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Abstract 
The main theme in this dissertation is convex duality in stochastic and dynamic optimization. 

The analysis is based on the conjugate duality framework of Rockafellar and on the theory of 
convex integral functionals. The dissertation consists of an overview and of three articles. 
 
In the first article we study dynamic stochastic optimization problems parameterized by a 
random variable. Such problems arise in many applications in operations research and 
mathematical finance. We give sufficient conditions for the existence of solutions and the  
absence of a duality gap. Our proof uses extended dynamic programming equations, whose 
validity is established under new relaxed conditions that generalize certain no-arbitrage 
conditions from mathematical finance. 
 
The second article contributes to the theory of integral functionals that is closely connected 
with set-valued analysis. Given a strictly positive measure, we characterize inner 
semicontinuous solid convex-valued mappings for which continuous functions which are 
selections almost everywhere are selections. This class contains continuous mappings as well 
as fully lower semicontinuous closed-valued mappings that arise in variational analysis and 
optimization of integral functionals. The characterization allows for extending existing results 
on convex conjugates of integral functionals on continuous functions. We also give an 
application to integral functionals on left continuous functions of bounded variation. 
 
In the third article we study duality in problems of Bolza over functions of bounded variation. 
We parameterize the problem by a general Borel measure which has direct economic 
interpretation in problems of financial economics. Using our results on conjugates of integral 
functionals, we derive a dual representation for the optimal value function in terms of 
continuous dual arcs and we give conditions for the existence of solutions. Combined with well-
known results on problems of Bolza over absolutely continuous arcs, we obtain optimality 
conditions in terms of extended Hamiltonian conditions. 
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1. Introduction

Convex duality is deep-rooted in stochastic and dynamic optimization.

Dualization of a given problem often leads to new insights, computational

techniques and optimality conditions. For instance one obtains in math-

ematical finance pricing formulas for financial instruments and charac-

terizations of different types of no-arbitrage conditions. In dynamic opti-

mization and mechanics, duality leads to optimality conditions in terms

of Euler-Lagrange equations and Hamiltonian systems.

This thesis builds on the conjugate duality framework of Rockafellar and

on the theory of convex integral functionals. Publication I studies stochas-

tic optimization problems in discrete-time, Publication II contributes to

the theory of integral functionals and Publication III addresses dynamic

optimization problems in continuous time.

The analysis of Publication I is motivated by applications from math-

ematical finance, where convexity appears naturally in market models

as well as risk preferences. We obtain stochastic dynamic programming

equations under new relaxed conditions. These are used to give sufficient

conditions for the existence of solutions and the closedness of the value

function. The conditions subsume various no-arbitrage conditions used in

mathematical finance.

The theory integral functionals is closely connected with set-valued anal-

ysis which is an integral part of modern variational analysis and opti-

mization [2, 3, 12, 36]. In Publication II we give new results on continu-

ous selections of set-valued mappings which we use to generalize existing

results on conjugates of integral functionals.

The dynamic problems we study are problems of Bolza where an inte-

gral functional of state and velocity together with an end-point functional

are optimized over a given class of trajectories. A problem of Bolza does

not necessarily have a continuous optimal trajectory, while in some appli-

9



Introduction

cations it is more natural to consider discontinuous trajectories to begin

with. Both aspects lead one to consider problems of Bolza over functions

of bounded variations which are studied in Publication III. We apply re-

sults of Publication II so that we get new conditions for the existence of

solutions and the closedness of the value function. Moreover, the results

of Publication II allow for new optimality conditions in terms of a gener-

alized Hamiltonian equation.

We end this introduction by giving a short summary of conjugate duality

and convex integral functionals.

1.1 Conjugate duality

The conjugate duality framework set forth by R.T. Rockafellar around

1970 unifies many other duality frameworks of optimization such as the

linear programming duality, Lagrangian duality and Fenchel duality [31];

see the commentary of [36, Chapter 11] for the history of duality in opti-

mization.

A basic idea in conjugate duality is to parameterize a given optimization

problem. In many cases parameters have natural interpretations, while

in other situations they serve only as perturbations whose effect on the

problem is of interest. To this end, we consider the parameterized primal

problem

minimize f(x, u) over x ∈ X, (Pu)

where f is a jointly convex extended real-valued (R = R∪ {±∞}) function
on X × U known as the parameterized objective function and X and U

are the vector spaces of variables and parameters, respectively. The value

function associated with (Pu) is the extended real-valued convex function

on U defined by

ϕ(u) = inf
x∈X

f(x, u).

In order to dualize (Pu), we assume that U is in separating duality with

a vector space Y with respect to a bilinear form (u, y) �→ 〈u, y〉. The convex

conjugate of ϕ is the extended real-valued convex function on Y defined

by

ϕ∗(y) = sup
u∈U

{〈u, y〉 − ϕ(u)}.

The mapping ϕ �→ ϕ∗ is known as the Legendre-Fenchel transform. When

10
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ϕ is closed1, the biconjugate theorem gives the dual representation

ϕ(u) = sup
y∈Y
{〈u, y〉 − ϕ∗(y)};

see [31, Theorem 5]. This formula is behind many important results, e.g.,

in economics and mathematical finance.

A central object in the conjugate duality framework is the Lagrangian

which is the convex-concave function on X × Y defined by

L(x, y) = inf
u∈M

{f(x, u)− 〈u, y〉}.

We always have

ϕ∗(y) = − inf
x∈X

L(x, y).

In some situations this facilitates the derivation of an expression for ϕ∗.

The Lagrangian is also involved in various optimality conditions. As

usual, we denote the subdifferential of a convex function ϕ at a point ū

by

∂ϕ(ū) = {y ∈ Y | ϕ(ū) + 〈y, u− ū〉 ≤ ϕ(u) ∀u ∈ U}.

If X is in separating duality with another linear space V , then subdiffer-

entials of a convex function on X can be defined analogously. If f is closed

in u and ∂ϕ(0) �= ∅, then x̄ solves (Pu) for u = 0 if and only if there exists ȳ

such that

0 ∈ ∂xL(x̄, ȳ), 0 ∈ ∂y[−L](x̄, ȳ).

Here ∂xL(x̄, ȳ) and ∂y[−L](x̄, ȳ) and denote subdifferentials of x �→ L(x, ȳ)

at x̄ and y �→ −L(x̄, y) at ȳ, respectively. This optimality relation is known

as the (abstract) Kuhn-Tucker condition. For example this leads to Hamil-

tonian conditions in mechanics and to the Pontryagin maximum principle

in optimal control.

As an illustration consider the nonlinear programming problem

minimize f0(x) over x ∈ R
d

subject to fi(x) ≤ 0 i = 1, . . . ,m,

where f0, . . . , fm are real-valued convex functions on R
d. We embed the

problem into the conjugate duality framework so that

f(x, u) =

⎧⎪⎨
⎪⎩
f0(x) if fi(x) ≤ ui, i = 1, . . . ,m,

+∞ otherwise,

1A function is closed if it is lower semicontinuous (lsc) and either proper or a
constant. A function is proper if it never takes the value −∞ and it is finite at
some point.
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where u = (u1, . . . , um) ∈ R
m. The Lagrangian has the expression

L(x, y) =

⎧⎪⎨
⎪⎩
f0(x) + y1f1(x) + · · ·+ ymfm(x) if yi ≥ 0 i = 1, . . . ,m,

−∞ otherwise,

so the Kuhn-Tucker condition can be written as

0 ∈ ∂f0(x̄) + ȳ1∂f1(x̄) + . . . ȳm∂fm(x̄), ȳi ≥ 0, fi(x̄) ≤ 0, ȳifi(x̄) = 0.

If f0, . . . fm are differentiable, then the above conditions take the more

familiar form

∇f0(x̄) + ȳ1∇f1(x̄) + . . . ȳm∇fm(x̄) = 0, ȳi ≥ 0, fi(x̄) ≤ 0, ȳifi(x̄) = 0.

1.2 Integral functionals

Many optimization problems in practice involve with integral function-

als on spaces of measurable functions. Let (T,F , μ) be a measure space,

S be a topological vector space equipped with the Borel σ-algebra and

L0 = L0(Ω,F , μ;S) be the space of equivalence classes of F-measurable

S-valued functions that coincide μ-almost everywhere. Given a jointly

measurable extended real-valued function h on T × S, the corresponding

integral functional Ih : L0 → R is defined by

Ih(u) =

∫
T

ht(ut)dμt,

where Ih is defined as +∞ unless the positive part is integrable. Many

kinds of constraints can be expressed as infinite penalties by allowing h

to be extended-real valued; see e.g. [25] for examples from calculus of

variations and optimal control.

The joint measurability is not sufficient to preserve measurability in

some operations, especially under projections. Therefore, a slightly stronger

property is more appropriate. Let Γ : T ⇒ S be a set-valued mapping, that

is, Γt ⊂ S for every t ∈ T. The mapping Γ is measurable if the preimage

Γ−1(A) := {t ∈ T | Γt ∩ A �= ∅} of every open A ⊂ S is measurable. An

extended real-valued function h on S × T is a convex normal integrand if

the set-valued mapping t �→ {(s, α) ∈ S × R | ht(s) ≤ α} is closed convex-

valued and measurable. The review article [33] contains the fundamental

results on normal integrands, integral functionals and their convex con-

jugates and subdifferentials.
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The formula for the conjugate of an integral functional on a decompos-

able space is used extensively in the analysis of problems of Bolza; see

e.g. [25]. Let S = R
d and let μ be σ-finite, that is, T can be expressed

as a countable union of sets with finite μ-measure. Assume that U ⊂ L0

is a linear space and that U is decomposable in the sense that T can be

expressed as an increasing sequence of measurable sets T
ν such that for

every T
ν , for every bounded measurable u′ : Tν → R

d and for every u ∈ U ,
we have

1Tνu′ + 1T\Tνu ∈ U .

Spaces like Lp-spaces, Orlicz spaces and the space of measurable func-

tions are decomposable.

Assume that U is in separating duality with another vector space Y un-

der the bilinear form

〈u, y〉 =
∫
T

ut · ytdμt,

and that there exists u ∈ U with Ih(u) < ∞. Then the conjugate of Ih :

U → R is given by Ih∗(y), where

h∗t (y) = sup
u∈Rm

{u · y − ht(u)}

is a normal integrand on R
d × T known as the conjugate of h. Moreover,

we have the subdifferential formula

∂Ih(u) = {y ∈ Y | yt ∈ ∂ht(ut) μ-a.e.},

where ∂ht(u) denotes the subdifferential of u �→ ht(u). Likewise, if Y is

decomposable and there exists y ∈ Y with Ih∗(y) <∞, then I∗h∗(u) = Ih(u).

In particular, Ih is lower semicontinuous with respect to any topology com-

patible with the pairing between U and Y.
However, many important spaces, such as the spaces of continuous func-

tions or functions of bounded variation, are not decomposable. Let T be

σ-compact, locally compact Hausdorff space and C0 = C0(T;R
d) be the

space of continuous functions vanishing at infinity. The bilinear form

〈y, θ〉 =
∫
T

ytdθt

puts the space C0 in separating duality with the space of finite regular

R
d-valued Borel measures on T. In [29, Theorem 5] Rockafellar gave con-

ditions under which the conjugate of Ih : C0 → R can be expressed in

terms of the conjugate of h as

Jh∗(θ) =

∫
T

h∗t ((dθ/dμ)t)dμt +

∫
T

(h∗)∞t ((dθ
s/d|θs|)t)d|θs|t,

13
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where θs is the singular part of θ with respect to μ and |θs| denotes the

total variation of θs. Here and in what follows, (h∗t )∞ denotes the recession

function of h∗t . That is, (h∗t )∞ is defined by

(h∗t )
∞(y) = sup

α>0

h∗t (αy + ȳ)− h∗t (ȳ)
α

,

which is independent of ȳ ∈ domh∗t := {y ∈ R
d | h∗t (y) < ∞}; see [26,

Chapter 8]. Rockafellar has applied [29, Theorem 5] to problems of Bolza

over functions of bounded variation. More results for integral functionals

on non-decomposable spaces can be found, e.g., from [11].

14



2. Summary of results

Publication I: Stochastic programs without duality gaps

Let (Ω,F , P ) be a complete probability space with a filtration (Ft)
T
t=0 (an

increasing sequence of sub-sigma-algebras of F). We consider the stochas-

tic optimization problem

minimize Ef(x(ω), u(ω), ω) over x ∈ N , (Pu)

where, for given integers nt and m,

N = {(xt)Tt=0 |xt ∈ L0(Ω,Ft, P ;R
nt)},

u ∈ L0(Ω,F , P ;Rm) and f is a convex normal integrand on R
n × R

m × Ω,

where n = n0 + . . . + nT . We refer to [22] for a series of examples how

various problems in operations research and mathematical finance fit into

the framework of normal integrands and integral functionals, and to [23]

and references therein for a more comprehensive introduction to various

aspects of convexity in financial applications.

The first main result is about dynamic programming recursion which

is one of the main principles in dynamic optimization; see e.g. [5] or [6].

We show that in the convex case the inf-compactness assumption made

in both [16] and [35] can be replaced by a weaker condition on the di-

rections of recession of the normal integrand. This condition extends the

no-arbitrage condition from mathematical finance.

Since the parameter u is irrelevant in the dynamic programming recur-

sion, we simplify the notation by defining

h(x, ω) = f(x, u(ω), ω).

We use the notation xt = (x0, . . . , xt) and define extended real-valued func-

15



Summary of results

tions ht, h̃t : Rn0+···+nt × Ω→ R recursively for t = T, . . . , 0 by

h̃T = h,

ht = Eth̃t,

h̃t−1(xt−1, ω) = inf
xt∈Rnt

ht(x
t−1, xt, ω),

(2.1)

where Eth̃t denotes the Ft-conditional expectation of h̃t; see [7, 12, 14,

37, 38] for the existence and uniqueness results for conditional normal

integrands.

Theorem 1 Assume that h has an integrable lower bound and that

Nt(ω) = {xt ∈ R
nt |h∞t (xt, ω) ≤ 0, xt−1 = 0}

is linear-valued for t = T, . . . , 0. The functions ht are then well-defined

normal integrands and we have for every x ∈ N that

Eht(xt(ω), ω) ≥ inf (Pu) t = 0, . . . , T. (2.2)

Optimal solutions for

minimizeEh(x(ω), ω) over x ∈ N

exist and they are characterized by the condition

xt(ω) ∈ argmin
xt

ht(x
t−1(ω), xt, ω) P -a.s. t = 0, . . . , T,

which is equivalent to having equalities in (2.2). Moreover, there is an

optimal solution x ∈ N such that xt ⊥ Nt for every t = 0, . . . , T .

The main result of Publication I is the following theorem. We assume

that U ⊂ L0(Ω, F, P ;Rm) and Y ⊂ L0(Ω, F, P ;Rm) are decomposable spaces

in separating duality with respect to

〈u, y〉 = Eu(ω) · y(ω).

Theorem 2 Assume that there is a y ∈ Y and an m ∈ L1(Ω,F , P ) such
that for P -almost every ω

f(x, u, ω) ≥ u · y(ω) +m(ω) ∀(x, u) ∈ R
n × R

m

and that {x ∈ N| f∞(x(ω), 0, ω) ≤ 0 a.s.} is a linear space. Then

ϕ(u) = inf
x∈N

If (x, u)

is lower semicontinuous on U and the infimum is attained for every u ∈ U .

For the superhedging problem in a linear market model, the linearity con-

dition in the above theorem reduces to the no-arbitrage condition. In Pub-

lication I we give an application of the above theorem to illiquid markets.
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Publication II: Continuous essential selections and integral
functionals

Given a set-valued mapping Γ from a topological space T to anotherX and

a measure μ on T, we say that a function y : T→ X is an essential selection

of Γ if yt ∈ Γt μ-almost everywhere. The novel idea is to characterize

a class of set-valued mappings for which continuous essential selections

are selections (y is a selection if yt ∈ Γt for all t). Figure 2.1 illustrates a

situation where y is a continuous essential selection of Γ, but y is not a

selection since yt /∈ Γt.

T

X

yt

t

gph Γ

Figure 2.1. A continuous essential selection

To rule out situations such as in Figure 2.1, a set-valued mapping should

not have irrelevant "vertical gaps" in its graph. On the other hand the set-

valued mapping should not have "vertical boundaries" since such points

can not belong to the graph of a continuous selection. A precise formula-

tion of the characterization requires topological properties of set-valued

mappings. The key concepts are the well-known inner semicontinuity

which does not allow vertical boundaries as in Figure 2.1, and the new

notion of outer regularity in measure which rules out vertical gaps sup-

ported on sets of measure zero.

Let Ht be the neighborhood system of t ∈ T. Given a strictly positive1

countably additive measure μ on the Borel σ-algebra B(T), we defineHμ
t =

{B ∈ B(T) | ∃O ∈ Ht : μ(B ∩O) = μ(O)} and

(μ-liminf Γ)t =
⋂

B∈Hμ#
t

cl(
⋃
t′∈B

Γt′),

where Hμ#
t = {B ∈ B(T) | B ∩ O �= ∅ ∀O ∈ Hμ

t }. We say that Γ is outer

regular in measure or outer μ-regular if

(μ-liminf Γ)t ⊆ cl Γt ∀t.

A topological space is T1 if for every distinct points t and t′ there is an

Ot ⊂ Ht with t′ /∈ Ot. The space is normal if for every disjoint closed

sets B and B′ there are disjoint open sets O and O′ such that B ⊂ O and

1μ is strictly positive if μ(O) > 0 for every nonempty open O.
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Summary of results

B′ ⊂ O′. The space T is perfectly normal if it is normal and every closed set

is a countable intersection of open sets. Recall that T is Lindelöf if every

open cover of T has a countable subcover, and that T is strongly Lindelöf

if every subspace of T is Lindelöf.

The following theorem is our main result on set-valued analysis. The

sets of continuous selections and continuous essential selections of Γ will

be denoted by C(T; Γ) and C(T, μ; Γ), respectively. The mapping Γ is inner

semicontinuous (isc) if Γ−1(A) is an open set for every open A ⊂ X. A

convex-valued Γ is solid if it is closed-valued and int Γt �= ∅ for all t.

Theorem 3 Assume that T is a Lindelöf perfectly normal T1-space. An

inner semicontinuous solid convex Rd-valued mapping Γ is outer μ-regular

if and only if C(T, μ; Γ) = C(T; Γ).

For example, the standard finite-dimensional space, the Wiener space

in stochastic analysis and the real-line equipped with the left half-open

topology which allows for merely left continuous functions in the ordi-

nary sense, are Lindelöf perfectly normal T1-spaces. On the other hand

the class of set-valued mappings which share the above property contains

continuous set-valued mappings as well as, provided that we have a stan-

dard finite dimensional space T, "fully lower semicontinuous" set-valued

mappings introduced in [29].

We apply the above theorem to integral functionals on continuous func-

tions. From now on we assume that T is a Lindelöf perfectly normal T1-

space and that h is a normal integrand on T× R
d. The bilinear form

〈y, θ〉 =
∫
T

ytdθt

puts the spaces Cb and Mb in separating duality. Indeed, it follows from

[9, p.71] that Cb separates the points in Mb, whereas it is evident that Mb

separates the points of Cb.

We denote the relative interior of a set A ⊂ R
d by rintA. The following

result is our main theorem on integral functionals. Recall that

Jh∗(θ) =

∫
T

h∗t ((dθ/dμ)t)dμt +

∫
T

(h∗)∞t ((dθ
s/d|θs|)t)d|θs|t,

Theorem 4 Assume that μ is a σ-finite Radon measure, domh is inner

semicontinuous, dom Jh∗ �= ∅, Cb(T; rint domh) ∩ dom Ih �= ∅ and that for

every y ∈ C(T; rintμ-liminf domh) and for every t there exists Ot ∈ Ht such

that ∫
Ot

|ht(yt)|dμt <∞.
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Summary of results

If domh is outer μ-regular, then Ih and Jh∗ are conjugates of each other. If

int domht �= ∅ for all t and if Ih and Jh∗ are conjugates of each other, then

domh is outer μ-regular.

Given that T ⊆ R
n, the above theorem relaxes the “full lower semicon-

tinuity” condition in [29, Theorem 5] while retaining the same explicit

expression for the conjugate of Ih on continuous functions; see Corollary 1

in Publication II.

Publication III: Duality in convex problems of Bolza over functions of
bounded variation

Problems of Bolza is a general class of problems in the calculus of vari-

ations and optimal control; see [21, Section 6.5] for an account on the

history of the subject. Much as in Rockafellar’s works [25, 28, 30, 32, 34],

we will study convex problems of Bolza in the conjugate duality frame-

work. We extend the results of [30, 32], where trajectories of bounded

variation are also considered, in two directions. First, we relax the con-

tinuity assumptions on the domain of the Hamiltonian using the results

of Publication II on conjugates of convex integral functionals. Second, we

parameterize the problem with a general Borel measure that shifts the

derivative rather than the state. This choice of parameterization is of

interest in financial economics where, e.g., the parameter may represent

endowments and/or liabilities of an economic agent. The relaxed continu-

ity requirements allow discontinuous state constraints both in the primal

and the dual.

Given T > 0, let X be the space of left-continuous functions x : R+ →
R
d of bounded variation such that x is constant after T . The space X

may be identified with R
d ×M where M is the space of Rd-valued Radon

measures on [0, T ]. Indeed, given x ∈ X there is a unique Rd-valued Radon

measure Dx on [0, T ] such that xt = x0 + Dx([0, t)) for all t ∈ [0, T ] and

xt = x0 + Dx([0, T ]) for t > T ; see e.g. [17, Theorem 3.29]. The value of

x ∈ X on (T,∞) will be denoted by xT+.

Given an atomless strictly positive Radon measure μ on [0, T ], a proper2

convex normal integrand K : Rd × R
d × [0, T ] → R and a proper convex

lower semicontinuous function k : Rd × R
d → R, we study the parametric

2An integrand K is proper if Kt is proper for all t.
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Summary of results

optimization problem

minimize JK(x,Dx+ u) + k(x0, xT+) over x ∈ X, (Pu)

where u ∈M and JK : X ×M → R is given by

JK(x, θ) =

∫
Kt(xt, (dθ

a/dμ)t)dμt +

∫
K∞

t (0, (dθs/d|θs|)t)d|θs|t.

Here the sum of finite collection of extended real numbers is defined as

+∞ if any of the terms equals +∞. It follows that JK as well as the

objective in (Pu) are well-defined extended real-valued functions onX×M .

Problems of the form (Pu) with u = 0 extend the more familiar problems

minimize

∫
Kt(xt, ẋt)dμt + k(x0, xT ) over x ∈ AC (PAC)

by allowing for discontinuous trajectories. Here AC is the space of abso-

lutely continuous functions and ẋ denotes the Radon–Nikodym derivative

of Dx with respect to μ. In the context of optimal control, discontinuous

trajectories correspond to impulsive control.

We relax the continuity assumptions made in [30, 32] on the domain of

the associated Hamiltonian

Ht(x, y) = inf
u∈Rd

{Kt(x, u)− u · y}.

The Hamiltonian is convex in x and concave in y. By [36, Proposition

14.45 and Theorem 14.50], (y, t) �→ −Ht(xt, y) is a normal integrand for

every x ∈ X, so the integral functional

IH(x, y) =

∫
Ht(xt, yt)dμ

is thus well defined on X × C. We set IH(x, y) = +∞ unless the positive

part of the integrand is integrable. The function IH is convex in x and

concave in y. The set domHt := dom1Ht × dom2Ht where

dom1Ht = {x ∈ R
d |Ht(x, y) < +∞ ∀y ∈ R

d},

dom2Ht = {y ∈ R
d |Ht(x, y) > −∞ ∀x ∈ R

d}

is known as the domain of Ht. The domain of IH is defined similarly.

We will say that a set-valued mapping S is left-inner semicontinuous (or

left-isc) if it is isc with respect to τl, where τl is generated by sets of the

form {(s, t] | s < t}. Similarly, S is said to be left-outer μ-regular if it is

outer μ-regular with respect to τl.
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Summary of results

The following theorem is one the main results. We define the functions

K̃ and k̃ in terms of K and k as

K̃t(y, v) = K∗
t (v, y)

k̃(ã, b̃) = k∗(ã,−b̃)

and we denote by B(x, r) the open ball with center x ∈ R
d and radius r > 0.

Theorem 5 Assume that

1. t �→ dom1Ht is left-isc and left-outer μ-regular

2. ∅ �= {x ∈ X | ∃r > 0 : B(xt, r) ⊂ dom1Ht ∀t} ⊂ dom1 IH ,

3. t �→ dom2Ht is isc and outer μ-regular

4. {y ∈ C | yt ∈ int dom2Ht ∀t} ⊂ dom2 IH ,

5. there exists a ȳ ∈ dom g ∩AC with ȳt ∈ int dom2Ht for all t,

6. {x | JK∞(x,Dx+ u) + k∞(x0, xT+) ≤ 0} is a linear space.

Then the infimum in (Pu) is attained for every u and

ϕ(u) = sup
y∈C∩X

{〈u, y〉 − JK̃(y,Dy)− k̃(y0, yT )}.

Another main result is about optimality conditions for the problem (Pu)

when u = 0. That is, we will be looking at the problem

minimize

∫
Kt(xt, ẋ

a
t )dμt+

∫
K∞

t (0, ẋst )d|Dxs|t+k(x0, xT+) over x ∈ X, (P)

where ẋa = d(Dxa)/dμ and ẋs = d(Dxs)/d|Dxs|. We associate with (P) the

problem

minimize

∫
K̃t(yt, ẏ

a
t )dμt+

∫
K̃∞

t (0, ẏst )d|Dys|t+̃k(y0, yT ) over y ∈ C ∩X. (D)

For a mapping St : R
d ⇒ R

d with t �→ gphSt closed-valued and measur-

able, and for z ∈ X, we write Dz ∈ S(z) if

żat ∈ St(zt) μ-a.e.,

żst ∈ Ss
t (zt) |Dzs|-a.e.,

where the mapping Ss
t : R

d ⇒ R
d is defined for each t as the graphical in-

ner limit (see [36, Chapter 5]) of the mappings (αSt)(z) := αSt(z) as α↘ 0.

This definition is suggested by [34, Section 14] as an extension of differ-

ential inclusions from absolutely continuous trajectories to trajectories of

bounded variation.

We say that x ∈ X and y ∈ C ∩ X satisfy the generalized Hamiltonian

equation if

D(x, y) ∈ Π∂̃H(x, y),
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Summary of results

where Π(v, u) = (u, v) and

∂̃Ht(x, y) = ∂xHt(x, y)× ∂y[−Ht](x, y).

Since ∂H̃t is maximal monotone, (∂̃H)st equals the normal cone mapping

Ncl domHt of cl domHt; see [36, Example 12.27, Theorem 12.37] and [26,

Theorem 37.4].

When domHt = R
d×R

d, we have Ncl domHt(x, y) = {0}, so feasible trajec-
tories are necessarily absolutely continuous and the generalized Hamilto-

nian equation reduces to an ordinary differential inclusion.

As usual x ∈ X and y ∈ C ∩ X are said to satisfy the transversality

condition if

(y0,−yT ) ∈ ∂k(x0, xT+).

Theorem 6 Assume that t �→ dom1Ht is left-outer μ-regular and that t �→
dom2Ht is outer μ-regular. Then inf(P ) ≥ − inf(D). For inf(P ) = − inf(D)
to hold with attainment at feasible x and y respectively, it is necessary and

sufficient that x and y satisfy the generalized Hamiltonian equation and

the transversality condition.

The conditions of the theorem above generalize those in [32, Theorem 2].

On the other hand, in [32, Theorem 2] both trajectories are allowed to be

discontinuous. As an application of the theorem above, we give conditions

in Theorem 4.2 of Publication III under which x ∈ X attains the infimum

in (P) if and only if it satisfies the generalized Hamiltonian equation and

the transversality condition with some y ∈ AC.
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3. Further investigations

The results in Publication I have many applications in mathematical fi-

nance; see, e.g., [24]. However, it is assumed in the main theorems that

the normal integrand has an integrable lower bound with respect to the

strategies. This rules out expected utility maximization problems with

unbounded utilities that are allowed, e.g., in [20]. Therefore, there cer-

tainly is a motivation to study to what extent the integrable lower bound

condition can be generalized while allowing for a similar analysis as in

Publication I.

In Publication II we introduced outer regularity in measure of set-valued

mappings and analyzed it in sufficient detail in order to apply the concept

to integral functionals. Just like outer and inner semicontinuity are dual

notions in a sense, it is possible to introduce a dual notion to outer regu-

larity in measure by defining that Γ is inner μ-regular if

Γt ⊆ μ-limsupΓt for all t;

see Remark 2 of Publication II. It seems reasonable to use inner μ-regularity

much like local continuity was used in [4] to study arbitrage in non-

semimartingale models.

In Publication III we obtained optimality conditions for problems of

Bolza in terms of a generalized Hamiltonian equation. This is in turn

based on a generalization of a differential inclusion from absolutely con-

tinuous functions to functions of bounded variation. Further analysis of

such inclusions for functions of bounded variation seems a prominent line

of research. On the other hand, another plausible area for applications of

outer regularity in measure could be multi-dimensional generalizations of

problems of Bolza over functions bounded variation which are studied e.g.

in [1]. Indeed, Theorem 3 in Publication II is applicable in such situations,

and Example 2 in Publication II indicates which kind of discontinuities

can be handled using outer regularity in measure. Yet another possibility
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Further investigations

is to apply outer regularity in measure to non-convex problems of Bolza

that are studied, e.g., in [13, 21].

Considering the thesis on the whole, a natural continuation is to study

duality in stochastic optimization in continuous time. For instance many

optimization problems in markets with transaction costs (see [19]) can be

seen as stochastic problems of Bolza over predictable processes of bounded

variation. The combination of the methods in the present publications

gives tools which are well-suited to attack these problems. On the other

hand, already during the 70’s Bismut adapted ideas from conjugate dual-

ity in deterministic problems of Bolza to study optimal stochastic control

in continuous time; see [8]. It would be interesting to combine Bismut’s

ideas with the techniques used in the thesis to study stochastic impulsive

control.
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