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1. Introduction

In the recent years, ever increasing amounts of data are being produced in

different functions of the modern society. This is being accelerated by the

huge amount content uploaded in the internet, for example, through user

accounts in various webservices, but the interest in utilizing the avail-

able databases using more elaborate methods is increasing also in science

and more traditional areas of business and public service. For example,

customer data is collected by retailers via user accounts or membership

cards that reward for customer loyalty; measurements are made during

production, use, or maintenance of various products; commercial mea-

surement devices require efficient data analysis software for operation;

data including the medical conditions and attributes from thousands of

patients is collected by health care organizations; genome-wide associa-

tion studies aiming to find risk factors for specific traits or illnesses can

consist of millions of nucleotid variations from thousands of subjects; sci-

entific brain measurements can contain signals from thousands of spatial

locations recorded at several time instant for several subjects.

Utilization of these databases requires well-defined models as well as ef-

ficient computational methods for estimating the unknown model param-

eters and computing predictions together with other model summaries of

interest. This thesis focuses on a supervised predictive modeling approach

where a probabilistic model is assumed on the target variables of interest

conditioned on known explanatory (input) variables and a set of unknown

model parameters. The model definition encompasses the modeler’s prior

beliefs on the unknown functional relationship between the input vari-

ables and the target variables together with the assumptions on the pro-

cess that generates the observations given the latent function values. The

properties of the model are controlled by the adjustable model parame-

ters, and the goal of the inference problem is to learn an estimate of these
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parameters that accurately represents the underlying model properties

using a set of observed input-output pairs. Once the parameters estimates

are determined, they can be used to construct a predictive model, which

can be utilized for making predictions on the target variables associated

with future inputs, or alternatively to study the predictive relevances of

the different input variables or to gain evidence on possible latent phe-

nomena in the data, which are quantified by certain subsets of the model

parameters. To achieve these goals, this thesis adopts the Bayesian infer-

ence approach from a practical machine learning perspective.

The main challenge in the Bayesian modeling approach is that the infer-

ence on the unknown model parameters and the future target variables

is analytically intractable with many practically relevant model specifi-

cations. Usually analytical solutions are available only for the most triv-

ial models such as a linear predictor with a Gaussian observation model

and suitable conjugate priors for the coefficients and the observation noise

[see, e.g., Gelman et al., 2004, Bishop, 2006]. Therefore many approxi-

mation methods have been proposed to facilitate the Bayesian inference

with non-analytical models. Perhaps the most commonly used approach

is to draw samples from the posterior distribution using Markov chain

Monte Carlo (MCMC) methods, because the wide selection of different

sampling algorithms allows a straightforward implementation for virtu-

ally any kind of model [see, e.g., Robert and Casella, 2004, Gelman et al.,

2004, Bishop, 2006]. The drawback with the MCMC methods is their

computational cost, which is manifested especially when the number of

unknown model parameters is large and their posterior dependencies are

strong causing slow converge of the MCMC chains. Therefore, many com-

putationally cheaper analytical approximation methods are used exten-

sively including methods such as the Laplace approximation (LA) [see,

e.g., Laplace, 1774, Tierney and Kadane, 1986, Bishop, 2006, Rasmussen

and Williams, 2006, Rue et al., 2009], different variational Bayes (VB)

methods based on the variational mean field (VMF) and local variational

bound (LVB) approximations [see, e.g., Jordan et al., 1999, Jaakkola and

Jordan, 2000, Attias, 2000, Beal, 2003, Bishop, 2006, Murphy, 2012], VB

methods based on direct variational minimization of the Kullback-Leibler

(KL) divergence [Nickisch and Rasmussen, 2008, Opper and Archambeau,

2009], and expectation propagation (EP) [see, e.g., Minka, 2001a,b, 2005,

Opper and Winther, 2005, Heskes et al., 2005]. EP has been found to be

a relatively fast and very accurate method in many experimental com-
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parisons [Minka, 2001a,b, Kuss, 2006, Nickisch and Rasmussen, 2008,

Hernández-Lobato et al., 2010, Cseke and Heskes, 2011]. A challenge

with the practical application of EP is that a numerical robust and com-

putationally efficient implementation is not straightforward with many

model specifications, and that there is no theoretical guarantee for the

convergence of the standard EP algorithm [Minka, 2001b, Minka and Laf-

ferty, 2002, Heskes and Zoeter, 2002, Seeger, 2005, 2008].

The main focus of this thesis is numerically robust and computation-

ally efficient application of EP using Gaussian approximating families in

different kinds of non-analytical inference problems. In addition, various

experimental results are presented to compare the accuracy of EP with

LA, VB, and MCMC approximations.

Publications I and II consider GP regression with the outlier-robust

Student-t observation model. The challenge with the Student-t model is

that the conditional posterior distribution of the latent function values

may contain multiple modes and that the potential outlying observations

result in local increases in the approximate posterior uncertainty on the

corresponding latent function values with the LA and EP approximations.

The latter property can be seen as negative precision contributions in the

approximate posterior covariances contrary to the always non-negative

contributions with log-concave models such as the logit and probit used in

binary GP-classification [Nickisch and Rasmussen, 2008]. This requires

some additional care when implementing the LA and EP approximations

following the standard algorithms described by Rasmussen and Williams

[2006] and can also result in clearly different behavior between the ap-

proximate methods. The LA approximation requires a robust and efficient

method for determining the conditional mode of the latent function values

given the hyperparameters, and a robust way for determining the approx-

imate marginal likelihood in case the Hessian of the conditional posterior

is close to singular at the local mode. Publication I describes a robust

implementation of LA using the EM algorithm [see, e.g., Gelman et al.,

2004] for determining the conditional mode and computational modifica-

tions that enable robust evaluation of the marginal likelihood approxima-

tion. By experimental comparisons with MCMC and the commonly used

VMF approximation [Tipping and Lawrence, 2003, Kuss, 2006] it is also

shown that LA provides a good alternative for VMF in terms of speed and

accuracy. Applying EP for the Student-t model is theoretically straight-

forward, because each likelihood term depends only on a single latent
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value, but the practical implementation requires that the posterior rep-

resentation is kept numerically stable during the EP updates, and that

the convergence of the algorithm can be verified also in difficult cases.

Publication II discusses the converges problems of EP caused by the po-

tential multimodalities in the conditional posterior distribution, describes

a robust EP implementation based on parallel EP updates [van Gerven

et al., 2009] and a provably convergent double-loop algorithm [Minka,

2001b, Opper and Winther, 2005], and provides more extensive compar-

isons with alternative approximate methods including VMF, LVB [Gibbs

and MacKay, 2000, Nickisch and Rasmussen, 2008], and MCMC [Neal,

1997, Gelman et al., 2004, Vanhatalo and Vehtari, 2007].

Publication III describes a novel nested EP approach for multi-class

classification with the multinomial probit model and GP priors [see, e.g.,

Girolami and Rogers, 2006]. The challenge with the multinomial probit

model is that the tilted distributions related to each likelihood term de-

pend on multiple latent values (one for each output class), which is why

a straightforward EP implementation requires either multi-dimensional

numerical integrals [Seeger and Jordan, 2004] or a factorized approxima-

tion for the latent values related to the different classes [Seeger et al.,

2006, Girolami and Zhong, 2007]. Furthermore, a straightforward imple-

mentation that takes account of the posterior dependencies between the

latent values from different classes would result in posterior computa-

tions that scale cubically with respect to number of classes c, which may

become prohibitive with larger c. The proposed approach applies inner EP

approximations within an outer main EP loop on a well-known integral

representation of the multinomial probit model to approximate the mul-

tivariate integrals required for determining the mean vector, covariance

matrix, and normalization term associated with each tilted distribution.

The resulting algorithm does not require numerical quadrature integra-

tions and the intrinsic parametric structure of the inner EP approxima-

tions results in a posterior representation that scales linearly with c and

achieves therefore similar complexity with the LA approach described

by Williams and Barber [1998]. Additional computational speed-up is

achieved by introducing an incremental update scheme where damped

updates [Minka and Lafferty, 2002, Heskes and Zoeter, 2002] are done on

the scalar site parameters of the inner EP approximations instead of the

related multivariate site parameters associated with the outer EP. The

accuracy of the proposed nested EP approach is assessed by comparisons
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with LA, VMF, and MCMC approximations.

Publication IV proposes a novel EP approach for nonlinear regression

with two-layer neural networks (NNs) and sparsity-promoting hierarchial

priors on the inputs. From a practical modeling perspective, GPs with

neural network covariance function allow convenient integration over the

uncertainty on the unknown latent function resulting from a similar two-

layer NN with infinitely many hidden units [Williams, 1998, Rasmussen

and Williams, 2006]. However, with infinite GP network the inherent

complexity of the posterior computations scale cubically with respect to

the number of observations n, which is why additional sparse approxi-

mations are required with large data sets [Quiñonero-Candela and Ras-

mussen, 2005]. Furthermore, the inference on the covariance function hy-

perparameters, which control, e.g., the nonlinearity of the latent function

with respect to each input-dimension, is analytically intractable. There-

fore, additional (e.g, MCMC) approximations are required, if the marginal

maximum a posterior (MAP) estimates of the hyperparameters are not

sufficient in problems with a large number of input features. One aim

of Publication IV is to study whether computationally efficient nonlin-

ear predictors with flexible input priors could be constructed by adapting

the existing EP methodology presented for sparse linear models [Seeger,

2008, Hernández-Lobato et al., 2008, van Gerven et al., 2009] to finite-

parametric NNs with a linear input-layer. Compared with the GP mod-

els considered in Publications I–III, a key technical difference in this

NN approach is that EP approximations are formed, in addition to the

non-Gaussian likelihood terms, also for the prior terms of the network

weights. In this respect, the inference problem resembles the existing EP

approaches for generalized linear models (GLMs), where both the like-

lihood and the prior terms are intractable [see, e.g., Seeger et al., 2007,

Hernández-Lobato et al., 2008]. The challenge in the EP implementation

is to construct a sufficiently accurate and computationally efficient Gaus-

sian approximations for the likelihood terms that depend in a non-linear

manner from all the network weights. Similarly to Publication III, this re-

quires determining the moments of the multivariate tilted distributions

associated with each likelihood term. Once such likelihood term approx-

imations are obtained, adapting the existing EP methodology for sparse

linear models is rather straightforward.

Publication IV describes a novel approach for approximating the mo-

ments of the tilted distributions, which is based on utilizing a suitable
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factorized structure for the posterior approximation, and a combination of

the approximate linear filtering paradigm used in the unscented Kalman

filter [Wan and van der Merwe, 2000] and a similar Gaussian approxi-

mation that has been used by Ribeiro and Opper [2011] to form factoriz-

ing EP approximation for linear perceptrons. The proposed approach re-

quires only one-dimensional numerical quadratures for determining the

means and variances of the potentially multimodal tilted distributions

and results in a computationally efficient algorithm, whose complexity

scales linearly with respect to both n and the number of hidden units.

The complexity scales similarly to an ensemble of independent sparse

linear models and also the resulting approximate predictive model can

be interpreted as a nonlinear combination of independent sparse linear

models associated with each hidden unit. Compared with the inference

approaches considered in Publications I–III that rely on marginal MAP

estimates of the hyperparameters, in Publication IV, EP is used to ap-

proximately integrate over the posterior uncertainty of all the model pa-

rameters including the network weights, the hierarchical scale parame-

ters of the weight priors, and the parameter controlling the observation

noise magnitude. In addition to the existing EP methodology for sparse

linear models, Publication IV proposes a flexible EP-based hierarchical

prior framework that enables flexible definition of weight priors with dif-

ferent sparseness properties such as independent Laplace priors with a

common scale parameter [Seeger, 2008] or Gaussian automatic relevance

determination (ARD) priors with different relevance parameters for all

inputs [Neal, 1996]. The computational efficiency and predictive accuracy

of the approach is assessed by comparisons with two other models with

ARD priors: an infinite GP network with MAP estimates of the hyperpa-

rameters [Rasmussen and Williams, 2006], and a finite NN with MCMC

integration over all the model parameters [Neal, 1996].

The rest of the thesis is organized as follows. Section 2 contains an in-

troduction to and a literature review on approximate Bayesian inference.

Section 2.1 gives first a general introduction to the Bayesian predictive

modeling approach and 2.2 defines next a general predictive model struc-

ture used in the upcoming discussion on various approximate inference

methods. Section 2.3 gives a detailed description of EP with both Gaus-

sian and general exponential family approximations and summarizes al-

ternative provably convergent double-loop algorithms. After that shorter

descriptions are given on other approximate inference methods including
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VMF in Section 2.4, LVB in Section 2.5, and Laplace’s method in Section

2.6. To conclude the general overview of the approximate Bayesian infer-

ence methods, Section 2.7 discusses shortly various approaches proposed

for improving the approximate Gaussian marginal distributions based on

successive use of LA and EP. Section 3 introduces the different case stud-

ies considered in Publications I–IV and links the associated approximate

inference methods to the general discussion of Section 2. Finally Section

4 gives a final discussion on some of the key aspects considered in this

thesis and discusses different possibilities for future research.
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2. Approximate Bayesian Inference
Methods

This thesis focuses on a supervised statistical modeling approach where a

probabilistic model p(y|x,θ) is assumed on a vector (or collection) of tar-

get variables y conditioned on a vector of input variables x and a vector

of unknown model parameters denoted by θ. A common approach is to

choose a physically motivated model or a sufficiently flexible general pur-

pose model for the unobserved (latent) functional relationship between

the inputs x and the outputs y, denoted here by f(x,θ), and to model the

uncertainty on the observations (for example, the observation noise) given

the latent function values f(x,θ) using a suitable probabilistic observation

model p(y|f(x,θ),θ). In this definition, θ contains both the parameters of

the unknown function and the observation model. Commonly used gen-

eral purpose approaches for modeling the latent functional relationship

f(x,θ) are linear models, finite-parametric nonlinear models such as neu-

ral networks and spline models, and infinite-parametric kernel models

such as Gaussian processes (GP) [see, e.g., Bishop, 2006, Rasmussen and

Williams, 2006]. Common observation models are, for example, regres-

sion using the Gaussian model and more robust alternatives such as the

Student-t model, classification with the binary logit and probit models to-

gether with their generalizations for multiple target classes, modeling of

count observations with the Poisson and the binomial model, and survival

analysis using the Weibull model [Gelman et al., 2004, Bishop, 2006].

The main goal of the modeling approach is to learn the unobserved

model parameters θ from a set of n observations (input-output pairs), de-

noted by D = {xi,yi}ni=1, and to construct a predictive model p(y∗|D,x∗),

which can be used to make predictions for the target variables y∗ associ-

ated with future inputs vectors x∗. Another common objective is to obtain

a reliable estimate for the unknown parameters θ, which can be used, for

example, to study the predictive relevances of the different input features
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contained in x, or to gain evidence on possible latent phenomena in the

data which are quantified based on certain components of θ.

2.1 The Bayesian Modeling Approach

To determine reliable estimates for the unknown parameters θ and to

obtain the predictive model p(y∗|D,x∗), this thesis adopts the Bayesian

approach from a practical machine learning perspective. The fundamen-

tal idea of Bayesian inference was considered independently already by

Bayes [1763] and [Laplace, 1774] but only in the last few decades Bayesian

methods have been utilized widely in various modeling applications mainly

because of the rapid development of computational resources and infer-

ence methodology. A thorough theoretical description of the Bayesian

approach is given by Bernardo and Smith [2000] and various statistical

modeling applications are presented by Gelman et al. [2004] and O’Hagan

and Forster [2004]. Many useful Bayesian methods for practical ma-

chine learning applications are summarized by Bishop [2006] and Murphy

[2012].

The fundamental idea behind the Bayesian modeling approach can be

summarized by Bayes’ theorem, which in case of our supervised modeling

approach can be written as

p(θ|D) =
p(Y|X,θ)p(θ)

p(Y|X)
, (2.1)

where all the input and output variables related to the n observations are

denoted by X = {xi}ni=1 and Y = {yi}ni=1, respectively. In equation (2.1),

p(θ) is the prior probability distribution assigned to the unknown parame-

ters θ before observing the data D, p(Y|X,θ) = ∏n
i=1 p(yi|xi,θ) is the like-

lihood function of θ resulting from the observations D made according to

the chosen model, p(θ|D) is the posterior probability of θ after D has been

observed, and p(Y|X) =
∫
p(Y|X,θ)p(θ)dθ is the marginal probability of

the observations conditioned on the current model and prior assumption.

Bayes’ theorem states that the revised probability of θ after observing the

data D is obtained by multiplying the prior probability p(θ) with the joint

conditional probability of the observations p(Y|X,θ) according to the law

of conditional probability and normalizing the result by p(Y|X).

The posterior distribution p(θ|D) contains all information on θ provided

by the observed data combined with the prior beliefs, and quantities of

interest associated with certain components of θ can be obtained by sum-
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marizing the corresponding marginal distributions of p(θ|D). For exam-

ple, inference on element θj can be done by reporting point estimates such

as the mode, mean, and median of p(θi|D), or by reporting the interval

that contains θi with 95% posterior probability, that is, the Bayesian cred-

ible interval. Testing a hypothesis such as θj ≥ 0 can be done by simply

calculating the marginal posterior probability P (θj ≥ |D).

The main difference with the classical frequentist modeling approach is

that a Bayesian is willing to treat θ as a random variable by assigning

a prior uncertainty p(θ) to it, and to quantify the posterior uncertainty

with p(θ|D). In the classical frequentist approach, the unknown parame-

ters take unique values and it is not permitted to treat them as random

variables [see, e.g., O’Hagan and Forster, 2004]. In practice, the classical

approach relies on maximum likelihood (ML) point estimates of θ, and the

level of confidence on the estimate is summarized by a single realization of

a confidence interval computed using the observed data D. For example,

assuming a 5% confidence level, the interval contains the true value of θ

in a 95% proportion of all samples of size n generated from the model. The

classical approach can result in counter-intuitive and erratic behavior in

some cases, because it does not follow the so-called likelihood principle,

which states that all inference on θ should be based on the likelihood

provided by the observed data D, not on what could have been observed

[O’Hagan and Forster, 2004, Murphy, 2012]. For example, the result of

hypothesis testing may depend on the decisions made on when to stop the

collection of data even though the actual observations D remain the same.

Using the posterior distribution (2.1), the predictive model for future

target variables y∗ given inputs x∗ can be written as

p(y∗|D,x∗) =
∫
p(y∗|x∗,θ)p(θ|D)dθ, (2.2)

where the posterior expectation of the chosen predictive model p(y∗|x∗,θ)

is computed with respect to the posterior uncertainty of θ given the ob-

served data. From a theoretical perspective, the Bayesian solution to

the prediction problem p(y∗|x∗,D) can be written in the form of (2.2),

with rather general conditions without defining first a specific paramet-

ric model structure p(y|x,θ) with prior p(θ) and computing the poste-

rior distribution according to (2.1). Assuming y1, ...,yn,y∗ conditioned

on the respective inputs x1, ...,xn,x∗ to be an exchangeable sequence of

real-valued random vectors equipped with a probability measure P and

a corresponding existing density function p, it follows that the probabil-

ity of the sequence can be expressed independently as P (Y,y∗|X,x∗, F ) =
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F (y∗|x∗)
∏n

i=1 F (yi|xi) conditioned on an unknown random distribution

function F . Assuming further that the distribution function of F exist

and that it can be expressed using a finite dimensional parameter θ with

a probability distribution function p(θ), the equation (2.2) follows directly

by integration over the uncertainty of F [Bernardo and Smith, 2000].

In practice, the Bayes prediction is obtained by choosing a model that

can sufficiently well express the modeler’s beliefs about the unknown dis-

tribution function F (y|x) by defining p(y|x,θ) and p(θ), and integrating

over all the nuisance parameters θ. In the classical frequentist approach

or other widely-used point-estimate based methods, the predictive model

(2.2) would be summarized using only a point-estimate of the unknown

model parameters denoted by θ̂, that is, p(y∗|D,x∗) = p(y∗|x∗, θ̂).

One benefit of the Bayesian approach is that it constitutes a flexible

framework for the modeling process: Prior knowledge on the modeling

problem can be incorporated in a principled way using the prior distribu-

tion p(θ) as a proxy, and consequently more general model specifications

p(y|x,θ) can be adapted for a variety of different modeling problems. In

addition, intricate latent dependencies can be modeled using hierarchi-

cal models, where the prior distributions of θ are defined conditional on

higher-level hyperparameters φ, that is, p(θ|φ), and hyperpriors p(φ) are

assigned to φ [for more on hierarchical models see, e.g., Gelman et al.,

2004]. For example, with generalized linear models scalar observations y

can be modeled using a suitable observation model p(y|f(x,θ),φ1), where

the latent function is defined as f(x,θ) = θTx, and φ1 contains the hy-

perparameters related to the observation model. The priors of the coeffi-

cients θ can be conditioned on higher-level hyperparameters according to

p(θj |φlj ), where the hyperparameters φ2 = {φl}Ll=1 control the scale of the

coefficients belonging to certain predefined groups indexed by l = 1, ..., L,

and the group membership of θj is defined by lj . This hierarchical prior

definition can be used to suppress the harmful effects of potentially irrele-

vant input features within the automatic relevance determination (ARD)

framework [Mackay, 1995, Neal, 1996], or to couple the magnitudes of

the weights belonging to some known category in modeling problems such

as multi-class classification or multitask learning [Bishop, 2006, Murphy,

2012]. In many commonly used models, the intermediate-level parame-

ters θ are often called latent variables, because they are not directly ob-

served but they are used to model the latent dependencies between the

observations and subsequently inferred or integrated over using the ob-
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served data. For example, in GP models (assuming scalar observations)

the unobserved functional relationship f(x,θ) is modeled by assigning

a multivariate Gaussian prior p(f |φ2) to a finite set of function values

f = [f1, ..., fn]
T related to the observed input-output pairs according to

fi = f(xi) and p(yi|f(xi,θ),φ1) = p(yi|fi,φ1) [Rasmussen and Williams,

2006]. Here the components of f ≡ θ are often called latent values, and

the scale and smoothness properties of their prior are controlled by hy-

perparameters φ2. An additional example of the beneficial properties of

the Bayesian approach is that it provides a principled framework for se-

quential estimation [see e.g., Särkkä, 2006] and model selection based on

expected utilities [Bernardo and Smith, 2000, Vehtari and Ojanen, 2012].

An essential property of the Bayesian approach is the integration over

the unknown parameters θ in equations (2.1) and (2.2). In general, when

the number of observations n becomes large enough compared to the di-

mension of θ, the posterior distribution p(θ|D) becomes sharply peaked

around the MAP estimate (2.3). In such cases, integration over the poste-

rior uncertainty of θ is not necessary for good predictive accuracy but de-

riving posterior summaries such as credible intervals may not be feasible

without quantification of the posterior uncertainty. For example, if cer-

tain components of θ are weakly determined by the observations through

the likelihood p(y|x,θ), their marginal posterior uncertainties may be sig-

nificant.

When the number of unknown model parameters (the dimension of θ)

increases compared with n, using point estimates of θ to make predictions

with p(y∗|x∗, θ̂) can worsen the predictive accuracy of the model signifi-

cantly, because the model can overfit to the finite set of observations. Typ-

ically, this can be seen as an almost perfect predictive accuracy with the

training data set but with an independent validation set the performance

can be worse than with a simple baseline prediction with the mean values

of Y. The problem is exacerbated with very flexible nonlinear models such

as neural networks1, but overfitting can be problematic also with linear

models if the number of coefficients is larger than n, which is typical for

linear inverse problems, where no unique ML-solution exists [Kaipio and

Somersalo, 2005]. The overfitting effects associated with ML-estimates

can often be reduced by assigning a suitable regularizing prior to θ and

1The recent work of Hinton et al. [2012] gives good examples of overfitting with
extremely complex multi-layer neural network models (>100000 parameters)
with large data sets and simple non-Bayesian ways to reduce these effects.
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making predictions with the maximum a posterior (MAP) estimate

θ̂ = argmax
θ

p(θ|D) = argmax
θ

p(Y|X,θ)p(θ), (2.3)

where in the last step the normalization term of (2.1) is neglected, be-

cause it does not depend on θ. For example, a commonly used approach

with linear models is to use the Lasso (or L1-norm) regularization that

yields unique MAP solutions in underdetermined problems [Tibshirani,

1994]. L1 regularization results in truly sparse estimates, where many of

the linear coefficients get exactly zero values, which means that the corre-

sponding input features are effectively pruned out of the predictive model

reducing the potentially harmful effects of irrelevant features.

Taking the Bayesian treatment of the unknown parameters further, it is

common to utilize hierarchical model structures that enable analytical in-

tegration over θ conditioned on the hyperparameters φ. If the dimension

of φ is not too large compared to n and the values of φ identify well from

the data, good predictive performance is often obtained by making predic-

tions with p(y∗|x∗,D, φ̂) =
∫
p(y∗|x∗,θ, φ̂)p(θ|D, φ̂)dθ using the marginal

MAP estimate given by

φ̂ = argmax
φ

p(φ|D) = argmax
φ

p(Y|X,φ)p(φ), (2.4)

where it is assumed that a closed-form expression can be computed for the

marginal likelihood p(Y|X,φ) = ∫
p(Y|X,θ,φ)p(θ|φ)dθ. This is the stan-

dard approach with GP models, where integration is done over the latent

function values f = [f(x1), ..., f(xn)]
T conditioned on marginal MAP esti-

mates of the hyperparameters φ2 and φ1 that control the prior p(f |φ2) and

the observation model p(y|f ,φ1) [Rasmussen and Williams, 2006]. Con-

tinuing the previous L1 regularization example concerning linear models,

the overfitting effects can be mitigated also by introducing hierarchical

priors p(θj |φj), where hyperparameters φj control the prior scales of the

respective linear coefficients θj . Choosing a suitable family for p(θj |φj)
and determining the marginal MAP estimates of φ according to (2.4), can

result in sparse conditional mean estimates E(θ|D, φ̂), because the scale

parameters φj related to the potentially irrelevant or unnecessary input

features are driven to zero. This approach implements the ARD frame-

work (also known as sparse Bayesian learning) for linear models [Tip-

ping, 2001, Qi et al., 2004]. With linear models, an interesting connection

has been found between the MAP solution (2.3) and the marginal MAP

solution (2.4): The ARD solution is exactly equivalent to a MAP estimate
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of the coefficients obtained using a particular class of nonfactorial coef-

ficient prior distributions [Wipf and Nagarajan, 2008, Wipf et al., 2011].

This class of priors includes models that have desirable advantages such

as fewer local minima compared with the regular MAP estimates. This

is an interesting example of the theoretical benefits of integration over

the intermediate parameters θ in the model hierarchy even though the

actual number of unknowns in the point-estimate based inference stays

the same.

From a theoretical perspective, the best approach would be to integrate

over all uncertain (nuisance) parameters (both θ and φ) and to make pre-

dictions with p(y∗|x∗,D) =
∫
p(y∗|x∗,θ,φ)p(θ,φ|D)dθdφ [Bernardo and

Smith, 2000]. Unfortunately, the integrals involved in both the poste-

rior distribution (2.1) and the predictive distribution (2.2) are analytically

intractable with many practically relevant and interesting model speci-

fications and closed-form solutions are available only with the simplest

model definitions with suitable conjugate priors, such as the linear model

with Gaussian observation model and inverse-gamma or inverse-Wishart

prior on the residual variance parameter [see, e.g., Minka, 2000, Gelman

et al., 2004]. Full integration over both θ and φ can in many cases be

approximated only with MCMC methods, and the practical benefits of the

full integration can often be seen as robust and consistent performance

of MCMC methods compared with analytical approximations such as LA,

VB, and EP in many experimental comparisons (see, e.g., Publications II

and III, Lampinen and Vehtari [2001], Nickisch and Rasmussen [2008],

Rue et al. [2009], Vanhatalo et al. [2010]). A drawback with the MCMC

methods is that they can be computational expensive in many cases [see,

e.g., Nickisch and Rasmussen, 2008], which is why much research has

been done to improve the faster analytical alternatives. The upcoming

sections give a detailed discussion of EP, after which shorter summaries

are presented on VMF, LVB, and LA.

2.2 The Predictive Model Structure

In the following discussion it is assumed that the posterior distribution

can be written as

p(θ,φ|D) = Z−1
n∏

i=1

p(yi|xi,U
T
i θ,φ)p(θ|X, {Uj}n+m

j=n+1,φ)p(φ), (2.5)

23



Approximate Bayesian Inference Methods

where Z = p(Y|X) and the prior for θ ∈ R
d can be factored into m terms

according to

p(θ|X, {Uj}n+m
j=n+1,φ) =

n+m∏
j=n+1

tj(U
T
j θ,φ). (2.6)

In this notation each likelihood term p(yi|xi,U
T
i θ,φ) depends on the pa-

rameters θ through a linear transformation zi = UT
i θ, where zi is a latent

random variable associated with each term and Ui is a known transfor-

mation matrix that can depend on the inputs X. Similarly, each prior

factor tj(UT
j θ,φ) depends on θ only through a transformed random vari-

able zj = UT
j θ. Although it is assumed that θ is a real-valued random

vector, certain components of θ can be constrained to some bounded or

half-bounded intervals by a suitable prior definition p(θ|X,φ). In (2.5), φ

contains the hyperparameters associated with both the observation model

p(yi|xi, zi,φ) and the prior p(θ|X, {Uj}mj=n+1,φ), and these hyperparame-

ters can be either discrete or continuous random variables. In case the

type-II MAP estimate of φ is used for predictions, the parameterization

and the prior p(φ) are chosen so that φ can be conveniently optimized us-

ing an approximation for the conditional marginal likelihood p(Y|X,φ).
Otherwise if the posterior uncertainty on φ is approximated simultane-

ously within the approximate inference framework for θ, it is assumed

that the hyperparameters are divided into L a priori independent groups

according to φ = {φ1, ...,φL} and that the prior distribution of each group

is some suitable member of the exponential family of distributions:

p(φ) =

L∏
l=1

p(φl) =

L∏
l=1

Z(λ0,l)
−1 exp

(
λT
0,lgl(φl)

)

= Z(λ0)
−1 exp

(
λT
0g(φ)

)
, (2.7)

where λ0,l are the natural parameters and g(φl) the sufficient statis-

tics specific to the chosen prior distribution of group l in its canonical

form, and Z(λ0,l) =
∫
exp

(
λT
0,lg(φl)

)
dφl is the normalization factor (the

logarithm of the normalizing factor logZ(λ0,l) is also known as the log-

partition function). The natural parameters and sufficient statistics of

the combined prior p(φ) can be written as λ0 = [λT
0,1, ...,λ

T
0,L]

T, g(φ) =

[g1(φ1)
T, ...,gL(φL)

T]T, and the normalization factor is given by logZ(λ0) =∑
l logZ(λ0,l).

Many commonly used predictive models can be written in the form of

(2.5). For example, a generalized linear model with a sparsity-favoring

Laplace prior can be recovered by setting Ui = xi for the likelihood terms,
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and Uj = ej and tj(zj , φ) = 1
φ exp

(
1
φ |zj |

)
for the prior factors, where ej

is the j:th unit vector in R
d so that zj = θj , . On the other hand, a typ-

ical Gaussian process model is obtained by defining only one prior factor

with Uj = I so that p(θ|X,φ) = tj(θ,φ) = N (m(X),K(X,X)), where

j = n + 1, m(X) is the prior mean function, and K(X,X) the prior co-

variance function that controls the smoothness properties of the latent

function f(x) through hyperparameters φ. For the likelihood terms the

i:th transformation Ui is chosen so that it collects all the latent function

values fi = f(xi) associated with the input-output pair {xi,yi} from the

vector f = θ containing all the latent values.

In the following the dependence on the inputs X is omitted from the

notation, because X is known and the approximate inference can be sum-

marized using {Ui}n+m
i=1 . Denoting each likelihood term with ti(U

T
i θ,φ),

the posterior distribution (2.5) can be written as

p(θ,φ, |D) = Z−1
n+m∏
i=1

ti(U
T
i θ,φAi)

L∏
l=1

p(φl), (2.8)

where φAi = {φl|l ∈ Ai} contains all the hyperparameters associated with

the i:th term. For example, φAi can contain the hyperparameters related

to the likelihood terms (i ≤ n) or the prior terms (i > n), respectively. The

factors ti(UT
i θ,φAi) are from now referred to as site functions (or sites).

2.3 Expectation Propagation

This section presents a brief derivation and a summary of an EP algo-

rithm suitable for approximate inference with the model structure defined

in Section 2.2. In addition, alternative provably-convergent algorithms

are discussed in Section 2.3.7.

2.3.1 Structure of the Posterior Approximation

EP is used to approximate the posterior distribution (2.8) with

p(θ,φ|D) ≈ Z−1
EP

n+m∏
i=1

Z̃it̃θ,i(θ)t̃φ,i(φ)p(φ) = q(θ)q(φ), (2.9)

where each analytically intractable site function is approximated with a

site approximation that can be factored between θ and φ:

ti(U
T
i θ,φAi) ≈ t̃i(θ,φ) = Z̃it̃θ,i(θ)t̃φ,i(φ), (2.10)

and Z̃i is a scalar scaling parameter, which is needed to form an EP ap-

proximation for the marginal likelihood of the observed data Z = p(Y|X) ≈
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ZEP. Independent posterior approximations are chosen for θ and φ, be-

cause it results in computationally more efficient computations in Pub-

lication IV. This is a common assumption in many EP approaches for

hierarchical models [see, e.g., Hernández-Lobato et al., 2008, Hernández-

Lobato et al., 2011]. If the model under consideration permits feasible in-

tegrations for determining the moments of the tilted distributions (2.20),

a fully-coupled approximation could be obtained, for example, by incorpo-

rating the hyperparameters into θ using a suitable parameterization and

adjusting Ui accordingly. Gaussian site approximations are assumed for

θ:

t̃θ,i(θ) = exp

(
−1

2
θTQ̃iθ + h̃T

i θ

)
, (2.11)

where Q̃ is a d × d site precision matrix, h̃ a d × 1 site location vector.

For the hyperparameters φ, site term approximations conjugate with the

prior (2.7) are chosen:

t̃φ,i(φ) = exp
(
λ̃T
i g(φ)

)
=

L∏
l=1

t̃φl,i(φl) =

L∏
l=1

exp
(
λ̃T
i,lgl(φl)

)
(2.12)

where g(φ) = [g1(φ1)
T, ...,gL(φL)

T]T are the sufficient statistics of the

prior (2.7), and λ̃i = [λ̃T
i,l, ..., λ̃

T
i,L]

T is a vector of site parameters analo-

gous to the natural parameters λ0 of the prior. If some of the site terms

ti(U
T
i θ,φ) are already in the factored form of the term approximations

(2.10), no EP approximations are required for those terms and the param-

eters of the site approximations can be equated with the corresponding

natural parameters of the exact sites.

Multiplying the site approximations (2.11) together according to (2.9)

gives the following Gaussian approximation for θ:

q(θ) = Z(h,Q)−1ψ(θ,h,Q) = N (θ|μ,Σ), (2.13)

where the Gaussian distribution is written by defining the exponential

term as

ψ(θ,h,Q) = exp

(
−1

2
θTQθ + hTθ

)
, (2.14)

and the normalization factor (or the partition function) as

logZ(h,Q) = log

∫
ψ(θ,h,Q)dθ

=
d

2
log 2π − 1

2
log |Q|+ 1

2
hTQ−1h. (2.15)

The approximate mean vector can be written as μ = Q−1h and the co-

variance matrix as Σ = Q−1 using the location vector h and the precision
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matrix Q:

h =
n+m∑
i=1

h̃i

Q =

n+m∑
i=1

Q̃i. (2.16)

Because the prior (2.7) can be factorized similarly to the site term approx-

imations (2.12), a factorized posterior approximation is obtained for the

hyperparameters:

q(φ) =
L∏
l=1

q(φl) =

L∏
l=1

Z(λl)
−1 exp

(
λT
l gl(φl)

)
, (2.17)

where Z(λl) =
∫
exp

(
λT
l gl(φl)

)
dλl and the natural parameters are given

by

λl = λ0,l +

n+m∑
i=1

λ̃i,l. (2.18)

2.3.2 General EP Algorithm

The standard EP algorithm [Minka, 2001b] updates the parameters of the

site approximations and the posterior approximation q(θ,φ) sequentially.

At each iteration, first a proportion η of the i:th site term is removed from

the posterior approximation to obtain a cavity distribution:

q−i(θ,φ) = q−i(θ)q−i(φ) ∝ q(θ)q(φ)t̃θ,i(θ)
−η t̃φ,i(φ)

−η, (2.19)

where η ∈ (0, 1] is a fraction parameter that can be adjusted to implement

fractional (or power) EP updates [Minka, 2004, 2005]. When η = 1 and i ≤
n, the cavity distribution (2.19) can be thought of as a leave-one-out (LOO)

posterior approximation where the contribution of the i:th likelihood term

p(yi|zi,φ) is removed from q(θ,φ). Then, the i:th site approximation is

replaced with the exact site term to form a tilted distribution

p̂i(θ,φ) = Ẑ−1
i q−i(θ,φ)ti(U

T
i θ,φAi)

η, (2.20)

where Ẑi =
∫
q−i(θ,φ)ti(U

T
i θ,φAi)

ηdθdφ is a normalization factor, which

in case i ≤ n can also be thought of as an approximation for the LOO

predictive density of the excluded data point yi. The tilted distribution

can be regarded as a more refined approximation to the true posterior

distribution. Next, the algorithm attempts to match the approximate pos-

terior distribution q(θ,φ) with p̂i(θ,φ) by finding a member of the chosen
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approximate family q̂i(θ,φ) that satisfies

q̂i(θ,φ) = argmin
qi

KL (p̂i(θ,φ)||qi(θ,φ)) , (2.21)

where KL denotes the Kullback-Leibler divergence and qi can be factored

as qi(θ,φ) = qi(θ)qi(φ). Then, the parameters of the i:th site terms are

updated so that the moments of q(θ,φ) match with q̂i(θ,φ):

q̂i(θ,φ) ≡ q(θ,φ) ∝ q−i(θ)q−i(φ)t̃θ,i(θ)
η t̃φ,i(φ)

η. (2.22)

Finally, the posterior approximation q(θ,φ) is updated according to the

changes in the site parameters. These steps are repeated for all sites in

some suitable order until convergence.

From now on, we refer to the previously described EP update scheme,

where the posterior approximations q(θ) and q(φ) are refreshed after each

of the n+m site updates, as sequential EP. If the posterior approximations

are updated only after new site parameter values have been determined

for all the n likelihood sites or m prior sites, we refer to parallel EP [see,

e.g., van Gerven et al., 2009].

When approximations q(θ) and q(φ) belong to the exponential family,

the KL minimization step (2.21) is equal to matching the expected suffi-

cient statistics of q(θ) and q(φ) with the corresponding marginal expecta-

tions with respect to p̂i(θ,φ) [Minka, 2001b, 2005, Seeger, 2005]. For the

chosen approximate family, the KL divergence of (2.21) can be written as

KL (p̂i(θ,φ)||qi(θ,φ)) =
∫
p̂i(θ,φ) log

(
p̂i(θ,φ)

qi(θ)
∏L

l=1 qi(φl)

)
dθdφ

=
1

2
Tr

(
Ep̂i

(
θθT

)
Qi

)
− hT

i Ep̂i (θ) + logZ(hi,Qi)

−
L∑
l=1

(
λT
i,l Ep̂i (g(φl))− logZ(λi,l)

)
+ C (2.23)

where qi(θ) = N (Q−1
i hi,Q

−1
i ), qi(φl) = Z(λi,l)

−1 exp
(
λT
i,lg(φ)

)
for l =

1, ..., L, Ep̂i denotes expectation with respect to p̂i(θ,φ), and C does not

depend on λi,l, hi, or Qi. Computing the derivatives of (2.23) with respect

to hi, Qi, and λi,l using the well known result that with exponential fam-

ilies the expected sufficient statistics can be obtained by differentiating

the log partition function (see equations (2.15) and (2.17)) with respect to

the natural parameters:
∂

∂hi
logZ(hi,Qi) = Eqi(θ) = Q−1

i hi

∂

∂Qi
logZ(hi,Qi) = −1

2
Eqi(θθ

T) = −1

2
Q−1

i

∂

∂λi,l
logZ(λi,l) = Eqi(g(φl)), (2.24)
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and setting the derivatives to zero gives the following conditions for the

minimizing distribution q̂i(θ,φ) = q̂i(θ)
∏L

l=1 q̂i(φl):

Ep̂i (θ) = Eq̂i (θ) = μ̂i

Ep̂i

(
θθT

)
= Eq̂i

(
θθT

)
= Σ̂i + μ̂iμ̂

T
i

Ep̂i (gl(φl)) = Eq̂i (gl(φl)) = ŝi(λ̂i,l) l = 1, ..., L. (2.25)

where q̂i(θ) = N (μ̂i, Σ̂i) with μ̂i = Q̂−1
i ĥi and Σ̂i = Q̂−1

i ĥi, and q̂i(φl) =

Z(λ̂i,l)
−1 exp

(
λ̂T
i,lg(φ)

)
. Equation (2.25) shows that, because of the factor-

ized approximate family, only the expected sufficient statistics of q(θ) and

q(φ1), ..., q(φL) have to be made equal with the corresponding expectations

with respect to the marginal tilted distributions p̂i(θ) and p̂i(φ1), ..., p̂i(φL).

For updating the Gaussian approximation q(θ) = N (μ,Σ), this requires

determining the mean μ̂i and covariance Σ̂i of the marginal tilted dis-

tribution p̂i(θ), and updating the site parameters h̃i and Q̃i according

to (2.22) so that μ̂i and Σ̂i are consistent with μ and Σ, respectively.

For the hyperparameter approximations q(φl), equation (2.25) requires

determining the expected sufficient statistics ŝi = Ep̂i(gl(φl)) with re-

spect to the marginal tilted distributions p̂i(φl) and finding a λ̂i,l such

that Eq̂i(gl(φl)) = ŝi. Provided that a suitable minimal representation

is chosen for the natural parameterization of q(φl) (the same as with

q̂i(φl)), there exists a bijective mapping between the natural parameters

λ̂i,l and the moment parameters ŝi from which λ̂i,l can be solved [Seeger,

2005].2 After determining λ̂i,l the site parameters λ̃i,l are updated so that

q(φl) is consistent with q̂i(φl) according to (2.22), which is equivalent to

λ̂i,l = λ−i,l + ηλ̃i,l for an approximation belonging to the exponential fam-

ily.

Because the i:th site term ti(U
T
i θ,φAi) depends only on a subset φAi =

{φl|l ∈ Ai} of the hyperparameters and the approximate posterior dis-

tribution (2.17) can be factored between φ1, ...,φL, the tilted distribution

(2.20) can also be factored as p̂i(θ,φ) = p̂i(θ,φAi)
∏

l �∈Ai
q−i(φl), where

p̂i(θ,φAi) = Ẑ−1
i ti(U

T
i θ,φAi)

ηq−i(θ)
∏
l∈Ai

q−i(φl). (2.26)

Consequently, for l �∈ Ai, the marginal expectations of gl(φl) with respect

to the tilted distribution reduce to the corresponding cavity expectations:

Ep̂i(gl(φl)) = Eq−i(gl(φl)) for l �∈ Ai. It follows that for l �∈ Ai no site

parameter updates are required for the i:th site term, because q̂l(φl) =

2Results from ∇λl
logZ(λl) = E(gl(φl)) and the convexity of the log partition

function: ∇2
λl

logZ(λl) = Varq(gl(φl)) > 0.
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q−i(φl) and the EP update equation (2.22) results in zero site parameters

λ̃i,l = 0, as expected.

2.3.3 EP with Gaussian Approximations

The practical feasibility of EP depends on the structure of the site terms

and the choice of the approximating family done in Section 2.3.1. The

main requirements are 1) that the integrations with respect to p̂i(θ,φAi)

in equation (2.25) can be carried out efficiently and 2) that the chosen ap-

proximate family q(θ,φ) is closed under the marginalizations required to

determine the approximations for linear transforms zi = UT
i θ and sub-

sets φAi , and that the associated computations are tractable [see also

Seeger, 2005]. The first condition requires that integrations with respect

to p̂i(θ,φAi) can be done analytically over θ and/or φAi , and that the re-

maining non-analytical integrations are so low-dimensional that numeri-

cal quadrature methods can be utilized efficiently. The second condition is

met because the approximation can be factored between θ and φ1, ...,φL,

and the Gaussian approximation for θ is closed under linear transforma-

tions.

With a Gaussian approximation for θ additional computational savings

and lower-dimensional site parameters are obtained, when the site terms

ti(U
Tθ,φAi) depend on θ only through lower-dimensional random vari-

ables zi resulting from a linear transformation zi = UT
i θ [see, e.g., Seeger,

2005, Cseke and Heskes, 2011]. This property has been utilized with lin-

ear classifiers and other linear models with general likelihoods [Minka,

2001a, Qi et al., 2004, Seeger et al., 2007, Hernández-Lobato et al., 2008,

van Gerven et al., 2009, 2010], and a good summary of the Gaussian EP

algorithm is presented by Cseke and Heskes [appendix C, 2011]. With

GPs and other latent Gaussian models, where each site depends on a sub-

set of θ, the transformation is defined so that Ui picks the desired com-

ponents and the EP algorithm reduces to matching and propagating the

associated marginal moments (see. e.g, Rasmussen and Williams [2006],

Seeger and Jordan [2004], Seeger et al. [2006], Girolami and Zhong [2007]

and Publications II and III).

In the following a short description is given on the EP updates resulting

from equations (2.19) – (2.22) with Gaussian approximations q(θ), and the

complete EP algorithm with general exponential family approximations

for φ is presented in Section 2.3.4. Equation (2.19) results in a Gaus-

sian cavity distribution for θ, denoted by q−i(θ) = N (θ|μ−i,Σ−i), because
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multiplying two members of the same exponential family results in an un-

normalized member of same family (the same applies for q(φl)) [Minka,

2005, Seeger, 2005, see, e.g,]. The normalization term of the marginal

tilted distribution (2.26) associated with the i:th site can be written as

Ẑi =

∫
ti(U

T
i θ,φAi)

ηN (θ|μ−i,Σ−i)
∏
l∈Ai

q−i(φl)dθdφAi

=

∫
ti(zi,φAi)

ηN (zi|m−i,V−i)
∏
l∈Ai

q−i(φl)dzidφAi (2.27)

where m−i = UT
i μ−i, and V−i = UT

i Σ−iUi can be interpreted as the mean

and covariance of the cavity distribution of zi induced by q−i(θ) and it is

denoted by q−i(zi) = N (zi|m−i,V−i). Differentiating the both integrals in

(2.27) first once and then twice with respect to μ−i, and equating the both

results gives3

Σ̂−1
i = Σ−1

−i +UiT̃iU
T
i

Σ̂−1
i μ̂i = Σ−1

−iμ−i +Uiν̃i, (2.28)

where μ̂i and Σ̂i are the mean and covariance matrix of the marginal p̂i(θ)

defined in (2.25), m̂i = UT
i μ̂i and V̂i = UT

i Σ̂iUi are the corresponding

moments of p̂i(zi) = Ẑ−1
i ti(zi,φAi)

ηN (zi|m−i,V−i)
∏

l∈Ai
q−i(φl), and the

lower dimensional location and precision contributions are given by ν̃i =

V̂−1
i m̂i −V−im−i and T̃i = V̂−1

i −V−1
−i .

Equation (2.28) shows that the i:th site term’s contributions to the nat-

ural parameters of q̂(θ) defined by (2.22) and (2.25) can be determined by

computing only the moments of the lower dimensional cavity and tilted

distributions related to zi. Furthermore, using the result (2.28) with

(2.25), the moment consistency condition (2.22), and the original defini-

tion of q(θ) in (2.13), the parameters of the site approximation (2.11) re-

sulting from the EP update can be written in a more economical form as

Q̃i = UiT̃iU
T
i

h̃i = Uiν̃i, (2.29)

where T̃i = η−1(V̂−1
i −V−1

−i ) and ν̃i = η−1(V̂−1
i m̂i −V−im−i), that is, the

new site parameters are determined by the tilted and cavity moments of

zi. Furthermore, using the definition m−i = UT
i μ−i and V−i = UT

i Σ−iUi

with equation (2.19), shows that the cavity moments of zi can be com-

puted using only rank-di matrix computations, where di is the number of

3An analogous result can be derived also by differentiating with respect to the
natural parameters of q−i(θ).
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components in zi. Put together, a Gaussian approximate family with site

terms dependent on lower-dimensional linearly transformed random vari-

ables zi, results in computational more economical site approximations

and EP updates. The resulting EP algorithm for updating the approxima-

tions q(θ) simultaneously with the hyperparameter approximations q(φl)

is summarized in Section 2.3.4.

2.3.4 Algorithm Description

With the chosen model structure and approximate family, the EP algo-

rithm can be implemented as follows. First, initialize the site parameters

ν̃i, T̃i, and λ̃i, together with the approximations q(θ), q(φl), l = 1, ..., L.

Then iterate the following steps at a chosen order for each i = 1, ..., n+m:

1. Determine the parameters of the cavity distribution (2.19). Compute

first the mean mi and the covariance Vi of the approximate marginal

distribution of the transformed variable zi = UT
i μ: q(zi) = N (mi,Vi),

where mi = UT
i μ and Vi = UT

i ΣUi. The cavity distribution for the

transformed variable zi is then given by q−i(zi) = N (m−i,V−i), where

m−i = V−i(V
−1
i mi − ην̃i)

V−i =
(
V−1

i − ηT̃i

)−1
. (2.30)

The cavity distributions for the hyperparameters associated with the

i:th site, φAi = {φl|l ∈ Ai}, can be written as

q−i(φl) = Z(λ−i,l)
−1 exp

(
λT
−i,lgl(φl)

)
l ∈ Ai, (2.31)

where the natural parameters can be computed from the parameters of

the approximate posterior (2.17) and the site approximations (2.12) as

λ−i,l = λl − ηλ̃i,l. (2.32)

2. Compute the sufficient statistics with respect to the i:th tilted dis-

tribution (2.21). For the the transformed variable zi, determine (or

approximate) the marginal mean m̂i = Ep̂i(zi) and covariance V̂i =

Ep̂i(ziz
T
i )− m̂im̂

T
i with respect to the the marginal tilted distribution:

p̂i(zi,φAi) = Ẑ−1
i ti(zi,φAi)

ηq−i(zi)
∏
l∈Ai

q−i(φl). (2.33)

For the hyperparameters φl, l ∈ Ai, determine the parameters λ̂i,l of a
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member of the chosen approximate family (2.17), denoted by

q̂i(φl) = Z(λ̂i,l)
−1 exp

(
λ̂T
i,lgl(φl)

)
, (2.34)

that satisfies Ep̂i(gl(φl)) = Eq̂i(gl(φl)).

If the normalization term Ẑi can be computed analytically, the suffi-

cient statistics can be determined by differentiating log Ẑi with respect

to the cavity parameters: e.g., for the hyperparameters φl, the expected

sufficient statistics can be computed as:

Ep̂i (gl(φl)) = ∇λ−i,l
log Ẑi + Eq−i(gl(φl)). (2.35)

Otherwise, the necessary moments have to approximated with a suit-

able method such as numerical quadrature integration.

3. Update the site parameters according to (2.22) by damping the updates

with δ ∈ (0, 1]. For the site approximations t̃θ,i(θ) this results in the

following updates:

T̃new
i = (1− δ)T̃i + δη−1(V̂−1

i −V−1
−i )

= T̃i + δη−1(V̂−1
i −V−1

i ) (2.36)

ν̃new
i = (1− δ)ν̃i + δη−1(V̂−1

i m̂i −V−1
−im−i)

= ν̃i + δη−1(V̂−1
i m̂i −V−1

i mi). (2.37)

For the site approximations t̃φl,i(φl) this results in the following up-

dates:

λ̃new
i,l = (1− δ)λ̃i,l + δη−1(λ̂−1

i,l − λ−i,l) = λ̃i,l + δη−1(λ̂−1
i,l − λl). (2.38)

4. If sequential EP is used, apply rank-one posterior updates on q(θ) =

N (μ,Σ) and update q(φl) = Z(λl)
−1 exp(λT

l gl(φl)) for l ∈ Ai.

2.3.5 Fractional Updates and Damping

The EP update procedure (2.19)– (2.22) with η �= 1 can be interpreted

as an iterative approach for minimizing a family of divergence measures

called α-divergence parameterized with α = η [Minka, 2005]. The α-

divergence between an exact posterior p(θ) and an approximation q(θ),

denoted by Dα (p(θ)|q(θ)), can be minimized by guessing an initial q(θ)
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and updating it repeatedly according to

q̂(θ) = proj
[
p(θ)αq(θ)1−α

]
q(θ)new = q̂(θ)δq(θ)1−δ (2.39)

where δ ∈ (0, 1] is a damping factor and the proj-operation denotes the

minimization of KL
(
p(θ)αq(θ)1−α|q(θ)) similarly to (2.23) – (2.25) [Minka,

2005]. Here the KL-divergence minimization is done so that also the nor-

malization constants of q(θ) and p(θ) are matched. The scheme is not

guaranteed to converge but with a sufficient amount of damping it usually

converges similarly to fractional EP [see, e.g., Seeger, 2008]. The local KL

minimization of the fractional EP update procedure (2.19)– (2.22) can be

written in the same form as (2.39):

q̂i(θ,φ) = t̃i(θ,φ)
newq−i(θ,φ) = proj

[
p̂i(θ,φ)

αqi(θ,φ)
1−α

]
= proj

[
ti(U

T
i θ,φAi)

αt̃i(θ,φ)
1−αq−i(θ,φ)

]
, (2.40)

where q−i(θ,φ) ∝ q(θ,φ)t̃i(θ,φ)
−1, t̃i(θ,φ) = Z̃it̃θ,i(θ)t̃φ,i(φ) is the site

approximation (2.10), p̂i(θ,φ) = q−i(θ,φ)ti(U
T
i θ,φAi) is an unnormalized

tilted distribution, and qi(θ,φ) = q−i(θ,φ)t̃i(θ,φ) an unnormalized ap-

proximation. Equation (2.40) is equivalent to (2.21) with η = α, because

t̃i(θ,φ)
1−αq−i(θ,φ) ∝ q(θ,φ)t̃i(θ,φ)

−α is equivalent with the definition of

the cavity distribution (2.19), and choosing δ = η results in the moment

consistency condition (2.22).

The standard EP based on minimizing KL(p̂i(θ,φ)|qi(θ,φ)) is obtained

by setting the fraction parameter to η = 1 in equations (2.19)– (2.22)

whereas choosing a smaller value produces a slightly different approxi-

mation that puts less emphasis on preserving all the nonzero probability

mass of the tilted distributions [Minka, 2005]. Choosing η < 1 tries to rep-

resent the uncertainty resulting from possible multiple modes of p̂i(θ,φ)

but ignores modes far away from the main probability mass, which results

in a tendency to underestimate variances. The limit η → 0 can be inter-

preted as minimization of the reverse KL, KL(qi(θ,φ)|p̂i(θ,φ)), which is

the standard assumption in various VB approaches discussed in Section

2.4. Larger values of η put more emphasis on preserving the overall uncer-

tainty in p̂i(θ,φ) but in multimodal cases this can lead to very large tilted

variances. Depending on the application, this may not be the best choice,

if, e.g., accurate predictions are obtained only using one of the modes (see

Minka [2005] and Publication II). In practice, decreasing η can alleviate

convergence problems resulting from possible multimodalities and also
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improve the overall numerical stability of the algorithm, because part of

the precision of each site approximation is left in the cavity distribution

at each iteration (Minka [2005], Seeger [2008], Publication II).

There is no theoretical convergence guarantee for the standard EP algo-

rithm but damping the site parameter updates can help to achieve conver-

gence in harder problems [Minka and Lafferty, 2002, Heskes and Zoeter,

2002]. In damping, the natural site parameters are updated to a convex

combination of the old values and the new values resulting from (2.22)

adjusted by the damping factor δ ∈ (0, 1] (compare with equations (2.37)

– (2.34)). This is also equivalent with (2.39). The convergence problems

are usually seen as increasing oscillations over iterations in the site pa-

rameter values and they may occur, for example, if there are inaccuracies

in the tilted moment evaluations, or if the approximate distribution is not

a suitable proxy for the true posterior, for example, due to multimodali-

ties (for visualizations, see Publications II and III). In the experiments

of Publications II and IV, parallel update scheme was found to require

larger amount of damping, which can be explained by the fact that the

local minimization (2.22) are derived from the sequential scheme.

2.3.6 The Marginal Likelihood Approximation

A numerically robust implementation for evaluating the EP marginal

likelihood approximation with Gaussian approximations can be done, e.g.,

by following Cseke and Heskes [appendix C, 2011]. In the following an

analogous expression is summarized for the chosen approximate family.

An EP approximation for the marginal likelihood is given by

Z =

∫ n+m∏
i=1

ti(U
T
i θ,φAi)p(φ)dθdφ ≈

∫ ∏
i

t̃i(θ,φ)p(φ)dθdφ, (2.41)

where the exact terms are simply replaced by their approximations. Tak-

ing into account the factorized form of the site approximations, t̃i(θ,φ) =

Z̃it̃θ,i(θ)t̃φ,i(φ), and definitions (2.11) and (2.12), the log marginal likeli-

hood can be written as

logZEP =
∑
i

log Z̃i + log

∫ ∏
i

t̃θ,i(θ)dθ +

L∑
l=1

log

∫ ∏
i|l∈Ai

t̃φl,i(φ)p(φl)dφl

=
∑
i

log Z̃i + logZ(μ,Σ) +
L∑
l=1

(logZ(λl)− logZ(λ0,l)) , (2.42)
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where logZ(λl) =
∫
exp(λT

l gl(φl))dφ and logZ(μ,Σ) is defined analogously

to (2.15):

logZ(μ,Σ) =
d

2
log 2π +

1

2
log |Σ|+ 1

2
μTΣ−1μ. (2.43)

Numerical robust expressions for the site normalization terms Z̃i can be

derived by using the local moment matching conditions (see (2.22)) for the

normalization constants:

Ẑi =

∫
ti(zi,φAi)

ηq−i(θ,φ)dθdφ = Z̃η
i

∫
t̃z,i(θ)

η t̃φ,i(φ)
ηq−i(θ,φ)dθdφ

= Z̃η
i

∫
ψ(zi, ην̃i, ηT̃i)q−i(zi)dzi

∫
t̃φ,i(φ)

ηq−i(φ)dφ, (2.44)

which results in

log Z̃i =
1

η

(
log Ẑi + logZ(m−i,V−i)− logZ(mi,Vi)

+

L∑
l=1

(logZ(λ−i,l)− logZ(λl))
)
, (2.45)

where Ẑi are the normalization terms of (2.26). The site normalization

terms (2.45) can be evaluated by saving the necessary parameters at each

EP update of the algorithm described in Section (2.3.4). Approximation

(2.42) can be recomputed without significant additional cost after each

sequential or parallel posterior update step, where quantities such as

log |Σ| = − log |Q| and μ = Σh = Q−1h can be computed or updated using

the same Cholesky decompositions or rank one updates, respectively.

2.3.7 Provably Convergent Double-Loop Algorithms

When standard EP does not converge, it is possible to find approxima-

tions satisfying the moment matching conditions (2.22) or equivalently

(2.25) using provably convergent double-loop algorithms [Minka, 2001b,c,

Heskes and Zoeter, 2002, Opper and Winther, 2005]. For example, Hes-

kes and Zoeter [2002] present simulation results with linear dynamical

systems where useful approximations are found using a double-loop algo-

rithm when damped EP fails to converge. With GP models, visual com-

parisons of the converge properties of a double-loop algorithm with both

sequential and parallel EP are presented in Publication II.

To simplify the notation, the double-loop algorithms are considered us-

ing only one parameter vector θ. The exact posterior (2.8) is replaced with

p(θ|D) = Z−1
∏n

i=1 ti(θ), where Z is the marginal likelihood and ti(θ) are
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the site terms. The posterior is approximated with

q(θ) = Z−1
EP

n∏
i=1

t̃i(θ) = Z(λ)−1 exp(λTg(θ)), (2.46)

where t̃i(θ) = Z̃i exp(λ̃
T
i g(θ)), g(θ) is a vector of sufficient statistics, λ =∑

i λ̃i is a vector of natural parameters, and the normalization term is

given by Z(λ) =
∫
exp(λTg(θ))dθ. Defining, e.g., g(θ) = [θT,−1

2(θ ⊗ θ)T]T

and λ = [hT, vec(Q)T]T, where vec(Q) denotes the vertical concatenation

of the columns of Q, λTg(θ) = hTθ − 1
2θ

TQθ and consequently the ap-

proximation (2.13) can be written as q(θ) = Z(λ)−1 exp(λTg(θ)). The hy-

perparameters φ could be included in the notation by concatenating their

natural parameters in λ and sufficient statistics in g(θ).

The fixed points of the EP algorithm that satisfy the moment consis-

tency conditions (2.25), correspond to the stationary points of the follow-

ing objective function

min
λ

max
λ−

(
n

η
− 1

)
logZ(λ)− 1

η

n∑
i=1

log Ẑi(λ−i), (2.47)

where λ− = {λ−i}ni=1, Ẑi(λ−i) =
∫
ti(θ)

η exp
(
λT
−ig(θ)

)
dθ analogously with

the normalization constants of the tilted distributions (2.27), and the min-

max problem is solved subject to the constraint (n − η)λ =
∑n

i=1 λ−i

[Minka, 2001b,c, 2005]. Substituting the constraint into (2.47) and tak-

ing the derivatives with respect to λ−i using the results ∇λ logZ(λ) =

Eq(g(θ)) and ∇λ−i
log Ẑi(λ−i) = Ep̂i(g(θ)), where the tilted distribution

is defined as p̂i(θ) = Ẑi(λ−i)
−1ti(θ)

η exp
(
λT
−ig(θ)

)
, results in analogous

moment consistency conditions with (2.25): Ep̂i(g(θ)) = Eq(g(θ)) for i =

1, ..., n. The min-max problem (2.47) could be solved using, e.g., gradient-

based methods or trying similar message passing iterations as with regu-

lar EP [Minka, 2001a,b]. logZ(λ) and log Ẑi(λ−i) are convex functions of

the natural parameters λ and λ−i, because ∇2
λ logZ(λ) = Covq(g(θ)) and

∇2
λ−i

Ẑi(λ−i) = Covp̂i(g(θ)). Consequently, assuming that both p̂i(θ) and

q(θ) are proper probability density functions, the objective (2.47) is a sum

of a convex and a concave part with respect to the parameters λ and λ−.

An alternative double-loop objective can be obtained from (2.47) by sep-

arating the first term into a concave and a convex part as

min
λ

max
λ−

− logZ(λ)− 1

η

n∑
i=1

log Ẑi(λ−i) +
n

η
logZ(λs), (2.48)

where the parameters of the convex part are denoted with λs. Writing

the constraint as λ = η−1
∑n

i=1(λ− λ−i) = η−1
∑n

i=1(λs − λ−i) =
∑n

i=1 λ̃i,
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where λs = λ−i + ηλ̃i, analogous definitions are recovered for the site

parameters and the cavity parameters with the standard EP (see, e.g.,

(2.32)). Equation (2.48) can be interpreted as the double-loop objective

of the expectation consistent (EC) approach for approximate inference,

extended according to the description of Heskes et al. [2005]. The pa-

rameters of the convex part, λs, define a surrogate distribution qs(θ) =

Z(λs)
−1 exp(λT

s g(θ)), which at convergence shares the same expected suf-

ficient statistics with the posterior approximation q(θ). When q(θ) is

Gaussian and the site terms depend on θ through linear transformation

of the form zi = UT
i θ, the surrogate distributions can be transformed into

equivalent marginal approximations for the latent values zi similarly to

the standard EP as described in Section 2.3.3. The objective functions

(2.47) and (2.48) are equivalent with − logZEP defined by (2.42) and (2.45),

and (2.48) is also equivalent to the expectation consistent (EC) free energy

approximation presented by Opper and Winther [2005]. A unifying view

of the EC and EP approximations as well as connections to the Bethe free

energies are presented by Heskes et al. [2005].

Equation (2.48) suggests a double-loop algorithm where the inner loop

consist of maximization with respect to λ− with fixed λs and the outer

loop of minimization with respect to λs. The inner maximization affects

only the first two terms and ensures that the marginal moments of the

current posterior approximation q(θ) are equal to the moments of the

tilted distributions p̂i(θ) for fixed λs. The outer minimization ensures

that the moments of qs(θ) are equal to marginal moments of q(θ). At con-

vergence, q(θ), p̂i(θ), and qs(θ) share the same values for the expected

sufficient statistics E(g(θ)). The inner maximization can be done using

generic gradient-based optimization methods or by trying similar mes-

sage passing iterations as with the regular EP algorithm (see, e.g., Minka

[2001c] and Publication II). Once the inner optimum is found, the outer

minimization can be done by bounding the concave part from above with

a linear function of λs and minimizing the resulting upper bound: λnew
s =

argminλs
{−n

ηλ
T
s ŝ+

n
η logZs(λs)}, where ŝ = Eq(g(θ)) = Ep̂i(g(θ)). This cor-

responds to updating λs so that the expected sufficient statistic of qs(θ)

are consistent with q(θ). If ti(θ) are bounded, the objective is bounded

from below and consequently there exists stationary points satisfying these

expectation consistency constraints [Minka, 2001b, Opper and Winther,

2005]. In the case of multiple stationary points the solution with the

smallest free energy can be chosen.
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Since the first two terms in (2.48) are concave functions of λ− and λ̃ =

{λ̃i}ni=1, the inner maximization problem is concave with respect to λ−

(or equivalently λ̃) after substitution of the constraints λ =
∑n

i=1 λ̃i =

η−1
∑n

i=1(λs − λ−i) [Opper and Winther, 2005]. However, because the

Hessian of the first term is given by ∇2
λ−i

Ẑi(λ−i) = Covp̂i(g(θ)), the inner

loop optimization with respect to λ− is well defined and concave only if

the tilted distributions p̂i(θ) are proper probability distributions that re-

sult in positive definite covariances for g(θ). Therefore, to ensure that the

products of q−i(θ) and the sites ti(θ) are proper distributions and that the

inner-loop moment matching remains meaningful in case of Gaussian ap-

proximations, the cavity precisions V−1
−i = V−1

i − ηT̃i (see equation (2.31))

have to be kept positive definite during the iterations. Because decreas-

ing η improves the conditioning of V−i, fractional updates can improve the

numerical stability of the algorithm. Furthermore, since the cavity distri-

butions related to the likelihood sites can be regarded as approximations

of the LOO predictive distributions of θ, a positive definite cavity variance

V−i for a certain site would correspond to a situation where q(UT
i θ|y−i,X)

would have infinite variance in some direction(s) of the space of zi, which

is not sensible from practical modeling perspective. On the other hand,

the site precisions T̃i may become negative with non-log-concave sites,

which correspond to a local increase of posterior uncertainty resulting,

e.g., from an outlying observation [Publication II].

2.4 Variational Mean-Field (VMF)

This section summarizes the VMF method for approximate inference and

compares its properties with EP. The VMF approximation is obtained by

minimizing the global reverse KL-divergence

KL(q(θ,φ)|p(θ,φ, |D)) (2.49)

with respect to q(θ,φ). With the chosen factorization assumption for the

approximate posterior, q(θ,φ) = q(θ)
∏L

l=1 q(φl), the solution can be ob-

tained by iterating the following updates for q(θ) and q(φl), l = 1, ..., L,
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until convergence [Jordan et al., 1999, Jaakkola, 2000]:

q(θ)new ∝ exp

(∫
q(φ) log p(Y,θ,φ|X)dφ

)
(2.50)

∝ exp

⎛
⎝n+m∑

i=1

∫ ∏
l∈Ai

q(φl) log ti(U
T
i θ,φAi)dφAi

⎞
⎠

q(φl)
new ∝ exp

(∫
q(θ)q(φ−l) log p(Y,θ,φ|D)dθdφ−l

)

∝ exp

⎛
⎝∑

l∈Ai

∫
q(θ)

∏
k∈Ai\l

q(φk) log ti(U
T
i θ,φAi)dθdφAi\l

⎞
⎠ p(φl),

where φ−l = {φk}k �=l and Ai\l = {k ∈ Ai|k �= l}. These iterations are

guaranteed to converge to a local maximum of the variational lower bound

L(q) ≤ logZ defined by L(q) = Eq(log p(Y,θ,φ|X)) −Eq(log q(θ,φ)).

If the site terms ti(UT
i θ,φAi) are chosen suitably, the expectations with

respect to q(θ) and q(φl) can be computed analytically and the updated

posterior approximations will remain in a tractable family of distribu-

tion. For example, simple analytically tractable computations are ob-

tained by assuming a linear predictor zi = xT
i θ and a Gaussian scale-

mixture observation model yi ∼ N (yi|zi, φi) with unknown noise vari-

ances φi for each observation (analogous to a Student-t model [Tipping

and Lawrence, 2003]), and using a posterior approximation that can be

factored as q(θ,φ) = q(θ)
∏

i q(φi). Assigning a multivariate Gaussian

prior tn+1(θ) = p(θ) = N (μ0,Σ0) to the coefficients, and taking expecta-

tions of log ti = − 1
2φi

(yi − xT
i θ)

2 − 1
2 log(2πφi) with respect to q(φi), it is

straightforward to show that the approximate posterior distribution of θ

will be of the same form as (2.13): q(θ) = N (μ,Σ) where Σ−1 = Q =∑n
i=1 xi E(φ

−1
i )xT

i + Σ−1
0 and Σ−1μ = h =

∑n
i=1 xi E(φ

−1
i )yi + Σ−1

0 μ0. As-

signing independent conjugate inverse-Gamma priors to the residual vari-

ances, p(φi) ∝ φ−α0−1
i exp(φi/β0) for i = 1, ..., n, and using (2.50) results in

inverse-Gamma posteriors q(φi) ∝ φ−α−1
i exp(φi/β), where α = α0 + 1

2

and β = β0 +
1
2((yi − xT

i μ)
2 + xT

i Σxi). A similar VMF approach is used

in the comparisons of different approximate inference methods for robust

GP regression with the Student-t model in Publications I and II, where

it is found that compared to EP the VMF approach tends to underesti-

mate the posterior uncertainties in cases when the posterior distribution

is multimodal (VMF represents only one of the possible modes of p(θ|D)).

However, generally the complexity of the approximations (2.50) is not con-

strained, unless a projection on an exponential family distribution is done

in a similar way as with EP in equation (2.21) [Minka, 2005].
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An analogous variational approximation with the global VMF solution

(2.50) can be formed also by using a variational message passing (VMP)

algorithm that updates the approximations for the site terms ti(UT
i θ,φAi)

one at a time [Winn and Bishop, 2005]. Such algorithm can be obtained

from the fractional EP algorithm by reversing the KL minimization of

equation (2.21):

q̂i(θ,φ) = argmin
qi

KL (qi(θ,φ)|p̂i(θ,φ)) , (2.51)

where p̂i(θ,φ) is defined similarly to equations (2.19) and (2.20) with

η = 1, that is, p̂i(θ,φ) ∝ ti(U
T
i θ,φAi)q−i(θ)

∏L
l=1 q−i(φl), where q−i(θ) ∝

q(θ)t̃θ,i(θ)
−1 and q−i(φl) ∝ q(φl)t̃φl,i(φl)

−1. The approximation qi(θ,φ) is

of the same form as the approximating family: qi(θ,φ) = qi(θ)
∏

l qi(φl),

where qi(θ) ∝ q−i(θ)t̃θ,i(θ) and qi(φl) ∝ q−i(φl)t̃φl,i(φl). The reverse-KL

minimization of (2.51) can also be interpreted as an iterative approach

for minimizing a more general divergence measure called α-divergence

at the limit α → 0 with α = η [Minka, 2005]. Analogously to the global

KL minimizer (2.50), an iterative solution to the local minimization (2.51)

can be written as q̂i(θ) ∝ q−i(θ)t̃θ,i(θ)
new and q̂i(φl) ∝ q−i(φl)t̃φl,i(φl)

new

for l ∈ Ai, where the new site approximations are given by

t̃θ,i(θ)
new ∝ exp

⎛
⎝∫ ∏

l∈Ai

q(φl) log ti(U
T
i θ,φAi)dφAi

⎞
⎠ (2.52)

t̃φl,i(φl)
new ∝ exp

⎛
⎝∫

q(θ)
∏

k∈Ai\l
q(φk) log ti(U

T
i θ,φAi)dθdφAi\l

⎞
⎠ .

In equation (2.52) the expectations are taken with respect to the previ-

ous approximations q(θ) and q(φl). Compared to the fractional EP solu-

tion, η �= 0, the VMP algorithm (η → 0) has the special property that the

stationary solutions of the message passing algorithm based on the local

KL minimizations are also stationary points of the minimization of the

global divergence (2.49) [Minka, 2005, Knowles and Minka, 2011]. The

VMP algorithm can also be extended to non-conjugate models by adopting

suitable bounds on log ti(U
T
i θ,φAi) or Eq(log ti(U

T
i θ,φAi)) and solving the

natural site parameters by minimizing an upper bound on the local KL

divergence (2.51), or alternatively using numerical quadratures to solve

the local KL minimizations directly [Minka, 2005, Knowles and Minka,

2011].

One key difference between the EP and VMF solutions is the way the

integration is done over the remaining parameters when approximate
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marginal distributions q(θ) and q(φl) are determined using factorized pos-

terior approximations. In EP, the expected sufficient statistics of θ and

φl are determined by integration over φ or θ in the tilted distribution

p̂i(θ,φ) according to (2.25), and the approximations q(θ) and q(φl) are

subsequently set consistent with these sufficient statistics. The EP ap-

proximation relies on the assumption that during the iterations the tilted

distributions p̂i(θ,φ), i = 1, ..., n +m, form an increasingly improving se-

quence of approximations for the true posterior p(θ,φ|D), and that equa-

tion (2.25) preserves a sufficiently good representation of θ and φl in the

form of expected marginal sufficient statistics. In other words, EP does

an iterative approximate integration over the uncertainty on the hyper-

parameters φ while forming the approximate marginal distribution q(θ).

In the VMP update (2.52), the approximations for q(θ) and q(φl) are

formed by taking expectations of log ti(UT
i θ,φAi) with respect to the cur-

rent approximations q(φAi) or q(θ), respectively. This update can be clar-

ified by making the commonly used assumption that the site terms are in

the exponential family conditioned either on φ or {θ,φ−l}, and conjugate

with the chosen approximations for q(θ) and q(φl), respectively [Winn and

Bishop, 2005]. For example, with the chosen Gaussian approximation for

θ, the site terms could be selected so that conditioned on φ they could be

written as

log ti(U
T
i θ,φAi) = −1

2
zT
i Qi(φAi)zi + hi(φAi)

Tzi + C(φAi), (2.53)

where zi = UT
i θ. Taking expectations with respect to q(φ) according to

(2.52), results in Gaussian site terms t̃θ,i, where Qi(φAi) and hi(φAi) are

replaced with their expectations with respect to the current approxima-

tion q(φ). Similarly, in the previous example with a linear model and a

Student-t likelihood, the posterior approximation of the coefficients was

formed as if observations were made according to yi ∼ θTxi + ei, where

ei ∼ N (0,Eq(φ
−1
i )−1). This differs clearly from the integration over p̂i(φ)

in the corresponding EP update and generally this can be seen as a ten-

dency to underestimate the joint posterior uncertainty on θ and φ (for

illustrations and comparisons see, e.g., Minka [2005], Bishop [2006], Nick-

isch and Rasmussen [2008], Publications II and III).
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2.5 Local Variational Bounds (LVB)

Because the free form updates (2.50) and (2.52) of the VMF and VMP

approximations require a priori factorization assumptions and suitable

conjugate-exponential model specifications, and the complexity of the re-

sulting marginal approximations are not generally constrained, various

alternative VB approaches have been proposed. Many of them are based

on using suitable parametric bounds for the site terms to form a computa-

tionally tractable lower bound for the model evidence Z [see, e.g. Jaakkola

and Jordan, 1996, Jordan et al., 1999, Gibbs and MacKay, 2000, Seeger

and Wipf, 2010, Khan et al., 2012]. Also many of the proposed approaches

are based on direct minimization of the global KL divergence (2.49) (or

the variational free energy) using, e.g., gradient-based methods [see, e.g.,

Raiko et al., 2007, Nickisch and Rasmussen, 2008, Opper and Archam-

beau, 2009, Honkela et al., 2010]. This section summarizes briefly the for-

mer LVB approach, which is used for comparisons with the EP approach

in GP regression with the Student-t model in Publication II. The imple-

mentation is similar to the binary GP classification described by Gibbs

and MacKay [2000], and extensive comparisons with other approximate

methods for GP classification have been done by Nickisch and Rasmussen

[2008].

In the following it is assumed that the hyperparameters φ are fixed or

their type-II MAP estimates (2.4) are determined using the LVB marginal

likelihood approximation. LVB is based on forming for each site term a

lower bound bi(zi,Γi) that is conjugate with the approximate family q(θ):

ti(U
T
i θ,φAi) ≥ exp

(
−1

2
zT
i Γ

−1
i zi + bi(Γi)

Tzi − 1

2
hi(Γi)

)
= bi(zi,Γi)

(2.54)

where zi = UT
i θ and the expressions of bi and hi as a function of the free

parameters Γi depend on the chosen model [for examples of commonly

used site terms (or potentials) see, Nickisch, 2010]. The local bounds

bi(zi,Γi) can be used to form an analytically tractable lower bound on the

marginal likelihood, Z = p(y|X,φ) =
∫
p(y,θ|X,φ)dθ ≥ ZLVB(Γ), which

in turn can be maximized with respect to the parameters Γi to obtain a

posterior approximation q(θ) and a marginal likelihood approximation for

hyperparameter inference. After determining the variational parameters,

the posterior approximation q(θ) can be formed similarly to (2.13), where

Q =
∑n+m

i=1 UiΓ
−1
i UT

i and h =
∑n+m

i=1 UiΓ
−1
i bi. LVB can also be regarded

as a special case of the direct KL minimization approaches [Nickisch and
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Rasmussen, 2008, Opper and Archambeau, 2009, Nickisch, 2010], where

also bi are optimized as free parameters.

In many commonly used models the site terms depend only on scalar

random variables zi = uT
i θ [Nickisch, 2010], which results in only one

scalar parameter γi for each site term and facilitates the optimization.

For example, with the Student-t observation model studied in Publication

II, the site terms are defined as ti(zi, ν, σ2) ∝ (1+ν−1(yi− zi)2σ−2)−(ν+1)/2,

where zi is the latent function value fi = f(xi), yi the observation, σ2 the

noise magnitude, and ν the degrees of freedom parameter. Only scalar

scale parameters γi need to be optimized and the location parameters

bi(γi) are determined by the corresponding observations: bi = yi/γi. Also

multivariate bounds have been proposed, e.g., in multi-class classification

[Chai, 2012], but it should be noted that in the approach of Chai [2012],

the bounds are defined directly on the expectations Eq(log ti), which can

presumably result in tighter bounds and more stable performance in some

cases [Knowles and Minka, 2011].

2.6 Laplace Approximation (LA)

The method was already proposed by Laplace [1774] for approximating

integrals of the form
∫ b
a exp(f(x))dx, where f(x) is twice-differentiable.

Since then it has been used widely for approximating different integrals

over intractable posterior distributions to determine approximate predic-

tive distributions and type-II hyperparameter estimates for various mod-

els including generalized linear models [see, e.g., Bishop, 2006], neural

networks [Mackay, 1995, Bishop, 2006], Gaussian processes and other la-

tent Gaussian models (LGMs) [Williams and Barber, 1998, Rasmussen

and Williams, 2006, Rue et al., 2009]. Most of these approaches are

based on determining first type-II MAP estimates for the hyperparam-

eters φ by gradient-based optimization using Laplace’s approximation of

the marginal likelihood p(y|X,φ). The MAP-II estimates φ̂ are subse-

quently used to approximate the predictive density with p(y∗|X∗, φ̂) =∫
p(y∗|X∗,θ, φ̂)q(θ|D, φ̂)dθ, where the approximate conditional posterior

distribution q(θ|D, φ̂) is determined using LA.

The Laplace approximation of p(θ|D, φ̂) is constructed by determining

the mode θ̂ of the conditional posterior using, e.g., Newton’s method or

conjugate gradient optimization, and making a second order Taylor ap-
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proximation of log p(θ|D,φ) around the mode:

log p(θ|D,φ) =
n+m∑
i=1

log ti(U
T
i θ,φAi)− logZ(φ) (2.55)

≈
n+m∑
i=1

(
log ti(ẑi,φAi)−

1

2
(θ − θ̂)TUiWiU

T
i (θ − θ̂)

)
− logZ(φ)

where ẑi = UT
i θ̂, Wi = −∇2

zi log ti(zi,φAi)|ẑi and logZ(φ) = p(Y|X,φ)
is the log marginal likelihood. The first order terms vanish because the

derivative ∇θ log p(θ|D,φ) =
∑

i∇θ log ti(U
T
i θ,φAi) is zero at the mode.

Note also that the quadratic approximation of (2.55) is exact for all Gaus-

sian site terms and that for fully-Gaussian posterior distributions LA is

exact. Collecting the second order terms from (2.55) gives a Gaussian

posterior approximation q(θ) that can be defined similarly to (2.13) by

denoting Q̃i = UiWiU
T
i and h̃i = UiWiU

T
i θ̂. The mean of the approxi-

mation will become equal to the model, that is, μ = θ̂, and the covariance

is given by the negative inverse Hessian Σ = (
∑n+m

i=1 Q̃i)
−1. Note that

the covariance Σ will always be positive definite if the optimization has

terminated at a local mode. Furthermore, with log-concave models the

Hessian will remain positive definite during the optimization. With non-

log-concave models such as the Student-t model studied in Publications I

and II, additional stabilizations or alternative algorithms such as the EM

algorithm [see, e.g., Gelman et al., 2004, Bishop, 2006] are needed in the

optimization.

Type-II MAP estimates of φ can be determined by approximating the

conditional marginal likelihood p(y|X,φ) with Laplace’s method and com-

bining it with the the prior 2.7 to obtain an approximation for the marginal

posterior p(φ|D), and optimizing it using gradient-based methods [see,

e.g., Rasmussen and Williams, 2006, Nickisch and Rasmussen, 2008]. Tak-

ing the exponential of the quadratic approximation (2.55) and integrating

both sides over θ gives

logZ(φ) =

n+m∑
i=1

log ti(ẑi,φAi) +
1

2
log |Σ|+ d

2
log(2π), (2.56)

where d is the dimension of θ. For optimization purposes, the gradients

of logZ(φ) can be solved analytically for models, where the logarithms

of the site terms are twice differentiable. With non-differentiable site

terms such as the Laplace distribution additional modification are re-

quired to determine the LA approximation and the derivatives of logZ(φ)

[Williams, 1995]. Typically computing the derivatives of logZ(φ) are math-
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ematically more involved, because also the implicit derivatives with re-

spect to φ̂ and Wi have to be taken into account in addition to explicit

derivatives of the expression (2.56). In contrast, with EP only the explicit

derivatives of the approximate marginal likelihood are required, because

the implicit derivatives with respect to the natural parameters of the

site approximations and the cavity distributions cancel each other at the

stationary solutions of the algorithm [Seeger, 2005, Opper and Winther,

2005]. This tractable property of EP enables also straightforward compu-

tation of the derivatives with the nested EP approximations proposed in

Publication III.

The LA approximation can also be obtained using a same kind of mes-

sage passing algorithm as EP and VMP. This framework called Laplace

propagation was proposed by [Smola et al., 2004] and it is based on propa-

gating the moments resulting from subsequent local Laplace approxima-

tions of p̂i(θ) ∝ q−i(θ)ti(U
T
i θ,φAi) defined analogously to the EP tilted

distributions (2.20), and updating local site approximations t̃i(UT
i θ) anal-

ogous to (2.11) based on these local approximations. Laplace propagation

can lead to computational savings with models, where the site terms de-

pend only on a small subset of θ such as with typical graphical models

[Smola et al., 2004].

2.7 Improving the Approximate Marginal Distributions

Recently, Rue et al. [2009] proposed various techniques inspired by Tier-

ney and Kadane [1986] to improve upon the previously described LA frame-

work with Gaussian Markov random field models.4 They described com-

putationally efficient ways to determine numerical non-Gaussian (and

non-symmetric) approximations for the marginal distributions of the la-

tent variables (the components of θ) through subsequent (or nested) use of

Laplace’s method, and to approximate integration over the hyperparame-

ters φ using grid-based numerical methods and the LA approximation for

p(θ|D,φ). They were able to obtain very accurate approximations com-

pared with MCMC methods with many practically relevant models that

result, for example, in skew marginal posterior densities.

4Note that Rue et al. [2009] use term "Gaussian approximation" for the local
quadratic approximation at the mode (our LA approximation) and term "Laplace
approximation" for the numerical non-symmetric marginal approximations ob-
tained using the approach of Tierney and Kadane [1986].
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EP-based corrections for the marginal distributions of the latent val-

ues with LGMs have been proposed by Paquet et al. [2009]. Later Cseke

and Heskes [2011] described a unifying interpretation of the LA and EP

based marginal corrections for LGMs, and proposed alternative computa-

tionally cheaper or more accurate approaches for approximating posterior

marginals with both LA and EP. The comparisons of Cseke and Heskes

[2011] show that when the site functions lead to very skewed posterior

distributions, the approximate marginals obtained with EP are clearly

more accurate compared with the mode-based approximations of LA. Fur-

thermore, EP can handle more general site functions that are not differ-

entiable or are defined only at discrete locations of the parameter space

without additional modifications. However, in many practical modeling

problems with large number of observations and log-concave posterior

densities, LA can result in sufficiently accurate inference as illustrated

by the comparisons of Rue et al. [2009].

One potential application of the marginal corrections could be improv-

ing the predictive density estimates in cases, where each of the future

observations depends only on a subset of the latent values denoted here

by θ∗: p(y∗|X∗, φ̂) =
∫
p(y∗|X∗,θ∗, φ̂)q(θ∗|D, φ̂)dθ∗. Potential skewness or

heavier tails of p(θ∗|D, φ̂) could be taken into account in the integration

by using either LA or EP based corrections to determine a numerical ap-

proximation for q(θ∗|D, φ̂). However, this may become computationally

demanding when the predictions have to be computed quickly or when

the subset θ∗ contains many components of θ. In the multi-class GP clas-

sification studied in Publication III, θ∗ has one component for each class

leading to high dimensional non-analytical integrations, which is why an

alternative approach was used to approximate the integration over all

components of θ separately for each test input x∗ and each component of

y∗. This approximation is based on the general LA-based approach suit-

able for approximating expectations of positive functions also proposed

originally by [Tierney and Kadane, 1986]. The comparisons of Publica-

tion III show that these corrections clearly improve the predictive den-

sity estimates over the standard LA approach. However, with EP the

marginal corrections were not found necessary, because the Gaussian EP

estimates of q(θ∗|D, φ̂) resulted in very accurate predictions compared to

MCMC. The same applies also for the EP comparisons of Publication II.

One probable explanation for this is that for integration over θ∗ it suffices

that the marginal approximation captures the relevant probability mass

47



Approximate Bayesian Inference Methods

of the true distribution. The mean and covariance approximation of EP

seems to be better suited for this purpose compared to the mode-based LA

approximation as also discussed by Paquet et al. [2009] and Cseke and

Heskes [2011].
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3. Approximate Inference in Case
Studies

This section summarizes the approximate inference approaches studied

in the three Bayesian modeling applications considered in Publications I–

IV, and connects them to the generic description of various approximate

inference methods presented in Section 2.

3.1 Gaussian Process Regression with a Student-t Likelihood

Publications I and II consider approximate inference in GP regression

with the heavy-tailed Student-t observation model, which enables robust

inference on the unobserved latent function values fi = f(xi) in the pres-

ence of outlying observations [see, e.g., Liu and Rubin, 1995, West, 1984,

Geweke, 1993, Gelman et al., 2004]. An MCMC approach based on hy-

brid Monte Carlo (HMC) sampling was proposed by Neal [1997], and later

Kuss [2006] described a VMF approach that utilizes the scale-mixture

representation of the Student-tmodel analogously to the linear regression

approach described by Tipping and Lawrence [2003] (a short description

of the linear model approach is given also in Section 2.4). Kuss [2006]

also presented various comparisons with other robust observation models

including finite mixtures of Gaussians and the Laplace distribution.

The Student-t observation model is given by

p(yi|fi, ν, σ2) = Γ((ν + 1)/2)

Γ(ν/2)
√
νπσ

(
1 +

(yi − fi)
2

νσ2

)−(ν+1)/2

, (3.1)

where yi is a scalar observation associated with the latent function value

fi = f(xi), ν is the degrees of freedom parameter and σ2 the scale pa-

rameter [Gelman et al., 2004]. The scale σ2 controls the overall variance

of the distribution and ν the thickness of the tails: as ν decreases, the

tails get thicker and a larger proportion of the observations can be clas-

sified as outliers. The latent values f(x) are given a zero-mean GP prior,
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which by definition, implies a that any finite subset of latent variables,

f = [f1, ..., fn]
T, has a multivariate Gaussian distribution:

p(f |X,φK) = N (f |0,K), (3.2)

where K is a covariance matrix whose elements are defined by a covari-

ance function k(x,x′) as Ki,j = k(x,x′|φK) [Rasmussen and Williams,

2006]. The covariance function encodes the modeler’s prior assumptions

on the latent function such as the smoothness and the scale of the vari-

ation, and it can be chosen freely as long as the covariance matrices it

produces are symmetric and positive semi-definite. The properties of the

prior are controlled by adjustable hyperparameters φK . All the experi-

ments are done using a squared-exponential covariance function, which

is infinitely differentiable and stationary meaning that it produces very

smooth functions, which tend to the prior mean at the regions of the input

space with no observations.

The model can be written in the general form defined in Section 2.2 as

follows: The latent values are denoted as θ = f and the hyperparame-

ters as φ = {ν, σ2,φK}. The likelihood sites for i = 1, ..., n are defined as

ti(U
T
i θ,φAi) = p(yi|fi, ν, σ2), where φAi = {ν, σ2}, Ui = ei, and ei is the

i:th unit vector of θ ∈ R
n. Only one prior site is defined for i = n + 1

as tn+1(U
T
i θ,φAi) = N (0,K), where Ui = I and φAi = {φK}. With all

approximate inference methods except MCMC, approximate integration

is done only over θ and type-II MAP estimates are used for the hyper-

parameters φ, which is common framework with GP models [Rasmussen

and Williams, 2006, Nickisch and Rasmussen, 2008].

The challenge with the Student-t model is that the conditional poste-

rior distribution of the latent function p(f |D,φ) values may contain mul-

tiple modes and that the potential outlying observations result in local

increases in the approximate posterior uncertainty on the corresponding

latent function values with the LA and EP approximations. The latter

property can be seen as negative precision contributions in the approx-

imate posterior covariances contrary to the always non-negative contri-

butions with log-concave models such as the logit and probit used in bi-

nary GP-classification [Nickisch and Rasmussen, 2008]. More specifically,

the scalar precision contributions related to outlying observations become

negative, which with LA can be observed as negative values of Wi defined

in (2.55), and with EP as negative site precisions T̃i = τ̃i (2.30). This

requires some additional care when implementing the LA and EP approx-

imations following the standard algorithms described by Rasmussen and
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Williams [2006] and can also result in clearly different behavior between

the approximate methods (for comparisons, see the Examples 1 and 2 in

Publication II).

The LA approximation (2.55) requires a robust and efficient method for

determining the conditional mode θ̂ = f̂ of the latent function values

given the hyperparameters, and a robust way for determining the approx-

imate marginal likelihood (2.56) in case the Hessian −∇2
f log p(f |X,φ) =

W + K, where W = diag(W1, ...,Wn), is close to singular at the local

mode, caused, e.g., by some large negative precision contributions Wi.

Publication I describes a robust implementation of LA using the EM algo-

rithm [see, e.g., Gelman et al., 2004] for determining the conditional mode

and computational modifications based on controlled rank-one Cholesky

updates that enable robust evaluation of the posterior covariance Σ =

(K−1 + W)−1 and the marginal likelihood approximation (2.56) in case

−∇2
f log p(f |X,φ) is poorly conditioned at the mode f̂ . By experimental

comparisons with MCMC and the commonly used VMF approximation

[Tipping and Lawrence, 2003, Kuss, 2006] Publication I also shows that

LA provides a good alternative for VMF in terms of speed and accuracy.

An interesting connection between the EM algorithm and a stabilized

version of Newton’s method with the Student-t model was brought for-

ward by Hannes Nickisch (personal communication). The unconstrained

Newton update step for the mode estimate f̂ can be written as

f̂new = (K−1 +W)−1(Wf̂ +∇f log p(y|f , ν, σ2)|f̂ ), (3.3)

where W = diag(W1, ...,Wn) contains the second order derivatives of the

likelihood terms, Wi = −∇2
fi
log p(yi|fi, ν, σ2)|f̂i , on its diagonal. Newton

updates according to (3.3) can lead to overly large unconstrained steps

and numerically unstable matrix computations, because Wi can become

negative. This can be clarified by writing Wi as a difference between two

non-negative terms as

Wi = E(V −1
i |yi, f̂i, ν, σ2)− 2(v + 1)r2i (r

2
i + νσ2)−2, (3.4)

where ri = yi − f̂i and E(V −1
i |yi, f̂i, ν, σ2) = (ν + 1)(r2i + νσ2)−1 > 0 are

the expected inverse residual variances associated with the scale mixture

representation of the Student-t model (see equations (10)–(12) in Publica-

tion I). If the Newton updates (3.3) are stabilized successively by adding

a non-negative ridge 2(v+1)r2i (r
2
i + νσ2)−2 ≥ 0 to each Wi, the EM update

of equation (13) in Publication I is recovered, which can be seen by noting
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that ∇fi log p(yi|fi, σ2, ν)|f̂i = (ν + 1)ri(r
2
i + νσ2)−1. Therefore the EM up-

dates with the Student-t model are equivalent to Newton updates, where

the potentially negative Wi are constrained to positive values.

At first, the implementation of the standard EP algorithm summarized

in Section 2.3.4 seems straightforward for the Student-t model, because

the prior term (i = n + 1) is already in the Gaussian family conditioned

on φ and each of the Student-t sites depend only on a scalar zi = fi.

The moments of the tilted distributions can be approximated using one-

dimensional quadrature integrations and all the cavity computations in

(2.30) and the site parameter updates (2.36)–(2.37) can be done using

only scalar operations. Integration over the hyperparameters ν and σ2

could also be done using the framework presented in Section 2.3.4, but

this would require three-dimensional quadrature integrations. Integra-

tion over the prior parameters φK would be computationally challenging,

because the prior site depends on all the latent values f and φK nonlin-

early, which would require potentially very high-dimensional numerical

integrations over φK to approximate the required tilted moments (2.25).

The practical stability problems with the non-log-concave Student-t sites

arise from possible negative site precision changes Δτ̃i = δη−1(V̂ −1
i −V −1

i )

resulting from the EP updates (2.36). Large negative precision changes

Δτ̃i correspond to local increases of the posterior uncertainty (V̂i > Vi) and

these are often related to multimodalities in the tilted distributions: For

example, if the i:th observation is not clearly a regular observation nor

an outlier, the tilted distribution can have two modes, one related to yi

and another related to the cavity q−i(fi). After either a sequential or a

parallel posterior update the negative changes Δτ̃i may result in negative

cavity variances in other sites, if the associated latent values are a priori

correlated with the i:th site.

Publication II uses simple regression examples to illustrate these sta-

bility problems together with related convergence problems, which can be

seen as nondecreasing oscillations of the site parameters during the iter-

ations. Publication II also explains how damping and fractional updates

can alleviate these problems, and describes a robust EP implementation

based on parallel EP updates [van Gerven et al., 2009] that relies on prov-

ably convergent double-loop iterations to ensure convergence in difficult

cases. In addition, several practical modifications are described to im-

prove the robustness and to facilitate the computations with the parallel

EP updates and the double-loop iterations. Finally the predictive perfor-
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mance of EP is assessed by comparisons with VMF [Kuss, 2006], LVB

[Gibbs and MacKay, 2000, Nickisch and Rasmussen, 2008], and MCMC

[Neal, 1997, Gelman et al., 2004, Vanhatalo and Vehtari, 2007] using sev-

eral real-world data sets. It is shown that compared with VMF, LVB, and

LA, EP provides more accurate predictions in terms of mean log predictive

densities with similar computational cost.

The double-loop formulation of Publication II can be obtained from the

more general objective (2.48) by defining the sufficient statistics as gi(θ) =

[f1,−1
2f

2
1 , ..., fn,−1

2 , f
2
n]

T and the site parameters as λ̃i = ei⊗ [λ̃i,1, λ̃i,1]
T for

the likelihood sites i = 1, ..., n. The Gaussian prior site p(θ) = tn+1(θ) =

N (f |0,K) can be incorporated in the approximation q(θ) exactly by defin-

ing q(θ) = Z(λ)−1p(θ) exp(λTg(θ)), where Z(λ) =
∫
p(θ) exp(λTg(θ))dθ.

The prior sites will be included implicitly in the tilted distributions p̂i(θ),

because the surrogate distribution qs(θ) =
∏n

i=1 qs(fi) is kept consistent

with the marginal distributions of q(θ) at the outer-loop updates.

3.2 Gaussian Process Classification with the Multinomial Probit

Publication III considers approximate inference in multi-class GP clas-

sification, which has been studied extensively using both the softmax 1

and the multinomial probit models. MCMC approaches have been de-

scribed using both the softmax [Neal, 1998] and the multinomial pro-

bit models [Girolami and Rogers, 2006]. With the analytic approxima-

tion methods considered in Section 2, the softmax model has been used

only with LA [Williams and Barber, 1998] and LVB [Chai, 2012], and the

multinomial probit with EP [Seeger and Jordan, 2004, Seeger et al., 2006,

Girolami and Zhong, 2007]. Alternative EP approaches based on thresh-

old functions have been described by Kim and Ghahramani [2006] and

Hernández-Lobato et al. [2011].

The main focus of Publication III is on accurate and computationally

efficient EP implementation for the multinomial probit model for which

the likelihood terms are defined as

p(yi|fi) =
∫

N (ui|0, 1)
c∏

j=1,j �=yi

Φ(ui + fyii − f ji )dui, (3.5)

where Φ(x) denotes the cumulative density function of the standard nor-

mal distribution, fi = [f1i , ..., f
c
i ]

T contains the latent function values asso-

ciated with the i:th observation yi ∈ {1, 2, ...c}, which encodes the correct

1The softmax model is also known as the multinomial logistic model.
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class label for input xi. The latent values related to all the observations

are denoted as f = [f11 , ..., f
1
n, f

2
1 , ..., f

2
n, ..., f

c
1 , ..., f

c
n]

T, and they are given a

zero-mean GP prior:

p(f |X,φK) = N (f |0,K), (3.6)

where K = blkdiag(K1, ...,Kc) is a block-diagonal covariance matrix formed

from the prior covariances Kj assigned to the latent values associated

with each of the classes j = 1, ..., c. A squared-exponential covariance

function with a common set of hyperparameters φK is used for all Kj ,

j = 1, ..., c, similarly to the LA approach described by Rasmussen and

Williams [2006].

The model can be written in the general form defined in Section 2.2

as follows: The latent values are denoted as θ = f and the hyperpa-

rameters as φ = φK . The likelihood sites for i = 1, ..., n are defined as

ti(U
T
i θ,φAi) = p(yi|fi), where φAi = ∅, and the transformation is given

by Ui = Ic ⊗ ei, where ei is the i:th unit vector with n elements, and Ic

a c× c identity matrix (Ui simply collects all the latent values associated

with observation i from f ). Only one prior site is defined for i = n + 1

as tn+1(U
T
i θ,φAi) = N (0,K), where Ui = I and φAi = {φK}. With all

approximate inference methods except MCMC, approximate integration

is done only over θ and type-II MAP estimates are used for the hyperpa-

rameters φ according to the commonly used inference framework with GP

models [Rasmussen and Williams, 2006, Nickisch and Rasmussen, 2008].

The challenge with the multinomial probit model is that each likelihood

term (3.5) and hence also each tilted distribution (2.20), depend on mul-

tiple latent values fi, which is why a straightforward EP implementation

following Section 2.3.4 requires c-dimensional numerical integrals to ap-

proximate the required tilted moments (2.25). In addition, a straight-

forward adaptation of the algorithm of Section 2.3.4, would result in c-

dimensional site precision structures T̃i (2.36) and a nc × nc posterior

covariance Σ. This would become computationally prohibitive with large

data set and many target classes. One possibility to facilitate the compu-

tations is to use a posterior approximation that can factored between the

latent values related to the different classes, which requires at least one

two-dimensional quadrature and 2c− 1 one-dimensional quadratures per

site update and results in a similar block-diagonal covariance matrix as

the prior covariance K defined in (3.6) [Seeger et al., 2006, Girolami and

Zhong, 2007].

Publication III proposes an alternative nested EP approach that does
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not require quadratures, result in a similar computationally tractable

posterior representation as the LA approach [Williams and Barber, 1998,

Rasmussen and Williams, 2006], and represent accurately all between

class posterior correlations between the latent values. The approach is

based on utilizing the special structure of the multinomial probit likeli-

hood terms (3.5) as follows. Each probit term in (3.5) depends on a lin-

ear combination of the latent values fi and the auxiliary variable ui, de-

noted from now on with wT
i b̃i,j = ui + fyii − f ji , where wi = [fTi , ui]

T and

the fixed transformation can be written as b̃i,j = [(eyi − ej)
T , 1]T using

c-dimensional unit vectors eyi and ej . Multiplying the cavity distributions

q−i(fi) with the site (3.5) and removing the marginalization over ui results

in the following augmented tilted distribution:

p̂(wi) = Ẑ−1
i N (wi|μw,Σw)

c∏
j=1,j �=yi

Φ(wT
i b̃i,j), (3.7)

where μw = [mT
−i, 0]

T , Σw = blkdiag(V−i, 1), and V−i together with m−i

are defined in (2.30). The marginal mean and covariance of fi with respect

to p̂i(wi) correspond to the required tilted moments (2.25) with respect to

p̂i(fi), and they can be approximated efficiently using an inner EP algo-

rithm following Section 2.3.4.

Because the probit terms of (3.7) depend only on c − 1 scalar random

variables zi,j = wT
i b̃i,j , each inner EP approximation can be represented

using only c− 1 scalar site precision parameters and c− 1 scalar site loca-

tion parameters according to the result (2.29). Publication III shows that

by writing the expression of the outer EP site precision T̃i using the scalar

inner EP parameters, a similar posterior precision structure is obtained

as with LA using the softmax model: T̃i = diag(πi)−πi(1
T
cπi)

−1πT
i , which

enables posterior computations scaling as O(cn3) (see, e.g, the implemen-

tation described by Rasmussen and Williams [2006]).

Because running the inner EP approximations until convergence for

each of the n outer EP site approximations can become computationally

demanding with large c, Publication III introduces also an incremental

update scheme where damped updates are done on the scalar site param-

eters of the inner EP approximations only once at each outer EP iteration.

By experimental comparisons with the non-incremental update scheme,

it is demonstrated that the incremental scheme leads to convergence in

comparable number of outer EP iterations. The experiments of Publica-

tion III show that nested EP produces more accurate approximations for

the marginal distributions of the latent values compared with LA and
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VMF, and that with fixed hyperparameters the approximate marginals

are also very accurate compared with MCMC. Predictive comparisons be-

tween LA, VMF, EP, and MCMC using several real-world data sets show

that EP is the most consistent method with respect MCMC in terms of

predictive densities, but the differences are small if only classification ac-

curacy is concerned.

3.3 Neural Network Regression with Sparsity-promoting Priors

Publication IV considers approximate EP inference with multi-layer per-

ceptron (MLP) networks with sparsity-promoting hierarchial priors on the

input weights. A similar inference problem was studied earlier by Mackay

[1995] who described an automatic relevance determination (ARD) ap-

proach for Neural Networks (NNs), where individual relevance parame-

ters are assigned to the weights associated with the different input fea-

tures. Approximate inference on the network weights conditioned on the

hyperparameters including the noise level and the feature relevance pa-

rameters, was performed using LA, and type-II MAP estimates of the

hyperparameters were determined based on the approximate marginal

likelihood (2.56). Another ARD approach was proposed by Neal [1996],

where approximate MCMC integration is performed over all the model

parameters including both the weights and the relevance hyperparame-

ters. Williams [1995] described an alternative sparsity-favoring approach

based on Laplace priors and LA approximation for the weights. Simi-

larly to the classical Lasso regularization with linear models [Tibshirani,

1994], the mode-based LA approximation can produce truly sparse weight

estimates without separate relevance hyperparameters.

As already discussed in Section 1, the main motivation for Publica-

tion IV is to study whether computationally efficient nonlinear predic-

tors with flexible input priors could be constructed by adapting the ex-

isting EP methodology presented for sparse linear models [Seeger, 2008,

Hernández-Lobato et al., 2008, van Gerven et al., 2009] to finite-parametric

NNs with a linear input-layer. In contrast with the GP models stud-

ied in Sections 3.1 and 3.2, for which the posterior computations scale

as O(n3) and approximate integration over the hyperparameters requires

either MCMC approximations or multidimensional grid-based methods

[Rue et al., 2009, Cseke and Heskes, 2011], the NN approach could enable

posterior computations scaling linearly in n and efficient EP integration
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over the weights with sparsity-promoting priors.

Publication IV considers two-layer NNs where the unknown function

value fi = f(xi) related to a d-dimensional input vector xi is modeled as

f(xi) =

K∑
k=1

vkg(w
T
kxi) + v0 = vTg(hi), (3.8)

where g(x) is a nonlinear activation function, K the number of hidden

units, and v0 the output bias. Vector wk = [wk,1, wk,2, ..., wk,d]
T contains

the input layer weights related to hidden unit k and vk is the correspond-

ing output layer weight. The right-hand side of (3.8) is obtained by de-

noting the input-layer activations as hi = h(xi) = x̃T
i w, where w =

[wT
1 , ...,w

T
K ]T collects all the input layer weights, x̃i = IK ⊗ xi, and g(hi)

applies the nonlinear transformation g(x) on each component of hi accord-

ing to g(hi) = [g(hi,1), g(hi,2), ..., g(hi,K), 1]T (the last element corresponds

to the output bias v0). Publication IV focuses on regression problems

with scalar observations yi distributed according to a Gaussian observa-

tion model p(yi|fi, σ2) = N (yi|fi, σ2), where σ2 is the noise variance. A

Gaussian hyperprior is assigned to θ = log(σ2): p(θ) = N (μφ,0, σ
2
φ,0), which

corresponds to a log-normal prior for σ2.

To construct flexible sparsity-promoting prior framework, hierarchical

priors are assigned to the input layer weights, p(wj |φlj ), where wj is the

j:th element of w, and φlj is a joint hyperparameter controlling the prior

variance of all input weights belonging to group lj ∈ {1, ..., L} (Index vari-

able lj defines the group in which the weight wj belongs to). Gaussian

hyperpriors are chosen for the hierarchical scale parameters: p(φl) =

N (μφ,0, σ
2
φ,0), which requires that the prior variances of wj are modeled

using a suitable transform such as Var(wj |φlj ) = exp(φl,j). The approach

enables flexible definition of weight priors with different sparseness prop-

erties such as independent Laplace priors with a common scale parameter

or Gaussian automatic relevance determination (ARD) priors with differ-

ent relevance parameters for all inputs as described in Publication IV.

To prevent potential unidentifiability problems resulting from symmetric

activations functions g(x) = −g(−x), the output weights are constrained

to positive values by assigning left-truncated heavy-tailed priors to them:

p(vk|σ2v,0) = 2tν(vk|0, σ2v,0), where vk ≥ 0 for k = 1, ...,K, and tν(vk|0, σ2v,0)
denotes a Student-t distribution with degrees of freedom ν, mean zero,

and scale parameter σ2v,0. A zero-mean Gaussian prior with fixed variance

is assigned to the output bias v0.

The model can be written in the general form defined in Section 2.2 as
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follows: The network weights are denoted with θ = [wT,vT] and the hy-

perparameters with φ = {θ, φ1, ..., φL}. The likelihood sites for i = 1, ..., n

are defined as ti(UT
i θ,φAi) = p(yi|fi, σ2), where φAi = σ2, and the trans-

formation is given by Ui = blkdiag(x̃i, IK+1), where x̃i = IK ⊗ xi, and

IK+1 is a K + 1 × K + 1 identity matrix. The transformed random vari-

ables zi associated with the i:th likelihood site can now be written as

zi = UT
i θ = [hT

i ,v
T]T. The prior sites related to the input weights w are

defined for j = 1, ...,Kd and i = n+ j as ti(UT
i θ,φAi) = p(wj |φlj ), where Ui

picks the j:th component of θ and φAi = {φlj}. Similarly, the prior sites re-

lated to the output weights are defined for k = 0, ...,K and i = n+Kd+k+1

as ti(UT
i θ,φAi) = p(vk), where Ui picks the (Kd + k + 1):th component of

θ and φAi = ∅. Compared with the GP models considered in Publications

I–III, a key technical difference in the NN approach of Publication IV is

that EP approximations are formed, in addition to the non-Gaussian like-

lihood terms, also for the prior terms of the network weights. In addition,

approximate EP integration is done simultaneously over all the hyperpa-

rameters φ = {θ, φ1, ..., φL} using a factorized Gaussian approximation for

each component of φ.

The challenge in the EP implementation is to construct a sufficiently

accurate and computationally efficient Gaussian approximations for the

likelihood terms that depend in non-linear manner from the (2K + 1)-

dimensional transformed random variables zi. Previously, such Gaus-

sian approximations for NN models have been formed using the extended

Kalman filter (EKF) [de Freitas, 1999] and the unscented Kalman fil-

ter (UKF) [Wan and van der Merwe, 2000]. Alternative mean field ap-

proaches possessing similar characteristic with EP have been proposed by

Opper and Winther [1996] and Winther [2001]. Similarly to Publication

III, an EP algorithm for approximating the likelihood sites requires deter-

mining the marginal means and covariances of zi with respect to the mul-

tivariate tilted distributions given by p̂i(zi, θ) ∝ p(yi|fi, θ)ηq−i(zi)q−i(θ).

Because determining these moments requires (2K + 2)-dimensional in-

tegrations, which may quickly become infeasible as K increases, Publi-

cation IV proposes a computationally more convenient posterior approxi-

mation that can be factored between the output weights v and the input

weight wk according to q(θ) = q(v)
∏K

k=1 q(wk). This approximation en-

ables efficient computations of E(fi), Cov(fi), and Cov(v, fi) with respect

to q−i(θ) = q−i(v)
∏K

k=1 q−i(wk), which are subsequently used to approxi-

mate the tilted moments of v in a similar way as is done in the approxi-
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mate linear filtering paradigm of the UKF filter [Wan and van der Merwe,

2000]. The tilted moments of the hidden unit activations hi,k are esti-

mated by assuming fi =
∑K

k=1 vkg(hi,k) + v0 approximately normally dis-

tributed with respect to the cavity distributions q−i(v,w) conditioned on

one of the components of hi at a time. A similar assumption was used by

Ribeiro and Opper [2011] to form factorizing EP approximation for linear

perceptrons.

Once reliable likelihood term approximations are obtained, forming EP

approximations for the prior sites is rather straightforward and it can be

done in a similarly way as with the existing EP approaches for sparse lin-

ear models. One practical requirement for efficient computations is that

the conditional means E(wj |φlj ) and variances Var(wj |φlj ) with respect to

the tilted distributions associated with the hierarchical prior sites can

be computed analytically (otherwise two-dimensional quadratures are re-

quired).

Because of the previously described approximations, the resulting EP

approach of Publication IV requires only one-dimensional numerical quadra-

tures for determining the moments of the tilted distributions and results

in a computationally efficient algorithm, whose complexity scales linearly

with respect to both n and K. The complexity of the algorithm scales sim-

ilarly to an ensemble of independent sparse linear models and also the

resulting approximate predictive model can be interpreted as a nonlinear

combination of independent sparse linear models associated with each

hidden unit. Experiments with simulated regression problems demon-

strate that the proposed approach enables robust integration over the pos-

terior uncertainty of the input weights and the hierarchical scale parame-

ters, and that the method can avoid potential overfitting problems related

to point-estimate based ARD frameworks. Furthermore, the approach can

learn strongly nonlinear input effects in multivariate regression problems

and approximate the associated feature relevances correctly. However,

in predictive comparisons using real-world data sets, the EP approach

performs slightly worse compared with two alternative models with ARD

priors including a NN inferred using MCMC [Neal, 1996], and an infinite

GP network based on type-II MAP estimates of the relevance parameters

[Rasmussen and Williams, 2006]. This behavior may be partly explained

by the simple zero-initializations of the input weights used in the experi-

ments, because good initializations of the weight values are known to be

important in training NN models [see, e.g., Erhan et al., 2010].
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4. Discussion

The introductory part of this thesis has reviewed various analytical meth-

ods for approximate Bayesian inference assuming a general and flexible

predictive modeling framework. Both the theoretical properties of the

methods and the practical accuracy of the resulting approximations have

been discussed using the existing theoretical literature and the experi-

mental results of Publications I–IV together with references to the exper-

iments done by other authors. The main focus has been on describing the

properties of EP and connecting the existing work on the method with the

novel EP implementations proposed for approximate inference in the case

studies considered in Publication II–IV.

One of the main arguments against the practical feasibility of the stan-

dard EP is the lack of formal convergence proof. The experiments of Pub-

lication II with the parallel-EP implementation that relies on convergent

double-loop iterations in difficult cases together with the existing work

on convergent double-loop algorithms [Minka, 2001c, Heskes and Zoeter,

2002, Opper and Winther, 2005, Seeger and Nickisch, 2011, Hernández-

Lobato and Hernández-Lobato, 2011] show that by careful implementa-

tion accurate predictions can be obtained with EP also in multimodal in-

ference problems with non-log-concave site functions. As further confir-

mation of the practical accuracy and efficiency of EP, it has recently been

adopted in several machine learning toolboxes [Rasmussen and Nickisch,

2010, Nickisch, 2012, Minka et al., 2012, Vanhatalo et al., 2013]. Com-

pared with LA, VMF, and LVB, EP achieves better predictive performance

in several real-world data sets in the robust regression application studied

in Publications I and II. Furthermore, EP is also able to quantify better

the increased uncertainty on the latent function f(x) in multimodal cases

as demonstrated by simulated regression examples. However, in such

cases the EP approximation can result in significant false uncertainty on
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f(x) in the input-space regions between and opposite sides of the modes

in contrast to the possible false certainty provided by the LA or VB ap-

proximations that summarize only one of the modes depending on the

initializations of the algorithms.

One of the main challenges in practical EP implementations is that de-

termining the moments of the tilted distributions (2.20) may not be com-

putationally feasible when the site terms depend on high-dimensional

transformed variables zi and/or on a large number of hyperparameters

φAi . The commonly encountered multi-class classification is a good exam-

ple of such inference problem. The nested EP approach proposed in Publi-

cation III is an appealing alternative for the existing approaches that rely

on either multi-dimensional numerical quadratures or factored approx-

imations to facilitate the inference [Seeger and Jordan, 2004, Girolami

and Zhong, 2007]. The nested EP relies on an augmented integral rep-

resentation of the multinomial probit model in a similar spirit as many

VMF approximations [see, e.g., Tipping and Lawrence, 2003, Girolami

and Rogers, 2006], but it can represent accurately all the posterior cor-

relations between the latent variables in contrast with the factored VB

approximations. Therefore, the same concept could be expanded also for

other models where the site terms can be reformulated as integral rep-

resentations of simple terms that depend only on one-dimensional ran-

dom variables resulting from linear transformations of the model param-

eters. Furthermore, the multi-class EP approach of Publication III could

be readily extended for linear models and the coefficients associated with

the different classes could be coupled using the hierarchical prior frame-

work described in Publication IV.

An appealing property of the GP models studied in Publications I–III

is that they enable convenient integration over the latent function space

with priors that correspond to infinitely complex models. For example, the

squared exponential and the neural network covariance functions can be

derived from a radial basis network and a multi-layer perceptron network,

respectively, at the limit of infinitely many hidden units with Gaussian

priors on the weights [Rasmussen and Williams, 2006]. Unfortunately,

this flexibility does not come without a price. As discussed earlier, the

inherent complexity of the posterior computations scale cubically with re-

spect to the number of observations n. In addition, because of the complex

functional dependencies between the latent values and the hyperparame-

ters through the GP prior, approximate integration over the hyperparam-
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eters can become challenging in problems with a large number of input

features and feature-specific relevance parameters. On the other hand,

with finite-parametric MLP networks studied in Publication IV, approx-

imate inference on the likelihood sites using, e.g., EP or LA scales lin-

early with respect to n, and once a Gaussian likelihood approximation

is determined, inference on the coefficient priors is straightforward with

the existing methods proposed for linear models [see, e.g., Seeger, 2008,

Hernández-Lobato et al., 2008, van Gerven et al., 2010]. Although the GP

models achieved slightly better predictive accuracy compared with the

EP-based finite networks in the experiments with real-world data, the EP

approach performed relatively well in a very challenging estimation prob-

lem, if one keeps in mind the good results in the simulated experiments

and the fact that not much emphasis was put on more elaborate initializa-

tion schemes, which are known to be very beneficial [see, e.g., Erhan et al.,

2010]. Therefore the NN approach described in Publication IV presents

an interesting alternative for the recently popular GP models, because the

NN approach can be interpreted as an approximate framework that forms

flexible nonlinear predictors from multiple sparse linear models and the

approach can be extended to general activation functions or fixed inter-

action terms between the linear input layer models. The NN framework

could be particularly well suited for problems where interpretable models

with relative simple nonlinear latent functional dependencies and flexible

hierarchical input priors are favored.

As an additional minor adaption of the methods described in Publica-

tion IV, the approximate EP integration over the hyperparameters asso-

ciated with the likelihood sites could be readily extended for GP models,

where the likelihood sites depend only on one or two hyperparameters φ

and the tilted moment integrations over the latent values fi conditioned

φ can be done analytically.1 Another possible extension of the NN frame-

work are multi-layered (deep) models, which could be approximated in

the same fashion by approximating the hidden unit activations in each

layer independent of each other. In such cases, more elaborate initializa-

tion schemes such as the ones reviewed by Erhan et al. [2010] become

probably essential.

1Similar ideas have already been proposed for linear models by Hernández-
Lobato et al. [2008].
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