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Preface

This thesis represents the end of a long and winding project that started over

ten years ago, in 2002, when I began my research in optical coherence the-

ory at the Optics and Molecular Materials laboratory at Helsinki University

of Technology (HUT). Before this I had been concentrating on monochromatic

electromagnetic fields, which I studied in the context of diffractive optics and

optical and electromagnetic scattering theory, and which provided the topics

of my Master’s thesis and my Licentiate’s thesis, respectively. I stayed at the

Optics and Molecular Materials laboratory till the end of the year 2005. From

the beginning of the year 2006, I worked as a lecturer in the Biophysics lab-

oratory at the University of Turku (UTU), where I was able to continue my

research into second-order coherence theory, but where the distance to my ad-

visors caused me to take on research goals, which proved to be extremely hard

to achieve — so hard, in fact, that this is work still in progress, although promis-

ing results have at last emerged. Still I endured with those goals also after my

lectureship at UTU in Turku ended and my employment no longer provided me
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1. Introduction

Optics has been studied systematically at least from antiquity [1, 2], and its

basic principles are well known, but new insights and applications of optics are

still emerging to this day§ [3, 4]. Specifically, with nanoscale fabrication tech-

nology maturing, the field of nanophotonics has been rapidly developing and,

in particular, near-field optical effects have found important applications for

example in observation and manipulation of microscopic or nanoscopic struc-

tures [5, 6]. The new field of electromagnetic or optical metamaterials [7, 8],

including invisibility cloaks [9,10], also bears mentioning. Electromagnetic the-

ory is also important for the modeling and development of applications where

heat (and light) radiation, both in the near and the far field, needs to be con-

trolled [11], such as in the capture of solar radiation for energy and in the cool-

ing of microchips. It is furthermore central in the understanding of wireless

transmission of signals, and more recently of electric energy, not to mention

fiber optics technology and communications [12], on which the internet as we

know it is based. Optical theory of course also has a vital role to play in the

development of 3D image transmission technology (for both entertainment and

scientific purposes), which appears to finally mature beyond static holograms.

Although the 20th century saw electromagnetic theory evolve into quantum

optics [13], and finally into quantum electrodynamics [14], with applications

such as the laser as a consequence [15], there still is a place for, and much to

understand about classical optics and electrodynamics, whose foundations lie

in the Maxwell equations. Indeed, whereas quantum electrodynamics is useful

for representing the interactions between fundamental particles, and quantum

optics can be used to describe the detailed interactions between electromag-

§Of the last fifteen Nobel Prizes in Physics, six have been fully or partly awarded
to research done in optics, with the list of recipients being as follows: 1997 (Chu,
Cohen-Tannoudji, and Phillips), 2000 (Alferov and Kroemer), 2001 (Cornell, Ketterle,
and Wieman), 2005 (Glauber, Hall, and Hänsch), 2009 (Kao), and 2012 (Haroche and
Wineland).

1



Introduction

netic fields and matter at the molecular level, these theories are usually too

involved to be useful when macroscopic applications are considered. Neverthe-

less, there is an intimate relationship between quantum optics and advanced

classical electromagnetic theory [16]. In particular, rigorous electromagnetic

theory finds its simplest form when it is applied to monochromatic radiation,

which in nature is well approximated only by laser light, a quantum optics phe-

nomenon. At the other end of the spectrum of complexity lies natural or thermal

light, whose behavior could be explained by Planck only when he introduced the

idea of quantized energy levels [17], a concept which was pivotal in the devel-

opment of quantum mechanics [18]. For a classically rigorous electromagnetic

treatment of natural light, or chaotic radiation in general, the field of coher-

ence theory emerged in the latter part of the 19th century [19], and has been

evolving ever since [20, 21]. Interestingly, the behavior of laser light caused

ideas from classical coherence theory to be applied in quantum optics, whereby

the quantum theory of optical coherence [22–24] was born, mainly through the

efforts of Glauber [25,26].

In this thesis we will be concerned with classical second-order coherence the-

ory. Classical coherence theory, which is based on Maxwell’s equations, is a

statistical description of electromagnetic fields, much like thermodynamics is

a statistical description of molecular dynamics. The reasons for a stochastic

treatment are the same in both cases, that is, the detailed behavior of the

fields respective molecules is unavailable or too complicated to analyze. For

electromagnetic fields it is their rapid fluctuations in time, or phases, that typi-

cally cannot be determined. Second-order classical coherence theory studies the

correlations between electromagnetic field amplitude at pairs of (space–time,

space–frequency, etc.) points. Because electromagnetic fields and light are clas-

sically measured in terms of their intensity, which is a quadratic property of the

field, second-order coherence theory provides the theoretical framework needed

for a complete modeling and analysis of electromagnetic fields in terms of in-

tensity measurements. When the correlations between more than two field

amplitudes are considered, the order of the coherence theory increases accord-

ingly. Hence there is actually a hierarchy of classical coherence theories, with

higher order theories encompassing and extending the lower order theories.

Although classical coherence theories of higher orders than second find uses

when analyzing for example nonlinear optical systems [27], the higher order

correlation properties of electromagnetic fields are most conveniently studied

in terms of quantum coherence theory. In quantum coherence theory the corre-

lations that are considered are those between photon counts [16]. Since a sin-
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gle photon count can directly be related to the intensity of the electromagnetic

field, which classically is a second-order property, it follows that the nomen-

clatures in classical coherence theory and quantum coherence theory differ by

a factor of two. Hence classical second-order coherence theory corresponds to

quantum first-order coherence theory, classical fourth-order coherence theory is

equivalent to quantum second-order coherence theory, and so on. A well-known

application of quantum second-order coherence theory, or intensity interferom-

etry, is provided by the ground-breaking experiment in stellar interferometry

conducted by Hanbury Brown and Twiss in 1956 [28]. In this experiment it

was shown that stellar diameters could be determined by considering the cor-

relations between the signals of two photodetectors onto which the light of a

star (Sirius) was reflected by mirrors placed some distance apart. Because at-

mospheric conditions affect the intensity of light much less than the phase of

light, the Hanbury Brown–Twiss interferometer is more accurate than Michel-

son’s stellar interferometer [29], which has a similar design, but is based on

amplitude correlations. The Michelson stellar interferometer constitutes one

of the first applications of electromagnetic (classical second-order) coherence

theory.

Classical second-order coherence theory was developed mainly in terms of

scalar fields during the last part of the 19th century and the first part of the

20th century. This development was mostly application driven, where the ap-

plications included for example Michelson’s stellar interferometer discussed

above, studying the illumination in microscopes, and modeling the radiation

from blackbody or thermal sources. The latter part of the 20th century saw

an amalgamation of previously somewhat separate treatments into a complete

theory of second-order coherence for optical fields as mediated primarily by

Wolf [30]. Since then second-order coherence theory has been extended to in-

clude electromagnetic fields and hence partially polarized fields, which were,

however, already much earlier recognized to be well described by the same sta-

tistical methods as partially coherent fields. The theoretical focus of second-

order coherence theory has shifted from a time-dependent description of elec-

tromagnetic fields to an angular-frequency description of the fields, and the

theoretical framework is still continually explored and extended, with numer-

ous new applications of the theory having emerged in recent years. Specifically,

second-order coherence theory has been successfully applied to examine focused

light fields [31] and their effects on atoms and molecules, to study the transport

of optical coherence properties in plasmonic structures [32], to analyze and de-

sign ghost imaging apparatuses [33], and to extend radiometric theory from
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a scalar realm to electromagnetic fields [34–36], in particular with respect to

blackbody radiation.

The motivations for the choice of subject matters studied in this thesis can

roughly be divided into three categories: 1) to study blackbody radiation in the

electromagnetic framework, in part in terms of the universal-form cavity field,

and in part by modeling the field radiated by a blackbody in an electromagnet-

ically rigorous way, 2) to extend the reported universality results concerning

fields sourced by stochastically homogeneous and isotropic sources from scalar

fields to electromagnetic fields, and to study how losses affect the universal-

ity results (in the scalar case), and 3) to gain a better theoretical insight into

the so-called effective degree of coherence and its reported invariance to certain

transformations. In the chapters that follow we give more detailed backgrounds

and historical accounts of these topics.

Our main results in the subjects covered are as follows. For blackbody ra-

diation we present the first electromagnetic coherent-mode expansion of the

vector-valued cavity field, and its scalar analog, in a three-dimensional (spher-

ical) volume, and we have shown that previous results concerning the field at

the cavity aperture lacks an important term. We have extended the universality

results concerning fields sourced by stochastically homogeneous and isotropic

sources to electromagnetic fields, but at the same time we have also shown

that calling such results universal is somewhat questionable as the universal

character vanishes in the presence of even the tiniest amount of loss or if the

source region is finite, which of course is the case in any actual system. Our

results furthermore disprove the commonly held belief that the field coherence

length cannot be shorter than that of blackbody radiation, or about half a (vac-

uum) wavelength. In fact, we present a construction, which can be used to ob-

tain fields with arbitrarily short coherence lengths inside their source regions.

Finally, we have proven that the effective degree of coherence is invariant to

so-called scaled unitary mappings, which in practice means that the effective

degree of coherence of an electromagnetic field has the same value when com-

puted from any reasonable representation of the field. We have also shown that

of all functionals of the field with this property, the effective degree of coherence

is the only one which is additive, that is, which can be constructed as the sum

of its parts.

The presentation in this thesis is organized so that initially we review the

theoretical foundations of electromagnetic theory and second-order coherence

theory to the extent used in our papers. This is done in Chaps. 2 and 3. After

that we present the results of our researches in the following three chapters,
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so that in Chap. 4 we consider the blackbody radiation at an aperture in a

blackbody cavity and in the far field (the cavity field is already considered in

Chap. 3), in Chap. 5 we discuss the universality results, and in Chap. 6 we delve

into the mathematical theory of the effective degree-of-coherence functional.

Finally, in Chap. 7 we summarize the main conclusions.

5



Introduction

6



2. Electromagnetic theory

In this chapter we introduce the mathematical framework that accurately de-

scribes the physics of classical non-relativistic macroscopic electromagnetic

fields. This framework was essentially introduced by James Clerk Maxwell [37–

41] (Maxwell’s papers are reproduced in Ref. 42), who based it on the works of

among others Ampère, Felici, Faraday, Helmholtz, Monsotti, and Thomson, and

supplemented it by what is now known as the electric displacement. This ad-

dition allowed Maxwell to conclude that electric and magnetic fields not only

couple, but can actually be interpreted as two sides of the same thing, the elec-

tromagnetic field, which he showed behaves like a wave. He also proved that in

vacuum the electromagnetic field propagates with the speed (ε0μ0)−1/2 (modern

notation), where ε0 and μ0 are the electric permittivity and the magnetic per-

meability of vacuum, respectively. This result, together with the then known

value (ε0μ0)−1/2 = 310,740,000m/s obtained by Weber and Kohlrausch in 1855,

and the then known values for the speed of light, 314,858,000m/s (Fizeau,

1848), 298,000,000m/s (Foucault, 1850) and 308,000,000m/s (astronomical ob-

servations), led Maxwell to draw the conclusion that light is an electromagnetic

field [39]. The experiments commenced by Hertz in 1886 proved this assertion

and the existence of electromagnetic waves that travel at the speed of light [43].

Although the field equations presented in the following describe the same

physics as the equations in Maxwell’s seminal paper [41], they are nowadays

given in a much more streamlined form. The Maxwell equations first appeared

in print in such a form around the middle of the 1880s as presented by Oliver

Heaviside in terms of the grad, curl and div operators he introduced, but it

seems that J. Willard Gibbs, who, in turn, introduced the symbols · and ×,

had privately pursued a similar approach already a few years earlier [44]. The

electromagnetic field equations, together with concepts from statistics, form

the foundations of the electromagnetic second-order coherence theory, which is

presented in the next chapter.
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2.1 Maxwell’s equations and time-harmonic fields

The behavior of the electromagnetic field is in classical physics completely de-

scribed by the macroscopic Maxwell equations. In Gaussian or CGS§ units

these equations are given by

∇×H(r, t)− 1
c
∂tD(r, t)= 4π

c
J′

e(r, t), (2.1)

∇×E(r, t)+ 1
c
∂tB(r, t)=−4π

c
J′

h(r, t), (2.2)

∇·D(r, t)= 4πρe(r, t), (2.3)

∇·B(r, t)= 4πρh(r, t), (2.4)

where E denotes the electric field, D denotes the electric displacement, H de-

notes the magnetic field, B denotes the magnetic induction, J′
e denotes the (to-

tal) electric current density, ρe denotes the (total) electric charge density, J′
h

denotes the (total) magnetic current density, and ρh denotes the (total) mag-

netic charge density. In addition r is the spatial position vector, t denotes time,

and c is the speed of light in vacuum. Here the term ‘total’ in reference to

charges and currents means the sum of primary (collections and movements of

charges which are not responses to external forces) and secondary (collections

and movements of charges in response to external forces) charges and currents,

respectively.

The description of how the fields D and B, and the total current densities J′
e

and J′
h are connected to the fields E and H, and the primary current densities

Je and Jh is provided by the so-called constitutive relations. In their most

general form these relations can be written as

D(r, t)=E(r, t)+χe[E,H](r, t), (2.5)

B(r, t)=H(r, t)+χh[E,H](r, t), (2.6)

J′
e(r, t)=Je(r, t)+σe[E,H](r, t), (2.7)

J′
h(r, t)=Jh(r, t)+σh[E,H](r, t), (2.8)

where χe,h are susceptibility operators and σe,h are conductivity operators.

These operators are nonlinear in general, and causality implies that their value

at a space–time point (r, t) can depend on the values of E(r′, t′) and H(r′, t′) at

only those space–time points (r′, t′) that satisfy
∣∣r−r′

∣∣≤ c(t− t′).

It is convenient to represent the fields in Maxwell’s equations, here denoted

collectively by F(r, t), in terms of their complex analytic signal [16, 45] Fourier

§Although present convention implies that SI units should be used, we apply Gaus-
sian units since the equations for the electric and magnetic fields are then completely
symmetric in form, making the mathematical treatment more transparent.
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transforms F(r,ω) as

F(r, t)= 2Re
{∫∞

0
F(r,ω)exp(−iωt)dω

}
, (2.9)

where F ∈ {E,H,D,B,J′
e,J′

h,ρe,ρh}, ω is the angular frequency, and F(r,ω) de-

notes the time-harmonic component of the field at angular frequency ω.

In this thesis we consider electromagnetic fields only in media, which are (op-

tically) linear, isotropic, spatially nondispersive, and stationary in time (i.e.,

independent of absolute time). Furthermore, we assume that there are no mag-

netic monopoles and neither primary nor secondary magnetic currents. Then

the susceptibility and conductivity operators take on a particularly simple form,

and the constitutive relations (2.5)–(2.8) can be written for time-harmonic fields

as

D(r,ω)= εr(r,ω)E(r,ω), (2.10)

B(r,ω)=μ(r,ω)H(r,ω), (2.11)

J′
e(r,ω)=σ(r,ω)E(r,ω)+J(r,ω), (2.12)

J′
h(r,ω)= 0, (2.13)

where εr denotes the dielectric permittivity, μ denotes the magnetic permeabil-

ity, and σ denotes the conductivity.

By applying the time-harmonic constitutive relations, we can write the time-

harmonic versions of the Maxwell equations (2.1)–(2.4) in the form

∇×H(r,ω)+ ik0ε(r,ω)E(r,ω)= 4π
c

J(r,ω), (2.14)

∇×E(r,ω)− ik0μ(r,ω)H(r,ω)= 0, (2.15)

∇· [ε(r,ω)E(r,ω)]= 4πρe(r,ω)=−i
4π
ω

∇·J(r,ω), (2.16)

∇· [μ(r,ω)H(r,ω)
]= 0, (2.17)

where k0 =ω/c = 2π/λ is the vacuum wave number and λ is the vacuum wave-

length of the field. The latter form of Eq. (2.16) follows when we operate on

Eq. (2.14) by ∇· and use the result to define ρe. In these equations we have, as

is customary, included the conduction properties of the material into the com-

plex dielectric permittivity ε, which is defined as

ε(r,ω)= εr(r,ω)+ i
4π
ω

σ(r,ω). (2.18)

Observe, however, that causality implies that εr(r,ω) is in general already

complex-valued.
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We now obtain from Eqs. (2.14) and (2.15) for the electric and magnetic fields

the expressions

E(r,ω)= i
k0ε(r,ω)

[
∇×H(r,ω)− 4π

c
J(r,ω)

]
, (2.19)

H(r,ω)=− i
k0μ(r,ω)

∇×E(r,ω), (2.20)

which show that once either field is known, the other field is completely deter-

mined. When we introduce the expression (2.20) into Eq. (2.14), we get after

some rearrangements the wave equation

μ(r,ω)∇×
[

1
μ(r,ω)

∇×E(r,ω)
]
−κ2(r,ω)E(r,ω)= i4π

k0

c
μ(r,ω)J(r,ω), (2.21)

where the complex wave number κ is defined as

κ2(r,ω)= k2
0ε(r,ω)μ(r,ω). (2.22)

If we apply the identity ∇× (∇×F) =∇ (∇·F)−∇2F, and the relation (2.16), we

can rewrite the wave equation (2.21) as

∇2E(r,ω)+κ2(r,ω)E(r,ω)=Q(r,ω), (2.23)

where

Q(r,ω)= i
k0μ(r,ω)

c
J(r,ω)+ i

1
ω
∇

[
1

ε(r,ω)
∇·J(r,ω)

]
+ 1

4π
∇{∇ ln[ε(r,ω)]} ·E(r,ω)+ 1

4π
∇ ln[μ(r,ω)]× [∇×E(r,ω)] .

(2.24)

At optical frequencies (natural) materials are normally nonmagnetic, so that

typically μ(r,ω)≈ 1.

For vacuum regions, where ε(r,ω) = 1, μ(r,ω) = 1, and J(r,ω) = 0, the wave

equations (2.21) and (2.23) simplify into the reduced (vacuum) wave equations

∇× [∇×E(r,ω)]−k2
0E(r,ω)= 0, (2.25)

and

∇2E(r,ω)+k2
0E(r,ω)= 0, (2.26)

respectively.

In the vacuum wave equation (2.26) the different components of the electric

field vector E(r,ω) separately satisfy the Helmholtz equation

∇2U(r,ω)+k2
0U(r,ω)= 0. (2.27)

Here U = û·F and û ∈ {x̂, ŷ, ẑ}, where {x̂, ŷ, ẑ} is a triplet of Cartesian unit vectors

in R3. The separation of the vector components does not happen in general in-

side material media as can be seen from Eqs. (2.23) and (2.24). In special cases,

10
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however, such as when the properties of the material change slowly with posi-

tion, so that k0|∇{∇ ln[ε(r,ω)]}| and k0|∇ ln[μ(r,ω)]| are small enough to make

the sum of the latter two terms on the right-hand side of Eq. (2.24) negligible

with respect to the sum of the first two terms, the components (approximately)

separate [3,46] and we get for each component an equation of the form

∇2U(r,ω)+κ2(r,ω)U(r,ω)=−4πQ(r,ω), (2.28)

where the source term Q(r,ω) is determined by the specific approximation used

and what component is considered.

In view of the approximations made when deriving the scalar Helmholtz

equation (2.28), that expression, in particular, completely (exactly) describes

the behavior of the electromagnetic field in regions where the material prop-

erties are constant. Thereby, if the material is approximated as a collection of

uniform regions separated by discontinuity boundaries, the behavior of the elec-

tromagnetic field can be described in full by scalar fields that are coupled only

at the discontinuity boundaries (by Maxwell’s equations). In some geometries,

such as in systems that are invariant in one spatial coordinate, the electromag-

netic fields can be represented by scalar fields that do not couple at the discon-

tinuity boundaries and thus the scalar description applies throughout space.

Because optical systems are typically such that the above mentioned approxi-

mate or special conditions are met, optical fields are often described by scalar

fields, with their vectorial nature ignored on account that it seldom alters the

results to a degree that would warrant a more complicated treatment. For our

purposes here, we need the theory of scalar fields on one hand since many of

our results apply directly only to such fields, and on the other hand since we

want to use the simpler equations of scalar fields as a basis on which to develop

the more complicated equations of vector-valued electromagnetic fields.

2.2 Electromagnetic energy relations and intensity measurements

If we consider a region Ω⊂R3, it can be shown [47] that the time-average (over

all time) of the electromagnetic power that radiates out of this region, as carried

by an electromagnetic field [E,H] at angular frequency ω, is given by the energy

flux functional

FΩ[E,H](ω)=
∫
∂Ω

S(r,ω) · n̂(r)dr, (2.29)

where

S(r,ω)= c
2

Re
{
E(r,ω)×H∗(r,ω)

}
(2.30)

11
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is the Poynting vector at frequency ω, ∂Ω is the boundary of the region Ω, and

n̂(r) denotes the outward surface normal of ∂Ω at r ∈ ∂Ω. The energy rela-

tion (2.29) was first formulated by Poynting [48] for time-dependent electro-

magnetic fields.

The time-averaged electromagnetic (potential) energy at frequency ω stored

inside the region Ω is given by the expression

WΩ[E,H](ω)= 1
4

∫
Ω

[|E(r,ω)|2 +|H(r,ω)|2]dr=WΩ[E](ω)+WΩ[H](ω), (2.31)

which also introduces the electric energy WΩ[E](ω) and the magnetic energy

WΩ[H](ω) in the obvious way.

It is beyond the scope of this thesis to show how the scalar field energy flux

functional follows from the electromagnetic energy flux functional when the ap-

propriate assumptions are made. However, since the scalar field is extensively

used to describe both optical and acoustical waves, the appropriate expression

has been presented elsewhere [3,49]. Indeed, we have the representation

FΩ[U](ω)=− c
2k0

∫
∂Ω

Im
{[

U(r,ω)∇U∗(r,ω)
] · n̂(r)

}
dr (2.32)

for the energy flux at frequency ω radiated out of a region Ω by a scalar field U .

When the direction of the electromagnetic radiation, as given by the sign of

the energy flux functional FΩ[E,H](ω) or FΩ[U](ω), with respect to a region Ω

with no primary sources [J(r,ω) = 0 or Q(r,ω) = 0], is the same (into, −, or out

from, +, the region Ω) for all electromagnetic or scalar fields, it is convenient

to use this direction of energy flux to characterize Ω. Hence we call a region Ω

lossy if FΩ[·](ω) ≤ 0, amplifying if FΩ[·](ω) ≥ 0, and lossless if FΩ[·](ω) = 0 for

every electromagnetic field [E,H] or scalar field U . The terms lossy and lossless

are standard terminology, whereas the term amplifying is here introduced for

symmetry. The archetypal lossless region (and indeed the only true lossless

region) is vacuum, whereas any conductor provides an example of a lossy region

(energy is lost through Joule heating). Laser gain materials are examples of

typical amplifying regions.

Let us now study how the region characterizations are reflected in the mate-

rial parameters of the regions. To begin with we look at scalar fields, for which

the energy flux out of Ω, when ∂Ω lies in vacuum and Ω contains no primary

sources, attains the form

FΩ[U](ω)=− c
2k0

∫
Ω

Im{κ2(r,ω)} |U(r,ω)|2 dr, (2.33)

when the expression (2.32) is developed by applying the divergence theorem

and the Helmholtz equation (2.28). From the expression (2.33) it follows that for

12
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scalar fields a region Ω is lossy if Im{κ2(r,ω)}≥ 0, amplifying if Im{κ2(r,ω)}≤ 0,

and lossless if Im{κ2(r,ω)} = 0 for all r in Ω. In other cases the region Ω has a

different character for different fields U .

For electromagnetic fields, with the same assumptions on the region Ω as in

the scalar case, the expression (2.29) can be developed into

FΩ[E,H](ω)

=− c
4πk0

∫
Ω

[
Im

{
k2

0ε(r,ω)
} |E(r,ω)|2 + Im

{
k2

0μ(r,ω)
} |H(r,ω)|2]dr,

(2.34)

when the divergence theorem as well as relations (2.19) and (2.20) are used.

From the expression (2.34) it follows that a region Ω is for vector-valued electro-

magnetic fields lossy when Im{k2
0μ(r,ω)} ≥ 0 and Im{k2

0ε(r,ω)} ≥ 0, amplifying

when Im{k2
0μ(r,ω)} ≤ 0 and Im{k2

0ε(r,ω)} ≤ 0, and lossless when Im{k2
0μ(r,ω)} =

0 and Im{k2
0ε(r,ω)} = 0, with no specific character in other cases. We note that

this characterization differs from the characterization obtained in the case of

scalar fields. In particular, we observe that for vector-valued electromagnetic

fields the electric and magnetic contributions can in general have a different

character, which of course is not possible for scalar fields. Accordingly the

characterization in the electromagnetic case is in general not expressible in

terms of the complex wave number κ(r,ω). However, when Im{μ(r,ω)} = 0 and

Re{μ(r,ω)}≥ 0, which, to a good degree of accuracy, is usually the case in optics,

we can further develop the expression (2.34), to get

FΩ[E,H](ω)=− c
4πk0

∫
Ω

Im
{
κ2(r,ω)

} 1
μ(r,ω)

|E(r,ω)|2 dr, (2.35)

which provides us with the same characterization of regions as in the scalar

case. A similar result is available if we make assumptions on ε instead of on μ,

or if either is slowly changing [see comment before Eq. (2.28)]. For our purposes

here, it is sufficient that we can use the same characterization for regions in the

electromagnetic case as in the scalar case. Hence, we will from here on assume

that the scalar characterization of regions in terms of the complex wave number

is applicable also for electromagnetic fields.

We note that for both scalar fields and electromagnetic fields the energy flux

functional vanishes when the region Ω is not only devoid of primary sources,

but vacuum-filled as well. Indeed, then ε,μ ∈ R, so that κ ∈ R, whereby the

expressions (2.33) and (2.34) yield the results FΩ[U](ω) = 0 and FΩ[E,H](ω) =
0, respectively.

Finally, let us consider measurements of the electromagnetic or scalar field.

A measurement is a transfer of energy from the object that is observed to a

detector. Here we take the detector to be represented by a lossy region Ω, where

13



Electromagnetic theory

at least a part of the loss is in terms of the measurement signal we want to

retrieve. Furthermore, we assume that the signal is proportional to the loss, so

that without losing generality we can take the signal to be equal to the negative

of the energy flux out of the region Ω as carried by the field that is measured,

divided by the surface area |∂Ω| = ∫
∂Ωdr. Specifically, we have in view of the

energy flux functionals (2.29) and (2.32), for an electromagnetic field [E,H] and

a scalar field U with respect to the region Ω, the measurement outcomes

IΩ[E,H](ω)=−|∂Ω|−1FΩ[E,H](ω)=−|∂Ω|−1
∫
∂Ω

S(r,ω) · n̂(r)dr (2.36)

and

IΩ[U](ω)=−|∂Ω|−1FΩ[U](ω)

= |∂Ω|−1 c
2k0

∫
∂Ω

Im
{[

U(r,ω)∇U∗(r,ω)
] · n̂(r)

}
dr,

(2.37)

respectively. Although these representations are strictly valid only when the

surface ∂Ω is closed, it is customary in optics to assume that the flux is appre-

ciable, say only across the front face ∂Π+ of a photodetector Π. When this face is

(nearly) planar and the Poynting vector of the field varies only slightly across it,

it follows from Eq. (2.36) that the energy flux of the field into the photodetector

divided by the surface area is to good accuracy given by

IΠ ([E,H],ω)≈ |S(r,ω) · n̂(r)|, (2.38)

where r ∈ ∂Π+ is a typical point on the front surface ∂Π+. The right-hand side

of the expression (2.38) is the intensity of the electromagnetic field [3], and

we extend this terminology to cover the measurement outcomes in Eqs. (2.36)

and (2.37) as well. Thus, what we mean by an intensity measurement, is the

physical realization of these equations.

2.3 Uniqueness results and fundamental solutions

It can be shown that the scalar Helmholtz equation (2.28) has a unique solution

when it is accompanied by the Sommerfeld radiation (absorption) condition [50]

lim
r→∞ r [∂rU(r,ω)∓ ik0U(r,ω)]= 0, (2.39)

where the limit holds uniformly in all directions r̂ and where − corresponds to

outgoing fields (field carrying energy to infinity) and + to incoming fields (field

carrying energy from infinity). Here r = |r| and r̂ = r/r denote the length of the

vector r and its direction (unit vector), respectively. The same convention will

be used henceforth for all vectors.
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For electromagnetic electric fields the solution to either the wave equa-

tion (2.21) or the wave equation (2.23) is unique when these equations are aug-

mented with the Silver–Müller radiation (absorption) condition [51–53]

lim
r→∞ r [∇×E(r,ω)∓ ik0r̂×E(r,ω)]= 0, (2.40)

where the limit holds uniformly in all directions r̂ and where the signs are

as in the Sommerfeld condition. We note that when a scalar field is equal to

a component of (or otherwise sensibly derived from) an electromagnetic field

that satisfies the Silver–Müller condition, the scalar field itself satisfies the

corresponding Sommerfeld condition.

Let us now consider the special case, where κ(r,ω) = κ, with Im{κ2} ≥ 0, viz.,

the case where, except for the primary sources, all space consists of the same

non-amplifying medium. Then the unique solution to the scalar Helmholtz

equation (2.28) with the Sommerfeld radiation condition (2.39) for outgoing

fields is given by

U(r,ω)=
∫
Ω

Gκ(r,r′)Q(r′,ω)dr′, (2.41)

where

Gκ(r,r′)= exp(iκ|r−r′|)
|r−r′| (2.42)

is the Green’s function of the system and Ω is the support of the source

distribution Q. This Green’s function is the fundamental solution of the

scalar Helmholtz equation (2.28) that satisfies the Sommerfeld radiation con-

dition (2.39) for outgoing fields. Formally, we have

∇•2Gκ(r,r′)+κ2Gκ(r,r′)=−4πδ(r−r′), (2.43)

where ∇• denotes ∇ or ∇′. We use this notation in what follows without further

comment.

Quite analogously to the scalar case, the electromagnetic wave equations

have fundamental solutions. We consider these solutions for a system where

ε(r,ω) = ε and where μ(r,ω) = μ is real and positive, so that κ(r,ω) = κ, and the

system is lossy when Im{κ2}> 0. In this system the electromagnetic field satis-

fies the wave equation (2.23), where the source term expression (2.24) simplifies

into

Q(r,ω)= iμ
ω

{
J(r,ω)+ 1

κ2∇ [∇·J(r,ω)]
}

. (2.44)

It thereby follows that each component of the electric field satisfies a scalar

Helmholtz equation of the form (2.28), and we can apply the (unique) scalar

solution (2.41) to obtain the unique vectorial solution in the form

E(r,ω)=
∫
Ω

Gκ(r,r′)Q(r′,ω)dr′, (2.45)
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where Ω denotes the support of the source distribution J. When r ∈ Ω, the

integrand is everywhere regular and we can use, twice in succession, the diver-

gence theorem together with the fact that the source distribution vanishes by

definition on ∂Ω, to rewrite the solution (2.45) in the form

E(r,ω)= iμ
ω

∫
Ω

Gκ(r,r′) ·J(r′,ω)dr′, r ∈Ω, (2.46)

where

Gκ(r,r′)=
(
I+ 1

κ2∇•∇•
)
Gκ(r,r′) (2.47)

is the dyadic Green’s tensor and I denotes the unit dyad. The dyadic Green’s

tensor formally satisfies the wave equations

∇•×
[
∇•×Gκ(r,r′)

]
−κ2Gκ(r,r′)= 4πδ(r−r′)I, (2.48)

together with the divergence conditions

∇• ·Gκ(r,r′)= 0. (2.49)

Finally, we note that the assumption r ∈ Ω is necessary for the representa-

tion (2.46) to hold, since otherwise the proper application of the divergence

theorem introduces non-vanishing surface terms that must be included. This

subtlety in the use of the dyadic Green’s tensor representation is discussed by

Yaghjian [54], among others.
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3. Second-order coherence theory

As was indicated in the introduction, second-order coherence theory is closely

related to intensity measurements. Indeed, knowledge of the mutual coher-

ence operator or, equivalently, the cross-spectral density operator in an optical

system is sufficient to determine the outcome of all intensity measurements

therein. The relationship is, in fact, reversible in that the mutual coherence op-

erator and the cross-spectral density operator can, in principle, be completely

determined from intensity measurements. In practice, all required measure-

ments may not, however, be realizable.

We note that even though electromagnetic coherence theory is usually de-

scribed in terms of random fields, which is both convenient and which finds

motivation in quantum optics, the physical fields are not actually random, but

randomness encompasses the lack of detailed knowledge of their behavior. In-

deed, the second-order coherence theory of stationary fields as outlined from a

stochastic point of view in the following, can actually also be derived by assum-

ing that all media are stationary in the sense conveyed by Eqs. (2.10)–(2.13)

and by assuming that all intensity measurements of electromagnetic fields are

(approximately) unchanging over a time interval which is large with respect

to the electromagnetic fluctuations. These two assumptions immediately lead

to the full second-order description of stationary electromagnetic fields, includ-

ing the Wiener–Khintchine theorem [16], as well as the concepts of the mutual

coherence function and quasi-monochromatic fields.

Throughout the development of (second-order) coherence theory, the so-called

Young’s double-slit (or double pinhole) interference experiment [55] has had a

central role to play [56]. In this experiment (see Fig. 3.1) an electromagnetic

(light) field (L1) passes through two pinholes in a screen (S1) that otherwise

blocks the field. Behind this screen lies another screen (S2) onto which the

thus disturbed light field (L2) impinges. Because of the interference of the

monochromatic components of the field, interference fringes are generally ob-
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L1
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S1 S2
P
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Figure 3.1. Young’s interference experiment. A light field L1 impinges on a screen S1 with two
pinhole apertures, P1 and P2. The light fields L2 passing through the two pinholes
interfere at a later screen S2, where an interference pattern can be observed. This
process is illustrated in terms of two light rays that converge at an observation point
P on the screen S2.

served on this latter screen. For fully monochromatic light, the intensity of

these fringes go from zero to their maximum, whereas for polychromatic light,

the total intensity of all the light does not vanish completely. In fact, in the

extreme case where the total intensity is approximately uniformly distributed

among the frequencies, the light field produced by interference is of nearly con-

stant intensity. How well the minima and maxima of the intensity distribution

are discernible is called the visibility of the interference pattern and it was

mathematically defined by Michelson [29] as

V = Imax −Imin

Imax +Imin
, (3.1)

where Imax and Imin denote the maximum and minimum values of the inten-

sity of the field in the vicinity of the observation point P. Defined in this way

the visibility is proportional to the absolute value of the so-called complex de-

gree of coherence of the field, when it is modeled as a scalar field. We discuss

the degree of coherence in more detail in Sec. 3.2.

Starting with the experiments done by Young [55], the pre-1960s development

of (second-order) electromagnetic coherence theory is mainly built on the works

by Verdet, Michelson, von Laue, Berek, van Cittert, Zernike, Hopkins, Wolf,

and Blanc-Lapierre and Dumontet [3, 19, 30]. Other important contributors to

the theory of partial coherence and partial polarization include Stokes, Wiener,

Perrin, Pancharatnam, Hurwitz, Gabor, Gamo, Parrent, and Bourret [3,19,30].

Of these early contributors Michelson applied techniques, which today would

be classified as part of coherence theory, to extract information about the diam-

eters of astronomical objects (stars) from the coherence properties of the light

observed by an interferometer placed in conjunction with a telescope. Berek,
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in turn, used his form of coherence theory to study image formation in micro-

scopes. The researches of van Cittert and Zernike led to the formulation of

what now is known as the van Cittert–Zernike theorem [3, 16, 19] and, as will

be discussed below, Zernike gave a specific definition of the degree of coherence

of a light field [57]. The coherence properties of electromagnetic fields were

studied from an information, or entropy, perspective by von Laue, Gamo, and

Gabor. Gabor is of course famous for his role in the theory of holography to

which his researches contributed [58]. Reflections of the investigations of von

Laue and Gamo can on the other hand be found for example when considering

effective or overall degrees of coherence of the electromagnetic field, as is done

in Chap. 6. Finally, the part played by Wolf in the formalization and advance-

ment of (second-order) coherence theory cannot be overstated. His important

contribution to this development is highlighted by the large number of ground-

breaking papers he has authored, a selection of which is given in Ref. 30.

3.1 Cross-spectral density of scalar and electromagnetic fields

The close relationship between second-order correlations and intensity mea-

surements means that a full description of all (intensity) measurements of an

electromagnetic field can be made within the framework of second-order coher-

ence theory. In particular, it follows that no detailed knowledge beyond the

second-order correlations of the field need to be considered or retained. Let us

now assume that the field is described by a random process. Furthermore, if

all intensity measurements of the field are (nearly) unchanged in time and all

material operators of the system are stationary [that is, constitutive relations

of the form (2.10)–(2.13) hold throughout], the random process describing the

field is stationary in the wide sense [59]. It then follows that the so-called mu-

tual coherence operator (function) between two space–time points (r1, t1) and

(r2, t2) of such a random process only depends on the time-difference τ= t2 − t1

and is given by the time-average

ΓF (r1,r2,τ)= lim
T→∞

1
2T

∫T

−T
F(r1, t)F∗(r2, t+τ)dt (3.2)

for a scalar process F, and by

ΓF(r1,r2,τ)= lim
T→∞

1
2T

∫T

−T
F(r1, t)F†(r2, t+τ)dt (3.3)

for a vector-valued process F, where † denotes the adjoint (complex conjugate

transpose) of a vector. Here we attach the complex conjugation on the second

field rather than on the first, contrary to what is customary in coherence theory,
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because with this choice our notation is consistent with that used in functional

analysis, from which many of the mathematical results applied in second-order

coherence theory derive. Because of this choice, the expressions containing

the mutual coherence operator, the cross-spectral density operator or degree-

of-coherence functions are complex conjugates of those found in many of the

referenced papers, including our own.

It is convenient to combine the expressions (3.2) and (3.3) into one by using

a common notation. For that purpose we will represent the scalar or vector-

valued field by a random process u, with the property that at all times t we

have u(t) ∈ H, where H is a Hilbert space. In Eqs. (3.2) and (3.3), the corre-

sponding Hilbert spaces could for example be L2(Ω) and L2(Ω× {x, y, z}), where

Ω⊂R3 is some region of interest. We now severe the connection to explicit coor-

dinates and use a coordinate-free notation, where only the temporal dependence

is explicitly shown, to replace Eqs. (3.2) and (3.3) by the expression

Γu(τ)= lim
T→∞

1
2T

∫T

−T
u(t)u†(t+τ)dt (3.4)

for the mutual coherence operator of u.

Since the operator formalism used in this work is not commonly employed

in electromagnetic coherence theory, we briefly recall here some of the basic

properties of (complex) Hilbert spaces. First of all, every Hilbert space H is a

linear vector space, which means that if u,v ∈ H then αu+βv ∈ H for any (finite)

α,β ∈ C. Associated with each Hilbert space is its inner product {u,v}H ∈ C

for u,v ∈ H, where the subscript is dropped if there is no risk of confusion.

The inner product is linear in its first argument and it satisfies the property

{v,u}H = {u,v}∗H . In addition, it generates the norm of the Hilbert space, given

by ‖u‖H =√
{u,u}H for every u ∈ H, and by definition u ∈ H implies that ‖u‖H <

∞. A Hilbert space is a complete inner product space, whereby the limit of

any convergent (in the norm) sequence {un}n, with un ∈ H, will also be in H.

Thus for example a convergent infinite sum of functions from a Hilbert space

H defines a function in that space. For notational clarity and to mimic the

notation used in matrix analysis, we here employ the Hilbert space adjoint u†

of a function u ∈ H. This adjoint is defined by the relation

u†v = {v,u}H , ∀v ∈ H. (3.5)

An operator A in a Hilbert space H1 is a (linear) mapping A : H1 → H2 that

maps every function u ∈ H1 to a function v = Au ∈ H2. Here H2 = H1 is ac-

ceptable and often the case in practice. When ‖Au‖H2 /‖u‖H1 ≤ C <∞, ∀u ∈ H1,

the operator or mapping A is bounded, and its norm ‖A‖ is the smallest real
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number C, which satisfies the inequality. With this norm the set of bounded

linear operators on a Hilbert space H is complete, which means that the limit

of any convergent (in the norm) sequence, such as a series, of such operators

converges to a bounded linear operator. A particular type of operator of interest

in this thesis is the outer product A = vu†, where u ∈ H1 and v ∈ H2 are any two

functions. This operator, which is a rank-1 operator, maps the one-dimensional

subspace {u} ⊂ H1 into the Hilbert space H2 according to the explicit represen-

tation Aw = vu†w = {w,u}H1 v, where w ∈ H1. As indicated above, any conver-

gent combination of such operators is also a bounded linear operator. Hence, in

particular, this holds for the mutual coherence operator Γu defined in Eq. (3.4),

provided that the representation converges. Since the functions u(t) in that

definition belong to the Hilbert space H, it follows that Γu(τ) : H → H and if we

assume that the representation converges, we get when we operate with Γu(τ)

on v ∈ H the explicit result

Γu(τ)v = lim
T→∞

1
2T

∫T

−T
{v,u(t+τ)}u(t)dt, (3.6)

where we have dropped the subscript H for convenience. This result illustrates

the role of Γu(τ) as a Hilbert space operator. We now return to the main subject

of coherence theory.

When the random process u in Eq. (3.4) is not only wide-sense stationary, but

also ergodic [59], that is, when the fluctuations of the process are such that

their correlations persist only for finite time differences, the values the process

attains at sufficiently separated times essentially represent different realiza-

tions of one and the same random process. Hence the time-average for such

a process is well approximated by the ensemble average, so that the mutual

coherence operator (function) (3.4) can be expressed as

Γu(τ)=
〈

u(t)u†(t+τ)
〉
=

〈
u(0)u†(τ)

〉
, (3.7)

where the angle brackets denote ensemble averaging and the latter expression

follows since t is arbitrary. Here we will assume that all electromagnetic fields

and sources of interest are at least wide-sense stationary and ergodic, so that

their mutual coherence operators are of the form (3.7).

The shift from temporal averaging to ensemble averaging over a set of real-

izations of the process makes it sensible to consider the correlation properties of

the angular frequency representations of the realizations. However, since sta-

tionary fields are ever present, their energy is infinite and as a consequence

their Fourier transforms are only formal and must be interpreted in terms

of distributions. Thereby, we can formally use the inverse of the representa-
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tion (2.9) and the definition (3.7) to compute〈
u(ω1)u†(ω2)

〉
= 1

(2π)2

�∞

−∞

〈
u(t1)u†(t2)

〉
exp[i(ω1t1 −ω2t2)]dt1dt2

= δ(ω2 −ω1)Wu(ω1),
(3.8)

where the operator

Wu(ω)= 1
2π

∫∞

−∞
Γu(τ)exp(−iωτ)dτ (3.9)

is the cross-spectral density operator of the process u. Equation (3.9) is a

variant of the Wiener–Khintchine theorem [16, 59]. We note that the Wiener–

Khintchine relation (3.9) can be used to define the cross-spectral density opera-

tor, as we do here, but then the direct connection to the complex analytic signal

representation (2.9) of the process is lost. We show later that this connection

can be re-established.

It is straightforward, but somewhat tedious, to prove that the cross-spectral

density operator as given in Eq. (3.9) is a non-negative, self-adjoint, Hilbert–

Schmidt operator [16]. In particular, it is a compact operator, which can be

represented in terms of its eigenvalues λn(ω) and eigenfunctions φn(ω) (in the

Hilbert space H) by its so-called Mercer series (which is a consequence of the

Hilbert–Schmidt theorem) [16,60,61] as

Wu(ω)=
∞∑

n=1
λn(ω)φn(ω)φ†

n(ω), (3.10)

where we assume that the eigenvalues are numbered in decreasing order so

that λ1(ω) ≥ λ2(ω) ≥ ·· · ≥ 0, and we take the set {φn(ω)}∞n=1 to be a complete

orthonormal basis for H. We thus include in this set the orthonormal basis of

the (possibly trivial) null-space of Wu(ω). For those functions φn(ω) not in the

null-space, we have from Eq. (3.10) the representation

φn(ω)= 1
λn(ω)

Wu(ω)φn(ω), (3.11)

where Wu(ω)φn(ω) denotes the function, which is obtained when Wu(ω) operates

on the function φn(ω). As we demonstrate below, the Mercer series can be used

to prove that the cross-spectral density operator may, in fact, be expressed as

an ensemble expectation of the form

Wu(ω)=
〈

v(ω)v†(ω)
〉

, (3.12)

for some ensemble of harmonic processes v(ω) ∈ H, with 〈‖v(ω)‖2〉 < ∞. In-

deed, the Mercer series can be interpreted as such a representation. However,

it is important to note that the realizations u(ω), which follow from u(t) via

the inverse of the Fourier representation (2.9), cannot be used here, since the
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assumption of stationarity implies that the functions u(ω) do not exist as ordi-

nary functions (processes). With this restriction in mind we will, however, from

now on, as is customary, denote the realizations in Eq. (3.12) by u(ω) to uphold

notational consistency.

Let us now consider random scalar or electromagnetic fields in a setting

where the material parameters are non-stochastic. Then every scalar or elec-

tromagnetic field u in such a system satisfies an equation of the form given

for example by Eq. (2.28) for scalar fields, and by Eq. (2.21) or Eq. (2.23) for

vector-valued fields, where the operator (denoted here by Lω) operating on the

field on the left-hand side is deterministic. If we use q(ω) to collectively denote

the source terms on the right-hand sides of these equations, we can write the

equations in the unified form

Lωu(ω)=−4πq(ω). (3.13)

It can be shown, for example by an excursion to temporal representations, that

the eigenfunctions of the cross-spectral density operator Wu(ω) then satisfy a

differential equation of the same form, but with an eigenfunction-dependent

source term σn(ω), viz.,

Lωφn(ω)= 1
λn(ω)

LωWu(ω)φn(ω)=−4πσn(ω), (3.14)

where the supports of the source terms σn(ω) lie in the union of the sup-

ports of the source term realizations q(ω). Hence the eigenfunctions φn(ω) are

monochromatic fields at angular frequency ω and the Mercer series (3.10) then

implies that the cross-spectral density operator of angular frequency ω, as given

by the Fourier transform (3.9) is, in fact, expressible in terms of fields at the

same frequency. Thus for such an operator the random fields v(ω) in the repre-

sentation (3.12) can be taken as monochromatic fields of the systems in which

the operator is considered. Usually this conclusion is derived only for fields in

vacuum [16,62], but we need the more general representation established here

in what follows.

Let us now consider a stationary random source distribution q(ω) and the

associated stationary random field u(ω), which satisfy a differential equation of

the form (3.13). By reversing that equation, we can develop the source cross-

spectral density operator as

16π2Wq(ω)=
〈

[−4πq(ω)] [−4πq(ω)]†
〉
=

〈
[Lωu(ω)] [Lωu(ω)]†

〉
=LωL †

ω

〈
u(ω)u†(ω)

〉
=LωL †

ωWu(ω),
(3.15)

which also defines the operator L
†
ω. For scalar fields that are given by the dif-

ferential equation (2.28) or electromagnetic fields that are given by Eq. (2.23),
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we have Lω =∇2 +κ2 and Eq. (3.15) is explicitly given by

[∇2
1 +κ2(r1,ω)

][∇2
2 +κ∗2(r2,ω)

]
Wu(r1,r2,ω)= 16π2Wq(r1,r2,ω), (3.16)

where Wu(r1,r2,ω)= 〈
u(r1,ω)u†(r2,ω)

〉
and Wq(r1,r2,ω)= 〈

q(r1,ω)q†(r2,ω)
〉
.

When the wave number is constant throughout space [κ(r,ω)= κ], the solution

to the inhomogeneous double Helmholtz equation (3.16) can be represented in

terms of the scalar Helmholtz equation Green’s function given in Eq. (2.42) as

Wu(r1,r2,ω)=
∫
R3

∫
R3

Gκ(r1,r′2)G∗
κ(r2,r′2)Wq(r′1,r′2,ω)dr′1dr′2, (3.17)

where R3 denotes all space and we have taken R3 ×R3 as the support of Wq(ω).

This is the general representation of the solution to the double Helmholtz equa-

tion (3.16) when outgoing (Sommerfeld, Silver–Müller) boundary conditions are

assumed.

3.2 Degree of coherence

Let us go back to Young’s double pinhole interference experiment as illustrated

in Fig. 3.1, where two pinholes are illuminated by a field and the resulting in-

terference pattern is observed on a screen behind the pinholes. To begin with

we assume that the field is scalar and quasi-monochromatic, that is, its spec-

trum is tightly concentrated around a central angular frequency ω0. We also

take the pinholes to be so small that the field behind each pinhole is approx-

imately described by a complex random variable, say A1 and A2, for the two

pinholes P1 and P2, respectively. Following the analysis by Zernike [57], we

note that the (average) intensity of the field at each pinhole is proportional to

Ik = 〈|Ak|2〉, (3.18)

where k ∈ {1,2}. When the spectral bandwidth of the field is sufficiently small,

the propagation of the field from the pinholes to the observation screen (S2) will,

apart from a here inessential common constant factor, essentially induce a de-

terministic phase-difference β, depending on the observation point P, between

the contributions from each pinhole. Specifically, for this model to be valid, the

inverse of the spectral bandwidth of the field, the coherence time, must exceed

the differences in times of flight from the two pinholes to every observation

point of interest. The field at a point P can (apart from a constant factor) then

be written as A = A1 exp(iβ)+ A2, whereby the corresponding intensity I is

given by

I = 〈|A|2〉 =I1 +I2 +2Re
[〈A1 A∗

2〉exp(iβ)
]
. (3.19)
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When P is slightly shifted, so that to a good approximation only β changes,

the maximum and minimum intensities observed are given by Imax =I1+I2+
2
∣∣〈A1 A∗

2〉
∣∣ and Imin = I1 +I2 − 2

∣∣〈A1 A∗
2〉

∣∣, respectively. We introduce these

values into the Michelson formula (3.1) to obtain for the visibility of the inter-

ference pattern on S2 the value

V = 2
∣∣〈A1 A∗

2〉
∣∣

I1 +I2
= 2

(
η+η−1)−1

∣∣〈A1 A∗
2〉

∣∣√
I1I2

, (3.20)

where η=
√

I1/I2.

Before the development of the mathematical techniques for assessing par-

tially coherent fields, it was of paramount importance to know, in the design

and analysis of optical systems for example, whether the system can be treated

as incoherent (intensities add) or as coherent (amplitudes add), or if its behav-

ior lies between theses two extremes (partial coherence). An early problem in

coherence theory was how to characterize a field (mathematically), so that this

characterization matches the physical (appearance of interference fringes) no-

tion of coherence. Zernike [57] solved this problem by connecting the definition

of coherence to the concept of visibility as put forward by Michelson [29]. He

defined the degree of coherence as follows:

By definition the “degree of coherence” of two light-vibrations shall be equal to the

visibility of the interference fringes that may be obtained from them under the best

of circumstances, that is, when both intensities are made equal and only small path

differences are introduced. Frits Zernike, 1938.

As the path differences in our example above are assumed small (only a phase

difference introduced), it follows that the degree of coherence can be obtained

from Eq. (3.20) by putting η = 1. However, following Zernike and the later de-

velopments in coherence theory, it is actually more useful to define the complex

degree of coherence, which is given by

γ= 〈A1 A∗
2〉√

I1I2
. (3.21)

Extending this definition to any two points of a scalar field, we can thereby, in

the case of a stationary field U , define the complex degree of coherence between

the field values at two points r1 and r2, and separated by time τ as

γU (r1,r2,τ)= ΓU (r1,r2,τ)√
ΓU (r1,r1,0)ΓU (r2,r2,0)

, (3.22)

where ΓU is the mutual coherence function of U as given by Eq. (3.2). We note

that γU is the complex correlation coefficient of the random variables describ-

ing the field at the two points. Therefore the purely mathematical concept of
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correlation and the physical notion of coherence and visibility are actually one

and the same! Because of this, or directly from the definition (3.22), it follows

that

0≤ |γU (r1,r2,τ)| ≤ 1, (3.23)

with 0 representing complete incoherence (no correlation) and 1 representing

complete coherence (total correlation), respectively. Although our derivation

and the direct connection of the complex degree of coherence to the fringe visi-

bility in Young’s interference experiment is valid only for quasi-monochromatic

fields, the definition (3.22) makes sense and is commonly used for general scalar

fields. In fact, it has recently been shown [63] that if an achromatic Fourier

transform element is added to Young’s setup, the quantity γU (r1,r2,0) can di-

rectly be measured for a field with an arbitrary spectral distribution. An achro-

matic delay (e.g., by a path through mirrors) in front of either pinhole can then

be used to fully determine γU (r1,r2,τ), for all τ.

Entirely analogously to the definition (3.22) we can mathematically define the

complex spectral degree of coherence μU for a stationary field U by

μU (r1,r2,ω)= WU (r1,r2,ω)√
WU (r1,r1,ω)WU (r2,r2,ω)

, (3.24)

where WU is the cross-spectral density operator of the field U . Since this defi-

nition is purely formal, it is valid for fields with any spectral distribution. On

account of the representation (3.12), μU is, like γU , a complex correlation coef-

ficient with the property that

0≤ |μU (r1,r2,ω)| ≤ 1. (3.25)

Here again, 0 denotes complete incoherence and 1 denotes complete coherence.

We note that even though the definition (3.24) was here introduced only for-

mally, Wolf [64] has shown that when the degree of coherence γU is measured

for a field (light) that has passed through a narrowband filter around the angu-

lar frequency ω0, whereby it is quasi-monochromatic, it follows that

μU (r1,r2,ω0)= γU (r1,r2,0). (3.26)

Hence the spectral degree of coherence has a direct connection to measurable

quantities of the field and it can be as easily determined for a given field as the

(temporal) degree of coherence. In the following we will only be interested in the

spectral degree of coherence, so that in accordance with common practice and

with no fear of misinterpretations we will henceforth use the term (complex)

degree of coherence to mean the spectral degree of coherence μU .
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Whereas the degree-of-coherence function (μU ) has a straightforward defi-

nition for scalar fields, which connects it nicely to both visibility and corre-

lation, the situation is much more complex for vector-valued electromagnetic

fields [65]. However, such an extension of the degree-of-coherence function to

vectorial fields is important since all electromagnetic (light) fields are vector-

valued. The problems encountered in extending the scalar concept of the de-

gree of coherence to the vectorial case are basically all due to the fact that

at each spatial point the electromagnetic field is represented by three (inde-

pendent) scalar fields. The question is how the degree of coherence should be

defined between two three-component functions and if the correlations between

the functions at each point should be accounted for or not. From the work done

on the subject and the number of alternative definitions put forward [66–73],

it seems that it may be impossible to retain all salient features of the scalar

degree-of-coherence function in a vectorial extension. Thereby it is mostly ap-

plication dependent, which of the different functional forms given by the sug-

gested degree-of-coherence functions best describes any particular situation.

The most central definitions will be presented below. Here we will only con-

sider the spectral degree-of-coherence functions even though all have a tem-

poral counterpart, which furthermore is the one that has usually been defined

first. In particular, in some of the references below, the temporal definition is

exclusively considered, but since the spectral definition follows readily, it is not

useful to distinguish between the two on this (definition, basic properties) level.

Historically the first function to be called the vector degree of coherence was

μKW(r1,r2,ω)= Tr[WE(r1,r2,ω)]{
Tr[WE(r1,r1,ω)]

}1/2{Tr[WE(r2,r2,ω)]
}1/2 , (3.27)

where WE(r1,r2,ω)= 〈E(r1,ω)E†(r2,ω)〉. The degree-of-coherence function μKW

was originally introduced in the time-domain in 1963 by Karczewski [66, 67]

and later re-introduced in the frequency-domain in 2003 by Wolf [68]. The def-

inition (3.27) of the degree of coherence follows, when the ideas used to obtain

the scalar degree of coherence in the context of Young’s interference experiment

are applied in a straightforward manner to electromagnetic fields.

The appeal of the degree-of-coherence function μKW is that its modulus, |μKW|,
equals the fringe visibility in Young’s experiment for full electromagnetic fields

with the same intensity at both pinholes, and thereby closely mimics the scalar

degree-of-coherence function. The function μKW does not, however, account for

the polarization (vector) properties of the field, and hence it predicts for exam-

ple zero coherence between orthogonal vector components even when they are

proportional to the same scalar signal [74], and that completely coherent fields
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can be fully unpolarized [68]. Furthermore, the function μKW is not invariant

to local rotations of the coordinate system, which occur for instance when curvi-

linear coordinates are used [69]. To remedy this shortcoming, Tervo et al. [69]

introduced the function μSTF defined by

μSTF(r1,r2,ω)=
∥∥WE(r1,r2,ω)

∥∥
F{

Tr[WE(r1,r1,ω)]
}1/2{Tr[WE(r2,r2,ω)]

}1/2 , (3.28)

where ‖·‖F is the matrix Frobenius norm [75]. This definition has also many

other invariance properties that could be expected of a degree-of-coherence

function [62,69,76–78], including, in contrast to μKW, that it is compatible with

the notion of coherent modes (see Sec. 3.3).

The quote by Zernike cited earlier can be interpreted (if only the emphasized

part is considered, as is appropriate for vector-valued fields) so that the degree

of coherence is given by the maximum visibility that is obtained when the field

values at the two pinholes are altered (attenuated, amplified, delayed, polariza-

tion rotated, etc.) freely and independently. Considerations of this nature are

the basis on which Refrégiér and Goudail [70], and Gori et al. [71] have based

their degree-of-coherence functions

μRG(r1,r2,ω)= ∥∥[WE(r1,r1,ω)]−1/2WE(r1,r2,ω)[WE(r2,r2,ω)]−1/2∥∥
2 (3.29)

and

μG(r1,r2,ω)=
∥∥WE(r1,r2,ω)

∥∥
T{

Tr[WE(r1,r1,ω)]
}1/2{Tr[WE(r2,r2,ω)]

}1/2 , (3.30)

respectively. Here ‖·‖2 is the matrix spectral norm and ‖·‖T denotes the ma-

trix trace norm [75]. It can be shown [70] that the function μRG corresponds

to the maximum value that the fringe visibility (|μKW|) can attain for a specific

pair of points of an electromagnetic field when the field vectors are adjusted

in accordance with what is listed above. On the other hand, the function μG

is obtained when non-uniform attenuations or amplifications of the polariza-

tion components at either location are excluded from the considerations. This

restriction was introduced by the authors because such mappings correspond

to irreversible changes of the field [71]. The two degree-of-coherence functions

μRG and μG do not, however, single out coherent modes as would be desirable

for a degree-of-coherence function. This point is discussed in the next section.

Luis [72] has introduced the degree-of-coherence function

μL(r1,r2,ω)=
{
−1

3
+ 4

3

{
Tr[WE(r1,r1,ω)]+Tr[WE(r2,r2,ω)]

}−2

×
{
Tr[W

2
E(r1,r1,ω)]+Tr[W

2
E(r2,r2,ω)]

+2Tr[W
†
E(r1,r2,ω)WE(r1,r2,ω)]

}}1/2

,

(3.31)
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which applies as such to two-dimensional vector fields but can equally well be

defined for three- or higher-dimensional vector fields (the numerical constants

in the expression depend on the dimensionality of the vectors). This function

is essentially a measure of how far from the unit matrix (corresponding to full

incoherence) the 4×4 matrix, consisting of the pairwise correlations of all four

components of the field at the two points, lies. Hence μL is in spirit closely

related to the degree-of-polarization functions of two- and three-component

fields [79]. The degree-of-polarization function P3 of three-component fields

occuring in this context was (re-)introduced into optics by Setälä et al. [80,81],

and it is closely linked to the degree-of-coherence function μSTF evaluated at a

single point, as is evidenced by the relation [69]

μSTF(r,r,ω)=
√

2P3(r,ω)+1
3

. (3.32)

The function P3 attains the value 0 for fully unpolarized fields, and the value

1 for fully polarized fields, respectively. As with degree-of-coherence functions

of electromagnetic fields, there is a debate about the correct way to extend the

well-established concept of degree of polarization of two-component fields to

three-component fields, and the function P3 is just one of the suggested quan-

tities, which include the quantities presented by Setälä et al. [80, 81], Ellis et

al. [82], Luis [79], Réfrégier [83], and Dennis [84]. Overviews of this subject,

which still is in constant development [85–87], can be obtained for example

from Refs. 88 and 89.

We observe that the function μL is also obtained when the so-called effective

degree of coherence is applied to the double pinhole system in Young’s experi-

ment. The effective degree of coherence is considered in depth in Chap. 6, where

we also look at some specific properties of the function μL.

Finally, we note that the characters of the degree-of-coherence functions are

not altered if they are mapped by (monotonic) functions. Specifically, although

for example scalings and shifts, as found in the definition (3.31), may be used,

e.g., to make the degree of coherence of coherent fields 1 and that of incoherent

fields 0, such a mapping has no deep significance beyond cosmetics. Therefore

it is not useful to treat degree-of-coherence functions, that can be mapped to

each other, as distinct.

29



Second-order coherence theory

3.3 Coherent-mode representation of cross-spectral density
operators

Let us consider the random process or field (scalar or vector-valued) u in a

Hilbert space H. Furthermore, let us assume that this is a zero-mean process§,

i.e., 〈u〉 = 0. This assumption does not restrict the generality of our exposition,

since if u is not a zero-mean process, we can consider u−〈u〉 instead, and add 〈u〉
and 〈u〉〈u†〉 to the results where appropriate. With the zero-mean assumption,

the cross-spectral density operator Wu is the autocovariance function of u. It

then follows that u has, in terms of the eigenfunctions φn of Wu as defined

by (3.11), a so-called Karhunen–Lòeve expansion [16,60]

u =
∞∑

n=1
ũnφn, (3.33)

where the stochastic properties of u are contained in the pairwise uncorrelated

random variables ũn and its Hilbert-space properties are represented by the

deterministic orthonormal basis functions φn [60].

The non-stochasticity of the basis functions φn and the uncorrelatedness of

the coefficients ũn mean that the terms in the Mercer series (3.10) represent

mutually uncorrelated random processes or fields. This is manifested by the

fact that the corresponding operators are rank-1 operators, that is, eigenvalue-

scaled outer products of the eigenfunctions, λnφnφ
†
n. Now since correlation

and coherence are the same thing for scalar fields, it is not surprising that the

scalar degree-of-coherence function (3.24) is unimodular for rank-1 operators

(operators that factor), which thus correspond to fully coherent fields. Accord-

ingly the Mercer series (3.10) is also called the coherent-mode expansion of the

cross-spectral density operator Wu.

The situation is unfortunately not as clear for the vectorial degree-of-

coherence functions considered in the last section. Again, the reason is related

to the question of how correlation between multicomponent signals should be

represented in terms of one scalar quantity. However, since the interpretation

of the Mercer series as an expansion in coherent modes is both theoretically

and practically extremely useful, it follows that we would like rank-1 operators

(factored or outer product operators) and only those, to represent coherent fields

also in the vectorial case. This litmus-test of degree-of-coherence functions is

passed by the degree-of-coherence functions μSTF [76] and μL (this follows from

a similar property of the effective degree of coherence, which is considered in

§All optical fields are zero-mean, since they do not include constant electric or magnetic
fields.
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Chap. 6). It is, however, not passed by the degree-of-coherence functions μKW,

μRG, or μG. The squared magnitude of the first of these can take on any value

between 0 and 1 for a rank-1 operator, when the function is evaluated for dif-

ferent pairs of points (r1,r2). For the two latter degree-of-coherence functions

any rank-2 operator, where the two eigenfunctions are pointwise orthonormal

throughout the domain of interest, serves as a counterexample since both func-

tions are unimodular for such fields.

With the eigenvalues λn in the Mercer series (3.10) being numbered in de-

creasing order, a truncation of the Karhunen–Lòeve expansion (3.33) to its first

N terms yields the best possible N-term representation of u with respect to

the mean-square error [60]. In fact, the truncation error is given by the sum∑∞
n=N+1λn, which suggests that the eigenvalues in the Mercer series (3.10) cor-

respond to the weight or importance of the corresponding eigenfunctions φn in

representing the field or process u. Thus the complexity of the field is described

by the number of these eigenfunctions needed for a reasonably accurate repre-

sentation of the field. It is then of interest to determine the Mercer series or

coherent-mode expansions of model fields, to gauge of what complexity these

fields actually are. Without resorting to numerical estimates for the eigenval-

ues, this can, however, only be done when the Mercer expansion is known in

closed form. Such is the case for the universal forms of the cross-spectral den-

sity operator as considered in the following.

As will be shown in Chap. 5, stochastically homogeneous and isotropic source

distributions will in quite general circumstances give rise to a universal form

of the field cross-spectral density operator. In the vectorial case this form is

also found for fields inside blackbody cavities. The universal form of the cross-

spectral density function (apart from irrelevant scaling factors) is given for a

scalar field U and an electromagnetic electric field E by

WU (r1,r2,ω)= Im{Gκ(r1,r2)} (3.34)

and

WE(r1,r2,ω)= Im
{
Gκ(r1,r2)

}
, (3.35)

respectively (see Chap. 5). Here Gκ and Gκ are the free-space Green’s func-

tion and the free-space dyadic Green’s function corresponding to an unbounded

lossless region where the wave number is κ, as given by Eqs. (2.42) and (2.47),

respectively. In Publication I, we show that the coherent-mode expansions of

the universal forms (3.34) and (3.35) can be written for a ball of radius R cen-

tered at 0, B(0,R), as

WU (r1,r2,ω)=
∞∑

n=0

n∑
m=−n

κcn,mψn,m(r1,κ)ψ∗
n,m(r2,κ) (3.36)
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and

WE(r1,r2,ω)=
∞∑

n=1

n∑
m=−n

κcn,mMn,m(r1,κ)M†
n,m(r2,κ)

+
∞∑

n=1

n∑
m=−n

κdn,mNn,m(r1,κ)N†
n,m(r2,κ),

(3.37)

where the functions ψn,m, and the vector wave functions Mn,m and Nn,m are

given by

ψn,m(r,κ)= c−1/2
n,m jn(κr)Y m

n (r̂) (3.38)

and

Mn,m(r,κ)= 1�
n(n+1)

∇× [
ψn,m(r,κ)r

]
, (3.39)

Nn,m(r,κ)= 1�
n(n+1)

κ−1∇×{∇× [
ψn,m(r,κ)r

]}
, (3.40)

respectively. In Eq. (3.38) jn denote the spherical Bessel functions of order n,

and Y m
n are the spherical harmonics of order n and index m [90]. The eigenval-

ues κcn and κdn can be determined from

cn,m =
∫R

0
r2 [ jn(κr)]2 dr = R3

2
{
[ jn(κR)]2 − jn−1(κR) jn+1(κR)

]
(3.41)

and

dn,m = n+1
2n+1

cn−1,m + n
2n+1

cn+1,m. (3.42)

We note that the index m does not affect the eigenvalues cn,m or the eigenvalues

dn,m, which thus both are (2n+1) times degenerate.

To study how the number of eigenvalues needed for a good approximation de-

pends on the radius R of the ball, we take κ= k0 and construct from the eigen-

values k0cn,m the sequence Cl =
∑nl

m=−nl k0cnl ,m, where the index subsequence

nl is so chosen that Cl ≥ Cl+1, for l = 0,1, . . .. In this sequence a degenerate

eigenvalue is represented by one value Cl , which is equal to the degenerate

eigenvalue times its degeneracy, and these values Cl are arranged in decreas-

ing order. The idea here is to capture the importance of a degenerate eigenvalue

to the expansion (3.36), when an all-or-none strategy is used for retaining the

corresponding eigenfunctions. We use the index subsequence nl to approximate

the representation (3.36) by the truncated sum

WU (r1,r2,ω)≈
L−1∑
l=0

nl∑
m=−nl

κk0cnl ,mψnl ,m(r1,κ)ψ∗
nl ,m(r2,κ), (3.43)

where the definition of Cl yields for the relative truncation error the expression

η(L,R)=
∑∞

l=L Cl∑∞
l=0 Cl

. (3.44)

Since Cl ≥ 0, this expression is monotonically decreasing with L and hence the

(inverse) function L(η,R) exists and is well defined. This function returns, for a
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given R, the number of coefficients Cl needed to achieve a truncation error that

does not exceed η.

In Fig. 3.2 we have plotted L(η,R) for η ∈ [0.01,1.00] and R/λ ∈ [0,640]. We ob-

serve that when η decreases, L at first grows rapidly, but then settles into near

linear growth, before abruptly stopping at the required value. This cut-off -like

0

1000

2000

3000

4000

0

160

320

480

640

0.01
0.25

0.50
0.75

1.00
η

R/λ

L
(η

,R
)

Figure 3.2. Number (L) of groups of degenerate eigenvalues needed for the representation of
the scalar universal cross-spectral density operator with relative error η in a ball of
radius R.

behavior stems from the fact that the eigenvalues cn,m as defined in Eq. (3.41),

decrease exponentially (to 0) once a threshold value of n, which depends on R,

is exceeded. On the other hand, we also note that L grows (almost) linearly

with the radius R, in fact L ≈ k0R for small η. Thereby, since nl ≈ l for large

l, the degeneracies of the eigenvalues k0cn,m imply that on the order of (k0R)2

terms are required in the truncated sum (3.43) for a fixed relative error to be

attained. The number of eigenfunctions needed for the representation is conse-

quently proportional to the surface area of the spherical shell of the ball. This

result is no surprise, since the eigenfunctions ψn,m are orthogonal over any

spherical surface, so that the radial coordinate does not add to the complexity

of the representation.

We note that since the values dn,m as given by Eq. (3.42) approximately in-

terlace the values cn,m, the number of terms required to represent the vectorial

cross-spectral density operator WE(r1,r2,ω) of Eq. (3.37) is about twice as large

as for the scalar case, reflecting the fact that an electromagnetic free field is

fully described by two scalar fields, with the three vector components being

coupled by the divergence condition (2.16).

In Sec. 5.5 it is shown that the universal form of the cross-spectral density

operator, Eq. (3.36) or Eq. (3.37), also corresponds to an incoherent collection
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of scalar or vectorial plane waves. The discussion above thus suggests that in

vacuum (κ= k0) such an ensemble requires about (k0R)2 terms in a Karhunen–

Lòeve expansion of the form (3.33) for scalar fields and twice that number for

vector fields. Furthermore, as was noted earlier, no other set of basis func-

tions can yield a smaller mean-square error with fewer terms in the correspond-

ing representation. Hence, we may conclude that the random behaviors of the

scalar and electromagnetic fields in these cases have intrinsic complexities that

cannot be represented with less than about (k0R)2 and 2(k0R)2 uncorrelated,

linearly independent terms, respectively.

3.4 Coherence length

The coherence length of a stochastic field is a quantity, which has no rigorous

definition, but in practice the coherence length is taken to be the largest dis-

tance between two points in the field over which there is significant coherence

or correlation. Since coherence is measured in terms of the degree-of-coherence

functions considered in the previous section, it follows that the coherence length

is deduced from these and can, in the vector case, be different for different

choices of the degree-of-coherence function. In this thesis the coherence length

of a vector-valued field is, however, exclusively determined from the degree-

of-coherence function μSTF. Below we specify the coherence length for typical

functional forms of the degree-of-coherence functions and also consider exam-

ples of functional forms for which it is difficult to specify the coherence length

in an unambiguous way.

In Fig. 3.3 we have displayed the functional form of the magnitudes of four

degree-of-coherence functions that appear in this thesis. The functions are all

presented in terms of the wavelength-normalized distance r/λ between the two

observation points r1 and r2, and thus they correspond to homogeneous and

isotropic fields (see Secs. 5.3 and 5.4), for which the degree-of-coherence func-

tions are of the simple form μ(r1,r2,ω)=μ(r,ω). Although the scalar degree-of-

coherence function always reaches the maximum value 1 at r = 0λ, the degree-

of-coherence functions of vector fields may not attain the value 1 at all. Indeed,

for all the functions considered here the maximum occurs at r = 0λ where, ac-

cording to Eq. (3.32), the degree-of-coherence function μSTF of an unpolarized

field has the value 1/
�

3. Therefore, to simplify comparisons of different func-

tional forms, all of the functions have been normalized with respect to the max-

imum value of their modulus, μmax. The functions used in the plots, together

with their maximum values, are listed in Tab. 3.1, where we have also indicated
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Figure 3.3. Examples of degree-of-coherence functions encountered in second-order coherence
theory: (a) Gaussian form, (b) scalar sinc-form (universal form), (c) vector universal
form, and (d) vector form in blackbody aperture.

∣∣μ(r,ω)
∣∣ μmax Same func. form in Eqs.

(a)
∣∣∣∣exp

[
− (k0r)2

4

]∣∣∣∣ 1 (5.46)§

(b) |sinc(k0r)| 1 (5.8), (5.9), (5.32), (5.36)

(c)
√

1
3

j2
0(k0r)+ 1

6
j2
2(k0r)

1�
3

(5.37)

(d)

√
1
3

j2
0(k0r)+ 1

6
j2
2(k0r)+ 1

2

[
J2(k0r)

k0r

]2 1�
3

(4.7)

§In this case the degree-of-coherence function is also of the form (5.46).

Table 3.1. Functional forms of degree-of-coherence functions considered in this thesis, with cor-
responding equation numbers and maximum values.
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which equations in later sections are of each particular form.

With respect to the plots in Fig. 3.3, it is clear that coherence is approxi-

mately limited to the neighborhood of the central peak in each case, and that

these peaks are almost all of equal width. For the functions in Figs. 3.3 (b)–(d)

this correspondence follows naturally from their functional forms, whereas for

the Gaussian function plotted in Fig. 3.3 (a) we have on purpose chosen the

value 2/k2
0 for its variance. The same idea is behind the choices we make in

Sec. 5.6, where we consider a cross-spectral density operator with a Gaussian

degree-of-coherence function. Incidentally, the coherence length can be defined

most easily in the Gaussian case. Indeed, we note from Fig. 3.3 (a) that there

are practically no correlations present for r > 0.5λ. Specifically, in other appli-

cations, such as in laser beam diameter estimation (of approximately Gaussian

beams) [4,15], the cutoff height of a Gaussian is taken to be 1/e2 ≈ 0.135, which

here would translate into a coherence length r = λ/π≈ 0.318λ. However, as the

following discussion suggests, it is useful to set the coherence length of this

Gaussian to exactly r =λ/2.

Assigning a coherence length for the sinc-function displayed in Fig. 3.3 (b) is

not as straightforward as for the Gaussian function, because of the presence

of side lobes in the former. However, the convention for example in radiomet-

ric and coherence theoretic considerations of (planar) blackbody sources (see

Ref. 91), where the degree-of-coherence function of the representative scalar

field at the emitter surface has the same sinc-form, is to use r = λ/2 as the co-

herence length. We observe that r = λ/2 is the location of the first zero of the

sinc-function, so this definition includes the central peak in full. Although the

functions in Figs. 3.3 (c) and (d) do not vanish at or before r =λ/2, and the func-

tion in Fig. 3.3 (d) actually plateaus at this location, the relative heights of the

functions in (c) and (d) outside their central peaks are not much larger than

the relative height of the first sidelobe of the function in (b). Because all three

functions are related to blackbody radiation (see Chap. 4), it is then useful to

take the coherence length in all these cases to be exactly r = λ/2. The same

coherence length was chosen for the Gaussian function, since its central peak

has nearly the same width as the sinc-function central peak in Fig. 3.3 (b), and

since it is practical to apply the commonly used blackbody coherence length as

a yardstick when comparing coherence lengths.

To illustrate the ambiguous nature of the coherence length for general func-

tional forms, we consider the functions plotted in Fig. 3.4. For these functions it

is challenging to define the coherence length in a useful way, and the whole con-

cept of a coherence length is questionable in these cases. The same kind of chal-

36



Second-order coherence theory

0.0

0.5

1.0

0.
0

0.
5

1.
0

1.
5

2.
0

r/λ

|μ(r,ω)|/μmax

0.0

0.5

1.0

0.
0

0.
5

1.
0

1.
5

2.
0

r/λ

|μ(r,ω)|/μmax

(a) (b)

0.0

0.5

1.0
0.

0

0.
5

1.
0

1.
5

2.
0

r/λ

|μ(r,ω)|/μmax

0.0

0.5

1.0

0.
0

0.
5

1.
0

1.
5

2.
0

r/λ

|μ(r,ω)|/μmax

(c) (d)

Figure 3.4. Examples of functional forms for which it is difficult to unambiguously define a
coherence length in a useful way.

lenge is present for example when one tries to apply the concept of bandwidth

to arbitrary signals or define the spectral range of multimode radiation [16,45].

It is because of this difficulty that we have in Publications IV and V (see also

Chap. 5), where the coherence lengths of fields and sources play an important

role, chosen to limit our considerations to fields and sources with either Gaus-

sian or sinc-type degree-of-coherence functions, which, as discussed above, have

well-defined or agreed-upon coherence lengths.
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4. Blackbody radiation

Blackbody radiation is the radiation emitted by a perfectly absorbing body that

is in thermal equilibrium with its surroundings. Although such blackbodies are

only theoretical constructs, the radiation emanating from actual systems that

are near thermal equilibrium can be modeled on blackbody radiation. Indeed,

thermal (chaotic) radiation is defined by Mandel and Wolf [16] to be radiation

which can be obtained from blackbody radiation by (spatial and/or temporal)

linear filtering. In practice sources of thermal radiation are best described

in thermodynamical terms, because their microscopic (chaotic) behavior is as-

sumed to be known only stochastically. Such sources include most ‘natural’

sources of light. For example stars and incandescent lamps or other heated fil-

aments are thermal emitters, and the detected cosmic background radiation is

well described as blackbody radiation.

The importance and abundance of thermal emitters imply that a good un-

derstanding of blackbody radiation is essential to the analysis and modeling of

radiation phenomena. It was the desire to explain the early measurements of

the spectrum of light (and radiated heat) obtained from heated bodies that led

Planck to formulate his celebrated expression for the spectral distribution of

blackbody radiation, given by [4,16,17]

4a0(ω)= 2ħω3

πc3
1

exp(ħω/kBT)−1
, (4.1)

where T is the absolute (equilibrium) temperature of the body, kB is the Boltz-

mann constant, and ħ is the reduced Planck constant. Here the left-hand side is

displayed in a form, which is consistent with the notation used in Publication

II. Planck later managed to explain the expression (4.1) theoretically by in-

voking the then ad hoc assumption of quantized energy levels (see for example

Ref. 17), an assumption that contributed to the birth of quantum mechanics.

In his derivation of the spectral distribution law (4.1), Planck studied the

blackbody radiation inside a cavity with walls impermeable to radiation. It can

be shown that as long as a cavity has this property and when it contains an ar-
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bitrarily sized (small) blackbody either inside the cavity or as part of the cavity

wall, a blackbody electromagnetic field will eventually be induced within the

cavity at thermal equilibrium, regardless of what other properties the cavity

walls may have [17]. A small aperture introduced into the cavity wall is a good

approximation of a blackbody source to the outside. Accordingly, a blackbody

cavity with an aperture, as illustrated in Fig. 4.1, can be used as both a the-

oretical and an experimental analog for blackbody sources, as was originally

suggested by Wien and Lummer [92].

b1

b2

b4

c1

c2

c4

x

y

z

r1

r2

A

a

bc

Π

Figure 4.1. Illustrating the coordinate axes and observation-point vectors relating to a black-
body cavity with an aperture A . The cavity is assumed to be asymptotically large
with the aperture wall Π fixed in the plane z = 0. Also shown are the plane wave
propagation directions away from points (a) in the aperture, (b) on the cavity bound-
ary (wall) and (c) at interior regions of the cavity. Not shown are the complementary
plane waves that propagate toward these points.

Although Planck in places applied rigorous electromagnetic theory in his

analysis [17], Planck’s description of the spatial behavior of the blackbody ra-

diation field was mainly based on geometrical or ray optics considerations [3].

It was only later that a full electromagnetic treatment of blackbody radiation

in closed (infinitely large) cavities was established [93–97]. The far-field pat-

terns of blackbody apertures and other surface emitters have been extensively

studied in radiometry [98], but there the treatment is in terms of scalar fields

and for blackbody radiation, in particular, the planar source distribution is de-

duced from the far-field properties of the radiation rather than vice versa (see

for example Refs. 99 and 100). It seems that the electromagnetic cross-spectral

density of a blackbody field in the aperture was first determined by James [101].

He also showed that the radiation emanating from the aperture is unpolarized

in every direction of the far field, and his results were extended in the parax-

ial case to the cross-spectral density of the far field by Lahiri and Wolf [102].

As is shown by us in Publication II, the influence of an opening in the cavity
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wall on the field inside the aperture is, however, treated erroneously in these

papers. We also derive the correct expressions for the cross-spectral density

in the aperture as well as in the far field. These results are presented in the

following, where we also discuss how the cavity wall, in which the aperture is

located, affects the field. Surprisingly, its contribution has so far been com-

pletely neglected (by us and others) in this context, but fortunately it turns

out that although the wall changes the field near it, it does not influence the

cross-spectral density of the field in the aperture or outside the cavity.

4.1 Blackbody radiation in and from aperture

We begin by considering a large (at least with respect to the wavelengths

of interest) vacuum-filled cavity, which is at thermodynamic equilibrium and

which does not radiate to the outside world. For an infinitely large cavity, the

cross-spectral density operator of the blackbody field inside the cavity is given

by [96,97]

WE(r1,r2,ω)= 4πa0(ω)
(
I+ 1

k2
0
∇1∇1

)
sin(k0|r1 −r2|)

k0|r1 −r2|

= 4πa0(ω)
k0

Im{Gk0 (r1,r2)}.
(4.2)

This cross-spectral density operator also describes a uniform distribution of

uncorrelated, unpolarized plane waves [103, 104] and hence it can also be ex-

pressed in the form (see Publication II and Sec. 5.5)

WE(r1,r2,ω)

= a0(ω)
∫
α

∫
α
δ(û2 − û1)

(
I− û1û1

)
exp[ik0 (û1 ·r1 − û2 ·r2)]dû1dû2

= a0(ω)
∫
α

(
I− ûû

)
exp[ik0û · (r1 −r2)]dû,

(4.3)

where α denotes the region of solid angles of interest, which here is the com-

plete spherical shell S. In line with the argumentation of Planck [17], we take

the field to be homogeneous and isotropic everywhere inside the cavity and, in

particular, arbitrarily close to the cavity walls. Hence we assume that Eqs. (4.2)

and (4.3) can be used to represent the field just inside the cavity walls. As is

shown in Sec. 4.2, this assumption is not actually true, but the necessary cor-

rections do not affect the conclusions or the results presented below for the field

inside the aperture and the field outside the cavity.

We now consider the particular geometry shown in Fig. 4.1, where the cavity

resides in the half-space z < 0 with a part (Π) of its wall lying in the plane z = 0.

This part of the wall furthermore has an aperture (A ), whose dimensions are
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much larger than the wavelengths of interest, but at the same time sufficiently

small so that the blackbody field reaching the aperture from the inside of the

cavity is not disturbed. Specifically, we assume that the field component prop-

agating toward the wall is not altered when the aperture is introduced. On the

other hand, since there is no wall at the aperture, there is no source for the field

component propagating inward away from the aperture and thus the blackbody

field at the aperture consists only of waves that (eventually) propagate into the

half-space z > 0. This means that the cross-spectral density operator of the

field at the aperture is given by Eq. (4.3), where the solid angle α is restricted

to the hemisphere, which corresponds to plane waves that propagate into the

half-space z > 0. In Publication II we have evaluated the integral in Eq. (4.3)

at z = 0 for this specific case, obtaining for the cross-spectral density operator

of the blackbody radiation inside the aperture the expression

W
(A )
E (ρ1,ρ2,ω)

= 2πa0(ω)
{[

j0(k0ρ)− j1(k0ρ)
k0ρ

]
I+ j2(k0ρ)ρ̂ρ̂+ i

J2(k0ρ)
k0ρ

(
ρ̂ẑ+ ẑρ̂

)}
,

(4.4)

where ρ j = r j(z = 0), j = 1,2, ρ =ρ2−ρ1 and ẑ denotes the unit vector along the

z-axis. Here and henceforth Jn denotes the Bessel function of order n [90].

The first two terms in the representation (4.4) are equal to half the result

obtained from Eq. (4.3) when α=S. These terms represent a homogeneous and

isotropic contribution to the cross-spectral density operator in the aperture.

This is in contrast to the last term, which is anisotropic and particular in form

to the plane z = 0. It is this third term that is missing in the representation

considered by James [101], and by Lahiri and Wolf [102]. In fact, in both pa-

pers it is for some reason explicitly stated without proof that the cross-spectral

density operator corresponding to the plane waves traveling only in the z > 0

direction is precisely half of the cross-spectral density operator corresponding

to all plane waves. Omitting the third term from the expression (4.4) actually

means that the cross-spectral density operator in the aperture is not compati-

ble with a field that satisfies the divergence condition (2.16) in the half-space

z > 0.

Because we take the blackbody cavity to be radiating only through the aper-

ture, whose dimensions are large with respect to the wavelength, it follows that

we can use the Rayleigh diffraction formula of the first kind [3,16] together with

the assumption that the field vanishes outside the aperture (Kirchhoff bound-

ary condition), to determine the far-field pattern to a high degree of accuracy.

When we use this approach for each of the three scalar components of the elec-

tric field for a circular aperture (radius b), as we have done in Publication II
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(where the radius was denoted by ε), we obtain for the cross-spectral density

operator of the far-field pattern the expression

W
(∞)
E (r1,r2,ω)= (2πk0)2(ẑ · r̂1)(ẑ · r̂2)

exp[−ik0(r2 − r1)]
r1r2

T(σ1,σ2), (4.5)

where

T(σ1,σ2)= a0(ω)b2

2πk2
0

J1(k0bσ)
k0bσ

× (1−σ2)−1/2
[
I− (1−σ2)ẑẑ−σσ− (1−σ2)1/2 (ẑσ+σẑ)

]
,

(4.6)

with σ j = (I−ẑẑ)·r̂ j, j = 1,2, σ=σ2−σ1 and σ= (σ1+σ2)/2. It is straightforward

to show that the far-field pattern corresponding to this cross-spectral density

operator is completely unpolarized. We have proven this fact in Publication II.

From the cross-spectral densities given by Eq. (4.4), and Eqs. (4.5) and (4.6),

we get for the corresponding degree-of-coherence functions μSTF, the expres-

sions

μ(A )
STF(ρ1,ρ2,ω)= 1�

3

[
j2
0(k0ρ)+ 1

2
j2
2(k0ρ)+ 3

2
J2

2 (k0ρ)
(k0ρ)2

]1/2

(4.7)

and

μ(∞)
STF(r1,r2,ω)=

�
2
∣∣∣∣ J1(k0bσ)

k0bσ

∣∣∣∣[(ẑ · r̂1)(ẑ · r̂2)

1−σ2

]1/2
(4.8)

in the aperture and in the far field, respectively. In the paraxial regime the

expression (4.8) reduces to the result for unpolarized fields obtained from the

electromagnetic van Cittert–Zernike theorem [105]. The degree-of-coherence

function of the aperture is plotted in Fig. 3.3 (d), where it can be compared

to the degree-of-coherence functions of the scalar universal form [Fig. 3.3 (b)]

and to the blackbody degree-of-coherence function for fields inside the cavity

[Fig. 3.3 (d)]. The degree-of-coherence function of the aperture field, as for the

two other degree-of-coherence functions, the coherence length of the field is of

the order of half a wavelength.

The far-field degree-of-coherence function is, in turn, plotted in Fig. 4.2 for

a range of aperture radii b in terms of the spherical polar angles θ1 and θ2 of

the unit vectors r̂1 = (θ1,φ1) and r̂2 = (θ2,φ2), where the azimuthal angles have

the fixed values φ1 = 0 and φ2 = 0. We note that for large radii the angular

coherence length in paraxial directions is of the order of 0.01rad, and that it is

longer for larger angles. The coherence length is also longer for smaller aper-

tures, which is explained by the fact that the extent of the point spread function

of the radiation is inversely proportional to the aperture size. The longer coher-

ence length at oblique angles can, in turn, be attributed to the cosine-law -like

behavior of the degree-of-coherence function in Eq. (4.8) for such angles.
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It is also of interest to note that the radiant intensity or power per solid angle

of the far-field pattern corresponding to the cross-spectral density operator (4.5)

in the direction r̂ is given by

J(r̂,ω)= 2a0(ω)πb2(ẑ · r̂), (4.9)

which shows that the blackbody radiation satisfies the so-called Lambert cosine

law, that is, the radiant intensity of the radiation is directly proportional to the

cosine of the angle between the direction of propagation of the radiation and

the surface normal of the source.

The expression (4.4), derived by us in Publication II, represents to the best

of our knowledge the first time the full electromagnetic cross-spectral density

operator of blackbody radiation has been (correctly) determined inside the aper-

ture. The agreement between the results from our rigorous derivation and the

results corresponding to the planar models of blackbody radiation used for ex-

ample in the context of radiative transfer, validate the latter as models of black-

body or thermal radiation on theoretical grounds. Agreement with experimen-

tal results has of course long been known and has, in fact, formed the basis of

most of the models. Our results now provide a theoretical confirmation of these

models and furthermore form a foundation on which also rigorous electromag-

netic analyses of blackbody radiation can be built.

4.2 Effect of the boundary at z = 0

Because the main result in Publication II is the introduction of the third term

in the aperture cross-spectral density expression (4.4), and since this term fol-

lows from properly accounting for the aperture on the cavity wall, which had

not been done previously, it is prudent to note that our derivations are based

on an assumption that obviously is suspect. Indeed, although it turns out not

to ultimately affect our results, we have not considered how the boundary or

wall at the finite coordinate position z = 0, where the aperture is eventually

introduced, might influence the form of the cross-spectral density operator of

the field in the cavity. According to the Planckian analysis of blackbody ra-

diation [17], the boundary should have no effect, but in view of the fact that

rigorous electromagnetic analysis reveals that the finiteness of the cavity actu-

ally changes the blackbody spectrum itself (see for example Ref. 106), care must

be taken when drawing conclusions about the electromagnetic details.

To analyze the effect of the boundary or wall at z = 0 on the cavity radiation

near it, we must know the material and build of this wall. As discussed previ-
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ously, the only requirement that needs to be placed on the wall material is that

the wall is impermeable to radiation. Here we follow Planck and take the cavity

walls to be perfect conductors, which are also perfect reflectors, whereby they

cannot be permeable. Actually, it seems that the perfect conductor is the only

‘simple’ material that fulfills the nonpermeability assumption. Furthermore,

the cross-spectral density of the radiation in a blackbody cavity occupying the

half-space z < 0, with a perfectly conducting wall at z = 0, has already been de-

termined by Agarwal [97], who obtained the additive correction (which is here

represented in our notation)

ΔWE(r1,r2,ω)=−4πa0(ω)
[(

I+ 1
k2

0
∇1∇1

)
sin(k0|r1 −R ·r2|)

k0|r1 −R ·r2|

]
·R

=−WE
(
r1,R ·r2,ω

)
·R

(4.10)

to the cross-spectral density function of Eq. (4.2). Here R= I−2ẑẑ is an operator

that reflects the vector it operates on in the plane z = 0. When α=S, we can use

the first part of the representation (4.3) in Eq. (4.10) to obtain the expression

ΔWE(r1,r2,ω)

= a0(ω)
∫
α

∫
α
δ
(
R · û2 − û1

)(
û1û2 −R

)
exp[ik0 (û1 ·r1 − û2 ·r2)]dû1dû2.

(4.11)

We note that the assumption of a half-space cavity is tantamount to consider-

ing a cavity, whose dimensions are large with respect to the wavelength of the

radiation, and is thereby already covered by previous specifications.

Let us now introduce an aperture into the perfect conductor as we did in

Sec. 4.1, and again consider the cavity field at the aperture, but now augment-

ing the cross-spectral density operator by the additional term (4.11). When we

apply the restriction of propagation only into the half-space z > 0 in this ex-

pression, so that α represents the corresponding hemisphere, we observe that

the unit vector û1 then always points into the half-space z > 0 and the unit

vector R · û2 always points into the half-space z < 0, whereby the argument to

the δ-function in Eq. (4.11) never vanishes. Thereby it follows from that equa-

tion, that in this case the additive correction ΔWE(r1,r2,ω) vanishes identically.

Physically this result implies that the additive term (only) describes the cross-

correlations between plane waves propagating toward the half-space z < 0 and

plane waves propagating toward the half-space z > 0, and hence this term does

not influence the correlations between the field components that propagate into

the z > 0 half-space [fields (a) in Fig. 4.1]. Thus, as only the latter kind of plane

waves are present in the aperture, our previous assumption that these compo-

nents of the field alone determine the far-field pattern in the half-space z > 0

turns out to be valid. Furthermore, we note that since the perfect conductor re-
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flects the completely uncorrelated cavity field ‘onto’ itself [fields (b) in Fig. 4.1],

the correlations between the field components propagating towards different

half-spaces are, in fact, expected. Nevertheless, this effect is not present in the

Planckian analysis. For two points, r1 and r2 inside the cavity, the additive

correction given by Eq. (4.10) drops off at a rate, which is roughly inversely pro-

portional to |z1 + z2|, and hence deep inside the cavity [fields (c) in Fig. 4.1] the

effect of this correction becomes negligible with respect to the main term (4.2).

Although we have here considered only a perfectly reflecting boundary, the

thermal equilibrium of the cavity walls and the radiation within the cavity, to-

gether with the fact that no radiation escapes the cavity, suggest, as discussed

previously, that the material of the nonpermeable cavity walls does not affect

the equilibrium form of the blackbody radiation emitted from the aperture.

Therefore the conclusion that only the ‘free-space’ form of the cross-spectral

density operator, as given by Eq. (4.2), needs to be considered when determin-

ing the cross-spectral density operator of the fields inside and escaping through

the aperture, holds for every blackbody cavity, whatever material its walls are

made of.
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5. Universality of the degree of
coherence

The works presented in Refs. 107–110 suggest that for scalar fields produced

by homogeneous and isotropic sources in unbounded regions, the degree-of-

coherence function (3.24) inside the source region always attains the same, uni-

versal, sinc-form [see Eq. (5.9)], which is also equal to the imaginary part of the

scalar free-space Green’s function, given in Eq. (3.34). This universality result

was later extended by us in Publication III to vector-valued electromagnetic

fields.

Although the early results [107, 109] suggested that the universal behavior

found for asymptotically unbounded lossless regions should be a good model for

what happens in bounded and slightly lossy regions, this is actually not the

case. Indeed, we prove in Publication IV that a finite amount of loss, however

small, is sufficient to invalidate universality in (asymptotically) unbounded re-

gions. Furthermore, in Publication V we show that the universality result is,

in general, not a good model for fields sourced by arbitrary finite-sized source

regions, whether these regions are lossy or not.

A specific property of the universality result is that it implies that the co-

herence lengths of fields produced by homogeneous and isotropic sources are

equal to, or at least of the order of, the blackbody (transversal) coherence

length λ/2 [98, 110]. Since completely incoherent, or δ-correlated, sources pro-

duce fields that exhibit the universal form, this seems to suggest that fields

sourced by homogeneous and isotropic sources, with otherwise arbitrary coher-

ence properties, cannot have coherence lengths that are appreciably shorter

than the blackbody coherence length λ/2. As our results show that the univer-

sal form is not as universal as was first thought, they also remove the lower

bound of the field coherence length. Indeed, we have shown in Publications IV

and V that for both lossy unbounded source regions and finite-sized source re-

gions with arbitrary properties, the coherence length of the generated field can

be made as short as desired by selecting the homogeneous and isotropic source
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distribution appropriately.

In the following we present the results concerning the coherence properties

of fields inside their source regions in more detail. We cover the results that

point toward a universal character for the degree-of-coherence function for both

scalar and vector-valued electromagnetic fields, but in particular concentrate

on the results, which show that the universal character is undermined by (ar-

bitrarily) small losses and region boundaries that lie at finite distances. Ac-

cordingly, we conclude by showing that for finite regions there is actually no

universality.

5.1 Degree-of-coherence functions for homogeneous fields

For stochastically homogeneous scalar or vector-valued fields u, that is, for

fields whose cross-spectral density operator satisfies

Wu(r1,r2,ω)=Wu(r1 −r2,ω), (5.1)

it follows that Wu(r,r,ω)=Wu(0,ω), whereby the dependence of every degree-of-

coherence function considered in Sec. 3.2 on the difference r1−r2, is completely

mediated by the cross-spectral density operator Wu(r1 −r2,ω). Of course, these

functions also depend on the constant operator or value Wu(0,ω), but apart

from the degree-of-coherence function μRG this simply amounts to one or two

numerical constants in the expression. For the function μRG the situation is

slightly more complicated, but in this case too, the qualitative behavior of the

degree of coherence can be understood by studying Wu(r1 −r2,ω). To avoid the

unnecessary clutter that would result if we considered each of the degree-of-

coherence functions separately, we will in the following investigate their prop-

erties in terms of the cross-spectral density operators. The important results

are, however, also displayed in terms of selected degree-of-coherence functions.

5.2 Field cross-spectral density corresponding to a δ-correlated
source within a bounded spherical region

In this section we concentrate on systems, which can be described in scalar

terms, because the scalar model sources are simpler than vectorial ones. This

is, however, not an essential restriction since the results are readily extendable

to vectorial systems if so desired. Here we also assume that all space is lossless

and of one medium, whereby it is mathematically equivalent to vacuum and we

take κ= k0 in what follows.
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To begin with we consider a source, which is confined inside a finite ball

B(0,R) with radius R <∞, and which is completely uncorrelated therein. Math-

ematically we thus have for the source correlation function WQ the expression

WQ(r1,r2,ω)=Q0Θ(r1 ≤ R)Θ(r2 ≤ R)δ(r1 −r2), (5.2)

where Q0 is an arbitrary constant and the function Θ equals 1 when its ar-

gument is true and 0 when its argument is false. With the source correlation

function given by Eq. (5.2), we get when we introduce this function into the

expression (3.17), for the corresponding cross-spectral density operator of the

scalar field U , the representation

WU (r1,r2,ω)=
∫
R3

∫
R3

Gk0 (r1,r′1)G∗
k0

(r2,r′2)WQ(r′1,r′2)dr′1dr′2

=Q0

∫
B(0,R)

Gk0 (r1,r′)G∗
k0

(r2,r′)dr′.
(5.3)

We then consider the cross-spectral density operator and the corresponding

scalar degree-of-coherence function as given by Eq. (3.24) for the case when

r1 = r and r2 = 0. Specifically, we fix one of the observation points at the center

of the spherical source region. For the cross-spectral density operator we then

have straightforwardly from Eq. (5.3) the expression

WU (r,0,ω)=Q0

∫
B(0,R)

Gk0 (r,r′)G∗
k0

(0,r′)dr′

=Q0

∫
B(0,R)

exp(ik0|r−r′|)
|r−r′|

exp(−ik0r′)
r′

dr′,
(5.4)

where the last step follows from the representation (2.42). This expression is

further developed in Ref. 107 into the form

WU (r,0,ω)= 4πRQ0

[(
1− 1

2
r
R

)
j0(k0r)+ i

2
r
R

j1(k0r)
]

, (5.5)

which holds for r < R, and the (transient) degree-of-coherence function is shown

to have the expression

μ′(r,0,ω)=

(
1− 1

2
r
R

)
j0(k0r)+ i

2
r
R

j1(k0r)[
1−S

( r
R

)]1/2 , r < R, (5.6)

where the auxiliary function

S(z)= 1
2
+ 1

4
z2 −1

z
ln

(
1+ z
1− z

)
(5.7)

has been introduced for notational convenience.

When r/R � 1, the transient degree-of-coherence function (5.6) attains the

form

μ′(r,0,ω)∼ j0(k0r)= sin(k0r)
k0r

=μ(r,0,ω),
r
R

� 1. (5.8)
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Furthermore, if the radius of the system becomes asymptotically large, that is

R →∞, the degree-of-coherence function becomes

μ(r1,r2,ω)∼μ′(r1 −r2,0,ω)∼ j0(k0|r1 −r2|)= sin(k0|r1 −r2|)
|r1 −r2|

, (5.9)

irrespectively of whether r2 = 0 or not.

The behavior of the transient degree-of-coherence function (5.6) is studied in

Fig. 5.1, where the difference |μ′(r,0,ω)−μ(r,0,ω)| between it and its asymptotic

form (5.8) is plotted for different values of |r| and R. We observe that when

R exceeds about 5λ, the difference between the transient degree-of-coherence

function and its asymptotic form is almost negligible and becomes more so when

R grows larger.
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(r
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)|

Figure 5.1. Absolute difference between the transient degree-of-coherence function μ′(r,0,ω)
of Eq. (5.6) and its asymptotic (universal) form μ(r,0,ω), given by Eq. (5.8) as a
function of the distance |r| and the ball radius R.

From these results we can draw a few important conclusions. First of all,

the degree-of-coherence function of a field corresponding to a completely uncor-

related source distribution in a finite ball rapidly converges to the form (5.9),

when the radius of the ball exceeds about five wavelengths. Hence this form

is a good representant for the degree-of-coherence function in such situa-

tions. Secondly, although the source distribution is completely uncorrelated

(δ-correlated), the corresponding field distribution degree-of-coherence function

is not peaked. In fact, the corresponding coherence length is λ/2, which is of the

same order of magnitude as the wavelength of the field. In the next section,

we see that the form (5.9) is actually common to many fields produced by large

(unbounded) homogeneous and isotropic source distributions.
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5.3 Homogeneous sources in unbounded regions

The results of the previous section, which showed that the degree-of-coherence

function converges rapidly with the source region radius R to its form for large

source regions, suggest that it should be possible to draw conclusions about the

relations between source and field coherence functions by studying unbounded

regions instead of actual finite regions. Such an approach is attractive since it

markedly simplifies the mathematical expressions and allows for simple rela-

tions to be derived. The downside to this approach is, however, that the mathe-

matical expressions simplify mainly because effects at the source region bound-

aries become insignificant, which may not be true in actual systems. In this

section we consider (negligibly) lossy unbounded regions and in the following

two sections we look at what effects are missed by making these assumptions.

To begin with, we note that if the source region is unbounded and the source

term Wq(r1,r2,ω) in the expression (3.17) does not drop off rapidly enough when

|r1|, |r2|→∞, that expression will in general diverge if Im{κ2}≤ 0, that is, if the

source region medium is not lossy (see Sec. 2.2). Therefore, as a renormalization

procedure, we assume that Im{κ2} > 0, or which is the same for Re{κ} > 0, that

Im{κ}> 0, and for lossless regions we take the limit Im{κ}→ 0+ only at the very

end of all calculations, when we compute the degree-of-coherence function. This

approach can be motivated for example if one observes that any real medium,

except the classical vacuum, is lossy. Suppose then that the source correlation

function Wq is homogeneous or of the form

Wq(r1,r2,ω)=Wq(r1 −r2,ω)=Wq(r,ω), (5.10)

where r = r1 −r2. It can be shown [108] that when this source distribution is

used in the expression (3.17), where Im{κ} > 0, we get for the cross-spectral

density function Wu the expression

Wu(r1,r2,ω)= 2π
Imκ

∫
R3

j0(Re{κ}|r−r′|)exp(−Im{κ}|r−r′|)Wq(r′,ω)dr′

=Wu(r,ω),
(5.11)

where r′ = r′1 −r′2 and the last step follows directly from the expression itself.

Specifically, the field produced by a homogeneous source distribution is itself

homogeneous.

The derivation of Eq. (5.11) as presented in Ref. 108 only applies as such

for three-dimensional systems. In later papers a Fourier-transform -based ap-

proach is used instead. This alternative approach was introduced in an ef-

fort to obtain results for other than three-dimensional systems [110]. Here we
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will only consider three-dimensional systems, but since we apply the Fourier-

transform -based approach in our own papers, we outline it here for complete-

ness.

When the source distribution in the double Helmholtz equation (3.16) is ho-

mogeneous, the right-hand side of that equation remains unchanged if we re-

place r1 and r2 by r1 +x and r2 +x, respectively, where the shift x is arbitrary.

The left-hand side remains unchanged in form, but Wu(r1,r2,ω) is replaced by

Wu(r1+x,r2+x,ω). Because the fields satisfy the Sommerfeld or Silver–Müller

radiation conditions, the solution to the double Helmholtz equation is unique,

and hence it follows from the arbitrariness of x that the field cross-spectral den-

sity function must be homogeneous as well. Thereby, if we set r = r1 −r2, we

can rewrite the double Helmholtz equation (3.16) in the homogeneous case and

when the wave number is constant throughout space [κ(r,ω)= κ(ω)] as

(∇2 +κ2)(∇2 +κ∗2)Wu(r,ω)= 16π2Wq(r,ω). (5.12)

Let us now introduce for the homogeneous source and field cross-spectral coher-

ence and correlation functions the Fourier representations given by the trans-

form pair

Wa(r,ω)=
∫
R3

Ŵa(k,ω)exp(−ik ·r)dk, (5.13)

and

Ŵa(k,ω)= 1
(2π)3

∫
R3

Wa(r,ω)exp(ik ·r)dr, (5.14)

where a ∈ {u, q}. When the representation (5.13) is introduced into the homo-

geneous double Helmholtz equation (5.12) and the linear independence of the

trigonometric exponential functions is used, we arrive at

(−k2 +κ2)
(−k2 +κ∗2)Ŵu(k,ω)= 16π2Ŵq(k,ω), (5.15)

which is an algebraic equation.

It is straightforward to write the solution to this algebraic equation. Indeed,

since Im{κ}> 0, the function

ĝ(k)= 1
|k2 −κ2| , (5.16)

is regular for real k and the solution to Eq. (5.15) can be written in the form

Ŵu(k,ω)= 16π2 ĝ(k)Ŵq(k,ω). (5.17)

From the Fourier-transform convolution theorem it now follows that the solu-

tion to the homogeneous double Helmholtz equation (5.12) is given by

Wu(r,ω)= 2
π

∫
R3

g(R)Wq(r−R,ω)dR= 2
π

∫
R3

g(r−R)Wq(R,ω)dR. (5.18)
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Since the inverse Fourier transform of the function ĝ(k) defined in Eq. (5.16) is

given by [110]

g(r)= π2

Im{κ}
j0(Re{κ}r)exp(−Im{κ}r), (5.19)

we immediately see that the solution (5.18) agrees with the solution (5.11),

as it should. The derivation of this solution has been formal in that we have

not here addressed questions relating to the convergence of the involved in-

tegrals. That we have done in Publication IV, where we have shown that

for a continuous and absolutely integrable scalar source correlation function

WQ(r,ω), with WQ(0,ω) < ∞, the expression (5.18) [and hence, by association

Eq. (5.11)] provides the unique solution to the homogeneous double Helmholtz

equation (5.12).

Since we are interested in computing the degree-of-coherence function in loss-

less regions, where the representation (5.11) diverges, we consider the (renor-

malization) limit

lim
Im{κ}→0+ Im{κ}Wu(r,ω)= 2π

∫
R3

j0(κ|r−r′|)Wq(r′,ω)dr′, (5.20)

from which we have, in particular,

lim
Im{κ}→0+ Im{κ}Wu(0,ω)= 2π

∫
R3

j0(κ|r′|)Wq(r′,ω)dr′. (5.21)

Although these equations hold for both scalar and vector-valued electromag-

netic fields, it is useful to consider the electromagnetic case explicitly in terms

of the electric field and the source current coherence function WJ. Since the

Helmholtz equation source Q is given in terms of the current distribution J by

Eq. (2.44), we can follow the same steps as in going from Eq. (2.45) to Eq. (2.46),

to rewrite the results (5.20) and (5.21) as

lim
Im{κ}→0+ Im{κ}WE(r,ω)

= 2π
∫
R3

[(
I+ 1

κ2∇′∇′
)
·
(
I+ 1

κ2∇′∇′
)

j0(κ|r−r′|)
]
·WJ(r′,ω)dr′

= 2π
∫
R3

[(
I+ 1

κ2∇′∇′
)

j0(κ|r−r′|)
]
·WJ(r′,ω)dr′

= 2π
∫
R3

Im
{
Gκ(r,r′)

}
·WJ(r′,ω)dr′

(5.22)

and

lim
Im{κ}→0+ Im{κ}WE(0,ω)= 2π

∫
R3

Im
{
Gκ(0,r′)

}
·WJ(r′,ω)dr′, (5.23)

respectively. Here the second step in Eq. (5.22) follows from the properties

of the spherical Bessel functions, and the last step follows from the defini-

tions (2.42) and (2.47).
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When the expressions for Wu(0,ω) and WE(0,ω) do not vanish, i.e., when∫
R3

j0(κ|r′|)Wq(r′,ω)dr′ = 0 (5.24)

and ∫
R3

Im
{
Gκ(0,r′)

}
·WJ(r′,ω)dr′ = 0, (5.25)

we can use the representations (5.20) and (5.21), and the representations (5.22)

and (5.23) in the degree-of-coherence functions considered in Sec. 3.2. In the

scalar case, with the function (3.24), we then obtain the expression

μ(r,ω)= lim
Im{κ}→0+

WU (r,ω)
WU (0,ω)

=
∫
R3 j0(κ|r−r′|)WQ(r′,ω)dr′∫
R3 j0(κ|r′|)WQ(r′,ω)dr′

. (5.26)

In the vector case we consider the functions μKW and μSTF, for which we get the

expressions

μKW(r,ω)= lim
Im{κ}→0+

Tr
[∫

R3 Im
{
Gκ(r,r′)

}
·WJ(r′,ω)dr′

]
Tr

[∫
R3 Im

{
Gκ(0,r′)

}
·WJ(r′,ω)dr′

] (5.27)

and

μSTF(r,ω)= lim
Im{κ}→0+

∥∥∥∫R3 Im
{
Gκ(r,r′)

}
·WJ(r′,ω)dr′

∥∥∥
F

Tr
[∫

R3 Im
{
Gκ(0,r′)

}
·WJ(r′,ω)dr′

] . (5.28)

These expressions represent scalar and vector degree-of-coherence functions for

fields whose sources satisfy the condition (5.24) or the condition (5.25). When

these conditions are not met, a more careful analysis of how the cross-spectral

density functions diverge when Im{κ} → 0+ is necessary to obtain an explicit

representation of the corresponding degree-of-coherence function.

5.4 Homogeneous and isotropic sources in unbounded regions,
universality of field degree-of-coherence

Next we consider fields with homogeneous and isotropic source distributions,

starting with scalar fields, for which the correlation functions of such source

distributions satisfy

WQ(r,ω)=WQ(|r|,ω). (5.29)

To evaluate the expression (5.20) in this case, we use the spherical Bessel func-

tion addition theorem [90,111]

j0(κ|r−r′|)= 4π
∑
n,m

jn(κ|r|) jn(κ|r′|)Y m
n (r̂)Y m

n
∗(r̂′), (5.30)
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so that we get

lim
Im{κ}→0+ Im{κ}WU (r,ω)

= 8π2 ∑
n,m

[∫
R3

jn(κr′)Y m
n

∗(r̂′)WQ(r′,ω)dr′
]

jn(κr)Y m
n (r̂)

= 8π2
[∫∞

0
r′2 j0(κr′)WQ(r′,ω)dr′

]
j0(κr)= DS j0(κr),

(5.31)

where DS depends on WQ , but is a constant in r.

Suppose then that the condition (5.24) holds, so that we get for the corre-

sponding degree-of-coherence function from Eq. (5.26) the expression

μ(r,ω)= j0(κr)= sinc(κr)= Im{Gκ(r,0)}, (5.32)

which holds irrespective of the detailed structure of WQ(|r|,ω). Hence the

degree-of-coherence function takes on the universal form given by Eq. (5.32)

with respect to all (lossless) homogeneous and isotropic sources that satisfy

the condition (5.24). This universality result encompasses the blackbody and

δ-correlated source expression (5.9). Remarkably, Eq. (5.32) suggests that the

field coherence properties do not depend on the source correlation properties,

as long as the sources are stochastically homogeneous and isotropic.

In Ref. 109 it was studied how the universality result emerges for a field

sourced by a Bessel-correlated model source of the form

WQ(r1,r2,ω)=Q0 j0(χ|r1 −r2|)Θ(r1 ≤ R)Θ(r2 ≤ R), (5.33)

when R →∞. Here Q0 is an arbitrary scalar constant. As in Ref. 107 or Sec. 5.2,

it is observed that for this source distribution the field degree-of-coherence func-

tion has closely converged on the universality result when the source region

radius R exceeds about 5λ. The universality result is extended in Ref. 110

explicitly to two-dimensional and three-dimensional, and by inference to all

D-dimensional systems with D ≥ 2, where the universal form is dimension de-

pendent. It is also proven that no universality emerges in one-dimensional

systems.

The corresponding universality result for vector-valued electromagnetic fields

was obtained by us in Publication III. For the vector-valued fields isotropicity

limits the form of the cross-spectral density function of the source more than

in the scalar case [112]. Specifically, for the cross-spectral density operator of

a homogeneous and isotropic source current distribution we have the general

form

WJ(r,ω)=W1(r,ω)r̂r̂+W2(r,ω)I, (5.34)
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where W1 and W2 are arbitrary scalar functions. When this form is used in the

representation (5.22), we have shown in Publication III that we the correspond-

ing cross-spectral density operator becomes

lim
Im{κ}→0+ Im{κ}WE(r,ω)= DV Im

{
Gκ(r,0)

}
= D′

V

[
1
3

j0(κr)I− 1
6

j2(κr)
(
I−3r̂r̂

)]
,

(5.35)

where DV and D′
V are constants with respect to r. With this result, we get for

the degree-of-coherence functions in Eqs. (5.27) and (5.28) the expressions

μKW(r,ω)= j0(κr)= sinc(κr) (5.36)

and

μSTF(r,ω)=
√

1
3

[ j0(κr)]2 + 1
6

[ j2(κr)]2, (5.37)

which show that the universality result holds for vector-valued fields as well. It

is, however, useful to note that the exact form is different for different degree-

of-coherence functions. Indeed, as discussed in Sec. 3.2, these functions differ

in how they treat polarization effects, and from the universality results (5.36)

and (5.37) we have for example μKW(0,ω)= 1 and μSTF(0,ω)= 1/
�

3. Since there

is no single agreed-upon degree-of-coherence function for vector-valued fields, it

is actually the fixed functional form of the cross-spectral density operator (5.35)

that best represents the universal character.

5.5 Universality results and free fields

To understand why the homogeneous and isotropic source distributions give

rise to fields, whose cross-spectral densities attain one and the same universal

form, it is helpful to consider the free-field plane wave model, which was put

forward in Ref. 103 for scalar fields, and which was later extended to vector-

valued fields in Ref. 104.

A free field is by definition a field that has no sources at finite distances and

hence satisfies the homogeneous Helmholtz equation (2.27) in the scalar case

and the vacuum wave equation (2.25) or (2.26) in the full electromagnetic case.

It can be shown that a free field can be represented as a collection of plane

waves propagating in all directions [35]. In the scalar and vector cases this

representation takes the forms [103,104]

U(r,ω)=
∫
S

A(k̂,ω)exp(ik0k̂ ·r)dk̂ (5.38)

and

E(r,ω)=
∫
S

A(k̂,ω)exp(ik0k̂ ·r)dk̂, (5.39)
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respectively. Here, as before, S denotes the complete spherical shell.

When the free field is such that all the plane waves have the same inten-

sity and are uncorrelated, and in the case of electromagnetic plane waves, un-

polarized, so that the cross-spectral density operators of the plane waves be-

come [103,104]

WA(k̂1, k̂2,ω)= 〈
A(k̂1,ω)A∗(k̂2,ω)

〉= A(ω)δ(k̂2 − k̂1) (5.40)

and

WA(k̂1, k̂2,ω)=
〈

A(k̂1,ω)A†(k̂2,ω)
〉
= A(ω)δ(k̂2 − k̂1)

(
I− k̂1k̂1

)
, (5.41)

it can be shown that the corresponding cross-spectral density operators are

proportional to the universal forms given by the last expressions in Eqs. (5.31)

and (5.35), respectively [103, 104]. In the vectorial case the cross-spectral den-

sity operator also matches the representations in Eqs. (4.2) and (4.3).

A collection of free fields consisting of mutually uncorrelated (and unpolar-

ized) plane waves then produces the same universal field cross-spectral density

operators as obtained for fields sourced by homogeneous and isotropic sources.

Since plane waves can be taken to be sourced at infinity, we can then inter-

pret such free fields as consisting of contributions from mutually uncorrelated

sources that lie asymptotically far away from the observation point. If we con-

trast this with the renormalization procedure used to obtain the universality

results in Secs. 5.3 and 5.4, it is apparent that the universality results are due

to the contributions of source regions that are at asymptotic distances from

every observation point, and thereby mutually uncorrelated, but which in a

(nearly) lossless system collectively produce fields that in amplitude completely

overshadow the fields produced by local sources. This leads us to draw the con-

clusion that the losses, or rather the lack of losses, plays an important part

in the universality results. We consider this connection in detail in the next

section.

5.6 Effect of losses on the universality results

In this section we consider how losses affect the relationship between source

and field coherence functions. To avoid unnecessarily complicating the expres-

sions, we concentrate here on scalar sources and scalar fields. Analogous ex-

pressions can be found for vectorial sources and fields.

Let us begin by considering asymptotically large losses in the context of the

expression (5.11), valid for fields generated by homogeneous sources. We make
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the change of variables S= Im{κ}r′ in that expression to get for a scalar field U

with a source Q the result

WU (r,ω)

= 2π
(Im{κ})4

∫
R3

sinc(Re{κ}S/ Im{κ})exp(−S)WQ(r−S/ Im{κ},ω)dS.
(5.42)

We now assume that WQ is absolutely integrable and continuous, and that

WQ(0,ω) <∞, so that the integral in Eq. (5.42) converges uniformly to the in-

tegral of the limit of its integrand when Im{κ} →∞. By this result, which we

have proven in Publication IV, we get from Eq. (5.42) the limiting form

lim
Im{κ}→∞

(Im{κ})4WU (r,ω)= 2π
∫
R3

exp(−S)WQ(r,ω)dS= 16π2WQ(r,ω). (5.43)

In view of Eq. (5.43) we consequently have

WU (r,ω)∼ 1
(Im{κ})4 16π2WQ(r,ω), (5.44)

so that the cross-spectral density operator of the field is asymptotically propor-

tional to that of the source, when the losses become infinite. We now use the

result (5.44) to compute for the degree-of-coherence function (3.24) the expres-

sion

μ(r,ω)= WU (r,ω)
WU (0,ω)

∼ 16π2WQ(r,ω)/(Im{κ})4

16π2WQ(0,ω)/(Im{κ})4 = WQ(r,ω)
WQ(0,ω)

, (5.45)

where the convergence is uniform as is shown in Publication IV. Accordingly,

the degree-of-coherence function of a field produced by a statistically homo-

geneous source converges uniformly to the degree-of-coherence function of the

source, when the losses become asymptotically large. This is, of course, what

one might also intuitively expect.

From the considerations in the previous section we know that for asymptot-

ically small losses the degree-of-coherence function of the field approaches the

universal form (5.32) if the field is sourced by a homogeneous and isotropic

source. In order to gain a better insight into the transition from asymptotically

large to asymptotically small losses, we in the following study two homogeneous

and isotropic model sources. Specifically, we consider a Gaussian source and a

damped-sinc source, given by

WQ(R,ω)= exp(−R2/γ2) (5.46)

and

WQ(R,ω)= sinc(χR)= 1
i2Re{χ}R

[
exp(iχR)−exp(−iχ∗R)

]
, (5.47)

respectively. Here 2γ represents the 1/e width of the Gaussian and we take

Im{χ}> 0.
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When the source (5.46) is used in the expression (5.11), we have shown in

Publication IV that the corresponding scalar degree-of-coherence function is

given by

μ(r,ω)= [
2Im

{
iκexp(−κ2γ2/4)erfc(−iκγ/2)

}
r
]−1

× Im
{
exp(−κ2γ2/4)

[
exp(iκr)erfc(−iκγ/2− r/γ)

−exp(−iκr)erfc(−iκγ/2+ r/γ)
]}

,

(5.48)

where erfc is the complementary error function [111].

The graphs in Fig. 5.2 display the behavior of the degree-of-coherence func-

tion given by Eq. (5.48), as a function of the normalized separation r/λ and

the relative loss Im{κ}/Re{κ}. These plots correspond to the parameter values

Re{κ}γ/2 = 9/4 and Re{κ}γ/2 = 4/9. Here Re{κ}γ/2 is roughly the ratio of the

width of exp(−r2/γ2) to the width of the main lobe of sinc(Re{κ}r). From the

figures we can see that the limiting behavior corresponding to asymptotically

small losses is attained at slightly different amounts of loss in the two cases.

Indeed, for the parameter value 9/4 the asymptotic behavior is reached only

for relative losses smaller than 10−2, whereas for the parameter value 4/9 the

relative losses can be as high as 10−1 without affecting the asymptotic form

appreciably. These examples then confirm the asymptotic behavior, but also

show that the rate, at which the degree-of-coherence function converges to the

asymptotic form when the losses become smaller, is dependent on the exact

functional form of μ.

Next we introduce the source (5.47) into to expression (5.11), whereby we

get after lengthy computations shown in Publication IV, for the corresponding

degree-of-coherence function the expression

μ(r,ω)=
∣∣∣∣ χ+κ

χ+κ∗

∣∣∣∣2 [ Im{χ}
Im{χ}+ Im{κ}

sinc(Re{κ}r)exp(−Im{κ}r)

+ Im{κ}
Im{χ}+ Im{κ}

sinc(Re{χ}r)exp(−Im{χ}r)
]

+4

√
Im{χ}Im{κ}

Im{χ}+ Im{κ}

× Im

{√
Im{χ}Im{κ}(χ∗ +κ∗)

|χ+κ∗|2 sinc
(χ−κ

2
r
)
exp

(
i
χ+κ

2
r
)}

.

(5.49)

When Im{χ},Im{κ}�Re{χ},Re{κ}, we get from Eq. (5.49) the asymptotic expres-

sion

μ(r,ω)∼ 1
1+ Im{κ}/Im{χ}

sinc(Re{κ}r)exp(−Im{κ}r)

+ 1
1+ Im{χ}/Im{κ}

sinc(Re{χ}r)exp(−Im{χ}r).
(5.50)
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Figure 5.2. Behavior of the degree-of-coherence function in Eq. (5.48) with the separation r and
the relative loss Im{κ}/Re{κ}, plotted at parameter values (a) Re{κ}γ/2 = 9/4 and (b)
Re{κ}γ/2= 4/9.

We note that when Im{χ}/Im{κ} � 1, the first term in Eq. (5.50) dominates

and the degree-of-coherence function deviates only slightly from the univer-

sal form (5.32) since Im{κ} � Re{κ}, by assumption. On the other hand, when

Im{χ}/Im{κ}� 1, the second term dominates and the degree-of-coherence func-

tion of the field is nearly equal to that of the source, for which Re{χ} is arbitrary.

We have plotted the degree-of-coherence function given by Eq. (5.49) in

Fig. 5.3, with Re{χ} = 4Re{κ} and the relative loss Im{κ}/Re{κ} = 10−16. These

parameter values imply that the plot is in the regime of the asymptotic

form (5.50). From the figure we note that when the parameter Im{χ} de-

creases, the degree-of-coherence function of the field converges toward that of
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Figure 5.3. Transition of the degree-of-coherence function of the field from its universal form to
a form with a shorter coherence length, when the loss is kept constant at Im{κ} =
10−16 Re{κ}, and the parameter Im{χ}/Im{κ} is varied. This parameter controls the
functional form of the source cross-spectral density.

the source, whereas when the parameter decreases, the function converges to

the universal form. This example then explicitly illustrates the fact that a fixed

amount of relative loss (here 10−16) can correspond both to negligibly small

losses (universal form) or large losses (degree of coherence of the source), which

was already hinted at by the previous example. Thereby the assertion that the

universal form of the degree-of-coherence function is reached for ‘negligibly’

small losses [110] is not unambiguous, even when the criterion (5.24) holds.

Accordingly, the smallness of the losses is relative to the functional form of the

degree-of-coherence function, and since all actual systems are lossy, this means

that care must be taken when assuming that the degree-of-coherence function

of a particular low-loss system is of the universal form (5.32).

5.7 Effect of source boundaries on the universality

In the previous section we showed that the universality result (5.32) should not

be taken too literally when the system under study is lossy, as real systems are.

We now consider, again referring to actual systems, what happens to univer-

sality if the system is not unbounded. As discussed before, this question was

in part answered in Ref. 109, where the properties of a field corresponding to

a Bessel correlated source are studied when the source region radius R grows

toward infinity from a value below the wavelength of the field. The results of

that investigation suggest that ‘unbounded’ behavior starts to dominate when
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R exceeds about 5λ, which is in agreement with the results for δ-correlated

sources obtained in Ref. 107. Below we, however, show that for any bounded

region, lossy or not, the (restrictedly homogeneous and isotropic) source distri-

bution can be so chosen that the field has any prescribed cross-spectral density

inside the source region.

Because we have considered the scalar case in detail in Publication V, we con-

centrate here on the vector-valued electromagnetic case. Now, let Ω′ ⊂ R3 de-

note a source region, and let F be any vector-valued random function with twice

continuously differentiable realizations, defined over a larger region Ω ⊃ Ω′,

and let WF be its cross-spectral density operator. Here we furthermore assume

that the regions satisfy Ω′∩∂Ω=�. We then consider a random electromagnetic

field E′, which satisfies a wave equation of the form (2.21), where the material

properties and the random source current J′ are sufficiently regular, as well as

the Silver–Müller radiation condition (2.40). In addition, we assume that the

random field E′ and the random function F are not correlated anywhere, so that〈
E′(r,ω)F†(r′)

〉
= 0, ∀r,r′. (5.51)

We then put

E(r,ω)=ϑ(r)F(r)+ [1−ϑ(r)]E′(r,ω), (5.52)

where ϑ is any twice continuously differentiable function, such that

ϑ(r)=

⎧⎪⎨⎪⎩
1, r ∈Ω′

0, r ∈Ω.
(5.53)

Next we define the source current J by the equation

μ(r,ω)∇×
[

1
μ(r,ω)

∇×E(r,ω)
]
−κ2(r,ω)E(r,ω)= i4π

k0

c
μ(r,ω)J(r,ω). (5.54)

It then follows, in particular, that E satisfies this equation and the Silver–

Müller radiation condition (2.40). Accordingly, the source current distribution J

uniquely specifies E and, thus, once J is specified we can determine E. Because

E′ and F are uncorrelated, it follows that the cross-spectral density operator

WE of the field E is given by

WE(r1,r2,ω)=ϑ(r1)ϑ(r2)WF(r1,r2)+ [1−ϑ(r1)] [1−ϑ(r2)]WE′(r1,r2,ω), (5.55)

where WE′ denotes the cross-spectral density operator of the field E′. This rela-

tion shows that the cross-spectral density WE(r1,r2,ω) equals the cross-spectral

density WF(r1,r2) for all pairs of points r1,r2 ∈ Ω′. It then follows that any

of the vector degree-of-coherence functions defined in Sec. 3.2 will agree for

the electromagnetic field E and the arbitrary vector-valued function F at such
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points. We have thus shown that the coherence properties of the field E, within

its source region Ω minus the boundary region Ω\Ω′, are equal to the coherence

properties of the random function F.

Since this result holds for an arbitrary random function F, the correspond-

ing cross-spectral density operator WF can, in particular, be assumed to be

homogeneous and isotropic within the source region Ω. Because the coherence

properties of the random electromagnetic field E, as constructed above, equal

the coherence properties of F in Ω′, and since we can take Ω′ to be arbitrarily

close to the (full) source region Ω, it then follows that no universal form exists

for the cross-spectral density operators of electromagnetic fields sourced by ho-

mogeneous and isotropic sources inside the source regions. As was mentioned

above, we presented the corresponding results for scalar fields in Publication V.

In view of the definitions of the degree-of-coherence functions in Sec. 3.2 these

results then also imply a lack of universality for scalar and electromagnetic

degree-of-coherence functions. Specifically, we observe that there is no lower

limit on the coherence length of a field within its source region. Our results

thus overthrow the widely held belief that no field can have a coherence length

that is shorter than λ/2, which, as is discussed in Sec. 3.4 is the coherence

length of for example fields produced by blackbody sources.

We illustrate the electromagnetic construction by a concrete example, where

Ω = [−R/2,R/2]3 and Ω′ = [−R′/2,R′/2]3 are two nested cubes with R′ < R, as

shown in Fig. 5.4. We also assume that apart from the source current J, all

x

y

z

R/2

R′/2

Figure 5.4. Illustration of the regions Ω= [−R/2,R/2]3 and Ω′ = [−R′/2,R′/2]3, and the spherical
source region B(0,R′/2) used in the example.

space is vacuum, viz., κ(r,ω) = k0 and for the magnetic permeability we have
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μ(r,ω) = 1 in Eq. (5.54) for all r. In addition, we take the fields E′ in the en-

semble {E′} to be produced by an ensemble {J′} of spherical source currents (see

Fig. 5.4) of the form

J′(r,ω)=

⎧⎪⎨⎪⎩
Q0∇× [

j1(k0r)Y 0
1 (r̂)r

]
, |r| < R′/2,

0, |r| ≥ R′/2,
(5.56)

where Q0 is a random variable, which is uncorrelated with F, so that 〈F(r)Q∗
0〉 =

0 for all r. It is straightforward to show, e.g., by using the results in Publication

VI, that the fields E′ corresponding to the source currents J′ in Eq. (5.56) are

explicitly given outside the ball B(0,R′/2) by

E′(r)= CQ0∇×
[
h(1)

1 (k0r)Y 0
1 (r̂)r

]
, |r| > R′/2, (5.57)

where C is a constant that depends on the radius R′ and h(1)
1 is the spherical

Hankel function of type 1 and order 1. For the cross-spectral density operator

WF, we take the blackbody or universal form Eq. (5.35)

WF(r1,r2)= 1
3

j0(χr)I− 1
6

j2(χr)
(
I−3r̂r̂

)
, (5.58)

where χ ∈R and r= r1 −r2. In this example we define the function ϑ by

ϑ(r)= P(|x̂ ·r|)P(|ŷ ·r|)P(|ẑ ·r|), (5.59)

where

P(s)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 0≤ s < R′/2,

p
(

2s−R′

R−R′

)
, R′/2≤ s ≤ R/2,

0, s > R/2,

(5.60)

and p(t) = −6t5 + 15t4 − 10t3 + 1, which makes ϑ twice continuously differen-

tiable, as required.

Let us now consider the cross-spectral density operator differential equa-

tion (3.15), when the corresponding field differential equation (3.13) is given

by the wave equation (5.54). We then introduce the representations (5.57)

and (5.58) into that differential equation (where κ = k0), and note that it fol-

lows from Eq. (2.48) (where κ= χ) that the imaginary part of the dyadic Green’s

tensor satisfies the corresponding homogeneous wave equation, whereby we

get for r1,r2 ∈ Ω′ for the cross-spectral density of the source the expression

WJ(r1,r2,ω) = (χ2 − k2
0)2WF(r1,r2,ω). Hence the source distribution J has in-

side Ω′ the same stochastic properties as the function F. Specifically, from the

definition (5.58) it follows that WJ is homogeneous and isotropic within Ω′.

In Fig. 5.5 we have used R = λ, R′ = 6λ/7 and χ = 7k0 to plot the degree-

of-coherence function μSTF(r1,r2,ω) of E′ on two different planes Π dissecting
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Figure 5.5. Two examples of the degree-of-coherence function μSTF of a field inside a cube that
contains the source distribution. The degree-of-coherence function is in both cases
displayed between a fixed point and all other points in a plane Π that dissects the
cube. The side of the cube is equal to the wavelength λ.

the cube [−R/2,R/2]3. To obtain a clearer illustration of the situation, we have

thereby not here made use of the possibility to let R′ be almost equal to R.

In the plots the point r1 ∈ Π is kept fixed and r2 ∈ Π is swept across Π. The

location of r1 is revealed by the peak where the degree-of-coherence function

reaches its maximum value 1/
�

3. Since the side of the cube is equal to λ, it is

clear from these plots that the coherence length of the field inside the source

region is much less than λ/2, both far from [Fig. 5.5(a)] and near [Fig. 5.5(b)]

the boundary. Indeed, since the degree-of-coherence function of the field follows

the degree-of-coherence function of F, Eq. (5.58) with χ = 7k0 implies that the

coherence length is, in fact, λ/14. We note that although the source region di-

ameter in this example does not exceed 5λ, which has been established as the

limit when the universal character of the field is expected for spherical source

regions, and homogeneous and isotropic source distributions [107,109] (see also

Secs. 5.2 and 5.4), our construction remains valid for any source region diame-

ter. This is shown explicitly for scalar fields in spherical regions in Publication

V, where we have obtained a similar result for a larger source region diame-

ter. This example then serves to prove the assertion that the coherence length

of (electromagnetic) fields can be arbitrarily small in the source region, even

when the source is lossless, and (locally) homogeneous and isotropic.
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6. Effective degree of coherence

In this chapter we will discuss the so-called effective degree of coherence,

denoted by μ, which is also known as the overall or global degree of coher-

ence [62, 72, 113–125]. This quantity was originally introduced in terms of

the degree of incoherence h = 1−μ2 long ago [126, 127], but it has attracted

new interest in the last few years. In particular, its invariance to different

transformations and representations of the electromagnetic field have been ex-

plored [113, 122–124]. Furthermore, it provides a fresh perspective to the dis-

cussion of how to define the degree-of-coherence function for electromagnetic

fields, as shown for example in Ref. 72.

Our interest in the effective degree-of-coherence functional was to explore

how far the invariance of this function extends. In the following we present

an overview of the results we obtained in Publication VI, which show that the

effective degree of coherence can, in fact, be taken as an intrinsic property of

the electromagnetic field. To begin with we consider its definition as an energy

or intensity weighted average of the squared modulus of the scalar degree-of-

coherence function and then go on to show that it can be represented in an

abstract Hilbert-space setting. This point of view gives us an important insight

into the nature of the effective degree of coherence, lets us extend its use beyond

scalar fields in a natural manner, and provides us with the tools to prove the

intrinsic nature of the effective degree of coherence of an electromagnetic field.

The abstract Hilbert-space representation suggests that there are other possi-

ble definitions of an effective degree of coherence, which are equally intrinsic.

These other definitions, however, lack an important additional property which

the original effective degree of coherence possesses, that is, the effective de-

gree of coherence when applied to a sum of orthogonal fields can be expressed

in terms of the pairwise effective degrees of coherence of these fields. We also

discuss practical applications of the effective degree of coherence and how to

measure it in actual systems.
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6.1 Effective degree of coherence: definition and explicit
expressions

The effective degree of coherence, μU , of a random scalar field U over a region Ω,

which for scalar fields is usually taken to be two- (surface) or three-dimensional

(volume), is defined as the root-mean-square average of the intensity-weighted

two-point degree-of-coherence function (3.24) [115, 119, 121, 122]. Hence its

square can be written in terms of the covariance function WU (r1,r2,ω) as

μ2
U =

∫
Ω

∫
ΩWU (r1,r1,ω)WU (r2,r2,ω)|μU (r1,r2,ω)|2dr1dr2[∫

ΩWU (r,r,ω)dr
]2

=
∫
Ω

∫
Ω |WU (r1,r2,ω)|2dr1dr2[∫

ΩWU (r,r)dr
]2 .

(6.1)

As the discussion in Sec. 3.1 suggests, the covariance function WU (r1,r2,ω) is

also an operator in a Hilbert space, which for scalar fields typically is L2(Ω), for

some region Ω. This allows us to rewrite the definition (6.1) in a coordinate-free

form, given by [114,115,117]

μ2
u = Tr(W†

uWu)

[Tr(Wu)]2 = Tr
(〈uu†〉〈uu†〉)[
Tr(〈uu†〉)]2 =

∑
nλ

2
n

(
∑

nλn)2 , (6.2)

where we have dropped the explicit dependence on the angular frequency ω for

notational clarity, and where each realization of the random field u belongs to

a Hilbert space H and 〈‖u‖2〉 < ∞ is assumed. In Eq. (6.2) the last represen-

tation follows from an eigenvalue expansion of Wu of the form (3.10), where

the existence of such an expansion for all covariance operators was discussed

in Sec. 3.1. It is clear from the definition (6.2) that μ2
u ≥ 0, and if we apply

Schwartz’ inequality to the numerator of the last expression, we get the upper

bound μ2
u ≤ 1, so that

0≤μ2
u ≤ 1, (6.3)

where the values 1 and 0 correspond to a coherent and a completely incoher-

ent field, respectively, just like with ordinary degree-of-coherence functions. In

particular, since equality is obtained in Schwartz’ inequality when at most one

term is nonzero, we furthermore can characterize complete coherence (μ2
u = 1)

by

λ1 = 0, λn = 0, n > 1, (6.4)

that is, the covariance operator Wu corresponds to a completely coherent func-

tion precisely when its Mercer series only consists of one coherent mode,

whereby the covariance operator is a rank-1 operator. This of course exactly

mirrors the property required from ordinary degree-of-coherence functions as

discussed in Sec. 3.3.
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We note that the coordinate-free expression (6.2) does not depend on the

Hilbert space H in which the covariance operator Wu is defined. Thus we can

use the coordinate-free expression to define the effective degree of coherence

for a covariance operator in any Hilbert space. In particular, we can then con-

sider for example the Hilbert space L2(Ω× {x, y, z}), where Ω ⊂ R3 and {x, y, z}

represents the discrete space of vector components. Suppose now that {E} is an

ensemble of electric fields E ∈ L2(Ω× {x, y, z}), with 〈‖E‖2〉 <∞. Then we get for

the square of the effective degree of coherence of such fields from Eq. (6.2) the

expression

μ2
E = Tr(W

†
EWE)

[Tr(WE)]2
=

∫
Ω

∫
Ω

∥∥WE(r1,r2,ω)
∥∥2

Fdr1dr2{∫
ΩTr[WE(r,r,ω)]dr

}2 . (6.5)

We observe that the result (6.5) coincides with the definition for the effective

degree of coherence of an electric field as given in Ref. 62, where it is based on

the electromagnetic degree-of-coherence function μSTF as given by Eq. (3.28).

It is noteworthy that two conceptually completely different approaches lead to

exactly the same definition. This connection is further strengthened by the

considerations in Sec. 6.7.

6.2 Invariance to scaled unitary mappings

As the effective degree of coherence gives an average measure of the coherence

properties of a function (such as the scalar or electromagnetic field) in a Hilbert

space, it is of interest to consider what mappings between Hilbert spaces leave

the effective degree of coherence unchanged. For the electromagnetic scalar and

vector fields these Hilbert spaces can for example correspond to a representa-

tion of the field within a volume, on a plane, on a surface, in the far field or

simply be equal to the sequence space �2 of a sequence representation, such as

the partial wave expansion, of the field. The mappings are not restricted to the

change of representation basis, but may also correspond to transformations of

the field when it passes through optical systems, is otherwise scattered, or sim-

ply changes with propagation, although the last case could also be interpreted

just as a change of basis. In the electromagnetic case these mappings can also

have a practical function, since it is for example seldom possible to evaluate

the electromagnetic field inside a volume, whereas its far-field pattern is more

readily available for measurement.

Let H1 and H2 be two Hilbert spaces and let T : H1 → H2 be a bounded map-

ping between these spaces. For all fields u ∈ H1 there is hence a corresponding
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field v ∈ H2, given by

v = Tu. (6.6)

Suppose then that the mapping T is what we call a scaled unitary mapping,

viz.,

‖v‖ = ‖Tu‖ =�
α‖u‖ , ∀u ∈ H1, (6.7)

for some constant α ∈ (0,∞). By squaring the relation (6.7), we get

u†T†Tu =αu†u, ∀u ∈ H1 ⇔ T†T =αI ⇔ T†ST = I, (6.8)

where S =α−1I ′ and I (I ′) is the identity mapping in H1 (H2).

When {u} is an arbitrary ensemble of functions u ∈ H1 that satisfies 〈‖u‖2〉 <
∞ it follows readily that 〈‖v‖2〉 < ∞, and we get from the definition (6.2) for

the square of the effective degree of coherence of the ensemble {v} of functions

v ∈ H2 the expression

μ2
v =

Tr
(〈vv†〉〈vv†〉)[

Tr
(〈vv†〉)]2 = Tr

(
T〈uu†〉T†T〈uu†〉T†)[
Tr

(
T〈uu†〉T†

)]2

= Tr
(〈uu†〉T†T〈uu†〉T†T

)[
Tr

(〈uu†〉T†T
)]2 = α2 Tr

(〈uu†〉〈uu†〉)
α2

[
Tr

(〈uu†〉)]2 =μ2
u,

(6.9)

where the last step again follows from the definition (6.2). The second step, in

turn, follows from the identity Tr(ABC) = Tr(CAB), which holds for bounded

linear Hilbert-space operators A, B, and C, when at least one of them is a

trace-class operator with a representation of the form (3.10). The result (6.9)

implies:

Theorem 1 The effective degree of coherence is invariant with respect to scaled

unitary mappings between Hilbert spaces.

As we have shown in Publication VI, this relationship is complemented by:

Theorem 2 Of all bounded linear Hilbert space mappings, only the scaled uni-

tary mappings leave the effective degree of coherence unchanged.

Theorems 1 and 2 show that the effective degree of coherence is a consistent

measure of the coherence properties of a function across different Hilbert-space

representations as long as these representations are related by scaled unitary

mappings. Thereby, as the definition (6.7) suggests, the norms of the respec-

tive representations should be proportional to each other with proportionality

factors α that are constants independent of the functions. As we will show in

the next section, this requirement for the invariance of the effective degree of

coherence is relaxed enough so that the effective degree of coherence will have

the same value in most of the representation Hilbert spaces of interest for elec-

tromagnetic fields.
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6.3 Scaled unitary mappings in electromagnetics and the
invariance of the effective degree of coherence

From Theorems 1 and 2 we know that the effective degree of coherence remains

invariant when the field is transformed by scaled unitary mappings. Since most

of the usually applied representation spaces for electromagnetic fields are, in

fact, Hilbert spaces with norms, whose squares are proportional to the energy

(intensity) of the field, it turns out that the effective degree of coherence is an

invariant or intrinsic property of electromagnetic fields.

Indeed, as the results presented in Publication VI show, the coefficients of the

partial wave expansions of the electric (E) and magnetic (H) components of an

electromagnetic field [E,H] have the same sequence space (�2) norm. Further-

more, this norm is proportional to the (potential) energy of the electric field, the

energy of the magnetic field, and to their sum, the energy of the electromag-

netic field in asymptotically large balls. Thus it follows from Theorem 1 that

the effective degree of coherence has the same value in all of these representa-

tion spaces. This value can then be called the effective degree of coherence of the

electromagnetic field, μ[E,H].

Furthermore, for fields carrying energy to infinity, or so-called outgoing fields,

it can be shown that the total intensity of their far-field patterns is proportional

to the square of their sequence space norm. On the other hand, the total inten-

sity of a paraxial field, which is equal to the integral of the intensity across a

plane transversal to the propagation direction, is also equal to the far-field in-

tensity of that field. Consequently Theorem 1 implies that the effective degree

of coherence evaluated from the far-field pattern of a field or from the transver-

sal plane of a paraxial field will be equal to μ[E,H]. In particular, it means that

the effective degree of coherence as evaluated from the so-called Wigner distri-

bution [128,129] of the field will also produce this value.

It is furthermore useful to notice that for free fields, which can be used to

model fields incident onto a scatterer, the incoming and outgoing parts of their

partial wave expansions have the same coefficients and thus the same �2 norm,

which is equal to exactly half the total �2 norm. Hence the effective degrees

of coherence of the incoming and outgoing parts of a free field (incident field)

are by Theorem 1 equal to each other and to the effective degree of coherence

of the entire field, μ[E,H]. When a free field is scattered, only the outgoing field

coefficients are changed by the mapping related to the scatterer. For lossless

scatterers this mapping is unitary and hence it follows that the squared norm

of the outgoing part of the scattered field is equal to half the squared norm of
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the incident field. Theorem 1 then implies that the effective degree of coherence

is invariant to scattering by a lossless scatterer.

However, we observe that the mapping (2.46), which maps the source distri-

bution to the corresponding outgoing field, is not a scaled unitary mapping if

the source current is taken to lie in the Hilbert space L2(Ω), as is evident for

example from the existence of so-called non-radiating sources [130]. Of course,

we could choose a different representation Hilbert space for the sources, where

the norm of a source would be proportional to the energy that the correspond-

ing field carries out of Ω, but apart from such elaborately constructed Hilbert

spaces, we can conclude on the basis of Theorem 2 that the effective degree

of a source and the effective degree of the field generated by this source are

generally not equal.

Finally, we mention that the invariance of the effective degree of coherence to

(scaled) unitary mappings has earlier been established in special cases. For the

propagation of paraxial fields through lossless optical systems this invariance

was proven in Ref. 113, and for the Fourier transform mapping between the

temporal and time–frequency representations of electromagnetic (scalar) fields,

invariance was shown in Ref. 123. The equality of the electric and magnetic

effective degrees of coherence was, in turn, determined in Ref. 124.

We note that all of these invariance results follow since the corresponding

Hilbert spaces are related by scaled unitary mappings. In the following we

explore what other measures, and in particular alternative definitions of an

effective degree of coherence, are invariant to scaled unitary mappings.

6.4 Functionals invariant to scaled unitary mappings

First we note that the square of the effective degree of coherence as given in

Eq. (6.2) is a functional of the covariance operator Wu = 〈uu†〉, that is,

μ2
u =μ2

u(Wu)=μ2
u(〈uu†〉), (6.10)

and we now consider what form such a functional must have to remain invari-

ant with respect to scaled unitary mapping.

Since the operator Wu has a Mercer series of the form (3.10), we get from the

definition (6.6) the result

Wv = 〈vv†〉 = 〈(Tu)(Tu)†〉 = T〈uu†〉T† = TWuT†

= T
(∑

n
λnφnφn

†)T† =∑
n

(αλn)
(
α−1/2Tφn

)(
α−1/2Tφn

)†
,

(6.11)

where the introduction of α at the last step is suggested by the orthonormality
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relation (
α−1/2Tφn

)† (
α−1/2Tφn

)
=α−1φn

†T†Tφm =φn
†φm = δn,m, (6.12)

which is based on Eq. (6.8) and the orthonormality of the set {φn}n. The or-

thonormality relation (6.12) and the positivity of the coefficients (αλn) in the

representation (6.11) imply that that expansion is, in fact, the Mercer series

of Wv, where αλn are the eigenvalues and α−1/2Tφn are the corresponding

eigenfunctions. Because the mapping T is an arbitrary unitary mapping, these

eigenfunctions can represent any complete basis of H2 and since the coefficient

α may equal any positive real number, it follows that the only invariants of the

mapping are the normalized eigenvalues, given by

νn = λn∑
n′ λn′

. (6.13)

Accordingly, the functionals of the coherence operator that are unchanged by

scaled unitary mappings must be of the form

τ (Wu)= τeig (ν1,ν2, . . . ) , (6.14)

where we assume the order ν1 ≥ ν2 ≥ ·· · ≥ 0, and the subscript eig refers to

the fact that the arguments of the functional are the (normalized) eigenvalues.

Hence we have:

Theorem 3 A functional of a covariance operator is invariant with respect to

scaled unitary mappings if and only if it is a function of the normalized eigen-

values (6.13) of the covariance operator, that is, if it is of the form (6.14).

Theorem 3 is important since it allows us to extend all the invariance results

of the previous section to any measure (of coherence) of the form (6.14). Let us

now consider a family {μu,q}q of such measures [114, 116, 117]. These overall

degree-of-coherence functionals are given in terms of the normalized eigenval-

ues (6.13) by

μu,q =
(∑

n
ν

q
n

)1/q
, q > 1, (6.15)

including the limits

μu,∞ = lim
q→∞μu,q = ν1 (6.16)

and

μu,ent = lim
q→1+μu,q = exp

(∑
n
νn logνn

)
, (6.17)

where the subscript ent refers to entropy, since the argument of the exponential

is the negative of the Shannon (information) entropy [131]. The overall degree-

of-coherence functional μu,ent can as a consequence be seen as a measure of
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the lack of information in the field, whence the larger this value is, the less

information is needed to describe the field. This limiting form of the overall

degree-of-coherence functionals has another interesting property. As is proven

in Ref. 116, the family of effective degree-of-coherence functionals is strictly

ordered in magnitude, so that

μu,q ≤μu,p, ∀1≤ q ≤ p ≤∞, (6.18)

and thus μu,ent always has the smallest value. As a result, the entropy degree

of coherence, in particular, decreases from 1 more rapidly than any other of the

family members, when the field goes from completely coherent to increasingly

incoherent. The entropy overall degree-of-coherence functional is hence the

most sensitive to deviations from complete coherence, and could in this sense

be termed the ‘best’ overall degree-of-coherence functional [116, 117]. Since it

follows from the definition (6.13) and a comparison of Eqs. (6.2) and (6.15) that

μ2
u =μ2

u,2, (6.19)

we could argue that the effective degree-of-coherence functional μu is, for inte-

ger values of q, the ‘second best’ overall degree-of-coherence functional. Nev-

ertheless, for practical purposes it is still the more appealing choice, because it

can directly be evaluated from the pointwise values of the covariance operator

[e.g., Eqs. (6.1) and (6.5)] and is thereby readily measurable, as is discussed

in Sec. 6.8. Furthermore, the direct connection to the pointwise values of the

covariance operator also leads to an important consistency property for μu that

will be explored in Sec. 6.7.

Finally, we note that the family {μu,q}q of overall degree-of-coherence func-

tionals does not exhaust the possible choices of functionals of the form (6.14),

even if all functions of the values μu,q are included in the considerations.

6.5 Mappings and intrinsic properties (of electromagnetic fields)

It is of interest to note that scaled unitary mappings are, in fact, the most gen-

eral class of mappings for which it is sensible to require an intrinsic property

of a field, such as a measure of coherence, to stay unchanged. To see why that

is so, let us begin by observing that a non-invertible mapping will irreversibly

remove components of the field and such a mapping may even nullify the field

completely. Thus it is not reasonable to assume that intrinsic properties of the

field would be preserved by a non-invertible mapping. Accordingly, we restrict

our considerations to invertible mappings. Suppose then that we have a field u,
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whose cross-spectral density operator Wu has a Mercer series of the form (3.10),

where λ1 = ∑∞
n=2λn, with many of the eigenvalues in the sum being of almost

equal magnitude. Then Wu can be interpreted as the sum of a coherent part, as

represented by the first term in the Mercer series, and an incoherent part, as

represented by the rest of the Mercer series, of equal total intensity§.

Let us now consider the linear mapping M(γ) as given by

M(γ)= γφ1φ1
† + (1−γ)

∞∑
n=2

φnφn
†, (6.20)

where the functions φn are the orthonormal eigenfunctions of Wu. This operator

attenuates the coherent part of the field by the factor γ and the incoherent part

of the field by the factor 1−γ, so that it is a invertible mapping when 0< γ< 1.

We put u′ = M(γ)u, whereby the cross-spectral density operator Wu′ effec-

tively represents the coherent part of Wu, when γ≈ 1, and the incoherent part

of Wu, when γ ≈ 0. Now, if an intrinsic measure of coherence is required to be

unchanged by invertible mappings, it must assign the same degree of coher-

ence to both of these extremes, which is clearly not reasonable if coherence is

assumed to be related to correlations and/or fringe visibility in any useful way.

Indeed, since all actual fields are ‘contaminated’ with noise, a general invert-

ible mapping could suppress the actual field in favor of the noise, so that the

intrinsic measure of coherence would essentially be the measure of coherence

in the noise and not in the field of interest.

From the above (counter)example it is clear that the problem with general in-

vertible mappings is that they can attenuate different components of the field

in different ways, which may, as the example shows, lead to a situation where

the same field can be made almost completely coherent and almost completely

incoherent by such mappings. Hence it follows that, when invariance of the

intrinsic concept of coherence of a field is considered, it only makes sense to in-

clude mappings that attenuate all components equally. The most general class

of mappings with this property is precisely the set of scaled unitary mappings

(which also includes those unitary mappings, which amplify all the components

of the field by the same amount). On the other hand, as the set of scaled unitary

mappings already leads to many reasonable possibilities for an invariant mea-

sure of coherence, as shown in the previous section, it is not useful to restrict

this set of mappings further. These considerations give us:

Theorem 4 The nontrivial intrinsic properties of a field are precisely those

properties that are invariant with respect to scaled unitary mappings.

§Such a division into a coherent and an incoherent part, although usually with differ-
ent total intensities, is typical for supercontinuum fields [132,133].
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6.6 Local measure of coherence based on the effective degree of
coherence

In view of the invariance property of the effective degree of coherence and the

seemingly difficult task of defining a two-point degree-of-coherence function for

vector-valued fields (see discussion in Sec. 3.2), it seems natural to try to define

such a function in terms of the effective degree of coherence. The most direct

approach then is to go back to Young’s double pinhole experiment and use the

effective degree of coherence of the total field behind the two apertures to define

the two-point degree of coherence between the two points. It turns out that the

function thus obtained is directly related to the function μL [72]. The only

difference is that the quantity μL is shifted and normalized so that it attains

the value 0 for complete incoherence in the sense defined in Ref. 72. As was

discussed in Sec. 3.2, such differences are trivial and we can thus take the two

measures of the degree of coherence to be equal in all important respects.

There is, however, a slight problem with μL and its relation to the effective

degree of coherence. To see this, let us assume that μ2
u is computed for an

ensemble {u} of Hilbert space functions u ∈ L2(Ω) (or more generally u ∈ H) and

let us partition the region Ω into subregions Ω j (divide the Hilbert space H into

mutually orthogonal subspaces H j). We correspondingly put

u =∑
j

u j, (6.21)

where each term vanishes outside its region Ω j (it belongs to the subspace H j),

so that the terms are mutually orthogonal, or u j′
†u j = 0 for j′ = j. When we in-

troduce the representation (6.21) into the definition (6.2), we get after applying

the orthogonality property the expression

μ2
u =

∑
j, j′ Tr

(〈u ju j′
†〉〈u j′u j

†〉)[∑
j Tr

(〈u ju j†〉)]2 =
∑

j, j′ Tr
(〈u ju j

†〉)Tr
(〈u j′u j′

†〉)μ2
u, j, j′[∑

j Tr
(〈u ju j†〉)]2 , (6.22)

where we have defined the effective degree of coherence between two regions

(Hilbert spaces) j and j′ by its square as

μ2
u, j, j′ =

Tr
(〈u ju j′

†〉〈u j′u j
†〉)

Tr
(〈u ju j†〉)Tr

(〈u j′u j′†〉
) . (6.23)

We note that this is a direct generalization of the first part of the original scalar

definition (6.1) of the effective degree of coherence. Now, for notational simplic-

ity we consider, instead of μ2
L, the square of the effective degree of coherence

as obtained for two (separate) locations as would occur in Young’s experiment.
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From Eq. (6.22) we have for the two-region case the result

μ2
Young

= Tr
(〈u1u1

†〉〈u1u1
†〉)+Tr

(〈u2u2
†〉〈u2u2〉

)+2Tr
(〈u1u2

†〉〈u2u1
†〉)[

Tr
(〈u1u1†〉)Tr

(〈u2u2†〉)]2 .
(6.24)

When we compare this representation to the two-region (two-point) component

of the sum in Eq. (6.22) as given in Eq. (6.23), we note that the first two terms

correspond to the coherence properties of each component separately. Since

these terms are non-negative, it follows that if contributions of the form (6.24)

are added pairwise, however weighted, the result will not equal the represen-

tation (6.22), because the ‘additional’ terms do not cancel.

Thereby a two point degree-of-coherence function, which is based on the effec-

tive degree of coherence, such as μL, will not be self-consistent in the sense that

the effective degree of coherence cannot be obtained from it by weighted averag-

ing. Instead it seems sensible to base a two point degree-of-coherence function

on the definition (6.23) for the effective degree of coherence between two regions.

Indeed, when the field is scalar and the regions are shrunk to singular points,

this definition reproduces the squared modulus of the scalar two-point degree-

of-coherence function (3.24). For an electromagnetic field, where the regions are

shrunk to consist of the vector components at two points, the definition (6.23)

reproduces the squared degree-of-coherence function μSTF. This is of interest,

since it sets that degree-of-coherence function of vector-valued fields apart from

all the other degree-of-coherence functions for such fields as defined in Sec. 3.2.

6.7 Unique additivity property of the effective degree of coherence

We observe that the expressions (6.22) and (6.23) reveal a property of the effec-

tive degree-of-coherence functional μ not shared by any other functional which

is invariant to scalar unitary transformations. This property is that μ can be

computed for a sum of orthogonal fields if the value of the pairwise effective

degree-of-coherence functional of every pair of components, including the ef-

fective degree of coherence of each component with itself, is known. No other

functional of the form (6.14), considered in the previous sections shares this

property. To prove this, it is sufficient to show that only μu as given by Eq. (6.2)

is additive for a specifically chosen set of random fields u. For that purpose, it

is useful to note that the two largest normalized eigenvalues ν1 and ν2 (or any

other two normalized eigenvalues) of a cross-spectral density operator Wu can

be uniquely determined when μ2
u and all the other normalized eigenvalues are
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known. Thereby, we can rewrite Eq. (6.14) as

τ (Wu)= τμ
(
μ2

u,ν3,ν4, . . .
)
, (6.25)

where μ2
u =Tr(W2

u )/[Tr(Wu)]2.

Let us now consider the sum-field u = u1 +u2 of two orthogonal rank-1 fields

u1 = ũ1φ1 and u2 = ũ2φ2, where {φ1,φ2} is an orthonormal set. The cross-

spectral density operator Wu can then be represented with respect to that set

as the matrix

Wu =
⎡⎣ 〈|ũ1|2〉 〈ũ1ũ∗

2〉
〈ũ1ũ∗

2〉∗ 〈|ũ2|2〉

⎤⎦ . (6.26)

The two nonzero normalized eigenvalues of the operator Wu are given by the

expressions

ν1,2 = 1
2

⎧⎪⎨⎪⎩1±
√(〈|ũ1|2〉−〈|ũ2|2〉

)2 +4
∣∣〈ũ1ũ∗

2〉
∣∣2

〈|ũ1|2〉+〈|ũ2|2〉

⎫⎪⎬⎪⎭ , (6.27)

which show that the (normalized) eigenvalues and any functional τ of these

eigenvalues are independent of the phase of the correlation coefficient 〈ũ1ũ∗
2〉.

Therefore, for a functional τ to be additive, it must be independent of these

phases for any number of added orthogonal fields, which means that τ(Wu) must

be independent of the phases of the off-diagonal elements of the corresponding

(matrix-form) representation of Wu.

We then take a normalized (unit trace) cross-spectral density operator Wu,

whose nonzero eigenvalues νn are distinct, and define a family of cross-spectral

density operators Wj(ψ) based on the real parameter ψ and the normalized

eigenvalues ν j for j ≥ 3 (so that ν j = ν1,ν2), by setting (in block-matrix notation)

Wj(ψ)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A j(ψ)

ν3
. . .

ν j−1

ν j+1
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.28)

Here the matrices A j(ψ) are given by

A j(ψ)=

⎡⎢⎢⎢⎣
A j,11 A j,12eiψ A j,13

A j,21e−iψ A j,22 A j,23

A j,31 A j,32 A j,33

⎤⎥⎥⎥⎦ , A j(0)= X j

⎡⎢⎢⎢⎣
ν1 0 0

0 ν2 0

0 0 ν j

⎤⎥⎥⎥⎦X j
† (6.29)

and X j are the orthonormal (unitary) transformation matrices

X j =

⎡⎢⎢⎢⎣
cosθ j sinθ j cosϕ j sinθ j sinϕ j

−sinθ j cosθ j cosϕ j cosθ j sinϕ j

0 −sinϕ j cosϕ j

⎤⎥⎥⎥⎦ . (6.30)
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The angles θ j and ϕ j will be fixed later. Since each operator Wj(ψ) is obtained

from Wu by a unitary transformation followed by a modification of the phase

of an off-diagonal element, the assumptions on τ imply that τ[Wj(ψ)] = τ(Wu).

In addition, since the eigenvalues of Wu are distinct, a sufficiently small ψ will

not affect their ordering and hence the eigenvalues ν j,k(ψ) of Wj(ψ) in particu-

lar satisfy ν j,k(ψ) = νk for k = 1,2, j. Furthermore, the presented construction

ensures that the normalization Tr[Wj(ψ)] = Tr(Wu) = 1 is preserved and that

Tr[W2
j (ψ)]=Tr(W2

u )=μ2
u. Therefore we have

τ(Wu)= τ
[
Wj(ψ)

]= τμ[μ2
u,ν3,ν4, . . .ν j, j(ψ), . . .], (6.31)

where, for each (sufficiently small) ψ and each j, the function ν j, j(ψ) will be in

the ( j−1)st argument of the function τμ.

From the definitions (6.28) and (6.29) we note that ν j,1(ψ), ν j,2(ψ) and ν j, j(ψ)

are the eigenvalues of the 3×3 Hermitian matrix A j(ψ). Because these eigen-

values are distinct, it follows that they are differentiable functions of the pa-

rameter ψ, with the first two derivatives at ψ = 0 given by (we have here

dropped the explicit references to ψ= 0)

∂ψν j,k = xj,k
†(∂ψA j)xj,k (6.32)

and

∂2
ψν j,k = xj,k

†(∂2
ψA j)xj,k −2xj,k

†(∂ψA j)
(
A j −νkI

)# (∂ψA j)xj,k, (6.33)

where k ∈ {1,2, j}, xj,k denotes the column-vector of X j, which is the normal-

ized eigenvector of A j(0) corresponding to νk, and the superscript # denotes the

pseudoinverse. These equations can be obtained for example by differentiat-

ing the eigenequations and using the unitarity of the matrices X j. From the

expressions (6.29), (6.30), (6.32), and (6.33) we get explicitly at ψ= 0 the values

∂ψν j, j = 0 (6.34)

and

∂2
ψν j, j = 2

ν2 −ν j

ν1 −ν j
(sinθ j cosθ j sinϕ j cosϕ j)2 (

ν1 −ν2 cos2ϕ j −ν j sin2ϕ j
)
, (6.35)

where the latter expression is nonzero if θ j and ϕ j are chosen appropriately,

which we assume is done in what follows. Thereby ν j, j(ψ) changes with ψ, when

ψ is varied in the neighborhood of 0. Accordingly, if τμ in Eq. (6.31) is a function

of its ( j−1)st argument or ν j [ν j, j(ψ)] as indicated, it too will change with ψ,

which, however, violates the assumption that τ is independent of the phases of

off-diagonal elements. Hence we conclude that τμ as given by Eq. (6.25) cannot
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be a function of its ( j−1)st argument. Because j ≥ 3 was here chosen arbitrarily,

it then follows that τμ cannot be a function of any of its ( j−1)st arguments for

j ≥ 3 and for the Wu considered, the representation (6.25) reduces to

τ(Wu)= τμ
(
μ2

u
)
. (6.36)

We have thus shown that for normalized cross-spectral density operators Wu

with distinct eigenvalues, an additive τ must have the form (6.36). Since τ

is by its definition (6.14) insensitive to the normalization of Wu and since the

cross-spectral density operators with distinct eigenvalues are dense in the set

of all cross-spectral density operators, we conclude that τ must have the same

definition for all cross-spectral density operators and we arrive at:

Theorem 5 The effective degree-of-coherence functional μ is the only (modulo

trivial modifications) functional of a cross-spectral density function, that is both

invariant to scaled unitary mappings and additive in terms of constituent fields.

6.8 Measuring the effective degree of coherence

As was noted in Sec. 6.3, the effective degree of coherence of a field as deter-

mined from its Wigner distribution agrees with the effective degree of coher-

ence of the field related to most of the commonly used representations. This

connection is useful, since the effective degree of coherence has been deter-

mined experimentally in conjunction with laser beam characterization from the

Wigner distribution of the beam. In one such experiment the Wigner distribu-

tion itself was reconstructed from intensity measurements around the beam

waist [118]. The theoretical aspects of this measurement procedure were also

considered, and a numerical simulation of its performance was done. The simu-

lation showed that the measurement procedure and, in particular, the effective

degree of coherence computed from it, were robust against measurement and

computational errors. Indeed, this is expected in view of the fact that the errors

can be attributed to random noise, whose intensity is typically just a fraction

of the intensity of the full field. Noise then only affects the smaller eigenval-

ues of the cross-spectral density operator and, in view of Eq. (6.1), has a minor

effect on the effective degree of coherence. We mention that the effective de-

gree of coherence has also been determined from the ambiguity function [134]

of the field [119], as well as from a realization of Young’s double pinhole exper-

iment [120].

It is also interesting to observe that for beam characterization purposes it
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turns out that the product of the effective degree of coherence of the beam and

the beam propagation factor equals the average width of the normalized power

spectrum of the beam [119]. This is a useful result, since the latter quantity can

be taken as a measure of the ‘roughness’ of the beam profile. Accordingly, one

could in principle use the observed profile roughness together with the easily

computable beam propagation factor to quickly obtain a coarse estimate of the

effective degree of coherence. In practice this would of course require some way

to assign roughness numbers to different kinds of beam profiles, which may not

be practical.

To conclude, we observe that the example of beam propagation measurements

suggests that the effective degree of coherence is not just a theoretical construct

of only academic interest, but that it can be measured quite readily at least for

laser beams, and that it is directly related to the roughness of the beam profile,

that is, to a quantity which has actual significance. This connection to experi-

ments is important, since it gives credence to the explicit and implicit choices

that have been made on purely mathematical grounds when the effective de-

gree of coherence has been defined in the way it has.
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7. Conclusions and future work

7.1 Summary of main results

In this thesis we have presented work relating to three topics in second-order

coherence theory: electromagnetic treatment of blackbody radiation, univer-

sality results for fields sourced by homogeneous and isotropic sources, and the

effective degree of coherence. Below we summarize the main results of our work

in this order, rather than chronologically.

We presented the first derivation of a coherent-mode representation in a

three-dimensional volume for the cross-spectral density operator. Such expan-

sions were determined both for a scalar field and for a vector-valued (three-

component) electromagnetic field in Publication I. The derivations were done

for the electromagnetic blackbody field and for the equivalent scalar field, which

consists of uncorrelated plane-waves, and the obtained forms of the represen-

tations are valid in any spherical region, with the radius of the region only

affecting the eigenvalues and the normalization of the eigenfunctions in the ex-

pansions. We also analyzed the distribution of the eigenvalues in these expan-

sions and showed that the number of expansion coefficients needed for a specific

relative accuracy in the vector-valued case is twice the number required for the

same accuracy in the scalar case. This result nicely confirms the inkling one

might have from studying the representation of vector-valued electromagnetic

field in terms of scalar fields.

The old radiometric model of a surface blackbody emitter, which has been an-

alyzed mainly in terms of scalar fields before, was studied by us in a full electro-

magnetic setting, where the blackbody radiation is produced in a cavity, from

which it escapes through an aperture in the cavity wall. Although this setup

had been considered before, the results we present in Publication II show that

the earlier investigations contained an erroneous assumption about the cross-
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spectral density operator in the aperture, which made the operator presented

incompatible with Maxwell’s equations. Hence our work is the first in which

the cross-spectral density of the blackbody field at a cavity opening has the

correct form. We have since considered the problem further and noted that al-

though we reach the correct form, this is done in a somewhat inconsistent way.

Specifically, we have taken great care of computing the cross-spectral density

correctly at the aperture, but we have done this starting from an expression for

the cross-spectral density of the field valid only inside the cavity, far from the

cavity walls. Near the cavity walls, where the aperture resides, their influence

on the field must be taken into account in a rigorous electromagnetic analysis

based on Maxwell’s equations. However, as we show in Sec. 4.2, the appro-

priate modification of the cavity cross-spectral density for the boundary region

when no aperture is present, is such that it vanishes for fields that are emitted

through the aperture. We emphasize that although this result is exactly what

one would expect intuitively, its derivation, which makes the analysis logically

consistent, is nevertheless nontrivial.

We have investigated the so-called universality properties of fields sourced by

homogeneous and isotropic sources in Publications III, IV, and V. In the first

of these papers we prove that the universality result that holds for scalar fields

has a counterpart, when a full vector-valued representation is used for electro-

magnetic fields. In fact, our results show that the universal cross-spectral den-

sity operator is proportional to the cross-spectral density operator of blackbody

radiation inside a large cavity, or which is the same, the operator is proportional

to the imaginary part of the free-space dyadic Green’s tensor.

Since the universality results are derived either by assuming that the source

region is asymptotically large, or by assuming that it is infinite but that space

is asymptotically lossless, it is important to know how large, but finite regions,

or small, but finite losses affect these results. We considered the latter of these

questions in Publication IV, where we showed that the convergence of the field

spatial density toward its universal form is sensitive to the exact functional

form of the source region cross-spectral density operator. In particular, our

results imply that it is not sufficient to assume that the losses are ‘negligible’

for the universal behavior to emerge, and we presented an example where at

a fixed small relative loss, the cross-spectral density operator of the field can

be made to change between the universal form and the cross-spectral density of

the source by varying a parameter value. Thereby, since all actual systems have

some amount of loss, one should not blindly assume that the loss is ‘negligible’

for the purposes of universality, even when it seems so from the point of view of
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other applications.

Furthermore, we have shown in Publication V that the convergence towards

universality with an increasing source-region size is also not universal across

different functional forms of the source cross-spectral density. Indeed, we prove

that for finite regions of arbitrary size and composition, the universality results

can be counteracted by a judicious construction of the source cross-spectral den-

sity at the boundary, where it does not influence the (local) homogeneity and

isotropicity assumption. In fact, we show that the spatial density of the field

inside the source region can be made to match the cross-spectral density oper-

ator of any twice continuously differentiable function.

Because our results imply that although the universality results appear when

certain limits are taken, the emergence of the universal behavior can only be

guaranteed when the limit is exactly reached. Therefore, it is likely that the

universality results cannot be applied as such to actual systems, which are

both finite and lossy. In particular, the inferral, which is often made based

on the universality results (of the δ-correlated source), that the blackbody λ/2

coherence length is the shortest possible coherence length for fields sourced by

homogeneous and isotropic sources is not true. Our results furthermore show

that for systems of any size, with any amount (or lack of) losses, the coherence

length can be made arbitrarily short.

We have proven that for any intrinsic property of an electromagnetic field to

be nontrivial it should be invariant to scaled unitary mappings. In Publication

VI we prove that the so-called effective (overall, global) degree of coherence

has this invariance property. Therefore, as we also have shown, it follows that

the effective degree of coherence can consistently be evaluated from all typi-

cal representations of the electromagnetic field, and that it remains unchanged

when the field is scattered by lossless scatterers. Although the effective degree

of coherence is not unique in being invariant to scaled unitary mappings, we

have furthermore proven that it is the only intrinsic character, apart from the

total energy of the field, that is also additive in the sense that it can be evalu-

ated for a sum of orthogonal fields if the pairwise effective degrees of coherence

of the component fields are known. Hence it is the only intrinsic property of

the electromagnetic field that strictly obeys the ‘pairwise’ spirit of a second-

order theory. Interestingly, the pairwise effective degree of coherence between

orthogonal Hilbert spaces, as introduced by us, is actually the natural general-

ization of the degree-of-coherence function μSTF from a pair-of-points setting to

a pair-of-Hilbert spaces setting. This fact, together with the special role as an

intrinsic property of the electromagnetic field enjoyed by the effective degree

87



Conclusions and future work

of coherence, sets the vector-valued degree-of-coherence function μSTF apart

from the other proposed vector-valued degree-of-coherence functions presented

in Sec. 3.2.

7.2 Suggestions for future work

As was discussed in Sec. 3.3, the coherent-mode expansions are intimately

related to the Karhunen–Lòeve expansions of random electromagnetic fields

and specifically these expansions can be used to obtain the best possible ap-

proximations to such fields. These approximations find use for example when

techniques are developed for the efficient transmission of 3D image fields. It

is therefore of interest to understand the distribution of eigenvalues of cross-

spectral density operators that correspond to typical image fields, because this

provides information about the complexity of such fields and thereby gives

lower bounds for the achievable approximation errors, which helps in the de-

sign of compression algorithms. For best results, such understanding should

probably be based on both experimental work and theoretical models.

It is also of interest to study how the finite geometries of actual blackbody cav-

ities influence the exact form of the cross-spectral density function in the cavity

aperture. That there will be an influence is already known from prior work,

but this body of knowledge has not yet been applied to model the field in the

cavity aperture. Such a model should prove useful for electromagnetically rig-

orous analyses of experiments involving blackbody sources, since actual cavity

dimensions are typically such that the infinite-cavity assumption is not com-

pletely warranted.

In general, the blackbody results can be expected to find uses, e.g., in the

modeling of thermal sources and the propagation of natural light. A typical

application is for example lighting design, where both old (incandescent bulbs)

and modern (super-luminal leds) light sources produce light that is reminis-

cent of blackbody radiation. A good understanding of the behavior of blackbody

radiation is also beneficial in the development of applications, where heat radi-

ation needs to be controlled, such as solar energy systems and microchip cooling

devices.

The construction we have presented for obtaining electromagnetic fields with

arbitrarily short coherence lengths, both in a scalar setting and a rigorous elec-

tromagnetic setting, could be applied in the development of microscale and

nanoscale devices. In particular, it could be used to design sources, which radi-

ate fields with desired coherence and polarization properties. This is important
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since these properties influence for example the interaction between the fields

and atoms. In this context it is of course important also to be able to construct

the sources thus designed. One approach that could be used to yield realiza-

tions of such sources is to employ nonlinear optics, and in particular the process

of difference-frequency generation [27] to convert two short-wavelength pump

fields into a field, whose wavelength is much longer. Thereby, if the pump fields

are structured so that their coherence lengths are at or near their respective

diffraction limits or universal coherence lengths, they provide for the generated

field a source, whose coherence length is much shorter than the wavelength of

the sourced field.

So far the effective degree of coherence has mainly been studied from a the-

oretical point of view, with almost no emphasis on the practical applications

this property of the electromagnetic field may have. Therefore, the behavior

of the effective degree of coherence in optical systems should be investigated

in more detail. In particular, it might be of interest to consider the possibility

of measuring the effective degree of coherence between the fields at two finite

apertures. On one hand, from the theory presented in Sec. 6.7, it follows that

this information, together with the field energies at the apertures, is sufficient

for determining the effective degree of coherence of entire fields. On the other

hand, aperture sizes must be finite in any actual measurement, and hence the

degree-of-coherence function μSTF between a pair of points, will necessarily al-

ways be approximated by a corresponding effective degree-of-coherence func-

tional between the Hilbert spaces at the two apertures.
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