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1. Introduction

1.1 Motivation

The electromagnetic radio spectrum is a precious natural resource. Re-

cent measurements have shown that the current static spectrum alloca-

tion regulations lead to severe underutilization of the spectrum. Given

the ever-increasing need for higher data rate services, technologies that

could offer new ways of exploiting the available spectrum are called for.

Cognitive radio, firstly proposed in [1], arises to be a promising solution

to the spectrum underutilization issue by introducing the concept of dy-

namic spectrum access. Contrary to the fixed spectrum access schemes,

in dynamic spectrum access secondary (unlicensed) users are allowed to

opportunistically use the frequency bands that are not heavily occupied

by primary (licensed) users. The terminology primary users refers to the

users who have legacy rights on the usage of a specific part of the spec-

trum. The secondary users, on the other hand, have lower priority, and

could only exploit this spectrum in such a way that they do not cause

intolerable interference to the primary users. To achieve this dynamic

spectrum access scenario, the secondary users need to be able to infer re-

liably whether a frequency band of interest is being used by the primary

users [2]. Therefore, the ability to be aware of the spectrum usage in a

geographical area becomes the most important component for the estab-

lishment of cognitive radio.

Spectrum sensing is the task of acquiring the awareness of spectrum

usage, which can be obtained by using geolocation and database, by using

beacons, or by local spectrum sensing at cognitive radios [3]. The focus

of this thesis is on the local spectrum sensing i.e. detection based spec-

trum access, which is hereinafter referred to as spectrum sensing. The
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present literature on spectrum sensing is far from being fully developed,

however most of the existing sensing algorithms can be either categorized

into feature based detection or energy based detection. For comprehen-

sive survey of spectrum sensing algorithms, we refer the readers to [3, 4]

and references therein for the state-of-the-art in this direction. Feature

based detection typically requires signaling information or/and statisti-

cal properties of the primary systems such as preambles, pilot patterns,

spreading sequence, carrier frequency, signal power, and so on. Feature

based detection includes, among others, matched filter detection [5], cyclo-

stationary detection [6], and autocorrelation detection [7]. On the other

hand, energy based detection does not require any a priori signaling infor-

mation of the primary users, and thus is often called blind detection. The

conventional energy detector [8], also known as radiometry, is the sim-

plest example of energy based detection. Recently, multi-antenna spec-

trum sensing emerges as a promising candidate in energy based detection.

The studies leading to this thesis are motivated by some of the practical

issues with the multi-antenna assisted energy based detection. Specifi-

cally, in designing realistic multi-antenna spectrum sensing algorithms

the following facts shall be taken into account:

Fact 1 Perfect knowledge of noise power may not be available due to inter-

ference, noise estimation errors or non-linearity of the components.

Fact 2 The existence of more than one active primary users would be the

prevailing condition in forthcoming CR networks.

Fact 3 Noise correlation at the secondary receiver is inevitable due to e.g.

antenna coupling in practical systems, and the degree of correlation

is usually unknown due to its time-varying nature.

The phenomenons described in Fact 1 give rise to the concept of noise

uncertainty [9]. For systems in practice, modeling of noise uncertainty

is unavoidable. Noise uncertainty may further lead to the phenomenon

of Signal-to-Noise Ratio (SNR) wall [10], where the detection of primary

users is impossible even if the sample size goes to infinity. Fact 1 moti-

vates the design of test statistics that are not functions of the noise power.

The resulting detectors are blind to noise power uncertainty. Fact 2 holds

since the assumption of single primary user fails to reflect the situation

in forthcoming cognitive radio networks, where the primary systems may

include a cellular network. Moreover, in unlicensed bands, several unli-

censed systems, such as Wi-Fi, Bluetooth, and Digital Enhanced Cordless

2



Telecommunications (DECT), may share the same band without coordi-

nation, resulting in multiple primary user scenarios [11]. Note that the

assumption of a single primary user is made as the investigations in the

literature have mainly focussed on cognitive radio networks, where the

primary users are Television (TV) or Digital Video Broadcasting (DVB)

systems. In these systems the single active primary user assumption is, to

some extent, justifiable. Here the terminology “single primary user” refers

to the scenario where the maximum number of simultaneously transmit-

ting primary users equals one. In contrast, the term “multiple primary

users” refers to an existence of more than one active primary users, but

the exact number is irrelevant. Fact 2 motivates us to design test statis-

tics that could work efficiently in the scenarios of multiple primary users.

Fact 3 reflects realistic spectrum sensing scenarios where the assump-

tion of a perfectly known noise covariance matrix is not realistic due to

the time-varying nature of the noise statistics. The true noise covariance

matrix needs to be estimated by a separate data set consisting of period-

ically updated noise-only observations. Fact 3 motivates us to search for

detectors that are able to work irrespectively of the actual noise covari-

ance matrix.

1.2 Scope

Essentially, spectrum sensing is about obtaining the spectrum usage in-

formation across multiple dimensions such as time, space, and frequency.

It also involves determining the types of signals that are occupying the

spectrum, e.g. the modulation, waveform, bandwidth, carrier frequency,

and so on [3]. However, in this thesis we chose to formulate the spec-

trum sensing problem as a binary hypothesis test. Namely, we are only

interested in inferring the presence of absence of primary users without

examining further detailed information on the spectrum usage or the pri-

mary users’ signal.

This thesis is limited to the study of energy based detection of multi-

antenna type. We progressively take into account the practical facts dis-

cussed in the previous section, leading to a variety of detectors that are

suitable for different scenarios. The first objective is to find detection

algorithms that are noise uncertainty free and to analyze the detection

performance of the resulting detectors. This goal has been accomplished

in Publication II and Publication III where Fact 1 was taken into account.
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The second objective is to design and analyze detectors that could incorpo-

rate Fact 2 in addition to Fact 1, i.e. detectors that are noise uncertainty

free and, at the same time, could work in multiple primary user scenarios.

This aim has been achieved in in Publication IV, Publication V, Publica-

tion VI and Publication VII, where several detectors were proposed and

studied. The last objective is to design and examine detection algorithms

that will take into account all the three facts. This leads to the most

robust detector under the framework developed in this thesis, and this

final goal has been accomplished in Publication VIII. Note that the detec-

tor studied in Publication I has not taken any of the practical issues into

account.

As far as the technical and system modeling aspects are concerned, the

scope of this thesis is limited by the following considerations and assump-

tions. First of all, this thesis relies on the framework of statistical hypoth-

esis testing theory based on multivariate complex Gaussian distributions.

Specifically, the signals of the primary users as well as the noise at the

secondary receiver are assumed to follow the multivariate Gaussian mod-

els. Secondly, among the vast number of performance metrics of spectrum

sensing algorithms, this thesis is limited only to the analytical derivations

of the false alarm probability, the detection probability, and the receiver

operating characteristic. Furthermore, we focus on deriving closed-form

performance metrics for a given channel realizations i.e. deterministic

channels. Analytically characterizing the average detection probability

or the average receiver operating characteristic over channel statistics is

beyond the scope of this thesis. Finally, we mention that other practical

issues such as the non-whiteness of the receiver primary user’s spectrum,

the multipath channel and over-sampling at the receiver are ignored in

the framework of the thesis.

1.3 Contributions

The contributions of this thesis are two-fold: the technical contributions

and the contributions to the literature of spectrum sensing. Technically,

we contributed to the field of mathematical statistics by deriving the dis-

tributions of various test statistics built on the Wishart-Laguerre ensem-

ble as well as the Jacobi ensemble. For some test statistics, we were able

to deduce the exact distribution functions, while for others we proposed

simple approximative distributions. The derived approximative distribu-
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tions are crucial in understanding the behaviors of test statistics in cer-

tain asymptotic regimes whereas the exact distributions are useful for the

calculations of the distributions in small dimensions.

Besides the distributional results, which consist the main contributions

of this thesis, we also proposed a unified framework for the construction

of robust multi-antenna detection algorithms. This is the second contri-

bution of this thesis. Specifically, we systematically categorize detection

algorithms according to the parameters they are blind to. Detection with-

out assuming any knowledge of a certain parameter is called blind de-

tection. The choice of these system parameters is motivated by practi-

cal issues and the development of cognitive radio concepts. For example,

when secondary usage is expanded from TV secondary systems to cellu-

lar secondary networks, the concept of spectrum sensing in the presence

of multiple primary users emerges. Among the conceptual contributions,

our proposal of the multi-antenna based multiple primary user detection

is, to the best of the author’s knowledge, the first in the spectrum sensing

literature. Note that the technical contributions of this thesis are appli-

cable to other cognitive radio concepts such as spectrum awareness and

spectrum management. The derived analytical results are also useful in

performance analysis of certain communications systems employing mul-

tiple antennas.

1.4 Summary of publications

This thesis consists of an introductory part and eight original publica-

tions. The content of each publication is summarized as follows.

In Publication I we study the performance of the largest eigenvalue

based detection. The exact false alarm and detection probabilities have

been derived. It is shown that the largest eigenvalue based detector out-

performs the cooperative energy detector in the presence of a single pri-

mary user.

In Publication II we examine the asymptotical performance of the scaled

largest eigenvalue based detection when both the number of sensors and

samples go to infinity. Specifically, an accurate and simple closed-form

approximation to the false alarm probability has been derived. The scaled

largest eigenvalue based detector does not depend on the noise power,

and is thus free of the noise uncertainty. The technical results of this

publication improve the accuracy of the false alarm probability estimation

5



compared to the existing results in literature.

In Publication III the scaled largest eigenvalue is considered again, and

its exact false alarm probability is calculated. The derived result involves

only a finite sum of polynomials and its evaluation is affordable in prac-

tice. The result of this publication fills the gap in understanding the exact

false alarm probability of the scaled largest eigenvalue based detection.

In Publication IV we proposed the idea of spectrum sensing in the pres-

ence of multiple but unknown number of primary users. The correspond-

ing detector derived under the generalized likelihood ratio criterion turns

out to be based on the spherical test. This detector is not only blind to

the number of primary users but it is also blind to the noise power. We

derived accurate analytical approximations to its false alarm probability,

detection probability, and receiver operating characteristic. These derived

results yield almost-exact fits to the simulations. Comprehensive perfor-

mance comparisons show the superior performance of the spherical test

based detector in the presence of noise uncertainty and multiple primary

users.

In Publication V we have considered a similar setting as in Publication

IV, where there exists more that one active primary users and the sec-

ondary receiver shall be unaware of the noise power. The difference is

that here we are particularly interested in low SNR detection. The re-

sulting test statistics is the so-called John’s test, which was derived under

the locally best invariant criterion. Key performance metrics of John’s

detector, such as the false alarm probability, the detection probability as

well as the receiver operating characteristic, have been derived. Char-

acterization of the distributions of John’s detector was an open problem

for applications in the science of statistics. Numerical results show per-

formance gain of John’s detector over the spherical test based detector in

scenarios with relatively low SNR.

In Publication VI we study the performance of a heuristic detection al-

gorithm based on the eigenvalue ratio. We proposed an approximation

framework, under which both the finite dimensional and the asymptotic

detection probabilities of the eigenvalue ratio based detector have been

deduced. This detector is also blind to the number of primary users and

noise power. The achieved accuracy of the proposed approximations is

reasonably good.

In Publication VII we consider another heuristic multiple-primary-user

detector that is free of noise uncertainty. This detector is based on the

6



Demmel condition number, and we derived its exact false alarm proba-

bility. The distribution of the Demmel condition number was an open

problem in the literature on statistics.

In Publication VIII we extend the concept of robustness in the litera-

ture of spectrum sensing to a new direction by considering detectors that

are blind to the noise covariance matrix. The resulting detector derived

from the generalized likelihood ratio criterion is Wilks’ test. In addition to

the property of being noise uncertainty free and being able to work in the

presence of multiple primary users, the proposed Wilks’ detector is also

blind to the degree of noise correlations. We analyze the performance of

Wilks’ detector by deriving an accurate approximation to its false alarm

probability. Performance gain of Wilks’ detector over the existing detec-

tion algorithms is observed in scenarios with arbitrary but unknown noise

correlation and multiple primary users.
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2. Multi-antenna Spectrum Sensing

We map the multi-antenna spectrum sensing problem to a binary hypoth-

esis testing problem in Chapter 2.1. Based on the formulated hypothesis

test, in Chapter 2.2 we outline the spectrum sensing algorithms, i.e. test

statistics, considered in this thesis. Specifically, we consider test statistics

derived from decision-theoretic criterions such as the generalized likeli-

hood ratio criterion and the locally best invariant criterion, as well as test

statistics that were proposed heuristically. Both types of test statistics

were constructed in the literature with different assumptions and dif-

ferent degree of knowledge of the parameters of the primary and/or the

secondary systems.

2.1 Signal model

Consider a scenario of K collaborating sensors in a secondary network

trying to detect the presence of primary users’ transmission. The K sen-

sors may be e.g. K receive antennas in one secondary device or K sec-

ondary devices each with a single antenna, or any combination of these.

However, this collaborative sensing scenario and the subsequent formu-

lations are more relevant when the K sensors are in one device. For dis-

tributed collaborating sensors, accurate time synchronization between de-

vices, and communications to the fusion center become an issue given the

limited capabilities of the individual sensor. Henceforth, this collaborative

spectrum sensing scenario may be referred to as multi-antenna spectrum

sensing.

The standard model for K-sensor cooperative detection in the presence

of possible P primary users reads

x = Hs+ n, (2.1)

where the K dimensional complex vector x ∈ C
K is the received data vec-
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tor. The K × 1 vector n is the complex Gaussian noise with zero mean

and covariance matrix Ψ. The K × P matrix H = [h1, . . . ,hP ] represents

the channels between the P primary users and the K sensors. The P × 1

vector s = [s1, . . . , sP ]
′ denotes the transmitted signals from the primary

users. It follows an independent and identically distributed (i.i.d) zero

mean Gaussian distribution and is uncorrelated with the noise. As noted

in Chapter 1.2, the focus of this thesis is performance analysis for a given

channel realizations and thus the channel matrix H is assumed to be con-

stant during sensing i.e. we consider deterministic channels.

We collect N i.i.d observations from model (2.1) to a K × N (K ≤ N )

received data matrix X = [x1, . . . ,xN ]. By the above assumptions, the

sample covariance matrix R = XX† of the received data matrix follows a

complex Wishart distribution of dimension K with N degrees of freedom

and a population covariance matrix Σ, denoted by R ∼ WK (N,Σ), with

the density function

|Σ|−N

ΓK(N)
|R|N−K e−tr(Σ−1R), (2.2)

where (·)†, | · | and tr(·) denote the conjugate-transpose, matrix determi-

nant and matrix trace operations, respectively. Here the function ΓK(N)

defines the multivariate Gamma function

ΓK(N) = π
1
2
K(K−1)

K−1∏
j=0

Γ(N − j), (2.3)

where Γ(·) is the Gamma function.

We consider a binary hypothesis test i.e. either the presence or absence

of primary users. The secondary user will not infer the number of active

primary users. Hypothesis H0 is that there are no primary users. The

corresponding population covariance matrix is

H0 : Σ := E[XX†]/N = Ψ, (2.4)

where E[·] denotes expectation. Hypothesis H1 is that primary users are

present, and the population covariance matrix is

H1 : Σ = Ψ+
P∑
i=1

γihih
†
i , (2.5)

where γi := E[sis
†
i ] defines the transmission power of the i-th primary

user. The received SNR of primary user i across the K sensors is defined

as

SNRi :=
γi||hi||2

tr (Ψ) /K
, (2.6)
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where ||·|| is the Euclidean norm. Note that if the transmitted signals s are

constant instead of Gaussian distributed, then the hypothesis H1, instead

of (2.5), is modeled as a non-central Wishart distribution [12]

R ∼ WK (N,Ψ,Ξ) (2.7)

instead of the model (2.5), where

Ξ = Hss†H† (2.8)

is the so-called non-central parameter matrix. In [PI] and [PVI] we con-

sider this non-central Wishart model. Finally, we note that declaring

wrongly H0 defines the false alarm probability Pfa, and declaring correctly

H1 defines the detection probability Pd. For a given detector, the relation

between its Pfa and Pd is called the Receiver Operating Characteristic

(ROC), the plot of which shows its overall detection performance.

2.2 Test statistics

By exploring the differences between the population covariance matrices

under H0 (2.4) and under H1 (2.5), the presence or absence of primary

users can be decided. With different assumptions on or the knowledge of

the system parameters e.g. the noise covariance matrix Ψ or the number

of primary users P , various test statistics have been proposed in litera-

ture. In the following we classify these test statistics according to whether

the noise covariance matrix is assumed to be known or not.

2.2.1 Known noise covariance matrix

Since the noise covariance matrix Ψ is known, without loss of general-

ity [13, pp. 338], we assume that the noise of each sensor is independent

and has a common noise power σ2 i.e.

Ψ = σ2IK , (2.9)

where IK defines a K dimensional identity matrix. In this case, the suf-

ficient statistics is the sample covariance matrix R of the received data

matrix [13]. We denote its ordered eigenvalues by 0 ≤ λK ≤ . . . ≤ λ1 < ∞.

For arbitrary but known Ψ, the sufficient statistics becomes the ’whitened’

sample covariance matrix Ψ−1R.

In the presence of a single primary user, P = 1, the hypotheses (2.4) and
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(2.5) are reduced to

H0 : Σ = σ2IK (2.10a)

H1 : Σ = σ2IK + γ1h1h
†
1. (2.10b)

Under this hypothesis test we may further assume that the noise power

σ2 is known, and without loss of generality set at σ2 = 1. In this case, the

Largest Eigenvalue based (LE) detector

TLE := λ1 ∈ [0,∞) (2.11)

was derived under the Generalized Likelihood Ratio (GLR) criterion [14,

Sec. III-C]. Comparing the test statistics with a predetermined threshold

ζ, the presence or absence of the primary users is decided. For the LE

detector the test procedure is formally written as

TLE
H1

≷
H0

ζ. (2.12)

Performance analysis of the LE detector can be found e.g. in [14, 15]

and [PI]. The assumption of known noise power, besides being imprac-

tical, leads to detectors which may suffer severe performance degrada-

tion [16] [PIV] due to noise power uncertainty [10]. Assuming an un-

known noise power σ2, the test in the GLR sense is Scaled Largest Eigen-

value based (SLE) detection

TSLE :=
λ1

1
K

∑K
i=1 λi

∈ [1,K], (2.13)

with the corresponding test procedure being

TSLE
H1

≷
H0

ζ. (2.14)

The SLE detector was first proposed in the context of spectrum sensing

in [17] and further analyzed in [18, 19, 20], [PII, PIII]. Detection without

assuming any knowledge of a certain parameter is often called blind de-

tection. For example the SLE detector is a blind σ2 detection, and is more

robust than the LE detector to noise power uncertainty.

In the presence of multiple primary users, both the LE and SLE detec-

tors are expected to suffer performance loss. To formulate a hypothesis

test in the setting of multiple primary users, one needs to consider the

fact that for a secondary user the most critical information is whether or

not there are active primary users. The knowledge of the number of active

primary users may not be relevant from the secondary user’s perspective.

It is worth noting that the matrix
∑P

i=1 γihih
†
i in (2.5) is positive definite,
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i.e.
∑P

i=1 γihih
†
i � 0, if there is at least one primary user. A blind P detec-

tion for the presence of possibly multiple primary users would thus be a

hypothesis test expressed as

H0 : Σ = σ2IK (2.15a)

H1 : Σ � σ2IK . (2.15b)

Under this hypothesis test, the corresponding detector derived from

GLR criterion is the Spherical Test based (ST) detector

TST :=
|R|(

1
K tr(R)

)K =

∏K
i=1 λi(

1
K

∑K
i=1 λi

)K ∈ [0, 1], (2.16)

which also is a blind σ2 detection [21]. The test procedure of the ST detec-

tor is

TST
H0

≷
H1

ζ. (2.17)

The spherical test was formulated in [21] as a spectrum sensing algorithm

and the detection performance has been analytically addressed in [PIV].

Although in general the ST detector achieves good performance, it is not

the best one in the low SNR regime. A test statistics that is optimal in

detecting small deviations from H0 is John’s detector [22, 23]

TJ :=
tr(R2)(
tr(R)

)2 =

∑K
i=1 λ

2
i(∑K

i=1 λi

)2 ∈
[
1

K
, 1

]
, (2.18)

with the test procedure being

TJ
H1

≷
H0

ζ. (2.19)

John’s test was studied in the context of spectrum sensing in [PV]. The

criterion under which John’s detector is derived is known as the Locally

Best Invariant (LBI) criterion. Unlike the GLR criterion, the LBI criterion

often leads to detectors that perform particularly well in the low SNR

regime.

Besides the ST and John’s detectors, other existing blind P detectors

that can be considered in the setting of multiple primary users (2.15) in-

clude the Eigenvalue Ratio based (ER) detector [24, 16, 25, 26], [PVI],

TER :=
λ1

λK
∈ [1,∞), (2.20)

as well as the Demmel Condition Number based (DCN) detector [27, 28],

[PVII],

TDCN :=

∑K
i=1 λi

λK
∈ [K,∞], (2.21)
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with the test procedures being

TER
H1

≷
H0

ζ, (2.22)

and

TDCN
H1

≷
H0

ζ, (2.23)

respectively. Neither the ER nor DCN detector is constructed from decision-

theoretic consideration, such as the GLR or LBI criterion. It turns out

that they achieve substantially worse performance than the ST and John’s

detectors in both single and multiple primary user scenarios [PIV]. Re-

cently, the ER and DCN detectors have been considered in frequency se-

lective channels [29]. Note that all considered blind P detectors, the ST,

John’s, the ER, and the DCN detectors, also are blind σ2 detectors, which

are robust not only to the number of primary users but also the noise

power uncertainty.

To complete the story, we note that the cooperative Energy Detector de-

rived from the LBI criterion [22]

TED := tr(R) =

K∑
i=1

λi ∈ [0,∞), (2.24)

which assumes σ2 to be known, is also a blind P detector. The cooperative

energy detector is often used as a benchmark detector for performance

comparisons [18, 16], [PI, PIV], whose performance is considerably de-

graded by a relatively small noise power uncertainty. Finally, we note

that for an arbitrary but known P , the corresponding GLR detectors have

been derived in [30].

We emphasize that for the case of arbitrary but known Ψ, the forms of

the test statistics (2.11), (2.13), (2.16), (2.18), (2.20), (2.21), and (2.24) con-

sidered in this sub-chapter remain the same and are directly applicable.

The only difference is that these test statistics are now functions of Ψ−1R

instead of R.

2.2.2 Arbitrary but unknown noise covariance matrix

The blindness of detection can be extended to a new dimension by as-

suming that the noise population covariance matrix Ψ is arbitrary and

unknown. The resulting blind Ψ detectors are robust to any modeling as-

sumptions on Ψ. The concept of blindness here is different from blindness

to σ2 or P , since the knowledge of Ψ will be found in noise-only samples.

In the context of this thesis, blind Ψ refers to the fact that no artificial
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structure is imposed on Ψ in contrast to, for instance, the one parameter

model Ψ = σ2IK . This extension is partially motivated by the existence of

usually unknown noise correlation due to e.g. antenna coupling in prac-

tical systems. Moreover, the existing non-blind Ψ detectors often suffer

severe performance loss even for a low degree of noise correlation as will

be shown in Chapter 4. Instead of a perfectly known Ψ, here we assume

to have, in addition to the received data matrix X, another independent

noise-only observation matrix Z consisting of M samples from the K sen-

sors. This noise-only observation matrix Z can be obtained e.g. when

absence of the primary users is declared from an initial coarse sensing pe-

riod. Moreover, when the signals of interest are narrow-band and located

in a known frequency band, such as the case of TV primary systems, the

noise-only samples collected at a frequency just outside this band can be

justified as having the same noise covariance characteristics. The time-

varying nature of the noise correlation is coped with by periodically up-

dating the measurement Z. The true but unknown noise population co-

variance matrix Ψ can be estimated via the noise-only sample covariance

matrix E = ZZ†, which, by the assumptions in Chapter 2.1, follows a com-

plex Wishart distribution E ∼ WK (M,Ψ). In this setting, the sufficient

statistics is the sample covariance matrix of the form E−1R [13], and its

ordered eigenvalues are denoted by 0 ≤ θK ≤ . . . ≤ θ1 < ∞.

For single primary user detection the corresponding hypothesis test is

H0 : Σ = Ψ (2.25a)

H1 : Σ = Ψ+ γ1h1h
†
1. (2.25b)

Essentially we are testing the equality of population covariance matri-

ces Σ and Ψ against a rank-1 perturbation alternative (2.25b) based on

the received data and noise-only observation matrices X and Z. Under

this hypothesis test, a reasonable test statistics to choose is Roy’s largest

eigenvalue based detector [31]

TR := θ1 ∈ [0,∞). (2.26)

Nadler et al. [32, 33] were among the first to consider Roy’s detector in

a spectrum sensing application, and derived novel analytical expressions

for the detection probability.

Although Roy’s detector is a blind Ψ detector, it is not a blind P de-

tector. Namely, when the actual number of primary users is more than

one, Roy’s detector will suffer performance loss. We now try to extend the
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blindness of the detection to the practical scenario of multiple primary

users. Following the same line of reasoning as in (2.15), with an arbitrary

and unknown noise covariance matrix the hypothesis test in the presence

of multiple primary users, P ≥ 2 but not known a priori, is

H0 : Σ = Ψ (2.27a)

H1 : Σ � Ψ. (2.27b)

For this hypothesis test, it turns out that the detector derived from the

GLR criterion is

TW :=
|E|

|R+E| =
K∏
i=1

1

1 + θi
∈ [0, 1], (2.28)

with test procedure being

TW
H0

≷
H1

ζ. (2.29)

This test statistics was derived by S. S. Wilks [34] and its performance

analysis in spectrum sensing application can be found in [PVIII]. Wilks’

detector is blind to both Ψ and P i.e. its performance is robust to the

noise power, the degree of noise correlation as well as to the number of

primary users, which renders it the most robust detector under the frame-

work developed in this thesis. Simulations performed in Chapter 4 show

that Wilks’ detector indeed outperforms other known detectors in realistic

scenarios with multiple primary users and arbitrary but unknown noise

correlation.

2.3 Summary: towards a unified look

The test statistics discussed in this chapter can be categorized in var-

ious ways according to different criterions. For example, the criterion

can be based on the knowledge of the number of primary users or the

noise covariance matrix. It is also possible to divide these tests according

to whether it is constructed from decision-theoretic criterion or proposed

heuristically. The development of this thesis is towards robust spectrum

sensing in realistic cognitive radio scenarios. Here, robustness refers to

the property that the detection performance is insensitive to deviations

from the presumed modeling assumptions. The emphasis on detection al-

gorithms derived from well-established decision-theoretic criterions such

as the GLR or LBI is due to the fact that these detectors are more likely

to outperform the heuristic ones.
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Table 2.1. Summary of Multi-antenna Spectrum Sensing Algorithms (the performance of
test statistics in blue color have been studied in this thesis.)

assumptions single primary user multiple primary users

Ψ = σ2IK with known σ2 TLE TED

Ψ = σ2IK with unknown σ2 TSLE TST, TJ, TER, TDCN

arbitrary and unknown Ψ TR TW

By removing the assumptions of known noise power, presence of single

active primary user, and known noise covariance matrix, the resulting

Wilks’ detector derived from the GLR criterion turns out to be the most

robust detector under the framework of this thesis. However, this holds

only if the listed three facts in Chapter 1.1 are true simultaneously. If one

of these facts is violated, some other detector may perform better than

Wilks’ detector. For example, consider a scenario of a secondary user try-

ing to detect the presence of a possible TV transmission in the bandwidth

of a certain TV channel at a specific location. In this scenario the assump-

tion of a single active primary user is justifiable, and as a result Roy’s test

is preferable to Wilks’.

For convenience, the detectors considered in this chapter are summa-

rized in Table 2.1 according to the modeling assumptions. Some remarks

and discussions regarding this table are in the following:

• TLE is constructed without taking into account any of the facts in Chap-

ter 1.1; TSLE is obtained by considering only Fact 1; TED is obtained by

considering only Fact 2; TST, TJ, TER and TDCN are obtained by consider-

ing both Fact 1 and Fact 2; TR is obtained by considering both Fact 1

and Fact 3; TR is derived by considering all the three facts.

• The performance of the test statistics in blue color have been analyzed,

and is an essential contribution of this thesis. Specifically, Publication I

is devoted to Pfa and Pd of TLE; Publication II and Publication III cover

Pfa of TSLE; Publication IV is devoted to Pfa and Pd of TST; Publication

V is devoted to Pfa and Pd of TJ; Publication VI is devoted to Pd of TER;

Publication VII is devoted to Pfa and of TDCN; Publication VIII is devoted

to Pfa of TW.
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• Classifying the considered test statistics by the methods of construction,

we have

– GLR criterion: TLE, TSLE, TST, TW.

– LBI criterion: TED, TJ.

– heuristic: TER, TDCN, TR.

For heuristic detectors, their positions in Table 2.1 can be arbitrary to

some extent. In fact, the test statistics TER, TDCN were initially proposed

for spectrum sensing application in the context of single-primary-user

detection [24, 27].

• Implementation of the considered detectors may require numerical cal-

culations of eigenvalue decomposition, matrix determinant and trace.

As far as the computational complexity is concerned, the considered de-

tectors can be divided into two categories according to whether eigen-

value decomposition is needed. This is because eigenvalue decomposi-

tion needs to be performed in an iterative manner and may have stabil-

ity issues.

– Detectors that require eigenvalue decomposition:

TLE, TSLE, TER, TDCN, TR.

– Detectors that does not require eigenvalue decomposition:

TED, TST, TJ, TW.

In the first category, the detectors TLE, TSLE and TDCN have similar com-

putational complexity whereas TDCN requires roughly twice the com-

puting power as one needs to calculate both the smallest and the largest

eigenvalues. Besides eigenvalue decomposition, Roy’s detector TR in-

volves numerically inverting the noise sample covariance matrix, which

becomes unstable for strongly correlated noise. As such TR requires the

highest computing power.
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3. Distributions of Test Statistics

In order to analytically characterize the performance of the detectors dis-

cussed in Chapter 2, distributions of their test statistics under the hy-

potheses are needed. Specifically, closed-form expressions of test statistic

distributions under hypothesis H0 and hypothesis H1 lead to closed-form

false alarm probability and detection probability, respectively. With ex-

pressions for both false alarm and detection probabilities of a given de-

tector, its receiver operating characteristic can be found. In this chapter

we focus on presenting the main contribution of this thesis – the results

for the distributions of the test statistics of interest, in a uniform manner.

In Chapter 3.1, we outline the mathematical tools utilized to obtain these

results. In Chapter 3.2, closed-form expressions for the test statistics dis-

tributions are presented for each considered detector, with sketches of

proofs and the set of used tools specified.

3.1 Main mathematical tools

The order of the presentation of the following mathematical tools is deter-

mined by the usefulness in the context of this thesis. Other methodologies

that are useful only in some specific problem settings will be briefly men-

tioned. We only focus on the knowledge that is most relevant of this thesis,

the actual content of each of the following subjects is much more broader.

3.1.1 Multivariate analysis

Multivariate analysis mainly deals with the analysis of distributions and

tests based on multivariate Gaussian distributions. Classical text books

in multivariate analysis include [13, 35], where real matrices were dealt

with. For complex matrices, A. T. James’ seminal paper [36] contains a

comprehensive survey. These analyses are primarily concerned with sam-
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ple covariance matrices of finite dimensions. This subject dates back to

as early as 1928, where the exact (finite size) distribution of the sample

covariance matrix was derived as what we know today the Wishart distri-

bution [37]. One of the key techniques in deriving the exact distributions

at finite size is the calculation of Jacobians of matrix transforms. For sys-

tematical knowledge in this direction, we refer to [38]. In the context of

this thesis, techniques from multivariate analysis are used to obtain test

statistics distributions as well as moments expressions of finite sizes.

As an example, we show in the following the derivation of the complex

Wishart distribution, which is the central model throughout this thesis.

For a K ×N complex Gaussian matrix X with entries follow an i.i.d stan-

dard complex Gaussian distribution, the joint density is given by

pX(X) =
1

πKN
e−tr(XX†). (3.1)

The corresponding complex Wishart matrix equals R = XX†. Consider

the transformations

R = TT†, X = TU, (3.2)

where T is a K × K lower triangular matrix with real positive diagonal

elements tii, and U is a K × N semiunitary matrix, UU† = IK . The

Jacobians of these transforms are given in [38, Th. 3.7] and [38, Th. 4.5]

as

dR = 2K

(
K∏
i=1

t
2(K−i)+1
ii

)
dT (3.3)

and

dX =

(
K∏
i=1

t
2(N−i)+1
ii

)
dTdG (3.4)

respectively. In (3.4), dG denotes the Haar measure, the total volume of

the space of semiunitary matrices OK,N equals [38, Coroll. 4.5.2]∫
OK,N

dG =
2KπKN

ΓK(N)
, (3.5)

where ΓK(N) has been defined in (2.3). As a result, we have∫
OK,N

dX =

(
πKN

ΓK(N)

K∏
i=1

t
2(N−K)
ii

)
dR, (3.6)

and using the fact that

|R| = |T|2 =
K∏
i=1

t2ii, (3.7)
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the density of R is obtained as

pR(R) =

(
πKN

ΓK(N)
|R|N−K

)
pX(X)

∣∣∣∣
XX†=R

(3.8)

=
1

ΓK(N)
|R|N−Ke−tr(R). (3.9)

We mention in the following two auxiliary tools that were only utilized

in [PV] for calculations of moments of the test statistics under H1. The

first one is the combinatorial structure of moments of complex Wishart

distribution. For a complex Wishart matrix R ∼ WK (N,Σ) as defined

in (2.2), the n-th moment of R, by definition, equals

E

[
n∏

k=1

Rik,jk

]
=

∂Ω(Θ)

∂θj1,i1∂θj2,i2 . . . ∂θjn,in

∣∣∣∣∣
Θ=0

, (3.10)

where Ω(Θ) := E
[
etr(RΘ)

]
= |Σ|−N |Σ−1 −Θ|−N denotes the moment gen-

erating function of R with the i, j-th entry of the Hermitian parameter

matrix Θ being θi,j . It was proven in [39] via representation theory for

symmetric group that (3.10) admits the following structure

∂Ω(Θ)

∂θj1,i1∂θj2,i2 . . . ∂θjn,in

∣∣∣∣∣
Θ=0

=
n∑

i=1

Nn−i+1Bi−1, (3.11)

where the scalar Bi is a sum of distinct terms of the form
∏n

k=1Σik,jπ(k)

with an index distance i, where π defines a permutation of integers 1, . . . , n.

Here, the index distance is defined as the minimum index permutations

(restricted to row-to-row or column-to-column permutations) required such

that a term
∏n

k=1Σik,jπ(k)
is permutated to the canonical form

∏n
k=1Σik,jk .

For example, the index distance of the term Σi1,j3Σi2,j4Σi3,j2Σi4,j1 is 3.

This combinatorial structure (3.11) was first observed in [40], where up to

the 4-th moment of R were calculated.

The other tool we would like to mention is the so-called delta-method [41],

which is a standard technique for estimation of statistics of functions of

random variables, especially the mean and variance. The setting rele-

vant to this thesis is the following. Consider random variables X and Y

that in general are correlated. The bi-variate Taylor series expansion of a

function z(x, y) of X and Y about their mean values μx and μy is

z(x, y) = z(μx, μy) +

(
∂z

∂x

∣∣∣∣
x=μx,y=μy

)
(x− μx) +

(
∂z

∂y

∣∣∣∣
x=μx,y=μy

)
(y − μy) +

1

2!

((
∂2z

∂x2

∣∣∣∣
x=μx,y=μy

)
(x− μx)

2 +

(
∂2z

∂y2

∣∣∣∣
x=μx,y=μy

)
(y − μy)

2 +(
∂2z

∂x∂y

∣∣∣∣
x=μx,y=μy

)
2(x− μx)(y − μy)

)
+ · · · . (3.12)
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If the moments and the joint moments of X and Y are known, an estimate

of the mean of z(x, y) is obtained by taking the expectation of (3.12) as

E [z(x, y)] ≈ z(μx, μy) +
1

2!

((
∂2z

∂x2

∣∣∣∣
x=μx,y=μy

)
E
[
(x− μx)

2
]
+(

∂2z

∂y2

∣∣∣∣
x=μx,y=μy

)
E
[
(y − μy)

2
]
+

(
∂2z

∂x∂y

∣∣∣∣
x=μx,y=μy

)
2E [(x− μx)(y − μy)]

)
.

(3.13)

Estimates of high moments can be performed in a similar manner. From

above formulations, it is clear that the delta-method relies on the assump-

tion that the Taylor expansion around the mean values is effectively lin-

ear.

3.1.2 Moment based approximation

Moment based approximation is a set of techniques that are utilized to

approximate the distribution of random variables based on their analyt-

ical moment expressions. Moment based approximation is very useful in

practice since closed-form moments are often analytically more tractable

than exact distributions. In the statistical literature, various types of mo-

ment based approximation have been proposed. For example, a family of

Pearson curves can be used to approximate unknown distributions, where

up to the 4-th moment are needed [42]. The drawback of this approach is

that both the number of candidate curves and the moments are limited,

leading to non-trivial approximation errors in some cases. Alternatively,

the saddlepoint method [43] is also applicable, which is rather accurate

especially in the tail of the distribution. However, the implementation

of this method requires numerically solving the saddlepoint equations,

which may become computationally intensive. A systematic approach to

moment based approximations is to use orthogonal polynomials, which

will be explained in some detail below.

We consider to approximate an unknown density p(x) of random vari-

able X by using up to its n-th moment. These moments are assumed to

exist, and the approximating function is denoted by pn(x). Define a set of

monic orthogonal polynomials of degree n,

fn(x) =

n∑
k=0

dn,kx
k, dn,n = 1, (3.14)

which are orthogonal with respect to a weight function w(x) supported in
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x ∈ [a, b] as ∫ b

a
w(x)fn(x)fm(x)dx =

⎧⎨⎩ 0 n 	= m

hn n = m
, (3.15)

where hn is the norm of the orthogonal polynomial. If the all the integer

moments of the weight function are finite i.e.

mi =

∫ b

a
w(x)xidx < ∞, (3.16)

the monic orthogonal polynomials fn(x) are uniquely determined by the

following determinantal representation

fn(x) =
1

Δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1

...
... . . . ...

mn−1 mn · · · m2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.17)

with

Δ = |mi+j |, i, j = 0, . . . , n− 1. (3.18)

To find a polynomial approximation, first a proper weight function has

to be selected, which has the same support as p(X). Define an initial

approximation to p(X) via the weight function by ψ(x) = cw(x), where c =(∫ b
a w(x)dx

)−1
. We assume that the initial approximation ψ(x) is obtained

by matching the first two moments of p(x). With the above notations, the

n-moment based orthogonal polynomial approximation is given by

pn(x) = ψ(x) + ψ(x)
n∑

i=3

ηifi(x), (3.19)

where ηi are determined from the equations∫ b

a
fi(x)pn(x)dx =

∫ b

a
fi(x)p(x)dx, i = 3, . . . , n. (3.20)

The choice of the initial approximation ψ(x) can be decided from the sup-

port of the random variable of interest. When x ∈ (−∞,∞), x ∈ [a,∞),

and x ∈ [a, b] (a, b being finite) reasonable choices for the initial approx-

imations are Gaussian, Gamma, and Beta densities, respectively. These

density functions in turn correspond to Hermite, Laguerre, and Jacobi or-

thogonal polynomials. An important property of orthogonal polynomial

approximations is that for random variables of finite support x ∈ [a, b],

the approximation (3.19) becomes exact as the number of polynomials n

goes to infinity. This result is known as the Weierstrass approximation
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theorem [44]. In practise, the choice of n reflects a trade-off between the

approximation accuracy and the implementation complexity. We consider

n = 2 in all the included publications of this thesis, where moment based

approximation has been invoked. The general n-moment-based approxi-

mation, including the error analysis, can be easily obtained by following

the procedures in [45, 46]. For recent applications of moment based ap-

proximations in wireless communications, we refer to [47, 48].

3.1.3 Mellin transform

Integral transforms plays an important role in calculating functions of

random variables. Some manipulations can be more easily performed in

the transform domain than on non-transformed functions. In this respect,

Mellin transform is a powerful tool in characterizing the distribution of

products and ratios of independent random variables. For a random vari-

able X with the density function pX(x), the Mellin transform is defined

as

Ms[pX(x)] =

∫ ∞

0
xs−1pX(x)dx, (3.21)

where s is a complex number and the above Mellin transform exists if

the integral converges. One basic property useful in the context of this

thesis is presented here. We are interested in the distribution of product

Z = XY of independent random variables X and Y . The (s−1)-th moment

of random variable Z equals

E[Zs−1] = E[(XY )s−1] = E[Xs−1]E[Y s−1]. (3.22)

Define the densities of random variables X, Y , and Z as pX(x), pY (x),

and pZ(x), respectively. As a consequence of the above formulations, the

Mellin transform relation for the product of random variables is

Ms[pZ(x)] = Ms[pX(x)]Ms[pY (x)]. (3.23)

By the Mellin inversion integral, the density of Z is uniquely determined

by the contour integral

pZ(x) =
1

2πi

∫ c+i∞

c−i∞
x−sMs[pX(x)]Ms[pY (x)]ds, (3.24)

where the integration path is a vertical line in the complex plane. For a

review of Mellin transform techniques useful in engineering, see [49], and

for recent applications in performance analysis of communication systems

we refer to [50, 51].
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3.1.4 Random matrix theory

Random Matrix Theory (RMT) deals with the statistics of large dimen-

sional matrices with random variable entries. RMT embraces various

branches of mathematics such as analysis, algebra, differential equations,

and combinatorics. Contrary to multivariate analysis, in RMT the focus

is on the asymptotic behaviors when the matrix size approaches infin-

ity. In particular, the emphasize has been on the asymptotic eigenvalue

behavior. Although multivariate analysis often leads to exact character-

izations, these results may become computational prohibitive for large

matrix dimensions. The corresponding results derived from RMT may

serve as alternatives for computational purposes. This is the case for

spectrum sensing applications, where the sample sizes are typically of

the order hundreds. One of the key features of RMT is so-called univer-

sality. Namely, irrespective of the choices of measure for matrix entries,

the behavior of certain metrics such as the correlation functions remain

the same. The standard reference for RMT is the textbook by Mehta [52],

where some of the most important methodologies are discussed. For ap-

plications in wireless communications using RMT we refer to [53], and

for a recent survey of all major applications see [54]. As an example of

random matrix theory, in the following we shall discuss in some detail an

asymptotical result on the largest eigenvalue distribution of the sample

covariance matrix R (Σ = IK in (2.2)), which will be used in the next

section.

For complex Gaussian matrices defined in (3.1), the joint density of the

eigenvalues 0 ≤ λK ≤ . . . ≤ λ1 < ∞ of the sample covariance matrix

R = XX† reads [36]

C
∏

1≤i<j≤K

(λi − λj)
2

K∏
i=1

λN−K
i e−λi , (3.25)

where

C =

(
K∏
i=1

Γ(N − i+ 1)Γ(K − i+ 1)

)−1

. (3.26)

Define the distribution function of the largest eigenvalue λ1 as

F (x) = P(λ1 < x). (3.27)

In the asymptotic regime K → ∞, N → ∞ with K/N ∈ (0, 1) fixed, it is

shown in [55] based on the analysis of [56] that the scaled and centered

largest eigenvalue distribution converges to a Tracy-Widom distribution
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of order two

lim
K→∞
N→∞

F (μ+ νs) = FTW2(s), (3.28)

where

μ =
(√

K +
√
N
)2

, ν =
(√

K +
√
N
)( 1√

K
+

1√
N

)1/3

. (3.29)

Johnstone [57] gave an alternative proof of the above result and discussed

its application in statistics. The Tracy-Widom distribution of order two

can be represented as a Fredholm determinant

FTW2(s) =
∞∑
k=0

(−1)k

k!

∫
[s,∞)k

|A(xi, xj)|dx1 · · · dxk, (3.30)

where i, j = 1, . . . , k and the Airy kernel

A(x, y) =
Ai(x)A

′
i(y)−A′

i(x)Ai(y)

x− y
, (3.31)

Ai(x) being the Airy function. The Airy kernel is obtained by the asymp-

totics of Laguerre polynomials [57]. Besides the Fredholm determinant

representation, Tracy-Widom distribution of order two can be also repre-

sented as

FTW2(s) = e
−
∫ ∞

s
(x− s)q2(x)dx

, (3.32)

where q(x) is the solution to the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x) (3.33)

with the boundary condition q(x) ∼ Ai(x), when x → ∞. For a survey

of applications of Tracy-Widom distribution we refer to [58] and for accu-

rate and fast algorithms for the numerical evaluation of FTW2(s) we refer

to [59, 60].

3.2 Key results

Using the above described mathematical tools, distributions of the con-

sidered test statistics can be derived. In the following we will present,

without proof, these distributional results. The state-of-the-art on each

result will be briefly discussed as well.

3.2.1 Distribution of TLE under hypotheses H0 and H1

In this case the exact distribution of TLE under H0 is

FLE(y) =
C

(σ2)KN
|A| , (3.34)
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where the i, j-th entry of the K ×K matrix A equals

Ai,j =

∫ y

0
xN−K+i+j−2e−

x
σ2 dx, (3.35)

and C was defined in (3.26). For σ2 = 1 the corresponding result can be

found in [61], and recently [62] gave a different derivation.

Based on the non-central Wishart model (2.7), the exact distribution of

TLE under H1 is

GLE(y) = C ′ |B| , (3.36)

where

C ′ =

(∏K−1
i=1 Γ(N − i)Γ(K − i)

)−1

Γ(N −K + 1)(σ2)KN−2K+2 eξ1/σ2ξK−1
1

, (3.37)

and the first column of the K ×K matrix B equals

Bi,1 =

∫ y

0
xN−ie−

x
σ2

0F1

(
N −K + 1;

ξ1x

σ4

)
dx, (3.38)

and columns from the second to the K-th are

Bi,j =

∫ y

0
xN+K−i−je−

x
σ2 dx, j = 2, . . . , N. (3.39)

Here ξ1 stands for the largest eigenvalue of the non-central parameter

matrix Ξ in (2.8), and 0F1 (·; ·) is the hypergeometric function of Bessel

type. For σ2 = 1 the above result reduces to the result in [63]. For Gaus-

sian distributed signals, the corresponding result can be derived based

on [64].

The above results are obtained via multivariate analysis techniques,

starting with the joint eigenvalue densities for Wishart and non-central

Wishart matrices. By using the symmetry of these joint densities, the

largest eigenvalue distributions can be deduced. By closely following the

steps of the derivations in [61] and [63], the noise power σ2 is incorporated

into the final results. Under H0, in the asymptotic regime of K → ∞,

N → ∞ with K/N ∈ (0, 1) fixed, TLE follows Tracy-Widom distribution

of order two, given in (3.28). Under H1 for Gaussian distributed signals,

in the same asymptotic regime, TLE follows a Gaussian distribution with

mean and variance given by [65]

Nσ1

(
1 +

K/N

σ1 − 1

)
, σ1

√
N

(
1− K/N

(σ1 − 1)2

)
, (3.40)

respectively, where σ1 is the largest eigenvalue of the population covari-

ance matrix Σ in (2.5).
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Finally, by the test procedure (2.12), the false alarm and detection prob-

abilities of the LE detector equal

Pfa(ζ) = 1− FLE(ζ) (3.41)

and

Pd(ζ) = 1−GLE(ζ), (3.42)

respectively. As a result, an analytical ROC is obtained as

Pd = 1−GLE
(
F−1

LE (1− Pfa)
)
. (3.43)

3.2.2 Distribution of TSLE under hypothesis H0

For the SLE detector we derived an asymptotic as well as an exact distri-

butions of its test statistics under hypothesis H0. In the limit of K → ∞,

N → ∞ with K/N ∈ (0, 1) being fixed, an asymptotic approximation to

the distribution of TSLE under H0 is

FSLE(y) ≈ c (A(y)−A(1)) , (3.44)

where

c =
Γ(KN)(Kθ)−k

kΓ(KN − k)Γ(k)
(3.45)

and

A(x) = 2F1

(
k, 1 + k −KN ; k + 1;

x

Kθ

)
xk (3.46)

denotes the Gaussian type hypergeometric function. Here

k =
(μ+ νa)2

ν2b
, θ =

ν2b

μ+ νa
, (3.47)

where μ and ν have been defined in (3.29), and

a = −1.7711, b = 0.8132 (3.48)

are the mean and variance of Tracy-Widom distribution of order two.

Techniques used to obtain the above result include RMT, moment based

approximation, and Mellin transform. Based on the observations in [66]

that when K � N the extreme eigenvalues of R can be well approxi-

mated by Gamma distributions, we adopted a two-moment-based Gamma

approximation to λ1 using the first two asymptotic moments. With this

approximation and the fact that the random variables TSLE and
∑K

i=1 λi

are independent [67], the result in (3.44) is obtained via the Mellin trans-

form. In literature, the classical chi-squared asymptotics of TSLE was de-

rived in [18]. When ignoring the dependence of λ1 and
∑K

i=1 λi the re-

sulting TSLE density was derived in [19]. Refined estimates of TSLE when
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considering the correlation of λ1 and
∑K

i=1 λi, as in our case, were derived

in [68, 20].

For small K and N , the accuracy of the asymptotic approximation is

rather loose. Motivated by this, we derived an exact representation of the

TSLE density for finite K and N as

FSLE(y) =
(KN − 1)!

KKN−1

K∑
i=1

(N+K)i−2i2∑
j=N−K

iKN−j−2ci,j×(
A(y)h

(
K

i
− y

)
+A

(
K

i

)
h

(
y − K

i

)
−A(1)

)
, (3.49)

where

A(y) =

(
K

i

)KN−j−2 KN−j−1∑
q=0

(−i/K)q(j + q + 1)−1

(KN − j − 2− q)!q!
yq+j+1, (3.50)

and

h(x) =

⎧⎨⎩ 0 x < 0

1 x ≥ 0
(3.51)

denotes the Heaviside step function. In (3.49) the coefficients ci,j are

unknown constants. We have derived closed-form expressions of ci,j for

K ≤ 4 with arbitrary N . For K > 4, one has to resort to numerical tech-

niques [62, 69] to obtain the values of ci,j . For the derivations of this exact

result (3.49), we have invoked tools from multivariate analysis and Mellin

transform. Namely, by using the series representation of the density of

the largest eigenvalue [62], its exact Mellin transform is determined. The

exact TSLE density is then solved via the Mellin transform relation for

product of independent random variables (3.23). Note that an alternative

representation for the TSLE density can be found in [70], which depends

on a large number of unknown constants. Numerical evaluation of these

constants seems difficult.

By the test procedure (2.14), the false alarm probability of the SLE de-

tector equals

Pfa(ζ) = 1− FSLE(ζ). (3.52)

3.2.3 Distribution of TST under hypotheses H0 and H1

For this case we have derived closed-form approximations to the TST dis-

tributions under both hypotheses using moment based approximation and

multivariate analysis techniques. Specifically, the two-first-moment Beta

approximation to the distribution of TST under H0 is

FST(y) ≈
By(α0, β0)

B(α0, β0)
, (3.53)
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where

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (3.54)

By(α, β) =

∫ y

0
xα−1(1− x)β−1dx (3.55)

denote the Beta function and the incomplete Beta function, respectively.

The parameters α0 and β0 are given by

α0 =
M1(M1 −M2)

M2 − (M1)
2 , β0 =

(1−M1) (M1 −M2)

M2 − (M1)
2 (3.56)

with

Mn =
Γ(KN)

ΓK(N)

KKnΓK(N + n)

Γ(K(N + n))
, (3.57)

where the multivariate Gamma function ΓK(N) has been defined in (2.3).

Similarly, the two-first-moment Beta approximation to the distribution

of TST under H1 is obtained as

GST(y) ≈
By(α1, β1)

B(α1, β1)
, (3.58)

where the parameters α1 and β1 are given by

α1 =
N1(N1 −N2)

N2 − (N1)
2 , β1 =

(1−N1) (N1 −N2)

N2 − (N1)
2 (3.59)

with

Nn =

(
K

b

)Kn Γ(a−Kn)ΓK(N + n) (det(Σ))n

ΓK(N)Γ(a)
(3.60)

and

a = (N + n)

(∑K
i=1 σi

)2
∑K

i=1 σ
2
i

, b =

∑K
i=1 σ

2
i∑K

i=1 σi
. (3.61)

Recall that σi is the i-th eigenvalue of the population covariance matrix Σ

under H1.

The steps that lead to the distributions under both hypotheses are simi-

lar. We first derived the finite size moments expressions (3.57) and (3.60)

of TST, based on which the moment-based approximations are constructed.

In the statistics literature, the TST was considered as early as 1940 [71].

The corresponding moments for real Wishart matrices under both hy-

potheses were derived in [13]. For K = 2 and K = 3 with any N , the exact

densities of TST under H0 can be found in [72, Eq. (3.8)] and [73, Coroll.

2.1], respectively. For K > 3 the exact TST distribution can be, in principle,

obtained by the Mellin inversion integral [74]. The resulting expressions,

although of theoretical interest, appear to be of limited usefulness due to

their complicated forms. Under H0, as asymptotic TST distribution has

been derived in [75] using chi-squared asymptotics, whose accuracy turns
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out to be inferior than our proposed approximation [PIV]. One of our mo-

tivations for the simple two-moment-based Beta approximation under H1

is due to the fact that the exact representations for the distribution of

TST, see e.g. [76, Th. 4.1] and [77, Eq. (2.12)], involve infinite sum of prod-

ucts of a Zonal polynomial and the Meijer’s G-function, and are difficult

to compute.

From the test procedure (2.17), the false alarm and detection probabili-

ties of the ST detector equal

Pfa(ζ) = FST(ζ) (3.62)

and

Pd(ζ) = GST(ζ), (3.63)

respectively. Thus, an analytical approximation to the ROC for the ST

detector is obtained as

Pd = GLE
(
F−1

ST (PST)
)
. (3.64)

3.2.4 Distribution of TJ under hypotheses H0 and H1

For this case we have derived moment based approximations to the TJ dis-

tributions under both hypotheses. The essential calculations are closed-

form moment expressions, which were open problems in the statistics lit-

erature, and are only recently addressed in [PV]. Under H0, the two-first-

moment Beta approximation to the distribution of TJ is

FJ(y) ≈ 1−
B
(
K(1−y)
K−1 ;β0, α0

)
B(α0, β0)

, (3.65)

where

α0 =
(KM1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)K(M2 −M2
1)

, (3.66a)

β0 =
(M1 − 1)(KM1 −KM2 +M1 − 1)

(K − 1)(M2
1 −M2)

. (3.66b)

In (3.66)

Mm :=
C Γ(KN)

Γ(2m+KN)

∑
a1+···+aK=m

m!

a1! · · · aK !
×

∏
1≤i<j≤K

(2aj − 2ai + j − i)

K∏
i=1

Γ(2ai +N −K + i), (3.67)

where the sum is over all the non-negative integer solutions of a1 + · · · +
aK = m and the constant C has been defined in (3.26).
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Under H1, the corresponding two-first-moment Beta approximation to

the distribution of TJ equals

GJ(y) ≈ 1−
B
(
K(1−y)
K−1 ;β1, α1

)
B(α1, β1)

, (3.68)

where

α1 =
(1−Kμz) ((μz − 1)(Kμz − 1) +Kνz)

(K − 1)Kμz
, (3.69a)

β1 =
(μz − 1) ((μz − 1)(Kμz − 1) +Kνz)

(K − 1)μz
, (3.69b)

and

μz ≈ μx

μ2
y

− 2μxy

μ3
y

+
3μxνy
μ4
y

, (3.70)

νz ≈ νx
μ4
y

− 4μxμxy

μ5
y

+
4μ2

xνy
μ6
y

. (3.71)

Here the quantities μx, μy, νx, νy and μxy are calculated, in terms of the

population covariance matrix under H1 (2.5), as

μx = tr(Σ2) +
1

N

(
tr(Σ)

)2
, (3.72)

νx =
4

N
tr(Σ4) +

2

N2

(
4tr(Σ)tr(Σ3) +

(
tr(Σ2)

)2)
+

2

N3

(
2 (tr(Σ))2 tr(Σ2) + tr(Σ4)

)
, (3.73)

μy = tr(Σ), (3.74)

νy =
1

N
tr(Σ2), (3.75)

μxy =
2

N
tr(Σ3) +

2

N2
tr(Σ)tr(Σ2). (3.76)

In order to obtain the approximation to TJ under hypotheses H0, we

first need to prove the independence of random variables
(∑K

i=1 λi

)2
and

TJ. With this result, we are able to calculate the exact moments (3.67)

under H0 using multivariate techniques. Under H1, the moments of the

numerator and denominator of TJ as well as their joint moments are cal-

culated first via representation theory of the symmetric group. With these

closed-form moments, accurate estimates of the first two moments (3.70)

and (3.71) under H1 are derived using the delta-method. In the statis-

tics literature, for real Wishart matrix, up to the second, fourth and sixth

moments of TJ under H0 were derived in [78], [79] and [46], respectively.

Moreover, our derived moment expression (3.67) is an extension to the

Selberg type integrals considered in [52, Eq. (17.6.5) and (17.8.1)]. Sev-

eral asymptotical TJ distributions for real Wishart matrices under H0
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were established in [23, 80, 81], which may be generalized to the com-

plex Wishart case. However, simulations show that these approximations

converge slowly with respect to (w.r.t.) N for a fixed K [23, 80] and w.r.t.

both K and N [81]. Under H1, asymptotic TJ distributions for real Wishart

matrices are available in [23, 82]. However, besides being slowly converg-

ing, these asymptotic results are only valid for some specific structures of

the population covariance matrix Σ.

Finally, by the test procedure (2.19), the false alarm and detection prob-

abilities of John’s detector equal

Pfa(ζ) = 1− FJ(ζ) (3.77)

and

Pd(ζ) = 1−GJ(ζ), (3.78)

respectively. As a result, an analytical ROC is obtained as

Pd = 1−GJ
(
F−1

J (1− Pfa)
)
. (3.79)

3.2.5 Distribution of TER under hypothesis H1

In this case, we derived finite size as well as asymptotic approximations

to the distributions of the ER detector under H1. As for TLE we consider

here the non-central Wishart matrix model (2.7)

R ∼ WK (N,Ψ,Ξ) . (3.80)

For finite K and N , the distribution of TER can be approximated by

GER(y) ≈ −a2
∫ ∞

0
tr (adj(B)D) |C|dx, (3.81)

where the constant

a =

(∏K
i=1 υi

)−N∣∣∣−υ1−i
j

∣∣∣∏K
i=1(N − i)!

, i, j = 1, . . . ,K, (3.82)

with υi being the i-th eigenvalue of the matrix

Υ = Ψ+Ξ/N. (3.83)

Here the i, j-th entries of the K ×K matrices B, C, and D are

bi,j = υN−K+j
i Γ(N −K + j, x/υi), (3.84)

ci,j = υN−K+j
i γ(N −K + j, xy/υi), (3.85)

di,j = −xN−K+j−1e−x/υi , (3.86)
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where Γ(·, ·) and γ(·, ·) are respectively the upper and lower incomplete

Gamma functions. In deriving the above result, we first formulated the

non-central Wishart model to an equivalent central Wishart model. We

then utilized the finite size distributions of the extreme eigenvalues den-

sities of the central Wishart derived from multivariate analysis to con-

struct the approximation. To achieve the final result, we ignored the in-

dependence of the extreme eigenvalues. Note that under H0, the exact

distribution of TER was derived in [25].

In order to gain insight into the behaviors of the ER detector for large K

and N , we derived an asymptotical approximation using recent results in

RMT. Specifically, in the limit of K → ∞, N → ∞ with K/N ∈ (0, 1) fixed,

the distribution of TER can be approximated by a Gaussian distribution

GER(y) ≈ Φ

⎛⎝ aKy − a1√
b2Ky2 + b21

⎞⎠ , (3.87)

where

ai = Nυi

(
1 +

K/N

υi − 1

)
, (3.88)

bi = υi

√
N

(
1− K/N

(υi − 1)2

)
, (3.89)

and υi has been defined in (3.83). The derivation of this result is similar

to that of the corresponding finite size result (3.81). The only difference is

that here the asymptotical distributions of the extreme eigenvalue densi-

ties [65] have been utilized. Under H0, the asymptotic distribution of TER

can be found in [16, 24].

By the test procedure (2.22), the detection probability of ER detector

equals

Pd(ζ) = 1−GER(ζ). (3.90)

3.2.6 Distribution of TDCN under hypothesis H0

In this case the exact distribution of the DCN detector under H0 is derived

using Mellin transform, and multivariate analysis techniques, as

FDCN(y) = Γ (KN)

(N−K)K∑
n=N−K

cn
(
B(n+ 1,KN − n− 1)−BK

y
(n+ 1,KN − n− 1)

)
Kn+1Γ(KN − n− 1)

,

(3.91)

where B(·, ·) and B(·)(·, ·) are the Beta and incomplete Beta functions de-

fined in (3.54) and (3.55), respectively. In (3.91), the constants cn are

generally unknown, and numerical calculations are needed [62, 69]. Up
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to K = 4, closed-form expressions for these constants were calculated

in [83]. Under H0, the distribution of TDCN for K = 2 with arbitrary N

was derived in [25], and for K = N the corresponding result was derived

in [84].

By the test procedure (2.23), the false alarm probability of the DCN

detector is

Pfa(ζ) = 1− FDCN(ζ). (3.92)

3.2.7 Distribution of TW under hypothesis H0

For this case, the idea of the derivations are rather similar to those of

TST and TJ, where we first calculated the exact moments using multivari-

ate analysis then the desired approximation was constructed by moment

based approximation techniques. Under H0, the two-moment-based Beta

approximation to the distribution of TW is

FW(y) ≈ B(y;α0, β0)

B(α0, β0)
, (3.93)

where

α0 =
M1(M1 −M2)

M2 − (M1)
2 , β0 =

(1−M1) (M1 −M2)

M2 − (M1)
2 , (3.94)

and

Mm :=
ΓK(N +M)ΓK(M +m)

ΓK(M)ΓK(N +M +m)
. (3.95)

In literature, an exact density representation for real Wishart matrices

via Meijer’s G-function is derived in [85]. Although of theoretical interest,

it is too complicated for computational purposes. For complex Wishart

matrices, exact TW densities were derived for a few limited cases, i.e. K =

2 and K = 3 in [86]. An asymptotic TW distribution for real Wishart

matrices can be found in [87, Eq. (5.4)], which is slowly converging and

rather computationally intensive.

By the test procedure (2.29), the false alarm probability of Wilks’ detec-

tor is

Pfa(ζ) = FW(ζ). (3.96)

Evaluations of the accuracy of the proposed approximative distributions

of the considered test statistics in Chapter 3.2 will not be reproduced here.

For results in this direction, the reader may follow each included paper for

detailed discussions.
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4. Performance Comparisons

In this chapter we compare the performance of the detectors discussed in

Chapter 3 by means of the receiver operating characteristic. Since a ROC

curve shows the achieved detection probability as a function of the false

alarm probability, it reflects the overall detection performance for a given

detector. The plots of false alarm probability versus threshold will not be

reproduced here, which can be found in the included individual papers.

Note that all the considered detectors in this thesis, except for the largest

eigenvalue based detector and the energy detector, belong to the so-called

constant false alarm rate detectors. Namely, for a given false alarm prob-

ability the threshold remains unchanged irrespective of the noise level.

Contrary to the instantaneous ROC plots for a given channel realization

in the included papers, we consider in the following average ROCs over

fading channels. This metric is more informative than the instantaneous

ROC curve. For the considered detectors, the corresponding analytical

ROCs over fading channels are not available in literature, we thus resort

to Monte-Carlo simulations for these ROC curves. For performance com-

parisons conditioned on a channel realizations, including the evaluations

of the derived instantaneous ROCs and the corresponding error analy-

sis, the readers are referred to the included individual papers for details.

Moreover, we focus on detection performance comparisons in relatively

low SNR regime, which is a practical and challenging issue in spectrum

sensing.

To see a complete picture within the described three facts in Chapter 1.1,

we will examine the impact of the noise uncertainty, the number of pri-

mary users, as well as the knowledge of the noise covariance matrix. In

order to identify the effect of each of the above factors on detection perfor-

mance we divide this chapter into two subchapters according to the cri-

terion we have chosen to divide detectors in Chapter 2.2. Specifically, in
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Table 4.1. Summary of the Simulation Scenario Considered in Each Figure

scenarios P = 1 multiple P

known Ψ Figure 4.1 Figure 4.2 Chapter 4.1

unknown Ψ Figure 4.3 Figure 4.4 Chapter 4.2

Chapter 4.1 we focus on performance comparisons among detectors that

have perfect knowledge of the noise covariance matrix. In Chapter 4.2 we

then concentrate on comparing blind noise covariance detectors to non-

blind ones. For a quick reference, we summarize in Table 4.1 the scenarios

considered in each subsection and for each figure.

The considered values of the parameters K, N and M in this chapter

reflect practical spectrum sensing scenarios. The number of samples N

and the number of noise-only observations M can be as large as a couple

of hundred whereas the number of sensors K is at most eight due to phys-

ical constraints of the device size. Contrary to the instantaneous ROC

curves generated for a fixed channel realization H = [h1, . . . ,hP ] i.e. a

fixed covariance matrix under H1

Σ = Ψ+
P∑
i=1

γihih
†
i , (4.1)

each of the following curves is generated by averaging over 104 ROC curves

obtained by 104 independent realizations of Σ. For each realization, the

single-tap flat fading channel matrix H is independently drawn from a

standard complex Gaussian distribution. The channel is assumed to be

constant during each sensing interval. As a result, we are considering

average detection performance over Rayleigh fading channels. Each in-

stantaneous ROC is generated by using 106 independent realizations of

the data matrix X under both hypotheses. Each average ROC curve is ob-

tained by averaging over the detection probabilities for a fixed false alarm

probability.

4.1 Impact of noise uncertainty and number of primary users on
the detection performance

In this subchapter the noise covariance matrix Ψ is assumed to be known

and is chosen, without loss of generality, to be Ψ = σ2IK . In Figure 4.1,
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Figure 4.1. Average ROC over Rayleigh fading channels: assuming the presence of a sin-
gle primary user with SNR = −2 dB using K = 4 sensors and N = 150 sam-
ples per sensor. The noise covariance matrix is assumed to be Ψ = σ2IK . The
degree of noise uncertainty (NU) for the LE detector is chosen to be 0.3 dB.

we first consider the scenario of a single primary user P = 1. We include

for comparisons all the non-blind Ψ detectors discussed in Chapter 2.2.1,

including the non-blind noise power σ2 detector, i.e. the LE detector. The

effect of noise uncertainty on the performance of the LE detector is stud-

ied as well. The LE detector is subject to noise uncertainty due to its

dependence on the noise power. All the other detectors in Figure 4.1 are

blind to σ2, and thus their performance will not change irrespective of the

degree of noise uncertainty. The model of noise uncertainty is as follows.

If ϑ denote the degree of noise uncertainty in dB, the actual noise power

thus falls in the interval [σ2/c, cσ2], where c = 10ϑ/10. As in [9, 10, 88],

here we consider the worst performance degradation due to noise uncer-

tainty, where the noise power for the LE detector is cσ2 under H0 and

σ2/c under H1. In Figure 4.1 we consider the noise uncertainty level to be

0.3 dB, which is generally realistic. For example, it was remarked in [9]

that the noise uncertainty can be at least 1 to 2 dB due to limitations of

devices only and in [88] the authors considered noise uncertainty levels

up to 3 dB. In Figure 4.1, the number of sensors and samples per sensor

equal K = 4 and N = 150, respectively. The SNR of the primary user is

set at −2 dB.

From Figure 4.1 we can see that in the case of perfectly known σ2 the
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Figure 4.2. Average ROC over Rayleigh fading channels: assuming the presence of three
primary users. The noise covariance matrix is assumed to be Ψ = σ2IK . In
subfigure (a): SNR1 = −3 dB, SNR2 = −4 dB, and SNR3 = −5 dB with K = 4

sensors and N = 150 samples per sensor. In subfigure (b): SNR1 = −16 dB,
SNR2 = −18 dB, and SNR3 = −20 dB with K = 4 sensors and N = 5 × 104

samples per sensor.

LE detector performs best, and with only 0.3 dB noise uncertainty its per-

formance degrades severely. The superior performance of the LE detector

shown here will not likely occur in practise due to the presence of noise

uncertainty in the real world. As expected, the SLE performs best among

the blind-σ2 detectors, since it is designed for (in the GLR sense) single-

primary-user detection with known Ψ by construction. On the other hand,

the blind P detectors indeed suffer performance loss in the presence of a

single primary user. Among these, it is seen that the heuristically pro-

posed ER and DCN detectors perform particularly worse.

Having seen the effect of noise uncertainty on the relative detection per-

formance, in the next figure we only include for comparisons these noise-

uncertainty-free detectors. In the presence of noise uncertainty, the be-

havior of the ED detector is similar to that of the LE detector. Here, our
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focus will be on the impact of number of primary users on the detection

performance. Specifically, in Figure 4.2 we assume a scenario of three si-

multaneously transmitting primary users. In Figure 4.2 (a) we consider

the case when SNR1 = −3 dB, SNR2 = −4 dB, and SNR3 = −5 dB, with

K = 4 sensors and N = 150 samples per sensor. In Figure 4.2 (b) we

consider detection in the very low SNR regime when SNR1 = −16 dB,

SNR2 = −18 dB, and SNR3 = −20 dB, with K = 4 sensors and N =

5 × 104 samples per sensor. This consideration is motivated by the fact

that the recent Federal Communications Commission regulations require

that the secondary devices must be able to detect signals with SNR as low

as −18 dB [89, 90]. We observe from Figure 4.2 that in this case John’s

detector achieves the best detection performance. The very similar per-

formance of John’s and the ST detectors as observed in Figure 4.2 (b) is

not surprising. In fact, it was proven in [91] that their asymptotic perfor-

mances are the same as measured by the Pitman efficiency. The perfor-

mance loss of the SLE detector is due to its non-blind P nature. Again

we see that neither of the heuristic detectors, the ER or the DCN detec-

tor, perform well. Both Figure 4.1 and Figure 4.2 seem to indicate that the

use of decision-theoretically constructed detectors over these heuristically

proposed ones is justifiable.

4.2 Impact of knowledge of noise covariance matrix on the
detection performance

We now focus on comparing performance of blind-Ψ detectors. The expo-

nential correlation model [92]

(Ψ)i,j = ρ|i−j|, ρ ∈ [0, 1), (4.2)

is chosen for the noise covariance matrix, where ρ specifies the degree

of noise correlation. Note that unlike the cases studied above, here the

noise covariance matrix is unknown at the secondary receivers. We start

by studying the scenario of a single primary user in Figure 4.3, where we

set SNR = −2 dB, (K,N,M) = (4, 150, 100) and ρ = 0.4. For this case,

we compare Roy’s detector and Wilks’s detector, both of which are blind-

Ψ detectors by construction. As the focus is now the single-primary-user

detection in addition to the blind-Ψ setting, we also include for compari-

son the SLE detector derived from the GLR criterion. Comparisons with

other non-blind Ψ detectors in Chapter 2.2.1 are excluded. For a fair com-
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Figure 4.3. Average ROC over Rayleigh fading channels: assuming the presence of a sin-
gle primary user with SNR = −2 dB using K = 4 sensors, N = 150 samples
per sensor, and M = 100 noise-only observations. The noise covariance ma-
trix is assumed to be (Ψ)i,j = ρ|i−j| with ρ = 0.4, but is unknown at the
secondary receiver.

parison, the SLE detector also needs to utilize the available noise-only

observations M . To this end, we replace R by the ’whitened’ sample co-

variance matrix E−1R i.e. the SLE detector now becomes

θ1
1
K

∑K
i=1 θi

. (4.3)

This modification is motivated by the fact that E is the maximum likeli-

hood estimate of Ψ, and for a known Ψ the SLE detector becomes a func-

tion of Ψ−1R [13]. Moreover, the modified SLE detector (4.3) can be con-

sidered as a heuristic blind-Ψ detector. We can see from Figure 4.3 that

Roy’s detector performs best in this scenario, and indeed its usefulness in

detecting a single primary user in the case of arbitrary and unknown Ψ

has been justified in [32, 33]. The performance loss of Wilks’ detector is

due to its multiple-primary-user assumption induced from construction.

In Figure 4.4 we investigate the impact of the number of primary users

on the relative performance of the blind-Ψ detectors. In addition to Roy’s

and Wilks’ detectors, we also include for comparisons the non-blind Ψ

multiple-primary-user detectors: the ST and John’s detectors. Compar-

isons with heuristically proposed non-blind-Ψ detectors are excluded. For

a fair comparison, both the ST and John’s detectors are modified to in-
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Figure 4.4. Average ROC over Rayleigh fading channels: assuming the presence of three
primary users with SNR1 = −3 dB, SNR2 = −4 dB, and SNR3 = −5 dB
using K = 4 sensors, N = 150 samples per sensor, and M = 100 noise-only
observations. The noise covariance matrix is assumed to be (Ψ)i,j = ρ|i−j|

with ρ = 0.4, but is unknown at the secondary receiver.

corporate the available noise-only observations M in the same way as the

modified SLE detector (4.3). In Figure 4.4 we consider a scenario of three

active primary users with SNR1 = −3 dB, SNR2 = −4 dB, SNR3 = −5 dB

and we set the degree of noise correlation at ρ = 0.4. The sensor size, the

number of samples per sensor, and the number of noise-only observations

equal K = 4, N = 150, and M = 100, respectively. From Figure 4.4 we see

that Wilks’ detector outperforms Roy’s detector, which is expectable since

the former is designed for (in the GLR sense) multiple P detection when

Ψ is arbitrary and unknown. It is seen that the heuristically proposed

detectors i.e. the modified ST and John’s detectors perform substantially

worse. This is intuitively clear since Wilks’ detector was derived from

a decision-theoretic criterion i.e. the GLR criterion whereas these modi-

fied detectors utilize the noise-only samples in a heuristic manner. Our

intensive simulations show that both Roy’s and Wilks’ detectors perform

much better than these modified non-blind Ψ detectors for ρ > 0.4. Finally

we note that the observations in Figure 4.3 and Figure 4.4 regarding the

relative performance of Roy’s and Wilks’ detectors are in line with those

of [93, 94].
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5. Conclusion and Future Work

5.1 Conclusion

Current static spectrum allocation schemes lead to severe underutiliza-

tion of the spectrum, and thus can not meet the demands of an ever in-

creasing number of higher data rate devices. The concept of cognitive

radio has been introduced as a promising solution to the problem of spec-

trum underutilization. Cognitive radio provides the opportunity to au-

tonomously exploit locally unused spectrum, giving rise to new paths to

spectrum access. One of the key steps towards this dynamic spectrum

access is the ability of the secondary user to reliably detect the primary

users. Therefore, spectrum sensing becomes an important enabler for cog-

nitive radio networks. In this thesis, we have focused on multi-antenna

assisted energy based spectrum sensing, where the detection problem is

modeled as a binary hypothesis test. The investigations leading to this

thesis were motivated by relevant practical issues related to energy based

detection. These issues are the noise uncertainty problem, the presence

of more than one active primary users as well as the existence of un-

known noise correlations. By taking the above practical issues into con-

siderations, we proposed different detection algorithms that are suitable

for different scenarios. Furthermore, we analyzed the performance of the

relevant detectors by deriving closed-form expressions for the false alarm

probability, the detection probability, and the receiver operating charac-

teristic, which are the main contributions of this thesis. These results

are obtained by making use of tools from multivariate analysis, moment

based approximations, Mellin transforms, and random matrix theory.

Comprehensive simulations performed in Chapter 4 have shown that

the proposed detectors indeed resolved the concerns raised by the above
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listed practical issues. Specifically, the SLE detector, studied in [PII]

and [PIII], performs best in the presence of noise uncertainty and a sin-

gle active primary user, see Figure 4.1. The ST detector studied in [PIV]

and John’s detector studied in [PV] have shown their superiority in the

presence of multiple primary users, outperforming single primary detec-

tors and heuristic detectors that are with the same assumptions, see Fig-

ure 4.2. In the most general scenario of unknown noise covariance matrix

with multiple primary users, Wilks’ detector studied in [PVIII] is shown

to perform best, see Figure 4.4. Wilks’ detector stands out to be the most

robust detection algorithm under the framework developed in this thesis.

In general, the choice of detection algorithm should be based on a priori

knowledge on the primary and/or secondary systems. However, given the

fact that a priori knowledge is hardly available in practice, Wilks’ detec-

tor becomes a viable candidate in realistic spectrum sensing scenarios.

Finally, we would like to remark that there are no theoretical justifica-

tions for assuming that test statistics derived from the GLR or LBI cri-

terion are optimal tests, i.e. uniformly most powerful tests. However,

strong numerical evidence suggests that it is wise to use detectors that

are derived from decision-theoretic considerations over the corresponding

heuristic detectors.

5.2 Future work

Based on the results and conclusions of this thesis, several viable direc-

tions for future work are listed in the following.

• The derived detection probabilities in Chapter 3.2 are conditioned on a

channel realization, i.e. they represent instantaneous detection proba-

bility. It would be interesting to capture the average detection probabil-

ity over fading channels, and to study the relative detection performance

in different fading scenarios. To obtain analytical expressions for the

average detection probability, by definition, one needs to integrate an

instantaneous detection probability over the density of the correspond-

ing channel model. For this type of analysis, the tools from multivariate

analysis and from random matrix theory such as Selberg’s integrals [52]

may be useful.

• Under the same setting as Wilks’ detector, the corresponding detector
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derived from the locally best invariant criterion is Lawley-Hotelling’

test [13, 35]

TLH :=

K∑
i=1

θi ∈ [0,K]. (5.1)

Similar to Wilks’ detector, Lawley-Hotelling’ detector is blind to the

noise covariance matrix and the number of primary users. Moreover,

it is likely to outperform Wilks’ detector in the low SNR regime by con-

struction. Analytically capturing the detection probability of Lawley-

Hotelling’ detector is still an open problem in literature. The tools for

this purpose include representation theory for symmetric group, which

has been invoked in deriving the detection probability of John’s detec-

tor [PV].

• In situations where we do have reliable a priori information of pri-

mary and/or secondary systems, the advantages of different detectors

can be dynamically exploited by switching between detectors that are

most suitable for the current system state. The a priori information

may be acquired algorithms estimating system parameters. How to in-

corporate the a priori information to capture this ‘estimation-assisted

detector’ remains interesting future work as well.

47



48



References

[1] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software ra-

dios more personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13-18,

Aug. 1999.

[2] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-

tions,” IEEE J. Sel. Areas Commun., vol. 23. no. 2, pp. 201-220, Feb.

2005.

[3] T. Yücek and H. Arslan, “A survey of spectrum sensing algorithms for

cognitive radio applications,” IEEE Commun. Surveys and Tutorials,

vol. 11, no. 1, pp. 116-130, Mar. 2009.

[4] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on

spectrum sensing for cognitive radio: challenges and solutions,”

EURASIP J. Adv. Signal Process., Article ID 381465, 15 pages, 2010.

[5] D. Cabric, A. Tkachenko, and R. Brodersen, “Spectrum sensing

measurements of pilot, energy, and collaborative detection,” in Proc.

IEEE Military Commun. Conf., pp. 1-7, Oct. 2006.

[6] W. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half a

century of research,” Signal Process., vol. 86, no. 4, pp. 639-697, Apr.

2006.

[7] P. Jallon, “An algorithm for detection of DVB-T signals based on their

second-order statistics,” EURASIP J. Wireless Commun., Article ID

538236, 9 pages, 2008.

[8] H. Urkowitz, “Energy detection of unkown deterministic signals,”

Proc. IEEE, vol. 55, no. 4, pp. 523-531, Apr. 1967.

[9] A. Sahai and D. Cabric, “Spectrum sensing: fundamental limits and

practical challenges,” tutorial in IEEE DySPAN, Nov. 2005.

49



[10] R. Tandra and A. Sahai, “SNR walls for signal detection,” IEEE J.

Sel. Topics in Signal Process., vol. 2, no. 1, pp. 4-17, Feb. 2008.

[11] B. Zhao, Y. Chen, C. He, and L. Jiang, “Performance analysis of

spectrum sensing with multiple primary users,” IEEE Trans. Veh.

Technol., vol. 61, no. 2, pp. 914-919, Feb. 2012.

[12] O. Besson, S. Kraut, and L. L. Scharf, “Detection of an unknown

rank-one component in white noise,” IEEE Trans. Signal Process.,

vol. 54, no. 7, pp. 2835-2839, July 2006.

[13] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York:

Wiley, 1982.

[14] A. Taherpour, M. N. Kenari, and S. Gazor, “Multiple antenna spec-

trum sensing in cognitive radios,” IEEE Trans. Wireless Commun.,

vol. 9, no. 2, pp. 814-823, Feb. 2010.

[15] Y. Zeng, C. L. Koh, and Y.-C. Liang, “Maximum eigenvalue detection:

Theory and application,” in Proc. IEEE Int. Conf. Commun., pp. 4160-

4164, May 2008.

[16] F. Penna, R. Garello, and M. A. Spirito, “Cooperative spectrum sens-

ing based on the limiting eigenvalue ratio distribution in Wishart

matrices,” IEEE Commun. Lett., vol. 13, issue 7, pp. 507-509, July

2009.

[17] Y. Zeng, Y.-C. Liang, and R. Zhang, “Blindly combined energy detec-

tion for spectrum sensing in cognitive radio,” IEEE Signal Process.

Lett., vol. 15, pp. 649-652, Oct. 2008.

[18] P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spec-

trum sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol. 59,

no. 4, pp. 1791-1800, May 2010.

[19] P. Bianchi, M. Debbah, M. Maida, and J. Najim, “Performance of sta-

tistical tests for single-source detection using random matrix theory,”

IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 2400-2419, Apr. 2011.

[20] B. Nadler, F. Penna, and R. Garello, “Performance of eigenvalue-

based signal detectors with known and unknown noise power,” in

Proc. IEEE Int. Conf. Commun., pp. 1-5, June 2011.

50



[21] R. Zhang, T. J. Lim, Y.-C. Liang, and Y. Zeng, “Multi-antenna based

spectrum sensing for cognitive radios: a GLRT approach,” IEEE

Trans. Commun., vol. 58, no. 1, pp. 84-88, Jan. 2010.

[22] S. John, “Some optimal multivariate tests,” Biometrika, vol. 58, no.

1, pp. 123-127, Apr. 1971.

[23] N. Sugiura, “Locally best invariant test for sphericity and the limit-

ing distributions,” Ann. Math. Statist., vol. 43, no. 4, pp. 1312-1316,

Aug. 1972.

[24] Y. Zeng and Y.-C. Liang, “Eigenvalue based spectrum sensing algo-

rithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, pp.

1784-1793, June 2009.

[25] M. Matthaiou, M. R. McKay, P. J. Smith, and J. A. Nossek, “On the

condition number distribution of complex Wishart matrices,” IEEE

Trans. Commun., vol. 58, no. 6, pp. 1705-1717, June 2010.

[26] A. Kortun, T. Ratnarajah, M. Sellathurai, C. Zhong, and C. B. Papa-

dias, “On the performance of eigenvalue-based cooperative spectrum

sensing for cognitive radio,” IEEE J. Sel. Topics in Signal Process.,

vol. 5, no. 1, pp. 49-55, Feb. 2011.

[27] IEEE Standard for Information Technology – Telecommunications

and information exchange between systems Wireless Regional Area

Networks (WRAN) – Specific requirements, Part 22: Cognitive Wire-

less RAN Medium Access Control (MAC) and Physical Layer (PHY)

Specifications: Policies and Procedures for Operation in the TV

Bands, IEEE Std 802.22, 2011.

[28] C. Zhong, M. R. McKay, T. Ratnarajah, and K.-K. Wong, “Distribution

of the Demmel condition number of Wishart matrices,” IEEE Trans.

Commun., vol. 59, no. 5, pp. 1309-1320, May 2011.

[29] S. Dikmese and M. Renfors, “Performance analysis of eigenvalue

based spectrum sensing under frequency selective channels,” in Proc.

Int. Conf. Cognitive Radio Oriented Wireless Net. Commun., June

2012.

[30] D. Ramírez, G. Vazquez-Vilar, R. López-Valcarce, J. Vía, and I. San-

tamaría, “Detection of rank-P signals in cognitive radio networks

with uncalibrated multiple antennas,” IEEE Trans. Signal Process.,

vol. 59, no. 8, pp. 3764-3774, Aug. 2011.

51



[31] S. N. Roy, “On a heuristic method of test construction and its use

in multivariate analysis,” Ann. Math. Statist., vol. 24, no. 2, pp. 220-

238, June 1953.

[32] B. Nadler and I. M. Johnstone, “Detection performance of Roy’s

largest root test when the noise covariance matrix is arbitrary,” in

Proc. IEEE Stat. Signal Process. Conf., pp. 681-684, June 2011.

[33] B. Nadler and I. M. Johnstone, “On the distribution of Roy’s largest

root test in MANOVA and in signal detection in noise,” Depart-

ment of Statistics, Stanford University, Technical Report No. 2011-

04, 2011.

[34] S. S. Wilks, “Certain generalizations in the analysis of variance,”

Biometrika, vol. 24, no. 3/4, pp. 471-494, 1932.

[35] T. W. Anderson, An Introduction to Multivariate Statistical Analysis.

New York: Wiley, 2003.

[36] A. T. James, “Distributions of matrix variates and latent roots de-

rived from normal samples,” Ann. Math. Statist., vol. 35, no. 2, pp.

475-501, 1964.

[37] J. Wishart, “The generalized product moment distribution in sam-

ples from a normal multivariate population,” Biometrika, A20, 32-52,

1928.

[38] A. M. Mathai, Jacobians of Matrix Transformations and Functions

of Matrix Arguments. Singapore: World Scientific, 1997.

[39] P. Graczyk, G. Letac, and H. Massam, “The complex Wishart dis-

tribution and the symmetric group,” Ann. Statist., vol. 31, no. 1, pp.

287-309, 2003.

[40] D. Maiwald and D. Kraus, “Calculation of moments of complex

Wishart and complex inverse Wishart distributed matrices,” IEE

Proc.-Radar, Sonar Navig., vol. 147, no. 4, pp. 162-168, Aug. 2000.

[41] H. Cramér, Mathematical Methods of Statistics. Princeton: Princeton

University Press, 1999.

[42] H. Solomon and M. Stephens “Approximations to density functions

using Pearson curves,” J. Amer. Statist. Assoc., vol. 73, pp. 153-160,

1978.

52



[43] H. E. Daniels, “Saddlepoint approximations in statistics,” Ann. Math.

Statist., vol. 25, pp. 631-650, 1954.

[44] H. Hochstadt, Special Functions of Mathematical Physics. New York:

Holt, Rinehart and Winston, 1961.

[45] H. T. Ha, Advances in Moment-Based Density Approximation Meth-

ods. Ph.D thesis, University of Western Ontario, 2006.

[46] R. J. Boik, “Algorithm AS 284: Null distribution of a statistics for

testing sphericity and additivity: a Jacobi polynomial expansion,” J.

Roy. Statist. Soc. Ser. C, vol. 42, no. 3, pp. 567-576, 1993.

[47] Z. Zheng, L. Wei, J. Hämäläinen, and O. Tirkkonen, “Approximation

to distribution of product of random variables using orthogonal poly-

nomials for lognormal density,” IEEE Commun. Lett., vol. 16, no. 12,

pp. 2028-2031, Dec. 2012.

[48] Y. Chen and M. R. McKay, “Coulumb fluid, Painleve transcendents

and the information theory of MIMO system,” IEEE Trans. Inf. The-

ory, vol. 58, no. 7, pp. 4594-4634, July 2012.

[49] G. Fikioris, “Integral evaluation using the Mellin transform and gen-

eralized hypergeometric functions: Tutorial and applications to an-

tenna problems,” IEEE Trans. Antennas Propag., vol. 54, no. 12, pp.

3895-3907, Dec. 2006.

[50] S. Ahmed, L.-L. Yang, and L. Hanzo, “Mellin-transform-based per-

formance analysis of FFH M-ary FSK using product combining for

combatting partial-band noise jamming,” IEEE Trans. Veh. Technol.,

vol. 57, no. 5, pp. 2757-2765, Sept. 2008.

[51] M. D. Renzo, F. Graziosi, and F. Santucci, “Further results on the ap-

proximation of log-normal power sum via Pearson type IV distribu-

tion: A general formula for log-moments computation,” IEEE Trans.

Commun., vol. 57, no. 4, pp. 893-898, Apr. 2009.

[52] M. L. Mehta, Random Matrices. 3rd Edition, London: Elsevier, 2004.

[53] A. M. Tulino and S. Verdú, Random Matrix Theory and Wireless

Communications. Delft: Now Publishers, 2004.

[54] G. Akemann, J. Baik, P. Di Francesco (Eds.), The Oxford Handbook

of Random Matrix Theory. Oxford: Oxford University Press, 2011.

53



[55] K. Johansson, “Shape fluctuations and random matrices,” Commun.

Math. Phys., vol. 209, pp. 437-476, 2000.

[56] C. Tracy and H. Widom, “Level-spacing distributions and the Airy

kernel,” Commun. Math. Phys. vol. 159, pp. 151-174, 1994.

[57] I. Johnstone, “On the distribution of the largest eigenvalue in prin-

cipal components analysis,” Ann. Statist., vol. 29, no. 2, pp. 295-327,

2001.

[58] C. Tracy and H. Widom, “Distribution functions for largest eigen-

values and their applications,” in Proc. of ICM, vol. 1, pp. 587-596,

2002.

[59] P. O. Perry, I. M. Johnstone, Z. Ma, and M. Shahram, “RMTstat:

Distributions and Statistics from Random Matrix Theory,” 2009, R

software package version 0.1.

[60] F. Bornemann, “On the numerical evaluation of distributions in ran-

dom matrix theory: A review,” Markov Processes Relat. Fields, vol.

16, pp. 803-866, 2010.

[61] C. G. Khatri, “Distribution of the largest or the smallest characteris-

tic root under null hyperthesis concerning complex multivariate nor-

mal populations,” Ann. Math. Statist., vol. 35, pp. 1807-1810, 1964.

[62] P. A. Dighe, R. K. Mallik, and S. R. Jamuar, “Analysis of trasmit-

receive diversity in Rayleigh fading,” IEEE Trans. Commun., vol. 51,

no. 4, pp. 694-703, Apr. 2003.

[63] M. Kang and M. S. Alouini, “Largest eigenvalue of complex wishart

matrices and performance analysis of MIMO MRC systems,” IEEE J.

Selec. Areas Commun., vol. 21, no. 3, pp. 418-426, Apr. 2003.

[64] C. G. Khatri, “Non-central distribution of i-th largest characteris-

tic roots of three matrices concerning complex multivariate normal

populations,” Ann. Inst. Statist. Math., vol. 21 pp. 23-32, 1969.

[65] Z. D. Bai, and J. F. Yao, “Central limit theorems for eigenvalues in a

spiked population model,” Ann. Inst. H. Poincaré, vol. 44, no. 3, pp.

447-474, 2008.

[66] A. Edelman and B. D. Sutton, “Tails of condition number distribu-

tions,” SIAM J. Matrix Anal. Appl., vol. 27, 2005.

54



[67] O. Besson and L. L. Scharf, “CFAR matched direction detector,” IEEE

Trans. Signal Process., vol. 54, no. 7, pp. 2840-2844, July 2006.

[68] B. Nadler, “On the distribution of the ratio of the largest eigenvalue

to the trace of a Wishart matrix,” J. Multivariate Anal., vol. 102, pp.

363-371, Feb. 2011.

[69] A. Maaref and S. Aissa, “Closed-form expressions for the outage

and ergodic Shannon capacity of MIMO MRC systems,” IEEE Trans.

Commun., vol. 53, no. 7, pp. 1092-1095, Jul. 2005.

[70] F. J. Schurmann, P. R. Krishnaiah, and A. K. Chattopadhyay, “On

the distributions of the ratios of the extreme roots to the trace of the

Wishart matrix,” J. Multivariate Anal., vol. 3, pp. 445-453, 1973.

[71] J. W. Mauchly, “Significance test for sphericity of a normal n-variate

distribution,” Ann. Math. Statist., vol. 11, no. 2, pp. 204-209, June

1940.

[72] B. N. Nagarsenker and M. M. Das, “Exact Distribution of spheric-

ity criterion in the complex case and its percentage points,” Comm.

Statist. Theory Methods, 4(4), pp. 363-374, 1975.

[73] D. K. Nagar, S. K. Jain and A. K. Gupta “Distribution of LRC for test-

ing sphericity of a complex multivariate Gaussian model,” Internat.

J. Math. & Math. Sci., vol. 8, no. 3, pp. 555-562, 1985.

[74] P. C. Consul, “The exact distributions of likelihood criteria for differ-

ent hypotheses,” Multivariate Analysis 2. New York: Academic Press,

1969.

[75] D. B. Williams and D. H. Johnson, “Using the sphericity test for

source detection with narrow-band passive arrays,” IEEE Trans.

Acoust. Speech Signal Process., vol. 38, no. 11, pp. 2008-2014, Nov.

1990.

[76] K. C. S. Pillai and B. N. Nagarsenker, “On the distribution of the

sphericity test criterion in classical and complex normal populations

having unknown covariance matrices,” Ann. Math. Statist.,, vol. 42,

no. 2, pp. 764-767, Apr. 1971.

[77] C. G. Khatri and M. S. Srivastava, “On exact non-null distributions

of likelihood ratio criteria for sphericity test and equality of two co-
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