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This thesis explores a range of experimental 
techniques and methods at millimeter and 
submillimeter wavelengths. Significant 
interest in technological developments at 
this frequency range has continued over the 
past two decades, which has also yielded 
several advancements for commercial 
applications. The key prospects afforded by 
millimeter- and submillimeter-wave 
technologies, such as the capability of 
providing high-resolution imagery, has 
resulted in emerging commercial imaging-
based applications. This thesis concentrates 
on the development of imaging methods and 
technology from 120 to 782 GHz, and it 
includes indirect holographic imaging, 
detector characterization, reflectarrays for 
beam forming, and material reflectivity 
studies. The thesis offers alternative 
imaging solutions to current state-of-the-art 
methods, which utilize complex transmitter 
and receiver technologies. The experimental 
results provide novel information on 
material properties and guide the 
development of power detectors and 
reflectarrays. 
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Abstract 
This thesis presents novel experimental results in the fields of millimeter- and submillimeter-

wave imaging, reflectivity studies, as well as power detector characterization. The overlapping 
topics share key concepts of beam steering, holography, and antenna measurements. 

Indirect holographic imaging technique is verified experimentally for the first time. This  
method allows for coherent detection of a target, using a reference wave and simple direct 
detection receivers. This is very promising, since receiver complexity is seen as the greatest 
hindrance to the realization of large imaging arrays. In the holographic method, coherent 
detection and focusing of the image is a post-detection task. A novel computational technique 
is introduced, which removes the restrictions on the reference-wave direction. In the 
experimental work at 310 GHz, the slanted-edge method is applied for estimating the point 
spread function. Experimental data indicate a decrease in resolution of 20-30 % compared to a 
diffraction limited case. The noise-equivalent reflectivity difference (NERD) is found to be 
approximately constant (NERD = 0.002), down to the received signal SNR of 26 dB. 

Reflectarrays (RAs) are developed and characterized at 120 GHz. The RAs enable beam-
steering, and they are designed to be compatible with MEMS microfabrication. Three static 
RAs are characterized in a near-field measurement range. The measured beamwidths are 
within 10 % of the simulated ones. The specular reflection from RAs is studied, and the concept 
of RA efficiency is introduced. The experimentally determined efficiency is found to be 0.11 
while simulation results suggest an average efficiency of 0.54. 

Reflection- and transmission-type phase holograms are used to create a planar wave front, 
quiet zone (QZ), in a compact test range at both 310 and 650 GHz. The measured QZ variation 
is ±1.5 dB and ±5° at 310 GHz and ±3 dB and ±25° at 650 GHz. The holograms are suitable for 
use in radar-cross-section (RCS) measurements. The reflectivity of different radar-absorbing 
materials (RAMs) is studied in a RCS range. Commercial RAM and low-cost materials are 
compared for their monostatic reflectivity in an angular range of 45° and 12° at 310 and 650 
GHz, respectively. It is found that common materials, such as carpets have reflectivity from −60 
to −30 dB, and are suitable for use as RAM. 

Bolometers used in a submillimeter-wave imager are studied at 321-782 GHz. The antenna-
coupled microbolometers are characterized in room temperature. They are coupled with an 
equi-angular spiral antenna and a silicon substrate lens. The beamwidth of the bolometers is 
found to follow an 8.5°/THz –relation across the band. A low-cost infrared detector is 
compared with dedicated power meters. It is found to have a sensitivity of 1700 V/W and noise-
equivalent power (NEP) of 0.4 uW/rtHz. As such, it can be used as an ad hoc power detector. 
Keywords bolometer, hologram, imaging, reflectarray, reflectivity 
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Tiivistelmä 
Tämä väitöskirja käsittelee millimetri- ja alimillimetriaaltoalueen kuvantamista, 

materiaalien heijastavuusmittauksia ja tehoilmaisimien karakterisointia. Aihealueet liittyvät 
toisiinsa keilanohjauksen, holografian ja antennimittausten kautta. 

Epäsuora holografinen menetelmä on kokeellisesti varmennettu. Menetelmä mahdollistaa 
vaiheilmaisun referenssikentän ja yksinkertaisten tehovastaanottimien avulla. Tulokset ovat 
erittäin lupaavia, sillä vaihekoherentti vastaanotinryhmä on erittäin monimutkainen toteuttaa. 
Epäsuorassa holografisessa menetelmässä vaiheenilmaisu ja kuvan fokusointi tehdään teho-
ilmaisun jälkeen laskennallisesti. Työssä esitellään uusi menetelmä, jossa referenssikentän 
tulosuuntaa ei ole rajoitettu. Taajuudella 310 GHz saaduista kuvista on approksimoitu 
impulssivaste käyttäen askel-tyyppistä kohdetta. Diffraktion rajoittamaan teoreettiseen 
arvoon verrattuna erotuskyky kokeellisissa tuloksissa oli 20-30 % alempi. Kohinatasoinen 
heijastavuusero on 0,002, kun ilmaistun tehon signaali-kohina –suhde on 26 dB. 

Työssä käsitellään 120 GHz:n heijastusantenniryhmää. Antenniryhmät ovat tarkoitettu 
käytettäviksi keilanohjauksessa, ja niiden valmistustekniikka soveltuu myös mikroelektro-
mekaanisten komponenttien valmistukseen. Kolmea heijastusantenniryhmää, joiden keilat 
ovat pysyvästi fokusoitu, on karakterisoitu lähikenttämittauspaikalla. Mitatut keilanleveydet 
vastaavat 10 %:n tarkkuudella simuloituja. Heijastusantenniryhmien peiliheijastusta 
kuvaamaan on määritelty hyötysuhde. Hyötysuhteeksi saatiin kokeellisesti 0,11, kun 
teoreettinen hyötysuhde on keskimäärin 0,54. 

Heijastus- ja läpäisytyyppisiä vaihehologrammeja on käytetty tasomaisen kentän eli hiljaisen 
alueen luomiseen kompaktissa mittauspaikassa. Mitattu amplitudi- ja vaihevaihtelu hiljaisessa 
alueessa on ±1,5 dB ja ±5° 310 GHz:llä sekä ±3 dB ja ±25° 650 GHz:llä. Hologrammeja voidaan 
käyttää tutkapoikkipinta-alan mittaukseen. Tässä työssä verrattiin tarkoitusta varten 
valmistettujen vaimennusmateriaalien ja muiden materiaalien heijastavuutta. Takaisin-
heijastavuus mitattiin 45°:n ja 12°:n kulma-alueessa 310 ja 650 GHz:llä. Matoille mitattiin 
heijastavuuksia −60 dB:stä −30 dB:iin, joten ne soveltuvat vaimennusmateriaaliksi. 

Kuvantamisessa käytettäviä NbN -bolometrejä on tutkittu taajuusalueessa 321-782 GHz. 
Antennikytkettyjä bolometrejä on karakterisoitu huoneenlämpötilassa tehonmittaukseen 
perustuvassa antennimittauspaikassa. Bolometrit on kytketty spiraali-antenniin pii-
substraattilinssin pinnalla. Bolometri-ilmaisimien keilanleveys noudattaa 8,5°/THz –lakia 
mitatulla taajuusalueella. Edullista infrapunailmaisinta on verrattu tarkoituksenmukaisiin 
tehomittareihin. Ilmaisimen kokeellisesti mitattu herkkyys ja kohinaekvivalentti teho ovat 
1700 W/V ja 0,4 uW/rtHz, joten se soveltuu ad hoc tehonilmaisuun alimillimetriaaltoalueella. 
Avainsanat bolometri, heijastavuus, heijastusantenniryhmä, hologrammi, kuvantaminen 
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1 Introduction 

Millimeter and submillimeter waves are loosely defined designations for the part of
electromagnetic spectrum, where the free space wavelength ranges from 10 millimeters
down to 0.1 millimeter [1]. In frequency, these waves range from 30 GHz to 3000 GHz.
This designation is used throughout the thesis. Another designation for the
submillimeter wave range is terahertz waves, and it is used to describe electromagnetic
radiation from 300 GHz, sometimes even from 100 GHz, to near infrared [2].

The electromagnetic spectrum from the gamma rays to the extremely low frequencies
is crowded with applications, some are more every day some less so. The conventional
technologies used at the extremes of the spectrum, optical and radio frequency
technology, struggle to provide cost effective solutions at millimeter and submillimeter
waves [3]. Technology is now being strongly driven towards this spectral range due to
promises it gives to wireless communication systems [4], radio astronomy [5], [6] and
other sciences, as well as due to its suitability in imaging applications [7].

Currently, millimeter wave technology is replacing the microwave technology in
wireless systems, whereas submillimeter waves are still utilized mostly in scientific
applications. Security imaging for illicit hidden objects [8] and medical use [9] are
foreseen as the first commercial applications, which will exploit the submillimeter waves.
In commercial applications, trend is towards ever higher wireless data rates with
technology packed in ever more compact form. Data rate can be increased due to the
larger absolute bandwidth available at millimeter waves. Also, important to the wireless
technologies, at millimeter waves the footprint of components is smaller compared to
similar devices operating at lower frequencies. Pursuing to millimeter waves is in this
case motivated by the benefit from scaling.

In addition to the advantage of penetrating some materials that are opaque at optical
wavelengths, imaging at submillimeter wavelengths is also motivated by scaling. In a
typical imaging scheme, submillimeter wavelength propagation can be approximated to
be ray like, and high resolution imaging with convenient sized apertures is possible.
Also, some physical phenomena exist only at submillimeter waves and attract developing
technology for that part of the electromagnetic spectrum. E.g., the unique rotational,
vibrational, and phonon resonances of chemicals of interest take place at high end of
submillimeter waves [7].

1. 1 Motivation and scope of the thesis 

Despite of the advances in millimeter and submillimeter wave technology, many of
the foreseen applications are neither at a mature, nor an affordable level. As this
wavelength range lies between the microwaves and far infrared, both electrical and
optical approaches are adapted in realization of the applications. Unfortunately, scaling
the technology for the wavelength range faces barriers due to the limited fabricating
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accuracies and unfavorable material properties [3]. Today, the coherent submillimeter
wave transmitters and receivers are bulky laboratory instruments rather than commercial
products. Especially, the low level of integration in the devices prohibits compact sized
applications. Also, inadequate knowledge of material electrical properties at the
wavelength ranges discourages for new applications. The ever present limitation due to
the atmospheric attenuation limits number of sea level applications to few.

This thesis discusses the developments in millimeter and submillimeter wave range,
especially in imaging. The research topics with brief descriptions are listed in Table 1 1.
The work is motivated by the need to find cost effective solutions both in measurement
techniques and in realization of systems, such as a submillimeter wave imager. The
expected cost effectiveness is based on minimizing the detector count and implementing
only relatively simple technology, such as bolometers in passive imaging or MEMS in a
reconfigurable reflectarray. Especially, the indirect holographic imaging technique allows
for phase detection from amplitude measurement only, reducing the receiver complexity
compared to conventional heterodyne detection. The thesis is organized as follows:
Chapter 2 discusses the background of the research and introduces the numerical and
experimental methods used to achieve the findings reported in publications [I] [IX].
Chapter 3 discusses the novel indirect holographic technique and the experimental work
reported in publications [I] [III]. Chapter 4 discusses the design aspects of millimeter
wave reflectarrays, introduces the application of millimeter wave reflectarray, and the
related measurements reported in publication [IV]. Submillimeter wave holograms, [V],
and their application in reflectivity measurements in a RCS measurement range, [VI],
[VII], are discussed in Chapter 5. Chapter 6 discusses on characterization of bolometers
for passive submillimeter wave imaging [VIII]. Also, the application of an ad hoc power
detector is described. Finally, Chapters 7 and 8 summarize the related publications, lay
down conclusions, and describe the future directions of the research.

Table 1 1. The research topics discussed in Chapters 3 6.

Chapter Topic / Application Description Frequency
(GHz)

3 Indirect holographic
imaging

Experimental target wave retrieval
with Fourier [I], [II] and spatial
based [III] techniques

310

4
Reflectarray for near field
focusing

Development and characterization
of a reflectarray antenna. Aperture
field analysis.

120

5
Characterization of a
reflection type phase
hologram

Quiet zone characterization in a
hologram based compact range. 310

5
Monostatic reflectivity
measurements of RAM

Reflectivity and transmittance
measurements of different RAM
using a hologram based RCS range.

310 & 650

6

Characterization of
antenna coupled micro
bolometers and an ad hoc
power detector

Radiation pattern measurement.
Sensitivity and NEP of bolometers
and an ad hoc power detector.

321 782
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1. 2 Scientific contributions of the thesis 

The scientific achievements in this thesis are listed below. The thesis contributes to
experimental work in the field of millimeter and submillimeter wave imaging and near
field measurements.

[I] The indirect holographic method with spherical reference wave is verified
experimentally for the first time at submillimeter wavelengths. The methods
to evaluate the image quality of millimeter wave images are presented. The
image quality metrics are used to characterize the image quality for the
indirect holographic method. A novel spatial domain technique for indirect
holographic imaging is presented.

[II] The first reflectarrays for near field focusing at 120 GHz have been developed
and characterized. The specular reflection from reflectarrays is described
quantitatively.

[III] Reflection type phase hologram is characterized at 310 GHz for the first time.
The monostatic reflectivity of radar absorbing materials is measured in far
field conditions in a compact radar cross section measurement range at 310
and 650 GHz.

[IV] Antenna coupled microbolometers are experimentally characterized at 321
782 GHz. The wide band behavior of the bolometer beam patterns is
measured. The sensitivity and noise equivalent power of an ad hoc
submillimeter wave power detector is measured.
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2 Background of research 

The technological development at submillimeter wavelengths faces challenges both of
technical and fundamental nature, when compared to the microwave technology already
at a mature level. As the wavelength gets smaller, loss and parasitic reactance increase in
the components. At the same time, manufacturing tolerances become ever more difficult
to meet. As a result, the designers of submillimeter wave components have to resort to
exotic materials and fabrication methods. Use of novel materials and techniques can
dramatically increase the cost of submillimeter wave applications. Despite of the great
effort, the efficiency of submillimeter wave devices is far from what is expected in RF and
optical devices. Typical submillimeter wave device converts less than 1 % of the DC
power to electromagnetic radiation, whereas mobile RF amplifiers convert about 50 %
and light emitting diodes convert about 30 % [10]. Due to these limitations,
submillimeter wave applications are currently hardly cost effective.

2. 1 Submillimeter-wave propagation 

In addition to technological barriers, atmospheric attenuation increases towards the
shorter wavelengths – challenging the link budget in submillimeter wave applications.
The atmospheric attenuation is mainly governed by the absorption lines of molecular
oxygen and water. At submillimeter waves, the peak attenuation due to the absorption
lines varies from about 40 dB/km at 325 GHz to more than 10000 dB/km at 557 GHz and
752 GHz, as is shown in Figure 2 1. In practice, the submillimeter wave applications are
designed to operate at the window frequencies between the absorption lines, where the
attenuation is tolerable. Still, the attenuation due to the atmosphere is very limiting when
considering the operation range of a submillimeter wave system. The window
frequencies can be utilized to large extent in active submillimeter wave imaging, where
the frequency band can be chosen freely, given the availability of technology. In passive
imaging, detection is wide band and there are only little possibilities to utilize the
window frequencies. Typically, passive imaging systems are designed to have a cut off
frequency of few hundreds of gigahertz in order to avoid the opacity of the atmosphere
at the high end of the submillimeter wave range.
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Figure 2 1. Atmospheric attenuation calculated based on the ITU R P.676 9
recommendation [11]. The atmospheric conditions are: temperature of 300 K, water
vapor density of 7.5 g m3, and air pressure of 1013 hPa.

2. 1. 1 Hologram-based compact range 

The atmospheric attenuation is especially limiting factor in diagnostics of large
millimeter and submillimeter wave antennas. Such antennas are operated outside of the
sea level atmosphere, either in high elevation location or in space. They are used for
radio astronomy missions or observation of the upper parts of the atmosphere. In their
operational environment, atmospheric attenuation is not significant, but the antennas
need to be assembled and tested in sea level conditions. In conventional antenna
measurement, the antenna needs to be measured at least at its far field distance

(2.1)

where is the largest dimension of the antenna aperture and is the free space
wavelength. The parabolic antennas used in scientific satellites have typically a diameter
of about 1 meter. E.g., at 650 GHz, the far field distance is impractical 4.3 kilometers,
leading to intolerable attenuation in the propagation path. The far field conditions can be
created in a compact antenna test range (CATR) within only short distance compared to
the far field distance. CATR allows for direct radiation pattern measurements for large
antennas without the unbearable high atmospheric attenuation. CATRs based on
reflectors have been used for antenna measurements since 1950’s [12]. CATRs based on
holograms were suggested in [13], and a lot of theoretical and experimental work has
been done since, and it is discussed in [14], [15], [16]. An amplitude hologram has been
successfully used in CATR at 39, 119, 322, and 650 GHz in [17], [18], [19], [20],
respectively. The compact test range was suggested for radar cross section (RCS)
measurements in [21], [22]. RCS measurements with scale models are reported in [23],
[24], [25], [26]. There, phase holograms can be used to create a planar wave front. Phase
holograms have higher efficiency than amplitude holograms. In this work, the RCS range
with a phase hologram is used in reflectivity measurements at 310 and 650 GHz [VII],
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[VI], and [27]. The holograms and reflectivity measurements are discussed more in detail
in Chapter 5.

2. 2 Phenomenology in imaging 

Submillimeter wave imaging can be implemented both in active and passive
scenarios. In passive imaging, only naturally occurring radiation is detected, whereas in
active imaging, the target is illuminated from an artificial source [28]. In the literature, the
established terminology for incoherent passive imaging describes the image as a map of
brightness temperature across the scene. In coherent active imaging, the image is
considered as a map of reflectivity. Both active and passive imaging can be realized by
using simple wide band detectors or narrow band coherent receivers designated to track
the spectral characteristics of the scene. As the availability of sensitive detectors at the
high end of submillimeter waves is very limited, typical passive imager is designed to be
very wide band to collect as much as possible of the energy from the atmospheric
window. In active imaging, coherent detection allows for high dynamic range and, if
wide band, for range determination. Also, imaging methods with computational focusing
are possible.

In both active and passive scenarios, the return from the target is according to its
emissivity , reflectivity , and transmittance . The quantities depend on each other as

(2.2)

Emissivity describes the natural radiation from the target in passive imaging. In active
imaging, term emissivity is usually replaced with absorption in (2.2). Measured
values of emissivity, reflectivity, and transmittance for certain materials are listed in
Table 2 1.

Table 2 1. Emissivity, reflectivity, and transmittance of different materials at
100 1000 GHz [28]. The color coding emphases low values with dark and high values
with light.

Emissivity or absorption Reflectivity Transmittance

100 GHz 500 GHz 1 THz 100 GHz 500 GHz 1 THz 100 GHz 500 GHz 1 THz

Metal 0.0 0.0 0.0 1.0 1.0 1.0 0.0 0.0 0.0

Skin 0.65 0.91 0.93 0.35 0.09 0.07 0.0 0.0 0.0

Denim 0.09 0.49 0.85 0.01 0.01 0.05 0.90 0.50 0.10

T shirt 0.04 0.20 0.30 0.00 0.00 0.05 0.96 0.80 0.65

0.00 0.25 0.25 0.50 0.50 0.75 0.75 1.00

Figure 2 2 shows the incoherent passive and coherent active imaging scenarios. In
incoherent case, when the transmittance of the obscuring material is assumed to be unity,
the apparent brightness temperature of the target is
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e.g., cryogenic bolometers [30], [31], [32], kinetic inductance detectors [33], or square law
detectors [34]. The detectors in passive imaging are designed to be wide band, and the
detector is often directly connected to terminal of a wide band antenna. Antenna coupled
microbolometers used in the imaging system described in [31] are discussed more in
Chapter 6 and references [VIII], [IX].

In coherent active imaging (Figure 2 2 b), the receiver noise bandwidth is much
narrower than in incoherent passive imaging, and the thermal noise from the target and
surroundings have insignificant effect on the image. The image resembles mostly the
reflectivity of the target. The transmission through the obscuring material is a complex
process, and it depends on both the dielectric properties of the material as well as
thickness and surface structure of the bulk. When the surface of the material is smooth,
i.e., the surface roughness is much smaller than the wavelength, a specular reflection
according to Fresnel’s law occurs and transmission through material is free of scattering.
When the wavelength is of the same order as the surface roughness, reflection from the
target becomes more diffuse in nature. The diffuse reflection manifests itself in image
artifacts typically in active narrow band imaging, where it is called speckle [35], [36]. The
reflectivity of that kind of materials cannot be predicted based on the known dielectric
material parameters, rather than it is a sample specific property depending on the
internal structure. E.g., a smooth target with underlying material discontinuities may
appear distorted in the image. In active imaging, the target is illuminated mostly from
one direction only, and part of the target is always shadowed. Both spatial and frequency
diversity in the illumination are used to reduce the effect of the narrow bandwidth [37],
[38], [39]. Speckle is insignificant in wide band passive imaging, since it utilizes “self
illuminating” targets and wide band, incoherent signals. Also, shadowing is much less a
problem in passive imaging.

In addition to the advantages mentioned above, passive imaging is often preferred
since the power detection of thermal radiation is in principle simpler than using coherent
receivers with down conversion and detection of the baseband signal. However, as the
image is defined by the apparent brightness temperature (2.3), it is possible that the target
does not have any contrast with its background, i.e., . With this condition, the
target is not detected at all. In addition, varying brightness temperature in the
surroundings may result in varying appearance of images of similar targets. It is
suggested that brightness temperature resolution of 1 K is required in order to discern
typical details in passive indoor imaging [40].

In coherent active imaging, it is possible to detect targets by the reflectivity difference,
or if ranging capability is available, by the actual three dimensional shape of the target
[41]. Another advantage of active imaging is the high dynamic range, which is a system
dependent property rather than fundamentally limited, as in passive imaging [39], [28].
Active imaging is often more complex process than passive, since generation of
millimeter /submillimeter wave power and preferably coherent detection is needed.
Coherent detection typically involves reference signal and possibly multiple
intermediate frequency stages are needed prior base band detection, whereas direct
detection can be used in passive imaging [42]. Despite of great effort to miniaturize the
heterodyne receivers and adapt them to conventional fabrication processes, such as in
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[43], [44], and [45], they are bulky and relatively expensive. Typically the detector count
in coherent active imager is therefore limited to a few.

2. 3 Focusing in submillimeter-wave imaging 

In imaging, the frame rate and signal to noise ratio are contradictory qualities. As the
frame rate is increased, the integration time per pixel, , naturally decreases. The signal
to noise ratio in an imaging system is

SNR (2.5)

where is the number of detectors, is the number of pixels in the image, and is the
frame rate. In current imaging systems, the number of detectors is typically smaller than
the number of pixels and the integration time is limited due to the need to scan the
detectors to form the image. The ideal case would be to have a detector per each pixel in
the imaging system.

As discussed in the previous section, especially in case of coherent active receivers,
large arrays to count for each pixel in the image are not available at submillimeter waves.
Several source detector arrangements have been suggested for submillimeter wave
imaging, and three examples are seen in Figure 2 3. In a single receiver/transceiver –
system (Figure 2 3 a), the image formation is entirely a mechanical process, where
focusing element, lens or a mirror, or the target is moved for each pixel. The first
submillimeter wave images, and many others, were obtained in this manner [46]. The
coherent active imager in [8] has only one transceiver based on FMCW submillimeter
wave radar. The image is formed by actuating a subreflector in an offset reflector system.
Effort to combine an array of a few transceivers into the imager is described in [45].

2. 3. 1 Focal plane arrays 

A focal plane array (FPA) is depicted in Figure 2 3 b). There, the focusing element is
stationary and each receiver corresponds to a pixel in the image. FPA is directly adapted
from the conventional camera technology, and it has been applied especially in
incoherent passive imaging at millimeter waves [47]. Passive submillimeter wave
imagers can have pixel count from thousands to tens of thousands. The system described
in [48] has a linear array of 128 bolometers and that in [32] has 20 bolometers in a circular
arrangement at the focal plane. Those imagers are combinations of the scanned and FPA
designs, since both of the systems use dedicated fast rotating mirrors to deviate the
ensemble of detector beams across the field of view (FoV). A 700 1100 GHz FPA with
1024 power detectors has been described in [49], [50]. The FPA is located on the back side
of a 15 mm hyper hemispherical silicon lens and the detectors are fabricated based on the
conventional CMOS technology.
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passive imaging. However, coherent narrow band detection of the thermal radiation is
not possible with the achievable sensitivity of current detectors, and use of non focused
arrays is limited to coherent active systems. Omitting the focusing elements is an
advantage, as focusing to the target is no longer fixed by the quasioptical design, but it
can be chosen in the computational process. The focusing algorithms are based on
Fourier techniques, such as the plane to plane transform with plane wave spectrum [53],
[I], [II] or the tomographic image reconstruction [54], [55], [56], [57].

In a non focused array, typically an equi spaced array of coherent detectors sample
the field reflected from the target. Also, the elements in the array may be transceivers, so
that the target is illuminated from multiple directions to reduce problems related to
speckle, high specular reflections, and shadowing [37], [53]. For wide band non focused
arrays, it is possible to achieve in range resolution of

(2.7)

where is the speed of light, is the bandwidth of a frequency swept system, and is
the pulse width in a pulsed system. The FoV of non focused array depends on the
element spacing and the beamwidth of an individual element. A non focused array can
also form, e.g., a cylindrical surface, so that the target is enclosed by the array [58].

The receiver count and spacing in the non focused array is selected so that a grating
lobe free array factor results [59]. The array factor for a two dimensional array lying in
the x y plane is defined as

(2.8)

where is an amplitude weight, and the directional cosines are and
. Since the exponent function has a period of , the array factor repeats

itself (in dimension) for every

(2.9)

where , is an integer number, and is the array spacing. If , an
array with main beam at would have another beam to . In case of , the
grating lobe appears at for boresight main beam. Typically, the element pattern in
an array is designed so that the grating lobes are suppressed at large angles and sparser
arrays than can be used. In imaging, the required field of view is limited to less
than the half space, and the grating lobe free spacing is

(2.10)

where is the greatest angle on the array from the FoV.

2. 3. 3 Simplifications to non-focused arrays 

As coherent receivers are needed in non focusing arrays, they are more complex than,
e.g., the FPA with direct detectors. The complexity related to the coherent detectors can
be avoided by using an indirect holographic method, where only direct detection
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The saving in cost by using only one transceiver and some benefits of the non focused
array can be combined in a reconfigurable reflectarray. There, an array with phase
shifting elements is used to modulate the incident wave in such a way, that the energy is
reflected and refocused on the target. A lot of reflectarrays are realized with static phase
shifting, up to 1000 GHz in [70]. When the reflection phase of each element in the
reflectarray can be controlled, beam patterns can be created in a rapid fashion. The
benefit of the reflectarray over, e.g., a phased array is that no distributing network, with
likely high loss, is needed in order to feed the elements. The elements are fed
quasioptically from a transceiver. Since only one transceiver is needed, the system is
potentially cost efficient and the reflectarray can directly be a front end of, e.g., an
elaborate radar system. A reconfigurable millimeter wave reflectarray for imaging has
been developed in [71]. There, pin diodes are coupled to microstrip patch antennas so
that when biased the re radiated field has 180° phase shift compared to the non biased
condition. The reflectarray is used in a near real time imaging system.

The millimeter wave reflectarrays are discussed in more detail in Chapter 4, and in
references [IV], [72]. The development work presented here is about static reflectarrays,
but the final goal is to achieve reconfigurability with MEMS based phase shifters [73],
[74]. Also, similar work has been done at submillimeter waves, and those reflectarrays are
characterized in [75].

2. 4 Numerical methods 

The numerical tools used in this work are the numerical computing environment
MATLAB from MathWorks, [76], and the finite element method solver HFSS from Ansys
Corporation, [77]. MATLAB is used for data processing, presenting the experimental
data, and for numerical modeling of the radiation in indirect holographic imaging and
reflectarrays. HFSS is used in full wave simulations and optimization of the reflectarray
antenna and phase shifter structures.

2. 4. 1 Radiation from apertures 

In Chapter 4 and in reference [IV] radiation from apertures of reflectarrays is
considered. The radiation is described by Maxwell’s equations

(2.11)

(2.12)

where and are the electric and magnetic fields, and are the dielectric permittivity
and permeability, is the angular frequency of the time harmonic field, and and are
the electric and magnetic current densities. According to Huygens’ principle, an antenna
can be enclosed by surface , and the radiating antenna structure can be replaced by
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equivalent surface current densities, and , without changing the radiating field. In
calculating the radiating properties of an antenna, the current densities are either solved
from the electromagnetic theory for simple structures, or they are approximated with
numerical methods for complex structures, where closed form expression cannot be
found.

Following the pioneering work by Stratton and Chu [78], the current densities are
induced by the incident electric and magnetic field:

(2.13)

(2.14)

where is the surface normal of . The radiating fields of the antenna are accurately
derived from these current sources. To simplify, either (2.13) or (2.14) can be eliminated,
and the other can be used in calculating the fields. If is an infinite plane, as is
convenient for aperture antennas, the other half space can be filled with either perfect
electric or magnetic conductor. Then, for the electric conductor and for the
magnetic conductor. In case of electric conductor, surface currents become

(2.15)

(2.16)

The electric field outside the plane can be calculated with Green’s function by
integrating:

(2.17)

where is the scalar Green’s function and is the aperture surface differential element.
The scalar Green’s function is

(2.18)

where is location at the observation point and is location in plane . In this work, the
magnetic current density is , i.e., the aperture normal is along the z
axis and the polarization of the electric field is assumed to be along the y axis. The
coordinate system is shown in Figure 2 6, where aperture is used to designate the area
where most of the radiating field originates from, and screen is used to designate the rest
of the plane .
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(2.25)

where and are the x and y components of the wave vector and y polarized field is
considered. When , the solutions represent propagating plane waves, and
when , they represent strongly attenuating solutions. The attenuating
solutions are analogous to the evanescent waves. The “ ” sign in (2.25) is related to
propagation to the direction of the negative z axis and the “ ” sign to the positive axis.
As with Huygens’ principle, propagation is not considered in the direction of the
negative z axis, and “ ” –solution is disregarded. As the solutions of the Helmholtz
equation are separable, each polarization can be solved independently and similarly to
(2.25).

Integrating the superposition of the plane waves gives the electric field in the
Cartesian coordinates:

(2.26)

where is the plane wave spectrum (PWS) of the electric field:

(2.27)

For simplicity, it is assumed that the PWS is calculated at . Integrals (2.26) and
(2.27) have close resemblance to the Fourier transforms, and they are widely used in
describing plane to plane propagation in antenna measurements [82] and imaging [53].

2. 4. 3 Discrete plane wave spectrum 

Fourier optics is favored due to its direct application with the Fast Fourier transform,
and hence efficient calculation. In the numerical implementation, a point sampling
grid over the aperture width and height is assumed. The electric field is defined in
discrete coordinates:

(2.28)

(2.29)

where the spacing is and . The discrete and finite PWS has
spatial frequency spacing of

(2.30)

(2.31)

The transform pair (2.26) and (2.27) becomes

(2.32)
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(2.33)

2. 5 Experimental methods 

2. 5. 1 Near-field range 

The experimental work discussed in Chapters 3, 4, and 5 involves a near field range.
The measurement range consists of a millimeter wave vector network analyzer,
AB Millimètre MVNA 8 350, with millimeter /submillimeter wave extensions, ESA 1 FC
and ESA 2 FC. ESA 1 FC is the transmitter with Gunn diode pumped frequency
multiplier and ESA 2 FC is the receiver with Gunn diode pumped sub harmonic mixer
[83]. The network analyzer is phase locked to a stabilized microwave source.

The vector measurements presented in this thesis are done at 120 GHz, 310 GHz, and
650 GHz. The typical maximum signal to noise ratio (SNR) in these measurements is
60 dB, 54 dB, and 37 dB, respectively. In case of the RCS range in Section 5. 3, the
reflection is re focused to the receiver, and the maximum SNR is 79 and 72 dB at 310 and
650 GHz, respectively. The uncertainty in amplitude and phase due to the electrical noise
is [84]:

(2.34)

(2.35)

and they are listed in Table 2 2. The flange to flange SNR of the network analyzer is
approximately 115 120 dB at 120 and 310 GHz [85], and at least 90 dB at 650 GHz.

Table 2 2. Amplitude and phase uncertainty in near field measurements due to the
electrical noise.

Frequency (GHz) SNR (dB) Uncertainty
Amplitude (dB) Phase (°)

120 60 0.01 0.06
310 54 0.02 0.11
650 37 0.12 0.81

In the measurements presented in Chapters 3, 4, and 5, the receiver is placed on a
planar near field scanner, which carries out a planar raster scan in x y direction. The
planar scanner used in the experiments is the millimeter wave near field scanner NSI
200V–5 5 from Nearfield Systems Inc. [86].

The scanner is intended for millimeter wave measurements, but it is used up to
650 GHz. The mechanical inaccuracies in the scanner result in non planar and non equi
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spaced sampling of the field. High accuracy is important especially in the direction of the
wave propagation since in that case planarity error converts to phase error of the full 360°
per wavelength. The planar wave fronts measured in Section 5. 2 are highly directed and
propagation is strictly confined in to the normal from scan direction. The scanner is
equipped with an active z positioning system that compensates for the error. The
planarity of the scanner is determined with a theodolite measurement, and the position of
the receiver is corrected accordingly. In addition to the real time position correction, the
profile of the scanner after the correction is taken into account in the processing of the
measurement data. The scanner profile after the position correction is measured with a
laser tracker. The laser tracker data are shown in Figure 2 7 a). In addition to the
planarity error, also the x y –position of the receiver is inaccurate and cannot be corrected
reliably. However, the effect of this error does not typically couple as strongly to the
measurement results as that of planarity error. The x position error is shown in
Figure 2 7 b).

In addition to the electrical noise and the mechanical inaccuracies in the planar
scanner, drift and bending of the connecting cables affect especially the phase
measurement accuracy. The drift becomes an issue with long data acquisition times. The
drift affects mostly phase measurement, and it can be compensated by a fast one
dimensional tie scan. The tie scan provides a phase reference across the scanning area,
and the slow two dimensional measurement is compensated based on it [14]. The cable
providing the microwave local oscillator signal to the remote receiver on the moving
planar scanner bends, and introduces phase error due to the change in its electrical
length. Phase error due to bending is counteracted with a real time system measuring the
electrical length of the cable with a pilot signal [87]. In [85], phase error reduction is
reported to be from 85° to less than 5° in a 0.5 m raster scan at 310 GHz, when the pilot
signal correction is applied. The pilot signal correction is used in 310 and 650 GHz quiet
zone measurements presented in Section 5. 2.

a) b)
Figure 2 7. Measured a) z position and b) x position error in the planar scanner.

In near field measurements in Chapter 4, the radiating field is typically measured
with an open ended waveguide as the near field probe. Probe correction is used to
compensate the reduced directivity at high incident angles. The approximate numerical
models for open ended waveguide probe are described in [88] and they have since
become standard models in near field probing [89]. The probe correction is included in
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3 Holographic imaging methods 

The term holography is used to describe a process of storing phase information of a
target wave into an interference pattern, a hologram. The phase information could be
retrieved by applying original reference wave, which was used in recording the
hologram. The idea of holography was invented by Gabor [93], and it was further
developed by Leith and Upatnieks [94]. Later, the term has been used to refer to imaging
methods where the phase information of the target wave is recorded directly, i.e., the
reference wave is the electrical reference associated to base band detection in any phase
coherent radio system. Often, term holographic imaging is used to refer to methods
involving computational focusing by a plane to plane transform with PWS [95], [96].

The imaging method presented in [97], [98], [99], [100], [I], [II], and [III] and discussed
in this chapter follow the original definition of holography as is presented in [93] and
[94]. Here, the method is called indirect holographic imaging, as the phase information is
retrieved from a hologram and not measured directly.

3. 1 Indirect holographic imaging 

Phase retrieval is a technique where the phase of electric field is determined indirectly
from amplitude measurement. Phase retrieval has been widely used in antenna
diagnostics. It is used in situations where direct measurement of phase is not possible or
when the direct phase measurement uncertainty is greater than what is expected from
phase retrieval. The phase of the electric field is typically obtained from multiple
amplitude measurements or by using a reference wave [101], [98]. In work presented
here, phase retrieval is applied in indirect holographic imaging. Without direct
measurement of the phase, the method allows for significantly reduced complexity
compared to, e.g., transceiver arrays.

Figure 3 1 illustrates the geometry of indirect holographic imaging. There, the
aperture of a detector array (scanned receiver is used in experiments) is illuminated with
an offset reference wave . The target is illuminated coherently from the same source at
the same polarization. The back reflected wave, the target wave , forms an interference
pattern with the reference wave at the detector array

(3.1)
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(3.8)

in case of a planar reference wave. With a spherical reference wave, the spectral content
of the reference wave depends on the location of the feed and the size of the hologram.
Generally, the spectral content of a spherical reference wave is over the same spatial
frequency as in case of the planar reference wave. A close up example of a measured
interference pattern and its spatial spectrum are shown in Figure 3 2. The measurement is
carried out by a 2 dimensional raster scan in the x y –plane.

a) b)
Figure 3 2. a) A close up of a 310 GHz interference pattern. Due to offset reference
wave, interference pattern has high spatial frequency component. b) Spatial spectrum
of the interference pattern. The convolution terms of (3.7) are located at spatial
frequency of mm 1.

Finally, the convolution term in (3.7) is computationally band pass filtered and the target
field is retrieved:

(3.9)

where is the inverse Fourier transform. The Fourier domain technique is used in [I]
and [II].

3. 1. 2 Spatial-domain technique 

In [III], the target field is retrieved from hologram without Fourier transforms and
filtering. The method involves additional measurement of the target field power density:

(3.10)

The real part of the target wave can be written as

(3.11)

and inserted in to the interference pattern (3.2):

(3.12)

After shortening and re arranging

(3.13)
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(3.14)

(3.15)

The imaginary part of the target wave can be solved from the quadratic equation (3.15):

(3.16)

The target wave is retrieved by calculating the imaginary and real parts (3.11) and (3.16),
and it is free from the limitations to the reference feed location, since no separation in
spatial frequency domain is needed. The sampling of the hologram must be done
according to the extent of the target, which leads to reduced number of required sample
points compared to the Fourier domain technique. The method is verified with
experimental data at 310 GHz in [III].

3. 1. 3 Holography and compressive sensing 

On axis holography, or Gabor holography, involves zero reference angle, i.e., the feed
illuminating the target is behind it (Figure 3 3). The target is partly transparent and the
reference and target wave originate from the same feed. The advantage of on axis
holography is that the sampling interval is smaller than in case of an offset reference
wave. Disadvantage of on axis holography is that the terms in the spatial spectrum (3.7)
are overlapping and only the component of the reference wave, , can be subtracted
from it directly. In compressive holography presented elsewhere in literature, the target
is retrieved from an on axis hologram [102], [103]. The method involves an algorithm,
which correlates the hologram with diffracted fields from different target planes. The
target contributes only to the plane it lies in, which enables in range resolution. Since the
power density term, , contains no phase information, its contribution to any focus
plane is minimal, i.e., diffraction from any focus plane does not correlate with .
Similarly, the conjugate term , or mirror image, correlates with diffraction from the
negative z axis, and is suppressed from images with . In conventional offset
holography, the targets outside the focus plane appear as a blurred contribution in the
images. In range resolution can only be achieved with frequency swept systems, such as
that in [95]. Compressive on axis holography has been experimentally verified in [61] at
94 GHz. In addition to compressive target retrieval, the sample count was reduced to less
than half of the Nyqvist requirement with only modest reduction in image quality. The
computational burden of the algorithm used in compressive holography is not discussed
in [61]. However, the algorithm is iterative, and especially the retrieval of large images
may be computationally heavy.
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additional error. Also, successful target wave retrieval sets restrictions on the reference
wave incident angle.

3. 1. 5. 1 Error due to reference feed position 

The error between the actual and modeled reference feed position, ( ),
leads to an erroneous target wave:

(3.17)

where is the modeled reference wave:

(3.18)

and the target wave becomes

(3.19)

where is the phase error due to modelled reference wave:

(3.20)

Figure 3 5 shows the normalized phase error resulting from 3 error in the modeled
location of the reference feed in case of the geometry in the experiment in [I]. The error is
normalized to the center of the hologram, since a constant phase error does not affect the
image. The phase errors are slightly curved tilted surfaces. Depending whether the feed
is dislocated in x , y , or z coordinate, the tilt is 227°, 428°, and 210°, respectively. The
curvature of the surfaces results in deviation from plane by 27°, 29°, and 12°, respectively.
As the phase error is mainly planar, the error in the reference wave model leads to
mainly a shift in the apparent position of the target instead of loss in the image quality
otherwise. As such, the indirect holographic method is robust against the errors due to
misalignment of the reference feed, and if needed, the position of the feed can be
recalibrated with, e.g., a point like calibration target.

a) b) c)
Figure 3 5. The target wave phase error. The error to the actual reference feed location
is 3 in a) x , b) y , and c) z coordinate.
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3. 1. 5. 2 Restrictions on the reference wave 

In offset holography, a sufficiently large reference angle is needed for successful
band pass filtering of the target wave [94]. The critical wave number related to the
reference angle is

(3.21)

where and are the bandwidth of the target and reference wave. The bandwidth of
the target is

(3.22)

where and are the dimensions of the hologram and target and is the distance
from the hologram to the target. A planar reference wave is used in [98], [99], and
approaches zeros. The spherical reference wave has significant bandwidth:

(3.23)

From (3.21) (3.23), it results that the greater the bandwidths, the greater the critical
wavenumber is. As a consequence, the closer to the hologram the target and reference
feed are, the greater reference angle is needed. Also, the reference angle increases as the
target and hologram dimensions increase. The condition is limiting both the field of view
and the cross range resolution in indirect holographic imaging, since both hologram and
target size are constrained.

3. 1. 6 Coarse sampling 

The offset reference wave defines the required spatial sampling interval in the
hologram, if Nyqvist sampling is enforced. The sampling criterion of the hologram is
suggested to be relaxed by coarse sampling [104]. There, it is shown that the Nyqvist
sampling is required according to the target wave and not according to the reference
wave. As a result of coarse sampling, the spatial spectrum (3.7) is aliased, but the aliased
content is not overlapping with the convolution terms and target wave retrieval is
possible. In case of a planar reference wave, coarse sampling allows for sample spacing
reduction in ratio of

(3.24)

where is the maximum angular extent of the target. The coarse sampling involves
rather elaborate selection of sampling and limitations to the target geometry, and the
method has not yet been experimentally verified. The requirements for the reference
wave angle do not exist in the spatial domain technique introduced in [III], and there,
sampling of the hologram can be done directly according to the maximum extent of the
target, . Compared to the Fourier domain technique, the sampling requirement is
relaxed by factor in the spatial domain technique.
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Figure 3 7. 310 GHz image of the USAF 1951 resolution test target. The target wave
amplitude is normalized to the maximum at the target distance. The figure is
produced with the color map option “gray” and shading option “interp” in
MATLAB.

3. 2. 2 Point spread function 

The point spread function (PSF) is the spatial impulse response of the imaging system
and/or the computational processing of the image. It describes how a point target appears
in the image. Due to the finite aperture, the PSF follows typically either the sinc or Bessel
function for rectangular or circular apertures, respectively. In passive incoherent
imaging, the PSF is estimated as a Gaussian function [51]. An analogous approach to the
imaging system response can be presented in terms of the radiation properties of an
antenna, such as beamwidth and sidelobe level. However, since imaging is typically a
near field process, antenna terminology is ill suited. Also, rather than in angular domain,
PSF is typically defined in the spatial domain suitable for Fourier optics in the Cartesian
presentation.

3. 2. 2. 1 Slanted-edge method 

The point like targets are difficult to measure due to SNR limitations at millimeter and
submillimeter wave range. In the experiment in [VI], the knife edge target is used to
provide a strong reflection and high SNR image. The slanted edge method provides a
one dimensional estimate of the PSF, the line spread function (LSF). The knife edge is
slightly tilted in order to super sample it (Figure 3 8). The cut over the edge is called the
edge spread function (ESF), and LSF is

LSF ESF (3.25)

where the derivation is taken in the direction of the edge normal in the image plane.
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a) b)
Figure 3 9. Image a) SNR and b) NERD as a function of the system SNR. A mean
(black) of ten Monte Carlo –runs (grey).

3. 3 Summary 

The indirect holographic method is discussed in this chapter. Different methods used
in the holographic imaging are discussed. The experimental work by the author is based
on the Fourier and spatial domain techniques. The methods based on compressive
sensing and coarse sampling are described in the literature [60], [61], [104]. The method
based on a Fourier domain technique is based on full sampling of the interference
pattern, and the target wave is retrieved with numerical band pass filtering of the target
wave. The spatial domain technique circumvents the requirement of Nyqvist sampling of
the reference wave. However, it involves an additional measurement of the target wave
amplitude – thus increasing the data acquisition time. Both Fourier and spatial domain
techniques are verified experimentally at 310 GHz. The Fourier domain technique has
some limitations to the reference wave direction and element spacing in the receiver
array. The spatial domain technique can be used without such limitations, but an
additional measurement is required, leading to longer data acquisition time.

The method based on compressive sensing, [61], is based on a different approach than
the Fourier optics based focusing. There the possible target geometry is correlated with
the measured interference pattern. Since the target wave contributes to propagation from
the target distance, the image can be focused to the wanted distance without distortions
from elsewhere. This is not possible with the Fourier or spatial domain methods.
However, algorithms related to compressive sensing are iterative and possibly
computationally heavy. In coarse sampling, the aliasing of the reference wave is selected
so that the aliased content does not overlap with the target wave. However, coarse
sampling nevertheless involves restrictions on the reference wave.

Finally, the image quality is evaluated in the 310 GHz experiment. Quantitative
metrics are measured by using the slanted edge method. The image resolution with
indirect holographic method is close to the theoretical diffraction limit. Also, the
robustness of the indirect holographic method is assessed with SNR as a parameter in
Monte Carlo –runs. With the experiment presented here, SNR can be as low as 10 20 dB
for adequate image quality.  
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Here, the electrical path length difference through reflectarray elements is
compensated by a phase shift

(4.1)

where the distance from the feed to an element on the reflectarray is

(4.2)

and the distance from the element of the reflectarray to the focus is

(4.3)

In [112] and in most of literature, the phase shift of the reflectarray element is written as

(4.4)

or similarly, where , , and

(4.5)

The phase shift (4.4) only depends on the directional cosines of the focus. In this case, the
reflectarray is focused to the far field. The reflectarray discussed in [IV] is designed for
the center frequency of 120 GHz and it has a diameter of 138 mm. The far field distance
of the RA is about 15 meters. For imaging application, the future reconfigurable
reflectarray will be focused to a near field distance of few meters. The phase shift pattern
of the RA is calculated from (4.1), which also takes into account the distance to the target.

4. 1. 1 Focusing gain 

Focusing gain is used to describe the difference of the two phase shift schemes [75].
The focusing gain is defined as

(4.6)

where and are the electric field power densities when the phase shift is calculated
from (4.1) and (4.4). Figure 4 2 shows the calculated focusing gain and beamwidth up to

7 m, when and , and the phase shift of the far field focused reflectarray
remains constant. Otherwise, the reflectarray is as described in [IV]. In this case, focusing
gain is higher than 15 dB at a close distance to the reflectarray. The focusing gain falls of
rapidly and it is 1 dB at 3.6 meters. At greater distance, the benefit of focusing becomes
minimal.

For the near field focused reflectarray, beamwidth is a linear function of distance,
starting from about near to the reflectarray. In the far field focused case, the
beamwidth changes rapidly in the near field region and converges to the focused beam at
greater distance. The rapid changes in the focusing gain and beamwidth can be described
with the higher order modes of the Gaussian beam propagation [113]. The 3 dB
beamwidth is in the both cases similar from approximately 1.6 meters on. Far /near field
focusing of a reflectarray is discussed also in [71]. There, a reconfigurable 60 GHz
reflectarray is focused to 1.5 5 m.
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a) b)
Figure 4 2. a) Focusing gain of RA focused to near field. b) The 3 dB beamwidth of
focused (solid) and non focused (dashed) RA. The focusing gain and beamwidth are
considered for similar reflectarrays as described in [IV].

4. 2 Discretized reflectarray 

The static reflectarrays presented in [IV] have discrete phase shifting. The discrete
phase shift is chosen, since the final goal of the research is to couple the reflectarray
elements with reconfigurable MEMS phase shifters [72], [74]. The static reflectarrays are
fabricated for testing the radiation characteristics and advising the design of the final
reconfigurable reflectarray, and therefore they have discrete phase shifts. The
quantization step of the phase shift is typically noted as:

(4.7)

where is the number of bits used to control the phase shift. The phase quantization
error due to discretization leads to gain reduction and increase in sidelobe level. The
quantization error is bound to interval

(4.8)

4. 2. 1 Quantization efficiency 

The gain reduction due to quantization error is described with the quantization
efficiency

(4.9)

where is the phase error due to quantization [114]. Figure 4 3 a) shows the quantization
error in case of the 2 bit reflectarray presented in [IV]. The error results in a gain
reduction of 0.9 dB. Typically, reconfigurable reflectarrays are designed for 1 or 2 bit
phase shifters. Experiments with more phase states have been reported, such as that in
[115], although the complexity of an increased number of digital signal lines may
outweigh the slight increase in the reflectarray gain. Figure 4 3 b) shows the calculated
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quantization efficiency with the number of phase shift values from 2 to 9 and in case of
the offset fed geometry described in [IV]. The quantization efficiency is very close to that
presented in [114], when a triangular phase quantization error is assumed. It is calculated
for ideal phase shifters, when the beam is focused to boresight at 3 m distance. The
efficiency depends also on the focusing scenario, and is typically lower when the steering
angle is increased from boresight [116]. As the complexity of the phase shifter increases
along the number of phase shift states, the loss increases also: resistive, dielectric, and
radiation loss in the phase shifter may reduce the efficiency more than could be gained
with increasing the bit count [117], [118].

a) b)
Figure 4 3. a) Phase quantization error in a 2 bit reflectarray. The maximum error is
±45°. b) Gain reduction due to quantized phase shifters for beam focused to boresight.

The gain reduction in the steered beam is due to the power being scattered to
unwanted directions. Figure 4 4 shows beam patterns for an offset fed reflectarray with
continuous, 1 bit, and 2 bit phase shifting. The nature of the unwanted scattering
depends on whether either or both the illuminating and re radiated wave have a
spherical wave front (Figure 4 4 a) or the reflectarray is used to divert a planar wave
(Figure 4 4 b). Planar waves are involved, e.g., when RA is used as a subreflector in a
beam steering antenna system [119], [120]. In that case, the phase error is periodic, and
grating lobe like erroneous beams emerge (Figure 4 4 a). The directions and amplitude of
the erroneous beams depend on the number of phase states in the phase shifter [121]. In
the case of most reflectarrays, the illuminating wave has spherical wave front, and the
phase quantization error is aperiodic across the reflectarray. In this case, the quantization
error results in rise of sidelobe level without high directivity quantization lobes (Figure
4 4 b). As the phase error is not periodic, the radiation into sidelobes is spread into a large
area and the sidelobe level is rather modest compared to that of reflectarrays dealing
with planar wave fronts and directive quantization error lobes.
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a) b)
Figure 4 4. Calculated beam patterns for a) far field and b) near field focused
reflectarray. The azimuth range in b) corresponds to the same field of view as in a).
Continuous (solid), 2 bit (dashed), and 1 bit (dotted) phase shifting are used in the
calculations.

4. 2. 2 Element spacing and specular reflection 

The more phase states there are in the phase shifters, the larger area must be allocated
both for the phase shifter and the signal lines controlling them in a reconfigurable RA. As
the center to center spacing of the elements is increased from half a wavelength, the
grating lobes enter the visible region and a smaller part of the illuminating wave is re
radiated by the elements. The reflectarray elements in this work have spacing of 0.8 , as
space is allocated for the future MEMS based phase shifter and its bias lines. In this case,
the number of the elements is also specified by the parallel work on the high voltage
CMOS circuit controlling the individual elements. The 138 mm reflectarray has
approximately 3700 elements on it. The grating lobes are avoided by limiting the
scanning area as a part of standard design process. The part the illuminating field, which
is not re radiated from the element phase shifter, is reflected from the structures between
the elements, typically from substrate or metallization [112]. Also, if the impedance
matching between the antenna and phase shifter is poor, part of the illuminating power is
reflected from the antenna without being phase shifted [122]. Both of these components
contribute to the specular reflection from the reflectarray [74], [123], [124], [125].

In [126], it was concluded that the specular reflection is small by selecting the element
spacing so that the area occupied by the element is smaller or equals the effective area of
the element antenna. In the work presented in [IV], the element spacing is 2 mm and the
antenna gain is 3, resulting in an effective area of at 120 GHz. The
effective area is 38 % of the area occupied by the element, and the specular reflection
occurs. Figure 4 5 shows the calculated beam pattern at 3 m for the reflectarray. The level
of the specular reflection is 25 dB below the main beam, at similar level than reported in
[126].
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Figure 4 5. Calculated beam pattern for offset fed reflectarray with element spacing of
2 mm and element antenna effective area of . Distance to the RA is 3 m.

4. 2. 3 Reflectarray efficiency 

Similarly to the conventional reflector antenna, the reflectarray antenna efficiency is
defined by aperture illumination efficiency or taper efficiency and spill over efficiency

[112]. In addition to the quantization efficiency, , the specular reflection in the
reflectarray reduces the antenna efficiency. The reflectarray element efficiency is defined
as

(4.10)

where and are the re radiated and specular components of the reflection coefficient
of the reflectarray element [IV]. The efficiency describes how much of the power reflected
from the reflectarray is re radiated from the phase shifter compared to the total power
reflected from the reflectarray. The reflectarray maximum gain can be estimated as

(4.11)

where accounts for the dielectric and resistive loss in the reflectarray. Note that the
reflectarray gain is defined only in the case of far field focusing. In the case of near field
focusing, the far field quantity (4.11) is not well defined and additional contribution from
focusing gain must be taken into account. The reflectarray element efficiency can be
determined from radiation patterns by comparing the levels of the steered beam and the
specular reflection. The theoretical element efficiency is determined with a parametric
simulation in [IV]. There, the reflectarray element is based on a conductor backed
coplanar antenna coupled with an open ended or short circuited stub. As the length of
the stub is increased, the phase of the re radiated wave is decreased according the phase
curve in Figure 4 6 a).
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a) b)
Figure 4 6. a) Simulated phase curve of reflectarray elements. Analytical model
(solid) based on simulation and full wave simulation (dashed). b) Simulated
reflection coefficient (dots) of the reflectarray element in the complex plane. Squares
show the stub lengths used in the fabricated reflectarrays [IV]. The locus of reflection
coefficient is a circle, when the stub length is varied.

In [IV] the efficiency (4.10) is determined from simulation with the software Ansoft
HFSS. There, the reflectarray is idealized as an infinite array of identical elements. The
incident wave used in the simulation is the Floquet mode representing normally incident
plane wave. The generalized scattering matrix of the Floquet port modes is then used to
extract the reflection from the element:

(4.12)

Figure 4 6 b) shows the reflection coefficient in complex plane as the stub length is
varied. The locus of the reflection coefficient is a circle. Its radius equals to and its
center is at distance of from the origin. The re radiated and specular components of
(4.10) are found by least squares fit of a circle to the simulated data. From simulations, it
is found that the efficiency of reflectarrays element varies from 0.22 to 0.68 when the size
of the element is varied [74]. Note that the method to find the efficiency in [IV] applies in
cases, where the specular reflection is nearly constant and only the phase shifted
component is changing. This is not the case with, e.g., reflectarrays with varying sized
patch antennas. In our case, the change in the phase shifter length does not change the
specular reflection significantly. It is expected, that the specular reflection with the
reconfigurable RA elements remains nearly constant as well, since the phase shifter
structure is designed not to radiate.

4. 2. 4 Phase-shift assignment 

In [IV], the different stub configurations are selected so that the desired relative phase
difference occurs in (Case A). In most published works on reflectarrays, such as in
[112], the phase difference is optimized for (Case B). In those works the re radiated and
phase shifted component includes the specular reflection. The different kinds of phase
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shifting are illustrated in Figure 4 7. When efficiency is high, the phase shifts can be
found correctly in both ways.

If the efficiency is small, after a certain limit, the phase shift cannot cover the desired
range in , and a suitable phase shift is no longer available. However, the correct phase
shift is always found for . Figure 4 8 shows the available phase shift in as a function
of the efficiency. Naturally, at higher efficiency than .5 the phase range abruptly
goes to 360°.

a) b)
Figure 4 7. Sketch of reflectarray element phase shift when a) and b) .
Squares show the phase shift assignment scheme used in [IV] (Case A) and crosses
show the phase shifts used, e.g., in [112] (Case B). Only one correct phase shift can be
found in the latter case when .

Figure 4 8. The phase range of .

Figure 4 9 a) shows the mean level of the specular reflection compared to the level of
the steered beam for Case A and B. The mean ranges from to 2 m (see Figure 4 5).
At efficiency of 0.5, the specular reflection level is the same in both of the phase
optimizations scenarios. At higher efficiency, Case B overcomes Case A by 3.6 dB at
maximum. The specular reflection level becomes the same again at efficiency of 1. .
For 0.5, Case B is no longer correct, and the mean level of the specular reflection
becomes higher than that for Case A. The maximum difference is about 3.6 dB. Figure 4 9
b) shows the normalized gain in both cases. The gain for Case A is always higher than
that for Case B. At 0.5, the gain for Case B is 4 dB lower than for Case A. The gain
decrease for Case B results from the unintended amplitude modulation at lower than
unity efficiency. At 0.5, the reflection coefficient varies between 0 and 1. Note
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that the specular reflection is assumed to have zero imaginary part, and two of the
desired phase states lie on the x axis. In a general case the reflectarray element is
designed for any equi spaced configuration of the phase shifts, and not necessarily 0°,
90°, 180°, and 270°. This gives a slightly different result from those presented in Figure
4 9 for Case B, but the trend is similar.

a) b)
Figure 4 9. a) Level of the specular reflection normalized to the steered beam. b)
Normalized gain as a function of the efficiency. Phase optimization on (solid, Case
A) and (dashed, Case B). Dotted line is for the case when the phase range is less
than 360°, and thus correct phase assignment fails.

4. 3 Fabricated reflectarrays 

The reflectarrays in [IV] are realized based on Case A –phase shifting. Three
differently focused prototypes are fabricated. The reflectarray elements are based on a
conductor backed coplanar patch antenna, which was patented by Greiser in 1976 [127].
The properties of the antenna are similar to a microstrip patch antenna [128]. Figure 4 10
shows the simulation model of the antenna. The patch size is 1.23 mm by 0.60 mm, and it
is fed with a CPW line at its edge. Aperture coupled coplanar patch antennas are
suggested to be used due to their easy matching and possibility to design the radiating
and feeding structure separately [129], [130]. However, in the case presented here, the
reflectarray will be fabricated on a silicon wafer with distributed high voltage CMOS
electronics on the other side, leaving only one surface for the millimeter wave
components. The optimal aperture coupled design cannot be used, and both the antenna
and the phase shifter are located on the top metallization of the coplanar structure.

4. 3. 1 Reflectarray element design 

The patch is surrounded by the upper conductor, which is connected to the ground
plane with vias. The substrate between the conductor planes is a 50 m thick layer of
polyimide. Polyimide is chosen, since it allows for deposition of uniform substrate layers
with spin coating [131]. Also, polyimide is suitable for trough substrate vias, since it can
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4. 3. 2 Near-field measurements of reflectarrays 

Three different variations of the reflectarray are characterized in the near field
measurement range. The fabricated reflectarrays are focused to boresight and offset
direction at near field distance (RA#1 and RA#2) as well as to boresight at far field
distance (RA#3).

4. 3. 3 Beam patterns 

The key figures of the measured beam patterns are listed in Table 4 1. The
reflectarrays are found to steer the beams closely as planned and the beamwidth is within
10 % of the theoretical. The results are the first near field beam pattern measurements at
this high frequency for reflectarrays, and demonstrate the feasibility of the polyimide
based coplanar structure for use with the future reconfigurable design.

Table 4 1. Key figures of reflectarray beam patterns. The beam patterns are evaluated
both in x and y directions, separated by “/” [IV].

Simulated, ideal Simulated, curved Measured

RA#1
3 dB BW (mm)
Level of the 1st sidelobes (dB)
Main beam deviation (mm)

58 / 64
21 / 23

58 / 64
19 / 18

58 / 67
15 / 25
2 / 17

RA#2
3 dB BW (mm)
Level of the 1st sidelobes (dB)
Main beam deviation (mm)

62 / 62
19 / 18

62 / 64
18 / 15

61 / 66
16 / 18
14 / 19

RA#3
3 dB BW (mm)
Level of the 1st sidelobes (dB)
Main beam deviation (mm)

60 / 64
13 / 16

60 / 62
16 / 20

62 / 70
12 / 13
2 / 13

After fabrication, it was found out that the reflectarrays were curved due to internal
contraction. The reflectarray goes through five coating curing periods before the
substrate is of the desired thickness. As the fabrication proceeds, the contraction increases
in the substrate layer by layer. The reflectarrays are concave, and their deviation from
planar is up to 320 m, or 89° in the aperture phase. Figure 4 12 shows the measured
reflectarray profile and the resulting phase error across the reflectarray aperture. The
phase error is a least squares fit of a fourth order polynomial surface to the measured
profile, and it is used in calculating the beam patterns. The shape of the reflectarray
partly explains the observed level of the first sidelobes. In case of the reflectarray focused
to far field, the calculated sidelobe level is decreased, since the concave shape introduces
unintended focusing. However, in this case, the measured sidelobe level is not reduced.
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a) b)
Figure 4 12. a) Measured reflectarray shape as depth from the RA aperture. Note the
different scale in the z axis. b) Phase error due to reflectarray curvature. The phase
error is calculated at the reference plane, where the planar reflectarray would be.

4. 3. 4 Aperture field imaging 

In addition to beam pattern measurements, the efficiency of the reflectarrays is
experimentally determined in [IV]. As the phase shifters in the reflectarrays are fixed, the
specular, , and re radiated, , reflection components cannot be found directly. The
reflectarrays are focused to few meters at least, and the specular reflection diverges to
offset direction from the reflectarray. In order to measure both the specular reflection and
the main beam, the measurement area would be several meters in the offset direction
(Figure 4 5). Instead, the efficiency is determined from near field measurement of the
reflectarray. In a typical near field measurement range, the radiating near field is
measured in a plane parallel to the aperture of the antenna [82], [84]. In most cases the
field is measured in a rectangular raster scan over the area, where the radiating field is at
significant level. The specular reflection from the reflectarray in [IV] propagates to an
offset direction at a maximum angle as is shown in Figure 4 13. The scanning area is
located so that both the steered beam to boresight direction and the specular reflection
are covered. The feeding structure allows for measurement distance of 0.6 m, which
results in scanning area of 0.7 m × 0.4 m in [IV].

The tangential component of the measured near field is transformed to the aperture of
the reflectarray with the Fourier transform pair (2.32) and (2.33). This kind of plane to
plane transform has been widely used in diagnostics of large reflector antennas [137],
[138]. For a fair comparison, the near field of the RA is simulated at the same scanning
area as the measurement is done, and the same transform is used to model the aperture
field at the RA surface. As a result, the theoretical and measured aperture fields can be
compared so that unidealities due to spacing and limited scanning area are taken into
account.
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a) b)
Figure 4 15. a) The measured (solid) and simulated (dashed) aperture field amplitude
of the RA. b) The difference of the measured and simulated aperture field phase in x
(solid) and y directions (dashed). The vertical lines show the 20 dB amplitude of the
aperture field. Efficiency of 0.11 is assumed in the simulation.

Similar effort to characterize the reflection at the surface of a RA is described in [139],
[140], [141], and [142]. There, a high resolution probe is used to measure the reflection
phase across the reflectarray. The method allows characterizing the reflectarray element
by element. The disadvantages of the method are possible element probe interaction and
shadowing of the spatially fed reflectarray. The challenges related to the close proximity
of the probe and the elements are avoided in the near field method in this work.

4. 4 Reconfigurable reflectarray 

The open ended and short circuited stubs will be replaced with MEMS based phase
shifters in the reconfigurable reflectarray [72]. The phase shifters are closely related to the
distributed transmission line phase shifter. There, a coplanar line is capacitively loaded
with, e.g., varactor diodes [143] or with MEMS capacitive switches [144], [145]. The
loading slightly changes the propagation constant of the line and introduces the phase
shift. The digital phase shifter at microwave frequency was introduced in [146], where
capacitive MEMS bridges have two distinct states, at the upmost position or against a
thin layer of dielectric on the center line. Compared to the analog designs, advantage of
the digital phase shifter is its stability against noise in the bias line. The MEMS switches
in the reflectarray element have stronger capacitive loading than in the distributed
transmission line. There, the loading impedance of the MEMS switch is tuned so that the
transmission line is shorted in the down state, whereas the line is not disturbed at the
upmost position [147], [148]. The simulated phase shift is shown in Figure 4 16.
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scenarios affect the achievable gain and the level of the specular reflection from the RA.
In case of the compromised condition with the RA element spacing greater than half a
wavelength, the specular reflection is always present, and preferable quantization
scenario must be chosen according to the re radiated reflection from the RA elements
(Case A in Section 4. 2. 4). The specular reflection from the reflectarray decreases its
radiation efficiency since part of the transmitter power is lost. The loss can be taken into
account in the efficiency of the reflectarray, which describes the ratio of the power in the
steered beam and the total power reflected from the RA.

Differently focusing reflectarrays have been fabricated, and they have been
characterized in a near field measurement range. The reflectarrays have been fabricated
based on the conductor backed coplanar technology, which is compatible with
microfabrication technology. When the found unidealities, substrate contraction and
over etching, are taken into account, the performance of the fabricated static RAs is found
to be close to theoretical. The efficiency of the RAs is studied with a method based on
aperture field imaging. By comparing the theoretical model to measured aperture field, it
is possible to estimate the RA efficiency locally on the aperture surface.
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5 Submillimeter-wave holograms 

In compact antenna test ranges and radar cross section ranges, a planar wave front is
needed in order to measure the directivity, gain, or RCS of the device under test (DUT).
RCS measurements have been done in a compact range at millimeter and submillimeter
wavelengths in [149], [150]. Instead of carrying out the measurement at the far field
distance (2.1) from the feeding antenna, DUT is measured at much closer distance by
artificially collimating the wave front.

The dimensions and quality requirements of the quiet zone vary depending on the
application. A hologram based CATR for high gain reflector antennas may require QZ of
several meters in diameter. For accurate antenna measurements, the QZ amplitude and
phase ripple is generally required to be less than 1 dB and 10°, peak to peak [14]. The
holograms considered in the following are suitable for reflectivity measurements of the
order of 100 mm diameter samples. In this work, submillimeter wave holograms are
characterized and used in RCS ranges for radar absorbing material measurements.

In active imaging, the contrast between different materials is due to the differences in
reflectivity. The reflectivity of homogeneous material samples is well known based on
their dielectric properties [52]. However, at submillimeter wavelengths, the surface
roughness and non uniform material properties of every day targets can have significant
effect and their reflectivity must be determined case by case [28]. The hologram based
RCS range is well suited for measuring the reflectivity of general materials, such as
clothing, and it could therefore be used as a tool for studying imaging phenomenology.

5. 1 Design aspects of holograms 

The holograms modulate the amplitude and phase of the incident field in such a
way that the desired wave front emerges. The modulation of the incident field can
take place in transmission through the hologram or in reflection from it. The control of
both the amplitude and phase of is difficult, and the holograms are realized either with
amplitude or phase modulating structures. Amplitude holograms are fabricated by wet
etching on metallized Mylar films, and in practice they can be considered as 2
dimensional structures. Compared to amplitude holograms, optimization and fabrication
of phase holograms is more challenging as they are fabricated as 3 dimensional
structures. In addition to the desired modulation, parasitic amplitude and phase
distortions occur, and their minimization poses an optimization problem [151]. The
advantage of the phase holograms in RCS ranges is their higher efficiency compared to
the amplitude hologram [23].
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ranges of other types, cross polarization level with holograms can be higher. Polarizing
grids have been suggested to reduce the cross polarized level [14].

5. 2. 2 Quiet-zone quality 

The measurement arrangement is as shown in Figure 5 1. A corrugated horn antenna
is used as the feed and the receiver with an open ended waveguide probe is positioned in
the quiet zone at a distance of 1 meter from the hologram surface. The key results from
[V], [151], [153], and [154] are listed in Table 5 1. With both the transmission and
reflection type holograms, the amplitude ripple is close to the expected value. However,
the phase distortions are up to three times larger than expected. The higher phase ripple
is assumed to be due to fabrication errors and the relatively large uncertainty in the phase
measurement in the near field range.

Table 5 1. Key results of simulations and measurements of the phase holograms.

QZ quantity
Transmission type Reflection type

Simulation Measurement Measurement Simulation Measurement

Frequency (GHz) 650 310 310

1 dB width (mm) 100 100 120 100 120 100 120

Amplitude ripple (dB) 2 2 (6) 2 0.5 0.5

Phase ripple (°) 13 29 (50) 10 3 10

X pol level (dB) 28 < 21

Diffraction efficiency (dB) 3.5 4 3 3.6

In amplitude holograms, the modulation of the input wave is always relatively
inefficient, since part of the energy is blocked with the metallized pattern. In phase
holograms, most of the input wave is transmitted and modulated. Transmission type
phase holograms have losses related to the dielectric loss tangent and the mismatch at the
free space/dielectric boundaries. Also, as the transmission type phase hologram is
fabricated on a relatively thick plate of dielectric material, there may be resonant effects
within the material, as well. The reflection type phase hologram is free of the dielectric
loss and resonant effects, and it has highest efficiency reported for beam shaping
holograms. Also, reflection type hologram is convenient for its geometry: both the feed
and the quiet zone are on the same side of the hologram, and the compact range can be
constructed in a small space. With reflection type holograms, the feed can radiate into the
quiet zone either directly or by scattering from the supporting structure of the hologram,
resulting in degraded quiet zone quality. Careful elimination of unwanted scattering is
therefore needed.
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materials are studied for use in a large scale hologram based CATR reported in [20].
When hundreds of square meters of radar absorbing material are used, the cost of the
materials becomes a significant factor in a temporary CATR. Compared to the absorber
especially tailored for submillimeter waves, carpet material is tens of times less
expensive.

The measured reflectivity of the commercial RAM is found to be lowest of the
measured samples. The maximum reflectivity is from 56 to 26 dB at 310 GHz and from
54 to 37 dB at 650 GHz. The commercial absorbers have their maximum reflectivity at
normal incidence. For commercial absorbers with a wedged structure, the absorber
behaves like a diffraction grating, and the maxima occur according to the directions of
Bragg’s diffraction maxima. The maxima occur only when the wedges are parallel to the
rotation axis of the sample, and they are stronger at 310 GHz rather than at 650 GHz.
Since the baseline of the reflectivity is similar at both frequencies, it is suspected that the
wedges appear more aperiodic at 650 GHz due to imperfect fabrication. Also, Bragg’s
maxima are broadened at the higher frequency, suggesting less coherent reflection from
the tips of the wedges. Bragg’s maxima can be seen in Figure 5 4 b) close to the normal
incident angle. The maxima occur with condition

(5.5)

where , wedge spacing is , and is the angle of Bragg’s
maximum defined from the normal of the sample surface. The measured Bragg’s maxima
occur, e.g., at 26.9°, 17.6°, 9.7°, 0°, 8.9°, 17.9°, and 27.4°, which are on average
closer than 0.5° to the theoretical values.

The measured reflectivity of the carpets is found to have a rapid variation of 10 15 dB
as a function of the incidence angle at both frequencies. When the transmittance through
the carpet is low, the maximum reflectivity is 40 and 50 dB at 310 and 650 GHz,
respectively. In case of high transmittance, the reflection from the aluminum plate behind
the sample increases the measured reflectivity.

In addition to measurements at 584 GHz in [158], the reflectivity studies reported here
and in [VI], [VII], [27] are the only off boresight measurements of RAM reflectivity at this
high frequency. The measurements are done in far field conditions, and coherent effects
from periodic structures can therefore be measured. Polarimetric RCS range
measurements for absorbers are reported also in [159] at 160 GHz. There, the absorber
surface is also imaged with synthetic aperture radar. Bistatic reflectivity measurements
have been reported in at millimeter wave in [160], and at submillimeter wave in [161],
[162]. Normal reflectivity of absorbers is studied at submillimeter waves in [163], [164].

5. 3. 3 Measurement dynamic range 

The smallest measurable reflectivity level is limited by the dynamic range in the RCS
range. The dynamic range is defined as the amplitude ratio of the full reflection from the
aluminum plate and the noise floor. The unprocessed maximum SNR is 79 dB and 72 dB
in the 310 GHz and 650 GHz measurements. The maximum SNR in the setup is limited
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by the spillover loss in the hologram illumination, and the two way losses in the beam
splitter and hologram. The maximum SNR in the setup is achieved in a condition, where
the aluminum plate is directed for normal incidence with the quiet zone field. The very
high maximum SNR is possible due to the fact that the free space loss applies only to the
path from the feed to the hologram, and not to the path from the hologram to the target.

The minimum measurable reflectivity level is modeled numerically by calculating the
reflection from (5.2) and (5.3) and adding Gaussian noise to adjust the SNR to the
measured values. The reflectivity error is defined as

(5.6)

where is the modeled reflectivity measurement and is the assumed reflectivity.
Figure 5 5 shows calculated average reflectivity error for the two frequencies. The error
increases to 1 dB at the reflectivity level of 96 and 85 dB, at 310 and 650 GHz. Due to
processing gain, the error is small well below the unprocessed dynamic range of the
measurement.

Figure 5 5. Estimated average error in measured reflectivity level as a function of the
target reflectivity. The curves are from a Monte Carlo –run with 5000 repetitions. The
vertical lines show the unprocessed dynamic range of the measurement system. The
solid line marks the measurement at 650 GHz and the dashed line at 310 GHz.

5. 3. 4 Alignment accuracy 

The reflection from the aluminum plate is highly directive, and even small errors in
the alignment result in significant errors in the calibration of the reflectivity level. The
reflection from a smooth plate varies as

(5.7)

where is the smaller of the radius of the quiet zone or the size of the plate. Figure 5 6
shows the amplitude of the back reflected field as a function of the incidence angle.
Depending on the size of the target and frequency, the amplitude drops 1 dB at an angle
of 0.04° (650 GHz) and 0.10° (310 GHz).
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Figure 5 6. Amplitude of as a function of the incident angle. The amplitude is
calculated using the measured quiet zone and the two plates used in the
measurements at 310 and 650 GHz. The amplitude is shown both for azimuth
(dashed) and elevation (solid). In the 310 GHz case the two coincide, due to the
almost equal beamwidth in the both directions.

Figure 5 7 shows the measured amplitude at 650 GHz when the aluminum plate is
aligned for normal incidence angle. The measurement is repeated for several samples.
The amplitude is a periodic function of z position due to the interference of the two
components in (5.2). The amplitude is very similar between replacements of a new
absorber sample. Figure 5 8 shows the amplitude of reflection from the plate at spatial
frequency of . The results differ 2 dB at maximum. In addition to the alignment error,
the deviation between the samples is caused by drift in the network analyzer. However,
drift is not significant as the absorber sample measurement is immediately followed by
the measurement of the aluminum plate.

Figure 5 7. Repeated measurement of the reflection from the aluminum plate at
normal incidence. The aluminum plate is taken away and put back each time between
the measurements.
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Figure 5 8. The processed reflection from the aluminum plate with normal incidence
angle. The levels differ from each other 2 dB at maximum.

5. 4 Summary 

In this chapter, the submillimeter wave phase holograms are discussed. The
holograms can be used to create a desired wave front from a given input beam. In this
case, planar wave fronts are created from the Gaussian beam radiated by a corrugated
horn antenna. The holograms can be used in a compact antenna or RCS measurement
range. Two types of holograms are studied in this work: a reflection type phase hologram
at 310 GHz and a transmission type phase hologram at 650 GHz. The phase holograms
have excellent efficiency, and they are therefore suitable for RCS measurements.

The hologram based RCS range is used to study the reflectivity of material samples.
There, the sample is placed on an aluminum plate in the quiet zone of the hologram. The
back reflected signal is measured in a radar configuration. The small reflection from the
RAM is separated from the background reflection by modulating it with a translational
movement. The reflectivity measurement is calibrated by a comparison to the full
reflection from an aluminum plate. The misalignment of the plate results to a systematic
error in the reflectivity level. In the experiments presented here, the reflectivity
measurement accuracy is estimated to be better than ±1 dB. The dynamic range of the
reflectivity measurement is excellent due to high SNR and the additional processing gain.

The carpet materials compare well with the tailored commercial absorbers in
reflectivity measurements: some of them reflectivity from 60 to 40 dB. Typically, carpet
absorbers do not exhibit any kind of trend in the reflectivity; rather it is seemingly
random function of the incidence angle. The commercial absorbers have low reflectivity
from 60 to 50 dB, except to the direction of Bragg’s maxima in case of periodic structure
on the RAM. The focus of the reflectivity studies presented here is in radar absorbing
materials for antenna measurements. However, the measurement technique is well suited
also for studying imaging phenomenology at submillimeter wavelengths. Especially in
case of every day materials with varying material properties, the reflectivity of the targets
must be experimentally determined.
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6 Bolometers in submillimeter-wave imaging 

Bolometers have been used for power detection across the electromagnetic spectrum.
The pioneering work on bolometers took place in late 1870’s, when Langley observed
resistance change in blackened platinum wires due to absorbed radiation. Since then, the
bolometers have attracted a lot of interest as simple power detectors [165]. The
integration time in bolometers is set by the thermal inertia of the device. Before
introduction of the transition edge bolometer (TEB) [166], [167], a typical integration time
was too long for real time applications, such as imaging. TEB is used in a passive
submillimeter wave imaging system [31], [168], [169].

To achieve wide band operation, the bolometers are connected to an equi angular
spiral antenna [170]. The antennas and bolometers are fabricated on a silicon substrate,
and the radiation is coupled to the detector through a silicon substrate lens. The
bolometers are used as detectors in a focal plane array of a near real time imaging
system, and for transition edge operation, they are cooled to cryogenic temperature.

In this chapter, and in [VIII], [171], the bolometers are characterized in room
temperature measurements at 321 782 GHz. The directional patterns of the bolometers
are measured at submillimeter wavelengths. Also, an ad hoc power detector is
characterized.

6. 1 Passive imaging system 

The bolometers are used in a linear FPA in a passive submillimeter wave imaging
system. The FPA has 64 bolometers and the image is focused with a spherical mirror. In
order to have a compact system, the quasioptics is folded with planar mirrors. A
photograph of the system, sketch of the quasioptics, and a video snapshot are shown in
Figure 6 1. The beams for each bolometer are rotated in the FoV so that approximately
10000 pixels result in the final image at up to 10 Hz frame rate. The rotation of the beams
is realized with a conical scanner [172]. The camera has a 8 m stand off range and
2 × 4 m2 FoV with better than 3 cm cross range resolution [31], [173]. The NEP in the
video rate images is 0.6 K. An improved system with a 128 element FPA is described in
[48]. A concept of a 186 element FPA with bolometers tuned for three different sub bands
is presented in [174].
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Figure 6 5. The change in the bolometer resistivity as a function of DC biasing power.
Seven bolometers in one module are measured at room temperature.

6. 3 Beam-pattern measurements 

The directional patterns of the bolometers are measured in the power measurement
range described in Section 2. 5. 2. The modules are placed on an azimuth elevation
scanner so that the center of rotation coincides with the bolometer being characterized.
Two separate modules are used in the measurements.

The beam patterns are measured from 321 to 782 GHz, with 2 dimensional
measurements at selected frequencies and a frequency sweep for one dimensional beam
pattern cuts [VIII]. Table 6 1 lists the measured 3 dB beamwidth and dynamic range at
selected frequencies. When normalized with factor , the beamwidth ranges from 0.85
to 1.20. This indicates that the beamwidth is not only according to the size of the free
aperture of the lens, but also the structure surrounding the lens affects the beam patterns.
The theoretical beamwidth for an uniformly illuminated circular aperture is .

Table 6 1. The beamwidth and dynamic range of the measurement at selected
frequencies for a central bolometer in the module.

Frequency (GHz) Beamwidth (°) Normalized beamwidth ( ) Dynamic range (dB)

321 25.3 0.85 13

400 20.9 0.88 15

654 17.5 1.20 25

782 12.2 1.00 17

The trend of the beamwidth is measured in a frequency sweep from 321 to 500 GHz.
The azimuth cut is measured at 19 different frequency points, and the beamwidth is
determined for each cut. A function inversely proportional to the frequency is fitted to
the measured beamwidth, and it results in a beamwidth frequency –relation
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(6.5)

Similar trend in results are obtained also in [180] with slightly different bolometers.
There, the lens diameter is 4 mm, and the measurement frequencies are 95, 238, and 650
GHz. The normalized beamwidth for those bolometers ranges from 0.52 to 1.00 as the
frequency increases.

6. 3. 1 Bolometer-to-bolometer variation 

The bolometers and lenses are intended to be centered. However, due to mechanical
inaccuracy in assembling the bolometers, unintended beam steering occurs. The
bolometer lens misalignment can be approximated by Snell’s law

(6.6)

where is the height of the lens and is the offset angle from boresight [177]. Figure
6 6 a) shows the measured main beam directions. The offset angle can be up to 7° from
the boresight, corresponding to misalignment of 47 m. The beam offset occurs
systematically for each bolometer in one module: the variation of the offset angle for
different beams from one module is less than 3°. The alignment of the lens is made easier
by etching a shallow pit to the substrate. However, for practical reasons, the pit must be
larger than the lens, which leaves possibility for misalignment.

The amplitude ratio between the bolometer main beams in a single module is shown
in Figure 6 6 b). The measured main beam amplitude varies up to 2.2 dB peak to peak.
The main beam amplitude corresponds to the amplitude measured in directions shown
in Figure 6 6 a).

a) b)

Figure 6 6. a) Main beam directions for bolometers in two different modules. Seven
bolometers are characterized from one module (squares) and four from another
(diamonds). b) Main beam amplitude ratio between seven bolometers in a single
module. The amplitude is normalized to bolometer #1.
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6. 3. 2 Measurement accuracy 

The measurement of the beam pattern is repeated for a single bolometer at 779 GHz.
The measurements are separate so that the bolometer module is taken apart from and put
back to the measurement setup between the measurements. The difference between the
two beam pattern measurements is less than 0.5 dB down to the 10 dB level of the
measured pattern, as is shown in Figure 6 7.

Figure 6 7. Difference of two beam pattern measurements for a central bolometer in a
single module. The vertical lines mark the 10 dB level in the beam pattern.

6. 4 Ad hoc detector for submillimeter waves 

In addition to bolometers, commercial mid infrared detectors are studied for use in
power detection [IX]. The detectors are originally intended for passive infrared (PIR)
applications, such as motion detection at wavelengths of 5 15 m. Few publications have
pointed out the suitability of infrared detectors for submillimeter wave detection, e.g.,
[181], [182], [183], [184]. The detectors are based on pyro or thermoelectric effects.

6. 4. 1 Pyroelectric power detector 

In this work, the pyroelectric detector is compared with two commercial power
meters and room temperature microbolometers. A pyroelectric detector Murata IRA
E700ST0 is studied [185]. The detector consists of pyroelectric material placed between
the capacitor plates. The electrical potential across the capacitor changes on temperature
change, so the detector is AC coupled and can be used to detect chopped power. The
pyroelectric detectors tailored for submillimeter wave detection have the same principle
of operation as the infrared detectors [186], [187]. The detectors differ only for their
window materials and the absorbing properties. The operation principle and a
photograph of the pyroelectric detector are shown in Figure 6 8.
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6. 5 Summary 

In this chapter, antenna coupled microbolometers are studied. The bolometers are
used in the focal plane array of a passive submillimeter wave imaging system. When
cooled to cryogenic temperature, the bolometers operate in the transition edge mode.
Then, the bolometers become extremely sensitive power detectors. The bolometers are
fabricated on a silicon substrate, and the power is coupled to them through a substrate
lens and a wide band antenna.

The characterization reported here is made at room temperature. The beam patterns
of the bolometers are measured at 321 782 GHz. Compared to the measurements made
elsewhere with substrate lens antennas [180], similar behavior is observed. Due to the
compact structure of the substrate lens and the module housing it, the beam patterns
deviate from the known behavior at the low end of the frequency range. Also,
measurement accuracy as well as the deviations due to fabrication and assembly is
studied with repetitive measurements. The measurement of the beam pattern is repeated
with differences less than 0.5 dB in amplitude.

Finally, an ad hoc power detector is characterized: a mid infrared detector is
compared to commercial power detectors at submillimeter waves. It is concluded that the
detector is well suited to, at least, power indication purposes.
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7 Summary of the publications 

7. 1 Indirect holographic imaging 

In [I], the indirect holographic method is experimentally verified at 310 GHz for the
first time. The experimental setup consists of a network analyzer, and hologram
measurements are carried out as raster scans with a planar near field scanner. A spherical
reference wave is illuminating the hologram from an offset angle. In [II], methods for
evaluating the image quality at submillimeter waves are introduced and tested with the
indirect holographic imaging experiment. Standardized test targets are used to evaluate
the point spread function and the image signal to noise ratio. In [III], the indirect
holographic method is developed further by the spatial domain –technique to retrieve
the target wave. There, the indirect holographic method is no longer restricted by the
reference wave incident angle.

7. 2 Reflectarrays 

Millimeter wave reflectarrays are discussed in [IV]. The reflectarrays are intended for
a millimeter wave imaging application. The reflectarray element design is described.
Three reflectarrays are fabricated and they are tested in the near field measurement
range. In addition to the beam pattern measurements, also the aperture field of the
reflectarrays is imaged. Aperture field imaging allows for estimating the reflectarray
efficiency, which is an important quantity especially for reflectarrays with element
spacing larger than half a wavelength.

The measured performance of the reflectarrays is close to the simulation, when the
observed fabrication errors are taken into account. The reflectarrays are fabricated on a
polymer substrate and they are based on the conductor backed coplanar structures. The
fabrication process and materials are suitable for the future development of the
reconfigurable reflectarray, and the static reflectarrays characterized are used as an
engineering advice.

7. 3 Submillimeter-wave holograms and applications 

In [V], the performance of a reflection type phase hologram is characterized. In order
to verify the performance of the fabricated hologram, the quiet zone amplitude and
phase is measured in a near field measurement range. The holograms are suitable for
compact radar cross section measurements due to their excellent efficiency.
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In [VI] and [VII], the reflectivity of different radar absorbing materials is studied. The
reflectivity is measured in a hologram based compact RCS measurement. The results of
the measurements are used to provide information on low cost absorbing materials at
submillimeter waves. A full scale compact antenna test range measurement campaign
has been carried out with a carpet material as RAM [20].

7. 4 Bolometers in submillimeter-wave imaging 

In [VIII], antenna coupled microbolometers are characterized in an antenna
measurement range. The beam patterns of the detector are measured at point frequencies
across the submillimeter wave band in order to find out the behavior of the beamwidth
as a function of frequency. The relatively simple detectors are fabricated lithographically,
and their performance might be degraded due to fabrication errors. The results of the
measurement improve the understanding of, e.g., effect of fabrication tolerances to the
main beam direction and especially the behavior of the beam patterns, when the lens size
is comparable to the wavelength.

In [IX], a commercial infrared detector based on the pyroelectric effect is characterized
at submillimeter waves. The beam pattern measurements are done in the power
measurement range at point frequencies from 625 to 814 GHz. The pyroelectric detector is
compared to dedicated power meters, and its noise equivalent power and sensitivity is
estimated by comparing its response to that of a Golay cell. It is found that the detector
has reasonable agreement with the response of the Golay cell. The results from this
publication indicate that this kind of ad hoc power detector could be very useful for
uncalibrated power measurement.
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8 Conclusions and future work 

This doctoral thesis focuses on millimeter and submillimeter wave imaging. Also,
partly overlapping with the field of imaging, the thesis discusses on material reflectivity
studies and power detector characterization. The thesis is based on the research work
reported in publications [I] [IX]. The scientific background, findings made by the author,
and comparative review of the achieved results are summarized in Chapters 1 7.

Millimeter and submillimeter wave imaging has been a subject of intensive research
since the discovery of its usefulness for Earth science and radio astronomy decades ago.
Later, due to progress mainly in semiconductor technology, commercial millimeter wave
applications have emerged and they are breaking through to large scale use. At the high
end of millimeter waves and at submillimeter waves, imaging is one of the most
prospective applications. The propagation in that wavelength range is ray like, and high
resolution imaging is possible with convenient aperture size. In addition to the immature
level of technology and unavailability of, e.g., compact transceivers, the high atmospheric
attenuation at submillimeter waves makes the development of applications difficult or
prohibits operation in sea level conditions. To counter act the limitations, this thesis
describes applications and methods, which provide alternatives to some of the
conventional and more complex approaches.

Imaging at millimeter and submillimeter waves is widely applied in a scenario, where
a single state of art receiver or transceiver is focused on the target and image is formed
with pixel by pixel mechanical movement. While the approach is sufficient for imaging
stationary target, it is very difficult to speed up for applications, where near real time
imaging is needed. A few submillimeter wave imaging systems have applied a focal
plane array, where each detector counts for a pixel in the image; the number of detectors
ranges from tens to a hundred. The pixel count is then multiplied by a fast mechanical
scanning. Current submillimeter wave imaging systems are capable of imaging human
sized targets at 10 frames per second. This fast imaging and detector count is currently
possible with direct detectors only, and most near real time imaging systems are based
on the passive detection of the target brightness temperature. In passive imaging, the
detectors need to be wide band due to the low spectral power density at submillimeter
waves. A typical detector in passive submillimeter wave imaging is a superconductive
transition edge bolometer. In this thesis, antenna coupled microbolometers are
characterized in room temperature at 321 782 GHz. Their beam patterns are measured in
a power measurement range at point frequencies across their intended operation band. A
beamwidth frequency relation of 8.5°/THz is found for a 2 mm substrate lens. Also ad
hoc power detectors are compared to commercial submillimeter wave power meters.
They are found to be wide band and their sensitivity at submillimeter waves is sufficient
at least for power indication purposes. A new generation of bolometers for the passive
detection will allow more discrimination in the spectral domain, as the antenna coupled
bolometers are being designed for sub bands also. At the same time, the characterization
of the bolometers in spectral domain becomes important. In the future work,
spectroscopic measurements at cryogenic temperature will be carried out.
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This thesis presents the indirect holographic method as an alternative to the active
imaging scenarios, where coherent detection is provided by heterodyne receivers. In the
holographic method, only direct detection is required and simpler detectors, such as the
bolometers, can be used. Using a non focused array allows for a computational image
focusing, whereas those imaging systems with FPA are focused to fixed distance. In the
thesis, indirect holographic method is verified at 310 GHz. Also, the achieved image
quality is assessed based on the measured point spread function. Standardized image
quality metrics allows for fair comparison between different imaging systems and
methods. With this experimental setup, the resolution is estimated to be 20 30 % lower
than the theoretical. The indirect holographic method is now proven at submillimeter
waves. In the future work, instead of a vector network analyzer, a custom direct detector,
or preferably an array of detectors, is required to verify the estimates of the required link
budget.

A millimeter wave reflectarray shares some of the advantages of a reflector antenna
and a phased array. The feeding of the elements in reflectarrays is done quasioptically
and no loss due to a waveguide network is present. A reconfigurable reflectarray with
electrically controllable phase shifters allows for rapid beam steering. Only one
transceiver is needed with the reflectarray, so the overall system cost is not burdened by
the expensive array technology. The ultimate goal of the development is a reconfigurable
reflectarray with thousands of elements on it. Design of such a device is a compromise
between the designs of the antenna array and the controlling electronics. The static
reflectarrays described in this thesis have a design that is compatible with the future
reconfigurable reflectarray with the MEMS phase shifters. The reflectarrays are based on
conductor backed coplanar structures. The phase shift quantization and element spacing
in the reflectarrays is selected to be compatible with the future control electronics. In this
case, the reflectarray has element spacing greater than half a wavelength and 2 bit phase
shifting. The reflectarray efficiency is reduced especially if the element spacing is large.
The fabricated reflectarrays are characterized in a near field range. When the known
unidealities in the reflectarrays are taken into account, the performance of the
reflectarrays is in line with simulation. The beamwidth of the reflectarray is up to 10 %
broader than that of an ideal reflectarray. Also, the efficiency of the reflectarrays is 0.11
compared to the expected efficiency of 0.54. The reconfigurable reflectarray is under
development. The MEMS based phase shifters are realized at 120 GHz, and their
integration to the reflectarray with the controlling electronics is underway. At the same
time, 1 bit submillimeter wave reflectarrays are being developed, and they are also
envisioned to have integrated MEMS phase shifters.

Submillimeter wave phase holograms have been characterized and applied in a
compact RCS measurement range. The hologram collimates a spherical wave into a quiet
zone, which corresponds to the conditions at the far field distance. The deviations from a
planar wave are measured to be ±1.5 dB and ±5° at 310 GHz and ±3 dB and ±25° at
650 GHz. The hologram at 310 GHz is reflection type, and its measured efficiency is
3.6 dB compared to the simulated e ciency of 3.0 dB. The reflection type phase
hologram has superior efficiency, since the hologram is free of significant amplitude
modulation, dielectric loss, or resonant effects.
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The holograms allow for direct beam pattern or RCS measurements in a short range
without limitation of the atmospheric attenuation. In this thesis, the hologram based RCS
range is used for measuring the reflectivity of radar absorbing materials. In addition to
tailor made submillimeter wave absorbers, some every day materials, such as carpets,
have been found to have low monostatic reflectivity from 60 to 40 dB. The tailor made
radar absorbing material has a typical reflectivity from 60 to 50 dB, but for periodic
materials, the reflectivity can be as high as ca. 30 dB in the directions of Bragg’s maxima.
The use of low cost material in a full scale reflector antenna test campaign reduces the
cost significantly compared to the use of tailor made radar absorbing materials.
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Errata 

Publication I 

In the second paragraph of Section IV it should read “…in equation (6) is seen.”. In
the third paragraph of Section IV it should read “…as is in equation (8).”

In the fourth paragraph of Section II B. it should read “The convolutions in spectrum
(6) are also located around thespatial frequency defined in equation (7). The first two
terms in equation (6) represent the autocorrelations of the fields, and are located around
the origin of the spectrum.”

Publication III 

In the fourth paragraph of Section II, equation (5) is erroneous. A correct formulation
is presented in this thesis in Section 3. 1. 2.
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