from P to

Pc or cP , can be simulated in a CST T . Let a node k be the node with

the smallest string depth among the nodes for which a prefix of T .path(k)
matches with the pattern P . Let a node u be the parent node of the node k.

Now the state(P) is defined by the node u and the suffix P [T .sdepth(u) +
1 . . |P |]. Using this notation, a right step in T adds a character c to the

right side of P and updates the state from state(P) to state(Pc). A right

step can be taken by simply following the edges of the CST, if possible with

given c. A left step in T adds a character c to the left side of P and updates

the state from state(P) to state(cP). A left step can be taken by following

the Weiner link [7, 77] wl(c, k) from the node k with the character c. This

Weiner link will point to the node k′ in T with the smallest string depth

among the nodes for which a prefix of T .path(k′) matches with cP . Let u′

be the parent node of k′ and let P ′ = cP . Now state(cP) will be correctly

defined by the node u′ and the suffix P ′[T .sdepth(u′) + 1 . . |P ′|]. If no such
node k′ exists, a left step cannot be taken with this character c.

2.4 Pattern Set Preprocessing for Indexed Text

Preprocessing of a pattern set to be searched in a text index is mainly

affordable in a scenario, where the pattern set is to be matched to sev-

eral text indexes. Scenarios of this kind arise, for example, in read align-

ment metagenomics, where the pattern set represents the DNA of several

species and the goal is to find out which species are represented in the

sample and in which quantity. Chapter 5 describes and focuses on this

specific metagenomic setting in more detail.

This problem frame of indexed multi-pattern matching is a rela-

tively unexplored one. Recently, Gagie et al. [19] gave the first the-

oretical improvement for indexed multi-pattern matching over the ap-

proach of searching each pattern separately. It is shown in [19] that

25

Background

a given FM-index for the text of length n and the LZ77 parse of the

concatenation of p patterns of total length M and maximum individual

length m, one can count the occurrences of each pattern in a total of

O((z + p) logM logm log1+ε n) time, where z is the number of phrases in

the parse. First experimental results on indexed multi-pattern matching

were given by [PII] and [PIII], latter of which also presents new theo-

retical insights into this problem field. We will review these results in

Chapters 4 and 5.

2.5 Sequence Alignment

Levenshtein [42] or edit distance between two strings S1 and S2 is defined

as the number of edit operations required to convert S1 to S2. The allowed

operations are insertion, deletion and substitution of a character. An ap-

proximate match with up to k differences between a pattern P [1 . .m] and a

text T occurs at the position i if the edit Levenshtein distanceDL between

P [1 . .m] and T [i . . i+m− 1] is ≤ k. A set of edit operations converting S1

to S2 can be presented as an alignment between S1 and S2

In sequence alignment a typical task is to find such an alignment cor-

responding to minimal number of edit operations between a pattern and

a text string. In the frame of sequence alignment, the terms query se-

quence, query, and pattern will be used interchangeably to stand for the

sequence the user wishes to align or map to a database text sequence or

sequences. More precisely, typically a weighted local alignment is pre-

ferred.

In weighted alignment, each edit operation has its own positive or neg-

ative weight, resulting in a scoring corresponding to the alignment. Typi-

cally, insertions or deletions will have negative impact on the score, while

matching characters between S1 and S2 in the alignment will have a pos-

itive impact on the score. A substitution may have a positive or negative

impact, depending on the similarity between the original character and

the substituting character. E.g. in protein sequence alignment a substitu-

tion of an amino-acid with another similar amino-acid will have a positive

impact, while substituting with a very dissimilar amino-acid will have a

negative impact. Now, in weighted local alignment, the goal is to find

substrings S1 and S2 of P and T , respectively, resulting in an alignment

with maximal score. Moreover, in affine gap alignment the first insertion

or deletion will be penalized more heavily than successive insertions or

26

Background

deletions of neighboring characters.

Optimal weighted local alignment can be solved with Smith-Waterman

algorithm [72], using dynamic programming [10]. Solving optimal affine

gap alignment requires slight modifications of the Smith-Waterman algo-

rithm [1], e.g. using three arrays for dynamic programming instead of a

single one. However, these algorithms are slow in practice, resulting in

need for faster, more practical solutions when dealing with e.g. genome

scale data.

BLAST [2] and its successors are addressing this need for an efficient

sequence alignment approach. It is noteworthy, that sequence alignment

is a very common task in modern bioinformatics. NCBI BLAST [53] alone

receives over 100,000 alignment queries a day. The computational re-

quirements of these searches amount to a very notable use of resources.

2.6 Motif Discovery

Whereas the sections 2.1 – 2.5 have been more related to finding the oc-

currences of known patterns in a text, motif discovery is more about find-

ing meaningful, yet initially unknown patterns in a specific group of se-

quences. Typically, this kind of group of DNA or amino-acid sequences

have specific properties in common and the task is to find re-occurring

patterns that are associated with specific biological functions, a.k.a. mo-

tifs. The goal is to essentially encapsulate the meaningful properties of

given DNA or protein sequences and pinpoint the subsequences that are

most likely to be responsible for these properties.

The biological definition of a motif is not unambiguous or straightfor-

ward, though. This problem has been addressed by dividing the motifs

into various categories. On top of the natural division into DNA (or RNA)

and protein motifs, e.g. Frith et al. [18] have divided motifs into three

classes. The first class contains short motifs occurring at functional sites

of biopolymers, e.g. binding or cleavage sites. The second class contains

longer protein motifs associated with globular structural domains, usually

occurring through divergent evolution, while the third class contains re-

curring motifs that can appear through evolutionary recent duplications.

Due to the complexity of each of these classes and the variety of biological

motifs in general, it seems improbable that they could all be tackled by a

single motif discovery approach.

Many algorithms have already been developed for motif searching.

27

Background

While some of these algorithms are specially designed for the discovery

of DNA motifs, e.g. Weeder [59] and AlignACE [63], other ones can be ap-

plied to search for both protein and DNAmotifs, e.g. MEME [4], Gibbs [56]

and GLAM2 [18]. At the same time, there are also many databases spe-

cially designed to include DNA regulatory motifs, e.g. TRANSFAC [50],

JASPAR [70], and protein motifs, e.g. PROSITE [32], ELM [60]. In Chap-

ter 6, we review an approach for protein motif discovery presented in

[PIV].

28

3. Indexed Approximate Alignment of
Long Sequences

While BLAST-like alignment tools are able to align any kind of sequences,

for a notable amount of cases, using these approaches is computation-

ally excessive. This is especially true in the case of long sequences, of

length 200 nucleotides and more. For this setting, we have presented a

drastically faster approach in [PI], which will be reviewed in this chapter.

Initially, our approach was designed for finding approximate matches for

sequences of over 1000 nucleotides in length. Later, we noticed that the

developed approach was able to handle shorter sequences as well, as long

as the sequences were at least 200 nucleotides long.

3.1 Previous Alignment Approaches

At the time of writing of [PI], concerning the speed, two very popular

alignment methods, Mega BLAST [51, 84] and BLAT [35], stood out.

Mega BLAST’s performance is increased by using a “greedy algorithm”,

which starts three different lines of further processing whenever an error

is encountered. These three lines correspond to (i) handling a mismatch,

(ii) an insertion in the query, and (iii) a deletion in the query. When a

difference between the query and the database occurs, one of the lines is

likely to continue running as the other two will terminate immediately.

With high similarity between the query and the database, this method is

computationally very effective. Mega BLAST also uses an index collecting

the occurrences of, by default, every fifth 12-mer in the text. The exact oc-

currences of such 12-mers between the pattern and the text are extended

using the greedy alignment algorithm.

BLAT uses indexing of all non-overlapping 11-mers in the database.

The index is used in a search phase to connect these k-mers to the k-

mers of the query sequence. Over-occurring 11-mers are not taken into

29

Indexed Approximate Alignment of Long Sequences

account when this mapping is being done. Lastly, an alignment is done by

extending the sites found in the search phase.

3.2 Methods of the Genomic Alignment Search Tool

Our method can be divided into three different phases: the creation of

a block addressing q-sample index, the initial search phase, and lastly

the alignment phase, where the results of the initial search phase are

processed in a greater detail. The index phase is a preprocessing step,

which has to be done only once for each genome or other collection of

database sequences. Initial search phase uses the index created to find

potential sites having high probability of leading to a good alignment. The

alignment phase performs a more precise alignment between these sites

and the patterns provided. In this section, we will review the essentials of

these three phases. The full workflow of our tool in these three phases is

illustrated in Figure 1 in [PI], and the full details on the workings of this

approach can be found in Section 2 in [PI].

3.2.1 Block addressing Q-sample Index

Our tool uses an index file to gain speed-up in the initial, approximate

search. Essentially, this index structure combines q-sample filtration [74]

with block addressing [49].

The index structure is formed as follows. Given database files contain-

ing the database sequences are initially divided into blocks of given size

b. Then, the database sequences are scanned for occurrences of a certain

dinucleotide, AC. These dinucleotide occurrences are expanded to what

we call AC-probes. This expansion is done by taking the ten nucleotides

following the dinucleotides AC, resulting in 12-mers. The blockwise lo-

cations of these probes are collected and overly occurring AC-probes are

discarded.

As the result, we have an index consisting of lists of block ID numbers

for the collection of remaining, non-discarded AC-probes. Using this index

structure, our tool can rapidly retrieve blocks with occurrences of a given

AC-probe, or a collection of multiple AC-probes.

Even though we consider our choice of dinucleotide AC good for most

data, based on low mean and low variance of incidence in bacteria, archae

and eukaryotes alike [34, 83, 82], the indexing could as well be based on

30

Indexed Approximate Alignment of Long Sequences

another dinucleotide or longer k-mer.

Additionally, as another preprocessing step, we k-mer encode the text

and save it in a binary format.

3.2.2 Initial Search

The initial search phase compares the AC-probe profiles of database

blocks, which were retrieved in the indexing phase, to the AC-probe pro-

files of patterns. If a block has many AC-probes in common with the pat-

tern, the block in question is considered having a high probability of con-

taining an approximate occurrence of the pattern. Such blocks will be

further refined in the alignment phase, or if specified by the user, the

search can be stopped here and the blocks together with the amount of

matching AC-probes in them will be reported.

3.2.3 Alignment

The last refining phase in our tool is the alignment phase. In this phase,

we use BG algorithm [69] together with the k-mer encoded text to find

short (11 nt) exact matches between the pattern and the blocks of text

that were passed on by the initial search phase. The promising clusters

of such exact matches are extended into alignments between parts of the

pattern and parts of the text block. See Section 2.3 and 2.4 in [PI] for

details on thresholds defining promising clusters, and the reasoning for

choices behind these and other parameters.

As the output, our approach, the Genomic Alignment Search Tool

(GAST), reports the start and end sites of aforementioned alignments in

both the pattern and the database. The number of mismatches and gaps is

also reported. Additionally, there is an option to output an approximated

alignment.

3.3 Experiments

The GAST algorithm reviewed in Section 3.2 and more elaborately de-

scribed in Section 2 in [PI] was implemented in C++. The query time and

error tolerance of GAST on a set of typical alignment tasks was compared

with those of general alignment tools Mega BLAST [84] and BLAT [35].

On a separate set of experiments the query time on an exon mapping task

and the mapping quality of these three approaches were compared with

31

Indexed Approximate Alignment of Long Sequences

those of a mapping tool GMAP [81]. In this section, these experiments are

reviewed. See Section 3 in [PI] for full details.

All the runs were performed on a machine with 1GB DDRII RAM

(667MHz) and an Intel Core 2 Duo T5500 (1.66 GHz) processor, running

Ubuntu 7.04. All the run times in this section are times used by the

program itself and any library subroutines it calls. The tests were later

repeated on another machine with 6 GB of RAM in order to eliminate

possible paging effects. No bias of this sort was detected.

Data. When comparing the performance of GAST and Mega BLAST

on general alignment, searches were made against a database consist-

ing of the whole human genome received from the Ensembl genome

database [30]. The release in question was based on the NCBI 36 as-

sembly of the human genome. In the case of BLAT, the system used for

the runs lacked the memory to perform searches against the whole human

genome. Therefore, another set of searches with BLAT, Mega BLAST, and

GASTwere performed against the chromosome 1 of the same genome. The

patterns used in the alignment tasks will be described separately below.

For the exon mapping tasks, we had a collection of 6721 cDNA

sequences, corresponding to various transcripts originating from hu-

man chromosome 1. The sequences were retrieved from the BioMart

database [57] and were 2000 nucleotides long on average. The starting

and ending positions of exons in the sequences were also retrieved.

Results. Necessary preprocessing for GAST, Mega BLAST and BLAT

was made for the full genome and the chromosome 1 separately. On the

full genome, preprocessing for GAST took 639.3 s, while for Mega BLAST

it took 157.6 s. The index required to be read in memory totaled 79.5 MB

in the case of GAST and 734.8 MB in the case of Mega BLAST. For full

details, see Section 3 and Table 1 in [PI].

Query times for aligning the sequences of length 1000 and 5000 nu-

cleotides on data sets described above were tracked for the three tools.

These sequences were randomly sampled from the text. The results can

be seen in Figures 3 and 4 in [PI]. As a summary of these results, we have

listed average query time per pattern for these experiments in Table 3.1.

Comparing these average query times for the sequences of length 1000,

GAST was 50.0 times faster than Mega BLAST on the full genome, but

only 18.3 times faster on the chromosome 1. For query sequence length

5000, the respective numbers were 72.1 and 19.1. With chromosome 1

and query lengths 1000 and 5000, GAST was 4.8 and 10.2 times faster

32

Indexed Approximate Alignment of Long Sequences

Table 3.1. Average query time per pattern in milliseconds for GAST, BLAT and Mega
BLAST on chromosome 1 and full genome, with query lengths 1000 and 5000
nucleotides.

Database Chromosome 1 Full Genome

Query length 1000 5000 1000 5000

GAST 84.09 374.51 106.22 380.3

BLAT 399.69 3824.64 N/A N/A

Mega BLAST 1536.09 7151.8 5308.82 27445.76

Table 3.2. The run times for the mapping of 6721 cDNA sequences on human chromo-
some 1, allowing introns.

BLAT Mega BLAST GMAP GAST

286m 40.3s 45m 19.2s 14m 52.4s 1m 13.7s

than BLAT, respectively.

We also compared the error tolerance of GAST, Mega BLAST and

BLAT, by adding increasing quantities of random point mutations to the

query sequences of length 5000. We noted that Mega BLAST and BLAT

reliably aligned sequences to roughly correct locations up to an error rate

of 0.12, while GAST reported correct alignments up to an error rate of

0.17. By adjusting the parameters of GAST, we were able to align se-

quences reliably up to an error rate of 0.25.

Lastly, GAST, Mega BLAST, BLAT and a mapping tool GMAP were

tested on a set of exon mapping tasks. The 6721 cDNA sequences were

mapped against the human chromosome 1. The query times for this task

are listed in Table 3.2. Figure 3.4 in [PI] depicts the exon mapping quality

of each tool. To encapsulate the mapping qualities, we note that all tools

were able to reliably map exons of length 30 nucleotides and up. As exon

length increased above this, Mega BLAST and GAST achieved roughly an

exon mapping quality of 0.95, while BLAT and GMAP achieved quality of

0.97 and up.

The run times given in Table 3.2 show remarkable differences between

the four tools, GAST being the fastest. The notable relative increase of

run time for BLAT is mainly due to disabling fast DNA/DNA remapping,

which needs to be disabled to allow introns.

Analysis of results. We have shown that GAST is capable of both error

tolerant alignment and high quality exon mapping. This suggests that

33

Indexed Approximate Alignment of Long Sequences

the presented approach is very suitable for typical approximate matching

problems. Regarding query times, GAST was able to outperform all the

other tools in the comparison by a very notable margin. As the length of

the pattern or the length of the text increased, the relative gap between

GAST and other approaches grew further.

The main restriction of GAST is that the patterns have to be long

enough to contain enough AC-probes to work with in the initial search

phase. Due to this limitation, we do not encourage using the presented

approach for patterns below 200 nucleotides in length. However, we would

like to note that before proceeding in searching a pattern, it is possible to

draw conclusions on whether or not we can reliably produce an extensive

list of best hits for the pattern, based on the number of AC-probes the

pattern contains. Note that due to block addressing, individual exons can

still be as short as 30 nucleotides.

We have demonstrated that by combining block addressing and q-

sampling, it is possible to develop a mapping and alignment approach

that is fast and has a relatively small and adjustable memory footprint.

34

4. Multi-pattern Matching with
Compressed Suffix Arrays

In the problem frames of bioinformatics, it is not uncommon to search

for multiple sequences successively in the same text database. However,

the possible improvements related to searching multiple patterns at once

were not studied very broadly at the time of writing [PII], when consider-

ing the cases of searching the patterns in an index structure.

The focus of this chapter is to seek possible improvements in one case

of searching multiple patterns in an index structure. The index struc-

ture that is being considered is a self-index, the compressed suffix array

(CSA) [12, 25, 61, 65]. More specifically, this chapter focuses on the cases

where one or more preprocessed sets of patterns are being searched in

multiple preprocessed text databases. In such a problem frame, the pre-

processing of a set of patterns needs to be done only once per set, but as

the single set will be searched multiple times, the cost of the preprocess-

ing is spread over multiple searches. Because of this, it is not reasonable

to take the preprocessing times directly into account when looking at the

run-time of a single search.

Moreover, the focus of this work is on exact matching which can be

seen as a starting point for more practical implementations, including

approximate matching. Even in bioinformatics, where exact matching is

rarely sought after, it is noteworthy that a large number of successful tools

use exact matching as part of a seed-and-extend methodology.

Lastly, this chapter focuses on a setting where we have the CSA of

the text and a separate copy of the text itself, allowing swift extraction of

substrings of the text.

Previous work. The idea of exploiting common substrings in alignment

was first proposed in [38]. Landau and Ziv-Ukelson showed how to com-

pute the part of the edit distance matrix corresponding to a common sub-

string only once, such that one could extend the alignment directly at all

35

Multi-pattern Matching with Compressed Suffix Arrays

occurrences of the common substring. Although more general than ours

in supporting approximate search, the authors do not consider a setting

with indexed text.

4.1 Methods for Multi-pattern Matching with Compressed Suffix
Arrays

In this section, we review an approach initially presented in [PII]. The

workings of the proposed method are divided into three work phases: pre-

processing of the text, preprocessing of the set of patterns, and searching

for the set of patterns in the text. The two preprocessing steps need to be

done only once for each set of patterns and each text. The search phase

uses both of these preprocessing steps to improve speed in the search.

4.1.1 Preprocessing of Text

The text is preprocessed by making a compressed suffix array [66] of it.

The implementation provided in the Pizza&Chili corpus [14] is used to

produce this index.

The most important functionality for the searches that are the focus

of interest of this work is the locate function. Locate function allows for

location of the occ occurrences of a query of length m in a text of length n

in O(m × log(n) + occ × logε(n)) time. Here ε belongs to (0, 1), depending

on the chosen time-space tradeoff.

4.1.2 Preprocessing of Patterns

The set of patterns is preprocessed in order to find a certain set of sub-

strings of the patterns. The goal is to find a collection of substrings, where

each substring would occur in a large number of patterns, while still oc-

curring comparatively rarely in the text.

As our initial pool of substrings, we use all phrases produced by the

Re-Pair compression tool [41] when ran on the set of patterns. To select

substrings with few occurrences in the text, we apply a minimum sub-

string length threshold to this set of substrings. Remaining substrings

are then sorted in descending order by the number of patterns in which

the substring occurs and this sorted list is saved. The patterns in which

each substring occurs and the respective offsets from the start of the pat-

tern are saved, as this information is needed in the search phase.

36

Multi-pattern Matching with Compressed Suffix Arrays

4.1.3 Searching a Set of Patterns in Text

In the search phase, the preprocessed set of patterns is searched in the

preprocessed text. The substrings obtained during the preprocessing are

searched in the text in descending order by the number of patterns in

which they occur, using the locate functionality of the CSA. For each occur-

rence of a substring, the possible occurrences of the patterns that include

the substring are checked by character comparison. First the pattern is

compared, character by character, with the text, starting from the begin-

ning of the pattern, continuing up to the occurrence of the substring in

the pattern. This is followed by comparing the characters of the pattern

and the text, starting from the end of the pattern, moving towards the

occurrence of the substring. If any mismatch is found during the exact

matching or if the whole pattern matches the text, the search continues

with processing the next pattern where the substring occurs.

When all occurrences of a substring have been checked with all of the

patterns corresponding to the substring, all of these patterns are marked

as treated. As all occurrences of a pattern are found when checking all

occurrences of a substring of the pattern, the patterns that are marked as

treated need not to be checked when handling later substrings.

After all of the substrings obtained from the preprocessing have been

handled, the remaining patterns that are not yet marked as treated are

searched using the locate functionality of the compressed suffix array for

the full pattern. Alternatively, the search using the substrings can be

terminated after a pre-selected amount of patterns have been marked as

treated, finishing the remaining patterns with the locate functionality.

4.2 Experiments

The approach reviewed in Section 4.1, and described in Section 2.2 in [PII]

in more detail, was implemented in C++. All the experiments were carried

out using a single Intel R©CoreTMi7 CPU 860 @ 2.80 GHz (8192 kB cache),

with 16 GB RAM, running Ubuntu 10.04.

Data. The text used was a DNA text of 50 MB in size, obtained from the

Pizza&Chili corpus [14]. The set of patterns consisted of 1000 substring of

length 1000, sampled uniformly at random from the text. It was noticed

that each of these patterns occurred exactly once in the text.

37

Multi-pattern Matching with Compressed Suffix Arrays

Results. The pattern set described above was preprocessed as described

in Section 4.1.2. Minimum substring length used was varied between 25

and 35 nucleotides, resulting in total preprocessing time varying between

0.836 and 0.800 seconds, respectively. After this preprocessing of the pat-

tern set, text was preprocessed by creating a compressed suffix array of

it, using default parameter values. The creation of the index took 22.69

seconds and the total size of the resulting index was 36.8 MB.

The preprocessing steps were followed by searching the set of patterns

from the text. Searches were done separately for each of the minimum

substring lengths: 25, 28, 30 33 and 25. Additionally, the number of pat-

terns allowed to be searched with the proposed method varied from 100 to

500. However, the actual number of patterns that had common substrings

of required length within them was in some cases less than this, resulting

in a smaller number of patterns being handled with the proposed method.

The run-times of the proposed method were compared with searching all

of the patterns with the locate functionality of the compressed suffix array

implementation.

Looking at the full runs of 1000 patterns, the best results were re-

trieved when using a minimum substring length of 30, resulting in 14.0%

saving in run-times, when 238 patterns were found by using the proposed

method. When considering the average time for a single pattern to be

found by searching the substring and then checking the exact match, the

best results were retrieved when using a minimum substring length of

35, resulting in 71.6% saving in run-times per pattern, when 155 patterns

were found by using the proposed method.

When a pattern was handled using the proposed approach, locating

subpatterns took roughly 88% of the query time, leaving 12% for the exact

matching, averaging over all different minimum substring lengths. For

more elaborate details, see Section 3 in [PII].

Analysis of results. Locating all occurrences of certain substring of a

pattern using CSA, and then verifying them using naive exact matching

proved to be a reasonable way to improve query times in indexed exact

matching of multiple patterns. In this rather direct approach, there is a

definite tradeoff between how much performance increase per pattern can

be gained and for how many patterns can this be applied to, when choos-

ing a suitable minimum substring length. See Chapter 7 for a broader

discussion on how this result could be more generally used.

38

5. Multi-pattern Matching with
Bidirectional Indexes

In metagenomics a mixture of genomic material is sequenced from an en-

vironmental sample [27]. Typically, millions of short DNA reads are pro-

duced from the sample with the length of each read varying between 30

and 400 nucleotides depending on sequencing technology, and subsequent

sequence analysis tries to identify the species present in the sample. Se-

quence analysis can be either fragment assembly -based, as in e.g. [36], or

read alignment -based, as in e.g. [45]. In the former approach, the reads

are first assembled into contigs (longer fragments glued together based

on read overlaps) and then compared against reference genomes to lo-

cate statistically significant local alignments. In the latter approach, the

reads are directly aligned to reference genomes. In the work reviewed in

this chapter, and initially presented in [PIII] and [23], we will focus on

this latter approach.

Such alignment can be efficiently done, e.g. using software packages

building on the concepts of BWT [8] and FM-index [12], reviewed in Sec-

tions 2.3.1 and 2.3.3. Extensions of these data structures provide very

efficient methods for doing read alignment with few mismatches, see

bowtie [40], bwa [43], SOAP2 [44], readaligner [47].

In this chapter, we review an approach for multi-patternmatching that

takes the special characteristics of metagenomics read alignment into ac-

count. The methods above align each read separately without exploiting

the fact that read sets typically cover the same genomic position many

times. Additionally, repetitive areas cause similar reads to be produced.

We are interested in a specific read alignment scenario with a database

of metagenomics read data sets and reference genomes. In this scenario,

one can afford preprocessing of both kinds of data to speed up the subse-

quent alignment of new read data set to all known reference genomes as

well as alignment of all existing read data sets to a new reference genome.

39

Multi-pattern Matching with Bidirectional Indexes

This scenario is indexed multi-pattern matching, as described in Section

2.4, in the frame of metagenomics. The reviewed approach is currently

limited to exact searching; see Chapter 7 for discussion on extensions to

approximate search.

The work reviewed in this chapter was originally motivated by the

work introduced in [PII] and reviewed in Chapter 4. In this section the

focus is on using bidirectional indexes instead of CSAs in the setting of

indexed multi-pattern matching.

5.1 Theoretical Results

5.1.1 Preliminaries

In Section 2.3.5 we explained the concept of the bidirectional FM-index,

operations pushChar, getBranches, concept of bidirectional search step

and methods of taking these steps with a compressed suffix tree. Let us

define a few more notations that will be used in the following sections.

A sequence of left and right bidirectional search steps or left and right

steps in a compressed suffix tree is referred to as a search path or just

path, when no confusion with path(v) should be possible. Let us consider

a set of patterns P = P1, P2, . . . , Pp. A search path is said to be a complete

path, when the path reads all characters in a pattern Pi, thus handling

the pattern Pi. A complete path forest is a collection of trees, containing

complete paths, handling the set P. Moreover, a subpattern B covers a set

of patterns H it occurs in, H ⊂ P.

5.1.2 Bidirectional Search

We construct a bidirectional index for both the text T and the set of p

patterns P1, P2, . . . , Pp. More precisely, the pattern index is constructed

for the concatenated string S = #P1#P2# · · ·#Pp#$, where # is a spe-

cial separator symbol that does not occur in any of the patterns. Let N

and M denote the total length of the text and the concatenated string of

patterns, respectively. The pattern index stores suffix array (SA) samples

only at separator symbol positions. This requires p logM bits of space,

which might be too much for patterns shorter than logM , but allows O(1)

time locate for SA ranges [i . . j] that are prefixed by #.

We assume that the subpattern P is given as input, and the task is to

40

Multi-pattern Matching with Bidirectional Indexes

locate the occurrences of patterns P1, P2, . . . , Pp, that contain subpattern

P , in the text T . In other words, for every Pi that has an occurrence of P ,

we must output all the occurrences of Pi in T . We proceed with the search

as follows.

Initially, the subpattern P is searched from the text and pattern in-

dexes, using pushChar operation. This is followed by extending P recur-

sively to both directions, over all combinations of symbols on the left and

right side of subpatterns occurrences in P1, P2, . . . , Pp. The extension is

done alternating between the directions {left, right} — interleaving left

and right symbols during the search. Let us refer to this part of the al-

gorithm as extend(). Details of this full algorithm performing operation

search(P) are described in Figure 1 in [PIII].

Let us now consider the number of steps required when searching a

set of patterns using this approach.

Definition 1 Let steps(I, P) denote the number of steps taken by extend()

on bidirectional FM-indexes I on calls from search(P). Let x = lsize(I, P)

and y = rsize(I, P) denote the search space size, in the worst case scenario

of text containing occurrences of all the patterns, using bidirectional in-

dexes I when extending P only to the left and only to the right, respectively.

The upper and lower bounds for steps(I, P) are analyzed in Section 3.1

in [PIII]. Theorem 2 below summarizes the resulting bounds.

Theorem 2 Given text a T of length n, a set of patterns P1, P2, . . . , Pp of to-

tal length M , and a query pattern P , one can solve the indexed subpattern

search problem of locating patterns Pi1 , Pi2 , . . . containing P as a subpat-

tern and having an occurrence in T , in time O((|P |+steps(I, P))×log σ) af-

ter building bidirectional indexes I for the text and for the pattern set. One

can bound lsize(I, P) + rsize(I, P) ≤ steps(I, P) ≤ lsize(I, P)× rsize(I, P)

in the worst case instance of text containing all patterns, using the notions

of Definition 1. The bidirectional indexes I required for the query take

2n log σ(1 + o(1)) + 2M log σ(1 + o(1)) + p logM bits.

5.1.3 Hardness of Subpattern Selection

In the subpattern selection problem, we would like to find a set S′ of sub-

patterns covering, or handling, all the patterns in the pattern set P and

minimizing the total cost of searching and extending this set of subpat-

41

Multi-pattern Matching with Bidirectional Indexes

terns. In Section 3.2 in [PIII] we analyze the hardness of this problem.

The main result of this analysis is an observation of a connection between

this problem and the set cover problem.

In Section 3.2 in [PIII] we note that, as the set cover problem, the sub-

pattern selection problem is also NP-hard. However, a positive connection

to set cover also exists; an algorithm analogous to the well-known greedy

approximation algorithm for weighted set cover [76] can be used to com-

pute a greedy subpattern cover: Choose first a pattern P which minimizes

|P |+ steps(I, P)

m(P, P)
, (5.1)

where m(P, P) denotes the number of patterns in P which contain P as a

subpattern. Set P = P \ P′, where P
′ denotes the set of patterns covered

by P . Iterate the process until P is empty. The set cover analysis [76] can

be used verbatim to see that the process results in a set of subpatterns

with cost at most log p times the optimal, where p is the size of P. Notice

that here we do not know value steps(I, P) exactly for any pattern, so we

will only obtain approximation with respect to our estimate on steps(I, P);

the estimation error can be arbitrarily more than the log p factor from the

set cover approximation. Let us later refer to this approach as the greedy

subpattern cover algorithm.

5.1.4 Subpattern Selection Using Affix Trees

The greedy subpattern cover can be computed using affix trees [46, 73].

Here we assume that steps(I, P) is estimated as a function of lsize(I, P)

and rsize(I, P), without fixing the exact formula.

The affix tree of a string T incorporates the suffix tree of both T and its

reversed string TR. An internal node in the affix tree can have both suffix

and prefix descendants: the outgoing suffix edges (resp. prefix edges) point

to the descendants of the corresponding node in the suffix tree of T (resp.

TR). For each node v in the suffix tree of T (resp. TR), there exists a

corresponding node in the affix tree having the upward suffix edge (resp.

prefix edge) labels equal to path(v). The total number of nodes and edges

is O(n). Affix trees can be constructed in linear time and space [46].

The greedy subpattern cover algorithm requires us to compute

lsize(I, P), rsize(I, P), and m(P, P) values. The latter values can be com-

puted with the color set size algorithm [31]. It stores, for all nodes v in

the suffix tree of P1$P2$ · · ·Pp$, the number of patterns in P which have

path(v) as a subpattern. The algorithm requires linear time and space —

42

Multi-pattern Matching with Bidirectional Indexes

we omit the technical details.

To compute lsize(I, P) and rsize(I, P) values, we first build an affix

tree for the concatenated string S = #P1#P2# · · ·#Pp#$, where # is a

special separator symbol, # �∈ Σ. Using this affix tree, we can take bidi-

rectional search steps to either left or right from any node of the tree. Due

to this property, we can find the lsize(I, path(v)) and rsize(I, path(v)) for

each node of the tree. Section 3.3 in [PIII] explains this in full detail.

Using O(M logM) bits of space and O(M) time, we can save these val-

ues and find the pattern minimizing the function shown in Equation 5.1.

With this approach, we arrive at the following theorem.

Theorem 3 Given a set of patterns P1, P2, . . . , Pp of total length M , the

greedy subpattern cover algorithm of Section 5.1.3 can be implemented to

work in O(Mp∗) time using O(M logM) bits of space, where p∗ ≤ p is the

number of selected subpatterns.

5.1.5 Subpattern Selection Using Bidirectional Compressed
Suffix Trees

Next, we aim for a solution of O(M log σ) bits. To achieve this, we use

compressed suffix trees, one for S = #P1#P2# · · ·#Pp#$ and one for SR

(i.e. latter being prefix tree). Let us denote these two compressed suffix

trees S and P (standing for suffix and prefix). In Section 3.4 in [PIII] we

describe in detail how to keep the suffix array intervals of these two trees

updated and corresponding to each other. Essentially, if we have a node v

and its suffix array range [l . . r] in S, we can compute the corresponding

suffix array range [l′ . . r′] in P by

l′ ← P .SA−1[n− (S.SA[rminq(A, l, r)] + S.sdepth(v))] and

r′ ← P .SA−1[n− (S.SA[rmaxq(A, l, r)] + S.sdepth(v))].

Here A[i] = P.SA−1[n − S.SA[i]] for 1 ≤ i ≤ n, while rminq(A, l, r) and

rmaxq(A, l, r) return pointers to the minimum and maximum values in

range [l . . r] in the vector A, respectively. With this conversion, it is pos-

sible to take left and right bidirectional search steps in this pair of com-

pressed suffix trees and compute lsize and rsize values for all nodes the

same way as in Section 5.1.4.

Finally, the space bottleneck in the computation is the storage of rsize

values in S and lsize values in P. The rsize values in S can be computed

during depth-first traversal and need not be stored, but one may still need

43

Multi-pattern Matching with Bidirectional Indexes

to maintain O(n) values in a stack each occupying O(log n) bits; this can

be improved to O(n) bits by maintaining dynamic partial sums data struc-

tures both for the stack and for the values following almost verbatim the

algorithm in [16].

Storage of lsize values in P in O(n) bits can be achieved by sampling.

There are O(n/(log n)) nodes for which computing lsize takes Ω(log n)

time. For these nodes, we save the lsize values, which takes a total of

O(n) bits. Now, the running time for computing the linking and finding

the node minimizing the function shown in Equation 5.1 depends on the

chosen compressed suffix tree, but O(n log n) time can be achieved e.g. us-

ing the compressed suffix tree presented in [68]. Thus, we arrive at the

following theorem.

Theorem 4 Given a set of patterns P1, P2, . . . , Pp of total length M , the

greedy subpattern cover algorithm of Section 5.1.3 can be implemented to

work in O(M logMp∗) time using O(M log σ) bits of space, where p∗ ≤ p is

the number of selected subpatterns.

Notice that one can get different time-space tradeoffs and more accu-

rate bounds by choosing an appropriate compressed suffix tree variant.

5.2 Practical Multi-pattern Matching

5.2.1 Practical Preprocessing

In this section, we review the practical approach for pattern set prepro-

cessing, initially introduced in Section 4.1 in [PIII]. This preprocessing, as

the approaches reviewed in Sections 5.1.4 and 5.1.5, aims to minimize the

query time of finding the occurrences of a pattern set P = P1, P2, . . . , Pp

in a bidirectional index I. The practical approach uses a CST T of the

concatenation S = #P1#P2# · · ·#Pp#$. Let us denote, for a node v and a

subpattern B = T .path(v)

lsizev = lsize(I, T .path(v))

rsizev = rsize(I, T .path(v))

stepsv = steps(I, T .path(v))

mv = m(P, T .path(v)).

Now, preprocessing searches the tree T for the node v minimizing the

44

Multi-pattern Matching with Bidirectional Indexes

function
T .sdepth(v) + stepsv

mv
. (5.2)

The full details of finding this minimizing node v are given in Section

4.1 and Figure 3 in [PIII], which shows a pseudocode of the preprocessing.

First, we prepare T for calculating mv for any node in O(1) time, using

methods introduced in [67]. This preprocessing takes O(M × tlca) time,

where M = |S| and tlca is the time taken by lowest common ancestor

operation in the CST. The resulting data structure uses 2M + o(M) bits of

space on top of the space required by the CST.

After this preparation, we collect and save lsizev for each v in T . This
is done by following the Weiner links, allowing left bidirectional steps to

be taken in a CST T , as described in Section 2.3.5. This takes O(M2 +

σ ×M × twl) time, where twl is the time taken by following a Weiner link,

but as we quickly skip previously visited nodes in line 1 of the pseudocode

shown in Figure 3 in [PIII], the σ ×M × twl -term dominates in practice.

We save the lsizev for each node v ∈ T , requiring O(M logM) bits of space.

Once lsizev has been calculated and saved for all nodes, we calculate

the rsizev for each v ∈ T . This can be done by following the edges of the

CST, as described in Section 2.3.5. As we calculate the rsizev for a node v,

we also calculate themv and the value of minimizing function 5.2, keeping

track of the smallest minimizing function value and the corresponding

node. This takes O(M × sSA× tφ) time, where sSA× tφ is the time it takes

to access an element of the compressed suffix array of the compressed

suffix tree.

When a minimizing node v for a tree T has been found, the set of

patterns P is updated by removing the patterns H that are covered by

B = T .path(v).
A bidirectional index is formed from the #-separated concatenation of

patterns in H. Bidirectional search steps are taken in accordance with the

subpatternB = T .path(v). This is followed by taking possible search steps
to left and right by turns, keeping track of added characters. Pseudocode

describing this in detail is shown in lines 1–20 of Figure 3 in [PIII]. Exe-

cution of this algorithm mimics running the search algorithm in Figure 1

in [PIII] with a text containing at least one occurrence for each of the pat-

terns in H. The added characters and the corresponding directions of the

steps are saved into a tree structure A, which is serialized and saved to a

file. This takes O((T .sdepth(v)+stepsv)× log σ) time for each optimal node

v. Construction of this structure is a practical improvement over the ap-

45

Multi-pattern Matching with Bidirectional Indexes

proaches suggested in Section 5.1.2, moving large portion of the work that

was previously done in the searching phase to the preprocessing phase.

Once the tree A is saved, the preprocessing starts over again with the

updated P. This procedure is repeated, until P is empty, resulting in a

file containing a complete path forest F for the original pattern set. The

size of this forest is at most log p times the optimal, with respect to our

estimate on stepsv.

As the sets H sum up to original set P, construction of all the bidirec-

tional indexes can be done in O(M log σ) time, the largest index requiring

2M log σ + o(M log σ) bits of space in the worst case.

5.2.2 Practical Searching

The search phase reads the complete path forest F created by the prepro-

cessing. The pseudocode of the search is shown in lines 21–33 of Figure

4 in [PIII]. The search works with a bidirectional index I of the text T ,

updating the intervals [sf . . ef] and [sr . . er] of forward and reverse text

index, respectively. The intervals are updated by calling the pushChar

function in accordance with the left and right sequences saved in the

edges of the trees in the forest F. As long as [sf . . ef] is not empty, the

child nodes of the node currently being processed are processed in the

same way, branching the search. Whenever a leaf of a path tree A is read,

a pattern is handled. If the resulting interval [sf . . ef] is not empty, it

corresponds to the occurrences of the pattern in the text T .

Let a path tree A be created from the optimal node v in the tree

T . Processing all steps in the tree A takes a total of O((T .sdepth(v) +
stepsv) × log σ) time. However, due to getting rid of the requirement of

using getBranches operations for each step in the search phase, this is

notably faster than executing the search algorithm in Figure 1 in [PIII]

in practice.

5.2.3 Adjusting Minimizing Function

During the construction of the complete path forest F for P, in the func-

tion add_tree_lr of Figure 4 in [PIII], it is possible to calculate the actual

stepsv for each optimal node v. Whenever a character c is added to lseq or

rseq of a node in lines 9, 10 or 14 of Figure 4 in [PIII], stepsv is incremented

by 1. Thus using sum of these additions, we can approximate stepsv as a

function of lsizev and rsizev for the optimal nodes resulting from prepro-

46

Multi-pattern Matching with Bidirectional Indexes

cessing P. Taking advantage of this observation in the following allows

improvement of the search times in practice.

As the left and right pushChar operations of a bidirectional index are

symmetrical, the most reasonable distinction between the two sizes is by

their value. Thus, we assign

s← min(lsize, rsize) and l← max(lsize, rsize)

and approximate the stepsv as a weighted sum

w1l + w2s+ w3ls+ w4l
2 + w5s

2,

resulting in using

value← (d+ w1l + w2s+ w3ls+ w4l
2 + w5s

2)/get_df(node)

in place of line 27 of Figure 3 in [PIII].

The weights are initially set to w = [1, 1, 0, 0, 0] to correspond to the

original minimizing function. The weights are updated iteratively, doing

a least absolute deviations (LAD) fitting of the weights using the data

consisting of [s, l, steps] values for all minimal nodes for the original set P.

After i iterations of preprocessing with updated w, one can choose the

weights resulting in the least total steps for the complete path forest,

saving the corresponding forest as the result of the preprocessing.

5.3 Experiments

The algorithms described in Section 5.2 were implemented in C++, com-

piling with gcc-4.4.5 -03 -funroll-loops. All experiments were run on

a single core of Intel R©i7 860 @ 2.8 GHz, 16 GB RAM, running Ubuntu

10.10. Functionalities for the construction and the basic operations of

compressed suffix trees use the cst_sct3 class from the Succinct Data

Structure Library (SDSL) version 0.9.8 [22]. For the bidirectional index,

we use implementation by Schnattinger et al. [71]. See Section 5 in [PIII]

for full details on these experiments.

Data. We experimented the preprocessing and the searching using a 50

MB DNA text from the Pizza & Chili Corpus [14]. Sampling from this

text, we created pattern sets defined by three parameters. First parame-

ter was the pattern length (pLen). The second parameter, length of origin

(O) defined the length of the text area where the set of patterns would be

47

Multi-pattern Matching with Bidirectional Indexes

obtained from. Third parameter, coverage (C) affects the resulting num-

ber of patterns (nPats) so that nPats =
C ×O/pLen� patterns were ran-
domly sampled from this text area. The following ranges of these param-

eters were studied: C ∈ [1 . . 16], pLen ∈ [40 . . 200] and O ∈ [500 . . 8000],

resulting in a total of 480 sets of patterns.

Results. To evaluate the run time of preprocessing, ten repeats of prepro-

cessing with the aforementioned 480 pattern sets were done. Minimizing

function weights used for these preprocessing experiments were fixed to

w = [1, 1, 0, 0, 0]. Average time per symbol rate of the preprocessing, as the

function of pattern set size (pLen × nPats), is shown in Figure 5.1, top.

Time taken per symbol increases linearly when the size of the pattern

set increases, while pLen and C are fixed. As the coverage C increases,

other parameters being fixed, the time per symbol decreases, as can be

seen from the decrease of the slope in Figure 5.1, top. As the pattern

length pLen increases, other parameters being fixed, the number of pat-

terns in the set will decrease, causing the time per symbol to decrease.

Preprocessing times were dominated by the find_minimizing_node algo-

rithm of Figure 3 in [PIII], accounting for an average of 94.8% of the time.

The peakmemory consumption of preprocessing, calculated as the sum

of peak heap size and peak stack size, was tracked for the same collection

of 480 pattern sets. The memusage tool available from the Pizza & Chili

Corpus [14] was used for this task.

The pattern length and coverage have little effect on the peak mem-

ory consumption of preprocessing when the pattern set size is fixed. With

pattern set sizes starting from 5 × 104 characters, the peak memory con-

sumption increases linearly as the pattern set size increases. Rate of this

increasing peak memory consumption was 115 to 125 bytes per symbol,

decreasing slightly with shorter patterns and larger pattern sets. The

peak memory consumption was between 3.9 and 14.5 MB for all pattern

sets.

Preprocessing with the same collection of pattern sets was repeated,

this time doing 10 iterations of re-assigning the minimizing function

weights, using w = [1, 1, 0, 0, 0] as the starting point, as described in Sec-

tion 5.2.3. Complete path forests with least total steps were saved for

each pattern set.

To evaluate the search times, the search_forest algorithm of Figure

4 in [PIII] was run for the 480 pattern sets. Let us denote the execu-

tion of this algorithm for the preprocessing done with minimizing func-

48

Multi-pattern Matching with Bidirectional Indexes

Pattern set size (*104 symbols)

Ti
m

e
pe

r s
ym

bo
l (

s
10

4 s
ym

bo
ls

)
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

C = 1

1 2 3 4 5

C = 4

1 2 3 4 5

C = 7

1 2 3 4 5

pLen = 40
pLen = 80

pLen = 120
pLen = 160

pLen = 200

Pattern set size (*104 symbols)

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

C = 10

2 4 6 8 1012

C = 13

2 4 6 8 1012

C = 16

2 4 6 8 1012

pLen = 40
pLen = 80

pLen = 120
pLen = 160

pLen = 200

Pattern set size (*104 symbols)

Fw
d

se
ar

ch
 ti

m
e

S
f s

ea
rc

h
tim

e

1.5
2.0
2.5

1.5
2.0
2.5

1.5
2.0
2.5

1.5
2.0
2.5

1.5
2.0
2.5

C = 1

1 2 3 4 5

C = 4

1 2 3 4 5

C = 7

1 2 3 4 5

pLen = 40
pLen = 80

pLen = 120
pLen = 160

pLen = 200

Method

Sf_abs

Sf_def Pattern set size (*104 symbols)

2.0
2.5
3.0
3.5

2.0
2.5
3.0
3.5

2.0
2.5
3.0
3.5

2.0
2.5
3.0
3.5

2.0
2.5
3.0
3.5

C = 10

2 4 6 8 1012

C = 13

2 4 6 8 1012

C = 16

2 4 6 8 1012

pLen = 40
pLen = 80

pLen = 120
pLen = 160

pLen = 200

Figure 5.1. Top: Average time per symbol rate (s/(104symbols)), over ten repeats of pre-
processing, as a function of pattern set size. Bottom: Ratio tFwd/tSf for both
approaches Sfabs and Sfdef as a function of pattern set size. In both figures,
the coverage varies horizontally from 1 to 16, the pattern length varies ver-
tically from 40 to 200. Note that the axes in the left and right halves of the
figures differ. This Figure is a reproduction of Figure 5 in [PIII].

49

Multi-pattern Matching with Bidirectional Indexes

tion weights w = [1, 1, 0, 0, 0] as Sfdef and the search done with weights

optimized as described above as Sfabs . The performance of these two ap-

proaches was compared with searching the same pattern set with forward

search of a bidirectional index, calling pushChar operation for each char-

acter of a pattern with d← right. This is the baseline approach one would

use to search the pattern set using a bidirectional index. Let us denote

this last approach as Fwd . Let us denote the time taken by the Fwd and Sf

methods for searching a set of patterns as tFwd and tSf , respectively. Now,

the ratio tFwd/tSf as a function of pattern set size, for both approaches

Sfabs and Sfdef is shown in Figure 5.1, bottom.

In all cases, the Sf methods were faster than Fwd . For both Sf meth-

ods, the ratio increases as coverage increases. With Sfabs the increase

is more drastic than with the default weights used in preprocessing for

Sfdef . As the lengths of the patterns increase, Sfdef loses its edge over Fwd

slightly. However, Sfabs does not suffer from this phenomenon.

Finally, we used memusage to evaluate the peak memory consumption

of the three approaches. The memory consumption of the search is domi-

nated by the bidirectional index of the text, occupying 64.14 MB of RAM.

For the Fwd method, additional peak memory consumption on top of this

was 900–1400 bytes for all pattern sets. For the Sf methods, the respec-

tive peak memory consumption range was 12200–20600 bytes. Overall,

the added memory consumption of the Sf methods is very small in com-

parison with the memory requirement of keeping the text index in mem-

ory.

Analysis of results. The sizes of pattern sets and text database used in

our experiments are arguably somewhat smaller than the data that would

be most likely used in a typical metagenomic read alignment setting. Nev-

ertheless, the datasets used were sufficient to show the improvement one

can obtain by using the presented techniques. We were able to remarkably

improve the speed of searching a pattern set in this setting, due to shown

preprocessing. With the coverage value of 16, we were able to commonly

obtain 3-fold improvement over the baseline approach. In a metagenomic

setting, the read coverage is typically in this range or larger, which should

result in a more significant improvement.

One should also note that the reduced search times follow from the

reduced number of search steps one has to do to process each pattern set.

Thus the improvement was not merely a result of technical and practical

tuning of the implementation details.

50

6. A Graph-theoretical Approach for
Motif Discovery in Protein
Sequences

Various approaches have been taken for discovering over-represented

motifs within a set of protein sequences, including expectation-

maximization [4], Gibbs sampling [18, 56] and graph-based [17, 54, 58, 62]

approaches. However, most of these approaches have been developed to

search motifs of fixed length specifiable by the user or motifs that do not

allow for any gaps. While identifying gapped motifs is time consuming,

many of the motifs included in databases such as PROSITE [32] and

ELM [60] contain gaps of various lengths.

In this chapter, we review a graph-based motif discovery approach ini-

tially presented in [PIV]. Our approach is able to search for variable-

length motifs and allows for gaps within putative motifs. Another less

common advantage of our approach is incrementality, i.e. we can add more

sequences to our analysis without rebuilding the graphs from scratch.

In recent years, there have been a few graph-based methods developed

for motif discovery in DNA or protein sequences, e.g. [17, 54, 58, 62]. In

particular, Pathward et al. [58] also use de Bruijn graphs to search for

motifs within a set of protein sequences. However, there are a few essen-

tial differences between our approach and theirs. First of all, in a study

by Patwardhan, Tang, Kim and Dalkilic [58] the authors construct only

one de Bruijn graph for the set of all initial sequences, which can lead

to the creation of artificial motifs formed by the concatenation of various

segments from different initial sequences. To avoid this problem, we con-

struct one graph for each input sequence, ensuring in this way that the

obtained motifs actually appear as subsequences in the input set. Another

important difference between the two methods appears in the handling of

gaps. In the study by Patwardhan, Tang, Kim and Dalklic [58], the au-

thors modify the initial de Bruijn graph such that each node is replaced

by a set of nodes illustrating all possible combinations of gap occurrences

51

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

(with the number of gaps being at most half the size of the sequence stored

in that node). In our approach, we add a new character every time we

count the possible number of amino acids that can occur in a particular

position when we traverse the graphs searching for a new motif, and, de-

pending on this number, we decide whether there is a gap for a particular

amino acid. Also, after generating a set of potential motifs, we use a com-

bination of four scoring functions to obtain a sorted list of the results.

In the following sections, we review the operational principles of our

approach and present experimental results comparing our method with

MEME [4], which is one of the most widely used methods in the field, and

GLAM2 (Gapped Local Alignment of Motifs) [18], which is a generalized

version of the gapless Gibbs sampling algorithm [56].

6.1 Methods

Our graph-theoretical approach uses de Bruijn graphs to search for motifs

within a set of protein sequences. When tackling this task, one receives

a set of possibly related sequences and aims to identify the substrings

that appear significantly more often than other sequences and have some

given properties. The focus of this work is on finding arbitrarily long,

extensible-length, flexible gap motifs. That is, we search for motifs in the

form of regular expressions:

A1 − x(p1, q1)−A2 − x(p2, q2)− · · · −Ar, (6.1)

where Ai are continuous sequences of amino acids and −x(pi, qi)− rep-

resents a gap with a length at least pi and at most qi. Moreover, at a

given position a block, Ai, may also contain some ambiguous characters,

i.e. there might be several choices for the characters appearing on that

particular slot.

Our approach consists of three phases: graph construction, graph

traversal and the scoring of putative motifs.

6.1.1 Graph Construction

In this section, the alphabet, Σ, consists of 1-letter codes for the 20 amino

acids that make up any protein sequence. Let S1, . . . , Sn ∈ Σ∗ be a set of

n protein sequences of lengths l1, . . . , ln, respectively, and let k be a fixed

parameter. For each input sequence, Si, we construct a de Bruijn graph,

Gi = (Vi, Ei), where Vi and Ei are two disjunct sets, i.e. the set of nodes

52

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

and the set of edges. In particular, Vi contains an individual node for all

distinct substrings of length k; throughout this section, we will use the

term node to refer both to a node in this graph and to the corresponding

k-mer. If a1a2 . . . akak+1 is a subword of length k + 1 in sequence Si, then

we put a directed edge labeled (a1, ak+1) from the node corresponding to

the prefix, a1 . . . ak, in the direction of the node corresponding to the suffix,

a2 . . . ak+1:

a1 . . . ak
(a1,ak+1)−−−−−−→ a2 . . . ak+1.

Additionally, our approach needs to find the similar node pairs in

and between the graphs. To achieve this, we need to define a similar-

ity measure. We measure the similarity between two nodes, v and v′, as

Sk(v, v
′) =

∑k
i=1 S(vi, v

′
i), where S(vi, v

′
i) is the similarity of the characters

vi and v′i according to the Blosum62 similarity matrix [29].

With a naive direct approach, calculating the similarity between all

pairs of N nodes, each representing a string of length k, takes O(N2 × k)

time. We have devised a variation of the SS-tree [79] to optionally improve

this in practice. In order to use such similarity indexing, we first need to

convert the similarities, S(x, y), between two amino acids, given by the

Blosum62 matrix, into distances, D(x, y). Moreover, our similarity index-

ing approach requires that the triangle inequality of D(a, b) + D(b, c) ≥
D(a, c) holds true for all a, b, c ∈ Σ. To achieve this, we use a method

from [6] to transform the Blosum62 matrix into a metric distance between

pairs of amino acids. In particular, we create the distance matrix, D, by

setting each cell as follows:

D(x, y) =
S(x, x) + S(y, y)− S(x, y)− S(y, x)

2
.

Then, the distance between two k-mers, u, v ∈ Σk, of length k is Dk(u, v) =∑k
i=1D(ui, vi). Since the distance matrix converted from Blosum62 is

static, it is easy to check that the triangle inequality holds true for all

amino-acid triplets.

In order to decide whether two k-mers are similar to each other, we use

a similarity threshold and its transformation into a distance threshold.

Essentially, we calculate the average distances between roughly matching

and mismatching amino-acid pairs, denoted as mat and mis, respectively.

See Section “De Bruijn graphs construction” in [PIV] for full details on

calculating mat and mis. Now, we define the distance threshold TD =

k × (0.8 × mat + 0.2 × mis). The similarity threshold, TS , is calculated

in nearly identical fashion, using similarity values, S(x, y), instead of the

53

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

distances values, D(x, y), when calculating mat and mis.

Now that we have a distance measure and threshold, we can use SS-

tree-like similarity indexing when searching for similar node pairs. Our

approach constructs a simple tree, initially containing just a blank root

node. A new node, v, corresponding to a k-mer can be added to the tree by

using the AddNode(v) function described in lines 1-12 of Figure 1 in [PIV].

All nodes similar to the v node can be found in the tree by using the

FindPairs(v) function described in lines 13-17 of Figure 1 in [PIV]. Once

the similar node pairs have been found, they can be linked and the exact

similarity, Sk(i, j), of all such nS pairs can be reported in O(nS × k) time.

With the linked pairs, we can calculate a property denoted as weight, w(v),

for each node as follows:

w(v) =
∑

v′∈Gj ,j∈[1..n],j �=i,Dk(v,v′)≤TD

Sk(v, v
′). (6.2)

Simultaneously, for each node, v ∈ Gi, and all 1 ≤ j ≤ n, j �= i, we

identify the node, vj ∈ Gj , such that

Sk(v, vj) = maxv′∈Gj
Sk(v, v

′).

Moreover, if Dk(v, vj) ≤ TD, then we add a directed edge from v to vj .

If we have the maximum similarity value for multiple nodes, then we

include all directed edges from v to each of these nodes. From now on,

we will refer to these edges as inter-component edges. If the SS-tree-like

optimization described above is not used, the distance threshold condition

is replaced with a similarity threshold condition, Sk(v, v
′) ≤ TS , instead in

both Equation 6.2, and when adding inter-component edges.

Lastly, we compute the generalized multiplicity, gm(v), for each node,

v ∈ Gi, which represents the number of graphs accessible through inter-

component edges from node v.

6.1.2 Graph Traversal

In the graph traversal phase, our aim is to effectively reduce the search

space for motif discovery and produce a list of promising candidate motifs.

We start this by first constructing a set:

SMax = {v ∈ G1 ∪ · · · ∪Gn | gm(v) ≥ τ × n},

where τ is a parameter indicating the minimal proportion of input se-

quences required to contain occurrences of the k-mers stored in these

54

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

initial nodes. The nodes in the set, SMax, are then sorted in decreasing

order based on their gm-values. Furthermore, the nodes with the same

gm-value are sorted in decreasing order based on their weights.

We continue by choosing the top node, v, on this list and by following

the inter-component edges originating from this node. Let V now consist

of the node v and all the nodes that are connected to it via a single inter-

component edge. Using this set of nodes and the graphs containing them,

we construct the first consensus word: wC . Initially we set wC = v and

start adding letters to the left and right of it.

Let us suppose that we want to add letters to the right of it; the other

case is symmetric. We define 20 counters, CX , with X ∈ Σ; these counters

will be used to decide which letters should be added at each step.

By knowing the set of nodes, V, we can use the counters, CX , to store

the number of nodes that have an outgoing edge with the letter X ∈ Σ.

More formally, for each vi ∈ V and for each edge, vi
(a1,a2)−−−−→ v′i, labeled by

(a1, a2) with a1, a2 ∈ Σ, we increase the counter, Ca2 . (When we want to

add letters to the left of the consensus word, we still need to look at the

edges, v′i
(a1,a2)−−−−→ vi, labeled by (a1, a2) and increase the counter, Ca1 .)

Next, we use a combination of two statistical tests, the Q-test and the

F -test, to identify the set of amino acids with the highest counter values,

CX , that form a separate set. See the Section “A novel graph-based motif

discovery method” in [PIV] for full details on this.

As a result, we obtain a sorted list, C, corresponding to a set of amino

acids, A, which will be output in square brackets in our regular expression

representation to indicate that each of its elements is allowed to appear

at the given position in the motif. Moreover, if the size of this set is larger

than a given threshold, then we consider that position to be a gap in our

motif, i.e. any amino acid is a successful match; we take 9 as the value for

this threshold.

After identifying the letters added to the consensus word, in each

graph, we follow the edges of the nodes, vi ∈ V, which are labeled by

the letter corresponding to the highest counter value. If there is no such

edge, then we will move alongside the edge labeled by the letter corre-

sponding to the next value in the ordered list, C. If in some graph there is

no possible alternative to continue the traversal, then we simply remove

the graph and the corresponding initial sequence from our search proce-

dure. To simulate a breakpoint in the motif, we use a parameter, pb ≥ 0,

bounding the number of consecutive gaps allowed.

55

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

We also ensure that the number of times any node is visited during

traversal is never greater than the number of times that the correspond-

ing k-mer occurs in the corresponding initial sequence.

Once a putative motif, wC , has been constructed, we save its gm,

weight and the number of sequences that correspond to the set V at the

end of the traversal, which we denote as the support, or Sup(wC). Fol-

lowing this, we mark the initial node, v, and decrease the weights of all

visited nodes to make it less probable that an iteration of traversal will be

initialized from them. Finally, we re-sort the SMax list and take the new

non-marked top node, v′, as the next starting point for the traversal. In

this way, we generate a set of motif candidates from the entries in SMax

that are over-represented in the set of input sequences.

6.1.3 Scoring of Putative Motifs

To measure the significance of a candidate motif, M , we use the sum-

mation of four different functions: (i) the generalized multiplicity and (ii)

weight of the initial node from which a particular motif was found, (iii) the

LogOdd measure providing the degree of surprise for M and (iv) a newly

introduced measure called credibility. All of these scores are normalized

to fit in the range of [0, 1].

Generalized multiplicity and weight were explained in Section 6.1.1.

These measures indicate two levels of repetitiveness for the initial node,

v, from which a particular motif, M , was found.

The LogOdd measure compares the observed frequency of occurrence

of a given motif with the expected probability of occurrence, which can be

computed using a given background distribution. For a given candidate

motif, M , we compute its LogOdd value using the following formula:

LogOdd(M) = log(
(1/n)× Sup(M)

P (M)
), (6.3)

where n is the number of input sequences we want to analyze, Sup(M) ≤
gm(M) is the support of M , i.e. the number of graphs that remained at

the end of our search for M , and P (M) is the expected probability of M .

To compute P (M), we can use the following formula:

P (M) =
l∏

j=1

|Bj |∑
r=1

P (bj,r), (6.4)

where P (bj,r) is the frequency of the character bj,r occurring on the j-th

position in M , which is computed using the background distribution, and

56

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

r ∈ [1, |Bj |] runs through the characters at each position of our regular ex-

pression presentation of the putative motif. For instance, ifM = AV [GC],

then its probability is P (M) = P (A) × P (V) × (P (G) + P (C)). The back-

ground distribution used was chosen based on the frequencies of amino

acids in the Swiss-Prot database [5].

The fourth function used in our scoring schema is the credibility mea-

sure, which is defined as the average (over the length of the motif) of the

counter values of the amino acids appearing at each position 1 ≤ j ≤ l

of the motif and normalized based on the sum of the counter values at

each position. When we have several possibilities for amino acids at a

certain position, j, i.e. Bj = [bj,1; . . . ; bj,k] with bj,1, . . . , bj,k ∈ Σ, we then

compute the summation of all the corresponding counters,
∑|Bj |

r=1 Cbj,r . Let

Cj,· be the sum of all counters at position j. Now, the credibility measure

is computed as follows:

Cred(M) =
1

l

l∑
j=1

|Bj |∑
r=1

Cbj,r

Cj,·
. (6.5)

All candidate motifs produced during the search step are scored and

ranked using the sum of these four scores. This ranked list, or a prefix of

it, is provided to the user. In addition to the regular expression form, we

can output the sequence logos based on the distribution of counter values

at each position of the candidate motifs.

6.2 Experiments

We implemented the motif discovery approach, which was reviewed in

Section 6.1 and more elaborately described in the Section “Methods”

in [PIV], with and without the SS-tree-like optimization. The implemen-

tations were done with C++ and compiled with gcc-4.6.3 -03. We com-

pared the performance of these approaches with the performance of the

MEME [4] and GLAM2 [18] tools. All of the experiments were run on

an Intel i7 860 2.8 GHz (8192 kB cache) with 16 GB RAM, while run-

ning Ubuntu 12.04. In this section, we review these experiments - please

see the Section “Results and discussion” in [PIV] for full details on these

experiments.

Data. We initially chose a selection of 80 sequence collections from the

PROSITE [32] database as our data. For practical reasons, we chose the

smallest 30 sequence collections as our training data, which were used

57

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

Table 6.1. Fraction of motifs found within the top five results reported by each of the four
approaches: MEME, GLAM2, DB and DB-SS.

MEME GLAM2 DB DB-SS

fract. 0.74 0.50 0.70 0.58

while developing the method. This training set was then used when mak-

ing our parameter choices. The remaining 50 sequence collections were

left untouched as our test data in order to compare the predictive quality

of the four approaches. Together, these 80 sequence collections totalled

5.3 MB in size and contained 26938 sequences. The data also contained

a known motif in regular expression form for each of the sequence collec-

tions.

Results. To compare the predictive quality of these four approaches, we

ran all of the tools with similar parameters on the test set and analyzed

the number of known motifs that were correctly found. Parameters were

chosen that would list up to 5 suggested motifs at a length of up to 50

amino acids in order to compare the results in a fair manner. Based on

tests conducted on our training set using the de Bruijn approach, we chose

to allow up to three consecutive gaps and set the parameter as τ = 0.625.

The fraction of known motifs listed within the top 5 results by each tool

are shown in Table 6.1. We denote the de Bruijn approach using the ab-

breviation DB and the approach using SS-tree-like similarity indexing

using the abbreviation DB-SS.

As can be seen from Table 6.1, the quality of the results provided by

the DB approach is on par with those provided by the MEME tool. The

quality of the results given by DB-SS is slightly above that of GLAM2.

Moreover, we recorded the query times of all four approaches for all

80 sequence collections using the same parameters as above. The query

times as a function of the sequence collection sizes in bytes are shown in

Figure 2 in [PIV]. With respect to the query times, DB-SS notably out-

performs GLAM2 on smaller sequence collections and has quite similar

run time on larger collections. The DB approach outperforms MEME by a

notable margin on all of the sequence collections.

To encapsulate this, we calculated the geometric means of ratios

tMEME/tDB and tGLAM2/tDB−SS over all sequence collections, where tX

is the time taken for method X to process a sequence collection. The DB-

SS approach, producing results similar in quality with GLAM2 approach

58

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

was notably faster than it, demonstrated by the geometric mean of the

ratios tGLAM2/tDB−SS , which was 5.69. In similar fashion, the DB ap-

proach, which produced results of a comparable quality with MEME ap-

proach was notably faster than it, as shown by the geometric mean of the

ratios tMEME/tDB, which was 9.02. Our main result is this shown supe-

rior run time versus quality tradeoff achieved using our approaches. The

differences in the arithmetic means of the ratios over all of the sequence

collections were even more dramatic: 18.26 and 10.72, respectively. To

encapsulate the effect of similarity indexing, we note that the geometric

mean of the ratio tDB/tDB−SS over all sequence collections was 3.96.

Analysis of results. We have shown that by using a graph-theoretical

approach, it is possible to achieve faster query times than with previous

methods, while retaining a similar quality in terms of the results. Our

results suggest, that by reducing the search space explored during the

scoring phase, we are able to notably speed up motif discovery and throw

away putative motifs that would get a high score but would not correspond

to real motifs. Furthermore, in our setting it is possible to use similarity

indexing to further reduce the query times.

59

A Graph-theoretical Approach for Motif Discovery in Protein Sequences

60

7. Discussion

7.1 Approximate Alignment of Long Patterns

In Chapter 3, we reviewed an approach combining block addressing with

q-sampling, which provides an efficient method for the indexed approxi-

mate alignment of long patterns. This approach is faster than previous

methods and has a smaller memory footprint, which can be further ad-

justed. Both q-sampling and block addressing effectively reduce the size

of the resulting index structure when comparing it with a full text index.

As long as the size of the text blocks in this setting remains relatively

small, doing a more precise alignment between the pattern and a text

block is a relatively swift process.

As long as the patterns are long enough, q-sampling is a very suitable

strategy for this type of problem setting. With long patterns having rela-

tively few occurrences, the time taken retrieving individual text blocks is

more or less negligible, making block addressing a fitting strategy for this

setting as well. In this setting, as demonstrated in Section 3.3, BLAST-

like approaches were shown to be computationally excessive.

Block addressing and q-sampling may also prove useful in a setting

where full text indexes or even compressed indexes are simply too big

to fit in memory. We would like to note that in our experiments with a

full human genome, the index structure of GAST required 0.23 bits per

character, while, for example, the index structure used by bowtie in this

setting would require 6.56 bits per character [39].

Regarding future work, the combination of block addressing and q-

sampling in a multi-pattern setting should be a concept worth exploring.

Since multiple patterns might contain identical AC-probes and be found

in the same text blocks, it is clear that it is possible to save computational

61

Discussion

resources in this setting.

7.2 Indexed Matching of Multiple Patterns

In Chapters 4 and 5, we reviewed two practical approaches for improving

indexed, exact multi-pattern matching. The results presented here show

that the reviewed methods for preprocessing a set of patterns will notably

improve the speed of searching for such a set in an indexed text. The basic

principle of both of these approaches was similar in the sense that both

start by searching for initial subpatterns or substrings common to multi-

ple patterns and continue the search from there. Abandoning locating as

an intermediate step resulted in a major and remarkable difference, one

which yielded promising results on a realistic data set with properties

common in a metagenomic setting.

However, in terms of the approach reviewed in Chapter 4, we would

like to underline an observation that may not be so obvious. To some

extent, the speedup seen in Section 4.2 is caused by what we denote as

the elbow-point effect, which results from the above-mentioned interme-

diate locating step. Let us consider an index where extending or taking

additional steps in the search process would computationally be more ex-

pensive than doing a simple character-by-character comparison between

a pattern sequence and a text sequence. Now, a number of searches will

have an elbow-point, where the number of occurrences of the subpattern

corresponding to the current search step is so small that it would compu-

tationally be more expensive to extend the search to find the occurrences

of the full pattern than to do character-by-character comparisons at each

occurrence of the current subpattern to see if this is an actual occurrence

of the full pattern or not. As long as access to the text and the character-

by-character comparison is faster than extending the search, this is a vi-

able strategy. This can be done with a separate uncompressed or swiftly

uncompressable copy of the text.

This is a line of research we would like to further pursue, as the re-

sulting gains may be widely applicable. This strategy could prove useful

even beyond the scope of multi-pattern matching, improving the search of

individual patterns as well.

The biggest issue in terms of the practicality of the approaches re-

viewed in Chapter 5 is that supporting an exact search will be sufficient

only when cutting the reads into smaller pieces. However, one can sup-

62

Discussion

port an approximate search using a general backtracking mechanism in-

side the bidirectional search, but to do this efficiently the existing pruning

mechanisms (like in [40, 43, 44, 47]) need to be modified or new ones need

to be introduced that will work within our search scheme. Also, the sub-

pattern cover needs to be refined in order to guarantee that all of the

approximate occurrences will be found.

A number of approaches for improving the preprocessing reviewed in

Section 5.2.1 are mentioned in Section 6 in [PIII]. Most importantly, one

should be able to improve the speed of preprocessing drastically by se-

lecting more than one subpattern for each constructed compressed suf-

fix tree. While this would affect the estimation error of log p in terms of

finding the optimal subpatterns, a faster practical solution resulting in a

roughly similar preprocessing quality could most probably be found. It is

very likely that this kind of approach will be needed to preprocess signifi-

cantly larger pattern sets. Currently, the speed of preprocessing poses the

greatest challenge for working with such sets of patterns.

7.3 Motif Discovery

In Chapter, 6 we reviewed a graph-theoretical protein motif discovery ap-

proach and an optional performance improvement for it, based on simi-

larity indexing. We have shown that these two approaches, the DB and

the DB-SS approaches were able to perform as well as or better than the

MEME and GLAM2 approaches. With respect to query times, the DB and

the DB-SS approaches outperform the MEME and GLAM2 approaches in

nearly all cases. With respect to the quality of the results, the DB ap-

proach is comparable to the MEME approach and the DB-SS approach

is comparable to the GLAM2 approach. Incrementality is another ad-

vantage that the described graph-theoretical approaches have over the

traditional approaches. It is possible to add additional sequences to our

analysis without rebuilding the graphs from scratch.

Regarding future work, the most interesting direction would be to pur-

sue a smaller drop in quality when using similarity indexing, as the per-

formance improvement is relatively impressive. We have also considered

the possibility of using our approach for data with a smaller alphabet, e.g.

DNA. In this setting, we expect results of a similar quality by using a

strategy built on top of an idea of using 2-mers from this smaller alphabet

as representatives of a single character. This will require slight alter-

63

Discussion

ations, e.g. considering two reading frames, but this seems achievable by

adjusting our current implementation process.

64

Bibliography

[1] Stephen F. Altschul and Bruce W. Erickson. Optimal sequence alignment
using affine gap costs. Bulletin of Mathematical Biology, 48:603–616, 1986.

[2] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, 1990.

[3] Ricardo A. Baeza-Yates and Gonzalo Navarro. Block addressing indices for
approximate text retrieval. Journal of the American Society for Information
Science (JASIS), 51(1):69–82, 2000.

[4] Timothy L. Bailey and Charles Elkan. Fitting a mixture model by expec-
tation maximization to discover motifs in biopolymers. In Proceedings of
the International Conference on Intelligent Systems for Molecular Biology
(ISMB), volume 2, pages 28–36. Department of Computer Science and En-
gineering, University of California, San Diego, 1994.

[5] Amos Bairoch, Brigitte Boeckmann, Serenella Ferro, and Elisabeth
Gasteiger. Swiss-Prot: juggling between evolution and stability. Briefings
in Bioinformatics, http://www.expasy.org/sprot/ [cited April 9, 2013], 5(1),
2004.

[6] Julie Baussand and Alessandra Carbone. Inconsistent distances in substi-
tution matrices can be avoided by properly handling hydrophobic residues.
Evolutionary Bioinformatics, 4:255–261, 2008.

[7] Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent com-
pressed text indexing. In Proceedings of the European Conference on Al-
gorithms (ESA), volume 6942 of LNCS, pages 748–759. Springer, 2011.

[8] Michael Burrows and David J. Wheeler. A block sorting lossless data com-
pression algorithm. Technical Report 124, Digital Equipment Corporation,
1994.

[9] David R. Clark and J. Ian Munro. Efficient suffix trees on secondary stor-
age. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 383–391. ACM/SIAM, 1996.

[10] Sean R. Eddy. What is dynamic programming? Nature Biotechnology,
22(7):909–910, 2004.

[11] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with
applications. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 390–398. IEEE Computer Society, 2000.

65

Bibliography

[12] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal
of the ACM, 52(4):552–581, 2005.

[13] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro.
Compressed representations of sequences and full-text indexes. ACM
Transactions on Algorithms (TALG), 3(2):article 20, 2007.

[14] Paolo Ferragina and Gonzalo Navarro. Pizza & chili corpus, compressed in-
dexes and their testbeds. http://pizzachili.dcc.uchile.cl/ [cited May 12, 2011].

[15] Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-
bounded compressed suffix trees. Theoretical Compututer Science,
410(51):5354–5364, 2009.

[16] Johannes Fischer, Veli Mäkinen, and Niko Välimäki. Space efficient string
mining under frequency constraints. In Proceedings of the IEEE Interna-
tional Conference on Data Mining (ICDM), pages 193–202. IEEE Computer
Society, 2008.

[17] Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Bat-
zoglou. MotifCut: regulatory motifs finding with maximum density sub-
graphs. Bioinformatics, 22(14):156–157, 2006.

[18] Martin C. Frith, Neil F. W. Saunders, Bostjan Kobe, and Timothy L. Bailey.
Discovering sequence motifs with arbitrary insertions and deletions. PLoS
Computational Biology, 4(5), 2008.

[19] Travis Gagie, Kalle Karhu, Juha Kärkkäinen, Veli Mäkinen, Leena
Salmela, and Jorma Tarhio. Indexed multi-pattern matching. In Proceed-
ings of the Latin American Symposium on Theoretical Informatics (LATIN),
volume 7256 of LNCS, pages 399–407. Springer, 2012.

[20] Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries:
Another virtue of wavelet trees. In Proceedings of the International Sympo-
sium on String Processing and Information Retrieval (SPIRE), pages 1–6.
Springer, 2009.

[21] Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A
simple optimal representation for balanced parentheses. Theoretical Com-
puter Science, 368(3):231–246, 2006.

[22] Simon Gog. SDSL — succinct data structure library 0.9.5. http://www.
uni-ulm.de/in/theo/research/sdsl.html [cited September 10, 2011].

[23] Simon Gog, Kalle Karhu, Juha Kärkkäinen, Veli Mäkinen, and Niko
Välimäki. Multi-pattern matching with bidirectional indexes. In Proceed-
ings of the International Computing and Combinatorics Conference (CO-
COON), volume 7434 of LNCS, pages 384–395. Springer, 2012.

[24] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for
text: PAT trees and PAT arrays. In Information Retrieval: Data Structures
and Algorithms, pages 66–82. Prentice-Hall, 1992.

[25] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 841–850. ACM/SIAM, 2003.

66

Bibliography

[26] Dan Gusfield. Algorithms on Strings, Trees and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, 1997.

[27] Jo Handelsman, Michelle R. Rondon, Sean F. Brady, Jon Clardy, and
Robert M. Goodman. Molecular biological access to the chemistry of un-
known soil microbes: a new frontier for natural products. Chemistry &
Biology, 5:245–249, 1998.

[28] Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest com-
mon ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

[29] Steven Henikoff and Jorja G. Henikoff. Amino acid substitution matri-
ces from protein blocks. Proceedings of the National Academy of Sciences
(PNAS), 89(22):10915–10919, 1992.

[30] Tim J. P. Hubbard, Bronwen L. Aken, Kathryn Beal, Benoit Ballester,
Mario Cáccamo, Yuan Chen, Laura Clarke, Guy Coates, Fiona Cunning-
ham, Tim Cutts, Thomas Down, S. C. Dyer, Stephen Fitzgerald, Julio
Fernandez-Banet, Stefan Gräf, Syed Haider, Martin Hammond, Javier Her-
rero, Richard C. G. Holland, Kevin L. Howe, Kerstin Howe, Nathan John-
son, Andreas Kähäri, Damian Keefe, Felix Kokocinski, Eugene Kulesha,
Daniel Lawson, Ian Longden, Craig Melsopp, Karine Megy, Patrick Meidl,
Bert Overduin, Anne Parker, Andreas Prlic, S. Rice, Daniel Rios, Michael
Schuster, I. Sealy, Jessica Severin, Guy Slater, Damian Smedley, Giulietta
Spudich, S. Trevanion, Albert J. Vilella, Jan Vogel, Simon White, M. Wood,
Tony Cox, Val Curwen, Richard Durbin, Xosé M. Fernández-Suarez, Paul
Flicek, Arek Kasprzyk, Glenn Proctor, Stephen M. J. Searle, James Smith,
Abel Ureta-Vidal, and Ewan Birney. Ensembl 2007. Nucleic Acids Research,
35(Database-Issue):610–617, 2007.

[31] Lucas C. K. Hui. Color set size problem with application to string matching.
In Proceedings of Symposium on Combinatorial Pattern Matching (CPM),
volume 644 of LNCS, pages 230–243. Springer, 1992.

[32] Nicolas Hulo, Amos Bairoch, Virginie Bulliard, Lorenzo Cerutti,
Edouard De Castro, Petra S. Langendijk-Genevaux, Marco Pagni, and
Christian J. A. Sigrist. The prosite database. Nucleic Acids Research,
34(Database-Issue):227–230, 2006.

[33] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct
representation of ordered trees. In Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 575–584. ACM/SIAM, 2007.

[34] Samuel Karlin and Cristopher B. Burge. Dinucleotide relative abundance
extremes: a genomic signature. Trends in Genetics, 11(7):283–290, 1995.

[35] W. James Kent. BLAT - The BLAST-like alignment tool. Genome Research,
12:656–664, 2002.

[36] Victor Kunin, Alex Copeland, Alla Lapidus, Konstantinos Mavromatis, and
Philip Hugenholtz. A bioinformatician’s guide to metagenomics. Microbiol-
ogy and Molecular Biology Reviews, 72(4):557–578, 2008.

[37] Tak Wah Lam, Ruiqiang Li, Alan Tam, Simon C. K. Wong, Edward Wu,
and Siu-Ming Yiu. High throughput short read alignment via bi-directional
BWT. In Proceedings of the IEEE International Conference on Bioinformat-
ics and Biomedicine (BIBM), pages 31–36. IEEE Computer Society, 2009.

67

Bibliography

[38] Gad M. Landau and Michal Ziv-Ukelson. On the common substring align-
ment problem. Journal of Algorithms, 41(2):338–359, 2001.

[39] Ben Langmead and Cole Trapnell. Bowtie: An ultrafast, memory-efficient
short read aligner. http://bowtie-bio.sourceforge.net/index.shtml [cited April
2, 2013].

[40] Ben Langmead, Cole Trapnell, Miihai Pop, and Steven L. Salzberg. Ultra-
fast and memory-efficient alignment of short DNA sequences to the human
genome. Genome Biology, 10(3):R25, 2009.

[41] N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compres-
sion. In Proceedings of the Data Compression Conference (DCC), pages 296–
305. IEEE Computer Society, 1999.

[42] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, in-
sertions and reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[43] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics, 25(14):1754–60, 2009.

[44] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten
Kristiansen, and Jun Wang. SOAP2: an improved ultrafast tool for short
read alignment. Bioinformatics, 25(15):1966–1967, 2009.

[45] Martin S. Lindner and Bernhard Y. Renard. Metagenomic abundance es-
timation and diagnostic testing on species level. Nucleic Acids Research,
2012.

[46] Moritz G. Maaß. Linear bidirectional on-line construction of affix trees.
Algorithmica, 37(1):43–74, 2003.

[47] Veli Mäkinen, Niko Välimäki, Antti Laaksonen, and Riku Katainen. Uni-
fied view of backward backtracking in short read mapping. In Algorithms
and Applications, pages 182–195. Springer, 2010.

[48] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string
searches. SIAM Journal on Computing, 22.5:935–948, 1993.

[49] Udi Manber and Sun Wu. GLIMPSE: A tool to search through entire file
systems. Proceedings of the USENIX Winter Conference, pages 23–32, 1994.

[50] Volker Matys, Olga V. Kel-Margoulis, Ellen Fricke, Ines Liebich, Sigrid
Land, A. Barre-Dirrie, Ingmar Reuter, D. Chekmenev, Mathias Krull, Klaus
Hornischer, Nico Voss, Philip Stegmaier, Birgit Lewicki-Potapov, H. Saxel,
Alexander E. Kel, and Edgar Wingender. Transfac R© and its module
transcompel R©: transcriptional gene regulation in eukaryotes. Nucleic
Acids Research, 34(Database-Issue):108–110, 2006.

[51] Aleksandr Morgulis, George Coulouris, Yan Raytselis, Thomas L. Madden,
Richa Agarwala, and Alejandro A. Schäffer. Database indexing for produc-
tion MegaBLAST searches. Bioinformatics, 24(16):1757–1764, 2008.

[52] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced
parentheses and static trees. SIAM Journal on Computing, 31(3):762–776,
2001.

68

Bibliography

[53] National Center for Biotechnology Information. Blast: Basic local align-
ment search tool. http://www.ncbi.nlm.nih.gov/BLAST/ [cited Mar 24, 2009],
2009.

[54] Brian T. Naughton, Eugene Fratkin, Serafim Batzoglou, and Douglas L.
Brutlag. A graph-based motif detection algorithm models complex nu-
cleotide dependencies in transcription factor binding sites. Nucleic Acids
Research, 34(20), 2006.

[55] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):article 2, 2007.

[56] Andrew F. Neuwald, Jun S. Liu, and Charles E. Lawrence. Gibbs motif
sampling: detection of bacterial outer membrane protein repeats. Protein
Science, 4:1618–1632, 1995.

[57] Ontario Institute for Cancer Research and European Bioinformatics Insti-
tute. Biomart project. http://www.biomart.org [cited May 3, 2010].

[58] Rupali Patwardhan, Haixu Tang, Sun Kim, andMehmet M. Dalkilic. An ap-
proximate de Bruijn graph approach to multiple local alignment and motif
discovery in protein sequences. In Proceeding of: Data Mining and Bioin-
formatics, First International Workshop. Springer, 2006.

[59] Giulio Pavesi, Paolo Mereghetti, Giancarlo Mauri, and Graziano Pesole.
Weeder web: discovery of transcription factor binding sites in a set of se-
quences from co-regulated genes. Nucleic Acids Research, 32(Web-Server-
Issue):199–203, 2004.

[60] Pål Puntervoll, Rune Linding, Christine Gemünd, Sophie Chabanis-
Davidson, Morten Mattingsdal, Scott Cameron, David M. A. Mar-
tin, Gabriele Ausiello, Barbara Brannetti, Anna Costantini, Fabrizio
Ferrè, Vincenza Maselli, Allegra Via, Gianni Cesareni, Francesca Diella,
Giulio Superti-Furga, Lucjan Stanislaw Wyrwicz, Chenna Ramu, Caroline
McGuigan, Rambabu Gudavalli, Ivica Letunic, Peer Bork, Leszek Rych-
lewski, Bernhard Küster, Manuela Helmer-Citterich, William N. Hunter,
Rein Aasland, and Toby J. Gibson. ELM server: a new resource for investi-
gating short functional sites in modular eukaryotic proteins. Nucleic Acids
Research, 31(13):3625–3630, 2003.

[61] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct index-
able dictionaries with applications to encoding k-ary trees and multisets. In
Proceedings of the ACM-SIAM Symposium on Discrete algorithms (SODA),
pages 233–242. ACM/SIAM, 2002.

[62] Timothy E. Reddy, Charles DeLisi, and Boris E. Shakhnovich. Binding site
graphs: A new graph theoretical framework for prediction of transcription
factor binding sites. PLoS Computational Biology, 3(5), 2007.

[63] Frederick P. Roth, Jason D. Hughes, Preston W. Estep, and George M.
Church. Finding DNA regulatory motifs within unaligned noncoding se-
quences clustered by whole-genome mRNA quantitation. Nature Biotech-
nology, 16:939–945, 1998.

[64] Luís M. S. Russo, Gonzalo Navarro, and Arlindo L. Oliveira. Fully com-
pressed suffix trees. ACM Transactions on Algorithms, 7:53:1–53:34,
September 2011.

69

Bibliography

[65] Kunihiko Sadakane. Compressed text databases with efficient query algo-
rithms based on the compressed suffix array. In Proceedings of Interna-
tional Symposium on Algorithms and Computation (ISAAC), volume 1969
of LNCS, pages 410–421. Springer, 2000.

[66] Kunihiko Sadakane. New text indexing functionalities of the compressed
suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[67] Kunihiko Sadakane. Succinct data structures for flexible text retrieval sys-
tems. Journal of Discrete Algorithms, 5:12–22, 2006.

[68] Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory
of Computing Systems, 41:589–607, December 2007.

[69] Leena Salmela, Jorma Tarhio, and Jari Kytöjoki. Multi-pattern string
matching with q-grams. ACM Journal of Experimental Algorithms, 11(1),
2006.

[70] Albin Sandelin, Wynand Alkema, Pär G. Engström, Wyeth W. Wasser-
man, and Boris Lenhard. Jaspar: an open-access database for eukaryotic
transcription factor binding profiles. Nucleic Acids Research, 32(Database-
Issue):91–94, 2004.

[71] Thomas Schnattinger, Enno Ohlebusch, and Simon Gog. Bidirectional
search in a string with wavelet trees. In Proceedings of the Conference on
Combinatorial Pattern Matching (CPM), volume 6129 of LNCS, pages 40–
50. Springer, 2010.

[72] Temple F. Smith andMichael S. Waterman. Identification of common molec-
ular subsequences. Journal of Molecular Biology, 147:195–197, 1981.

[73] Jens Stoye. Affix trees. Technical Report 2000-04, Faculty of Technol-
ogy, Bielefeld University, 2000. http://www.techfak.uni-bielefeld.de/~stoye/
rpublications/report00-04.pdf.

[74] Erkki Sutinen and Jorma Tarhio. Filtration with q-samples in approxi-
mate string matching. In Proceedings of the 7th Symposium on Combinato-
rial Pattern Matching (CPM), volume 1075 of LNCS, pages 50–63. Springer,
1996.

[75] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[76] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[77] Peter Weiner. Linear pattern matching algorithm. In Proceedings of the
IEEE Symposium on Switching and Automata Theory, pages 1–11. IEEE
Computer Society, 1973.

[78] Kris A. Wetterstrand. DNA sequencing costs: Data from the NHGRI
genome sequencing program (GSP) [on-line]. http://www.genome.gov/
sequencingcosts [cited Mar 27, 2013].

[79] David A. White and Ramesh Jain. Similarity indexing with the SS-tree.
In Proceedings of the International Conference on Data Engineering, pages
516–523. IEEE Computer Society, 196.

70

Bibliography

[80] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan Kaufmann,
Second edition, 1999.

[81] Thomas D. Wu and Colin K. Watanabe. GMAP: a genomic mapping
and alignment program for mRNA and EST sequences. Bioinformatics,
21(9):1859–1875, 2005.

[82] Shang-Hong Zhang and Ya-Zhi Huang. Characteristics of oligonu-
cleotide frequencies across genomes: Conservation versus variation,
strand symmetry, and evolutionary implications. Nature Precedings,
hdl:10101/npre.2008.2146.1, 2008.

[83] Shang-Hong Zhang and Jian-Hua Yang. Conservation versus variation
of dinucleotide frequencies across genomes: Evolutionary implications.
Genome Biology, 6(11):1–21, 2005.

[84] Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A greedy
algorithm for aligning DNA sequences. Journal of Computational Biology,
7:203–214, 2000.

71

Bibliography

72

9HSTFMG*afcjie+

