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1. Introduction

Imaging methods are not only an integral part of modern medicine, but also

broadly used by the industry in, e.g., non-destructive testing, process tomog-

raphy, and geological exploration. The renowned computerized tomography

(CT), magnetic resonance imaging (MRI), and ultrasonography are accompa-

nied by positron emission tomography (PET), impedance and capacitance to-

mography, elastography, optoacoustic imaging, optical tomography, and several

others. Many of these modalities have both medical and industrial applications

and, from the mathematical point of view, they are inverse problems: The aim

is to deduce some physical quantity from indirect measurements. For example,

CT scanners reconstruct the mass absorption coefficient inside a patient from

x-ray projection images.

Inverse problems can also be described as the complements of direct prob-

lems. Although this dichotomy is not always obvious, the problem considered

direct is often the one where the aim is to solve the result of a law of the na-

ture. These laws are usually expressed as partial differential equations, which

are both local and causal. Consequently, they usually possess favorable stabil-

ity and uniqueness properties. In contrast, inverse problems most often lack

several of the desirable features of direct problems, and hence are significantly

more involved to solve.

This thesis focuses on three problems in diffuse imaging where the measured

physical phenomena is either light or electrical potential. These problems are

characterized by the extreme spreading, or diffusion, occurring in the modeled

field. The proposed methods are devised for inverse source problems: The mea-

sured fields are not directly created by an external device like an x-ray tube

in CT, but they are caused by phenomena that are (at least to some extent)

endogenous to the subject. For example, neural activity in the brain acts as

a source in electroencephalography (EEG), creating electrical potentials which

are measured on the scalp. These measurements are then processed to give

9
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information on the brain activity.

First, we consider a problem that is related to EEG: the inverse source prob-

lem for the Poisson’s equation in the framework of electrostatics. We provide

two extensions to an algorithm for obtaining certain information, called the con-

vex source support, on the location of an unknown source. Second, we employ

reformulations of two specific cases of electrical impedance tomography (EIT)

where an inclusion in an otherwise homogeneous domain is re-interpreted as

an electrostatic source. The convex source support method is tested on both of

the resulting inverse source problems. Finally, we propose a numerical method

for fluorescence diffuse optical tomography (FDOT), where the light propaga-

tion is modeled using the (stationary) diffusion equation. The proposed method

is directly applicable to other linear inverse problems, as well.

10



2. Convex source support method for
the Poisson’s equation

The article [23] studied the inverse source problem for the Poisson’s equation

Δu = F in D,
∂u
∂ν

= 0 on ∂D,
∫
∂D

uds = 0 (2.1)

in a two-dimensional, bounded, convex domain D. Since the distributional,

compactly supported, mean-free source term F is not uniquely determined by

the boundary potential u|∂D , it is essential to consider what can be deduced

about F given u|∂D .

A similar situation is faced also in the framework of inverse source and scat-

tering problems for the Helmholtz equation

(Δ+k2)u = F, (2.2)

coupled with the Sommerfeld radiation condition. Under certain assumptions,

the amplitude u of a time-harmonic wave satisfies (2.2), where k denotes the

wave number and the main interest is the source F [13]. In addition to being

an actual source, F can also represent a secondary source that is induced as

an incoming wave interacts with a scatterer. These inverse problems for the

Helmholtz equation are often studied in an unbounded domain, and the data

are assumed to be so called far field patterns, or the asymptotic behavior of

the outgoing part of u. This corresponds to measurements made far away from

the scatterer. The articles [19, 33, 34, 43, 49] developed the concept of convex

scattering support and a method for its estimation from the corresponding far

field pattern. Described briefly, the convex scattering support is the smallest

convex set which (almost) supports a source compatible with the data.

In [23], the convex scattering support was adapted for the Poisson’s equa-

tion (2.1). Let us denote the related virtual measurement operator by L, that

is, LF := u|∂D with u solving (2.1) for the source F ∈ E ′�(D), where E ′�(D) de-

notes the space of compactly supported, mean-free distributions. Using L, [23]

defined the convex source support of a boundary potential g ∈R (L) as

C g := ⋂
LF=g

suppc F, (2.3)

11



Convex source support method for the Poisson’s equation

where suppc F denotes the convex hull of the support of F. Note that the in-

tersection is taken over all the sources that result in the boundary data g. The

convex source support has several interesting properties [23]: In brief, for any

g ∈R (L) and any ε> 0, there exists Fε ∈ E ′�(D) such that LFε = g and

C g ⊂ suppc Fε ⊂ Nε(C g),

where Nε(C g) denotes the open ε-neighborhood of C g. Moreover, C g =� if and

only if g ≡ 0. This means that for any non-trivial boundary potential measure-

ment g, there exists a non-empty unique minimal convex set C g whose any

ε-neighborhood supports a source compatible with the observed potential.

2.1 Approximating the convex source support

The methods for computing approximations of the convex scattering and source

supports for the two-dimensional setting, presented in [33, 34] and [23], rely on

investigating the Fourier coefficients of the measurements. Let us denote the

virtual measurement operator for the Helmholtz equation (2.2) by Lk, that is,

the far field α of the solution u to (2.2) for F is given by α = LkF. In [34], a

Picard test was given for determining if BR , the origin-centered disc of radius

R, contains the convex scattering support of a given far field pattern. To be

precise, there exists a source FR ∈ Hs
0(BR) such that α= LkFR if and only if

∞∑
j=−∞

|α j|2
| j|−2s

∫R
0 |Jj(kr)|2rdr

<∞, (2.4)

where α j are the Fourier coefficients of α and Jj represents the Bessel function

of the first kind and of order j.

A very similar test is derived in [23] for the convex source support in the case

where the domain D is the unit disc: With BR ⊂ D and denoting the Fourier

coefficients of g by g j, C g ⊂ BR if and only if

∞∑
j=−∞

|g j|2
(R+ε)2| j|

<∞ (2.5)

for every ε> 0. Although the tests given in [33, 34] and [23] are derived using

dissimilar techniques, the resulting tests differ only by the scalings applied to

the Fourier coefficients.

Since any practical test can employ only a finite number of Fourier coeffi-

cients, the conditions (2.4) and (2.5) must be approximated. In [34], a simple

thresholding test was introduced as a method for estimating the smallest R for

which (2.4) converges. In contrast, [23] employed a geometrically decreasing

12



Convex source support method for the Poisson’s equation

model log|g j| ≈ m| j|+b for the behavior of the Fourier coefficients as suggested

in [4]. This reduces the summation in (2.5) into a geometric series, from which

we obtain the smallest possible radius R = em.

The above procedures are valid for testing origin centered discs. Naturally,

the methods are viable for detecting sources only if more detailed information

can be extracted. For the Helmholtz equation, this is straightforward: The far

field pattern is actually the restriction of the Fourier transform of F to the circle

of radius k, i.e., α(θ) =F F(kθ), where θ is the polar angle. Hence, the effect of

the translation x 
→ x+c on the far field pattern can be computed by multiplying

α with the function exp
(
ik|c|cos(θ− c/|c|)).

In the case of the Poisson’s equation, a standard tool from (two-dimensional)

potential theory allows the extraction of further information on the convex

source support of g: By using a suitable Möbius transformation Φ : D → D

from the unit disc onto itself, the original problem (2.1) can be mapped into a

new problem with the transformed source term (|detΦ′|−1F)◦Φ−1 and boundary

data g ◦Φ−1. By applying the test (2.5) to the transformed data, one obtains a

origin-centered, closed disc B containing C (g ◦Φ−1), and, consequently, Φ−1(B)

contains C g. This procedure allows one to test if C g is a subset of any given

closed disc B ⊂ D, leading naturally to the concept of discoidal source support,

which is the intersection of all discs B ⊂ D that contain C g. In practice, one

is only able to use a finite number of Möbius transformations, and hence only

compute an estimate of the discoidal source support.

Domains more complex than a disc can be treated by solving a well-posed

transmission problem in order to obtain a virtual boundary potential on the

boundary of a large enough disc [24]. In principle, this technique also allows

one to obtain more detailed reconstructions of C g since the extended domain

can be arbitrarily large and thus contain larger test discs. However, numerical

reasons impose a limit on the maximum size of usable extended domains [24].

2.2 Extension to an unbounded domain

Publication I considered the inverse source problem for the Poisson’s equation

in an unbounded domain D ⊂ R2. More precisely, the domain is assumed to be

the upper half-plane, and the third condition of (2.1) is replaced with

lim
|x|→∞

|u(x)| = 0.

Although [23] assumed boundedness, most of the results actually hold also for

unbounded domains.
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Convex source support method for the Poisson’s equation

Even though it may seem like the simplest approach, using a single Möbius

transformation Φ to map the half-plane onto the unit disc and then use the

methods from [23] does not result in a desirable algorithm. This is due to the

fact that the preimage of suppc(|detΦ′|−1F) ◦Φ−1 may be non-convex. Hence,

such an algorithm would not approximate the discoidal nor convex source sup-

port of the boundary measurement, although it would carry some information

on the source. Consequently, Publication I employed a family of Möbius trans-

formations to build a technique for approximating the discoidal source support.

The resulting algorithm is able to produce useful reconstructions using obser-

vations only from one side of the examined domain.

2.3 Extension to a three-dimensional domain

Although [23] considered only two-dimensional domains, the main theoreti-

cal results hold also for three spatial dimensions. However, the presented re-

construction algorithm is inherently two-dimensional due to the utilization of

Möbius transformations. Publication III extended the algorithm to three di-

mensions by replacing the Picard test for Fourier coefficients with a test em-

ploying spherical harmonics coefficients and using Kelvin transforms

(
Km,bu

)
(x) := b

|x−m|u(Im,b(x))

instead of Möbius transformations. Note that even though Im,b, the inversion

by a sphere with center m and radius b, is a conformal mapping in R3, the

composition u ◦Im,b is not harmonic for a harmonic u, whereas Km,bu is. By

choosing suitable spheres, one can construct a family of inversions that map

the unit ball onto itself and use the associated Kelvin transforms to deal with

non-concentric test balls. However, there is a notable difference compared to

the two-dimensional case: Kelvin transforms do not retain the homogeneous

Neumann boundary condition of (2.1), which must be accounted for in the con-

vergence tests.
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3. Convex source support method for
electrical impedance tomography

The Calderón problem [5], or EIT, refers to the task of determining the bounded

conductivity field σ (with a positive lower bound) from the boundary measure-

ments vf
|∂D of the functions vf satisfying the conductivity equation

∇·σ∇v = 0 in D, σ
∂v
∂ν

= f on ∂D (3.1)

for some mean-free boundary currents f . The problem has received broad inter-

est, and results, both theoretical and practical, have been published in numer-

ous research articles [3, 11, 50]. Our contribution to the Calderón problem con-

sists of two different techniques for applying the convex source support method

in EIT.

3.1 Reformulation as an inverse source problem

First, we choose a feasible boundary current f and denote by v0 the associated

background solution, that is, the function satisfying (3.1) for σ ≡ 1. Assum-

ing that the actual aim is to locate an inclusion in an otherwise homogeneous

medium with unit conductivity, we face a problem where σ= 1+σi and the inho-

mogeneity σi is compactly supported in D. By denoting the difference potential

with w := v−v0, one obtains

Δw =−∇·σi∇v in D,

where v is the solution to (3.1) for σ= 1+σi. The virtual source Fv =−∇·σi∇v

is clearly supported within the support of σi. Hence, methods that are used for

localizing sources can also be utilized for approximating the support of σi.

The combination of this approach with the convex source support was first

published in [24], which assumed that D is a two-dimensional, bounded do-

main. Publications I and III employed the (reformulated) method in a half-

plane and a three-dimensional ball, respectively, using a single boundary cur-
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rent pattern injected with just two electrodes. (It can be thought that a third

electrode is moved along the boundary to measure the potential.)

Because different boundary currents result in different potentials v, it is pos-

sible to obtain further information on the support of σi by using several bound-

ary currents. For each f , one obtains a subset of suppcσi. Therefore, by taking

the union of all such subsets, a larger and thus more accurate approximation

is obtained, cf. [43] for an analogous result in the framework of the Helmholtz

equation.

3.2 Sweep data

Publication II introduced an alternative measurement configuration for EIT

in two dimensions. Instead of using a single current pattern and measuring

the corresponding potential on the whole boundary, we use one fixed and one

moving electrode, apply a unit current between the two electrodes, and measure

the resulting (relative) potential difference. This measurement, considered as a

function of the moving electrode, is called the sweep data. Assuming point-like

electrodes (cf. [22]), the sweep data can be given in the form

ς(y)= (vy −vy
0)(y)− (vy −vy

0)(y0), y ∈ ∂D.

The potentials vy and vy
0 satisfy (3.1) for σ= 1+σi and σ= 1, respectively, with

the current pattern f = δy −δy0 . Here, the point-like electrodes are modeled as

Dirac delta distributions on ∂D with the singularity lying at the position indi-

cated by the subscript. Obviously, in order to employ such data, one must have

access to the reference data with a homogeneous conductivity either through

time difference imaging or simulations.

In Publication II, we were able to show that the sweep data can, in essence, be

continued as a holomorphic function to the complement of suppσi. Because the

continuation is unique and its real part is harmonic, the convex source support

algorithm can be applied to the sweep data to obtain an estimate for the location

of the inclusion. Since the proof of the harmonic continuation relies strongly on

complex analysis, it is currently not known if the results can be extended to

three spatial dimensions.

Closely related results for the so-called backscatter data of EIT are available

in [25, 26, 27, 30]. The backscatter data can be approximated in practice by

rotating a small probe of two electrodes around D and measuring the voltage

required for maintaining fixed current between them.
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4. Priorconditioned Krylov subspace
methods for fluorescence diffuse
optical tomography

4.1 Fluorescence diffuse optical tomography

The goal of optical tomography is to determine the optical properties of an ob-

ject by illuminating it with light and measuring the resulting photon density at

the surface. In many applications, the considered media are turbid and, conse-

quently, the propagation of light can be accurately modeled with the diffusion

approximation for the radiative transfer equation. For a diffusion coefficient σ

and an absorption coefficient μ, the photon density u satisfies
(−∇·σ∇+μ

)
u = q in D,

u+2ζσ
∂

∂ν
u = g on ∂D,

(4.1)

where ζ describes the reflectiveness of the boundary. Illumination can either be

modeled as an inhomogeneous source term q �= 0 or a suitable boundary value

g �= 0. Further details can be found in the extensive review article [1] and the

references therein.

Advances in the design of optical marker substances have drawn attention

to optical molecular imaging, which allows the study of certain functional pro-

cesses and pathologies in living subjects. Its main advantages in comparison

to many other imaging modalities are the non-invasiveness and high sensitiv-

ity that can be achieved at low cost. In contrast, the widely used PET and CT

scanners are expensive and expose the patient to harmful, ionizing radiation.

While several other phenomena can provide contrast [55], we concentrate on

fluorescence diffuse optical tomography (FDOT), where the fundamental idea

is to inject the subject with a fluorescent marker substance that targets the

interesting molecules. When the subject is subsequently illuminated with exci-

tation light field at a wave length λe, the fluorophore, or marker, absorbs light

and re-emits photons at a different wave length λ f . This effectively creates

sources inside the subject. Since the two fields are at different wave lengths, it
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Priorconditioned Krylov subspace methods for fluorescence diffuse optical tomography

is possible to separate the two photon densities with filters. Important appli-

cations for FDOT include small animal imaging [31, 36, 37, 38, 56] and breast

tumor detection [14, 39, 51].

Often, the fluorophore concentration is small enough to have a negligible ef-

fect on the diffusion and absorption coefficients, and hence the photon density

field uf arising from fluorescence satisfies (4.1) for q = hue and g ≡ 0, where ue

is the excitation photon density field and h is the main object of interest, the

fluorescence yield coefficient. If one knows a priori the diffusion and absorp-

tion coefficients — such knowledge could be obtained using optical tomography

or some other modality — the problem of FDOT is reduced into the following

diffuse, linear inverse source problem: Find the fluorescence yield coefficient h

that results in the measurements MGh, where M is the measurement opera-

tor (see Publication IV) and G maps h to the induced photon density field uf

solving (4.1). This subproblem was the initial target for the results in Publica-

tion IV. However, it became obvious that the same techniques could be used for

other inverse problems as well, shifting the presentation of Publication IV into

a more general direction.

Although the fluorescence yield coefficient is in many applications compactly

supported and localized in the same sense as sources and conductivity inhomo-

geneities in Chapters 2 and 3, it is not currently known if the convex source sup-

port method can be extended to cover FDOT. As noted in [33], the convex scat-

tering support is a flexible theoretical concept, allowing extensions to several

problems. However, it is unclear how to devise an efficient algorithm for com-

puting the convex source support in FDOT. This is because of the absorption,

which, some very exceptional cases notwithstanding, differs from zero every-

where and hence destroys the harmonicity of the photon density field. Conse-

quently, the reconstruction algorithms relying on Möbius transformations and

Kelvin transforms cannot be applied to FDOT. For this reason, we approach

FDOT from an alternative perspective. By adding regularization, the origi-

nal ill-posed problem is replaced with a well-posed one that is (in some sense)

closely related to the original. A treatise on such regularization methods, in-

cluding the two discussed in this section, can be found in [17].

4.2 Tikhonov regularization and truncated Krylov methods

Assuming that the matrix A is a discretization of the compound forward-mea-

surement operator MG, the problem of FDOT is reduced into solving a system
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of ill-posed linear equations

Ax = y, (4.2)

where x and y represent the (discretized) fluorescence yield coefficient and the

available noisy measurements, respectively. Because the measurement and dis-

cretization errors may push y outside the range of A, it is natural to consider

the associated normal equations

AT Ax = AT y. (4.3)

Unfortunately, these equations are even more ill-posed than (4.2) due to the

squaring of A which squares also the condition number of the problem. A com-

mon technique for regaining well-posedness is to use Tikhonov regularization,

that is, to add a penalty term and then seek the minimizer of

‖y− Ax‖2 +αR(x), α> 0. (4.4)

While it is common to use quadratic penalty terms, i.e., R(x) = xTHx or R(x) =
‖Lx‖2 because they reduce the minimization of equation (4.4) to a linear prob-

lem, such penalties are somewhat restricted. In fact, many often used penalty

terms such as Perona–Malik anisotropic diffusion [42] and total variation [44]

are non-quadratic. However, the minimization problems corresponding to such

penalties are non-linear and hence significantly harder to solve.

An alternative option is to solve (4.3) using a Krylov subspace method such

as conjugate gradient (CG) [29] and to regularize through early truncation [21].

This approach is equivalent to minimizing ‖y−Ax‖ in a low dimensional Krylov

subspace

Km = span{AT y, AT AAT y, . . . , (AT A)m−1 AT y}.

For comprehensive monographs on the subject, see [46, 52]. Preconditioning

is essential in the successful use of Krylov subspace methods in large scale

problems [2]. Because fast convergence is guaranteed only if the eigenvalues

of the coefficient matrix are clustered (away from zero), preconditioners aim to

make the spectrum narrower by substituting

P−1 AT Ax = P−1 AT y

for (4.3). For well-posed problems this goal is most commonly achieved by tak-

ing the preconditioner P to be an inexpensively invertible, crude approximation

of the coefficient matrix AT A.

For ill-posed problems, convergence and preconditioning are especially intri-

cate. While the rapid decay of eigenvalues indicates a desperate need for pre-

conditioning, it is not practical to try to cluster the eigenvalues since it would
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cause overwhelmingly high amplification of noise. The main objective in Publi-

cation IV was to derive a technique that combines Tikhonov regularization with

Krylov subspace methods in a computationally efficient manner.

4.3 Priorconditioned LSQR

Normal equations (4.3) are encountered so often that a specialized variant of

CG has been derived for them. Although normal equations can be solved using

the standard CG, the squaring of the coefficient matrix makes them consider-

ably more ill-posed than the original equation (4.2). Instead of applying the

Lanczos algorithm [35] to AT A as in CG, analytically equivalent but numer-

ically more stable method is obtained by using the Golub–Kahan bidiagonal-

ization [18] on A. This modified CG algorithm is called LSQR [40, 41], and is

used in Publication IV for solving the fluorescence yield coefficient. Similar to

CG, LSQR performs best when accompanied with a good preconditioner. Since

traditional preconditioning is not applicable to inverse problems, an alternative

stance is taken here.

In [6, 7, 8, 9, 10], inverse problems were considered using the Bayesian para-

digm and smoothness priors. On structured grids, an unnormalized smoothness

prior p is typically defined through the negative logarithm of its probability

density function

− log p(x)∝‖Dx‖2, (4.5)

where D represents a discretized differential operator. On unstructured grids,

differential operators naturally occur in a form leading to priors given as

− log p(x)∝ xTHx. (4.6)

These priors coincide with a family of extensively used quadratic Tikhonov

smoothness penalty terms, cf. Section 4.2. Their motivation arises from the

fact that naive, unregularized solutions to ill-posed problems are typically ex-

tremely oscillating, which usually contradicts with the reality. The strong os-

cillations can be removed by imposing (some degree of) smoothness on the so-

lution.

The definitions (4.5) and (4.6) lead to zero-mean Gaussian priors with the

unscaled covariances (DTD)−1 and H−1, respectively. The corresponding maxi-

mum a posteriori estimate is computed by solving

(AT A+αH)x = AT y, (4.7)
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where we have assumed H = DTD. Note that (4.7) is equivalent to the least-

squares problem ⎛
⎝ A
�
αD

⎞
⎠x =

⎛
⎝y

0

⎞
⎠ .

Motivated by the fact that solving (4.7) for large scale inverse problems requires

iterative methods and preconditioning, [6, 7, 8, 9, 10] introduced priorcondition-

ing: They demonstrated that the inverse of the covariance matrix is a powerful

preconditioner for solving (4.7) with CG. These results have a strong connection

to [8, 20, 28], where differential operators were studied as preconditioners for

ill-posed problems from another perspective.

However, there are some issues with the efficient implementation of the afore-

mentioned priorconditioning schemes on unstructured grids. The least-squares

connection indicates that LSQR would be better suited for solving (4.7) than

CG, but the standard LSQR algorithm [40, 41] assumes that the precondition-

ing is implemented symmetrically, i.e., by effectively substituting AP−1 for A.

On structured meshes, this is achieved by setting P = D, and it is possible

to employ a weighted pseudoinverse if D is non-invertible [16, 32]. On un-

structured grids, symmetric preconditioning of LSQR requires the Cholesky (or

some other suitable symmetric) decomposition of H. Especially for problems

in three spatial dimensions, such a decomposition is prohibitively expensive

to compute. To remedy this issue, Publication IV derived a version of LSQR

which uses an H-weighted inner product instead of the standard one, which al-

lows us to use H as a preconditioner without its Cholesky decomposition. The

factorization-free priorconditioning of LSQR provides a significant advantage:

H is often (smoothness priors, Perona–Malik, total variation, etc.) a discrete

partial differential operator, which can be inverted by efficient solvers designed

specifically for partial differential equations.

Special care must be taken when methods such as multigrid are employed to

compute the effect of multiplying a vector by the inverse of the preconditioner

P. Indeed, CG and LSQR work only with symmetric, constant preconditioners,

but most iterative solvers approximate inverses with matrices that actually

depend also on the vector to which the inverse is applied and not only on the

matrix that is being inverted. Moreover, the approximate inverse may be non-

symmetric even for symmetric matrices. While there exist flexible variants of

Krylov subspace methods that allow non-constant preconditioners [45, 47], they

arguably provide no advantages over the approach taken in Publication IV: A

simple, computationally low-cost single V-cycle multigrid scheme was sufficient

for achieving effective priorconditioning.

21



Priorconditioned Krylov subspace methods for fluorescence diffuse optical tomography

4.4 Lagged diffusion iteration and priorconditioning

For a quadratic penalty R, the minimizer of (4.4) is simple to find by solving a

linear problem giving the critical point of (4.4). For a non-quadratic R, mini-

mization is a non-linear problem and must be solved iteratively. By setting the

gradient of (4.4) to zero, one obtains

AT Ax+α∇R(x)= AT y.

In many cases, including total variation and Perona–Malik regularization, the

gradient of R corresponds to operating on x with an inhomogeneous diffusion

operator whose diffusion coefficient depends on x. The minimizer can be com-

puted, for example, using the lagged diffusivity fixed point iteration [53, 54]. An

equivalent method can also be derived as a Gauss–Newton type algorithm by

using a sparse approximation for the Hessian of R [15]. The resulting method

is given as the iteration

(AT A+αHk)xk+1 = AT y, (4.8)

where the matrix Hk is a discrete diffusion operator with the diffusion coeffi-

cient depending on the previous iterate xk.

The next iterate xk+1 can be efficiently solved from (4.8) using the priorcon-

ditioned LSQR presented in Section 4.3 with Hk acting as the priorconditioner,

see Publication IV. The reason for referring to Hk as priorconditioner instead

of the standard term preconditioner arises from the nature of Hk. Typically,

preconditioners are constructed from knowledge on the matrix that is being in-

verted. In this case, that matrix is AT A. However, Hk does not depend (directly)

on AT A. Instead, Hk represents information about the expected solution. As

the iteration (4.8) progresses, the features of the solution are progressively in-

corporated in the priorconditioner, allowing one to solve xk+1 from (4.8) with a

low number of LSQR iterations.
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5. Summary of results

Publication I extended the convex source support method to an unbounded do-

main in the framework of inverse source problems for the Poisson’s equation

and EIT. Specifically, the results of [23, 24] were adapted for the half-plane.

The inverse source problem in a half-plane is significantly more ill-posed than

that in the unit disc because the source, in a sense, masks itself more strongly

in the former. In other words, the measurements are carried out only on one

side of the unknown source. Nevertheless, the (appropriately modified) algo-

rithm [23, 24] provides a good approximation for the discoidal source support.

Publication II introduced a novel two-electrode EIT measurement setting

where one electrode resides at a fixed position while the other sweeps along

the boundary of a two-dimensional domain. The difference data for this mea-

surement configuration can be holomorphically continued to the complement

of the support of an inclusion in an otherwise homogeneous domain. Conse-

quently, the convex source support method is applicable to the sweep data. The

performance of the corresponding algorithm was demonstrated using both an

idealized point electrode model and the complete electrode model [12, 48].

Publication III extended the algorithm for computing the convex source sup-

port to a bounded three-dimensional domain. By substituting Kelvin trans-

forms for Möbius transformations, the original discoidal domain of [23, 24] can

be replaced by a ball. The new algorithm was tested in the frameworks of the

inverse source problem for the Poisson’s equation and EIT with a single current

pattern.

Publication IV proposed the use of popular non-quadratic Tikhonov regular-

ization penalties as preconditioners for solving ill-posed least-squares equa-

tions with Krylov subspace methods. In particular, a new variant of LSQR

was derived, allowing efficient use of the proposed preconditioner. The perfor-

mance of the method was demonstrated using a simple deblurring example and

an inverse source problem for FDOT.
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