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Many types of data, e.g., natural language 
texts, biological sequences, or sensor data, 
contain sequential structure. Analysis of 
such sequential structure is interesting for 
various reasons, for example, to discover 
recurring patterns, to detect that data 
consists of several homogeneous parts, or to 
find parts that are surprising compared to 
the rest of the data. The main question 
studied in this thesis is how to identify 
global and local patterns in event sequences. 
Within this broad topic, several subtopics 
are addressed: comparison of event 
frequencies across sequences, finding areas 
where particular events are surprisingly 
frequent or infrequent, and choosing the 
best granularity for finding local patterns in 
event sequences. The main contributions 
are computational methods that can be used 
to compare and explore databases of event 
sequences with high computational 
efficiency, increased accuracy, and that offer 
new perspectives on the sequential 
structure of data. 
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Many types of data, e.g., natural language texts, biological sequences, or time series of sensor
data, contain sequential structure. Analysis of such sequential structure is interesting for
various reasons, for example, to detect that data consists of several homogeneous parts, that
data contains certain recurring patterns, or to find parts that are different or surprising com-
pared to the rest of the data. The main question studied in this thesis is how to identify global
and local patterns in event sequences. Within this broad topic, we study several subproblems.

The first problem that we address is how to compare event frequencies across event se-
quences and databases of event sequences. Such comparisons are relevant, for example,
to linguists who are interested in comparing word counts between two corpora to identify
linguistic differences, e.g., between groups of speakers, or language change over time. The
second problem that we address is how to find areas in an event sequence where an event
has a surprisingly high or low frequency. More specifically, we study how to take into account
the multiple testing problem when looking for local frequency deviations in event sequences.
Many algorithms for finding local patterns in event sequences require that the person ap-
plying the algorithm chooses the level of granularity at which the algorithm operates, and
it is often not clear how to choose that level. The third problem that we address is which
granularities to use when looking for local patterns in an event sequence.

The main contributions of this thesis are computational methods that can be used to com-
pare and explore (databases of) event sequences with high computational efficiency, increased
accuracy, and that offer new perspectives on the sequential structure of data. Furthermore,
we illustrate how the proposed methods can be applied to solve practical data analysis tasks,
and describe several experiments and case studies where the methods are applied on various
types of data. The primary focus is on natural language texts, but we also study DNA se-
quences and sensor data. We find that the methods work well in practice and that they can
efficiently uncover various types of interesting patterns in the data.
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1. Introduction

1.1 Motivation

This thesis considers the problem of finding global and local patterns in

event sequences. An event sequence is a sequence of event labels and

can be used to represent the structure of an object or a series of events,

such as a novel or a deoxyribonucleic acid (DNA) molecule. For example,

(A,C, T,G,G,C,G,G,A, T, T,A) is an event sequence with event labels A,

C, G, and T that represents a part of the structure of a DNA molecule.

A text may be represented as an event sequence by mapping the words

to events, e.g., (this, thesis, considers, the, problem, of, finding, global, and,

local, patterns, in, event, sequences) is an event sequence, where the event

labels are this, thesis, considers, etc.

Analysis of such event sequences is interesting for many reasons. For

example, Mannila et al. [1997] study frequent patterns in alarm logs from

a telecommunication network to discover relations in time between the

alarms. Salmenkivi and Mannila [2005] study segmentation of similar

alarm logs to detect variation over time in the frequency of events. Haimi-

nen et al. [2008] study segmentation of DNA sequences in order to detect

transcription factor binding sites. Hearst [1994] studies segmentation of

text into coherent discourse units corresponding to subtopics, and many

more applications have been considered.

The main question studied in this thesis is how to identify global and

local patterns in event sequences. Within this topic, the following subprob-

lems are addressed. One of the principal properties of an event sequence

is the frequency at which the events occur in the sequence. Compari-

son of event sequences by comparing the frequencies at which the events

occur can be a useful source of information. Such comparisons are, for

1



Introduction

example, frequently employed by linguists. Word counts between two cor-

pora are compared to identify linguistic differences, e.g., between groups

of speakers [Rayson et al., 1997], varieties of the same language [Oakes

and Farrow, 2007], or language change over time [Baker, 2011].

Typically, one assumes that the event sequences are generated by a

stochastic process and that the observations are a sample from this pro-

cess. The aim is to make inferences about the underlying stochastic pro-

cesses, and not just to compare the counts observed in the samples. A

statistical test can be used to assess the statistical significance of an ob-

served difference, i.e., to compute a p-value for an observed frequency

difference. If the p-value is very low, it is unlikely that the two generative

processes are the same, and it is concluded that the difference is signifi-

cant. The first question addressed in this thesis is which statistical test is

most appropriate in this setting. In other words,

Question 1. How to compare event frequencies across (databases of) event

sequences?

The average frequency of an event is a global pattern, and it may also

be useful to identify local patterns in event sequences. For example, there

may be dependencies between consecutive occurrences of an event, or the

frequency of an event may change over time within an event sequence,

causing the occurrence pattern of an event to have a non-uniform, or

bursty, distribution. A prime question is how to identify such local pat-

terns, i.e., how to find areas in the sequence where the event is substan-

tially more or less frequent than in other parts.

The approach considered here is to compute the frequency of an event

for all intervals of some given length, e.g., the frequency between events 1

and 1,000, events 2 and 1,001, events 3 and 1,002, etc. This technique is

also known as the sliding window method. Then, for each interval (win-

dow), the statistical significance (p-value) is assessed using a statistical

test. A problem with this approach is that one cannot conclude that there

is local structure based on a single low p-value. Since many tests are

conducted simultaneously, it is very likely that low p-values are observed.

In such multiple testing scenarios, a post-hoc correction can be used to

adjust the p-values to make them easier to interpret. Several types of

adjustments have been proposed, for example to guarantee that, when

there is no additional structure, i.e., when the null hypothesis is true,

at most one p-value is expected to be below a given threshold α. This

guarantee is known as control for the family-wise error rate at level α.

2
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In the sliding window setting, the intervals are overlapping, thus the p-

values are highly dependent. It is preferable to take this into account in

the post-hoc correction to prevent that the p-values become conservative,

i.e., too high, and that structure present in the data is overlooked. The

second question addressed in this thesis is aimed at this problem:

Question 2. How to take into account the multiple testing problem when

looking for local frequency deviations in event sequences?

There are many algorithms for finding local patterns in event sequences

or time series that use a sliding window, for example, for detecting bursts

[Zhu and Shasha, 2003], detecting change-points [Kifer et al., 2004], or

mining frequent patterns [Lin et al., 2005]. Often, the user has to choose

the level of granularity at which the algorithm operates, and it is not clear

how to choose that level, e.g., would it be optimal to use windows of length

100 events, 1,000 events, or something else?

Additionally, a single granularity does often not provide all the informa-

tion that a user is interested in. Thus, it is often preferable to analyse

event sequences using multiple window lengths concurrently. The ques-

tion then arises how to select the best set of window lengths, best meaning

most appropriate for the task at hand. The third question addressed in

this thesis targets this problem:

Question 3. Which granularities to use when looking for local patterns in

an event sequence?

The main question, how to identify global and local patterns in event

sequences, is not answered completely in this thesis, but the three sub-

problems that are outlined above are addressed thoroughly. The main

contributions of this thesis are computational methods that are faster,

more accurate, and provide new information about event sequences. Each

of the methods is also tested in practice, and we illustrate how empirical

questions can be answered using the methods. The contributions made in

this thesis are detailed further in the following section.

1.2 Contributions

The main problem considered in this thesis is how to find global and lo-

cal patterns in event sequences. Several aspects of this general problem

are considered, specifically: (1) how to compare event frequencies across

3
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(databases of) event sequences, (2) how to take into account the multiple

testing problem when looking for local frequency deviations in event se-

quences, and (3) which granularities to use when looking for local patterns

in an event sequence.

Our focus is on introducing new computational methods that address

each of these questions. Furthermore, we illustrate how the proposed

methods can be applied to solve practical data analysis tasks, and de-

scribe several experiments and case studies where the proposed methods

are applied on various types of data: texts, DNA, and sensor data. We dis-

cuss the related work and compare the proposed methods with existing

methods where applicable.

In Chapter 4, we study the question how to compare event frequen-

cies across databases of event sequences. By modelling texts as event se-

quences and a text corpus as a database, the question can be mapped

to questions such as “is word X more frequent in male than in female

speech?”. We introduce two statistical tests based on resampling and we

compare and evaluate these methods, along with several existing meth-

ods, with respect to their suitability to the task.

We find that the choice of the test, or more specifically, the represen-

tation of the data that is used in the test, matters, both in theory and

in practice, as evidenced by experiments and case studies on two text

corpora. We conclude that frequently applied tests may lead to overes-

timating the significance of frequency differences, and demonstrate that

the overestimation is related to the burstiness of words. We show that

there exist bursty and non-bursty words at any frequency level, thus the

overestimation also occurs at all frequency levels.

In Chapter 5, we study the question how to take into account the mul-

tiple testing problem when looking for local frequency deviations in event

sequences. We introduce a new statistical test for assessing the signifi-

cance of event frequencies in subsequences when using a sliding window,

which provides strong control of the family-wise error rate and takes into

account the dependency structure of overlapping subsequences. We argue

that the exact p-values are difficult to compute, and base the test on an

easy-to-compute upper bound.

We provide empirical evidence that the test offers substantially increased

power compared to existing alternatives, and demonstrate the utility and

practicality of the test on linguistic and biological sequences. We identify

several new and interesting patterns, and find that meaningful results

4
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can be obtained. Moreover, we find that the method remains sufficiently

powerful even when testing hundreds of millions of hypotheses.

In Chapter 6, we study the question which granularities to use when

looking for local patterns in an event sequence. We introduce a new opti-

misation problem that corresponds to selecting the most informative set of

window lengths. We show that the optimisation problem can be efficiently

approximated algorithmically, and solved analytically for certain simple

statistics and data distributions. We explore the performance of the pro-

posed optimisation algorithm, as well as the results for several statistics

on both synthetic data and real data.

We demonstrate that the analytical and empirical results on synthetic

data are useful as a baseline for practical use of the method. We show

that sampling can be used to compute the set of window lengths more ef-

ficiently, making the method practical for (databases of) event sequences

of any size. Finally, we illustrate that the window lengths themselves can

reveal interesting properties of the data; among other findings, we iden-

tify relations between the optimal window lengths and (1) the structure of

sequences composed of multiple interleaved sources and (2) the burstiness

of events.

In short, the methods introduced in this thesis can be used to compare

and explore (databases of) event sequences with high computational effi-

ciency, increased accuracy, and in novel ways.

1.3 Author’s contributions

Chapters 1, 2, 3, and 7 have been written independently by the author

of this thesis, and all the content is new. Parts of Chapter 4 have been

published in the following papers:

1. J. Lijffijt, P. Papapetrou, K. Puolamäki, and H. Mannila. Analyzing

word frequencies in large text corpora using inter-arrival times and

bootstrapping. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Data-

bases (ECML-PKDD), 2011.

2. J. Lijffijt, T. Säily, and T. Nevalainen. CEECing the baseline: Lexical

stability and significant change in a historical corpus. In Outposts of

Historical Corpus Linguistics: From the Helsinki Corpus to a Prolifera-
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tion of Resources (Studies in Variation, Contacts and Change in English

10), 2012.

3. J. Lijffijt, T. Nevalainen, T. Säily, P. Papapetrou, K. Puolamäki, H. Man-

nila. Significance testing of word frequencies in corpora. Forthcoming.

Sections 4.1 to 4.4, the introduction, related work, problem setting and

methods sections, are inspired by all three articles, but the text is mostly

new. Sections 4.5 and 4.6, containing the experiments and conclusion, are

mostly based on Publication 3, while Section 4.5.3 is based on Publication

2. The author of this thesis has formulated the initial hypothesis of the

chapter (that the statistical test matters, and that using the bag-of-words

model leads to overestimating the statistical significance of observed dif-

ferences) and is the main author of all three publications. The current au-

thor has written most of the text of Publications 1 and 3, while Tanja Säily

has contributed equally towards Publication 2. However, only a small part

of Publication 2 is included in this thesis. The current author has devel-

oped and implemented the new methods, has designed the experiment

in Section 4.5.1, has co-designed the experiments in Sections 4.5.2 and

4.5.3, and has conducted the experiments. The analysis and interpreta-

tion of the results in the case studies (Sections 4.5.2 and 4.5.3) have been

conducted by the domain experts and co-authors Tanja Säily and Terttu

Nevalainen. All co-authors of the articles have participated in writing,

discussions, and provided feedback during all stages of the research.

Most of the content of Chapter 5 has been published in

4. J. Lijffijt. A fast and simple method for mining subsequences with sur-

prising event counts. In Proceedings of the European Conference on Ma-

chine Learning and Principles and Practice of Knowledge Discovery in

Databases (ECML-PKDD), 2013.

The author of this thesis is the sole author of the article and the work

has been conducted independently. The author’s advisor, Heikki Mannila,

has provided feedback during various stages of the research. The text has

been partly rewritten to adhere to the style of the thesis, the division be-

tween the problem formulation and the method is new, and the discussion

of the results from the experiments has been slightly expanded.

Most of the content of Chapter 6 has been published in

6
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5. J. Lijffijt, P. Papapetrou, and K. Puolamäki. Size matters: Finding the

most informative set of window lengths. In Proceedings of the European

Conference on Machine Learning and Principles and Practice of Knowl-

edge Discovery in Databases (ECML-PKDD), 2012.

6. J. Lijffijt, P. Papapetrou, and K. Puolamäki. The k-windows problem:

Finding the most informative set of window lengths. Forthcoming.

Publication 6 is an expanded version of Publication 5. The text has been

partly rewritten to adhere to the style of the thesis. The initial hypothesis

was formulated together with the co-authors Panagiotis Papapetrou and

Kai Puolamäki. The current author has written most of the text of the

articles, has developed and implemented the methods, has designed and

conducted all the experiments presented in this thesis, and has analysed

and interpreted the results of the experiments. The proof for an analytical

solution in a special case was first derived by Kai Puolamäki, and both

Panagiotis Papapetrou and Kai Puolamäki have participated in writing,

discussions and provided feedback during all stages of the research.

1.4 Outline

This thesis is structured as follows. Basic definitions are presented in

Chapter 2. However, these need not be read integrally, the reader is re-

ferred to the appropriate sections of Chapter 2 where necessary. Similarly,

to avoid repetition, general introductions to all data sets used in this the-

sis are given in Chapter 3. These need not be read in advance either.

The three subproblems are each addressed in a separate chapter. The

question how to compare event frequencies across (databases of) event se-

quences is addressed in Chapter 4. The question how to take into account

the multiple testing problem when looking for local frequency deviations in

event sequences is addressed in Chapter 5, and the question which gran-

ularities to use when looking for local patterns in an event sequence is ad-

dressed in Chapter 6. These chapters are self-contained and can be read

without reading the others. Chapter 7 contains an overview and discus-

sion of the main conclusions.
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2. Preliminaries

This chapter introduces basic notation and definitions related to event

sequences (Section 2.1), inter-arrival times of events (Section 2.2), bursti-

ness and dispersion of events (Section 2.3), statistical significance testing

(Section 2.4), and testing multiple hypotheses (Section 2.5).

All of the following definitions are used in multiple chapters and there-

fore collected in this chapter. However, it is not necessary to read these

definitions in advance. The reader is referred back to specific sections of

this chapter when the corresponding notation and definitions are used.

2.1 Event sequences

Definition 2.1 (Event sequence). Given a set of event labels L, an event

sequence S of length n is defined as

S = (s1, . . . , sn) , where si ∈ L for all i ∈ {1, . . . , n} .

For example, S = (a, b, c, b) is an event sequence of length 4 with event

labels L = {a, b, c}.

Definition 2.2 (Subsequence). Given an event sequence S of length n, the

subsequence Si,m starting at position i with length m and (i+m− 1) ≤ n

is the event sequence

Si,m = (si, , . . . , si+m−1) .

For example, if S = (a, b, c, b), then S3,2 = (c, b).

Definition 2.3 (Event sequence database). A database of event sequences

S is an unordered set of r event sequences:

S = {S1, . . . , Sr} .

For example, S = {(a, b, c, b) , (c, a, b)} is a database with two event se-

quences.

9
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Definition 2.4 (Event count). Let 1A(sk) denote the indicator function

that equals 1 if sk ∈ A and 0 otherwise. The count of a set of events A ⊆ L

in a subsequence Si,m is defined as

σA(Si,m) =
i+m−1∑
k=i

1A(sk).

The count of a set of events A in an event sequence S of length n is given by

σA(S) = σA(S1,n),

and the count of a set of events A in a database S = {S1, . . . , Sr} is

σA(S) =
r∑

i=1

σA(Si).

Definition 2.5 (Event frequency). The frequency of a set of events A ⊆ L

in a subsequence Si,m is defined as

ζA(Si,m) =
σA(Si,m)

m
.

The frequency of a set of events A in an event sequence S of length n is given

by ζA(S) = ζA(S1,n). Let |S| denote the length of an event sequence S, then

the frequency of a set of events A in a database S = {S1, . . . , Sr} is

ζA(S) =
σA(S)∑r
i=1 |Si|

.

For example, if S = {(a, b, c, b) , (c, a, b)}, then σ{b}(S) = 2 + 1 = 3 and

ζ{b}(S) = 2+1
4+3 = 3

7 . If the set of events A contains only one element, e.g.,

A = {a}, we generally write σa and ζa instead of σ{a} and ζ{a}. Often,

the relevant set of events A is clear from the context, in which case A is

omitted from the notation, e.g., σ(S) = σA(S).

2.2 Inter-arrival times

Definition 2.6 (Event occurrence). Let S = (s1, . . . , sn) be an event se-

quence, then the event a ∈ L occurs at position j if and only if

sj = a.

Definition 2.7 (Set of occurrence positions). Given an event sequence S

and an event a ∈ L, denote the event count as k = ζa(S). The set of all

occurrence positions of the event a is defined as

Ωa =
{
ω1
a, . . . , ω

k
a

}
,

where ω1
a is the first position where a occurs in S, ω2

a is the second position,

ω3
a is the third position, . . ., and ωk

a is the last position.

10
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For example, given S = (a, b, c, b), the event b occurs at positions 2 and 4

and Ωb = {2, 4}.

Definition 2.8 (Set of inter-arrival times). Let Ωa be a set of occurrence

positions, and let k denote the number of occurrence positions k = |Ωa|,
then the corresponding set of inter-arrival times Πa is given by

Πa =
{
π1
a, . . . , π

k
a

}
,

where

πi
a =

⎧⎪⎨
⎪⎩
ωi+1
a − ωi

a, if i ≤ k − 1,

n+ ω1
a − ωi

a, if i = k.

For example, given S = (a, b, c, b), the inter-arrival times for event b are

π1
b = ω2

b − ω1
b = 4− 2 = 2,

and

π2
b = n+ ω1

b − ω2
b = 4 + 2− 4 = 2.

Thus, the set of inter-arrival times for event b is Πb = {2, 2}. The previous

definitions could be generalised for sets of events, but only sets of inter-

arrival times for single events are considered in this thesis.

2.3 Burstiness and dispersion

We use the terms burstiness and dispersion to refer to measures of the

variability of the frequency of an event. An event that is bursty or that has

low dispersion tends to be frequent in some parts of an event sequence and

infrequent in all other parts of an event sequence. In this thesis, bursti-

ness refers to a statistic computed from the set of inter-arrival times of an

event, while dispersion refers to a statistic computed from the distribution

of frequencies across event sequences.

We use the method introduced in Altmann et al. [2009] to measure the

burstiness of an event. The measure is based on fitting a Weibull distri-

bution [Weibull, 1951] to the set of inter-arrival times. The probability

density function of the Weibull distribution is

f(x;α, β) =

⎧⎪⎨
⎪⎩

β
α

(
x
α

)β−1
e−(x/α)β x ≥ 0,

0 otherwise,

The parameters α > 0 and β > 0 are known as the scale and shape

parameters, respectively. When β = 1, the Weibull distribution is equal

11
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to an exponential distribution. As β decreases, the probability of x having

a low or a high value increases, and the probability for values around

the mean decreases. Functions for maximum likelihood estimation of the

parameters are available in most statistical software packages.

Definition 2.9 (Burstiness of an event). Given a set Πa of inter-arrival

times and the corresponding maximum-likelihood estimate (α̂, β̂) for the

parameters of the Weibull distribution, the burstiness of the event a is de-

fined as the value β̂.

In corpus linguistics, it is more common to study dispersion of word fre-

quencies. Dispersion is in interpretation similar to the measure of bursti-

ness defined above, but is quantified using event frequencies over texts.

There is no consensus on what is the best quantification of dispersion,

a recent survey is Gries [2008]. The measure adopted here is the nor-

malised index of dispersion, which was introduced in Gries [2008] and

refined in Lijffijt and Gries [2012]. The measure is defined as follows.

Definition 2.10 (Event dispersion). Given an event a ∈ L and a database

of event sequences S = {S1, . . . , Sr} with lengths n1, . . . , nr. Let N =∑r
i=1 ni be their sum and let f1, . . . , fr be the relative frequencies: fi =

σa(Si)/σa(S). The dispersion of the event a in database S is defined as

DPnorm =

∑r
i=1

∣∣fi − ni
N

∣∣
2 ·
(
1− mini(ni)

N

) .
For example, let S be a database with three event sequences, each with

length 1,000 events, and assume that σa(S1) = 100, σa(S2) = 200, and

σa(S3) = 300. Then, N = 3,000, mini(ni) = 1,000, f1 = 100/600, f2 =

200/600, f3 = 300/600, and thus

DPnorm =
|1/6− 1/3|+ |2/6− 1/3|+ |3/6− 1/3|

2 · (1− 1/3)
=

2/6

4/3
= 0.25.

DPnorm takes values in the range [0, 1]. It equals 1 when all occurrences

of the event are in the shortest event sequence, and 0 if all relative event

frequencies are equal to the relative event sequence lengths, regardless

of the distribution of the event sequence lengths [Lijffijt and Gries, 2012].

An event has low dispersion if DPnorm is high.

2.4 Statistical significance testing

Statistical significance testing, also called hypothesis testing, can be used

to aid a decision making process involving data whose generative process
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is (partly) unknown. Using hypothesis testing in decision making, for ex-

ample to reject a scientific theory, is a complex topic with many aspects.

For a comprehensive view on the topic of hypothesis testing, see, for ex-

ample, Lehmann and Romano [2005].

We consider the following aspects: in Chapters 4 and 5, novel methods

are introduced for assessing the significance of variations in event counts

across databases, and within event sequences. In the first case the prob-

lem is to specify and appropriate null hypothesis, while in the second case

the problem is to compute the probabilities corresponding to the null hy-

pothesis as accurately and efficiently as possible1. This section introduces

a few basic concepts, while all relevant details are presented in the corre-

sponding chapters.

Definition 2.11 (Test statistic). The test statistic is the quantity of interest

in a data set, for example the frequency of an event in an event sequence.

Definition 2.12 (Null hypothesis). Let T denote a random variable that

corresponds to the value of the test statistic. The null hypothesis is a prob-

ability distribution over the test statistic: Pr ({T = k}).

Definition 2.13 (One-tailed p-value). Let k denote the value of the test

statistic in the data. The one-tailed p-value for the data is the probability

that the test statistic is ≥ k, under the null hypothesis:

pH = Pr ({T ≥ k}) .

Alternatively, the one-tailed p-value for the data may correspond to the test

statistic being smaller than or equal to k:

pL = Pr ({T ≤ k}) .

We indicate the direction with subscript H (high) and L (low).

Definition 2.14 (Two-tailed p-value). Let k denote the value of the test

statistic in the data. The two-tailed p-value is defined as:

pT = Pr ({T = k}) + 2 ·min (Pr ({T > k}) ,Pr ({T < k})) .

Which type of p-value to use, one-tailed or two-tailed, depends on the

application and the question that the user aims to answer.

1The topic of designing computationally efficient algorithms for computing prob-
abilities (or p-values) as accurately as possible could be argued to be probability
theory, or algorithm design, but the aim here is to use these probabilities in hy-
pothesis testing and analysis of data.
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Definition 2.15 (Statistically significant). An observation is statistically

significant if and only if its p-value is less than or equal to a prespecified

threshold α:

p ≤ α.

For the sake of readability, the terminology used in this thesis is that an

observation is “statistically significant” instead of the traditional state-

ment that “the null hypothesis is rejected”.

2.5 Testing multiple hypotheses

Due to the probabilistic nature of statistical significance testing, two types

of errors may occur in an inference process that is based on statistical

testing. Table 2.1 gives an overview of each of the possible situations.

Definition 2.16 (False positive). A false positive, also known as type I

error, is the event that an observation is declared significant, while the

null hypothesis is true. This corresponds to situation FP in Table 2.1.

Definition 2.17 (False negative). A false negative, also known as type II

error, is the event that an observation is not declared significant, while the

null hypothesis is false. This corresponds to situation FN in Table 2.1.

Table 2.1. When using statistical significance testing for inference, it is possible to make
errors. Situations FP and FN correspond to type I and type II errors, respec-
tively, while situations TN and TP correspond to correct inferences.

Observation not Observation

declared significant declared significant

Null hypothesis is true TN FP

Null hypothesis is false FN TP

Several forms of control have been proposed in order to make p-values

easier to interpret when testing multiple hypotheses concurrently. For

an overview see, for example, Shaffer [1995]. Depending on the problem

setting, we use methods for control of the family-wise error rate, or control

of the false discovery rate.

Let TN , FP , FN , and TP denote random variables that correspond to

the number of times each of the situations occurs in a multiple testing

scenario.

Definition 2.18 (Family-wise error rate). The family-wise error rate is the
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probability that at least one false positive occurs:

Pr ({FP > 0}) .

Definition 2.19 (False discovery rate). The false discovery rate is the ex-

pected number of false positives over the total number of observations de-

clared significant:

E

[
FP

FP + TP

]
.

A method for control provides a guarantee on the rate, typically an up-

per bound, for example the probability that at least one observation is

falsely declared significant is at most t: Pr ({FP > 0}) ≤ t, or the expected

rate of false positives over all positives is at most t: E [FP/(FP + TP )] ≤ t.

Such methods and guarantees are presented where used.

Note that the word rate has a slightly different meaning in family-wise

error rate as in false discovery rate. In the first case, it is a probability

that a certain event (falsely declaring one or more observations as signifi-

cant) occurs while conducting an experiment and the following inference.

Thus, it is a rate over the number of times the entire experiment is re-

peated. In the second case, it is a ratio (between the number of false

positives and the total number of positives).

Also, given a statistical test, the family-wise error rate depends on the

total number of hypotheses tested, while the false discovery rate does not.

Degenerate cases aside, the probability of falsely declaring at least one

observation significant grows with the total number of hypotheses, but

the expected ratio between the number of false positives over all positives

is constant.
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3. Data

To investigate the utility of the methods proposed in this thesis, we have

applied them to data sets from several domains. This chapter provides

brief introductions to all data sets.

3.1 British National Corpus

The British National Corpus [2007] is the largest annotated text corpus

that is currently available in full-text format. The texts have have been

annotated with information such as author gender, age, and target audi-

ence, and all texts have been classified into genres [Lee, 2001]. The cor-

pus is available for a fee through the BNC website1. The corpus is used

in Chapter 4 to study vocabulary differences between male and female-

authored fictional prose, and to study the impact of burstiness/dispersion

of words on the statistical significance of vocabulary differences for vari-

ous statistical tests. The corpus is also used in Chapter 6, where hapax

legomenon ratios throughout texts are compared between several genres.

3.2 Corpus of Early English Correspondence

The Corpus of Early English Correspondence is a corpus of letters dated

between 1410 and 1681 that was compiled with the aim to study lan-

guage change over time and sociolinguistic phenomena. A version with

standardised spelling2 was created recently to facilitate diachronic com-

parisons. The original corpus is freely available through the Oxford Text

Archive3. The Standardised-spelling Corpus of Early English Correspon-

1http://www.natcorp.ox.ac.uk
2http://www.helsinki.fi/varieng/CoRD/corpora/CEEC/standardized.html
3http://ota.ahds.ac.uk
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dence [2012] is used in Chapter 4 to study language change around the

English Civil War (1642–1651) and the differences between statistical

tests that may be employed to that end. The part used in the study con-

sists of the 3,055 letters (1.2 million words) dated in the 17th-century.

3.3 Pride and Prejudice

Project Gutenberg4 offers digitised books that are freely available because

their copyright has expired. One of the most popular novels available,

“Pride and Prejudice” by Jane Austen, is used in Chapter 5 to study the

local frequency variation of words, and in Chapter 6 to analyse the rela-

tion between burstiness of words and optimal window lengths for studying

frequency variations.

3.4 Reference genomes

In Chapter 6, we analyse and compare the spatial occurrence patterns of

nucleotides and dinucleotides in the reference genomes of Homo Sapiens

(human) [Venter et al., 2001] and Canis Lupus Familiaris (dog) [Kirkness

et al., 2003], and in Chapter 5, we study local variation in GC-content in

the Homo Sapiens genome. The reference genomes are freely available

through the NCBI data repository5. The reference genomes are good ex-

amples of large event sequences, as they have lengths of ca. 3,200 and

2,500 million bases.

3.5 Strain sensor time series of the Hollandse Brug

In Chapter 6, we study event sequences and time series with multi-scale

structure. An example of such a time series is the Infrawatch data6

[Knobbe et al., 2010, Vespier et al., 2012]. The time series consists of 24

hours of data (860,953 measurements) from a strain sensor on the “Hol-

landse Brug”, a bridge in the Netherlands. The data contains structure

at multiple time scales: individual cars and trucks passing on the bridge,

traffic jams, and weather effects. The data is freely available.

4http://www.gutenberg.org/
5http://www.ncbi.nlm.nih.gov
6http://infrawatch.liacs.nl
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4. Comparing word frequencies
between text corpora

In this chapter, we consider the problem how to compare word frequen-

cies across corpora. We model texts as event sequences and a text corpus

as a database of event sequences. The problem is then mapped to the

question of how to compare event frequencies across (databases) of event

sequences. This problem is relevant, for example, when a linguist wants

to test a hypothesis such as “word X is more frequent in male than in

female speech”. This can be accomplished by comparing the frequency of

word X between two corpora, one containing transcribed male speech and

the other containing transcribed female speech.

We introduce two methods based on resampling and we evaluate and

compare these methods, along with several existing methods, with respect

to their suitability to this task. We analyse the methods theoretically, and

present two case studies where the practical differences are investigated.

We show that the choice of how to represent the data, and thus the statis-

tical method, matters, and argue that using only total word counts, which

is common practice for comparing corpora, may lead to overestimating the

significance of frequency differences. We find that the overestimation is

related to the spatial distribution of words and that the overestimation

occurs at all frequency levels.

4.1 Introduction

Comparing event frequencies across data is an important task in many

applications and scientific disciplines. For example, a linguist may want

to test the hypothesis “word X is more frequent in male than in female

speech”, which can be accomplished by comparing the frequency of word

X in two text corpora containing conversations by males and females. The

problem considered in this chapter is how to assess the statistical signifi-
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cance of observed differences in event frequencies between two databases,

which turns out to be surprisingly intricate.

The statistical significance depends on the choice of the null hypothe-

sis, i.e., the probability distribution that is assumed to describe the fre-

quency of a word. The norm is to represent the data by total word counts,

implicitly assuming that all words in a corpus are independent samples,

and thus that the count of each word follows a binomial distribution. This

model is known as the bag-of-words model, and has been pervasively used

in both data mining [Kleinberg, 2003, Lappas et al., 2009] and linguistics

[Leech and Fallon, 1992, Rayson et al., 1997, Oakes and Farrow, 2007] for

finding words with significantly elevated occurrences in a text.

We argue that the bag-of-words model should not be used when comput-

ing the statistical significance of observed difference between text corpora,

because the bag-of-words model does not take into account the structure

of a corpus. Typically, a corpus is a collection of texts, and while the texts

can be regarded as independent samples, the words inside a text are cer-

tainly not (statistically) independent.

An example of the fit of the bag-of-words model to two words in a large

corpus (taking into account the varying lengths of texts in the corpus)

is given in Figure 4.1. Both for and I are highly frequent and approxi-

mately equally frequent, yet their distribution is very different and nei-

ther is modelled well by the predicted distribution, because the bag-of-

words model does not take into account the structure of the corpus. In

Section 4.5, it is shown that almost none of the words found in this large

corpus follows a binomial distribution.

Another example is illustrated in Table 4.1, which contains p-values for

the hypothesis that the name Matilda is used at an equal frequency by

male and female authors in the prose fiction subcorpus of the British Na-

tional Corpus (see Section 3.1). With more than 500 occurrences (408 for

male, 169 for female), the well-known chi-squared and log-likelihood ratio

tests could be expected to be reliable. However, the other two tests give

very different results. The reason that the methods disagree is that the

frequency distribution is highly skewed; there are only five texts where

the word occurs, of which one text, by a male author, has 408 occurrences.

The bag-of-words model, used in the chi-squared and log-likelihood ratio

tests, does not account for the uneven distribution1.

1NB. It is not claimed here that the chi-squared or log-likelihood ratio tests are
bad tests, but only that their application in this context is inappropriate.
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Figure 4.1. Histograms of normalised frequencies of the words I and for in the British
National Corpus, compared to the distribution expected under the bag-of-
words model, i.e., when we assume that all words are independent samples
and do not take into account the structure of the corpus.

Table 4.1. P-values for the hypothesis that male and female authors use the name
Matilda at an equal frequency, based on the prose fiction subcorpus of the
British National Corpus.

Method Chi-squared

test

Log-likelihood

ratio test

Welch’s t-test Wilcoxon

rank-sum test

p < 0.0001 < 0.0001 0.4393 0.1866

In linguistics, frequencies of words and other phenomena, such as n-

grams, proverbs, semantic tags, etc., are widely used to study how people

communicate. It has been pointed out previously that the bag-of-words

model is a poor descriptor of word occurrences. Due to unintuitive out-

comes from the chi-squared test, Kilgarriff [2005] claimed that hypothe-

sis testing of word frequencies is rarely useful for finding associations and

often leads to misleading results. Rayson and Garside [2000] argued that

manual investigation of all differences is required, while Gries [2005b]

concluded that each significant result should be checked using an effect

size measure. Oakes and Farrow [2007] and Gries [2008] suggest that

besides testing the significance, a measure of dispersion should be used.

In information retrieval, the fraction of documents where a word occurs

is used to detect content-related words. The inverse document frequency,

used in tf-idf, but also in more recent approaches such as Okapi BM25

[Robertson and Walker, 1994, Baeza-Yates and Ribeiro-Neto, 1999], is

useful because content-related words are less dispersed than words with
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a grammatical function. Usually the statistical significance of word fre-

quencies is irrelevant, because the task is to rank documents according to

their relevance to a given set of query words, and not to find words that

describe the documents. The problem setting considered here is different

and thus the methods are not directly comparable.

The contextual behaviour of words in texts varies and is affected by sev-

eral factors, such as topic and genre [Biber, 1995], and author charac-

teristics (gender, age, social class) [Rayson et al., 1997]. For example, in

written language, especially in newspaper texts, there is avoidance of re-

peating a word, due to stylistic ideals, whereas in conversation, priming

of words and syntactic structures plays an important role [Gries, 2005a,

Szmrecsanyi, 2005]. Hence, it is evident that natural language is non-

homogeneous. The variation in frequency depends on the specific word,

but as shown later, is almost always much larger than expected under the

bag-of-words model.

To model the contextual behaviour of words, we consider their spatial

distribution throughout texts. The primary unit used in modelling is the

interval between two occurrences of a word. This interval is referred to

as the inter-arrival time between two instances. Altmann et al. [2009]

argued that inter-arrival times of word occurrences in natural language

can be modelled to a good accuracy using a Weibull distribution. This

parametric distribution gives rise to a parameter β that can be interpreted

as the burstiness of a word. Bursty words tend to exhibit long inter-arrival

times followed by short inter-arrival times, while the inter-arrival times

for non-bursty words have smaller variance. The lower the burstiness

parameter, the burstier the word: for example, βfor = 0.93 and βI = 0.57.

Summary of contributions. We introduce two methods to asses the sig-

nificance of observed differences in word frequencies between two text cor-

pora. The first method is based on randomisation testing and takes into

account the word frequency at the text level, while the second method is

based on the inter-arrival time distribution of individual words. We com-

pare these methods to existing methods in a series of experiments, and

present case studies on two large corpora: the British National Corpus

(BNC) and the Corpus of Early English Correspondence (CEEC), see Sec-

tions 3.1 and 3.2, respectively. The case studies are based on comparing

word frequencies between genders in the BNC and over time in CEEC.

We find that the choice of the statistical test, and more generally, the

choice of how the data is represented, matters: for most words, the thresh-
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old for a word to be reported as significant increases substantially when

taking into account its distribution throughout the corpus. Therefore,

fewer words are reported as significant. We also find that Welch’s t-test,

and the introduced randomisation and inter-arrival time tests give sim-

ilar results, and conclude that each of these tests is a viable choice for

comparing word frequencies across corpora.

Outline. We continue by discussing the related work in Section 4.2. The

formal statistical problem is defined in Section 4.3, and the methods are

presented in Section 4.4. Results from the experiments and case studies

are presented in Section 5.5. Conclusions are given in Section 5.6.

4.2 Related work

Research on graphs and networks has shown that many natural phenom-

ena and patterns in human activity exhibit bursty behaviour [Faloutsos

et al., 1999, Barabási, 2005, Kumar et al., 2005, Leskovec et al., 2007].

The discovery of power-law distributions occurred in the study of natural

language; Zipf ’s law [Zipf, 1949], relating the rank of words and their fre-

quencies, describes the oldest known example of a power-law. However, it

seems that for comparing word frequencies across text corpora, no heavy-

tailed modelling has been attempted.

The bag-of-words model has been pervasively used in data mining and

linguistics communities for finding words with significantly elevated oc-

currences in a text, see, e.g., Leech and Fallon [1992], Rayson et al. [1997],

Kleinberg [2003], Oakes and Farrow [2007], and Lappas et al. [2009].

The chi-squared test for independence was introduced by Pearson [1900].

Hofland and Johansson [1982] were the first to apply the chi-squared test

to study differences between text corpora. They compared American and

British English using the Brown and LOB corpora.

Theoretical works on statistical testing under the bag-of-words assump-

tion include Dunning [1993] and Rayson et al. [2004]. Dunning [1993]

proposed a log-likelihood ratio test to find associations between words,

because the chi-squared test is based on a normal approximation to the

binomial and thus inaccurate for small sample sizes. The log-likelihood

ratio test can also be applied to compare word frequencies between two

corpora. Rayson et al. [2004] discussed Yates’ correction when using the

chi-squared test with small samples, but, based on results from simula-

tions, proposed to use Cochran’s rule with an extension for the purpose of
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comparing word frequencies between text corpora.

Several studies have argued that statistical tests based on comparing

vectors of relative word counts per text are more appropriate than statis-

tical tests based exclusively on counts per corpus. Kilgarriff [2001] con-

cluded that the Wilcoxon rank-sum test2 is preferable to the chi-squared

test after studying the most significant differences between the Brown

and the LOB corpus, and the most significant differences between males

and females in the transcribed conversations in the BNC. Paquot and

Bestgen [2009] favour the t-test over the log-likelihood ratio test and the

Wilcoxon rank-sum test, based on a study of word frequency differences

between the academic prose and fiction prose genres in the BNC.

In data mining, modelling burstiness of words has received attention

with respect to several applications. For example, Kleinberg [2003] pro-

poses to model the frequency of a word over time in a hierarchical fash-

ion, using an infinite-state automaton, with the aim of detecting bursts.

Lappas et al. [2009] introduced a search framework to identify bursts of

words over time in a corpus of time-stamped news articles. The method

is based on computing a score under the bag-of-words model, but values

are then processed further to identify bursts. Madsen et al. [2005] and

Elkan [2006] use the DCM distribution, a multinomial distribution with

one additional parameter to take into account burstiness, for classifica-

tion and clustering of texts, respectively. Blei and Frazier [2011] proposed

the distance dependent CRP for taking account word burstiness and the

structure of texts while learning topic models. However, none of these

methods are directly applicable to the problem studied in this chapter.

The fact that the bag-of-words model poorly describes word frequencies

in text corpora is not surprising, as it is well known that words do not

occur at random [Church and Gale, 1995, Katz, 1996, Kilgarriff, 2005, Ev-

ert, 2006]. The materialisation of linguistic utterances depends on many

factors, such as text genre [Biber, 1995], and target audience [Bell, 1984].

Besides these, there are other immediate cognitive features that play a

role, such as word priming [Gries, 2005a, Szmrecsanyi, 2005].

2The statistical test that we refer to as the Wilcoxon rank-sum test has several
names in the literature. For example, Kilgarriff [2001] uses the name Mann-
Whitney U-test, while Paquot and Bestgen [2009] use the name Wilcoxon Mann-
Whitney test. The name used here is the same as in Matlab and R.
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4.3 Problem statement

Relevant preliminaries, definitions regarding event sequences and statis-

tical significance testing, are presented in Sections 2.1 and 2.4. Our aim

is to compare the frequency of a word between two corpora and to assess

the significance of an observed difference.

Each text in a corpus is represented as an event sequence and the event

labels are the word types. All punctuation is ignored and, in the exper-

iments, words are lowercased, such that there is no difference between

a word that occurs at the start of a sentence. For example, the sen-

tence “The aim is to compare the frequency.” is mapped to the event

sequence (the, aim, is, to, compare, the, frequency). Lowercasing is not re-

quired, and, in contrast, it would also be possible to enrich the words

before mapping them to event labels, for example using part-of-speech or

semantic tagging, such that each event correspond to a word+tag, or a

unique semantic identifier.

Let S and T be two text corpora, i.e., databases of event sequences. We

assume that the corpora are representative samples of the language vari-

eties that should be compared. The research question is: is the frequency

of a word w different in the two language varieties? The true mean fre-

quencies of the word w in the language varieties, denoted as θw,S and θw,T ,

are unobserved. However, the observed mean frequency is the maximum-

likelihood estimate for the true mean frequency: θ̂w,S = ζw(S).
Under the bag-of-words assumption, the probabilistic models for the

counts of w in S and T are fully specified by θw,S and θw,T . Under that

assumption, several statistical tests exist that assess the statistical sig-

nificance of the observed difference: Pearson’s chi-squared test, the log-

likelihood ratio test (Dunning’s G2), Fisher’s exact test, or the binomial

test. For large sample sizes, these tests are similar, but for small sample

sizes there are apparent differences, see, e.g., Dunning [1993].

We consider two alternative approaches: (1) counting the frequency of

w per text/event sequence and comparing the frequency distributions of

the two corpora, and (2) counting the inter-arrival times of w in the two

corpora and comparing the inter-arrival time distributions of the two cor-

pora. We study both parametric and non-parametric tests for both rep-

resentations, and investigate the differences between the methods using

simulations and in two case studies.
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4.4 Methods

We discuss six methods in this section, the first four have been applied

or reviewed in several studies in corpus linguistics. These are: the chi-

squared, log-likelihood ratio, Wilcoxon rank-sum, and t-test. The other

two methods are both based on resampling, but use different sources of in-

formation, either vectors of per-text frequencies, or vectors of inter-arrival

times. Both of these methods come in two flavours. As is common in cor-

pus linguistics, all methods provide two-tailed p-values.

4.4.1 Pearson’s chi-squared test

Pearson’s chi-squared test [Pearson, 1900], also known as the chi-squared

test for independence, or simply as the chi-squared test, can be used to

test if two (categorical) variables are statistically independent of each

other. The application of the test to the problem considered in this chap-

ter is based on the assumption that the whole corpus can be modelled as

a sequence of independent Bernoulli trials, i.e., represented in the bag-of-

words model.

The test is conducted as follows. Let w be the word of interest. The two

variables that are tested for having a significant association are the word

w and the corpus. Both variables are binary: given the set of all words in

both corpora, every word is either the word w, or not, and every word is

either in corpus S, or corpus T .

Let nS and nT be the total number of words in corpora S and T , and

define ζw(S ∪ T ) = σw(S)+σw(T )
nS+nT

, i.e., ζw(S ∪ T ) is the average frequency of

word w over the two corpora. The expected count of w in corpus S, under

the assumption of independence, is σ̂w(S) = nS · ζw(S ∪ T ), and likewise

σ̂w(T ) = nT · ζw(S ∪ T ). Using these definitions, the test statistic X2 for

the chi-squared test with Yates’ correction [Yates, 1934], is

X2 =
(|σw(S)− σ̂w(S)| − 0.5)2

σ̂w(S)
+

(|σw(T )− σ̂w(T )| − 0.5)2

σ̂w(T )
+

(|σ̂w(S)− σw(S)| − 0.5)2

nS − σ̂w(S)
+

(|σ̂w(T )− σw(T )| − 0.5)2

nT − σ̂w(T )
.

The test statistic asymptotically follows a chi-squared distribution with

one degree of freedom. The p-value can be obtained by comparing the test

statistic to a table of chi-squared distributions.

Occasionally, studies have used the goodness-of-fit test, rather than the

test for independence, which corresponds to omitting the last two terms in

the test statistic. One such study is Rayson et al. [1997]. For most words,
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the expected event counts σ̂w(S) and σ̂w(T ) are small compared to nS and

nT , in which case the difference between the tests is also small.

4.4.2 Log-likelihood ratio test

Pearson’s chi-squared test is based on two approximations: a normal dis-

tribution approximates the binomial distribution, and the test statistic

follows a chi-squared distribution only asymptotically. Due to the dou-

ble approximation, the chi-squared test is inaccurate when the word fre-

quency is small. Positive bias caused by the second approximation can be

avoided by applying Yates’ correction [Yates, 1934], but negative bias may

then be a result. For this reason, Dunning [1993] introduced a new test,

based on a likelihood ratio. This test is called the log-likelihood ratio test

and is also known as the G2 test.

The test is conducted as follows. The log-likelihood ratio tests is based

on comparing the likelihood of the data, under the bag-of-words assump-

tion, using separate estimates for the frequency of a word w with the like-

lihood of the data using a single estimate. Let Bin (k;n, p) =
(
n
k

)
pk(1 −

p)n−k denote the probability mass function of the binomial distribution.

Using the definitions from Section 4.4.1, the likelihood ratio λ is

λ =
Bin (σw(S);nS , ζw(S ∪ T )) ·Bin (σw(T );nT , ζw(S ∪ T ))

Bin (σw(S);nS , ζw(S)) ·Bin (σw(T );nT , ζw(T ))
.

A full derivation can be found in Dunning [1993].

The test statistic is −2 log λ, which asymptotically follows a chi-squared

distribution with one degree of freedom. Dunning [1993] claims that this

test statistic approaches its asymptotical distribution much faster than

the test statistic in the chi-squared test and is thus preferable, especially

when the expected frequency is low. The p-value is computed by compar-

ing the test statistic −2 log λ to a table of chi-squared distributions.

There exist other bag-of-words tests that are not based on approxima-

tions, but are directly based on the summation of values under a binomial

or hypergeometric distribution; these are the binomial test and Fisher’s

exact test. These provide more accurate probabilities, especially for small

frequencies, under the bag-of-words model. These tests are not studied

further here because their results are expected to be similar to the chi-

squared and log-likelihood ratio tests, and these tests have not been used

by linguists.
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4.4.3 Welch’s t-test

Welch’s t-test is a statistical test based on the assumption that the quan-

tity of interest, in this case the mean frequency of a word w, follows a

normal distribution. Welch’s t-test is more generally applicable than Stu-

dent’s t-test because it does not assume equal variance in the two popula-

tions. Welch’s t-test provides a p-value for the hypothesis that the means

of the two distributions are equal.

The test is conducted as follows. Let ζw(S1), . . . , ζw(S|S|) denote the fre-

quency of word w in each of the texts in corpus S, and likewise define

ζw(T1), . . . , ζw(T|T |) for corpus T . The sample means are given by ζw(S) =
1
|S|
∑|S|

i=1 ζw(Si) and ζw(T ) = 1
|T |
∑|T |

i=1 ζw(Ti), while the variances equal

s2(S) = 1
|S|
∑|S|

i=1

(
ζw(Si)− ζw(S)

)2 and s2(T ) = 1
|T |
∑|T |

i=1

(
ζw(Ti)− ζw(T )

)2.
The test statistic t is given by

t =
ζw(S)− ζw(T )√

s2(S)
|S| + s2(T )

|T |

.

The test statistic follows a t-distribution with ν degrees of freedom,

where ν depends on the variance of the populations. Although it is not

known how to compute ν exactly, Welch [1947] introduced an approximate

solution. Implementations of this test are available in statistical software

programs, including R and Matlab.

The null hypothesis for the t-test is that the mean frequencies ζw(S)
and ζw(T ) are equal, which are not necessarily the same frequencies as

those that are compared in the bag-of-words tests, which are ζw(S) and

ζw(T ). The estimates coincide, for example, when all texts are equally

long, and they are known as the average-of-average ζw(S) and pooled

ζw(S) frequency [Hinneburg et al., 2007].

4.4.4 Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also known as the Mann-Whitney U-test,

can be used to test if two distributions are equal. It is based on the fact

that if two sets of observations are generated from the same distributions,

then it is possible to induce a probability distribution over the rank orders

[Wilcoxon, 1945, Mann and Whitney, 1947]. No assumptions are made on

the shape of the distribution.

The test is conducted as follows. As before, let ζw(S1), . . . , ζw(S|S|) and

ζw(T1), . . . , ζw(T|T |) denote the per-text frequencies. A combined ranking

of all frequencies is produced, and for each frequency it is marked from
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which corpus it came. This produces a ranked series, such as is illustrated

in Table 4.2.

Table 4.2. Example of a ranked series.

Rank 1 2 3 4 5 6 7 8 9 10

Corpus S T T T S S S T T S

The test statistic U is the sum of the ranks of texts of the smaller corpus.

In the example in Table 4.2, both corpora contain 5 texts, thus U can be

based on either S or T . For example, US = 1 + 5 + 6 + 7 + 10 = 29.

When there are only few samples in the smaller corpus, the p-value is

obtained by comparing the test statistic with a statistical table, and when

the number of samples is greater than 20, the distribution of the test

statistic is well approximated by a normal distribution. Many statistical

software programs contain an implementation of this test.

Particularly for infrequent words, numerous texts in a corpus may have

a frequency of zero. In the case of any ties, each text is assigned the

average rank over all equal-frequency texts. For example, if there are five

texts with a frequency of zero, these texts would have ranks 1 to 5, thus

each text is assigned a rank of (1 + 2 + 3 + 4 + 5)/5 = 3.

Rayson [2003], Rayson et al. [2004], and Baron et al. [2009] report that

92% of the types in their study have to be omitted because the Wilcoxon

rank-sum test cannot handle ties. They base their statement on Kilgarriff

[2001], but this conclusion seems to be based on a misunderstanding, as

the test can handle ties. At worst, the test has limited power in case of

many ties.

The Wilcoxon rank-sum test is often considered as the alternative to

the t-test in case some of the criteria of the t-test are not met, see, e.g.,

Ruxton [2006]. However, the two methods are not truly comparable, as

they test different hypotheses. The t-test compares the two means, while

the Wilcoxon rank-sum test compares the full distributions.

4.4.5 Randomisation (permutation and bootstrap) tests

A randomisation test is a statistical test based on resampling of data.

There are various methods for data randomisation, each with its own null

hypothesis. The aim here is to test the significance of the difference be-

tween the observed mean frequencies for a given word w.

The tests are conducted as follows. As before, let ζw(S1), . . . , ζw(S|S|) and

ζw(T1), . . . , ζw(T|T |) denote the per-text frequencies, and let their means be
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ζw(S) = 1
|S|
∑|S|

i=1 ζw(Si) and ζw(T ) = 1
|T |
∑|T |

i=1 ζw(Ti). The test statistic d is

the difference between the means:

d =
∣∣ζw(S)− ζw(T )

∣∣ .
The essential difference between randomisation tests and other statis-

tical tests is that the null hypothesis has no explicit form. Instead, the

probability distribution for the test statistic under the null hypothesis is

defined by the randomisation method and the given data. Two types of

randomisation are considered here: permutations and bootstraps.

Randomisation by permutation implies that |S| texts are drawn ran-

domly without replacement from the set of all texts to form a corpus S ′,

and the rest is assigned to a corpus T ′. Randomisation by bootstrap im-

plies that |S| texts are drawn randomly with replacement from the set of

all texts to form a corpus S ′, and likewise |T | texts to form a corpus T ′.

Depending on the type of randomisation used, the method is referred to

as the permutation test or the bootstrap test.

The p-value is defined by comparing the test statistic on the observed

data (d) with the test statistic in the randomised data:

p = Pr
({∣∣ζw(S ′)− ζw(T ′)

∣∣ ≥ d
})

. (4.1)

For small sample sizes it may be possible to enumerate all possible as-

signments of samples to S ′ and T ′ and solve the p-value exactly. Typically,

it is impractical to compute these p-values exactly, in which case they can

be estimated using sampling, as follows. Let d denote the test statistic on

the observed data and d′1, . . . , d
′
N the test statistics in N randomisations.

Let δ(x) denote a step function that equals 1 if x ≥ 0 and 0 otherwise. The

empirical p-value is given by [North et al., 2002]

p̂ =
1 +
∑N

i=1 δ(d
′
i − d)

1 +N
. (4.2)

It is expected that the differences between the permutation and boot-

strap test are small in practice, and the p-values under the two sampling

schemes converge as the total number of texts |S| + |T | grows. Moreover,

the null hypothesis of the permutation test has a clear interpretation; the

permutation just breaks the relationship between the grouping in two cor-

pora and the observed frequencies. The bootstrap test is considered here

as well, because it has a computational advantage.

For sufficiently large samples, random sampling can be avoided under

the bootstrap formulation as follows. By the central limit theorem, as
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|S ′| → ∞, ζw(S ′) approaches a normal distribution with mean

E
[
ζw(S ′)

]
= E

⎡
⎣ 1

|S ′|

|S′|∑
i=1

ζw(S
′
i)

⎤
⎦ = E

[
ζw(S

′
i)
]
,

and variance

Var
[
ζw(S ′)

]
= Var

⎡
⎣ 1

|S ′|

|S′|∑
i=1

ζw(S
′
i)

⎤
⎦ =

1

|S ′|2
|S′|∑
i=1

Var
[
ζw(S

′
i)
]
=

Var [ζw(S
′
i)]

|S ′| .

Similarly, E
[
ζw(T ′)

]
= E [ζw(T

′
i )] and Var

[
ζw(T ′)

]
=

Var[ζw(T ′
i )]

|T ′| .

Using these equations and the fact that ζw(S ′) and ζw(T ′) are indepen-

dent, the expected difference between the means is

E
[
ζw(S ′)− ζw(T ′)

]
= E

[
ζw(S ′)

]
−E

[
ζw(T ′)

]
= E

[
ζw(S

′
i)
]
−E

[
ζw(T

′
i )
]
= 0,

and the variance is

Var
[
ζw(S ′)− ζw(T ′)

]
= Var

[
ζw(S ′)

]
+Var

[
ζw(T ′)

]
=

Var [ζw(S
′
i)]

|S ′| +
Var [ζw(T

′
i )]

|T ′| .

The p-value is based on the absolute value of the difference (Equation

4.1), which can be taken into account as follows. The difference between

the means follows a normal distribution with zero expectation. As the

normal distribution is symmetric around the mean, the probability that

the absolute difference is larger than some value is exactly twice the prob-

ability that the directed difference is larger than that value:

p = Pr
({∣∣ζw(S ′)− ζw(T ′)

∣∣ ≥ d
})

= Pr
({

ζw(S ′)− ζw(T ′) ≥ d
})

+ Pr
({

ζw(T ′)− ζw(S ′) ≥ d
})

= 2 · Pr
({

ζw(S ′)− ζw(T ′) ≥ d
})

.

As ζw(S ′)− ζw(T ′) follows a normal distribution with known parameters,

the p-value can be readily computed using the cumulative distribution

function for the normal distribution, which concludes the test.

4.4.6 Inter-arrival time test

Arguably, viewing each text as a single sample, regardless of the number

of occurrences of a word, is overly conservative. It is possible to use each

occurrence as a sample while accounting for the burstiness of a word, by

using the spatial distribution of the word. One way to model the spatial

distribution is by counting the inter-arrival times of a word. The concepts

of inter-arrival times and burstiness are presented in Sections 2.2 and 2.3.
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The test is conducted as follows. The test is similar to the permutation

test (Section 4.4.5), but uses a different representation of the data. The

test statistic is d = |σw(S)− σw(T )|. For the randomisation, all texts from

S and T are ordered randomly and concatenated into a single long event

sequence. The set of inter-arrival times Πw for the given word w is then

computed as in Definitions 2.7 and 2.8.

The data is randomised by randomly permuting the inter-arrival times.

Let Π′
w denote the randomised set of inter-arrival times, and nS the total

number of words in corpus S. The set Π′
w induces a set of occurrence

positions in an event sequence. Let kS denote the number of occurrences

of w in the first nS positions and kT the number of occurrences of w in the

rest of the induced event sequence, the test statistic for the randomisation

is d′ = |kS − kT |.
The p-value is again defined by Equation 4.1, but as the p-value can only

be computed exactly for small samples, it is instead estimated using N

randomisations and Equation 4.2. This test is referred to as the empirical

inter-arrival time test.

Altmann et al. [2009] proposed to model the inter-arrival times with a

Weibull distribution. To assess the accuracy of this model, we use that

model as the basis for a statistical test. In general the setting is the

same as the empirical inter-arrival time test, but the randomisation is

performed by sampling inter-arrival times from a Weibull distribution

with the maximum likelihood parameters.

Let f(x) denote the probability density function for the Weibull distri-

bution (Equation 2.3). The first inter-arrival time is a special case; at the

beginning of the event sequence, it is possible to be at any point in any

inter-arrival time. However, it is more likely we are at some point in a

long inter-arrival than in a short one, proportional to the length of the

inter-arrival. Thus, the first inter-arrival time should be sampled uni-

formly from g(x) = C · x · f(x), where C is a normalisation constant, such

that
∫∞
0 g(x) dx = 1.

Within an inter-arrival time, any position is equally likely. After the first

inter-arrival time, inter-arrival times are sampled from f(x) until the sum

of the inter-arrival times is greater than nS + nT . The test statistic and

p-value are then computed as before. This method is referred to as the

Weibull inter-arrival time test.
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Table 4.3. Summary of the assumptions underlying the six methods discussed in this
chapter.

Test Assumptions on frequency distribution

Chi-squared test All words in all texts are i.i.d. samples (bag-of-

words model)

Log-likelihood ratio test All words in all texts are i.i.d. samples (bag-of-

words model)

Welch’s t-test All texts are i.i.d. samples, and mean frequencies

follow a normal distribution

Wilcoxon rank-sum test All texts are i.i.d. samples

Randomisation tests All texts are i.i.d. samples, and for bootstrap:

mean frequencies follow a normal distribution

Inter-arrival time tests Number of words between occurrences of the

same word are i.i.d. samples

4.4.7 Summary of methods

A summary of the assumptions on the frequency distribution for each of

the six methods is given in Table 4.3. The Wilcoxon rank-sum and permu-

tation tests make the weakest assumptions and are thus the most gen-

erally applicable. However, as stated previously, the Wilcoxon rank-sum

test compares the ranks between two distributions and not the means,

and is thus not directly comparable to the other tests.

4.5 Experiments

To compare the tests and evaluate the consequences of choosing a par-

ticular test, we designed three experiments. In the first experiment, we

compare the p-values from all methods on randomised data for various

null hypotheses with the theoretically optimal distributions. The results

of this experiment are presented in Section 4.5.1.

The second and third experiments are case studies: a comparison of

fictional prose by male and female authors, and a comparison of personal

letters before and after the English Civil War. In both case studies, we

have applied multiple methods to find all words that have significantly

different frequencies in order to study how the tests differ in a practical

situation. The case studies are presented in Sections 4.5.2 and 4.5.3.
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4.5.1 Uniformity of p-values under various null hypotheses

The first experiment was designed to investigate the relation between the

performance of the methods and the assumptions on the data that a user

may be willing to make. The applicability of a test can be evaluated based

on the criterion that, if the data follow the distribution that is assumed in

the null hypothesis, then the p-values should have a uniform distribution

in the [0, 1] range.

This criterion is applicable by definition of the p-value: the probability

of encountering a p-value of x or less is x itself. If this criterion is not

fulfilled, then the test is either anti-conservative, i.e., the probability of

encountering a p-value of x or smaller is more than x, or conservative, i.e.,

the probability of encountering a p-value of x or smaller is less than x. We

use the Kolmogorov-Smirnov test [Massey, 1951] to test the uniformity of

a set of p-values.

We used the same data as in the first case study: all texts from the

British National Corpus classified as fiction prose for which the gender

of the author is known, see Section 3.1 for a general introduction. The

subcorpus contains 200 texts written by men, and 205 texts written by

women of length ≥ 2,000. To make the data more homogeneous, we in-

cluded only the first 2,000 words of each text. We preprocessed the texts

by lowercasing all words and ignored punctuation and other markup.

We considered three assumptions, which correspond to the assumptions

underlying the various tests, and we evaluated all methods under each as-

sumption. The assumptions are: (A) the texts are independent samples,

(B) the inter-arrival times are independent samples, and (C) all words are

independent samples. We generated randomised data as follows. First,

we discarded 5 texts at random to make a corpus of exactly 400 texts.

Then, for a given word, depending on the assumption, we computed the

frequency per text (A), the inter-arrival time distribution (B), or the to-

tal word counts (C). Then, we we repeatedly divided the corresponding

samples into two sets S ′ and T ′.

We repeated the randomisation process 500 times, and each of the meth-

ods was applied on each randomisation. This was done for all the 3,269

words that have a count of 20 or higher. For each word, for each method,

we tested the 500 p-values for uniformity. This resulted in 8 · 3,269 =

26,152 uniformity p-values per assumption. We applied Bonferroni cor-

rection in each setting to correct for multiple hypotheses and declared all
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Figure 4.2. P-values over a set of data randomisations for the word would for all eight
methods under the assumption that all texts are i.i.d. samples. The dashed
lines correspond to the optimal uniform distribution and between parenthe-
ses are the p-values from the Kolmogorov-Smirnov test whether the p-values
differ significantly from the optimal uniform distribution.

p-values ≤ 0.01 as significant.

An example of the p-values for the word would under the assumption

that texts are i.i.d. samples (assumption A) is given in Figure 4.2. The

word would occurs 2,590 times in the subcorpus. We find that the distri-

bution of the p-values over the randomisations is uniform for the t-test,

Wilcoxon rank-sum test, permutation test, and bootstrap test, while the

p-values from inter-arrival time tests are too low, and the p-values of the

chi-squared and log-likelihood ratio test even more biased.

The full result for assumption A, for words with count ≥ 100, is pre-

sented in Figure 4.3. For the chi-squared and log-likelihood ratio test, the

p-values are significantly non-uniform in most cases. The tests that use

the representation corresponding to the independence assumption (t-test,

Wilcoxon rank-sum test, permutation test, and bootstrap test) clearly out-

perform the other methods.

To learn whether the p-values in the rejected samples are conservative

or anti-conservative, we applied a one-tailed Kolmogorov-Smirnov test in

the anti-conservative direction as well. Figure 4.4 shows the result for

assumption A, for words with count ≥ 100. By comparing Figures 4.3

and 4.4, we find that the permutation and inter-arrival time tests have

a tendency to be conservative, while the chi-squared and log-likelihood

ratio tests have a strong anti-conservative bias under assumption A.

We also observe a clear inter-action between the uniformity of p-values
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Figure 4.3. Results of the uniformity test for all eight methods under the assumption
that all texts are i.i.d. samples. Each dot corresponds to a word, which has
a frequency (x-axis) and burstiness (y-axis). Pink dots correspond to rejected
samples, that is, the adjusted p-value for the uniformity test is ≤ 0.01.
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Figure 4.4. Results of the uniformity test in the anti-conservative direction for all eight
methods under the assumption that all texts are i.i.d. samples. Each dot
corresponds to a word, which has a frequency (x-axis) and burstiness (y-axis).
Pink dots correspond to rejected samples, that is, the adjusted p-value for the
uniformity test in the anti-conservative direction is ≤ 0.01.
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and the burstiness of words: the burstier the word, the more likely the

p-values are anti-conservative, and vice versa, the less bursty the word,

the more likely the p-values are conservative. This effect is most clear

in the results of the empirical inter-arrival time test, where the p-values

for a cluster of words in the top-left corner were non-uniform in the con-

servative direction, and the p-values for the words that are most bursty

were non-uniform in the anti-conservative direction. We also observe that

there are bursty and non-bursty words at all frequency levels, thus over

and underestimation of the significance may occur at any frequency.

Results for all three assumptions for both the two- and one-tailed test

and for counts ≥ 20 as well as counts ≥ 100 are listed in Table 4.4. We

observe several patterns. When taking into account all words with counts

≥ 20, essentially all methods fail to produce uniform p-values for many

words under all assumptions, with one exception: the Wilcoxon rank-sum

test under assumption C, that all words are independent samples. That

all tests fail shows that a count of 20 is too low for this experiment to

succeed. The likely reason is that, for low word counts, there are only few

distinct outputs that the methods can give, rendering the p-value distri-

bution non-uniform, regardless of the test.

Considering only the uniformity of p-values for words with counts ≥ 100

provides clearer information: the chi-squared, log-likelihood ratio and

Weibull IAT test are appropriate only when assuming that all words are

independent (assumption C), while the chi-squared test is noticeably con-

servative even in that case (41.9% vs. 0.3% rejected on the two- vs. one-

tailed test), probably due to Yates’ correction. That the Weibull IAT test

does not perform as expected under the assumption of independent inter-

arrival times suggests that the Weibull distribution is not a good model

for describing the inter-arrival times.

Welch’s t-test, the Wilcoxon rank-sum test and the bootstrap test pro-

duce reasonably uniform p-values under all three assumptions (≤ 4.2 %

rejected). The empirical IAT test appears to be appropriate only under

the assumption of independent inter-arrival times, otherwise being con-

servative, anti-conservative or both. The permutation test, which is also

based on the empirical p-value, is also conservative. The +1 correction

in the empirical p-value (Equation 4.2) is the probable cause, using more

randomisations (here 200) may reduce this problem.

Based on this experiment, it appears that under assumption A, Welch’s

t-test, the Wilcoxon rank-sum test and the bootstrap test are the prefer-
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Table 4.4. Percentage of randomisations where the p-values are significantly non-
uniform (two-tailed Kolmogorov-Smirnov test), for all tests, for all three as-
sumptions (A, B, C), and for two frequency thresholds. Results for the one-
tailed test in the anti-conservative direction are given between parentheses.

Test A
,c

ou
nt

≥
10

0

A
,c

ou
nt

≥
20

B
,c

ou
nt

≥
10

0

B
,c

ou
nt

≥
20

C
,c

ou
nt

≥
10

0

C
,c

ou
nt

≥
20

Chi-squared 66.4 % 91.3 % 38.4 % 75.1 % 41.9 % 86.4 %

test (58.2 %) (62.2 %) (37.1 %) (35.7 %) ( 0.3 %) (26.3 %)

Log-likelihood 77.7 % 90.9 % 52.0 % 64.5 % 1.1 % 58.7 %

ratio test (78.8 %) (90.3 %) (53.9 %) (60.8 %) ( 0.8 %) (52.5 %)

Welch’s t-test 1.8 % 48.8 % 2.0 % 24.7 % 0.5 % 49.5 %

( 2.0 %) (45.1 %) ( 2.4 %) (18.8 %) ( 0.4 %) (35.9 %)

Wilcoxon 2.0 % 48.9 % 4.2 % 30.0 % 0.1 % 5.2 %

rank-sum test ( 2.0 %) (44.5 %) ( 4.6 %) (21.4 %) ( 0.1 %) ( 3.8 %)

Permutation 6.8 % 63.7 % 3.3 % 61.5 % 23.7 % 80.2 %

test ( 0.0 %) ( 0.0 %) ( 0.8 %) ( 4.3 %) ( 0.0 %) ( 0.0 %)

Bootstrap test 1.8 % 49.1 % 2.0 % 24.9 % 0.5 % 49.4 %

( 2.0 %) (45.4 %) ( 2.5 %) (19.1 %) ( 0.4 %) (36.2 %)

Empirical IAT 16.8 % 69.6 % 2.2 % 58.3 % 23.4 % 80.0 %

test (10.8 %) (15.6 %) ( 0.3 %) ( 6.1 %) ( 0.0 %) ( 0.0 %)

Weibull IAT 17.2 % 60.6 % 25.1 % 59.1 % 0.5 % 53.2 %

test ( 8.7 %) ( 7.7 %) ( 1.1 %) ( 3.5 %) ( 0.0 %) ( 0.0 %)

able choices. For assumption B, the empirical IAT test shows best perfor-

mance. Welch’s t-test and the bootstrap test score better on the two-tailed

test, but are more prone to being anti-conservative, which is more prob-

lematic in this application than being conservative. Under assumption C,

there are many good choices, for example the log-likelihood ratio test.

4.5.2 Fictional prose by male and female authors

The purpose of the first case study was to test if there are linguistic dif-

ferences between male- and female-authored fiction prose. We have used

the same data as in the previous section: the texts in the British National

Corpus categorised as fiction prose, for which the gender of the author

is known. These texts are parts of novels and short stories. The subcor-

pus contains 203 texts written by men, and 206 texts written by women,

approximately 15.6 million words in total. We preprocessed the texts by

lowercasing all words and ignored punctuation and other markup.
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We conducted the experiment as follows. For all types (unique words),

we computed the significance using the chi-squared test, log-likelihood

ratio test, Welch’s t-test, Wilcoxon rank-sum test, empirical inter-arrival

time test and the bootstrap test. After obtaining the initial p-values for

all types, we applied the method by Benjamini and Hochberg [1995] to

control the false discovery rate (Equation 2.19) at α = 0.05. This ensures

that the expected rate of false positives over all positives is at most 5 %.

We also computed the normalised dispersion (Def. 2.10) for all words.

The bootstrap and inter-arrival time tests were implemented slightly

differently than presented in Section 4.4: the two subcorpora were resam-

pled separately, instead of grouping the data, resampling, and then split-

ting the data, and the empirical p-value (Equation 4.2) was used. This

implementation has the disadvantage that for very skewed distributions,

the p-value may be unreasonably low, and the analytical solution for the

bootstrap test proposed here is also computationally more attractive, as

is does not require resampling. As the size of the data grows, the imple-

mentations converge, and we expect the p-values to be very similar for the

given data size, about 1500 texts in each period.

The most frequent (σ ≥ 5,000) words that are significantly more fre-

quent in either subcorpus according to the bootstrap test are given in

Tables 4.5 and 4.6. We find that the results are consistent with earlier

research. Overall, male-authored fiction is dominated by frequent use of

noun-related forms, while female-authored fiction is more verb-oriented.

Male authors use articles (a, the) and prepositions (by, from, in, of, on,

through) more frequently, both of which are associated with nouns. Sim-

ilarly, male-authored fiction contains more function words that are typ-

ically associated with noun phrases and nominal functions, such as an-

other, first, one, some, two, and other. The list of significant items for male

authors is shorter than that for female authors, which suggests that male

authors write slightly more repetitively.

The personal pronouns that are overrepresented in male-authored fic-

tion are the first-person plural forms us and we and the third-person

pronouns its, their, and they, while women’s fiction overuses the second-

person forms you and your, which can have singular and plural referents.

Stereotypically, men tend to write about man and he, and women about

her and she. These pronoun findings are consistent with those of Arga-

mon et al. [2003], who use the same data, but differ in that women do not

significantly favour the first-person pronoun I.
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Table 4.5. High-frequency words that are significantly overrepresented in male-authored
prose fiction in the BNC according to the bootstrap test. Observed frequencies
are given per million words.

Word Freq M Freq F DP p Word Freq M Freq F DP p

a 22,824 21,442 .06 .0001 they 5,233 4,270 .17 .0001

another 735 632 .14 .0001 through 1,267 992 .16 .0001

by 2,914 2,473 .13 .0001 two 1,333 1,004 .17 .0001

first 1,002 854 .13 .0001 us 937 605 .26 .0001

from 4,058 3,500 .10 .0001 we 3,651 2,663 .21 .0001

in 14,371 13,563 .06 .0001 were 3,738 3,238 .12 .0001

its 977 701 .26 .0001 is 4,521 3,588 .21 .0003

man 1,603 1,270 .21 .0001 left 806 717 .14 .0005

of 22,483 19,747 .09 .0001 other 1,229 1,096 .12 .0005

on 7,520 6,942 .07 .0001 there 4,111 3,650 .13 .0005

one 3,146 2,801 .09 .0001 are 2,206 1,858 .18 .0007

some 1,651 1,415 .14 .0001 where 1,297 1,147 .15 .0013

the 58,013 45,333 .09 .0001 he 17,295 15,587 .14 .0045

their 2,090 1,663 .20 .0001

Table 4.6 shows that female-authored fiction is marked by frequent verb

use: there are more than twenty verb forms among the items overused by

women (forms of be, do, and have; modals, such as could, should, must,

and would; and activity and mental verbs, including come, go, make,

knew, and thought). Only three such verb forms are overused in male-

authored fiction (were, is, and are). Particularly outstanding features in

women’s fiction are contracted forms (’ll, ’m, ’ve, n’t, ’re), negative particles

(n’t, never, not), and intensifiers (much, so, too, very). These are all indica-

tors that female-authored fiction employs a more involved, colloquial style

than male-authored fiction, which, in contrast, is marked by features as-

sociated with an informational, noun-oriented style. These results are

similar to Biber [1995].

These results do not necessarily reflect gender differences, as author

gender and target audience are correlated in the fiction prose subcorpus.

The stories are mostly targeted at adults and a small portion at children,

for both male and female authors. However, male authors wrote rela-

tively more texts for a mixed gender audience, while female authors wrote

mainly texts targeted at a female audience. Previous research indicates

that audience design is relevant, for example, in spoken interaction, and

style shifting is typically a response to the speaker’s audience [Bell, 1984].

The above analysis is based on words that are ranked as significant by
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Table 4.6. High-frequency words that are significantly overrepresented in female-
authored prose fiction in the BNC according to the bootstrap test. Observed
frequencies are given per million words.

Word Freq M Freq F DP p Word Freq M Freq F DP p

’ll 1,298 1,784 .24 .0001 should 753 952 .16 .0001

’m 1,287 1,733 .24 .0001 so 2,843 3,469 .12 .0001

’ve 1,124 1,465 .23 .0001 thought 1,216 1,647 .19 .0001

be 4,513 5,186 .10 .0001 to 24,755 26,756 .05 .0001

come 1,076 1,283 .15 .0001 too 1,160 1,368 .14 .0001

could 2,859 3,314 .12 .0001 want 841 1,071 .20 .0001

did 2,728 3,218 .14 .0001 when 2,455 2,853 .13 .0001

eyes 966 1,525 .26 .0001 with 6,755 7,494 .07 .0001

face 1,001 1,246 .21 .0001 would 3,207 3,876 .14 .0001

for 6,484 7,076 .07 .0001 you 11,017 14,261 .16 .0001

go 1,265 1,522 .16 .0001 your 1,703 2,234 .18 .0001

her 6,915 17,533 .29 .0001 had 8,837 10,176 .15 .0003

how 1,350 1,582 .13 .0001 look 900 1,081 .16 .0003

if 2,898 3,266 .11 .0001 take 760 858 .13 .0003

knew 792 988 .18 .0001 very 1,191 1,445 .22 .0003

made 986 1,168 .13 .0001 do 3,983 4,588 .15 .0005

make 742 882 .13 .0001 because 778 963 .23 .0007

much 919 1,099 .15 .0001 put 752 860 .18 .0023

must 841 995 .18 .0001 that 10,624 11,455 .10 .0029

n’t 6,262 7,990 .20 .0001 little 1,064 1,238 .19 .0047

never 968 1,294 .17 .0001 ’re 1,193 1,412 .24 .0049

not 4,604 5,449 .16 .0001 have 4,271 4,626 .11 .0053

own 751 966 .17 .0001 well 1,322 1,499 .18 .0057

she 7,948 19,609 .28 .0001

the bootstrap test and most of these words are also significant according

to the other tests. However, it is also interesting to know how many words

are marked as significant by the tests using the bag-of-words model, such

as the chi-squared test, which are not significant according to the boot-

strap test. Tables 4.7 and 4.8 list high-frequency words (5,000 or more

occurrences in both subcorpora) for which the difference between the p-

values from the chi-squared test and bootstrap test is at least tenfold.

Using false-discovery rate control at α = 0.05, all of the chi-squared test

p-values are significant, but the bootstrap test p-values are not signifi-

cant. Although not shown in the tables, all these words are also signifi-

cant according to the log-likelihood ratio test.

Some of the words in Tables 4.7 and 4.8 appear to support the above
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Table 4.7. High-frequency words that are significantly overrepresented in male-authored
prose fiction in the BNC according to the chi-squared test, but not according to
the bootstrap test. Observed frequencies are given per million words.

Word Freq M Freq F pchi pboot Word Freq M Freq F pchi pboot

an 2,572 2,441 .000 .103 people 881 746 .000 .014

back 2,384 2,255 .000 .095 them 2,583 2,388 .000 .051

down 2,002 1,851 .000 .021 this 3,367 3,192 .000 .154

has 916 783 .000 .052 up 3,476 3,318 .000 .153

his 10,099 9,093 .000 .013 which 1,811 1,531 .000 .019

I 17,482 16,864 .000 .523 who 2,026 1,867 .000 .033

into 2,566 2,451 .000 .148 then 2,723 2,618 .000 .389

my 3,494 2,975 .000 .059 looked 1,376 1,314 .001 .429

off 1,232 1,121 .000 .021 something 1,036 979 .000 .191

old 897 824 .000 .193 just 1,912 1,840 .001 .447

or 2,397 2,085 .000 .014 turned 797 754 .003 .292

out 3,400 3,225 .000 .075

analysis: the writing style of women is more verb-oriented, whereas men

overuse masculine and collective personal pronouns, such as his and them.

However, the list of words for female-authored fiction also includes a male

personal pronoun, him, and men appear to significantly overuse the first-

person singular pronouns I and my, which is surprising in view of earlier

research on gendered styles [Argamon et al., 2003, Newman et al., 2008].

Furthermore, men appear to overuse directional adverbs, such as back,

down, out, and up. If words of all frequencies are considered, then the

most prominent category of words that are significant according to the chi-

squared test but not the bootstrap test is proper nouns, as in the Matilda

example (Section 4.1). Many of these words are easily misinterpreted as

genuine differences between subcorpora.

Figure 4.5 summarises the number of significant words that were re-

turned by each test for varying significance testing thresholds. The t-

test yields the least number of significant words, followed by the Wilcoxon

rank-sum and bootstrap tests in both figures. Only the curve for the inter-

arrival time test differs substantially between the left and right figures.

The inter-arrival time test appears to have difficulty with comparing zero

with non-zero frequencies and always deems such cases significant. As

noted at the beginning of this section, the implementation proposed in

Section 4.4 does not suffer from this problem3. We also observe that the

3The p-value for the empirical inter-arrival time test proposed in Section 4.4 is
always p = 1 for 0 vs. 1 comparisons, as the randomised data always has one
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Table 4.8. High-frequency words that are significantly overrepresented in female-
authored prose fiction in the BNC according to the chi-squared test, but not
according to the bootstrap test. Observed frequencies are given per million
words.

Word Freq M Freq F pchi pboot Word Freq M Freq F pchi pboot

all 3,587 3,744 .000 .177 only 1,482 1,592 .000 .024

and 25,613 26,640 .000 .087 said 4,892 5,611 .000 .068

any 1,095 1,176 .000 .103 seemed 700 779 .000 .079

as 6,298 6,738 .000 .006 think 1,307 1,462 .000 .015

away 1,133 1,211 .000 .062 time 1,816 1,926 .000 .022

been 2,868 3,019 .000 .132 told 765 891 .000 .007

but 5,891 6,070 .000 .291 was 15,461 15,863 .000 .340

’d 1,715 2,063 .000 .057 why 977 1,070 .000 .043

day 746 811 .000 .090 room 793 850 .000 .222

going 1,048 1,151 .000 .075 know 1,971 2,055 .000 .299

him 4,752 5,087 .000 .088 about 2,604 2,698 .000 .336

last 711 791 .000 .008 even 1,133 1,189 .001 .263

might 828 912 .000 .066 after 1,187 1,240 .003 .155

no 2,942 3,150 .000 .009 long 879 925 .003 .111

now 2,024 2,206 .000 .014 tell 772 812 .006 .235

chi-squared and log-likelihood ratio tests mark several orders of magni-

tude more words as significant than the t-test, the Wilcoxon rank-sum

test and bootstrap test.

4.5.3 Personal letters before and after the English Civil War

The purpose of the second case study is to test the diachronic continuity in

terms of word frequencies of a corpus of personal letters that was designed

to be as homogeneous over time as possible. This research question has a

direct connection with potential bias when using a certain statistical test,

as a conservative test may lead to the conclusion that a corpus is indeed

stable, while it is not, and an anti-conservative test may lead to the con-

clusion that some aspects of the language change over time, while they

do not. Full results and extensive discussion of the study have been pre-

sented in Lijffijt et al. [2012], while in this section only the most relevant

results are presented.

We used the Standardised-spelling Corpus of Early English Correspon-

dence [2012], see Section 3.2 for a general introduction. We used only the

17th-century part (1600–1681), because that is fairly homogeneous with

occurrence and thus the same difference in counts of 1.
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Figure 4.5. Comparison of the number of words marked as having significantly differ-
ent frequency between the genders, for all six methods. For each method, a
curve demonstrates how the number of significant words (y-axis) increases
as the significance threshold (x-axis) increases in the male vs. female author
comparison, here without correcting for multiple hypotheses. The figure on
the left is based on all words, and the figure on the right includes only those
words with frequencies greater than zero for both genders.

respect to author gender and social ranks. However, the English Civil War

(1642–1651) is expected to have an impact on the language use, for exam-

ple war-related words may be more frequent. We divided the data into two

periods of roughly 40 years: 1600–1639 and 1640–1681, and compared

these periods to each other. We analysed the data using the log-likelihood

ratio test and the bootstrap test (using the same implementation as in the

previous section) and also compared the results of the two tests.

The number of significant differences for both tests for various choices

of α and minimum frequency thresholds is given in Table 4.9. We observe

several trends: the number of words that have a significantly different fre-

quency in the two periods decreases both as (1) the significance threshold

α decreases, and (2) when the minimum frequency threshold increases.

Besides, most of the words reported by the bootstrap test are also signif-

icant under the log-likelihood ratio test. For example, when employing a

frequency threshold of 10 per 100,000, all words that are reported by the

bootstrap test are also significant using the log-likelihood ratio test.

The log-likelihood ratio test marks 15–23 % more types as significant as

the bootstrap test. This difference is considerably smaller than the dif-

ferences observed in our other case study (Section 4.5.2) and in previous

research [Paquot and Bestgen, 2009]. A possible explanation is the rela-

tively small size of the corpus. For example, Paquot and Bestgen [2009]
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Table 4.9. The number of words reported as significantly different between the two time
periods by the log-likelihood ratio and bootstrap tests, for various frequency
and significance thresholds. The numbers below ‘both tests’ show the overlap
between the tests.

Min. frequency α Log-likelihood Bootstrap test Both tests

(per 100,000) ratio test

0

0.01 2,685 2,365 2,199

0.001 1,400 1,209 1,108

0.0001 937 759 722

1

0.01 2,365 2,034 2,013

0.001 1,400 1,209 1,108

0.0001 937 759 722

10

0.01 603 530 530

0.001 498 421 421

0.0001 432 354 354

compares two sub-corpora that are almost 25 times as large.

Whether the corpus is diachronically comparable is not straightforward

to answer. There are 46,440 different words in the data and most are

indeed not significantly different. However, based on Table 4.9, we find

that all words significant at the level α = 0.001 have a frequency of at

least 1 in 100,000. Thus, there is an implicit frequency requirement for

a word to be marked as significant. Only 6,448 words satisfy the 1 in

100,000 constraint, indicating that 12–22 % of the words has significantly

changed in frequency between the two periods.

Linguistic interpretation and analysis of the significant differences are

presented in Lijffijt et al. [2012]. In particular, all significant differences

with a frequency of 100 per 100,000 and all significant differences that ap-

pear in the Society > Armed Hostility section of the Historical Thesaurus

of the Oxford English Dictionary are reviewed. These analyses are not

included here because they were mostly carried out by the co-authors of

the paper and for brevity.

4.6 Conclusion

In this chapter we studied the problem how to compare word frequencies

across corpora. By modelling texts as event sequences and a text corpus

as a database, we mapped the problem to the question how to compare

event frequencies across (databases) of event sequences. This problem is

relevant, for example, when a linguist wants to test a hypothesis such as
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“word X is more frequent in male than in female speech”. We have in-

troduced two methods based on resampling, and we have compared and

evaluated these methods, along with several existing methods, with re-

spect to their suitability to this task.

We found that the choice of the test, or more specifically, the represen-

tation of the data that is used in the test, matters, both in theory and in

practice, as evidenced by experiments and case studies on two text cor-

pora. We concluded that assuming that all words are independent sam-

ples may lead to overestimating the significance of frequency differences.

We demonstrated that the overestimation is related to the burstiness of

words and that there exist bursty and non-bursty words at any frequency

level, thus the overestimation occurs at all frequency levels.
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5. Mining subsequences with
surprising event counts

In this chapter, we consider the problem of mining subsequences with

surprising event counts, and more specifically how to take into account

the multiple testing problem when looking for local frequency deviations

in event sequences. We introduce a method to find all subsequences of a

long data sequence where the count of an event is significantly different

from what is expected. In estimating what is expected, we have to take

into account that we consider many subsequences concurrently. Exist-

ing methods for taking this into account are either computationally very

demanding, or they do not account for any dependency structure.

The proposed method accounts for the dependency structure directly, by

analysing the joint distribution of the patterns, while avoiding the use

of computationally more demanding randomisation. We assert that com-

puting the p-values for the method exactly is also computationally costly

and introduce a simple and efficiently computable upper-bound that can

be used instead. We provide empirical evidence that the upper-bound is

more powerful than existing alternatives, and we demonstrate the utility

of the method in experiments on two types of data, text and DNA.

5.1 Introduction

The amount of collected data is growing rapidly. As a result, the focus in

data mining research is more than ever on faster and simpler methods,

where fast currently means linear or sublinear in the size of the data.

However, big data presents more challenges. For example, when min-

ing patterns—local structure, as opposed to global structure [Mannila,

2002]—the number of patterns potentially present in the data is often

exponential in the number of variables or features. Testing more patterns

is nice, because it increases the likelihood of finding interesting results.
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However, testing more patterns is also dangerous, as it increases the like-

lihood of finding spurious results, i.e., patterns caused by randomness.

The problem studied in this chapter is how to find interesting subse-

quences in a long event sequence. We restrict the set of subsequences by

considering only subsequences of a given length, but even then the num-

ber of subsequences can be very large. Our aim is to find all subsequences

where a given event is surprisingly frequent or infrequent. We define

surprising as improbable under the assumption that the event sequence

contains no structure.

Computing the statistical significance of an event count in a single sub-

sequences is straightforward (see Section 5.4), but in this case we assess

the statistical significance of many event counts concurrently. This makes

it difficult to estimate what we should expect, even if there is no structure

in the data. Several forms of control have proposed in the statistics lit-

erature to make p-values (probabilities) easier to interpret when testing

multiple hypotheses. An overview of these studies is given in Section

5.2. Unfortunately, these methods rely either on randomisation of data,

Bonferroni-style post-hoc correction, or both.

Statistical testing using randomisation is computationally expensive; a

single randomisation has a computational cost linear in the size of the

data or higher, and thousands or millions of randomisation may be re-

quired for sufficient resolution. Bonferroni-style post-hoc correction is

also problematic, because the studied patterns (which each correspond

to a hypothesis test) are typically dependent. In that case the p-values

become conservative, i.e., too high, and true findings may go unnoticed.

The larger the data, the worse the problem, because the number of pat-

terns usually grows with the data, and the conservativeness grows with

the number of patterns.

We propose a method for mining subsequences with surprising event

counts based on a statistical test that includes a correction for testing

multiple hypotheses. As such, the p-value, which is used as a measure for

the surprisingness of an observation, depends on the observation, as well

as on the size of the data, i.e., the event count of a subsequence and the

length of the full sequence, respectively. The p-values are computed ana-

lytically and the use of a post-hoc correction and its possibly conservative

effect on the p-values is avoided. Although the method is not directly ap-

plicable to other data or pattern types, it may act as a model for methods

on other data.
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The proposed method provides strong control over the family-wise error

rate, which is the probability that any of the significant results is a false

positive [Shaffer, 1995]. In other words, it answers the question “what is

the probability that any of the considered patterns would have a statistic

equal to or higher than the observed test statistic?”, where the test statis-

tic can be any interestingness measure, e.g., an event count (= support),

or more complex measures such as lift, or weighted-relative accuracy, see

Geng and Hamilton [2006] for an overview. The following example illus-

trates family-wise error rate control further.

Assume that the interestingness measure, and thus the test statistic, is

the support of a pattern, and that the data is a transaction database in

tabular form. For simplicity assume that all items have equal support.

The probability that the statistic of a specific pattern P is significantly

high can be assessed by, for example, using swap randomisation [Gionis

et al., 2007] to generate randomised samples1 and then computing how

often a similar or higher statistic for pattern P occurs in the randomised

samples. The obtained p-value answers the question “what is the proba-

bility that this specific pattern has a test statistic equal to or higher than

the observed statistic?”.

Now assume that this procedure is repeated for all itemsets of some

fixed size. Because many hypotheses are tested, it is likely that many

observations have small p-values. To prevent this, the observed statistics

should be compared with the maximum observed statistic over all item-

sets of that size, per randomisation. In that case, the p-values answer

the question “what is the probability that any of the considered patterns

would have a statistic equal to or higher than the observed statistic?”,

which is the same as family-wise error rate control. Significance testing

with family-wise error rate control using randomisation for mining fre-

quent itemsets is described in, e.g., Hanhijärvi [2011]. More related work

is discussed in Section 5.2.

Our aim is to find subsequences of a fixed length where a certain event

is significantly frequent or infrequent. This is essentially a subgroup dis-

covery problem: the target is a specific event, the descriptions or patterns

are subsequences, and the aim is to find all descriptions where the target

is exceptionally frequent or infrequent. This problem setting has many

applications. For example, biologists are interested in detecting isochores

1Which randomisation method to use depends on the assumptions that one
wants to make.
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and CpG sites in DNA sequences, which are regions that are especially

rich or poor in GC content and rich in the dinucleotide CpG respectively

[Bernardi, 2000], and another example is that in text analysis it is useful

to identify text fragments where a certain word is under or overused.

Summary of contributions. We introduce a new method to test the signif-

icance of event frequencies in subsequences that provides p-values under

control of the family-wise error rate. That is, the p-value corresponds to

the probability of observing the observed statistic or higher in any of the

subsequences of a given length in a single long sequence. We assert that

computing the p-values exactly is computationally costly and derive a sim-

ple and efficiently computable upper bound. We investigate the tightness

of the upper bound is and compare the power of the test to a generic post-

hoc correction. We illustrate the utility of the method in experiments on

two types of data, text and DNA. We find that the upper bound is suffi-

ciently tight and that meaningful results can be obtained in practice.

Outline. Related work is discussed in Section 5.2. The problem state-

ment and the method are introduced in Sections 5.3 and 5.4. Results from

the experiments on the tightness of the upper bound, comparison with the

generic post-hoc correction, and the experiments on the two data sets are

presented in Section 5.5. Conclusions are given in Section 5.6.

5.2 Related work

The popularity of significance testing methods in data mining has in-

creased considerably over the past decade. Gionis et al. [2007] introduced

swap randomisation for mining significant patterns while maintaining

row and column margins, and De Bie [2011] proposed a maximum-entropy

approach that can also take into account other types of constraints. Webb

[2008] and Hanhijärvi [2011] studied the problem of multiple testing for

mining patterns. These studies are all restricted to mining itemsets or

tiles. A generic approach to mining structure in data using statistical

testing has been presented by Lijffijt et al. [in press].

There are only a few studies on statistical testing approaches for min-

ing sequential data. Most related is the statistical test proposed by Kifer

et al. [2004] for detecting change points in streams. However, they rule

out the possibility of controlling the family-wise error rate, as they con-

sider only streams of infinite length. Another drawback of that method is

that the critical points cannot be computed analytically, but require ran-
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domisation. Haiminen et al. [2008] proposed a method for determining

the significance of co-occurrences of events in event sequences. However,

that method is computationally intensive as it relies on randomisation.

An alternative method for modelling frequency variation is sequence

segmentation, although the focus is then on global modelling, while the

aim here is to find local structure. Mannila and Salmenkivi [2001] study

efficient methods for sequence segmentation, while the method by Lijffijt

et al. [in press] can be used to assess the significance of such a segmenta-

tion. Complementary to this work are the methods for comparing event

counts between databases of sequences put forward by Lijffijt et al. [2011].

5.3 Problem statement

Our aim is to find parts of a sequence where a particular event is over

or underrepresented. We consider an approach where we compute the

frequency of an event in all subsequences of a given length, and then

compute the statistical significance of the observed frequencies. The null

hypothesis of interest is that the data has no structure, i.e., all events in

the sequence are i.i.d. samples, and that the event occurs at each position

with the same probability p.

We assume that the parameter p, which is used to define the null hy-

pothesis, is fixed. The choice of p determines the perspective for the sig-

nificance test. For example, the parameter p may be estimated from the

sequence S, in which case the method finds regions in the sequence where

the event frequency is significantly high (or low) with respect to the se-

quence as a whole. Alternatively, p can be based on background knowl-

edge, for example an estimate derived from a large database of sequences.

The focus here is on computing p-values while controlling the family-

wise error rate (Definition 2.18), i.e., the probability that at least one true

null hypothesis is declared significant. The family-wise error rate depends

on the arrangement and number of the tested subsequences. Three sce-

narios are considered here: (1) testing a single subsequence, (2) testing

all subsequences of a given length, and (3) testing subsequences using a

sliding window with a given step size.

The basic definitions for significance testing that are used in this chap-

ter are presented in Sections 2.4 and 2.5. The basic notation for event

sequences is presented in Section 2.1. We assume that the user chooses a

priori a significance threshold α, and the goal is to control the family-wise
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error rate at level α, thus the only definition that is required to complete

the problem setting is the cumulative probability mass function of the

event frequency, i.e., the null hypothesis, Pr ({T ≥ k}). We consider three

scenarios, each with a different null hypothesis:

1. Testing a single subsequence at a random location: Pr ({T ≥ k}) is the

probability that in a subsequence of length m there are k or more ones.

Under the null hypothesis, each event is assumed to be independently

generated by a Bernoulli distribution with parameter p. Thus, the prob-

ability distribution for the number of ones in a single subsequence at a

random location is a Binomial distribution, Pr ({T = k}) = Bin(k;m, p),

and the cumulative probability mass function is:

Pr ({T ≥ k}) =
m∑
i=k

Bin(i;m, p) =

m∑
i=k

(
m

i

)
pi(1− p)m−i.

A stepwise derivation is given in Section 5.4.

2. Testing all subsequences of length m: as stated previously, when test-

ing many observations with equal null hypotheses, family-wise error

rate control corresponds to asking the question “what is the probability

that any of the null hypotheses is equal to or higher than the observed

statistic?”. More formally: for an event sequence of length n, there are

n−m+ 1 subsequences of length m. Let Z1, . . . , Zn−m+1 denote random

variables corresponding to the test statistics of the null hypotheses, one

for each subsequence. To provide control of the family-wise error rate,

the p-values should be smaller than or equal to

Pr ({T ≥ k}) = Pr

⎛
⎝n−m+1⋃

j=1

{Zj ≥ k}

⎞
⎠ .

Adjusted p-values that are controlled for the family-wise error rate

can also be obtained by computing the significance of each of the subse-

quences (Zj ’s) separately, and applying Bonferroni correction or an im-

proved variant. The adjusted p-values give an upper bound on the true

p-values, as specified in the equation above. However, as the Zj ’s are

strongly correlated, we expect these upper bounds to be very weak, thus

leading to loss of statistical power. In Section 5.4, we argue that it is

computationally costly to evaluate this probability distribution exactly

and we derive a tighter upper bound that can be computed efficiently.

3. Testing subsequences using a sliding window with a given step size:
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this scenario is comparable to the previous, but only a subset of the

subsequences are tested. Given a step size r, the subsequences that are

tested have indices 1, 1 + r, 1 + 2r, . . . , 1 +
⌊
n−m
r

⌋
r. To provide control

of the family-wise error rate in this scenario, the p-values should be

smaller than or equal to

Pr ({T ≥ k}) = Pr

⎛
⎜⎝	n−m

r 
⋃
j=0

{Z1+j·r ≥ k}

⎞
⎟⎠ .

This probability distribution is also studied further in Section 5.4.

5.4 Methods

5.4.1 Testing one subsequence

Given a sequence of independent random variables X1, . . . , Xn, each fol-

lowing a Bernoulli distribution with parameter p, define Zi,m as

Zi,m =

i+m−1∑
j=i

Xj .

Thus, Zi,m is the sum over a subsequence of the random variables of

length m starting at position i.

Because Zi,m is the sum of m i.i.d. Bernoulli variables, the probability

distribution for Zi,m is a binomial distribution:

Pr ({Zi,m = k}) = Bin (k;m, p) =

(
m

k

)
pk(1− p)m−k.

This distribution is independent of the position i.

Using this definition, it is straightforward to define the one-tailed p-

value under the null hypothesis for a single subsequence at a random

location (scenario 1). For the high frequency direction, the one-tailed p-

value is given by

pH = Pr ({σa(Si,m) ≥ k})

= Pr ({Zi,m ≥ k})

=

m∑
j=k

(
m

j

)
pj(1− p)m−j

= 1−
k−1∑
j=0

(
m

j

)
pj(1− p)m−j ,

(5.1)
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while the one-tailed p-value in the low frequency direction is given by

pL = Pr ({σa(Si,m) ≤ k})

= Pr ({Zi,m ≤ k})

=

k∑
j=0

(
m

j

)
pj(1− p)m−j .

(5.2)

As can be seen, the p-values correspond to the cumulative distribution

function of the binomial distribution. These tests are also known as the

binomial test. Many statistical software packages contain a function for

computing its value.

5.4.2 Testing all subsequences of length m

When testing a single subsequence at a random location, the probability

of rejecting the null hypothesis while it is actually true—a false positive

(Def 2.16) or type I error—is exactly α, and thus the result is easy to inter-

pret. However, when testing the significance of the frequency of multiple

subsequences, or a subsequence at an optimised location, the probability

of false positives increases.

Assume that the observed frequencies for all subsequences of a given

length are tested. For example, this is the case when studying data using

a sliding window with step size one. In this case, the probability under

the null hypothesis of observing a certain frequency k or higher in at least

one subsequence of length m is

Pr

(
n−m+1⋃

i=1

{Zi,m ≥ k}
)
. (5.3)

When testing the frequency of an event in all subsequences, it seems

reasonable to use this probability as a p-value. This is also theoretically

justified: the probability expressed in Equation 5.3 is equal to the prob-

ability of obtaining at least one false positive, thus, using this as the p-

value corresponds to strong control of the family-wise error rate [Shaffer,

1995].

Thus, in this scenario, the p-value in the high frequency direction is

pH = Pr

(
n−m+1⋃

i=1

{Zi,m ≥ k}
)
.
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The p-value can be decomposed as

pH = Pr ({Z1,m ≥ k})+

Pr ({Z2,m ≥ k} ∩ {Z1,m < k})+

Pr ({Z3,m ≥ k} ∩ {Z1,m < k} ∩ {Z2,m < k}) + . . .+

Pr

(
{Zn−m+1,m ≥ k} ∩

n−m⋂
i=1

{Zi,m < k}
)
,

(5.4)

which highlights that the p-value for this scenario is equal to the p-value

in the previous scenario (Pr ({Z1,m ≥ k}), see Equation 5.1) plus a set of

terms that can be interpreted as the correction terms for multiple testing.

These correction terms are in general difficult to compute exactly. A

straightforward approach is the following: define a column vector v with

a probability for each possible subsequence, and a transition matrix W

that specifies the transition probabilities between the subsequences. All

subsequences with ≥ k ones can be collapsed into a single state with one

outgoing link to itself. The exact p-value is given by computing Wn−m · v.

However, the matrix W has O(22m) entries, so this approach is feasible

only when m is very small.

The main result of this chapter is that an upper bound can be derived

that is very easy to compute. Consider the following approximation:

p̃H = Pr ({Z1,m ≥ k}) + (n−m) · Pr ({Z2,m ≥ k} ∩ {Z1,m < k}) .

Theorem 5.1. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. For the correction terms of pH (Equation 5.4) it holds that

Pr ({Z2,m ≥ k} ∩ {Z1,m < k})

≥ Pr ({Z3,m ≥ k} ∩ {Z2,m < k} ∩ {Z1,m < k})

≥ Pr ({Z4,m ≥ k} ∩ {Z3,m < k} ∩ {Z2,m < k} ∩ {Z1,m < k})

≥ . . .

≥ Pr

(
{Zn−m+1,m ≥ k} ∩

n−m⋂
i=1

{Zi,m < k}
)
.

(5.5)

Combining Equations 5.4 and 5.5 gives

pH = Pr ({Z1,m ≥ k})+

Pr ({Z2,m ≥ k} ∩ {Z1,m < k})+

Pr ({Z3,m ≥ k} ∩ {Z1,m < k} ∩ {Z2,m < k}) + . . .+

Pr

(
{Zn−m+1,m ≥ k} ∩

n−m⋂
i=1

{Zi,m < k}
)

≤ Pr ({Z1,m ≥ k}) + (n−m) · Pr ({Z2,m ≥ k} ∩ {Z1,m < k}) .
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Thus, p̃H is an upper bound on the exact p-value pH .

The upper bound can be computed as follows. The first term of p̃H can

be evaluated using Equation 5.1, while the second term can be rewritten

as:

Pr ({Z2,m ≥ k} ∩ {Z1,m < k})

= Pr ({Z1,1 = 0} ∩ {Z2,m−1 = k − 1} ∩ {Zm+1,1 = 1})

= Pr ({Z1,1 = 0}) · Pr ({Z2,m−1 = k − 1}) · Pr ({Zm+1,1 = 1})

= (1− p) ·Bin (k − 1;m− 1, p) · p.

Both the binomial and cumulative binomial distributions can be approx-

imated algorithmically in O(1) time, see, e.g., [Loader, 2000]. Thus, the

upper bound can be computed in constant time.

The proposition here is to use the upper bound p̃H as a statistical test.

Because p̂H is an upper bound, a test based on p̂H may be conservative

under the null hypothesis, but not anti-conservative. In other words, the

results may be statistically more significant under the null hypothesis,

but not less significant. This is important, because the test based on p̂H

then also provides strong control of the family-wise error rate.

As the exact p-value pH is difficult to compute, it is not possible to anal-

yse directly how tight the upper bound is. In Section 5.5.1, empirical re-

sults on the tightness of the approximation are presented, and in Section

5.5.2 the power of this test is compared with the alternative of combining

the binomial test with a general post-hoc correction.

To complete the method, an upper bound to the one-tailed p-value in

the low direction is derived, analogously to the previous case. For brevity,

only the result is given. Define

p̃L = Pr ({Z1,m ≤ k}) + (n−m) · Pr ({Z2,m ≤ k} ∩ {Z1,m > k}) .

Theorem 5.2. p̃L is an upper bound on the exact p-value pL, i.e., p̃L ≥ pL.

Proof. Analogous to Theorem 5.1.

The correction term can be computed using

Pr ({Z2,m ≤ k} ∩ {Z1,m > k}) = p ·Bin (k;m− 1, p) · (1− p).

5.4.3 A generalisation for step sizes larger than one

When using a sliding window with step size larger than one, fewer hy-

potheses are tested and the dependency between the consecutive subse-

quences is different. The upper bound from Section 5.4.2 is also an upper
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bound when using a step size larger than one, but a tighter bound can be

obtained relatively easily using the same techniques as in Section 5.4.2,

but with some additional rewriting.

Let r be the user-defined step size. In this scenario, the subsequences

with indices 1, 1 + r, 1 + 2r, . . . , 1 +
⌊
n−m
r

⌋
r are tested for an event being

significantly frequent in that subsequence. The corresponding p-value

that provides strong control over the family-wise error rate is

pH = Pr

⎛
⎜⎝	n−m

r 
⋃
i=0

{Z1+i·r,m ≥ k}

⎞
⎟⎠ .

There are 1 +
⌊
n−m
r

⌋
null hypotheses. The approximation p̃H for this

scenario is defined as

p̃H = Pr ({Z1,m ≥ k}) +
⌊
n−m

r

⌋
· Pr ({Z1+r,m ≥ k} ∩ {Z1,m < k}) .

Theorem 5.3. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. pH can be decomposed as

pH = Pr ({Z1,m ≥ k}) + Pr ({Z1+r,m ≥ k} ∩ {Z1,m < k}) + . . .

+ Pr

⎛
⎜⎝{Z1+	n−m

r 
r,m ≥ k
}
∩
	n−m

r 
−1⋂
i=0

{Z1+i·r,m < k}

⎞
⎟⎠ .

(5.6)

Also, it holds that

Pr ({Z1+r,m ≥ k} ∩ {Z1,m < k})

≥ Pr ({Z1+2r,m ≥ k} ∩ {Z1+r,m < k} ∩ {Z1,m < k})

≥ Pr ({Z1+3r,m ≥ k} ∩ {Z1+2r,m < k} ∩ {Z1+r,m < k} ∩ {Z1,m < k})

≥ . . .

(5.7)

Combining Equations 5.6 and 5.7 gives

pH ≤ Pr ({Z1,m ≥ k}) +
⌊
n−m

r

⌋
· Pr ({Zi+r,m ≥ k} ∩ {Z1,m < k}) .

Thus, p̃H is an upper bound on the exact p-value pH .

To compute the correction term, it can be rewritten as follows. First,

we divide the term into three parts: the overlap between the two sub-

sequences, Z1+r,m−r, and the two non-overlapping parts, Z1,r and Z1+m,r.

Secondly, it holds that

{Z1+r,m ≥ k} ⇒ {Z1+r,m−r + Z1+m,r ≥ k} , and

{Z1,m < k} ⇒ {Z1,r + Z1+r,m−r < k} .
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Both right hand sides are satisfied simultaneously if and only if

{Z1+m,r ≥ k − Z1+r,m−r}, {Z1+r,m−r ≥ k − Z1+m,r} ,

{Z1,r < k − Z1+r,m−r}, and {Z1+r,m−r < k − Z1,r} .
(5.8)

Since Z1+m,r and Z1,r are both by definition between 0 and r, it holds that

{k − r ≤ Z1+r,m−r < k} . (5.9)

Finally, the correction term can be rewritten to an explicit sum using

Equations 5.8 and 5.9. Let b = max (0, k − r), we find that

Pr ({Z1+r,m ≥ k} ∩ {Z1,m < k})

=

k−1∑
j=b

Pr ({Z1+r,m−r = j} ∩ {Z1+m,r ≥ k − j} ∩ {Z1,r < k − j})

=

k−1∑
j=b

Pr ({Z1+r,m−r = j}) · Pr ({Z1+m,r ≥ k − j}) · Pr ({Z1,r < k − j})

=
k−1∑
j=b

⎛
⎝Bin(j;m− r, p) ·

r∑
l=k−j

Bin(l; r, p) ·
k−j−1∑
l=0

Bin(l; r, p)

⎞
⎠ .

One may verify that the result for r = 1 is the same as in Section 5.4.2.

The binomials can be computed in constant time, thus the computational

complexity of the correction term is O(min(k, r) · max(k, r)) = O(kr) and

independent of the size of the full sequence. An upper bound p̃L can be

derived analogously.

5.5 Experiments

The results of the experiments on the power of the test are discussed in

Sections 5.5.1 and 5.5.2. In 5.5.1, we review how far the p-values from the

test are from the ideal distribution for synthetic data generated under the

null hypothesis, and in 5.5.2, we compare the proposed method with the

alternative of post-hoc correction. We investigated the practical utility of

the test using two types of data: an English novel and a part of the human

reference genome. The findings are presented in Sections 5.5.3 and 5.5.4.

5.5.1 Tightness of the upper bound

Since the proposed test provides strong control for the family-wise error

rate, the probability of observing one or more false positives is at most α.

However, this provides no information on the power of the test, i.e., the

probability of false negatives (Def 2.17). The probability or rate of false
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negatives cannot be specified directly, because it depends on the alterna-

tive hypothesis; there is no general false negative rate. Instead, we use

the fact that there is a trade-off between the probability false positives

and the probability of false negatives to study the power of the test.

By definition, the probability of false negatives is minimised when the

probability of false positives is maximised. The probability of false pos-

itives is limited from above to α due to control for the family-wise error

rate. Thus, to minimise the probability of false positives, the probability

of observing one or more false positives should be as close to α as possible.

The results from the following experiment show how close the probability

of encountering one or more false positives is in practice.

We conducted the experiment as follows. The tightness of the upper

bound may depend both on the length of sliding window, as well as on

the event probability. Thus, we generated 1,000 sequences of length n =

9, 999 +m (such that there are 10,000 p-values per sequence) for various

combinations of window lengths (m ∈ {100, 1000, 10000}) and event proba-

bilities (p ∈ {0.001, 0.01, 0.1}). Then, we computed the p-values p̃H for all

subsequences using a sliding window with step size 1.

The quantity of interest in the experiments is the minimal p-value per

sequence. Ideally, the distribution of minimal p-values over the sequences

is uniform, which means that for any value α, the probability of a false

positive is exactly α itself. This ensures that the probability of false posi-

tives is maximal (while providing family-wise error rate control), and that

the probability of false negatives is minimal, for any α. Note that this

holds by definition for the exact p-values under the null hypothesis, but

the upper bound may have a higher probability of false negatives.

The results from the experiment are presented in Figure 5.1. We find

that the p-values are reasonably close to the optimal distribution and that

they are further from the optimal distribution when the expected number

of events (= m · p) is larger. The largest observed effect is approximately 1

order of magnitude (m = 10,000, p = 0.1), indicating that the p-values are

1 order of magnitude too high in that case. The results for very low event

probabilities (e.g., m = 100, p = 0.001) may appear more conservative, but

they are skewed mostly because there are very few distinct p-values: the

highest number of events observed in any subsequence is 3 (p̃H = 0.0437),

and for event counts 0 or 1, p̃H = 1.

Estimates for p-values that are conservative by one order of magnitude

are not a problem in most practical settings; much larger differences in
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Figure 5.1. The distribution of minimal p-values over 1,000 synthetic sequences for the
proposed method, using various window lengths m and event probabilities p,
compared to the uniform distribution.

the choice of α can be observed in the literature: from α = 0.1 to α =

0.00001. Also, because the p-values are controlled for family-wise error

rate, use of a ‘large’ α, such as 0.05, still guarantees that there is a low

probability of obtaining any false-positive results.

5.5.2 Comparison to Hochberg’s step-up procedure

An alternative approach to obtaining p-values with strong control of the

family-wise error rate, for the same null hypothesis, is to use the binomial

test (Equations 5.1 and 5.2) with post-hoc correction. The correction with

largest power that provides strong control for the family-wise error rate,

which is applicable in this setting, and that does not require specifying

the dependency structure of the p-values, is Hochberg’s step-up procedure

[Hochberg, 1988]. Hochberg’s procedure is valid for independent and pos-

itively dependent p-values [Sarkar and Chang, 1997]. The p-values in the

setting considered in this chapter are positively dependent, because the

event frequencies for overlapping subsequences have positive correlation.

To compare the power of the proposed method with the alternative us-

ing Hochberg’s procedure, we conducted the following experiment. For

each sequence generated in the previous experiment (Section 5.5.1), we

computed the p-values for all subsequences of the same lengths using the

binomial test, and then adjusted the p-values using Hochberg’s procedure

(per sequence). This ensures that the p-values are directly comparable

to those in the previous experiment. Then, we compared the minimal

p-values per sequence with those from the upper-bound method.
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Figure 5.2. The distribution of minimal p-values for the binomial test with Hochberg’s
post-hoc correction, on the same data as in Figure 5.1.

The distribution of minimal p-values is shown in Figure 5.2. We ob-

serve that the p-values from the method with post-hoc correction are far

from uniform, for any combination of parameters, while the distribution

becomes more uniform as the expected number of events per subsequence

increases. The proposed method outperforms the post-hoc approach for

any combination of parameters, although it cannot be guaranteed that

this holds for much larger expected event counts.

Figure 5.3 gives a direct comparison of the minimal p-values for both

methods, per synthetic sequence. We observe even more clearly that the

proposed method has superior performance for p-values ≤ 0.1 for any

choice of parameters. For example, we find that the smallest p-value

output by Hochberg’s procedure is 0.02, while the upper-bound method

yielded a p-value of 0.02 or lower in 35 sequences. The figure also sup-

ports the hypothesis that the difference between the methods is smaller

when the expected number of events in a subsequence is larger.

5.5.3 Bursty and non-bursty words in an English novel

The prime motivation for the method proposed in this chapter comes from

the domain of text analysis. Church and Gale [1995] and Katz [1996]

both studied burstiness of words in the context of probabilistic modeling

of word counts, and the concept is related to relevance measures in in-

formation retrieval, such as inverse document frequency [Spärck Jones,

1972]. More recently, using a quantification of burstiness based on the

inter-arrival time distributions of words, burstiness of words has been re-

lated to semantic categories [Altmann et al., 2009], statistical tests for

63



Mining subsequences with surprising event counts

0.001 0.01 0.1 1

0.001

0.01

0.1

1

Minimum p−value upper−bound method

M
in

im
um

 p
−

va
lu

e 
H

oc
hb

er
g 

co
rr

ec
tio

n

 

 

Uniform distribution
m = 100, p = 0.001
m = 100, p = 0.01
m = 100, p = 0.1
m = 1000, p = 0.001
m = 1000, p = 0.01
m = 1000, p = 0.1
m = 10000, p = 0.001
m = 10000, p = 0.01
m = 10000, p = 0.1

Figure 5.3. Minimal p-values per sequence between the proposed upper-bound method
(x-axis) vs. the binomial test combined with Hochberg’s procedure (y-axis).
Each dot corresponds to a synthetic sequence.

20 200 2000 20000
0

0.5

1

1.5

2

2.5

Frequency

W
ei

bu
ll 

β

exponential
distribution

the
to

of
and

her
I

Figure 5.4. The relationship between burstiness, measured using the Weibull distribu-
tion, and frequency of words. Each dot represents a word in the novel Pride
and Prejudice.

comparing corpora that take into account burstiness have been proposed

(see Chapter 4), and the impact of burstiness on choosing optimal window

lengths for sequence analysis has been studied (see Chapter 6).

For the purpose of text analysis, it is useful to know if there are frag-

ments in a text where a certain word is over or underused and to locate

such fragments. We investigated the suitability of the proposed method

to this task, using the following experiment. We computed the frequency

and burstiness of all words in the novel Pride & Prejudice by Jane Austen

(see Section 3.3), using the definitions provided in Sections 2.1, 2.2, and

2.3. Then, we selected the five most and least bursty words in two fre-

quency bins, see Table 5.1. An overview of the relation between frequency

and burstiness is given in Figure 5.4.

For each of the selected words, we computed the frequency throughout

the book using a sliding window of length 5,000 and step size 1. The book

contains n = 121,892 words and thus there are 116,893 subsequences.
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Low frequency [40–50] High frequency [300-600]

Non-bursty hardly, help, perfectly, point,

scarcely

an, elizabeth, more, there,

when

Bursty marry, pride, read, rosings,

william

are, me, their, will, your

Table 5.1. The five least and most bursty words in two frequency bins in the novel Pride
& Prejudice. We investigated the local behaviour of these words to study the
suitability of the proposed method to locate over and underuse of words in text.

We used a window length of 5,000 to ensure that low event counts could

also be significant; for example, for a window length of 2,000 and event

probability p = 1/300, the p-value for k = 0 is p̃L = 0.4833. Thus, an event

count of zero would not be significant, even for fairly frequent words. With

a window length of 5,000, event counts of 3 and less are significant at

α = 0.05 (p̃L ≤ 0.0164).

We computed the significance of the observed frequencies for both the

high and low direction. Because the results are for illustrative purposes,

we did not apply any additional correction for testing multiple sets of hy-

potheses. Figure 5.5 shows the results for four words. The word an is

frequent and non-bursty, and no parts of the book show significant under

or overuse of the word. For the pronoun me, which is frequent and bursty,

there are two areas with overuse, and four areas with underuse, compared

to the average frequency. The name of the main character, Elizabeth, is

non-bursty (β = 1.05) and frequent throughout the novel, except for two

parts. Finally, the family name Rosings, which is infrequent and bursty,

is used a lot in two text fragments and occurs only rarely in other parts of

the book.

An overview of results is given in Table 5.2. As expected, each of the

bursty words is significantly over or underrepresented in at least one

fragment of the book. Surprising is that some frequent words that are

non-bursty according to the Weibull distribution estimate are still under

or overused in one or more fragments. This indicates that there is local

structure that is not captured by the Weibull measure of word burstiness.

We find that the results from the proposed method are supported by visual

inspection of the data.

5.5.4 Variation in GC and TA content in DNA

Variation of GC content in DNA sequences is used to define isochores, re-

gions in DNA sequences where the GC content is approximately the same,
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Figure 5.5. Regions of significant over (H) and underuse (L) for four words in the novel
Pride and Prejudice, compared to the average frequency in the book. Each dot
corresponds to an occurrence of the word in the text, lines are added to high-
light the distances between consecutive occurrences. For the visualisation,
we merged overlapping significant subsequences into longer subsequences.
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Non-bursty Bursty

Frequent Infrequent Frequent Infrequent

Word L H Word L H Word L H Word L H

an 0 0 hardly 0 0 are 1 0 marry 0 1

elizabeth 2 0 help 0 0 me 4 2 pride 0 1

more 0 0 perfectly 0 0 their 1 0 read 0 2

there 0 1 point 0 0 will 2 3 rosings 0 2

when 0 0 scarcely 0 0 your 2 3 william 0 1

Table 5.2. Number of areas with significant underuse (L) or overuse (H) for each of the
twenty words.
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Figure 5.6. Analysis of the GC content at the start of Chromosome 1 of the Homo Sapi-
ens reference genome, using a sliding window of length 10,000. Overlapping
significant parts have been merged for the purpose of visualisation.

which in turn are used to identify gene structure [Bernardi, 2000]. The

method introduced in this chapter seems particularly suitable to finding

significant variation of nucleotide frequencies in DNA sequences. To test

this, we conducted the following experiment. We computed the frequency

of C+G for all subsequences of length 10,000 in chromosome 1 from the

Homo Sapiens reference genome (build 37, patch 9, see Section 3.4). The

reference build contains 225,280,621 fixed nucleotides, thus the number

of hypotheses tested concurrently is very large in this case.

The first consecutive fixed part is illustrated in Figure 5.6. We observe

that the test is sufficiently powerful, because several parts of the sequence

are identified as having significantly high or low GC content. We find

also that the GC content is quite volatile: the parts where the content

is significantly low and high overlap each other, which indicates that the

frequency goes up and down rapidly. The regions where the GC content is

significantly high and significantly low can overlap because we consider

fairly long subsequences (length 10,000). Although the figure shows only

part of the whole sequence, the findings contradict previous research, as

the GC content is assumed to substantially change only at intervals of

300,000 bases and more [Bernardi, 2000].
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5.6 Conclusion

In this chapter, we have introduced a novel statistical test for assessing

the significance of event frequencies in subsequences when using a sliding

window. The test provides strong control of the family-wise error rate and

takes into account the dependency structure of overlapping subsequences.

It has been argued that exact p-values under the null hypothesis are diffi-

cult to compute, and we have introduced an easy-to-compute upper bound

that can be used instead. We have provided empirical proof that the upper

bound is sufficiently tight and that the test offers increased power com-

pared to combining the binomial test with a generic post-hoc correction.

We have investigated the utility of the test on linguistic and biological

sequences and found several novel and interesting patterns. We have

illustrated that meaningful results can be obtained, and that the method

remains sufficiently powerful even when testing a very large number of

hypotheses. We conclude that the proposed method is simple, fast and

powerful and that the method can produce meaningful results on various

types of data.
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6. Selecting the most informative set of
window lengths

In this chapter, we consider the problem of which granularities to use

when looking for local patterns in an event sequence. Event sequences of-

ten contain continuous variability at different levels. In other words, their

properties and characteristics change at different rates, concurrently. For

example, the sales of a product may slowly become more frequent over a

period of several weeks, but there may be interesting variation within a

week at the same time. To provide an accurate and robust view of such

multi-level structural behaviour, one needs to determine the appropriate

levels of granularity for analysing the underlying sequence.

We introduce the problem of finding the best set of window lengths for

analysing discrete and continuous event sequences and we present suit-

able criteria for choosing a set of window lengths. We show that the cor-

responding optimisation problem is NP-hard in general, but that it can

be approximated efficiently. We show that for certain criteria and data

distributions the problem can also be solved exactly. We give examples of

tasks to demonstrate the applicability of the problem and present exper-

iments on both synthetic data and real data from several domains. We

find that the method works well in practice and that the optimal sets of

window lengths themselves can provide new insight into the data.

6.1 Introduction

Sequential data often contains slowly changing properties, mixed with

faster changing properties. For example, the sales of a product may slowly

become more frequent over a period of several weeks, but there may be

interesting variation throughout a week at the same time. To provide

an accurate and robust view of such multi-level structural behaviour, one

needs to determine the appropriate levels of granularity for analysing the
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Figure 6.1. The frequency of an event over time, computed using two sliding windows
of different lengths. The generative process for this sequence is described in
Section 6.5.

underlying sequence.

Sliding windows are frequently employed in several sequence analysis

tasks, such as mining frequent episodes [Mannila et al., 1997], finding

biological or time series motifs [Chiu et al., 2003, Das and Dai, 2007],

discovering poly-regions in biological sequences [Papapetrou et al., 2012],

analysis of electroencephalogram (EEG) sequences [Sörnmo and Laguna,

2005], or in linguistic analysis of documents [Biber, 1988]. However, such

methods are often parametrised by a user-defined window length and it

can be unclear how to choose the most appropriate window length.

This problem can be avoided by either defining an appropriate objective

function and using an optimisation algorithm to select the best window

length, or by using all possible window lengths at the same time. The

first approach has the limitation that a single window length may leave

out important information. The second approach does not suffer from

that problem, but provides a large amount of information, which may be

too time consuming to analyse. We propose to use a small set of window

lengths that together provide as much information as possible about the

underlying data, with respect to a quantity of interest. We demonstrate

that a good balance between informativeness and amount of information

can be found.

Example. The frequency of an event in a sequence may show variation

at different levels. Figure 6.1 shows an example of the relative frequency

of an event over time, which is computed using two incremental sliding

windows of lengths 1562 and 6250. The generative process for this se-

quence is described in Section 6.5. We observe that each window length

tells us a different story about the event frequency. In other words, each

window length entails a different view of the data. The longer window
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suggests a smoothly increasing frequency throughout the sequence, while

the shorter window captures a periodic behaviour of the event frequency.

Summary of contributions. We introduce the problem of finding the most

informative set of window lengths for analysing event sequences, with re-

spect to a statistic of interest. The statistic can be any quantity that is

computed over a subsequence. We define suitable criteria and an effi-

cient method for choosing a set of window lengths. We give examples that

demonstrate the applicability of the problem to different domains.

We study optimal window lengths for synthetic data and show that an-

alytical solutions can be obtained for certain statistics and data distri-

butions, against which empirical results can be compared. We present

experiments on data from several application domains: natural language

texts, DNA sequences, and time series. We find that the scales of the oc-

currence patterns of various events (e.g., word types or DNA segments)

vary significantly, and that the optimal scales can provide useful new in-

sight into the data.

Outline. Related work is discussed in Section 6.2. The problem state-

ment and the method are introduced in Sections 6.3 and 6.4. Experiments

are presented in Section 6.5 and Section 6.6 contains the conclusions.

6.2 Related work

String and Text Mining. Sliding windows have been used extensively in

string mining. Indexing methods for string matching based on n-grams

[Li et al., 2007a], i.e., subsequences of length n, employ sliding windows of

fixed or variable length to create dictionaries and speed-up approximate

string search in large collections of texts. Determining the appropriate

window length is always a challenge, as small window lengths result in

higher recall but large index structures.

Looking at different linguistic dimensions of text results in extracting

different views of the underlying text structure [Biber, 1988]. One way to

quantify these views is by using sliding windows. Recently, an interactive

text analysis tool1 has been developed for exploring the effect of window

length on three commonly studied linguistic measures: type-token ratio,

proportion of hapax legomena, and average word length. However, the

window length is user-defined.

Bioinformatics. Several sliding window approaches have been proposed

1http://www.uta.fi/sis/tauchi/virg/projects/dammoc/tve.html
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for analysing large genomes and genetic associations. Existing methods

can be categorised into two groups: fixed-length vs. variable-length slid-

ing windows [Bourgain et al., 2000, Li et al., 2007b, Mathias et al., 2006,

Papapetrou et al., 2012, Toivonen et al., 2000]. For the case of a fixed win-

dow length, it is difficult to determine the optimal window length per task

while variable window length provide higher flexibility.

A variable window length framework for genetic association analysis

employs principal component analysis to find the optimum window length

[Tang et al., 2009]. Sliding windows have also been used for searching

large biological sequences for poly-regions [Papapetrou et al., 2012], mo-

tifs [Das and Dai, 2007], and tandem repeats [Benson, 1999]. In each of

these cases it is assumed that there exists only one optimum length and

the solution is limited to the task of genetic association analysis.

Stream Mining. A typical task in stream mining is to detect and mon-

itor frequent items or itemsets in an evolving stream, counted over slid-

ing windows. We present a brief survey of the use of sliding windows in

stream mining, although the overall setting is different from the problem

studied in this chapter, and online learning is not considered here.

In the case of a fixed window length, the length of the window is set

at the beginning and the data mining task is to discover recent trends

in the data contained in the window [Demaine et al., 2002, Golab et al.,

2003, Karp et al., 2003]. In the time-fading model [Lin et al., 2005] the

full stream is taken into account in order to compute itemset frequencies

but the frequencies are weighted by recency, i.e., recent transactions have

a high weight compared to older transactions. The tilted-time window

[Giannella et al., 2003] can be seen as a combination of different scales

reflecting the alteration of the time scales of the windows over time.

In the landmark model, particular time periods are fixed while the land-

mark designates the start of the system until the current time [Jin and

Agrawal, 2005, Karp et al., 2003]. Calders et al. [2008] introduced a fre-

quency measure based on a variable window length, where the frequency

of an item is defined as the maximal frequency over all windows until the

most recent event in the stream. Several variants of these methods have

been proposed for specific objectives.

Time Series. Enumerating frequently occurring patterns is a common

data mining problem in time series. Such patterns are called motifs due to

their close analogy to their discrete counterparts in computational biology.

Efficient motif discovery algorithms have been proposed, based on sliding
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windows, for summarising and visualising massive time series databases

[Chiu et al., 2003, Mueen et al., 2009]. Related, but different in nature

is the problem of scale-space decomposition of time series [Vespier et al.,

2012], which aims at defining several frequency bands that correspond to

the components of a signal.

Papadimitriou and Yu [2006] proposed a method for discovering locally

optimal patterns in time series at multiple scales along with a criterion

for choosing the best window lengths. However, this is a local heuristic

and applies only to continuous data. As such, the overall setting and

objectives in this chapter are substantially different.

Summary. Sliding windows have been widely used in many application

domains that involve discrete or continuous sequences. However, window

lengths are chosen either empirically or they are optimised for the task

at hand. To the best of our knowledge, no earlier work has proposed a

principled method for choosing the set of appropriate window lengths that

optimally summarise the data for a given statistic and data mining task.

6.3 Problem statement

The basic notation for event sequences is presented in Section 2.1. We

assume that a user is interested in analysing an event sequence or a

database of event sequences using a sliding window, i.e., fixed-length sub-

sequences are considered by sliding a window across the sequence. The

step size determines by how many indices the sequence is moved at each

step. For example, if the length of the window is 10 and the step size is 5,

then we consider subsequences S1,10, S6,10, S11,10, etc.

Furthermore, we assume that the relevant “information” contained in

a subsequence Si,m is quantified by a statistic f(Si,m) : Lm → R. Exam-

ples of possible statistics f are given below, but in principle f can be any

function with a real-valued output. The problem considered here is the

following: a user may be interested in analysing an event sequence with a

large set of different window lengths, but due to cognitive limitations that

would require too much time. The question that arises is “if I can use at

most k window lengths, which window lengths should I choose to learn as

much as possible about all the window lengths that I am interested in?”.

In other words, the problem is how to select a set of k granularity levels

that is most informative with respect to predicting the statistic f at all

other granularity levels. Each level of granularity is described by a win-
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dow length. Hence, our aim is to determine the set of k window lengths

that simultaneously best describe the structure of an event sequence with

respect to the statistic f at all window lengths.

The problem of capturing several different levels of structure with re-

spect to f is translated into an optimisation problem as follows. Depend-

ing on the task at hand different objective functions may be considered.

We propose an objective function that finds both a set of k window lengths

and the parameters of a regression function, such that, at each position i

in S, if we are given the value of f at those k window lengths, we can esti-

mate f for all other window lengths at position i as accurately as possible.

Let Ω = {ω1, . . . , ωm} be the set of m window lengths that a user is

interested in, and let ωmax = maxi∈{1,...,m} ωi and n∗ = n−ωmax+1. Denote

Θ = (θ1, . . . , θk) ⊆ Ω a vector of k window lengths and let f̄(S,Θ, i) =

(f(Si,θ1), . . . , f(Si,θk)) be the vector of real numbers that corresponds to

the values of f at position i ∈ {1, . . . , n∗} for the k window lengths in Θ.

Definition 6.1 (Reconstruction function). g(f̄(S,Θ, i), ω) : Rk × m → R

is a function that, given the set of values f̄(S,Θ, i) and a window length

ω, estimates the value of f for window length ω; in other words, g is an

estimator for f(Si,ω) and is referred to as the reconstruction function.

An illustration of the mechanism of the reconstruction function is shown

in Figure 6.2. The optimisation problem that corresponds to the window-

length selection problem is the following:

Problem 6.1 (Select k-window lengths problem). Given an event sequence

S, a statistic f , and a set of window lengths Ω, find a set of k window

lengths Θ = {θ1, . . . , θk} ⊆ Ω and a reconstruction function g that minimise

1

n∗

n∗∑
i=1

∑
ω∈Ω

(
f(Si,ω)− g(f̄(S,Θ, i), ω)

)2
.

The reconstruction function g can be any regression function. However,

not specifying g would lead to a practically impossible optimisation task,

as it is infeasible to explore the space of all possible regression models.

Hence, we propose that, depending on the task at hand, the set of possible

models should be restricted to obtain a tractable optimisation problem.

For example, g can be restricted to the class of nearest neighbour regres-

sors (see Section 6.4), in which case the optimisation problem is equivalent

to the k-medoids clustering problem.

The idea here is that additional parameters used by the reconstruction

function g that are learned during the optimisation process, i.e., those not
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f(S1,ω1) · · · f(Si,ω1) · · · f(Sn∗,ω1)...
...

...
f(S1,θ1) · · · f(Si,θ1) · · · f(Sn∗,θ1)...

...
...

f(S1,θ2) · · · f(Si,θ2) · · · f(Sn∗,θ2)...
...

...
f(S1,θ3) · · · f(Si,θ3) · · · f(Sn∗,θ3)...

...
...

f(S1,ωm
) · · ·f(Si,ωm

) · · ·f(Sn∗,ωm
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f̄(S,Θ, i) g

Figure 6.2. Illustration of the reconstruction function g. Each row corresponds to a win-
dow length in Ω and each column to a position in the event sequence S. Func-
tion g estimates the value of the statistic f for all window lengths at position
i in S, based on the values of f for a small set window lengths {θ1, . . . , θk}, in
this case k = 3.

in f̄(S,Θ, i), are kept implicit and not shown to the user. Neither is g it-

self considered to be interesting. This means that g should be restricted

to regression functions that are easy to comprehend by end-users. In this

chapter, we consider only the nearest neighbour regressor, which we in-

troduce in Section 6.4.

Examples of informative statistics. The following equations give exam-

ples of the statistic f which are used in the experiments. For example, f

may be the relative frequency of a set of events A ⊆ L:

f(Si,ω) =
σA (Si,ω)

ω
= ζA (Si,ω) . (6.1)

Alternatively, f may be defined as the hapax legomenon ratio of a se-

quence, i.e.,

f(Si,ω) =
#events occurring exactly once in Si,ω

ω
. (6.2)

For real valued data, the mean value of a subsequence can be used as a

statistic, in which case f is defined as

f(Si,ω) =
1

ω

i+ω−1∑
j=i

sj . (6.3)

The utility of these three definitions is illustrated in Section 6.5.

6.4 Methods

In this section, we introduce one possible approach to selecting the k most

informative window lengths using the problem setting defined above. We
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restrict the reconstruction function g to the class of k-partition nearest

neighbour regressors. This restricted problem setting is defined below,

in Section 6.4.1. In Section 6.4.2, we introduce an auxiliary data struc-

ture, called the Window-Trace matrix, and the optimisation algorithm is

described in Section 6.4.3. In Section 6.4.4, we show that for certain data

structures, the optimisation problem can be solved analytically.

6.4.1 Partition-based regression

The optimisation problem is made tractable by restricting the reconstruc-

tion function g to the following class of regression functions.

Definition 6.2 (k-partition nearest neighbour regressor). Let S be an

event sequence, i an index in S, Θ = (θ1, . . . , θk) the vector of chosen window

lengths, and ω any window length in Ω. A k-partition nearest neighbour

regressor is a reconstruction function g(f̄(S,Θ, i), ω) that is based on a

partitioning of the set of window lengths Ω into k non-overlapping clusters

Ψ1, . . . ,Ψk. Each of the window lengths in Θ is used as the representative

for the cluster with the same index. This implicitly requires that θj ∈ Ψj for

all j ∈ {1, . . . , k}. Let Ψj be the cluster that contains ω. The reconstruction

function g simply returns the value of the representative window length for

cluster Ψj : g(f̄(S,Θ, i), ω) = f(Si,θj ).

By restricting g to the class of k-partition nearest neighbour regres-

sors, Problem 6.1 becomes equivalent to partitioning the set of all window

lengths Ω into k clusters, and selecting for each cluster one representative

window length, such that the expected squared error is minimised. This

problem is equivalent to the k-medoids clustering problem.

Since the statistic f is unconstrained and the k-medoids clustering prob-

lem is NP-hard [Aloise et al., 2009], this optimisation problem is also NP-

hard in general. Since the number of window lengths |Ω| may be very

large, we do not consider any exponential-time exact algorithms. There

exist several optimisation algorithms that give good approximations; we

use a modified version of the clustering large applications (Clara) algo-

rithm [Kaufman and Rousseeuw, 1990], see Section 6.4.3.

6.4.2 The window-trace matrix

To solve Problem 6.1, we use an auxiliary matrix called the window-trace

(W-T) matrix. This matrix stores the values of statistic f for a set of in-

dices I in the event sequence and for all window lengths in Ω. More specif-
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ically, let S be the input sequence and f the statistic at hand. Then the

W-T matrix T contains all values of f(Si,ω) for all window lengths ω ∈ Ω

and all indices i ∈ I. T is given by

Tj,i = f(Si,ωj ). (6.4)

The most comprehensive representation is obtained by choosing I =

{1, . . . , n∗}, i.e., all indices for which f can be computed. However, for

computational efficiency, we restrict the set of indices I to |I| = N in-

dices, which are sampled uniformly at random with replacement from

{1, . . . , n∗}. Furthermore, we use Tj,∗ to denote the row of T corresponding

to window length ωj .

6.4.3 Optimisation algorithm

We solve the optimisation problem with a modified version of the cluster-

ing large applications (Clara) algorithm [Kaufman and Rousseeuw, 1990],

a well-known algorithm to efficiently solve the k-medoids problem. We

make the following modification to the algorithm to increase the quality

of the solution.

Arthur and Vassilvitskii [2007] studied the effects of seeding—the pro-

cess of choosing the initial representatives for each cluster—for the k-means

algorithm, and present a method of “careful seeding” that leads to a prov-

able approximation ratio on the solution. Their improved algorithm is

known as k-means++. The effects of seeding for the Clara algorithm ap-

pears not to have been studied before.

We propose to change the initial seeding in the Clara algorithm and in

the partitioning around medoids (PAM) subroutine to the method described

in Arthur and Vassilvitskii [2007]. The k-means++ seeding method pro-

duces a k-medoids solution, so it can be applied directly. We expect that

this careful seeding substantially increases the quality of the result. We

refer to the improved variants as Clara++ and PAM++. Pseudocode for the

methods is given in Algorithms 6.1 and 6.2.

The parameters r and s are related to a trade-off between quality and

computational complexity; they define the number of repetitions and num-

ber of samples included in the PAM subroutine. In the original Clara algo-

rithm these are not considered to be parameters and have default values

of r = 5 and s = 40 + 2k [Kaufman and Rousseeuw, 1990]. However, it is

not obvious that these defaults suffice to yield good results, and we review

the effects of these parameters in Section 6.5.1.
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Algorithm 6.1 Clara++(T , k, r, s)
Θ1 = uniform([1, . . . , n]) {Pick a number between 1 and n uniformly at

random, n is the number of rows in T }

for i = 2 to k do

Θi = rand([1, . . . , n]) {Pick a number between 1 and n at random with

probability proportional to the distance to the closest medoid in Θ}

end for

cost∗ = ∞
for i = 1 to r do

S = Θ ∪ uniform({1, . . . , n} \ Θ, s − k) {Assign S a set that contains

Θ, the best set of medoids currently known, and pick s − k other row

indices uniformly at random}

T S =

⎡
⎢⎢⎢⎣
TS1,∗

...

TSs,∗

⎤
⎥⎥⎥⎦ {Select the s rows of T whose index is in S}

Θ = PAM++(T S , k) {Compute PAM++ solution on sample}

cost = computeClusteringCost(T ,Θ) {Compute cost for full matrix}

if cost < cost∗ then

Θ∗ = Θ

cost∗ = cost

end if

end for

return Θ∗

Computational Complexity. Let N be the number of columns of T , i.e.,

the number of samples, and let m be the number of rows of T : m = |Ω|.
The memory required to store the Window-Trace matrix T is O(m · N),

and, assuming that the complexity of computing the statistic f(Si,ω) is

constant, the computational complexity to produce T is also O(m ·N).

Clara++ consists of the initial selection of k medoids and then executing

the PAM++ subroutine r times, each on a data sample of size s, plus com-

puting the cost of the clustering on each iteration. The initialisation of the

k medoids has a computational complexity of O(k ·m ·N), because for each

medoid the distance to all other points has to be computed. Let t denote

the number of iterations required for convergence of the PAM++ subroutine.

Since computing the full distance matrix takes O(s2 · N) steps, the com-

putational complexity of the PAM++ subroutine is O(s2 ·N + t · k · s+ t · s2).
As k < s, this simplifies to O(s2 · (N + t)).
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Algorithm 6.2 PAM++(T , k)
Θ1 = uniform([1, . . . , n]) {Pick a number between 1 and n uniformly at

random, n is the number of rows in T }

for i = 2 to k do

Θi = rand([1, . . . , n]) {Pick a number between 1 and n at random with

probability proportional to the distance to the closest medoid in Θ}

end for

Θold = {}
while Θold 
= Θ do

Θold = Θ

for i = 1 to n do

Li = argminj∈[1,...,k](‖Ti∗ − TΘj∗‖2) {Label each point with nearest

medoid}

end for

for i = 1 to k do

C = {x | Lx = i} {Find the set of points in cluster i}

Θi = argminx∈C
∑

y∈C ‖Tx∗ − Ty∗‖2 {Pick best medoid for cluster i}

end for

end while

return Θ

Computing the cost of a clustering has complexity O(k ·m ·N), thus the

total computational cost of Clara++ is O(r · s2 · (N + t) + r · k ·m ·N). That

is, the cost is linear in the number of window lengths m, in the number

of data samples N , and in the number of repetitions r, but quadratic in s,

the number of samples considered in an iteration of PAM++.

6.4.4 Analytical solutions

For certain statistics and data distributions, it is possible to derive the

solution, or at least the function for the distance between two window

lengths, exactly. In this section, we present an analytical solution for the

case where the statistic is the frequency of an event and the event se-

quence comes from a Bernoulli process. From the result follows that for a

Bernoulli process, the window lengths (i.e., the clustering) is independent

of the frequency of an event.

Preliminaries. Let (X1, . . . , Xn) be a sequence of Bernoulli random vari-

ables with common parameter p, i.e., Xi ∈ {0, 1} ,Pr ({Xi = 1}) = p, for

all i ∈ {1, . . . , n}. The random variables could, for example, denote the
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occurrences of an event. Similar to the notation for event sequences,

we use Xi,ω to denote the subsequence of length ω starting at position

i, (Xi, . . . , Xi+ω−1). Let the statistic f be the relative frequency of ones:

f(Xi,ω) =
1

ω

i+ω−1∑
j=i

Xj . (6.5)

The selection of an optimal set of window lengths is based on the squared

error between predictions made using those window lengths (Problem

6.1). Under the constraint of using a k-partition nearest neighbour re-

gressor, the predictions correspond to the value of the nearest window

length (Section 6.4.1). Thus, to select the optimal window lengths, we

have to compute the distance (squared error) between all pairs of window

lengths. We find that the distance between window lengths is as follows.

Theorem 6.1. For the statistic and generative process described above, the

expected distance between two window lengths γ and ω, with γ < ω, is

E [d(ω, γ)] =
ω − γ

ωγ
p(1− p).

Proof. The expected distance between two window lengths γ and ω is

E [d(ω, γ)] = E

[
1

n−m+ 1

n−m+1∑
i=1

(f(Xi,γ)− f(Xi,ω))
2

]
.

Since X1, . . . , Xn are i.i.d. random variables, this simplifies to

E [d(ω, γ)] = E
[
(f(X1,γ)− f(X1,ω))

2
]
.

Assuming without loss of generality that γ < ω, we find that

f(Xi,ω) =
1

ω

i+ω−1∑
j=1

Xj

=
1

ω

i+γ−1∑
j=1

Xj +
1

ω

i+ω−1∑
j=1+γ

Xj

=
γ

ω
f(Xi,γ) +

ω − γ

ω
f(Xi+γ,ω−γ).

Thus we can rewrite the expected distance as

E [d(ω, γ)]

= E

[(
f(X1,γ)−

γ

ω
f(X1,γ)−

ω − γ

ω
f(X1+γ,ω−γ)

)2
]

= E

[(
ω − γ

ω

)2

(f(X1,γ)− f(X1+γ,ω−γ))
2

]

=

(
ω − γ

ω

)2

E
[
(f(X1,γ)− f(X1+γ,ω−γ))

2
]

=

(
ω − γ

ω

)2

E
[
f(X1,γ)

2
]
+ E

[
f(X1+γ,ω−γ)

2
]
− 2E [f(X1,γ)f(X1+γ,ω−γ)] .
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These three expectations are

E
[
f(X1,γ)

2
]
=

p(1− p)

γ
+ p2,

E
[
f(X1+γ,ω−γ)

2
]
=

p(1− p)

ω − γ
+ p2, and

E [f(X1,γ)f(X1+γ,ω−γ)] = p2.

For brevity, we skip the derivation for these three expectations. They can

be derived, for example, using the fact that the variance of a binomial

distribution is Var [Bin(n, p)] = E
[
Bin(n, p)2

]
− E [Bin(n, p)]2 = np(1 − p),

and its expectation is E [Bin(n, p)] = np.

By writing out the expected distance we find that

E [d(ω, γ)] =

(
ω − γ

ω

)2 p(1− p)

γ
+ p2 +

p(1− p)

ω − γ
+ p2 − 2p2

=

(
ω − γ

ω

)2(1

γ
+

1

ω − γ

)
p(1− p)

=
(ω − γ)2

ω2

ω − γ + γ

γ(ω − γ)
p(1− p)

=
ω − γ

ωγ
p(1− p).

There is no interaction between the window lengths γ, ω and the event

probability p, which implies that all distances relative to each other are

independent of p. Thus, for this specific statistic and data distribution,

the optimal window lengths are unaffected by the event frequency, and

depend only on the set of window lengths Ω.

6.5 Experiments

6.5.1 Evaluation on synthetic data

In any data mining task, it is important to be able to evaluate the statis-

tical significance of a result. We studied what to expect regarding optimal

sets of window lengths for one type of random process in Section 6.4.4,

but we do not know to what extent there is variation in the solution given

by the Clara++ algorithm for more complex data, while that information

is essential to determine the significance of a result. To provide a base-

line for the experiments on real data (Section 6.5.2), we designed four

experiments using randomly generated data. Randomly generated data

is useful here because the precise properties of the data are then known.
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Bernoulli process with fixed rate

We are interested in how much the set of window lengths given by Clara++

varies in the case when the data is generated by a fixed rate Bernoulli

process. We used Algorithm 6.3 to generate such random sequences. The

algorithm has two parameters, n and p, which are the length of the event

sequence and the occurrence probability of the event.

Algorithm 6.3 Simulate a fixed-rate Bernoulli process SIM1(n, p)
for i = 1 to n do

X(i) = Bernoulli(p)

end for

Experiment 1. Since Clara++ is a non-deterministic algorithm, the out-

put may vary, even with the same input sequence. To investigate this,

we tested the stability of the solution in terms of the optimal window

lengths for a single sequence generated by Algorithm 6.3 with parame-

ters n = 1,000 and p = 0.1.

We varied the number of repetitions from 5 to 40 (doubling the value

each time) and the number of samples from 40 to 320 (also by doubling

the value each time). The number of clusters was varied from 1 to 4 and

Ω contained all window lengths from 1 to 500. As the statistic we used

the relative frequency of the event (Equation 6.1). We repeated the exper-

iment 100 times for each combination of parameters. For comparison, we

also computed the solution of the PAM++ algorithm.

The results are presented in Figure 6.3. We find that the variation with

the default parameter settings is quite large. For example, the top left

figure (k = 4) shows that the smallest window length is sometimes larger

than the second largest window length in another run. The variation is

greatly reduced when the number of repetitions increases, while increas-

ing the number of samples has hardly any effect. The bottom right figure

shows that the set of window lengths is quite stable when 40 repetitions

are used. As the computational complexity is linear in the number of

repetitions, it is no problem to use 40 repetitions instead of 5, while this

greatly improves the probability of obtaining a close to optimal result.

Experiment 2. Several data sets, even if they are from the same gener-

ative process, may yield quite different results. We designed the second

experiment to test the stability of the solutions given by Clara++ for dif-

ferent data sets that have the same properties. We generated one data

set with parameters n = 1,000, p = 0.1, and then produced 100 varia-
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Figure 6.3. Optimal sets of window lengths from Clara++ on a random event sequence,
using varying number of repetitions (r = 5, 10, 20, 50, one value per figure)
and number of samples (s = 40, 80, 160, 320, adjacent bars in each figure).
Squares, triangles, circles and diamonds represent the medians for the first,
second, third and fourth window lengths, the dotted lines represent 90 %
confidence intervals and dashed lines denote that the confidence intervals
for the window lengths are overlapping. For comparison, the variability for
the PAM++ algorithm is also shown for each number of window lengths.

tions by randomly permuting the indices of the sequence. We computed

the optimal window lengths for k = 1, . . . , 4 on each data set, using 40

repetitions and 40 samples as parameters for Clara++. The previous ex-

periment showed that these parameter values are good choices, and the

other parameters were kept the same as in the previous experiment.

The results are presented in Figure 6.4. There is much more varia-

tion than in the previous experiment, which can be explained by the fact

that the input sequences are slightly different in each repetition. The ob-

served variance in the figure can be used in future experiments to draw

conclusions with respect to the significance of differences in sets of win-

dow lengths obtained for various events or data sets.

Bernoulli process with variable rate

In the previous experiments, we kept the frequency of the events constant

over time, which leads to the sequence having structure only on a single

scale. To test the ability of our method for finding the true underlying

scales at which the data is structured, we designed an algorithm to simu-

late a Bernoulli process with variable rate.

The full process is described in Algorithm 6.4. The first component of the

variable rate is based on a slow increase of the event frequency over time,
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Figure 6.4. Optimal sets of window lengths from Clara++ over 100 data sets with the
same properties. Squares, triangles, circles and diamonds represent the me-
dians for the first, second, third and fourth window lengths, the dotted lines
represent 90 % confidence intervals and dashed lines denote that the confi-
dence intervals for the window lengths are overlapping.

Algorithm 6.4 Simulate a variable-rate Bernoulli process SIM2(n, p, c)
for i = 1 to n do

t1 = 0.5 + (i− 1)/(n− 1); // Multiplier for scale 1: [0.5–1.5]

t2 = 0.5 · sin(c · 2 · π · (i− 1)/(n− 1)); // Multiplier for scale 2: [−0.5–0.5]

X(i) = Bernoulli(p · (t1 + t2))

end for

which ranges from 0.5 · p at the start to 1.5 · p at the end of the sequence S.

The second component consists of the event frequency going up and down

rhythmically, based on a sine wave with peak amplitude 0.5 and mean 0.

Both components are added together to give a variable event frequency,

which is multiplied by the parameter p. The extra parameter, c, decides

the periodicity of the sine wave, and thus the second scale. We generated a

sequence with parameters n = 100,000, p = 0.1 and c = 16. The sequence

has 10,009 events and has also been used to produce Figure 6.1.

Experiment 3. As discussed in Section 6.4.2, we estimate the optimal set

of window lengths for a sequence using a W-T matrix T based on samples

from the data. We designed the third experiment to investigate empiri-

cally how many samples T should be based on to obtain a solution close to

the solution that was obtained on the full matrix, i.e., the matrix T that

covers the whole input sequence. We varied the number of samples from 1

to 16,384 using powers of 2 and computed the solution 100 times for each

sample size to assess the variance. We chose Ω to include window lengths

from 1 up to 	n/c
 = 6,250 (which is the scale of the second component in

the data) and the number of outputs as k = 3.

Figure 6.5 illustrates the results. We find that the solutions are remark-

ably robust: the solutions using only 8 samples are already quite accurate

approximations and from 64 samples and up, the solutions are practically
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Figure 6.5. Optimal sets of window lengths from Clara++ on a sequence obtained from
simulating a Bernoulli process with rate that varies over time, using vari-
ous numbers of samples to construct the Window-Trace matrix T . Squares,
triangles, and circles represent the medians for the first, second, and third
window lengths, the dotted lines represent 90 % confidence intervals and
dashed lines denote that the confidence intervals for the window lengths are
overlapping.
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Figure 6.6. The frequency of an event over time, computed using three sliding windows of
different lengths given by Clara++. The sequence was obtained by simulating
a Bernoulli process with variable rate.

equivalent. Thus, for simple data sets like this, a Window-Trace matrix

based on 64 positions in S is sufficient.

Experiment 4. Our fourth experiment aims to test if the two scales that

are present in the synthetic sequence can indeed be retrieved. To prevent

making it too easy for the algorithm, we chose Ω to contain all window

lengths from 1 to 20,000 and based the Window-Trace matrix T on 1,000

indices in S. In a typical setting, we would not know how many scales a

data set has. A higher k always provides more information, thus choosing

k too high is better than too low. For exploratory purposes, we used k = 3.

Figure 6.6 presents the results. We find that the variable trend in the data

can be clearly identified and that the slow trend is reasonably visible.

Choosing proper parameter values

Based on the previous experiments, the following conclusions regarding

the parameter choices can be drawn:
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− The accuracy of the solution can be increased by using more repetitions

in the Clara++ algorithm. At least 40 repetitions is recommended, in-

stead of the default value of 5. More complex data and a larger set of

window lengths possibly require more repetitions.

− Increasing the number of samples has only a minor effect, while that

increases the computational complexity quadratically.

− The number of samples in the Window-Trace matrix can be small; 64

samples is sufficient for a Bernoulli sequence.

− The uncertainty present in the data is larger than the uncertainty in

the solution, which means that the algorithm is prone to overlearning.

6.5.2 Evaluation on real data

We evaluated the practical utility of the method in four experiments on

real data. First, we study the frequency over time of several words of

varying type throughout the novel Pride and Prejudice. Secondly, we

study what window lengths would be appropriate for analysing the ha-

pax legomenon ratio in subsequences throughout texts from various gen-

res. Thirdly, we examine the frequency over time of nucleotides and din-

ucleotides in two reference genomes from the NCBI repository, and lastly,

we identify the appropriate window lengths for analysing a time series

with multi-scale structure.

Optimal window lengths for several words

As discussed in Chapters 4 and 5, burstiness [Katz, 1996] and dispersion

[Gries, 2008] of words in natural language corpora have become important

concepts in research in linguistics, natural language processing and text

mining. In Section 6.4.4, we showed that the frequency of an event does

not affect the optimal set of window lengths, if there is no other structure

in the sequence. Thus it would be interesting to know if the optimal set of

window lengths does depend on the burstiness of an event in a sequence.

To test this, we conducted the following experiment. The data that we

used is the popular novel Pride and Prejudice by Jane Austen, see Section

3.3. The length of the novel is approximately 120,000 words. We selected

the 30 most and least bursty words that occur at least 100 times, using the
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Figure 6.7. Optimal sets of window lengths for analysing the frequency over time of 60
words in the novel Pride and Prejudice, for k = 3. Squares, triangles, and
circles represent the medians for the first, second, and third window lengths,
the dotted lines represent 90 % confidence intervals and dashed lines denote
that the confidence intervals for the window lengths are overlapping. The
words are ordered by burstiness, i.e., the Weibull β parameter.

Weibull distribution to measure the burstiness of words, see Section 2.3.

To study the effect of burstiness on the optimal sets of window lengths,

we set the parameters to k = 3 and Ω = {1, . . . , 2000}.

The result is shown in Figure 6.7. The value for the Weibull β param-

eters are given at the top of the figure. We observe a clear trend: for the

two smaller window lengths, the window lengths are significantly longer

for bursty words than for non-bursty words, although there is consider-

able variation within the groups. The effect is strongest for the words

I and you, which are the most frequent bursty words. Although not so

obvious in the figure, the average and median window lengths for the

longest windows are also higher for bursty words than for non-bursty

words (mean/median non-bursty vs. bursty: 1101/1099 vs. 1164/1155,

standard deviation non-bursty vs. bursty: 76 vs. 96).

That bursty words give longer window lengths may be due to the fact

that bursty words exhibit a larger scale structure (bursts and intervals

between bursts) than the more uniformly distributed words. The varia-

tion over individual words inside the groups is likely due to an interac-

tion between the burstiness and the frequency of words and because the

Weibull β does not capture exactly the same burstiness as the window

length selection method. In Chapter 5, we showed that texts contain local

structure that is not captured by the Weibull β measure.
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Figure 6.8. Optimal sets of window lengths for analysing the Hapax legomenon ratio
over time for 400 texts from the British National Corpus, for various genres,
using k = 3. Each point corresponds to a window length selected for that
book, and red lines present the average per genre.

Hapax legomenon ratio in several genres

The genre of a text has an important effect on its structure, which can

be measured in terms of several linguistic features, for example the ha-

pax legomenon ratio of texts [Biber, 1988]. We designed the following ex-

periment to test if the optimal set of window lengths differs significantly

over texts from different genres. We sampled 100 texts from the British

National Corpus [2007] for each of the main genres in the corpus: con-

versation, imaginative fiction, academic prose and newspaper texts. The

statistic used in this experiment is the hapax legomenon ratio (Equation

6.2). We used Ω = {1, . . . ,1,000} and k = 3.

The result is shown in Figure 6.8. Although the set of window lengths

varies over the texts within each genre, there are significant differences:

imaginative prose and conversations each seem to have a different struc-

ture than the texts from other three genres, while newspaper texts and

academic prose are similar with respect to hapax legomenon ratios. This

suggests that the scale structure of imaginative prose is more uniform

than for other genres. Perhaps the difference is partly an artefact of the

corpus structure, as the texts in the imaginative prose class are long co-

herent stories, while the ‘texts’ in the other classes are collections of arti-

cles, topics and conversations, rather than single documents.

Frequency of nucleotides throughout DNA sequences

Studies in biology and bioinformatics have shown that DNA chains con-

sists of a number of important, known functional regions, at both large

and small scales, which contain a high occurrence of one or more nu-

cleotides [Bernardi, 2000]. Examples of such regions include: isochores,

which correspond to long regions of genomic sequences that are specif-

ically GC-rich or GC-poor and correlate with gene density, and CpG is-
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Homo Sapiens Canis Familiaris

Figure 6.9. Optimal sets of window lengths for analysing the frequency over time of nu-
cleotides and dinucleotides in Homo sapiens chromosome 1 and Canis lupus
familiaris chromosome 1, for k = 5.

lands, which correspond to regions of several hundred nucleotides that

are rich in the dinucleotide CpG, whose presence in the genome has been

associated with the location of genes. We tested the proposed method

for its utility towards selecting the appropriate scales at which to study

(di)nucleotide frequencies in DNA, using the following experiment.

We studied Chromosome 1 of two organisms: Homo sapiens (human)

and Canis lupus familiaris (dog), which have lengths 225 and 122 million

nucleotides, respectively, see Section 3.4 for more background. We con-

sidered six event types: the four nucleotides A, C, G, and T, as well as

dinucleotides TA and CG. We computed the solutions for k = 3 and win-

dow lengths up to 10,000. The statistic used in the experiment was the

relative event frequency, and the W-T matrix contained 1,000 samples.

Figure 6.9 shows a comparison between the best window lengths found

by the proposed algorithm for the two organisms. It can be observed that

the four single nucleotides as well as the two dinucleotides exhibit sim-

ilar behaviour for both organisms. This may be explained by the high

genomic structural similarity between humans and dogs [Kirkness et al.,

2003]. Nonetheless, the nucleotides C and G and both dinucleotides be-

have substantially different from the nucleotides A and T. From Section

6.4.4 we know that the frequency of an event does not affect the cluster-

ing, thus the differences are certainly structural, and not merely an effect

of A and T being more frequent.

Figure 6.10 illustrates the frequency over time over the first 200,000

bases for chromosome 1 of Homo sapiens, for all four nucleotides and the

two dinucleotides, using the optimal window lengths. We find that the dif-

ferent window lengths give somewhat different views of the data. As ex-

pected, the exact locations of bursts are identified most accurately by the
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shortest window length. However, the significance of each burst is seen

more clearly from the line corresponding to the longest window length,

since that line takes a fairly constant value throughout most of the se-

quence. Thus, there is value in using multiple window lengths, although

in this case two window lengths may be sufficient.

Smoothing of time series

An example of a time series with multi-scale structure comes from the In-

frawatch project [Knobbe et al., 2010, Vespier et al., 2012], see Section 3.5.

The data contains structure at three time scales: a high frequency com-

ponent generated by individual cars and trucks passing on the bridge, a

medium frequency component generated by traffic jams, and a low fre-

quency component generated by weather effects (e.g., temperature).

We tested the proposed method on this data with the following parame-

ters. Since the scale space is potentially very large and the frequencies be-

low 1 Hz (window length 10) are not interesting, we constructed Ω by using

powers of
√
2, starting at window length 10: Ω = {10, 14, 20, . . . , 231705}.

Furthermore, we used N = 1,000 and k = 3.

The result is presented in Figure 6.11. It is difficult to say whether the

three window lengths correspond directly to the three time scales that are

present in the data, because the window lengths correspond to different

views and not to frequency bands, as studied by Vespier et al. [2012]. Still,

we find that the three window lengths give different views of the data,

each of which represents a different time scale. The substantial difference

between the window lengths is most clear in the zoomed-in figure.

6.6 Conclusion

We have introduced the novel problem of identifying a set of window

lengths that contain the maximal amount of information in the data, and

we have presented a generally applicable optimisation problem that users

could employ. We have shown that the optimisation problem is NP-hard

in general, but that it can be approximated efficiently algorithmically and

solved analytically for certain simple statistics and data distributions. We

studied the performance of the proposed optimisation algorithm, as well

as the results for several statistics on both synthetic data and real data.

We have illustrated that the analytical and empirical results on syn-

thetic data are useful as a baseline for practical use. We have shown that
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C Window length: 244
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G Window length: 258
Window length: 1678
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T Window length: 381
Window length: 2167
Window length: 6624
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TA Window length: 227
Window length: 1571
Window length: 6169
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CG Window length: 232
Window length: 1537
Window length: 6170

Figure 6.10. Frequency of the studied (di)nucleotides over the first 200,000 bases for
chromosome 1 of Homo sapiens, using the best window lengths found by
the proposed method.
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Figure 6.11. Smoothing of a time series of measurements from a strain sensor on a bridge
in the Netherlands, using an optimised set of three window lengths. The top
figure shows the full sequence (24 hours), while the bottom figure shows a
zoom-in on the traffic jam that occurred between 9am and 10am.

sampling can be used to compute the set of window lengths more effi-

ciently, making the method practical for (databases of) event sequences of

any size. Finally, we found that the window lengths themselves can reveal

interesting properties of the data; among other findings, we have identi-

fied relations between the optimal window lengths and (1) the structure of

sequences composed of multiple interleaved sources and (2) the burstiness

of events.
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7. Conclusions and discussion

7.1 Conclusions

We have addressed several aspects of the problem how to find structure in

event sequences. Specifically, the aspects that were dealt with are: (1) how

to compare event frequencies across (databases of) event sequences, (2) how

to take into account the multiple testing problem when looking for local

frequency deviations in event sequences, and (3) which granularities to use

when looking for local patterns in an event sequence.

We have introduced novel computational methods to tackle each of these

aspects, discussed the related work, and reviewed existing methods and

their aptitude for solving the task where applicable. We have conducted

and presented extensive experiments to investigate the utility of each of

the proposed methods for various applications.

In Chapter 4, we studied the problem how to compare word frequencies

across corpora. By modelling texts as event sequences and a text corpus

as a database, we mapped the problem to the question how to compare

event frequencies across databases of event sequences. This problem is rel-

evant, for example, when a linguist wants to test a hypothesis such as

“word X is more frequent in male than in female speech”. We have in-

troduced two methods based on resampling and compared and evaluated

these methods, along with several existing methods, with respect to their

suitability to this task.

We concluded that the choice of the test, or more specifically, the rep-

resentation of the data that is used in the test, matters, both in theory

and in practice, as evidenced by experiments and case studies on two text

corpora. We found that assuming that all words in a corpus are inde-

pendent samples may lead to overestimating the significance of frequency
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differences. Also, we demonstrated that the overestimation is related to

the burstiness of words and that there exist bursty and non-bursty words

at any frequency level, thus the overestimation occurs at all frequency

levels.

In Chapter 5, we studied the problem of how to take into account the

multiple testing problem when looking for local frequency deviations in

event sequences. We introduced a novel statistical test for assessing the

significance of event frequencies in subsequences when using a sliding

window. The test provides strong control of the family-wise error rate and

takes into account the dependency structure of overlapping subsequences.

We argued that the exact p-values are difficult to compute and based the

test on an easy-to-compute upper bound. We have shown experimentally

that the test offers substantially increased power compared to existing

alternatives.

We investigated the utility of the test on linguistic and biological se-

quences and found several novel and interesting patterns. We have il-

lustrated that meaningful results can be obtained, and that the method

remains sufficiently powerful even when testing hundreds of millions of

hypotheses concurrently. We concluded that the proposed method is sim-

ple, fast and powerful and that the method can produce meaningful re-

sults on various types of data.

In Chapter 6, we studied the problem which granularities to use when

looking for local patterns in an event sequence. We introduced the novel

problem of identifying a set of window lengths that contain the maximal

amount of information in the data, and we presented a generally appli-

cable optimisation problem. We have shown that this optimisation prob-

lem is NP-hard in general, but that it can be approximated efficiently

and solved exactly for certain simple statistics and data distributions. We

studied the performance of the proposed optimisation algorithm, as well

as the results for several statistics on both synthetic data and real data.

We have illustrated that the analytical results and the empirical results

on synthetic data are useful as a baseline for practical use. We have shown

that sampling can be used to compute the set of window lengths more ef-

ficiently, making the method practical for (databases of) event sequences

of any size. Finally, we found that the window lengths themselves can

reveal interesting properties of the data; for example, we identified rela-

tions between the optimal window lengths and (1) multi-scale structure

of sequences and (2) the burstiness of events.
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In short, we have shown that the methods introduced in this thesis can

be used to compare and explore (databases of) event sequences with high

computational efficiency, increased accuracy, and in novel ways.

7.2 Discussion

Several aspects of the main question how to find structure in event se-

quences have been addressed, but many questions remain, and new ques-

tions have emerged. For example, we found that the assessments of the

bootstrap test and Welch’s t-test are highly similar, so further research

into their similarity and differences could lead to interesting insights.

Also, it appears that the methods discussed in Chapter 4 could also be

used to compare frequencies of subsequences, i.e., n-grams or collocations,

between databases of event sequences. However, that was left outside the

scope of this thesis.

In Chapter 5, we argued that computing the exact p-values under the

null hypothesis is computationally costly, but a proof showing that the

problem is indeed hard remains elusive. Similar to the comment about

Chapter 4, it would appear that with some modifications, the method

could be applicable to find significant deviations in local frequencies of

subsequences instead of just single events. However, it is not immedi-

ately obvious how many occurrence opportunities there are for a given

subsequence, thus this was left for further research.

In Chapter 6, we discussed the use of a small set of window lengths

to analyse local patterns in event sequences, and we left the number of

window lengths k as a choice to the user. The optimal number of window

lengths to use in a certain setting depend on various factors, such as the

data, the sliding window statistic, and the problem the user is trying to

solve. There is a trade-off, as using higher k provides more information,

but also higher cognitive load. A potentially fruitful direction for further

study is selecting k by exploring the value of the loss function, similar to

how the number of clusters is typically selected in clustering.

Considering the contributions presented in the three chapters, some

questions regarding their intersection emerge: the method proposed in

Chapter 5 takes into account the multiple testing problem directly, in or-

der to avoid loss of statistical power, while in Chapter 4 a post-hoc correc-

tion (to control for the false discovery rate) is used. The post-hoc correction

may bias the p-values in the conservative direction, which could perhaps
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be avoided in similar fashion as in Chapter 5.

Also, in Chapter 6 it is argued that when mining local patterns using a

sliding window, this is often best done using a small set of window lengths.

However, in each of the experiments in Chapter 5, we used only one hand-

picked window length. The reason is that using optimised window lengths

may introduce an anti-conservative bias, and if multiple window lengths

are used, there are further dependencies that should be taken into ac-

count. Thus, further research in this direction is warranted.
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