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Abstract 
Gaussian processes (GPs) provide a flexible approach to construct probabilistic models for 

Bayesian data analysis. In the Bayesian approach, GPs are used to specify prior assumptions on 
the latent function values that describe the underlying relationships between the explanatory 
variables and the associated target variables. These prior assumptions are combined with 
information from the observations using Bayes' rule. The obtained result is the posterior 
distribution that represents the uncertainty about the latent function values of interest, 
conditioned on the observations and the model assumptions. A challenge with the Bayesian 
approach is that exact inference is analytically intractable to calculate for most GP models used 
in practice. Therefore, approximate methods are needed in order to evaluate the posterior 
distribution and to make predictions for new observations. 

  
This thesis develops methods for approximate Bayesian inference in various modelling 

problems involving GP models. The focus is on efficient ways to form Gaussian posterior 
approximations based on Laplace's method or expectation propagation (EP). The inference for 
the studied GP models is challenging in two aspects. Firstly, observation models are 
generalized in the way that the probability distribution for each observation can depend on 
multiple values of the latent function instead of only one value, or on the derivative values of 
the latent function. Secondly, instead of one prior process, the models can have multiple 
uncorrelated prior processes that are coupled through the observation model. 

  
This thesis presents improvements to approximate Bayesian inference for GP models in 

density estimation, survival analysis, and multiclass classification. We describe Laplace's 
method for a logistic GP model and for a Cox-type survival model constructed from GP priors 
to speed up the inference. We develop a novel nested EP algorithm for multinomial probit GP 
classification that does not require numerical quadratures and scales linearly in the number of 
classes. In addition, we extend the existing methodology proposed for regression and binary 
classification by introducing monotonicity information into a GP model with EP. We 
demonstrate the practical accuracy of the described methods with several experiments and 
apply them to real-life modelling problems. 
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Tiivistelmä 
Gaussiset prosessit (GP) mahdollistavat joustavan lähestymistavan todennäköisyysmallien 

muodostamiseen bayesilaisessa tilastotieteessä. Bayesilaisessa päättelyssä gaussisilla 
prosesseilla voidaan määritellä priorioletuksia latentista funktiosta, jolla mallinnetaan 
selittävien ja ennustettavien muuttujien välistä tuntematonta yhteyttä. Näitä priorioletuksia 
päivitetään havainnoista saatavalla tiedolla Bayesin kaavaa käyttäen. Tuloksena saadaan 
posteriorijakauma, joka esittää tarkasteltavien latentin funktion arvojen epävarmuutta 
ehdollistettuna havainnoille ja mallioletuksille. Bayesilaisen mallinnuksen haasteena on, että 
täsmällinen päättely on useimmille GP-malleille laskennallisesti vaikeaa. Siksi 
posteriorijakauman ja uusien havaintojen ennusteiden laskemisessa joudutaan usein 
käyttämään likimääräisiä menetelmiä. 

  
Tässä väitöskirjassa kehitetään menetelmiä, jotka mahdollistavat likimääräisen bayesilaisen 

päättelyn GP-malleille erilaisissa mallinnusongelmissa. Väitöstyö keskittyy tehokkaisiin 
tapoihin muodostaa gaussisia posteriorijakauma-approksimaatioita käyttäen Laplacen 
menetelmää tai expectation propagation (EP) -algoritmia. Päättelyyn liittyvä laskenta 
tutkittavilla GP-malleilla on haastavaa kahdessa suhteessa. Ensinnäkin havaintomalleja on 
yleistetty siten, että jokaiseen havaintoon liittyvä todennäköisyysjakauma voi riippua latentin 
funktion derivaatan arvosta tai useammasta kuin yhdestä latentin funktion arvosta. Toiseksi 
tutkittavat GP-mallit voivat rakentua yhden prioriprosessin sijaan useammasta 
riippumattomasta prioriprosessista, jotka kytkeytyvät toisiinsa havaintomallin kautta. 

  
Tässä väitöstyössä esitetään menetelmiä likimääräiseen bayesilaiseen päättelyyn GP-

malleille tiheysjakauman estimoinnissa, elinaika-analyysissa sekä usean luokan 
luokitteluongelmassa. Työssä kuvataan Laplacen menetelmä logistiselle GP-mallille sekä GP-
prioreista rakennetulle Coxin elinaikamallille laskennan nopeuttamiseksi. Työssä kehitetään 
multinomi-probit-havaintomallille uudenlainen sisäkkäinen EP-algoritmi, joka ei tarvitse 
numeerisia integrointimenetelmiä toimiakseen, ja jonka laskennallinen rasite kasvaa enintään 
lineaarisesti luokkien lukumäärän suhteen. Lisäksi työssä esitetään regressio- ja 
luokittelumalleille menetelmä, joka mahdollistaa monotonisuustiedon lisäämisen GP-
prioreihin EP-algoritmin avulla. Kuvattujen menetelmien tarkkuutta tutkitaan työssä 
monenlaisien kokeiden avulla ja menetelmiä sovelletaan käytännön mallinnusongelmiin. 
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1. Introduction

Gaussian processes (GPs) are popular methods for analysing data in a

wide range of applications, such as regression and classification (O’Hagan,

1978; Williams and Rasmussen, 1996; MacKay, 1998; Neal, 1998; Williams

and Barber, 1998), density estimation (Leonard, 1978; Tokdar, 2007), di-

mension reduction (Lawrence, 2005), and spatial statistics (Cressie, 1993;

Best et al., 2005). GPs provide a flexible approach to construct models for

making probability-based Bayesian inference from data and computing

predictions for new observations. As an example, nonlinear effects and

interactions between explanatory variables can be modelled with GPs

without explicitly specifying parametric forms for relationships among

the variables.

The Bayesian approach provides a unified framework to express uncer-

tainties as probabilities and to combine information from different sources

(e.g. Bernardo and Smith, 2000; Gelman et al., 2003). In the Bayesian ap-

proach, GPs can be used to specify prior assumptions on the latent func-

tion values that describe the underlying relationships between the ex-

planatory variables and the associated target variables (e.g. Rasmussen

and Williams, 2006). These prior assumptions are combined with infor-

mation from the observations using Bayes’ rule. The obtained result is the

posterior distribution which represents the uncertainty about the latent

function values of interest, conditioned on the observations and model

assumptions. A challenge with the Bayesian approach is that exact infer-

ence is analytically intractable to calculate for most GPmodels of practical

interest. Therefore, approximate methods are needed in order to evaluate

the posterior distribution and to make predictions for new observations.

A general solution to approximate the posterior distribution for GPmod-

els is to use sampling-based stochastic methods (e.g. Neal, 1998). How-

ever, these methods can be slow in practice because the computational
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Introduction

time (in most cases) scales cubically in the number of observations, which

complicates the analysis of large-scale data sets with GPs. An active area

of research in the machine learning community is approximate Bayesian

inference using analytical Gaussian approximations that facilitate the

posterior computations considerably. Especially deterministic methods,

such as Laplace’s approximation (LA, Williams and Barber, 1998), expec-

tation propagation (EP, Minka, 2001b), and variational bounding (Gibbs

and Mackay, 2000) and factorized variational (Csató et al., 2000; Girolami

and Rogers, 2006) methods have been considered for GP models (see, e.g.,

Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008).

This work develops methods for approximate Bayesian inference in var-

ious modelling problems involving GP models. The focus is on efficient

ways to form Gaussian posterior approximations based on LA or EP. The

main objective of this thesis is to develop methodological improvements

to approximate Bayesian inference for GP models in nonlinear regres-

sion, density estimation, survival analysis, and in binary and multiclass

classification. The inference for the studied GP models is challenging in

two aspects. Firstly, observation models are generalized in the way that

the probability distribution for each observation can depend on multiple

values of the latent function instead of only one value, or on the derivative

values of the latent function. Secondly, instead of one prior process, the

models can have multiple uncorrelated prior processes that are coupled

through the observation model.

This thesis consists of Publications I–VI with the following more de-

tailed research aims. In Publication I our objective is to improve the

existing methodology proposed for nonlinear GP regression and binary

classification (e.g. Rasmussen and Williams, 2006) by introducing addi-

tional monotonicity information into a GP model. We develop a method

based on the EP algorithm to approximate a monotonic GP. Publication II

aims to facilitate practical Bayesian inference for a logistic GP density

estimation model (Leonard, 1978) by designing an approximation based

on LA. In Publication III we aim to improve inference for multiclass GP

classification by developing further the EP approximations for the multi-

nomial probit model (Seeger et al., 2006; Girolami and Zhong, 2007). Pub-

lications IV–V are application studies where our objective is on accurate

modelling of time-to-event survival data by considering nonlinear effects

and interdependencies between explanatory variables in order to obtain a

high predictive accuracy. In Publication IV our aim is also to facilitate the
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posterior computations of a Cox-type survival model (Cox, 1972) based on

GP priors by constructing an approximation with the LA method. Finally,

in Publication VI our objective is to develop a unifying software package to

improve practical approximate Bayesian inference with various GP mod-

els.

The rest of this overview part is structured as follows. In Chapter 2,

we review probability models constructed from Gaussian process priors

and provide an overview of models considered in this work. Chapter 3

discusses approximate inference methods and computational approaches

used in this work. These two chapters give the essential background the-

ory for Publications I–VI included in this thesis. Chapter 4 provides brief

summaries of Publications I–VI and Chapter 5 concludes the work.

11
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2. Gaussian Process Models

This section gives an overview of models constructed from Gaussian pro-

cess priors. We begin in Section 2.1 by discussing GPs from a machine

learning point of view. Section 2.2 considers probability models constructed

from GP priors and reviews the Bayesian approach for GP regression and

binary classification. Section 2.3 focuses on GP models where multiple

latent values are associated with each observation and on models based

on multiple prior processes.

2.1 Gaussian Processes

Gaussian processes are flexible nonparametric models to define distribu-

tions directly over functions of one or more input variables (see, for exam-

ple, O’Hagan, 1978; MacKay, 1998; Neal, 1998; Rasmussen and Williams,

2006, for an overview of GPs in the context of machine learning). For-

mally, a Gaussian process is defined to be “a collection of random vari-

ables, any finite number of which have a joint Gaussian distribution”

(Rasmussen and Williams, 2006). A Gaussian process over the latent

function can be written as

f(x) ∼ GP(m(x), κ(x,x′)),

where x is an arbitrary input vector. The process is specified completely

by the second order statistics, that is, by the mean functionm(x) = E[f(x)]

and the covariance function κ(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. Of-

ten, the prior mean function is assumed to be zero (also in Publications I,

III and IV), although non-zero prior mean functions (Publication II) can

be specified (e.g. Rasmussen andWilliams, 2006). The covariance function

defines the smoothness and scale properties of the GP and it is required

to be positive semi-definite. We consider here two particular covariance

13
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functions from literature: a squared exponential covariance and a neural

network covariance.

The squared exponential covariance function is widely applied in ma-

chine learning and also mainly used in Publications I–III. It can be writ-

ten as

κse(x,x
′) = σ2

m exp

(
−1

2

d∑
i=1

ρ−2i (xi − x′i)
2

)
,

where the lengthscale parameters ρ1, . . . , ρd define the correlation lengths

with respect to d input dimensions, and the magnitude parameter σm con-

trols the magnitude of the function. From now on, the covariance function

parameters are denoted with θ and they are called hyperparameters of the

model. The squared exponential function is infinitely differentiable, and

thus it produces smooth sample functions. It is also stationary (invariant

to translations in the input space).

As shown by Neal (1996), in the limit of infinite hidden units a Bayesian

neural network model converges to a Gaussian process. Using this con-

nection, Williams (1998) derived a neural network covariance which cor-

responds to a neural network with an infinite number of hidden units with

specific transfer functions and weight priors. The neural network covari-

ance function is an example of a non-stationary covariance function, and

it is given by

κnn(x,x
′) =

2

π
sin−1

(
2x̃TΣnnx̃

′

(1 + 2x̃TΣnnx̃)(1 + 2x̃′TΣnnx̃
′)

)
,

where x̃ = [1, x1, . . . , xd]
T is an input vector augmented with 1. The diago-

nal matrix Σnn = diag([σ2
0, σ

2
1, . . . , σ

2
d]

T) is the weight prior, where σ2
0 is the

variance for the bias parameter controlling the functions offset from the

origin and σ2
1, . . . , σ

2
d are the variances for the weight parameters.1 The

neural network covariance function can be used for modelling saturating

effects, because of the sigmoidal shapes of the network transfer functions.

We assume a GP model with the neural network covariance in Publica-

tion IV and a multilayer perceptron (MLP) neural network model (e.g.

Neal, 1996) in Publication V. The MLP model has a hierarchical prior

structure for the network weights and biases, but only a finite number of

hidden units. Therefore, the MLP model can be thought to be an approx-

imation for a GP model with the neural network covariance function and

an infinite number of hidden units.
1We use the following notation: diag(a) with a vector argument is a square ma-
trix with a on the main diagonal, and diag(A)with a matrix argument is a column
vector containing the diagonal elements of matrix A.
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The squared exponential and neural network covariance functions are

only two examples of many possible covariance functions. For example,

Rasmussen and Williams (2006, Chapter 4) present a thorough list of al-

ternative covariances, their properties and possible combinations for cre-

ating even a wider class of covariance functions for modelling purposes.

2.2 Bayesian Inference for Gaussian Process Models

Gaussian processes are convenient for defining prior distributions over

functions in a Bayesian framework. We begin by considering probability

models constructed from GP priors with the following hierarchical struc-

ture:

Observation model: y|f ∼
n∏

i=1

p(yi|fi)

GP prior: f(x)|θ ∼ GP (m(x), κ(x,x′|θ))
hyperprior: θ ∼ p(θ),

where the n observations y = [y1, . . . , yn]
T associated with inputs (or, ex-

planatory variables or covariates) X = {xi = [xi,1, . . . , xi,d]
T}ni=1 are as-

sumed to be conditionally independent given a latent function f(x) in

a way that the likelihood p(y|f) =
∏n

i=1 p(yi|fi), where fi = f(xi) and

f = [f1, f2, . . . , fn]
T, factorizes over cases. A prior distribution p(θ) is set

for the hyperparameters of the covariance function, but for now, we as-

sume that the hyperparameters are given and condition the inference on

θ. We return to estimating θ in Section 3.3.

By the definition of a Gaussian process, the GP prior results in a multi-

variate Gaussian distribution for the latent function values evaluated at

X as

p(f |X, θ) = N (f |0,Kf ,f ),

whereKf ,f = K(X,X) is the n×n covariance matrix whose entries depend

on inputs X according to the covariance function. In Bayesian inference,

the posterior distribution for f is obtained by combining the prior distri-

bution and the likelihood using Bayes’ rule:

p(f |X,y, θ) =
p(f |X, θ)p(y|f)

p(y|X, θ)
=
N (f |0,Kf ,f )

p(y|X, θ)

n∏
i=1

p(yi|fi). (2.1)

The posterior distribution (2.1) represents the uncertainty about f , con-

ditioned on the prior assumptions and the observations y. The normal-

ization term, p(y|X, θ) =
∫
p(f |X, θ)p(y|f)df , in Equation (2.1) is known as
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the marginal likelihood, and it is useful for hyperparameter inference as

discussed in Section 3.3.

In most cases, our objective is to compute predictions for latent function

values f∗ (or for new observations y∗) at test points X∗. To proceed with

the Bayesian framework, the prior distribution can be written for training

latent values f and for test latent values f∗ jointly as

p(f , f∗|X,X∗, θ) = N
⎛
⎝
⎡
⎣ f

f∗

⎤
⎦
∣∣∣∣∣0,
⎡
⎣ Kf ,f Kf ,∗

K∗,f K∗,∗

⎤
⎦
⎞
⎠ , (2.2)

where Kf ,∗ defines the covariances between the latent values at train-

ing and test points, and K∗,∗ between the latent values at test points.

Note also that a Gaussian process can be thought to be an infinite di-

mensional multivariate Gaussian distribution (Rasmussen and Williams,

2006). However, in practice computations with GP can be done by focus-

ing only on finite index sets (namely training points and arbitrary test

points). By using the conditioning properties of a multivariate Gaussian

distribution, we can write the conditional distribution for f∗ given f from

Equation (2.2) as

p(f∗|f , X,X∗, θ) = N
(
f∗|K∗,fK−1

f ,f f ,K∗,∗ −K∗,fK−1
f ,f Kf ,∗

)
. (2.3)

By multiplying this conditional distribution with the posterior distribu-

tion p(f |X,y, θ) from Equation (2.1), we obtain the joint posterior (predic-

tive) distribution for f and f∗. According to the Bayesian approach, we

need to integrate over the uncertainty related to the (unobserved) latent

values f , and by marginalizing we obtain the posterior predictive distri-

bution for f∗:

p(f∗|X,y, X∗, θ) =
∫

p(f∗|f , X,X∗, θ)p(f |X,y, θ)df .

If we are interested in the predictive distribution for new observations y∗,

we can integrate over the uncertainty of f∗ as

p(y∗|X,y, X∗, θ) =
∫

p(y∗|f∗)p(f∗|X,y, X∗, θ)df∗,

to obtain the posterior predictive distribution for y∗.

2.2.1 Regression and Binary Classification

If the observation model p(y|f) is Gaussian, the integrals over latent val-

ues f and f∗ required for Bayesian inference can be computed analytically.

An example of such a case is GP regression with Gaussian noise. The ob-

jective in GP regression is to estimate an unknown function f : Rd → R

16



Gaussian Process Models

on an arbitrary test input point x∗, given a training data set D = {X,y}.
An additive Gaussian noise model is assumed between the latent func-

tion and noisy observations as yi = f(xi) + εi, where εi ∼ N (0, σ2) with

the noise variance σ2. To generalize the relation between the input and

output variables outside the finite training data points, we need to make

assumptions about the underlying function. Thus, by assuming a Gaus-

sian process over the latent functions, the prior assumptions about f can

be encoded through the mean and covariance functions of the GP.

For fixed y, we obtain the likelihood

p(y|f , σ) =
n∏

i=1

N (yi|fi, σ2). (2.4)

Because the likelihood (2.4) and the prior (2.2) are both Gaussian, the

predictive distribution for f∗ is also Gaussian and it can be evaluated an-

alytically. By integrating over the uncertainty of latent values f , we obtain

the posterior predictive distribution for f∗ with the mean and covariance

E[f∗|X∗,D, θ] = K∗,f (Kf ,f + σ2In)
−1y

Cov[f∗|X∗,D, θ] = K∗,∗ −K∗,f (Kf ,f + σ2In)
−1Kf ,∗,

where In is an identity matrix of size n and θ includes also the σ param-

eter. The predictive distribution for new observations y∗ can also be com-

puted analytically, and it is Gaussian with the mean E[f∗|X∗,D, θ] and the

covariance Cov[f∗|X∗,D, θ] + σ2Int , where nt is the number of test points.

In most modelling cases, however, the observationmodel is non-Gaussian

and we cannot obtain a closed-form expression for p(f |D, θ). One widely-

studied example of such a generalized case is binary GP classification (e.g.

Williams and Barber, 1998; Rasmussen and Williams, 2006, Chapter 3).

In binary classification problems, the output variable (that is, the class

label) y associated with an input x is discrete, for example y ∈ {−1, 1},
and our objective is to predict the correct class labels for test inputs X∗,

given D.2 In the probabilistic discriminative approach for GP binary clas-

sification (e.g. Rasmussen and Williams, 2006), we have a GP prior for

the latent function which is squashed through the sigmoid function to

construct a model for the class probabilities p(y = 1|f(x)) = σ(f(x)) and

p(y = −1|f(x)) = 1 − p(y = 1|f(x)). As an example, the sigmoid function

can be a symmetric cumulative Gaussian σ(u) = Φ(u) (probit regression),

2Note that y represents output variables in general, and whether it can have
continuous, binary, or some other values depends on the context.
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which results in the likelihood

p(y|f) =
n∏

i=1

Φ(fiyi), (2.5)

where Φ(u) =
∫ u
−∞N (z|0, 1)dz. Another often used sigmoid function is

the logistic response function σ(u) = (1 + exp(−u))−1 (logistic regression)

that can be more robust against outliers than the cumulative Gaussian

function Φ(u) in probit regression (Nickisch and Rasmussen, 2008). By

applying Bayes’ theorem, we can derive the conditional posterior distri-

bution

p(f |D, θ) = 1

Z
N (f |0,Kf ,f )

n∏
i=1

Φ(fiyi), (2.6)

where Z = p(y|X, θ) =
∫ N (f |0,Kf ,f )

∏n
i=1Φ(fiyi)df . Because the like-

lihood (2.5) is non-Gaussian, we cannot obtain a closed-form expression

for the posterior distribution p(f |D, θ). Therefore, to integrate over the

uncertainty of latent values f to obtain predictions for f∗ (and for new ob-

servations y∗), we need to somehow approximate the integration over f .

Approximate methods for inference are discussed in Chapter 3.

In Publication I, we extend GP regression and binary classification to

a more general case by introducing additional monotonicity information

into a GP model. Due to this additional information, the posterior distri-

bution is no longer Gaussian even in the regression case with Gaussian

noise, which is why we must resort to approximate inference (see Sec-

tion 4.1 and Publication I).

2.3 Models of Multiple Latent Values

In the previous section, the GP models had a fully-factorizing likelihood

structure, that is, the distribution for each observation yi depended only

on a single latent value fi (single-latent models), and not on fj �=i. In this

section, we focus on extended GP models where the distribution for each

observation yi depends on multiple latent values f i or on all latent values

f (multi-latent models). Notice that the output variable can be univariate

in these multi-latent models (see, e.g., the model described by Goldberg

et al., 1998). This categorization to single-latent or multi-latent GP mod-

els is also considered in Publication VI. In addition, instead of having a

single GP prior, there can be multiple uncorrelated prior processes that

are coupled through a likelihood function.
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There are several examples of modelling problems involving multi-latent

GP models with either single or multiple output variables. One research

question of increasing interest is how to extend GP regression with a sin-

gle output variable to a scenario of multiple output variables (e.g. Álvarez

and Lawrence, 2011), which is known as co-kriging in the geostatistics

literature (Cressie, 1993, Section 3.2.3). In regression with multiple out-

put variables, it is assumed that the output variables are correlated and

they need to be modelled simultaneously because information can be lost

by modelling them separately with multiple single-output GPs. The fixed

correlations between output variables can be induced by using uncorre-

lated GP priors with a correlated noise process or by constructing differ-

ent correlated prior structures (e.g. Boyle and Frean, 2005; Teh et al.,

2005; Bonilla et al., 2008; Álvarez and Lawrence, 2011; Rasmussen and

Williams, 2006). Note that regression with multiple output variables can

be seen as a special instance of multi-task learning where there are mul-

tiple related prediction problems. Often, a multivariate Gaussian model

with a global noise level is assumed, but there are many other GP-based

models with more general observation models (leading to analytically in-

tractable inference) that can be categorized as multi-latent models. Ex-

amples of such models are heteroscedastic noise models (Goldberg et al.,

1998; Kersting et al., 2007; Lázaro-Gredilla and Titsias, 2011; Mũnoz-

González et al., 2011) and robust regression with a two-component Gaus-

sian mixture model (Naish-Guzman and Holden, 2008), all constructed

from two GP priors that are coupled through an observation model. Het-

eroscedastic regression problems have also been solved by using finite

mixtures (Tresp, 2001) or infinite mixtures (Rasmussen and Ghahramani,

2002) of GP priors. Also, more complex network structures based on GP

priors have been proposed to model dependencies between multiple out-

put variables (Wilson et al., 2012; Damianou and Lawrence, 2013). In ad-

dition to regression, multi-latent GP models are useful for solving other

modelling problems, such as, multiclass classification, where latent val-

ues from multiple processes are associated with each observation (Neal,

1998; Williams and Barber, 1998). Other multi-latent GP models include,

for example, a multinomial model (e.g. Juntunen et al., 2012) or a zero-

inflated negative-binomial model (e.g. Vanhatalo et al., 2013). Publica-

tion VI lists more examples of multi-latent models constructed from GP

priors (see also Vanhatalo et al., 2013).

It is also possible to categorize GP models based on their prior covari-
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ance structure. For example, Seeger et al. (2006) considered models that

are constructed either from a single GP prior (single-process), or from

multiple uncorrelated prior processes that are coupled through the like-

lihood function (multi-process models), and we adopt this same catego-

rization. It should be noted here that uncorrelated prior processes can

be expressed as a single GP prior with a specific hierarchical covariance

function. However, we interpret GP models as multi-process models if

they have uncorrelated non-additive prior processes, because this specific

structure can lead to computational savings (although the posterior pro-

cesses are correlated) as discussed in Chapter 3.

In the rest of this section, we consider in more detail the three exam-

ples of multi-latent GP models from Publications II–IV. We begin in

Section 2.3.1 by giving a brief overview of a logistic Gaussian process

(Leonard, 1978), where the prior distribution is specified over normal-

ized functions, which makes the prior suitable for density estimation (as

also discussed in Publication II). The density model is an example of a

single-process multi-latent GP model where each likelihood term depends

on all latent values. In Section 2.3.2, we consider multiclass GP classifica-

tion with multiple prior processes that are coupled through the likelihood

function (see also Publication III). In Section 2.3.3, we discuss another

multi-process multi-latent model from the field of survival analysis. The

survival model is constructed from two a priori uncorrelated processes to

model time-to-event data in Publication IV.

2.3.1 Logistic Gaussian Processes

In density estimation the objective is to find an estimate for the unknown

density function p(x), based only on the observationsX. In Publication II,

we consider the logistic density transform for the underlying GP prior to

construct prior distributions over densities. By assuming a GP prior over

f(x), the logistic Gaussian process (LGP) in a finite region V of Rd can be

derived as

p(x) =
exp(f(x))∫

V exp(f(s))ds

(Leonard, 1978). The LGP prior provides a convenient way to specify

prior assumptions about the smoothness properties of density estimates

through the covariance structure without restricting to any specific pa-

rameterized form. The logistic density transform constrains the den-

sity p(x) to non-negative and its integral over the bounded space V to one.
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A challenge in inference with LGP is how to solve this integral required

to ensure normalization. In Publication II, we apply a finite-dimensional

approximation by evaluating the integral and the GP prior in a grid as

described by Tokdar (2007). A finite element approach for density esti-

mation is also presented by Griebel and Hegland (2010), and theoreti-

cal studies about the posterior consistency of the LGP density estimation

on a closed bounded interval are examined by Tokdar and Ghosh (2007).

Furthermore, Tokdar (2007) illustrates that by making the grid finer, the

Kullback–Leibler (KL) divergence from the exact posterior to the finite-

dimensional approximation converges to zero.

In Publication II, we discretise the finite space V into ngrid subregions,

and collect the coordinates of the subregions into an ngrid × d matrix X,

where the i’th row denotes the center point of the i’th subregion. We de-

note the number of observations that fall within the i’th subregion with

yi, and all the count observations with an ngrid×1 vector y. By assuming a

regular grid, the overall log-likelihood contribution of the n observations

after this discretisation can be written as

log p(y|f) = yTf − n log

⎛
⎝ngrid∑

j=1

exp(fj)

⎞
⎠ , (2.7)

where f is a column vector of ngrid latent values associated with each

subregion. This likelihood does not factorize over single latent values

fi as each term in the likelihood depends on f due to the normaliza-

tion constraint. We discuss approximate inference methods for this non-

factorizing likelihood in Publication II.

2.3.2 Multiclass Classification

In multiclass classification the challenge is that the target variables have

more than two possible class labels, that is, y ∈ {1, . . . , c}, where c > 2 is

the number of classes. The objective is to predict the class label for a test

input given all training class labels y (a vector of size n) and the corre-

sponding training inputs. Note that although multiclass classification is

possible to implement by using several successive one-vs-rest binary clas-

sifiers, these approaches have troubles, for example, in how to combine

separate binary classification results and how to perform hyperparame-

ter inference (see, e.g., Seeger and Jordan, 2004).

In the literature for multiclass GP classification, the usual assumption

is to use c independent prior processes that are associated with c classes
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(Williams and Barber, 1998; Seeger and Jordan, 2004; Rasmussen and

Williams, 2006; Girolami and Zhong, 2007). Compared to binary classi-

fication in Section 2.2.1, multiclass classification is more challenging be-

cause each target class increases the number of unknown latent values

by n (the number of observations). By assuming uncorrelated zero-mean

GP priors for latent functions associated with different classes, we obtain

a zero-mean Gaussian prior for f =
[
f1
1 , . . . , f

1
n, f

2
1 , . . . , f

2
n, . . . , f

c
1 , . . . , f

c
n

]T
as

p(f |X) = N (f |0,Kf ,f ),

where Kf ,f is a cn × cn block-diagonal covariance matrix with matrices

K1,K2, . . . ,Kc (each of size n × n) on its diagonal (Kj determines the co-

variances between the latent values f j
1 , . . . , f

j
n).

Two common observation models for probabilistic multiclass GP classi-

fication are the softmax (or multinomial logit) model and the multinomial

probit model. The softmax and multinomial probit models are multiclass

generalizations of the logistic and probit models respectively. The softmax

model is given by

p(yi|f i) = exp(fyi
i )∑c

j=1 exp(f
j
i )

(2.8)

(e.g. Neal, 1998; Williams and Barber, 1998). We employ the sofmax model

in Publication III with a GP prior and in Publication V with an MLP neu-

ral network prior. Note that the softmax likelihood is similar to the like-

lihood used for LGP density estimation in a grid (cf. Section 2.3.1). The

multinomial probit model can be written as

p(yi|f i) = Ep(ui)

⎧⎨
⎩

c∏
j=1,j �=yi

Φ(ui + fyi
i − f j

i )

⎫⎬
⎭ , (2.9)

where the auxiliary variable ui is distributed as p(ui) = N (ui|0, 1), and
Φ(u) denotes the cumulative density function of the standard normal dis-

tribution (e.g. Girolami and Zhong, 2007). The multinomial probit model

is applied in Publication III.

Both likelihoods (2.8) and (2.9) leads to an analytically intractable pos-

terior distribution and are examples of a case, where each likelihood term

depends on a vector f i consisting of c-latent values. However, because

of the structure of these likelihood functions, computational savings are

possible to obtain if uncorrelated prior processes are assumed over latent

functions (Williams and Barber, 1998, see also Publication III).
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2.3.3 Models for Survival Analysis

In Publications IV and V, the focus is on survival analysis where the ob-

jective is to model time-to-event data (see, e.g., Ibrahim et al., 2001, for

a Bayesian approach to survival analysis). In Publication IV, we have

time-to-event observations that are possibly right censored. We denote a

survival time with yi and a censoring indicator with δi, where δi = 0 if

the i’th observation is uncensored and δi = 1 if the observation is right

censored. Recall that the hazard function hi(t) gives the instantaneous

rate of failure at time t for individual i. The traditional way to analyse

continuous time-to-event data is to assume the Cox proportional hazard

function

hi(t) = h0(t) exp(x
T
i β),

where the baseline hazard rate h0(t) is unspecified (Cox, 1972). A com-

mon approach is to use linear predictor xT
i β, where β denotes a vector

of regression coefficients and xi contains the observed covariates for the

i’th individual. However, by extending the linear predictor to more gen-

eral forms, we can model for example additive and non-linear effects of

covariates (Kneib, 2006; Martino et al., 2011).

In Publication IV, we consider a similar Cox-type modelling approach

as described recently by Martino et al. (2011). We assume a GP prior over

η(x), and use an extended proportional hazards model

hi(t) = exp(log(h0(t)) + ηi(xi)),

where the linear predictor is replaced with the latent predictor ηi. In

the survival analysis literature, there are many parametric alternatives,

for example exponential, Weibull, log-normal, or Gamma distributions,

to model the baseline hazard function h0(t) (Ibrahim et al., 2001). A

more flexible alternative is obtained by modelling the hazard function as

a piecewise log-constant baseline hazard (e.g. Ibrahim et al., 2001), which

is also assumed in Publication IV. We partition the time axis into T inter-

vals with equal lengths: 0 = s0 < s1 < s2 < . . . < sT , where sT > yi for all

i = 1, . . . , n. In the interval k (where k = 1, . . . , T ), we assume a constant

baseline hazard

h0(t) = λk for t ∈ (sk−1, sk].

For the i’th individual the hazard rate in the k’th time interval can be

written as

hi(t) = exp(fk + ηi(xi)), t ∈ (sk−1, sk],
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where fk = log(λk). To smooth the hazard rate function, we assume an-

other GP prior over f(t). We denote the mean locations of T time intervals

with a vector t = [t1, . . . , tT ]
T. Then, the GP prior results in the Gaussian

distribution

p(f |t) = N (f |0,Kf ,f ),

where f = [f1, . . . , fT ]
T. The matrix Kf ,f = K(t, t) is of size T × T and it

determines the covariance structure between the latent values associated

with the time points. Thus, the joint prior covariance matrix is a block-

diagonal matrix consisting of the matrices Kf ,f and Kη,η (the covariances

between the latent values η = [η1, . . . , ηn]
T associated with the n individ-

uals).

The likelihood contribution for the i’th observation (yi, δi) is assumed to

be

li = hi(yi)
(1−δi) exp

(
−
∫ yi

0
hi(t)dt

)
,

and with the piecewise log-constant assumption for the hazard rate func-

tion, the likelihood contribution leads to

li = [λk exp(ηi)]
(1−δi) exp

⎛
⎝−[(yi − sk−1)λk +

k−1∑
g=1

(sg − sg−1)λg] exp(ηi)

⎞
⎠ ,

(2.10)

where yi ∈ (sk−1, sk] (Ibrahim et al., 2001; Martino et al., 2011). The like-

lihood function couples the two Gaussian processes, and the likelihood

contribution for the i’th observation depends on f and ηi. In Section 4.4,

we discuss approximate inference issues regarding the Cox proportional

hazards model with the GP priors. The Cox proportional hazards model

from Publication IV can be thought to be a Gaussian process extension

of a similar model considered by Martino et al. (2011) who described the

model for latent Gaussian models and implemented the model with Gaus-

sian Markov random field priors. Also, a similar flexible approach for

modelling survival times using penalized splines is shown by Kneib and

Fahrmeir (2007).

The likelihood contribution of a Cox proportional model with the piece-

wise log-constant baseline hazard assumption is possible to express using

the Poisson likelihood (e.g. Laird and Oliver, 1981). This connection was

recently applied by Martino et al. (2011) who expressed the log-likelihood

contribution of a Cox model using the Poisson likelihood with an extended

data set. In this extended Poisson-distributed data representation, k − 1

observations are zero with the means (sg − sg−1)λg and one observation
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is either zero (if the survival time is censored) or one (observed survival

time) with the mean (yi − sk−1)λk. Thus, the likelihood contribution of

Equation (2.10) can be written as a fully-factorizing single-latent Poisson

model. However, this extended representation increases the number of

latent values, which can be challenging with GP priors due to the cubic

computational complexity (see Section 4.4).

In Publication V, we have a special case of time-to-event data where

there are no censored observations. Therefore, we treat the modelling of

time-to-event data in Publication V as a multiclass classification problem

and use the softmax model (2.8). For the latent functions, we assume

an MLP neural network prior with a finite number of hidden units. The

MLP model approximates an infinite neural network GP model, although

the MLP model can have a better generalization ability due to its finite

complexity (Winther, 2001).
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3. Approximate Bayesian Inference

In Bayesian analysis, the posterior distribution expresses the information

about unknown quantities, given the observed data and model assump-

tions. For Gaussian process models, the evaluation of the posterior dis-

tribution or the posterior predictive distribution requires integration over

a high-dimensional space of unknown latent values. Unfortunately, this

integration is in practice analytically intractable if the likelihood func-

tion is non-Gaussian. In order to solve the integration problem, we need

to resort to approximate methods. This chapter presents an overview of

the approximations used in Publications I–VI for Bayesian inference. We

begin in Section 3.1 by reviewing general algorithms to approximate the

posterior distribution of the latent values. Then, in Section 3.2 we discuss

how these algorithms can be tailored to approximate the posterior dis-

tribution in various single-latent and multi-latent cases from Chapter 2.

Finally, in Section 3.3 we discuss briefly marginal likelihood approxima-

tions for model selection.

3.1 Approximate Methods

Numerical sampling is a generic approach to approximate a non-Gaussian

posterior distribution without limiting to deterministic approximations of

simpler forms (e.g. Gelman et al., 2003). Because direct sampling from a

high-dimensional posterior distribution is challenging, stochastic Markov

chain Monte Carlo (MCMC) methods are often used to obtain samples

from the posterior distribution (e.g. Robert and Casella, 2004). In sum-

mary, the idea behind MCMC sampling is to create a Markov chain whose

stationary distribution is the posterior distribution p(f |D, θ), and simulate

values from such aMarkov process long enough, so that the distribution of

the simulated values is close enough to the posterior distribution (Gelman
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et al., 2003). In addition to latent values f , we can also obtain samples

from the posterior distribution of the hyperparameters θ to approximate

the integration over the uncertainty in θ. By using a finite set of simulated

samples representing the posterior distribution, we can compute approx-

imate posterior statistics, such as the mean and the covariance. There

are various MCMC algorithms for generating samples from the posterior

distribution. For example, in Publication II we approximate the posterior

distribution by sampling alternatively from the conditional posterior of

the latent values p(f |D, θ) by using scaled Metropolis–Hastings sampling

(Neal, 1998), and from the conditional posterior of the covariance func-

tion parameters p(θ|f ,D) by using hybrid (or Hamiltonian) Monte Carlo

(HMC, Duane et al., 1987; Neal, 1996). In Publication III, two differ-

ent sampling techniques are used depending on the likelihood: scaled

Metropolis–Hastings sampling for the softmax function (Neal, 1998), and

Gibbs sampling for the multinomial probit function (Girolami and Rogers,

2006). In Publication V, we approximate the integration over the poste-

rior distribution of weight and bias parameters in an MLP model with the

HMC algorithm and hyperparameters with Gibbs sampling, as described

by Neal (1996). Because sampling-based estimates become exact in the

limit of an infinite sample size, sampling techniques are often used as a

gold standard for measuring the performance of other approximations (as

also in Publication III).

A problem with MCMC methods is that they are computationally de-

manding and they can be very slow in a practical sense. Posterior com-

putations for a GP model require the evaluation of the inverse of the co-

variance matrix, which has time complexity O(n3), where n is the number

of latent values (e.g. Neal, 1998). Therefore, one MCMC iteration scales

as O(n3), which becomes computationally expensive for large n because

thousands of posterior draws may be required to obtain uncorrelated pos-

terior samples, and strong dependency between the hyperparameters and

latent values can cause slow mixing of the chains. Also, convergence diag-

nostics can be challenging as it is difficult to assess whether the sampling

mechanism really generates samples from the desired posterior distribu-

tion.

To speed up the inference, the non-Gaussian posterior distribution of

the latent function values can be approximated with a tractable Gaus-

sian distribution. Although the computational complexity is O(n3) also

with Gaussian approximations, they require less O(n3) operations than
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MCMC. By approximating p(f |D, θ) with a Gaussian distribution, the in-

tegration over f can be done analytically, similarly to the regression case

with the Gaussian likelihood discussed in Section 2.2.1. In addition to

tractable posterior computations, the Gaussian approximation can be mo-

tivated by the asymptotic normality of the posterior distribution (e.g. Gel-

man et al., 2003). Also, the Gaussian approximation is convenient if

p(f |D, θ) can be shown to be unimodal. There are different approaches

proposed for constructing the Gaussian approximation for p(f |D, θ), in-
cluding Laplace’s approximation (Williams and Barber, 1998), expecta-

tion propagation (Minka, 2001a), and variational bounding (Gibbs and

Mackay, 2000) and factorized variational (Csató et al., 2000; Girolami and

Rogers, 2006) methods. For an overview of Gaussian approximations for

GP binary classification, see the comprehensive study by Nickisch and

Rasmussen (2008). In this work, the focus is on Laplace’s approximation

(Section 3.1.1) and on the expectation propagation approximation (Sec-

tion 3.1.2) due to their speed and accuracy. Both approximations also

facilitate efficient gradient-based estimation of the covariance function

hyperparameters, which can be used to approximate the integration over

the uncertainty in θ, as discussed in Section 3.3.

3.1.1 Laplace’s Approximation (LA)

Laplace’s approximation is based on a second-order Taylor expansion for

log p(f |D, θ) around the posterior mode (e.g. Gelman et al., 2003; Ras-

mussen and Williams, 2006). The mode f̂ can be determined, for example,

by Newton’s method as described by Williams and Barber (1998) and Ras-

mussen and Williams (2006). The obtained Gaussian approximation is

given by

p(f |D, θ) ≈ qLA(f |D, θ) = N (f |f̂ ,Σ), (3.1)

where f̂ = argmaxf p(f |D, θ) and Σ−1 = −∇2
f log p(f |D, θ)|f=f̂ is the Hes-

sian of the negative log posterior at f̂ . The posterior covariance is given

by Σ = (K−1
f ,f +W )−1, where W = −∇2

f log p(y|f)|f=f̂ . To obtain the approx-

imate posterior predictive distribution for f∗, we can combine the con-

ditional distribution p(f∗|f , X,X∗, θ) of Equation (2.3) with the obtained

Gaussian approximation (3.1), and integrate over the uncertainty of f ,

similarly as was done in Section 2.2. The approximate posterior predic-

tive distribution for y∗ can be obtained, for example, with sampling meth-

ods (see, e.g., Rasmussen and Williams, 2006). The LA method is used in
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Publications II–IV.

3.1.2 Expectation Propagation (EP)

Expectation propagation is an algorithm that updates marginal moments

iteratively to approximate integrals over functions that factor into sim-

pler terms (Minka, 2001a). For GP models, the posterior distribution of

Equation (2.6) can be approximated with EP as

qEP(f |D, θ) = 1

ZEP
p(f |X, θ)

n∏
i=1

t̃i(fi|Z̃i, μ̃i, σ̃
2
i ), (3.2)

where t̃i(fi|Z̃i, μ̃i, σ̃
2
i ) = Z̃iN (fi|μ̃i, σ̃

2
i ) are local likelihood term approxi-

mations parameterized with scalar normalization terms Z̃i, site locations

μ̃i, and site variances σ̃2
i . The normalization ZEP is the approximation for

the marginal likelihood and can be used in model selection as discussed in

Section 3.3. The EP algorithm starts with initialized site approximations.

Then, site terms are updated iteratively. In the update step of the EP al-

gorithm, we first remove the i’th site term from the approximate marginal

posterior to obtain the cavity distribution

q−i(fi) = N (fi|μ−i, σ−i) ∝ q(fi|D, θ)t̃(fi|Z̃i, μ̃i, σ̃
2
i )
−1.

Then, this cavity distribution is combined with the exact i’th likelihood

term p(yi|fi) to obtain the non-Gaussian distribution

p̂(fi) = Ẑ−1i q−i(fi)p(yi|fi), (3.3)

which is known as the tilted distribution. If the approximating family is

chosen to be Gaussian, we determine a Gaussian approximation q̂(fi) for

p̂(fi) by minimizing the KL divergence KL(p̂(fi)||q̂(fi)). For a Gaussian

distribution q̂(fi), this minimization of the KL divergence is equivalent

to matching the first and second moments of q̂(fi) with the corresponding

moments of p̂(fi). After matching the moments, we can update the i’th

site term in a way that the mean and covariance of q(fi) are consistent

with q̂(fi). After this site update, the posterior distribution (3.2) can be

updated with a rank-1 update (sequential EP). Alternatively, the posterior

distribution can be refreshed once after all the site approximations have

been updated. This is known as parallel EP (see, for example, Van Gerven

et al., 2009) and in practice it can result in a computational speed-up. The

update steps of EP are repeated until convergence where all the marginal

distributions q(fi) are consistent with p̂(fi). The Gaussian posterior ap-
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proximation with EP is obtained by

p(f |D, θ) ≈ N (f |(K−1
f ,f + Σ̃−1)−1Σ̃−1μ̃, (K−1

f ,f + Σ̃−1)−1),

where μ̃ = [μ̃1, . . . , μ̃n]
T and Σ̃ = diag([σ̃2

1, . . . , σ̃
2
n]). The posterior predic-

tive distributions for f∗ (or y∗) can be computed similarly to LA. The EP

approximation is applied in Publications I and III.

3.2 Computational Strategies

For many models with GP priors the likelihood function can be written

in a form that factorizes over cases as p(y|f) = ∏n
i=1 p(yi|fi), that is, each

likelihood term depends only on a single latent value fi. Examples of

non-Gaussian likelihood functions with this fully-factorizing structure are

the logit and probit likelihoods for binary classification, the Poisson, bino-

mial, and negative-binomial likelihoods for modelling count data, and the

Student-t likelihood for robust regression (see, e.g., Publication VI and

Vanhatalo et al., 2013, for more examples and references of these single-

latent GP models).

The conditional posterior distribution p(f |D, θ) can be determined by

Bayes’ rule (2.1) as discussed in Section 2.2. Note that although the

likelihood function factorizes, the posterior distribution p(f |D, θ) and the

marginal likelihood p(y|X, θ) cannot be factorized due to the dependencies

induced by the prior covariance structure. By approximating the posterior

distribution with the LA method when the likelihood function factorizes,

the matrix W of Equation (3.1) is diagonal (W models the precision of the

effective likelihood, see e.g. Nickisch and Rasmussen, 2008). If the like-

lihood function is log-concave, the obtained matrix W has non-negative

diagonal elements, and because the prior covariance Kf ,f is positive def-

inite by construction, the posterior p(f |D, θ) is also log-concave and has

a unique maximum. In such a case, the LA method can be implemented

similarly as shown by Rasmussen and Williams (2006) for binary classi-

fication with the logit or probit likelihood function. For non-log-concave

likelihood functions, such as the Student-t with small degrees of freedom,

the implementation requires special care as the posterior distribution can

be multimodal and W can have negative values (Vanhatalo et al., 2009).

In the EP approximation for the posterior distribution (2.1), each like-

lihood term is approximated with a univariate unnormalized Gaussian

function. At each EP iteration, we need to determine the moments of the
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tilted distribution p̂(fi) for all i, which requires solving one-dimensional

integrals. In general, these univariate integrals can be computed effi-

ciently using numerical quadrature (Zoeter and Heskes, 2005). For spe-

cific likelihood functions (e.g. for the probit function), the integrals are

analytically tractable, which facilitates the evaluations of the tilted mo-

ments required in binary classification (Rasmussen and Williams, 2006)

or in introducing monotonicity information into a GP model (see Sec-

tion 4.1 and Publication I). Otherwise, the EP algorithm for single-latent

likelihood functions with GP priors can be implemented as presented, for

example, by Rasmussen and Williams (2006). With non-log-concave like-

lihoods, convergence problems can occur in the EP algorithm, although

these can be alleviated with a more robust EP implementation based on

damping, fractional updates, and double-loop algorithms (e.g. Heskes and

Zoeter, 2002; Minka, 2004; Seeger, 2005; Jylänki et al., 2011). Note that

in Gaussian approximations for Equation (2.1), the approximate likeli-

hood contribution can also have a non-factorizing structure, as discussed

by Nickisch and Rasmussen (2008). However, with EP it is assumed that

the site terms factorize in the same way as the true likelihood function

does (that is, diagonal Σ̃−1), and the fully-factorizing approximation for

the effective likelihood (diagonal W ) arises inherently with LA.

In Publications III–IV, we have a model where each likelihood term de-

pends on multiple latent values f i (or on all latent values f , as in Pub-

lication II) as p(y|f) =
∏n

i=1 p(yi|f i). The likelihood factorizes over ob-

servations, but we cannot factorize it into terms depending on a single

latent value fi. Publication VI gives examples of GP models with this

multi-latent dependency. To approximate the posterior distribution with

LA in this multi-latent case, we compute the second derivatives of the

log-posterior with respect to the latent values, which gives rise to the

structure of W in the posterior covariance of Equation (3.1). The chal-

lenge is that now W can be non-diagonal. Depending on the likelihood

function, W can have, for example, a full structure (as with the LGP like-

lihood of Equation 2.7) or a block-matrix structure consisting of diagonal

matrices (as with the softmax likelihood of Equation 2.8). It depends on

the structures of W and the prior covariance Kf ,f , whether computational

savings can be obtained in the evaluation of the posterior covariance Σ.

For example, in a multiclass classification with the softmax likelihood, the

structure of W can be exploited when Kf ,f is a block-diagonal matrix, to

enable efficient posterior computations that scale linearly (instead of cu-
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bically) in the number of target classes (Williams and Barber, 1998). This

specific multiclass classification case is also discussed in more detail in

Publication III. Otherwise, the LA algorithm for multi-latent likelihood

functions can be implemented in a similar way as presented by Williams

and Barber (1998) and Rasmussen and Williams (2006) for the softmax

likelihood (see also Publication II and Section 4.4).

A challenge with EP in the multi-latent setting is how to efficiently eval-

uate the moments of the tilted distributions (3.3), where now p̂(f i) =

Ẑ−1i q−i(f i)p(yi|f i) is a multivariate distribution. The evaluation of the

tilted moments requires determining multi-dimensional integrals over f i.

The moments can be estimated directly using multi-dimensional quadra-

tures, as done for example by Seeger and Jordan (2004), but this can be-

come computationally demanding when the dimensionality of f i increases.

An alternative approach for approximating the tilted moments is to use

the LA method (Ypma and Heskes, 2005; Girolami and Zhong, 2007),

which results in an algorithm called Laplace propagation (Smola et al.,

2004). However, a problem with this LA approach can be that the mean is

replaced with the mode of the distribution and the covariance with the in-

verse Hessian of the log density at the mode. Because the likelihood func-

tion can cause skewness to the tilted distribution, the LA method can lead

to inaccurate mean and covariance estimates, in which case the resulting

posterior approximation does not correspond to the full EP solution.

The computations with EP can be facilitated by assuming a factoriz-

ing approximate posterior distribution that is commonly used in varia-

tional approximations (Seeger et al., 2006; Girolami and Zhong, 2007).

Explicit likelihood-couplings are omitted, but this fully-factorizing sim-

plification (diagonal Σ̃−1) can help estimating the tilted moments. As

an example, with the independence assumption, each site update for the

multinomial probit likelihood requires only one- and two-dimensional nu-

merical quadratures, instead of c-dimensional (where c is the number of

output classes), due to the product form of the likelihood function in Equa-

tion (2.9) (Seeger et al., 2006; Girolami and Zhong, 2007). Note also that in

multinomial probit GP classification the fully-factorizing structure leads

to efficient posterior computations scaling linearly in c. However, this

is a special case and for example the softmax likelihood (Equation 2.8)

cannot be factorized in a similar way due to the sum terms in the likeli-

hood function. Also, EP with a fully-factorizing likelihood approximations

can underestimate the uncertainty on the latent values and in practice it

33



Approximate Bayesian Inference

may require more iterations than full EP for convergence especially if the

hyperparameter setting results in strong posterior couplings (see Publi-

cation III).

One deterministic solution to approximate the tilted moments is to use

a secondary (or inner) EP loop that has been considered by Kim and

Ghahramani (2006) and Naish-Guzman (2007). As an example, Naish-

Guzman (2007) proposed to use inner EP that resembles the EP algorithm

for binary classification, to evaluate efficiently tilted moments in a mix-

ture model designed for robust regression. In Publication III, we present

a similar nested EP algorithm to approximate the moments of a multi-

variate distribution for multiclass GP classification with the multinomial

probit likelihood.

In addition to the difficulties with the evaluation of the tilted moments,

another challenge with EP in the multi-latent and multi-process setting

is how to derive a representation for the site precision matrix Σ̃−1 that

preserves explicit dependencies between the latent values, and that can

(possibly) be exploited to obtain efficient posterior computations (if the

prior covariance structure Kf ,f is assumed to be block-diagonal, as for ex-

ample in multiclass GP classification). For example, if quadrature rules

are used to compute the tilted moments p̂(f i) for softmax GP classifica-

tion, a constrained structure for site approximations (that facilitates the

posterior representation scaling linearly in c) can require an additional

optimization step (Seeger and Jordan, 2004). In Publication III, we show

how this additional optimization step can be avoided in a specific case with

the multinomial probit likelihood by computing the tilted moments using

an inner EP algorithm that automatically results in an efficient structure

for Σ̃−1. Also, note that with the LA method for softmax GP classifica-

tion, a similar constrained structure for W leading to efficient posterior

computations is obtained directly by computing W = −∇2
f log p(y|f)|f=f̂

(Williams and Barber, 1998).

3.2.1 Summary of Gaussian Approximations

In this work, we have focused on the LA and EP methods to approximate

the conditional posterior distribution p(f |D, θ). Overall, the EP approxi-

mation for many GP models has been found very accurate with a reason-

able computational cost compared to MCMC (e.g. Kuss and Rasmussen,

2005; Nickisch and Rasmussen, 2008; Girolami and Zhong, 2007; Jylänki

et al., 2011). On the other hand, the LA method is fast, although the
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problem with LA can be that the mean is replaced with the mode of the

distribution and the covariance with the inverse Hessian of the log den-

sity at the mode. For example, in binary classification problems, where

the posterior distribution of latent values can be skewed due to the shape

of the sigmoid function, the LA method can lead to inaccurate mean and

covariance estimates, whereas EP obtains good practical accuracy (Kuss

and Rasmussen, 2005; Nickisch and Rasmussen, 2008). We use the EP

approximation in Publications I and III. In the single-latent case of Pub-

lication I, the EP approximation resembles the binary classification case

with the probit likelihood function, where EP has been shown to provide

accurate results (Kuss and Rasmussen, 2005; Nickisch and Rasmussen,

2008). In Publication III, the EP approximation is more involved due to

the multi-latent and multi-process model, but it is shown that EP obtains

accurate results compared to MCMC with slightly longer computational

time than LA. In Publications II and IV, we use the LA method for its

speed. In both cases, the EP approximation would be challenging because

the tilted moment evaluations are computationally demanding due to the

multiple latent values associated with each observation. Note that with

the LGP model in Publication II, an increase in the number of observa-

tions does not increase the number of latent values, which is why LA can

be more accurate for LGP than for softmax GP classification. On the other

hand, with a finer grid, fewer observations fall into each interval that can

emphasise the Gaussian prior contribution to the posterior distribution

(the comparisons show that LA for LGP is close to MCMC, see Publica-

tion II). Therefore, we believe that EP in this case would improve only

slightly the performance of LA, but the computation time would increase

considerably due to the multi-dimensional moment matching. However,

one approach to solve the moment matching problem of EP could be imple-

menting a similar quadrature-free nested EP approach as done for multi-

nomial probit GP classification, where the normalization is over different

output classes (see Publication III). However, based on preliminary test-

ing, the moment matching step can be slow compared to LA for example

when ngrid = 400. Similarly, an EP-based approximation for the Cox-type

model of Publication IV would be difficult due to multivariate moment

matching, unless the model is implemented with the Poisson-distributed

data representation. However, LA for the Poisson likelihood with GP pri-

ors has been observed to be close to MCMC sampling (see comparisons by

Vanhatalo et al., 2010).
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In addition to LA and EP, variational bounding and factorized varia-

tional approximations have been proposed for GP models in the machine

learning literature (e.g. Gibbs and Mackay, 2000; Csató et al., 2000; Giro-

lami and Rogers, 2006). For GPmodels with different likelihood functions,

these variational-type approximations have been observed to be less accu-

rate than EP, but close to LA in speed, although they can have troubles in

hyperparameter estimation (e.g. Nickisch and Rasmussen, 2008; Jylänki

et al., 2011, see also Publication III).

3.3 Hyperparameter Inference

In the previous sections, we have focused on approximating p(f |D, θ) con-
ditioned to fixed hyperparameters θ. However, according to the Bayesian

approach, we should also integrate over the uncertainty relating to θ as

p(f |D) =
∫

p(f |D, θ)p(θ|D)dθ,

where p(θ|D) is the posterior distribution for θ. In practice, the inte-

gration over θ can be approximated by a maximum a posteriori (MAP)

point estimate of the hyperparameter values (type-II MAP estimation).

In this work, we assume a prior distribution p(θ) for the hyperparam-

eters to improve the identifiability of the ratio of the covariance func-

tion magnitude and lengthscale parameters. As an example, in Publi-

cation II we assume a weakly informative half Student-t distribution for

θ, as recommended for hierarchical models by Gelman (2006). The MAP

estimate for the hyperparameters can be determined by optimizing the

marginal posterior distribution p(θ|D) ∝ p(y|X, θ)p(θ), where p(y|X, θ) =∫
p(f |X, θ)p(y|f)df is the marginal likelihood that normalizes the posterior

distribution p(f |D, θ). We cannot evaluate p(y|X, θ) exactly if the likeli-

hood function is non-Gaussian, but we can approximate it with LA or EP

(see, e.g., Rasmussen and Williams, 2006).

Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008) stud-

ied the suitability of the marginal likelihood approximations for selecting

hyperparameters in binary classification by comparing the calibration of

the predictive performance and the marginal likelihood estimates on a

grid of hyperparameter values (see also Publication III, where we con-

sider similar comparisons for multiclass GP classification). The compar-

isons show that in GP classification, there is a reasonable agreement with

the marginal likelihood approximations and classification accuracies with
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LA and EP (Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008,

Publication III). Also, for example in Publication II the experiments show

that LA with type-II MAP estimation achieves an accuracy close to full

MCMC.

Instead of using the MAP estimate, it is possible to marginalize over

the latent values f with LA or EP, and then apply MCMC methods to

integrate over the uncertainty of θ. Or instead of using MCMC, the inte-

gration over θ can be approximated by faster grid integration or central

composite design (CCD) methods (see Rue et al., 2009). See also compar-

isons by Vanhatalo et al. (2010) and discussion by Vanhatalo et al. (2013).

Although being less accurate, an advantage of the MAP estimate is that

it is faster to evaluate compared to grid, CCD, or MCMC sampling, espe-

cially when the number of hyperparameters is large.

37



Approximate Bayesian Inference

38



4. Summary of Studies

This thesis consists of six articles. Their contents and main results are

summarised in this chapter.

4.1 Gaussian Processes with Monotonicity Information (I)

The predictive performance of a flexible nonparametric model can be im-

proved by conditioning the inference to imprecise derivative information

concerning the function to be learned, in addition to measured observa-

tions (Sill and Abu-Mostafa, 1997). As an example, instead of having

measurements on derivatives, the output function can be known to be

monotonic with respect to an input variable. For univariate and multi-

variate additive functions, the monotonicity can be forced by construction

(e.g. Shively et al., 2009), but for a multivariate flexible GP model, the

elicitation of this imprecise expertise belief is more difficult. A generic

approach for multivariate models was proposed by Sill and Abu-Mostafa

(1997), who introduced monotonicity information to MLP neural networks

using hints that are virtual observations placed appropriately in the input

space (see also Lampinen and Selonen, 1997).

In Publication I, we propose a method for introducing background infor-

mation about monotonicity into a GP model. Because the derivative of a

Gaussian process remains a Gaussian process (e.g. Rasmussen, 2003; So-

lak et al., 2003), we can extend the GP model for derivative observations

that are formed with EP. To enforce monotonicity information into the

GP model, we form the derivative observations, that is, means and corre-

sponding uncertainties by using a (step-like) probit likelihood function for

the derivative values of the latent function evaluated at a finite number

of locations. The obtained virtual derivative observations are then used

in the GP model in addition to real observations. We discuss how the
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locations of the derivative observations can be iterated to make a mono-

tonic solution more likely. The behaviour of the proposed model is demon-

strated, and the model’s performance is compared to a standard GP model

without monotonicity information, in simulated regression experiments.

We also illustrate the behaviour of a GP model with monotonicity infor-

mation in a binary classification problem, where the challenge is to pre-

dict the risk of institutionalisation of elderly persons by using data from

health care registers. The simulated experiments and the analysis of the

real-life register data set show that the method favours solutions that are

more stable and less prone to overfitting, especially in the areas where

there are only few or no observations.

4.2 LA for Logistic Gaussian Processes (II)

The flexibility of a Gaussian process makes it an attractive prior for den-

sity estimates whose smoothness properties can be controlled through the

prior covariance structure (Leonard, 1978). In Publication II, we present

approximate inference for LGP density estimation and density regression

in a grid using LA to integrate over the non-Gaussian posterior distribu-

tion of latent values. The presented LA approach complements the earlier

studies of approximate inference for LGP (Leonard, 1978; Thorburn, 1986;

Lenk, 1991, 2003), and for the point process intensity estimation with

GPs (Cunningham et al., 2008). We propose to use second-order polyno-

mials as explicit basis functions in the GP model to construct a prior that

can favour density estimates whose tails go eventually towards zero in

regions with only few or no observations. We show how LA can be com-

puted in a numerically stable way. The computational complexity of the

proposed LA approach scales cubically in the number of grid points and

to speed up the inference for dense grids, we use the fast Fourier trans-

form, and we exploit Kronecker product computations to obtain a reduced-

rank approximation of the exact prior covariance structure. To approx-

imate the Bayesian inference for hyperparameters, we determine type-

II MAP estimates for the covariance function parameters. The proposed

LGP approach with LA is compared to advanced Bayesian kernel meth-

ods (Griffin, 2010), because LGP has been shown to outperform simple

kernel methods (Tokdar, 2007; Adams, 2009). The results show that LA is

useful for practical interactive visualisation of one- and two-dimensional

densities. Our experiments with simulated and real one-dimensional data

40



Summary of Studies

show that the estimation accuracy with LA is close to a logistic Gaussian

process model estimated using MCMC and state-of-the-art hierarchical

infinite Gaussian mixture models. We also demonstrate the suitability

of the LA method for estimating conditional densities with one predictor

variable.

4.3 Nested EP for the Multinomial Probit Likelihood (III)

Two challenges with multiclass GP classification are the integration over

the non-Gaussian posterior distribution, and the increase of the number

of unknown latent values as the number of target classes grows. EP has

proven to be a very accurate method for approximate inference but the

existing EP approaches for the multinomial probit GP classification uses

numerical quadratures, or independence assumptions between the latent

values associated with different classes, to facilitate the computations. In

Publication III, we complement the earlier work of Seeger and Jordan

(2004), Seeger et al. (2006), and Girolami and Zhong (2007) by developing

a novel quadrature-free nested EP algorithm for the multinomial probit

likelihood with GP priors. The proposed algorithmmaintains all between-

class posterior dependencies and scales linearly in the number of classes,

similar to softmax GP classification (Williams and Barber, 1998). In the

moment matching step, we use inner EP to approximate the tilted mo-

ments. We show how the tilted distribution can be expressed in a similar

functional form as the posterior distribution resulting from a linear bi-

nary classifier with a multivariate Gaussian prior on the weights and a

probit likelihood function. With this representation, the moments of the

tilted distribution can be approximated with EP similarly as in linear

classification (Minka, 2001b; Qi et al., 2004). We develop an efficiently

scaling implementation where these inner EP approximations can be up-

dated incrementally between the outer EP loops, and derive low-rank site

approximations that results in linear computational scaling with respect

to the number of target classes.

We test the accuracy of the proposed algorithm with several experi-

ments. We compare nested EP to quadrature-based EP methods with

respect to the approximate marginal distributions of the latent values

and class probabilities using fixed hyperparameter values, and show that

nested EP achieves similar accuracy compared to quadrature in a compu-

tationally efficient way. Using nested EP, we study visually the utility of
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the full EP approximation over an EP approach that assumes the latent

values from different classes a posteriori independent (IEP), and compare

their convergence properties. Our experiments show that nested IEP can

converge more slowly and require more damping than full nested EP. We

compare nested EP to the LA (Williams and Barber, 1998) and factor-

ized variational (Girolami and Rogers, 2006) methods, visualise the ac-

curacy of the approximate marginal distributions with respect to MCMC

(Girolami and Rogers, 2006), illustrate the suitability of the respective

marginal likelihood approximations for type-II MAP estimation of the co-

variance function hyperparameters, and discuss computational complex-

ities of the methods. We also compare the predictive accuracy of the EP,

LA, factorized variational, and MCMC methods with estimation of the

hyperparameters using several real-world data sets. The results show

that nested EP is the most consistent method compared to MCMC sam-

pling, but in terms of classification accuracy the differences between all

the methods are small from a practical point of view. In addition, we

show that the predictive probability estimates of LA can be improved us-

ing Laplace’s method as described by Tierney and Kadane (1986) but the

computational cost becomes increasingly demanding if a larger number of

predictions are needed.

4.4 LA for the Cox Proportional Hazards Model (IV)

Estimating the risk of recurrence of gastrointestinal stromal tumour (GIST)

after surgery is important when considering adjuvant systemic therapy.

Adjuvant imatinib therapy increases the time of GIST recurrence (DeMat-

teo et al., 2009), whereas some patients can be cured by surgery alone. In

Publication IV, we create a database by pooling population-based cohorts

of patients diagnosed with GIST that were identified from the literature.

We assess prognostic factors of the patients, to compare conventional risk-

stratification schemes and to develop a nonlinear GP method for estimat-

ing the risk of GIST recurrence. The GP method is constructed by re-

placing the log-linear predictor in a Cox proportional hazard model with a

logarithmic GP prior and by smoothing a piecewise log-constant baseline

hazard with another GP prior. We approximate the posterior distribution

with LA. Instead of using the Poisson-distributed data representation,

we approximate the posterior covariance matrix by maintaining a non-

diagonal form for the precision matrix of the effective likelihood. With this
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representation, the posterior computations scale as O((n+ T )3), whereas

the computations with the Poisson-distributed data representation scale

as O((nT̄ )3), where T̄ denotes the average number of baseline hazard in-

tervals needed to cover observed survival times (see Section 2.3.3). We

determine the hyperparameters of neural network covariance functions

with type-II MAP estimation. The risk-stratification schemes are com-

pared to the nonlinear GP approach by calculating receiver operating

characteristics (ROC) curves and the corresponding areas under the curve

(AUC) using ten-fold cross-validation. The generalization of the GP model

is also validated with an independent data set. The results show that the

nonlinear GP approach produces accurate estimates for the risk of GIST

recurrence, although the risk-stratification criteria identify also well low-

risk and high-risk patients. To facilitate the estimation of individualised

outcomes with the GP approach, we also provide novel prognostic contour

maps and heat maps to illustrate the continuous effects of the key prog-

nostic factors for the risk of GIST recurrence.

4.5 Modelling Length-of-Stay in a Care Episode (V)

The accurate modelling of patient length-of-stay (LOS) in a care episode

can provide information for health care providers to improve the effec-

tive planning of limited resources (e.g. Fisher and Altaffer, 1992). In

Publication V, we consider a case study where the objective is to model

LOS in a care episode after a fractured hip (see Sund, 2008). We discuss

the challenges related with the register-based data of hip fractures, and

present a Bayesian nonparametric approach to model LOS as a multi-

class classification problem. In the modelling, we apply the softmax like-

lihood whose latent values are given an MLP neural network prior with

a hierarchical prior structure for weight and bias parameters of the net-

work. In order to evaluate the performance of the nonparametric MLP

approach, we model LOS also with an alternative parametric approach

based on a finite mixture of Weibull distributions (e.g. Ibrahim et al.,

2001). In both approaches, inference is done with MCMC. We compare

the predictive performances of both models, and identify patient explana-

tory variables by their predictive relevances. The results show that the

flexible modelling approach produces more accurate predictions. Our ex-

periments also demonstrate advantages of the nonparametric approach

over the parametric approach by visualising nonlinear effects and inter-
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dependencies between explanatory variables found in the data set.

4.6 Software for Gaussian Process Models (VI)

Publication VI is a brief manual for the GPstuff software package that

is a versatile collection of many Gaussian process models and tools for

approximate Bayesian inference and model assessment. The software is

fully compatible with Matlab1 (version r2009b or later) and most features

are compatible with Octave2 (tested with 3.6.4). In Publication VI, we il-

lustrate how to construct and use a GP model, and describe the modular-

ity of the model construction. Publication VI presents the key features of

GPstuff, including available covariance functions, mean functions, single-

latent observation models, multi-latent observation models, priors for hy-

perparameters, inference methods, and model assessment tools. The mod-

ularity of the software package makes it useful for many modelling appli-

cations and facilitates the implementation of new features. A more spe-

cific description of the GPstuff toolbox is given by Vanhatalo et al. (2013).

1http://www.mathworks.com/
2http://www.gnu.org/software/octave/
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5. Discussion

The main aim of this thesis was to develop the methodology for accurate

and efficient approximate Bayesian inference to solve various modelling

problems involving probability-based models constructed from Gaussian

process priors. Through applicationmotivated case studies, we have shown

how Laplace’s approximation and the expectation propagation algorithm

can be tailored to various multi-latent GP models to facilitate the multi-

dimensional integration over the posterior distribution of the latent val-

ues. In Publication III it was shown how the EP approaches for multi-

nomial probit GP classification (Seeger et al., 2006; Girolami and Zhong,

2007) can be developed further to obtain an EP approximation that main-

tains all between-class posterior dependencies and scales linearly in the

number of classes, without relying on quadratures. Earlier studies (e.g.

Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008) point out

that EP approximations can provide accuracy similar to MCMC in a com-

putationally efficient manner for binary GP classification, and our various

predictive comparisons in Publication III extend these studies by showing

that EP for multiclass classification gives similar results. Also, the find-

ings of our experiments in a case study dealing with logistic GP models

(II) show that the Gaussian approximation based on LA with type-II MAP

estimation obtains practical accuracy close to MCMC with considerably

faster posterior computations.

In general, one important question in Bayesian modelling is how ac-

curately the chosen probability model captures the characteristics of the

phenomenon being modelled. In modelling with GPs, one advantage is

that we do not need to make strong explicit assumptions, for example,

about how different explanatory variables can interact with other vari-

ables. The usefulness of a flexible Bayesian modelling approach was sup-

ported by the results of predictive comparisons obtained from the real-
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life applications (IV–V), where nonlinear effects and interactions were

observed between explanatory variables. Although the flexibility of GP

models can enable a high predictive accuracy (that was one of the objec-

tives in the case studies of this thesis), the flexible modelling approach

can also cause troubles in situations where, for example, data is scarce.

In Publication I, we developed an approach for introducing background

monotonicity information into GP models with EP, and in the light of the

experiments, this additional information can constrain the flexibility of

GP models and improve the predictions in regression and binary classi-

fication in the cases where the target function is monotonic. The main

drawback with GP models is the infamous cubic computational complex-

ity in the number of observations, arising from the prior covariance struc-

ture. This scaling complicates the applicability of the GP models studied

in this thesis for large-scale data sets, although sparse alternatives can

be considered to speed up the inference (e.g. Quiñonero-Candela and Ras-

mussen, 2005; Rue and Held, 2005).

The approximate methods considered in this thesis have been known for

long, but the conversion of these general methods into efficient algorithms

to approximate inference for various multi-latent and multi-process GP

models requires tailored solutions. One obvious line of future work is to

study the suitability of EP-based methods for models with multi-latent

dependencies especially if sampling-based methods are slow for practical

inference and the LA method does not achieve accuracy close to MCMC.

As an example, the results from Publication III imply that the nested EP

approach could be applicable also for other similar multi-latent models

that involve integral representations consisting of simple factorized func-

tions each depending on linear transformations of the latent values.

Another possible extension of this work is correcting the Gaussian ap-

proximation for the marginal posterior distribution of multiple latent val-

ues, in a similar manner as done for single latent values by Rue et al.

(2009) and Cseke and Heskes (2011). Simple corrections based on Gaus-

sian copula have already been suggested (Rue et al., 2009), but improv-

ing the multivariate marginal posterior distribution can be challenging

if multi-dimensional integrals are required. Also, due to the empirical

accuracy of EP in several experiments, it seems that the predictive dis-

tribution for the observations can be approximated fairly precisely with-

out the need to average over the actual posterior distribution, as long as

the approximate distribution shares lower order statistics with the actual
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posterior (Paquet et al., 2009). Although EP has proven to be a very accu-

rate method for approximate Bayesian inference (as also supported by the

results of Publication III), quadrature or inner-EP methods in a moment

matching step of the EP algorithm can be computationally infeasible for

models in which each likelihood term related to an observation depends

on multiple latent values. In the future, it would be interesting to see

whether in such multi-latent cases, the LA method could be improved by

considering corrections for multivariate marginal distributions with effi-

cient nested approximations.
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