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1. Introduction

1.1 Background

Multi-input multi-output (MIMO) techniques are key technologies to en-

hance spectrum efficiency of wireless systems. Performance heavily de-

pends on the channel state information (CSI) available at the transmitter.

MIMO using linear precoding have been shown to achieve large capac-

ity gains over traditional single-input-single-output (SISO) systems [32,

87]. Linear precoding for single and multiple stream transmission, a.k.a.

beamforming and multiple beamforming, has been intensely investigated

for point-to-point communications [75, 89]. Without channel reciprocity,

e.g. in frequency-division duplex systems, the only way to acquire CSI

is through a limited feedback channel. Fortunately, few bits is usually

enough to fill most of the gap between open-loop and closed-loop capac-

ity [55]. A widely applied method is to use codebook-based precoding in

which the receiver selects a precoding codeword from a predefined code-

book and feeds back the index to the transmitter. Since it is more impor-

tant to feed back the channel direction than the channel beam gain [23],

the quantization of the channel is often done with a rectangular unitary

code.

In point-to-point communications with maximum likelihood receiver, the

performance of a unitary precoding codebook is related to its interpreta-

tion as a discretization of the Grassmann manifold [22, 23, 53, 55, 56, 61].

Codebook design criteria are based on extremization of average distortion

metrics [22, 59, 63, 71, 72, 95]. The information rate is approximately a

function of the distortion rate of the codebook associated with Grassmann

chordal distance as a quantization map [22,23]. In [56,61] the beamform-

ing codebook design problem for uncorrelated channel was linked to a

1



Introduction

suboptimal approach, the Grassmannian line packing problem, i.e. max-

imizing the minimum distance of the codebook. Extension to correlated

channel through codebook rotation is then provided in [54,95].

Grassmann packing, originally a mathematical problem of independent

interest [18], was thus retained as a method for codebook design. Ex-

tensive tables of real Grassmannian codes could be found in the liter-

ature [83]. For the complex Grassmannian, fewer results were avail-

able [15, 79, 85]. Complex Grassmann code construction was hence ad-

dressed in [24, 56, 64, 72, 76, 95, 96], codes being generated by computer

searched by either directly minimizing the distortion of the codebook us-

ing vector quantization algorithms such as Lloyd-type algorithms [64,72,

95]; or maximizing its minimum distance with brute-force search [56],

modified Lloyd’s algorithm [96], alternating projection algorithm [24], and

expansion-compression algorithm [76]. Analytical constructions were pre-

sented in [2, 4–6, 96] with application also to non-coherent MIMO space-

time coding [97], and low-complexity implementation codebooks for pre-

coding [44,51,60].

While Grassmann precoding has attracted much attention, other trans-

mission scenarios or constraints may lead to the need of designing code-

books in other spaces. Practical codebooks in industry standards have

been designed according to power and implementation-complexity con-

straints [51]. With an MMSE or ZF receiver, the set of non-equivalent pre-

coding matrices is not a Grassmann manifold anymore [57]. In [57], the

proper space of quantization is presented along with some optimum ana-

lytical packings for 2 transmit antenna systems. For bit-interleaved mul-

tiple beamforming, it is shown in [77] that the optimum precoder is only

invariant under a diagonal unitary transform, a corresponding Lloyd’s al-

gorithm is presented.

Further development of MIMO techniques towards network-level pro-

cessing are expected to bring performance enhancements. In MIMO broad-

casting, unitary codebook-based precoding has been well-investigated in

a multi-user (MU) setting with one-stream transmission per-user [43,47,

90,91]. In [47], codebook design on a different Riemannian manifold than

the Grassmann manifold is considered, and accordingly, a systematic con-

struction of structured codebook is presented. While considering different

system models, the manifolds discussed in [47] and [57] are the same,

and the proposed distance metrics are equivalent up to a scaling factor.

Similar equivalence classes are described in [90, 91]. To deal with the

2
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specific features of base stations cooperation or coordinated multi-points

(CoMP) [46, 48, 88], a product codebook quantization strategy was pro-

posed in [16].

Interpreting all those designs in a unified manner, the spaces of dis-

cretization to consider are quotient spaces of unitary groups, and although

not recognized as such, so-called flag manifolds. Literature on flag mani-

folds can be found in quantum theory context, e.g. in [62,68,98].

1.2 Objective and Scope

The goal of the thesis is to design low-implementation complexity precod-

ing codebooks with analytic and algebraic methods. Finding optimal pre-

coding codebooks is equivalent to the problem of discretizing a manifold.

Manifold discretization is a generic mathematical problem covering for

example the particular case of spherical arrangements or real Grassman-

nian discretization which have been addressed due to their relevance to

many fields of science such as chemistry, biology and physics. While there

is an increased interest in manifold discretization from communications

engineers, there are few results from the mathematical literature. An-

alytical discretization of complex manifolds yields mathematically struc-

tured codebooks which are amenable for implementation. In this work,

we concentrate on discretization techniques for quotient spaces of unitary

groups, so-called flag manifolds, including Stiefel and Grassmann mani-

folds.

1.3 Contribution and Structure of the Thesis

This dissertation contributes to the field of coding theory for unitary man-

ifolds and codebook design for MIMO precoding.

We address several codebook constructions in the literature as a unified

mathematical problem of discretization of flag manifolds. The Conway-

Hardin-Sloane spherical embedding of the Grassmann manifold with chor-

dal distance is generalized to other flag manifolds, and modified for equal-

power per-antenna codebooks. The spherical embeddings allow leverag-

ing results from the mathematical literature. For Lloyd’s algorithms, we

leverage a result on centroid computation on Euclidean embedded sur-

faces applicable to manifolds equipped with a chordal distance. In par-
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ticular, we derive a closed-form centroid computation in the Stiefel mani-

fold. The spherical embeddings induce also coding bounds from the sphere

packing literature.

A fundamental problem of coding theory is to establish the maximum

cardinality of a code for a given distance. The well-known Hamming

bound partially answers this question. We have investigated the density

of packings in the complex Grassmann and Stiefel manifolds equipped

with chordal distance. We have computed the exact volume of the Grass-

mann and Stiefel manifold induced by their chordal distance. This has

application in the evaluation of the volume of a small metric ball which is

critical to derive Hamming-type bounds. We provide a refinement of the

Hamming bound for Grassmannian codes and a generalization of a bound

on minimum distance previously proven only for line packings. This result

is later generalized to all manifolds with a metric induced by an embed-

ding in a Euclidean hypersphere. For these manifolds, of which the Stiefel

manifold, this provides results generalizing previously known bounds on

codes in the unitary group.

We then investigate explicit analytical code constructions, looking for

codebooks having their entries in a limited set of complex numbers. For

the special case of two antenna precoding codebooks, the 2x1 complex

Grassmannian is isometric to a real sphere, so that designing 2x1 complex

Grassmannian packing is equivalent to the real sphere packing problem.

Based on the extensive literature on this topic, we have derived optimal

closed-form codebooks using a simple isomorphism. Using the simple ge-

ometry of some of these codebooks, we also derived closed-form expres-

sion of the corresponding SNR gain due to beamforming. Additionally,

we investigate codebooks based on other spherical arrangements, such as

solutions maximizing the harmonic mean of the mutual distances among

the codewords. We found that in most of cases, Grassmannian codebooks

based on these other spherical arrangements outperform codebooks from

Grassmannian packings. The reason is that the mean distance provides a

better approximation of the average distortion than the minimal distance.

Next, to address the problem of manifold discretization in more general

manner we use the concept of an orbit of a symmetry group. We general-

ize the concept of spherical orbit codes to flag orbit codes and derive ba-

sic properties. For flag codes, projective unitary representations of finite

group are of specific interests. We consider some finite groups having ap-

propriate representations and find appropriate initial points heuristically.
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We give explicit codes in Grassmann and other simple flag manifolds in

2D and 4D. Using a construction related to representation theory, fami-

lies of packings are obtained for any dimension of a power of a prime. We

prove that some of these packings are optimal in relation with a power

per-antenna constraint. We also investigate Stiefel orbit codes arising

from the linear representation of the projective group considered. By do-

ing so, one obtains expansions of the Grassmann orbit codes to the Stiefel

manifold.

Then, we discuss codebook designs for two different transmission sce-

narios. For a base station cooperation system, we consider a product

codebook strategy where a single small codebook is implemented at the

receiver. We show that near optimal performance can be reached with

an appropriate choice of Stiefel representatives of Grassmann codes. Ac-

cordingly, we propose a novel joint Grassmann-Stiefel codebook design

aiming at good quantization of Grassmann and Stiefel manifolds with a

single codebook. A Lloyd-type algorithm generating a Stiefel codebook

conditioned on a fixed Grassmannian codebook is presented. Further-

more, concrete examples of analytical joint Grassmann-Stiefel packings

are also given. We also discuss low-complexity suboptimal codeword se-

lection methods.

Finally, the codebook design problem for MIMO with a linear receiver

is related to a discretization problem of generalized flag manifolds. With

a linear receiver, we show that the spaces of equivalent precoders are

simple permutation-invariant flag manifolds. We describe a Lloyd-type

algorithm for these spaces and compare the achievable rate with the gen-

erated codebooks by simulation. When the number of streams, and the

number of receive and transmit antennas are the same, the simulations

show that the marginal gain from precoding is relatively small with few

feedback bits for more than two transmit antennas. This differs from

low-rank transmission with optimum receivers, where a small number of

feedback bits allows near-optimal channel adaptation.

1.4 Summary of Publications

This thesis consists of an introductory part and eight original publica-

tions.

The first two papers are discussing coding theoretical problems on the

Grassmann and Stiefel manifolds.

5
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In Publication I, the density of Grassmann codes with the chordal dis-

tance is investigated. From the observation that the kissing radius can-

not be determined solely from the minimum distance, upper and lower

bounds are provided, along with the corresponding bounds on the den-

sity. This leads to a refinement of the Hamming bound for Grassmannian

codes. Finally, we provide explicit bounds on code cardinality and mini-

mum distance, notably a generalization of a bound on minimum distance

previously proven only for line packings.

In Publication II, the density of Stiefel codes is investigated. We com-

pute the volume of the Stiefel manifold induced by the chordal distance.

This has a direct application for evaluating the volume of a small metric

ball critical to derive Hamming-type bounds. Using a spherical embed-

ding argument, we provide results generalizing previously known bounds

on codes in the Grassmann manifold and the unitary group.

The following four papers deal with explicit code constructions.

In Publication III, we construct Grassmann beamforming codebooks for

two transmit antenna systems. Using an isometry, we show that the dis-

cretization problems are directly solved by corresponding spherical codes.

Notably, the Grassmannian line packing problem is equivalent to the

Tammes problem on the real sphere, so that optimum spherical packings

give optimum Grassmannian packings. Moreover, a simple isomorphism

enables to analytically derive simple codebooks in closed-form having low

implementation complexity. Using the simple geometry of some of these

codebooks, we derive closed-form expressions of the probability density

function (pdf) of the squared quantization error. We also investigate code-

books based on other spherical arrangements, such as solutions maximiz-

ing the harmonic mean of the mutual distances among the codewords,

which is known as the Thomson problem. We find that in most of the

cases, Grassmannian codebooks based on these other spherical arrange-

ments outperform codebooks from Grassmannian packing.

In Publication IV, a construction of Grassmannian packings related to

representation theory is applied to build implementation-friendly MIMO

precoding codebooks when the number of transmit antennas is a power

of a prime number. Using chordal distance as a metric, some of the cor-

responding packings are optimal by meeting the orthoplex bound. In ad-

dition, by using only some of the codewords, smaller packings satisfying

an equal-power per antenna constraint can be constructed. Optimality

with reference to this constraint is shown by modifying Conway-Hardin-
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Sloane’s spherical embedding of the Grassmann manifold for equal-power

per-antenna codebooks.

In Publications V and VI, we discuss group orbits to construct codes in

Grassmann and flag manifolds, respectively.

In Publications V, to generate Grassmann orbit codes, we look for projec-

tive unitary representations of finite groups. Following this principle, we

derive basic properties and describe explicit constructions of group orbits

leading to some optimum packings in 2 and 4 dimensions.

In Publication VI, we define distances that embed flag manifolds into

Euclidean hyperspheres, providing a generalization of the spherical em-

bedding of Grassmann manifolds equipped with the so-called chordal dis-

tance. For code construction, the center of a finite unitary group has no

effect, and thus it is sufficient to consider its inner automorphism group.

Accordingly, some explicit constructions from projective unitary represen-

tations of finite groups in 2 and 4 dimensions are described. We also give

examples of codes on the Stiefel manifold constructed as orbits of the lin-

ear representation of the projective groups, leading to codes that are ex-

pansions of the flag codes considered.

The last two papers investigate scenarios where Grassmann codebook

design is not optimal, and a larger manifold has to be considered.

In Publication VII, we focus on product codebook design with application

to cooperative MIMO transmission. We show that the Stiefel representa-

tives which are used to realize a Grassmann codebook impact the perfor-

mance of product codebooks. We propose a novel joint Grassmann-Stiefel

codebook design aiming at good discretization of Grassmann and Stiefel

manifolds with a single codebook. The resulting product codebooks show

performance comparable with global Grassmann quantization. To find

low-distortion codebooks, we present a vector quantizer to generate Stiefel

codebooks conditioned on a fixed Grassmann codebook. For this purpose,

we provide an exact solution for computing centroids in the Stiefel mani-

fold with chordal distance. Furthermore, concrete examples of analytical

joint Grassmann-Stiefel packings are given. Additionnally, we discuss

low-complexity codeword selection methods.

Publication VIII interpretes unitary codebook design problems for var-

ious precoded MIMO scenarios as generalized discretization problems of

flag manifolds. As a concrete example, we consider codebooks for MIMO

transmission with linear receivers. In this case, the problem reduces

to discretizing permutation-invariant flag manifolds. A corresponding

7
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Lloyd’s algorithm is given, providing low-distortion codebooks. We found

that a full-rank MIMO system with the same number of transmit and re-

ceive antennas, the gain of precoding with linear receiver is small. This

differs from the behavior of low-rank transmissions, where it is known

that a small number of feedback bits allows near-optimal channel adap-

tation.
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2. System Model

This chapter presents the system model of codebook-based MIMO pre-

coding [51, 55]. For point-to-point MIMO, we consider a uncorrelated flat

Rayleigh MIMO channel. Extension to base station cooperation is mod-

eled by integrating large-scale path gain imbalance between the trans-

mitters, similarly than in [16]. The system model motivates the prime

interest of the thesis which is on code design and construction.

2.1 Signal and Channel Model

Consider a MIMO system with nt transmit and nr receive antennas. After

unitary precoding with W ∈ Cnt×ns , a vector x ∈ Cns×1 of ns ≤ min(nt, nr)

multiplexed streams is transmitted through a fading channel H ∈ Cnr×nt .

The received signal is

y = HWx+ n, (2.1)

= Heffx+ n, (2.2)

n ∈ Cnr×1 denote the noise, and Heff = HW the effective channel. We

assume that the transmitted signal and the noise are Gaussian with co-

variances E
[
xxH

]
= γIns and E

[
nnH

]
= Inr , where γ is the per-stream

SNR. We assume the entries of the channel H are independent and identi-

cally distributed (i.i.d) complex normal variables with zero mean and unit

variance.

We concentrate on the properties of W related to steering the trans-

mitted energy to the signal subspace of the receiver and increasing the

capacity. Here, power allocation is considered to be out of scope of precod-

ing and instead form a part of the design of x. We thus have the following

contraints on W: the total transmit power is ns, which is equally shared

among the symbols such that WHW = Ins . The precoder, which is a func-
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tion of the received feedback bits, is used for channel adaptation in order

to increase to maximum achievable information rate of the system given

by

I = E
[
log2 det

(
I+ γHH

effHeff

)]
. (2.3)

2.2 Base Station Cooperation

In Chapter 6, we consider cooperative transmission from several base sta-

tions to the same user. Then, we define a (nbs × nt) × ns MIMO system

as nbs base stations (BSs) each equipped with nt antennas transmitting

cooperatively ns-data streams. It is assumed that the BSs are able to

instantaneously share the feedback information, e.g. via high speed back-

hauls. The effective channel becomes

Heff = HlsWls, (2.4)

where Wls is an nbsnt × ns aggregate precoding matrix and

Hls = [α1H1, . . . , αnbs
Hnbs

] = HssG (2.5)

is the aggregate channel matrix where the channels from the BSs to the

receiver are concatenated, and large scale path losses are explicitly taken

into account. The average path gain from the ith BS to the receiver is αi,

incorporating distance-dependent path loss and shadowing. Small-scale

path gains are characterized by the matrices Hi ∈ Cnr×nt whose entries

are assumed to be i.i.d. flat Rayleigh distributed with unit variance. The

aggregate small-scale path gain matrix is denoted Hss = [H1, . . . ,Hnbs
]

and the large scale path gains by G = diag(α1Int , . . . , αnbs
Int). For α1 =

· · · = αnbs
, the model reduces to a classical nbsnt × ns i.i.d. point-to-point

MIMO system. We denote by Vls and Vss ∈ VC
nbsnt,ns

the left singular

vectors associated with the ns-largest singular values of HH
ls and HH

ss , re-

spectively.

It is assumed that the BSs know the large scale path gains of the chan-

nels contained in G and the precoder is constructed in two steps. The BSs

first construct a small-scale precoding matrix Wss. Then the large-scale

precoding matrix applied is Wls =
√
ntnbs

‖G‖ GWss following the principle of

adaptive precoding for correlated MIMO [54,95]. The normalization guar-

antees that the total transmit power per-stream is one.

10
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2.3 Codebook-Based Precoding

The channel coefficients are assumed to be perfectly known at the receiver

and unknown at the transmitters. We assume that the BS has access to

CSI only through an error-free, zero delay, and limited feedback chan-

nel. The precoding matrix W ∈ Cnt×ns is designed for channel adapta-

tion according to the information fed back by the receiver. To acquire

CSI through a limited feedback channel, we consider codebook-based pre-

coding where the receiver and transmitter share a predefined codebook

C = {C1, . . . ,Cncb
}. Elements in the codebook are Stiefel matrices, i.e.

CH
i Ci = I ∀i, which are used to quantize the eigendirections of the signal

subspace at the receiver.

The receiver selects a codeword following a quantization rule that ap-

proximates the channel by using the codebook,

qC : {H} → {i : 1 ≤ i ≤ ncb}, (2.6)

and feeds back the index k = qC(H) to the transmitter. Then, the trans-

mitter constructs a precoding matrix based on the CSI received, i.e. W is

a function of Ci. Especially for point-to-point MIMO, a simplified version

is to assume that the transmitter directly picks the precoding matrix from

the shared codebook: W = Ck.

In this setting, there is typically an infinity of precoding vectors lead-

ing to the same performance, and the possible precoding vectors can be

grouped into equivalence classes. It follows that the set of equivalence

classes of precoding matrices is a quotient space of the Stiefel manifold.

In order to have non-equivalent codewords, the codebook should be de-

signed as a discretization of this space of equivalence classes of precoding

matrices. A Stiefel precoding codebook is then generated by taking any

representative in the equivalence classes.

2.4 Low-Complexity Constraints

Practical codebooks in industry standards have been designed according

to additional constraints of interest. In our code construction, we try to

address those constraints. Low implementation-complexity codebooks are

typically characterized through three design constraints [51]:

1. Equal-transmit-power per-antenna (EP). The antennas are used in a
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power balanced manner and their average transmit power is kept at the

same level. This constrains the rows in the precoding matrix to have

squared norm equal to ns/nt.

2. Constrained alphabet. The alphabet of the codebook elements is re-

stricted to a small finite alphabet in order to limit the number of mul-

tiplications and storage requirements at the receiver. Often, the alpha-

bet is limited to the unit circle, which is also known for beamforming

as equal gain transmission [52, 63]. This guaranties the EP constraint

above. Restricting the alphabet to {1, −1, i, −i}, i =
√−1 further re-

duces complexity by enabling matrix multiplications to be performed

only by conjugations and additions [44,60].

3. Nested property. A lower rank precoding matrix is a submatrix of a

higher rank precoding matrix.

In the current 3GPP LTE-Advanced industry standard, the number of

antennas at the base station may be two, four, or eight. The 2Tx code-

book can be seen as an example of extraspecial group code constructions

described in Chapter 5, cf. codebook B in Table I from Publication IV. For

4Tx, the LTE codebooks were designed based on Householder reflections.

The resulting codebooks have similar distance properties as the codebooks

of Publication IV (codebook C in Table 5.4) and thus perform equivalently

in term of spectral efficiency. As discussed in [1] the implementation ben-

efit from the Householder construction was accidental and valid only for

4Tx; it is also noted that discrete Fourier transform (DFT) codebooks fail

to be a valid design for 8Tx systems. To overcome this issue, the 8Tx code-

book in LTE-Advanced is constructed by concatenating the same 4TX DFT

codeword twice and using a cophasing factor [80]. The resulting codebook

has a structure resembling the product codebooks considered in Publica-

tion VII.

12



3. Flag Manifolds: Code Designs and
Geometry

The codebooks addressed have orthonormal columns, and can be inter-

preted as elements in a flag manifold with representative in a Stiefel

manifold. A manifold is roughly speaking a curved space which locally

resembles the Euclidean space. To investigate coding problems, we need

to define a notion of distance. Depending of the application and conve-

nience, several non-equivalent distances has been considered on these

spaces [28]. We focus on chordal distances corresponding to natural Eu-

clidean distances from spherical embeddings. There are two motivations

for this choice. First, we are interested in computable distance functions

consistent with the rectangular unitary matrix representation. Second,

the considered chordal distances for Stiefel, Grassmann, and some simple

flag manifolds have been shown to be related to performance of space-time

codes and precoding codebooks in SU and MU-MIMO [22,35,47,56]. This

choice of distances enforces treatment of the manifolds as subsurfaces of

hyperspheres, and implies that flag codes are a subclass of spherical codes.

3.1 Flag Manifolds

The complex Stiefel manifold VC
nt,ns

is defined as the space of orthonormal

rectangular matrices (with ns ≤ nt),

VC
nt,ns

=
{
Y ∈ Cnt×ns | YHY = Ins

}
. (3.1)

The unitary group Unt = VC
nt,nt

is a specific case of Stiefel manifold.

The flag manifold [11,29]

F lCnt;s1,...,sr = VC
nt,ns

/(Us1 × · · · × Usr) (3.2)

where ns =
∑r

i=1 si, is the set of equivalence class of nt-by-ns Stiefel

matrices where two matrices V,Y are equivalent if there exists a se-
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W W

U1

U2
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nt
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ns

(a) Unitary-rotations equivalence (b) Permutation equivalence

Figure 3.1. Illutration of the equivalence relationship considered.

quence of unitary matrices (U1, . . . ,Ur) ∈ (Us1 × · · · × Usr) exist such that

V = Y diag(U1, . . . ,Ur).

The case r = 1 and s1 = ns defines the Grassmann manifold

GC
nt,ns

� F lCnt;ns
= VC

nt,ns
/Uns , (3.3)

which is isomorphically the set of all ns-dimensional subspaces of Cnt .

According to (3.2), the Stiefel manifold VC
nt,ns

is not strictly speaking a

flag manifold, but it is also a homogeneous space of the unitary group

VC
nt,ns

∼= Unt/Unt−ns and can be seen as an extreme case in (3.2) by setting

r = 1 and s1 = 0.

Another case of interest is s1 = . . . = sr = 1, for which we use the

notation

FC
nt,ns

� F lC
n;1, . . . , 1︸ ︷︷ ︸

ns

= VC
nt,ns

/(U1)
ns . (3.4)

We finally consider an additional equivalence relationship in F lCn;s1,...,sr

when sk = ns/r for all k. Given V,Y ∈ VC
nt,ns

, one may group their

columns in sub-matrices as V = (V1,V2, . . . ,Vr) and Y = (Y1,Y2, . . . ,Yr),

such that Vk,Yk ∈ VC
nt,sk

. Then, we consider them equivalent if they

only differ by a permutation of their r-submatrices, i.e. there exists a

permutation σ such that V = (Yσ(1),Yσ(2), . . . ,Yσ(r)). The permutation

corresponds to an orientation-invariance of the elements. We denote the

corresponding space by

�F l
C

nt;s1,...,sr � F lCnt;s1,...,sr/Sr (3.5)

where Sr is the symmetric group whose elements are all the permutations

of the r symbols.

Similarly for the specific case s1 = . . . = sr = 1, we defined

�FC
nt,ns

� FC
nt,ns

/Sns (3.6)
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3.2 Spherical Embeddings and Chordal Distances

We treat the manifolds of interest as submanifolds of hyperspheres. The

spherical embeddings of the Stiefel manifold and the flag manifolds are

of different natures. The Stiefel manifold has a canonical spherical em-

bedding from the vector representation of rectangular unitary matrices.

The spherical embeddings of the Grassmann manifolds with correspond-

ing chordal distance is obtained from a projector representation [18]. In

Publication VI, we show that all flag manifolds can be understood as sub-

manifolds of the same sphere. Roughly speaking, a (n2
t − 2)-dimensional

hypersphere can be decomposed, except for a zero-measure set, so that it

consists of a “fibration” of flag manifolds FC
nt,nt

over a (nt−2)-dimensional

hypersphere with some singular submanifolds removed. The remaining of

the sphere, the singularities, correspond to other flags F lCnt;s1,···sr which in-

cludes the Grassmann manifolds GC
nt,ns

as special cases. To generalize the

notion of Grassmann distance to more general flag manifolds, we embed

them into a direct product of Grassmann manifolds and take the corre-

sponding chordal distance. This results in embedding into a larger space

than the (n2
t − 2)-sphere. Finally, inspired by the literature in quantum

information science on mutually unbiased bases (MUB) [27], we consider

an alternative distance on simple permutation-invariant flag manifolds.

We have the following isometric embeddings

(M, dc) ↪→ SD−1(R) (3.7)

where SD−1(R) ⊂ RD is a (D − 1)-sphere of radius R, with

M dc D R2

VC
nt,ns

ds 2ntns ns

GC
nt,ns

dg n2
t − 1 ns(nt−ns)

2nt

F lCnt;s1,...,sr df r(n2
t − 1)

nsnt−
∑r

i=1 s
2
i

2nt

�F l
C

nt;s1,...,sr dp r(n2
t − 1)

nsnt−
∑r

i=1 s
2
i

2nt

�FC
nt,ns

dmu

(n2
t
2

)− 1
(ns−1)(n2

t−ns)

n2
t−1

and the chordal distances, defined for Y, Z ∈ VC
nt,ns

, representatives of
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their respective equivalence class, are

ds(V,Y) = ‖V −Y‖F , (3.8)

dg(V,Y) =
1√
2
‖VVH −YYH‖F , (3.9)

df (V,Y) =

√√√√ r∑
i=1

d2g(Vi,Yi), (3.10)

dp(V,Y) = min
P∈Sp

df (V,YP), (3.11)

dmu(V,Y) =

√√√√ns −
ns∑

i,j=1

|vH
i yj |4. (3.12)

(3.13)

The decompositions of the matrices in column-blocks are given by V =

(V1, . . . ,Vr) = (v1, . . . ,vns) and Y = (Y1, . . . ,Yr) = (y1, . . . ,yns). Here

df is the metric on the flag manifold interpreted as a sequence of Gras-

mannians, and dp is the permutation-invariant version. The metric dmu is

considered in the literature on mutually unbiased bases [27].

In Publication IV, we show also that constraining the Grassmann man-

ifold to satisfy the EP constraint reduces the dimensionality of the spher-

ical embedding from n2
t − 1 to n2

t − nt.

3.3 Codebook Designs

Several criteria have been investigated in the literature to design good

MIMO precoding codebooks. With i.i.d Rayleigh fading, the right eigen-

vectors of the channel are uniformly distributed over the Stiefel manifold

according to the Haar measure [45, 53]. As the set of eigenvectors forms

a representative in a flag manifold, the set of equivalence class is also

Haar distributed over this flag manifold. The main idea is to target uni-

form codebooks over the manifold. For this we need to define a notion

of uniformity. Several mathematically non-equivalent standard criteria

exist. From the point of view of precoding performance metric such as in-

formation rate, they however are almost optimal, and thus roughly equiv-

alent [23, 56, 71, 72, 95]. For uniformity, we will consider both distortion

and discrete arrangement criteria.

Consider a codebook C = {C1, . . . ,Cncb
} ⊂ VC

nt,ns
. Depending on the dis-

tance dc considered, the codebook is treated as a discretization of the cor-

responding manifold M. Consider a random source V on manifold (M, dc),
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and define the associated quantization map

qc(V) = arg min
1≤i≤ncb

dc(V,Ci). (3.14)

In quantization theory, a standard criterion is to minimize the average

distortion of a codebook, i.e. the average squared quantization error,

DM(C) = E
[
d2c(V,Cqc(V ))

]
. (3.15)

Here, we only consider uniformly distributed source, but this criterion is

adaptable for other distributions as well.

In discrete mathematics, the classical approach is to look at the prop-

erties of codebooks as point sets on the respective manifolds. The most

studied criterion is maximizing the minimum distance [19,74]

δM(C) = arg min
1≤i,j≤ncb

dc(Cj ,Ci). (3.16)

This problem is often referred as a packing problem and is related to

Tammes problem on the sphere.

A generalization of the packing problem is the Thomson problem where

one has to maximize the p-mean distance [74]:

Mp(C) =
⎛⎝ 2

ncb(ncb − 1)

∑
1≤j<k≤ncb

dc(Cj ,Ck)
p

⎞⎠1/p

. (3.17)

Typical values of interest are p = −1 and −2.

3.4 Lloyd’s Algorithm and Centroids

Lloyd’s algorithm aims to construct a codebook with minimum average

distortion. It comprises two key steps:

Nearest Neighbor rule: Partitioning of the manifold according to the

codebook in ncb Voronoi cells {R1, . . . ,Rncb
} defined by

Rk = {V ∈ M| k = qc(V)}. (3.18)

Centroid Computation: Finding the centroids of each Voronoi cell Rk

given by

Zk = arg min
V∈M

E
[
d2c(V,V) | V ∈ Rk

]
. (3.19)

The algorithm consists of iterating these two steps where the former code-

book is replaced by the set of computed centroids.

Generally, the centroid of a Voronoi cell is approximated through ex-

haustive search. Meanwhile, due to the treatment of the manifolds as
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subspaces of Euclidean hyperspheres with canonical extrinsic distances,

the centroids may also be computed in closed-form. As the manifolds are

closed continuous surfaces in an Euclidean space, a centroid of a Voronoi

region is obtained from the orthogonal projection onto the manifold of its

center of mass in the ambient space [26]. Accordingly, we provide an exact

centroid computation for the Stiefel manifold in Publication VII, where

an orthogonal projection of any complex matrix to the Stiefel manifold is

given by the polar decomposition following [31,41]. A closed-form solution

was already known for centroids in the Grassmann manifold [58]. While

the closed-form Grassmannian centroid computation is usually proven

differently in the literature, it could also be derived using the argument

in [26]. The centroid corresponds to the closest projection matrix of a

given rank to the center of mass in the ambient space of Hermitian ma-

trices. For deriving centroids in other flag manifolds, the main difficulty

lies in expressing the orthogonal projection. In Publication VIII, the cen-

troid for simple permutation-invariant flag manifolds was approximated

through projection in the embedding space of direct product of Grassman-

nians, a similar approach can be found in [77]. We conjecture that this is

the true centroid.

3.5 Density and Packing Bounds

In the last decade, basic coding-theoretic results estimating the relation-

ship between the cardinality and the minimum distance of codes in Grass-

mann and Stiefel manifolds have been widely studied [7–10,21,22,36,40,

49, 50]. The Hamming bound, a standard coding bound, is related to the

notion of density of codes. In Publications I and II, we discuss the density

of codes in Grassmann and Stiefel manifolds equipped with a chordal dis-

tance. There are two main difficulties in evaluating the density of codes in

these spaces: 1) evaluating the (normalized) volume of a ball 2) estimating

the kissing radius of codes.

1) Volumes: The authors of [22] were able to derive closed-form expres-

sion on the volume of a small ball in Grassmannians under the chordal

distance. A more general approach was used in [49, 50] where a power

series expansion of the (unnormalized) volume of small ball valid for any

Riemann manifold [33] was leveraged. This provides a powerful tool—in

order to obtain a normalized volume expansion, it suffices to divide by the

overall volume of the manifold. The volume of the manifold depends of
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Figure 3.2. Volume approximation of balls in Stiefel manifolds and unitary groups com-
pared to simulation.

the Riemannian metric defining the notion of distance. There is an equiv-

alent intrinsic Riemannian metric corresponding to the extrinsic chordal

distance. In fact, from the Nash embedding theorem, every Riemannian

metric can be seen as being induced by an appropriate Euclidean embed-

ding [65]. For the case of the Stiefel manifold, two non-equivalent Rie-

mannian metrics are often considered [28], one realized from the space of

rectangular unitary matrices and the other from the interpretation of the

manifold as a quotient space of the unitary group embedded in the space of

square unitary matrices. It appears that in the majority of the literature,

the volumes of the manifolds do not correspond to any of these two met-

rics. Indeed, the volume element is unique up to a non-vanishing scaling

factor which is often dismissed, as it can be absorbed in the overall nor-

malization. Here, the volume expansion imposes the scaling of the metric

and volume element. For accurate normalization of the expansion of [33],

the volume of the manifold should be calculated with the same metric. A

discussion and clarification of different conventional normalizations of the

volume of the unitary group is provided in [98]. In [49] the volume of the

complex Stiefel manifold is computed for the geodesic distance induced by

the quotient geometry. In Publication II, we address the problem when

considering the typical chordal distance induced by the rectangular ma-

trix embedding, which leads to an expression of the volume differing from

the ones previously derived in [49] or [40]. The exact volume of the Grass-

mann manifold with chordal distance is also computed. A corresponding

volume computation and mindmap is presented in Fig. 3.3. The exactness

of the volume is illustrated in the estimation of volume of small ball for

the Stiefel manifolds and unitary groups in Fig. 3.2.

19



Flag Manifolds: Code Designs and Geometry

Figure 3.3. Choice of distance and its impact on volume computation and coding bounds
for Stiefel manifolds.
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2) Kissing Radius: As we are considering extrinsic distances, there is

room for improvement of the standard Hamming bound [9, 36] through

the notion of density. We address this problem for the Grassmann mani-

fold in Publication I and for any spherically-embedded manifold in Publi-

cation II. The density of a code is defined as the fraction of the manifold

covered by ‘kissing’ balls of equal radius centered around the codewords.

The kissing radius problem addresses the following question: if two points

are at chordal distance δ, how far is the midpoint from the extremities. For

a geodesic distance, the answer is simply δ/2; with an extrinsic distance,

this is greater than δ/2. While there is a unique and exact answer to this

question on a sphere, this is not the case for flag and Stiefel manifolds

with chordal distances, because in general these spaces are not two-point

homogeneous. For these, the kissing radius cannot be determined solely

from the minimum distance. We provide upper and lower bounds on the

kissing radius as a function of minimum distance for the Grassmann and

Stiefel manifold in Publications I and II.

3) Packing Bounds: Bounds on the kissing radius leads to a refine-

ment of the standard Hamming bound for flag and Stiefel codes. Based

on this, Publication I provides new bounds on the minimum Grassmann

distance. In Publication II, we provide a similar bound for any spherically-

embedded manifold generalizing previously known bounds on codes in the

unitary group [36] to the Stiefel manifold:

Given a code of cardinality ncb and minimum chordal distance δM in a

manifold M isometrically embedded in SD−1(R), we have

δ2M ≤ 4r2n − r4n
R2

, (3.20)

where rn is solution of μ(B(rn)) =
1

ncb
and μ(B(rn)) is the normalized vol-

ume of a ball of radius rn.

Applying this result to the unitary group leads to the bound [36, Theo-

rem 2.4]. A tighter bound is provided for a small range of large distances

by [36, Corollary 2.9]. In Publication I, for Grassmann manifolds, we were

able to improve the bound by

δ2g ≤ 4r2n − r4n
ns

, (3.21)

which is a generalization of the bound in [96] valid only for line packing

(ns = 1).

The Hamming bound is rather loose especially for small codes. For

low cardinality, Rankin bounds [70] related to the spherical embeddings
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are known to be tight when applied to Grassmann codes [18]. In a D-

dimensional sphere, the optimum packings for up to D + 1 points corre-

sponds to simplices. From D + 2 to 2D points, the optimal configurations

are subsets of an orthoplex. They are thus referred as simplex and ortho-

plex bounds, respectively [18].

As discussed in Publication IV, the smaller embedding provided for EP

codebooks leads to a modification of the range of the Rankin bounds. The

corresponding EP orthoplex bound is used for proving the optimality of

some of the packings presented in Publication IV.
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4. Grassmannian Pakings for 2-Tx
MIMO

The lowest dimensional flag manifolds (nt = 2) are very specific cases. We

have FC
2,2

∼= FC
2,1

∼= GC
2,1, which further reduces to the real unit sphere

FC
2,2

∼= S2. It follows that designing codebooks in FC
2,2

∼= GC
2,1 is equivalent

to designing spherical codes. In this chapter, we discuss explicit represen-

tation of spherical codes in 2-by-1 vector form for coding in GC
2,1; equivalent

2-by-2 matrix codes for FC
2,2 can be obtained by pairing an orthogonal com-

plement of each codeword. In addition, a 2× 2 unitary matrix generating

a point in FC
2,2 can be seen as two ordered antipodal points, or equiva-

lently an oriented line. It follows that �FC
2,2 is the set of spherical antipodal

points, or equivalently the set of lines in 3D, also known as the real Grass-

mannian GR
3,1

∼= �FC
2,2 [18]. Codebooks in �FC

2,2 can thus be constructed by

leveraging results from known antipodal spherical codes [57].

4.1 Grassmannian Codebooks from Spherical Arrangements

The Grassmann manifold GC
2,1 is by definition the complex projective line

CP1. From the Hopf fibration of the unit 3-sphere as a circle bundle over

CP1 [12, Ex.17.23], we have

GC
2,1 = CP1 ∼= S3

S1
= S2. (4.1)

For the explicit form of the isomorphism we parameterize the unit vector

w, a generator of the equivalence class [w] ∈ GC
2,1, as

w(θ, φ) =

⎛⎝ cos θ

eiφ sin θ

⎞⎠ . (4.2)

By setting the range of θ and φ to [0; π2 ] and [0; 2π], respectively, we fully

describe the Grassmannian. Interpreting (θ, φ) directly as spherical coor-

dinates, these would describe a hemisphere. A simple morphism from a
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Figure 4.1. The real Grassmannian GR
2,1 is the set of lines in R2, or equivalently the set of

antipodal points on the unit circle. Taking only representatives on the upper
hemisphere, an isometry to a circle is obtained by doubling the parametric
angle θ and reducing the radius to one half.

hemisphere to the whole sphere can be obtained by doubling the angle θ.

The irrelevance of φ for θ = 0 and π
2 in (4.2) leads to the isomorphism.

Moreover, with the chordal distance considered, GC
2,1 is isometric to the

real sphere (of radius one half). Isometry implies that discretization prob-

lems on (GC
2,1, dg) can be addressed on the the real sphere S2. Any spheri-

cal code can be transformed to a Grassmannian codebook by applying the

corresponding simple change of variables. Cartesian coordinates are first

converted to spherical coordinates (ϑ, φ) and the latitude is divided by two

(θ = ϑ
2 , φ). A generator of the corresponding Grassmannian line is then

obtained by using (θ, φ) in (4.2). As a result, the chordal distance between

two Grassmannian lines is half the distance between the respective spher-

ical codewords. We illustrate this isometry for φ = 0 which corresponds to

the real Grassmannian GR
2,1

∼= S1 isomorphic to a circle in Fig. 4.1.

The problem of distributing a certain number of points uniformly over

the surface of a sphere has been thoroughly studied [74]. Different criteria

on the mutual distances among the codewords have been extremized in

the literature, with motivation often arising from chemistry, biology and

physics [19, 74, 92]. For convenience, solutions are often described as the

vertices of a convex polyhedron.

The Tammes problem is the problem of placing ncb points on a sphere

so as to maximize the minimum distance, also referred to as spherical

packing, is a specific case of spherical arrangements [74]. It follows that

Grassmannian line packing in GC
2,1 is equivalent to the Tammes problem.

In Publication III, we have thus construct codebooks and leverage existing

results from the spherical code literature by using the isometry.
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Figure 4.2. Best known squared minimal chordal distance for packings in GC
2,1.

The Rankin bounds [70] and the Fejes Tóth bound [30] applies to the

minimum distance of packings in GC
2,1. The Fejes Tóth bound is specific

for the 2-sphere. It is tighter than the Hamming-type bound (3.21) which

in this case reduces to the bound in [96]. These bounds lead to proof of

optimality of some packings. Optimum packings of ncb points on a sphere

have been found for ncb ≤ 12 and ncb = 24 [17,30], with optimality proven

geometrically. For ncb up to 130, the best known sphere packings are avail-

able at Sloane’s webpage [84]. Fig. 4.2 shows the achieved minimum dis-

tances of the corresponding Grassmannian packings along with bounds,

compared to numerical results from [94,96] where a modified Lloyd search

algorithm was used and to results from [56] using brute-force computer

search.

The problem of maximizing the generalized p-mean of the mutual dis-

tances among the codewords can be called the generalized Thomson prob-

lem. It is the counterpart of a spherical arrangement problem which, due

to its relevance to physics, is often formulated as the minimization prob-

lem of the Riesz s-energy for s > 0. It is remarked in [74] that on S2 this

problem is only interesting for p < 2.

Some values of p have attracted special interest. The case p = −1 (some-

times also p = −2) is known as the (standard) Thomson problem. Solu-

tions referred to as Fekete points have been found for ncb = 2–4, 6, 12 [25].

Another distinguished problem is the problem of maximizing the product

of the distances, known as Whyte’s problem. This occurs when p → 0 and

can be restated equivalently as minimizing the logarithmic energy. So-
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lutions referred to as logarithmic points have been found for ncb = 2–6,

12 [25]. The limiting case p → −∞ is the Tammes Problem discussed

above.

These problems are not in general solved by identical arrangements.

However due to the high symmetry of the optimum solutions of Tammes

problem for 2–4, 6 and 12 points, these cases are conjectured to provide

general solutions [25, 74, 92]. The principal approach to solve these prob-

lems on S2 has been to use extensive numeric computations, especially

in high cardinality. Results may be found at [38, 84] for p = −1 and −∞
respectively, and at [13] for p from 0 to −12.

In [37], a library of ncb-point arrangements on a sphere that maximize

the volume of the convex hull is also available. These may also be used as

a basis for constructing precoding codebooks.

4.2 Low Implementation-Complexity Codes

Most solutions of spherical arrangement problems are vertices of polyhe-

dra with a high degree of symmetry which makes the derivation of closed-

form Grassmannian codebooks possible. One benefit of having geometric

insight on the codebooks, and the corresponding analytical handle on their

design, is that suitable rotations can be found by geometric inspection.

Such rotations can be used to simplify the representation of the codebook.

This is beneficial from several perspectives. First, the codebook can be

rotated so that it can be realized with a minimum number of different

complex numbers without impairing performance. Typically, selection of

the precoding codeword is done at the receiver by exhaustive search over

all codewords in the codebook. Codebooks with arbitrary complex entries

result in many complex multiplications at the receiver. Reduced comput-

ing complexity, as well as reduced storage, is possible by constraining the

entries to a finite alphabet. Also, analytic control on the codebooks may

be used to select how the codebooks distribute power across the anten-

nas. Finally, analytic control of the codebooks, together with geometric

intuition, allows investigating non-optimum codebooks, with possibly dif-

ferent symmetry properties than the optimum ones, in order to balance

performance, storage and computing complexity.

In Publication III, we derived simple closed form codebooks from spher-

ical arrangements with up to 5 bits. Of particular interest are the code-

books with ncb = 2, 4, 8 and 16 codewords, i.e. the 1-, 2-, 3- and 4-bit
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Figure 4.3. Digon, tetrahedron, square antiprism and 4-bit spherical arrangement.

codebooks. These polyhedra are depicted in Fig. 4.3.

The codebooks in Fig. 4.3 have been rotated in order to decrease search

and storage complexity. To illustrate the implementation benefit of the

closed-form representation, Table 4.1 gives a comparison in terms of the

required number of multiplications and storage bits between random, or

numerically found codebooks, and the 1-, 2-, 3- and 4-bit codebooks of

Fig. 4.3. The required number of complex entries generating the code-

books has been decreased by rotating them so that several points are

on the same latitude. Furthermore, if longitudinal separation between

points on the same latitude are π, π/2, π/4 or a multiple of those, some
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Table 4.1. Implementation complexity.

Number of multiplications Storage bits

ncb Proposed CBs Random CBs Proposed CBs Random CBs

2 0 12 2 6Kb

4 4 28 Kb + 21 14Kb

8 6 60 2Kb + 28 30Kb

16 6 124 4Kb + 42 62Kb

complex multiplications can be reduced either to a sign change, a swap be-

tween the real and imaginary parts, additions, or a combination of such.

Additionally, complexity of a codebook can be slightly decreased by scal-

ing it so that the first entry of the first codeword is equal to one. Taking

the Tetrahedron codebook as an example, this gives {(1, ±c), (c,±i )} with

c = α−/α+, thus only one real value, c, needs to be stored, and only four

real multiplications are needed in total. On the other hand, if the en-

tries of the codebook are arbitrary complex numbers, each inner product

between two vectors requires height real multiplications, and storage of

four real values. In summary, with a random codebook of ncb codewords,

the required number of multiplications is 4(2ncb − 1), and the number of

bits required for storage is 2(2ncb − 1)Kb, where Kb is the number of bits

needed to represent a real number.

4.3 Quantization Error Analysis

Since we have designed codebooks analytically, we may be able to compute

the pdf and the average of the squared quantization error in closed form.

For beamforming, the squared quantization error corresponds to a SNR

loss. This can be computed from the interpretation as spherical code The

pdf of the quantization error is given by

fd2g(z) =
1

2π

ncb∑
k=1

∫
Ck(z)∩Rk

dφk. (4.3)

where Rk is the Voronoi cell of the kth codeword, and

Ck(z) = {v ∈ S2(12) : |v − ck|2 = z}.

is the border of a spherical cap of squared radius z centered at codeword

ci.
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The integral in the last equality can be calculated by taking into account

the fact that the discontinuities of Ci(z) ∩Ri belong to the borders of Ri.

The borders of Ri are geodesics which may be expressed by a goniometric

equation [67].

We have performed explicit calculations of fd2g for the codebooks of size

1, 2, 3 and 4 bits of the best known Grassmannian packings provided of

Fig. 4.3. These pdfs are drawn in Fig. 4.4(a). For EP codebooks, analytical

expressions for the pdf of the SNR loss, calculated relative to perfect equal

gain beamforming, are given in [63].

Figure 4.4(a) gives a comparison of the average quantization error ob-

tained from different spherical arrangement. The performance of the

maximum volume configurations coincides with the best results found

by Lloyd’s algorithm. The packing solutions perform slightly worse in

general. In term of precoding performance, this corresponds to a loss in

average SNR of the order of 10−3dB – i.e. the difference is insignificant.
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5. Flag and Stiefel Orbit Codes

Most good codes of Chapter 4 have a natural interpretation as orbits of

a symmetry group [19, 30]. Orbit constructions for unitary codes has not

been widely addressed [66]. Seminal results exist for spherical codes [81,

82]. In [78], unitary codes were constructed from the representation of

fixed-point-free groups, corresponding to an orbit of the identity element.

Along this line, some Stiefel codes were constructed in [34]. For Grass-

mann codes, few works have been addressing group orbit constructions [15,

18,20].

In this chapter, we use group orbits to construct codes in flag and Stiefel

manifolds. Flag orbits are constructed by acting with a unitary repre-

sentation of a finite group. In the construction, the center of the finite

group has no effect, and thus it is sufficient to consider its inner automor-

phism group. Often, orbit construction generates structured codes with

finite input alphabet, which is beneficial for hardware implementation of

MIMO precoding. In this regards, a construction based on the structure

of extraspecial groups, leading to orbits of Clifford groups, is of specific

interest. Other explicit constructions from projective unitary representa-

tions of finite groups are also described. We also give examples of codes on

the Stiefel manifold constructed as orbits of the linear representation of

projective groups, which are thus expansions of the flag codes considered.

5.1 Orbits of Projective Group Representations

Consider a finite unitary group G ⊂ Unt acting on VC
nt,ns

and thus on quo-

tient spaces of it. Given a group G and a initial point [Y], Y ∈ VC
nt,ns

, in

the manifold of interest, the orbit of [Y] under the action of G is the subset

G[Y] = {[gY] | g ∈ G}. (5.1)
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We shall see that groups with projective representations are of specific

interest for flag orbit construction. The center of the unitary group Unt

is Z(Unt) = {eiθInt | θ ∈ R} ∼= U1. The projective unitary group is the

quotient of the unitary group by its center PUnt = Unt/Z(Unt). An element

in PUnt is an equivalence class of unitary matrices under multiplication by

a constant phase. If a group can be homomorphically mapped to PUnt , it

is said to have a projective unitary representation. Such can be naturally

understood in terms of a linear representation of Un acting on projection

operators by conjugation.

Given a group G having a faithful irreducible representation in Unt , its

inner automorphism group Inn(G) has a representation in PUnt . In Pub-

lications V and VI, we show that flag orbits of the action of G are orbits of

the action of Inn(G): for any [Y ] ∈ F lCnt;s1,...,sr , we have G[Y] = Inn(G)[Y].

It follows that to construct flag orbit codes, we are primarily interested by

groups having a representation in PUnt .

The cardinality of the orbit code depends on the size of the stabilizer sub-

group of the initial point in G. Initial points with trivial stabilizer leads

to orbit codes of the same cardinality as the group. For manifolds without

permutation equivalence, this holds for almost every point in the mani-

fold. When the group has permutation elements, no point in �FC
nt,s1,...,sr has

trivial stabilizer. Initial points leading to orbit codes of size less than the

group size have by definition a stabilizer which is a non-trivial subgroup

of G. These are singularities in the manifold and there is only a finite

number of such codes. Such initial points in F lCnt;s1,...,sr are concatena-

tions of r invariant subspaces of dimension {s1, . . . , sr} of some non-trivial

subgroup of G. In this case, appropriate initial points can be found from

eigenspaces of the matrix representation of the group.

In Publication V, we derive some basic properties of Grassmann orbit

codes and describe explicit constructions of group orbits leading to some

optimum packings in 2 and 4 dimensions. Recall that the Grassmann

manifold GC
nt,ns

equipped with the chordal distance is isometrically embed-

ded onto a sphere in an Euclidean space of dimension n2
t − 1. Any finite

group represented in PUnt acts on the basis of this Euclidean space and

is a subgroup of the orthogonal group SOn2
t−1. Except for nt = 2, where

SO3
∼= PU2, SOn2

t−1 is larger than PUnt and thus we cannot realize all the

rotations of the Euclidean space with this projective representation. In

2D, we give explicit constructions of group orbits recovering the optimum

packings of Publication III. For higher dimension, we look for groups
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Table 5.1. Orbit codes in GC
2,1 of cardinality ncb and minimum squared distance δ2g .

Group Order ncb δ2g Polyhedron

V4
∼= Inn(D8) 4 2 1 Digon (optimum)

4 2
3

Tetrahedron (optimum)

S3 6 2 1 Digon (optimum)

3 3
4

Triangle (optimum)

6 1
2

Octahedron (optimum)

D8
∼= Inn(D16) 8 4 1

2
Square

8 4−√
2

7
Square antiprism (optimum)

T ∼= A4
∼= Inn(2T ) 12 4 2

3
Tetrahedron (optimum)

12
√

5−1

2
√

5
Icosahedron (optimum)

O ∼= S4
∼= Inn(2O) 24 6 1

2
Octahedron (optimum)

8 1
3

Cube

24 ≈0.1385 Snub cube (optimum)

Table 5.2. Codes from Clifford group in GC
4,2 of cardinality ncb and minimum squared

distance δ2g .

ncb δ2g % HB Comments

30 1 66 Orthoplex (optimum). Similar than in [4].

120 0.75 64 Subset of 320-orbit

320 0.44 46

360 0.5 53

390 0.5 54 Union of 30- and 360- orbits. Similar than in [4].

480 0.32 36 Subset of 1440-orbit

710 0.44 54 Union of 30-, 320-, and 360- orbits

1440 0.2 29

2150 0.2 31 Union of 30-, 320-, 360-, and 1440- orbits

that have a relatively simple action on the basis. The Clifford group em-

ployed in quantum information theory permutes and rotates the basis of

the considered space. It is thus natural to consider the Clifford group for

codebook generation. Furthermore, in Publication V we describe several

constructions arising from the Clifford group in 4D, recovering some codes

from [4]. The results are summarized in Table 5.1 and 5.2. In Table 5.2,

the squared minimum distance of the code is evaluated in percentage of

the Hamming-type bound (3.21). The low-cardinality finite groups used

are the Klein Group V4, the symmetric group S3, the dihedral group D8,

the tetrahedral group T and the octahedral group O. Some codes meet the

Rankin bounds. Other justifications of optimality for codes in GC
2,1 can be

found in Publication III.
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Table 5.3. Some (ncb, δ
2)-flag orbit codes.

�FC
2,2

ncb δ2p δ2mu

3 1 1

4 0.66 0.88

6 0.55 0.8

15 0.19 0.35

�FC
4,4

ncb δ2p δ2mu

15 2 2

90 1 1

180 0.59 1

360 1.25 1.75

960 0.5 0.75

1440 0.22 0.40

In Publication VI, we give examples of orbit codes in other flag mani-

folds. Their cardinality and squared minimum flag distances are given in

Table 5.3, where δp and δmu are the minimum distance according to (3.11)

and (3.12), respectively.

Designing codes in the lowest dimensional flag manifolds FC
2,2

∼= FC
2,1

∼=
GC
2,1

∼= S2 and in �FC
2,2

∼= GR
3,1 is again equivalent to designing spherical

codes and in �FC
2,2

∼= GR
3,1 antipodal spherical codes, respectively. Some op-

timal orbit codes in �FC
2,2 can be obtained by pairing antipodals of orbit

codes in GC
2,1. Examples of optimal orbit codes are simplices of cardinality

3 and 4, orbits of the octahedral group O, forming a octahedron and a cube

on the sphere. The maximum simplicial configuration, i.e. of cardinality

6, forms an icosahedron, an orbit of the tetrahedral group. As expected,

the mutual unbiasedness distances δmu for these codes match the result

of [18], meeting the Rankin bound. A suboptimal packing of size 15 is also

given as orbit of the icosahedral group A5, inner automorphism group of

the binary icosahedral group 2I. The obtained squared mutual unbiased-

ness distance is 0.35, for comparision the putatively optimum code has

δ2mu ≈ 0.38.

We also provide construction in �FC
4,4 from orbits of the Clifford Group.

In this space, code elements are 4 × 4 unitary matrices modulo column

permutations and columnwise rotations. From the eigenvectors of the

group elements, we found some initial points with non-trivial stabilizers

of different orders. The resulting codes with cardinality and minimum

distance are presented in Table 5.3. From the table, one can notice than

the two considered distance functions behave quite similarly except for

the code of size 180. The generator of the 15-points codes is the identity

matrix, i.e. the code corresponds to taking the finite group directly as a

code itself. This code is a collection of 3 maximal set of mutually unbiased
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bases [27]. To a (ncb, δ
2
p)-codes in �FC

4,4, shown in Table 5.3, there exists a

corresponding (24ncb, δ
2
p)-code in FC

4,4.

5.2 Extraspecial Group Code Constructions

In Publication IV, a construction of Grassmannian packings related to

representation theory is applied to build implementation-friendly codes

when the number of transmit antennas is a power of a prime number.

The codes are multimodal and can be generated from a finite alphabet

consisting of roots of unity. Moreover, their cardinality can be decreased

in order to meet an equal power per antenna constraint.

The construction is based on a group-theoretic framework for packings

in the real Grassmannian, provided in [15] for dimensions that are pow-

ers of 2. This framework is based on the properties of extraspecial 2-

groups [14]. In Publication IV, this construction is generalized to the com-

plex Grassmannian and for any power of a prime p, based on the exten-

sions to extraspecial p-groups in [14]. For dimensions that are powers of 2,

the construction is a specific case of the constructions presented in [3–6]

for non-coherent MIMO and MIMO broadcasting. Whereas in [3–5] the

construction is generalized to construct larger codes, in Publication IV,

we look for smaller codes with good implementation properties. The gen-

eralization to any prime was also done independently in [73].

The main idea is to look for abelian subgroups that are different repre-

sentations of the same group. The subgroups are actually images of an or-

bit under the action of the Clifford group. As representations of an abelian

group are reducible to one-dimensional representations, one can connect

every subgroup with a corresponding decomposition of the representation

space into orthogonal lines, representable by a unitary matrix. The codes

consist of collections of these orthogonal bases and subspaces spanned by

them. As a by-product, the obtained codes are orbits of the Clifford group,

and can also be constructed as such. The extraspecial group machinery

has some advantages over an orbit construction, though. The sizes of

Clifford groups are large and grow factorially with the matrix dimension,

whereas extraspecial groups are rather small and easier to handle. An ho-

momorphism to vector spaces over finite field can also be used to handle

the construction, which generates results on the sizes of the achievable

codes and their minimum distances. Using the orthoplex bound for the

complex Grassmannian, and some of the codes are shown to be optimum
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complex packings, some codes reach the bound with the maximum num-

ber of points.

By using a subset of the codewords, smaller packings satisfying the

equal-power per-antenna constraint can be constructed. Some of the con-

structions are shown to satisfy this constraint in an optimal manner using

a modification of the Conway-Hardin-Sloane spherical embedding of the

Grassmannian for equal-power per-antenna codebooks.

An example of resulting codebook for four transmit antennas with 1-

and 2-stream transmissions is given in Table 5.4. The codebook splits to

three parts. Codebook A corresponds to antenna subset selection. Code-

book {B, C} satisfies the equal-power per-antenna constraint for 2-stream

transmission, while codebook C satisfies the equal power per-antenna con-

straint for both 1-stream and 2-stream transmissions. In Table 5.4, code-

words are not normalized.

Results related to extraspecial code constructions from nt = 2 to nt = 9

(excluding nt = 6 since it is not a power of a prime) are displayed in Ta-

ble 5.5. Optimality of the code is shown by reaching the orthoplex bound,

codes satisfying the equal power per-antenna constraint are commented

as “EP”, optimality with reference to this constraint is shown by reaching

the corresponding orthoplex bound. For nt = 4, the codes can be found in

Table 5.4. For the cases nt = ns, the codes consists of unitary matrices

belonging to a maximal set of mutually unbiased bases (MS-MUB), see

e.g. [27] for details.

Table 5.4. Codebooks from extraspecial-group framework for 4 transmit antennas.

A

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 0 0

−i i 0 0

0 0 1 1

0 0 −i i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 0 0

0 0 1 1

i −i 0 0

0 0 −i i

⎤
⎥⎥⎥⎥⎦

B

⎡
⎢⎢⎢⎢⎣

1 0 0 1

1 0 0 −1

0 −1 1 0

0 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 1

0 −1 1 0

1 0 0 −1

0 1 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 1 0 −1

1 0 −1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

0 i 0 −i

−i 0 i 0

⎤
⎥⎥⎥⎥⎦

C

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

−i −i i i

−i i i −i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

−i i −i i

1 1 −1 −1

−i i i −i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

−i −i i i

−i i −i i

−1 1 1 −1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

−i −i i i

−i i −i i

1 −1 −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

−i i i −i

1 −1 1 −1

i i −i −i

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 −1 −1 1

1 −1 1 −1

−1 −1 1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 1 1 1

1 −1 1 −1

−i −i i i

i −i −i i

⎤
⎥⎥⎥⎥⎦
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Table 5.5. Example of codes from the extraspecial-group framework. Cardinality is ncb

and minimum squared distance δ2c . For nt �= ns, δc corresponds to the min-
imum Grassmann distance δg. For nt = ns, δc corresponds to the minimum
permutation-invariant flag distance δp.

nt ns ncb δ2c Comments

2 1 4 1
2

EP optimum

2 1 6 1
2

Optimum

2 2 2 1 EP for any sub-rank

2 2 3 1 MS-MUB

3 1 9 2
3

EP Optimum

3 1 12 2
3

Optimum

3 3 3 2 EP for any sub-rank

3 3 4 2 MS-MUB

4 1 32 1
2

EP / columns of {C}

4 1 60 1
2

Columns of {A, B, C}

4 2 16 1 EP optimum/ EP for sub-rank / 4× 2 matrices in {C}

4 2 24 1 EP optimum / 4× 2 matrices in {B, C}

4 2 30 1 Optimum / 4× 2 matrices in {A, B, C}

4 4 8 2 EP for any sub-rank / 4× 4 matrices in {C}

4 4 15 2 3 MS-MUB / 4× 4 matrices in {A, B, C}

5 1 25 0.8 EP optimum

5 1 30 0.8 Optimum

5 5 5 4 EP for any sub-rank

5 5 6 4 MS-MUB

7 1 49 6
7

EP optimum

7 1 56 6
7

Optimum

7 7 7 6 EP for any sub-rank

7 7 8 6 MS-MUB

8 1 512 1
2

EP

8 1 1080 1
2

8 2 896 1 EP

8 2 1260 1

8 4 112 2 EP optimum

8 4 126 2 Optimum

8 8 64 4 EP for any sub-rank

8 8 135 4 15 MS-MUB

9 1 243 2
3

EP

9 1 360 2
3

9 3 108 2 EP optimum

9 3 120 2 Optimum

9 9 27 6 EP for any sub-rank

9 9 40 6 4 MS-MUB

37



Flag and Stiefel Orbit Codes

5.3 Expansion to Stiefel Codes

Here, we consider Stiefel orbit codes arising from the linear representa-

tion of the projective groups considered in the previous sections. The codes

are expansions of Grassmann orbit codes as direct products of a Grass-

mannian code and a unitary code. Indeed, the obtained codes are more

than just a central extension of the Grassmann code. The codes obtained

are extensions of Grassmannian codes by a finite group of right unitary ro-

tations. Non-trivial stabilizers are only possible if some non-trivial group

elements have eigenvalue 1. Otherwise, the size of the codebook is of the

size of the linear group considered.

In Publication VI, we give examples of Stiefel codes arising from the

Grassmann codes of Publication V. Their cardinality and minimum dis-

tance are summarized in Table 5.6, where Ng and δg stand for the car-

dinality and minimum distance in the Grassmann manifold, whereas Ns

and δs stand for the cardinality and minimum distance in the Stiefel man-

ifold. Their Stiefel squared minimum distances are evaluated in percent-

age of the Hamming-type bound (3.20).

The Stiefel manifold VC
2,1 is isomorphic to the 3-sphere, and these two

spaces can be easily mapped to each other. Codes described for VC
2,1 are

thus not new and are only interesting as tutorial examples. Some of the

codes are optimal. An orbit of D8 gives an optimal (8, 2)-orthoplex Stiefel

code. An orbit of S3 leads to an example of optimal joint Grassmannian-

Stiefel packings with cardinality 3, meeting the simplex bounds for both

manifolds. The Stiefel orbit of S3 of cardinality 6 and squared minimum

distance 2 is a suborthoplex and is also optimal. Orbits from the binary

tetrahedral group 2T give an optimal Stiefel (24, 1)-packing, vertices of

the 24-cell. This is a well-known polyhedron in 4D with well-understood

symmetry, and known to lead to an optimal packing [84]. Orbits from the

binary octahedral group 2O lead to a codebook of 48 points on the Stiefel

manifold with squared minimum distance 2−√
2 ≈ 0.59, a combination of

the 24-cell and its dual which is also a 24-cell. For comparison, the best

known packing of this size has a squared minimum distance of ≈ 0.62 [84].

Using the central extension 2C2 of the Clifford group in 4D, we describe

some codes in VC
4,1 and VC

4,2. In VC
4,1, the orbit of a (60, 0.5)- Grassmann code

expands to a (480, 2−√
2)- Stiefel code. The orbit of a (480, 3

16)- Grassmann

code expands to a (3840, 2− 5
2
√
2
)- Stiefel code. In VC

4,2, the optimum Grass-

mann orthoplex orbit generates an extension to a (5760, 4−2
√
2)- Stiefel
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code. The 320-, 360-, and 1440- Grassmann orbit lead to a (15360, 4−2
√
2)-,

(23040, 1)-, and (46080, 0.40)− Stiefel code, respectively. All these Stiefel

codes are new.

Table 5.6. Some (Ns, δ
2
s)-Stiefel orbit codes that are expansions of (Ng, δ

2
g)-Grassmann

orbit codes.

Dim Group Order Ng δ2g Ns δ2s %HB

2× 1

D8 8

2 1 4 2 62

2 1 8 2 86

4 0.66 8 0.85 37

S3 6

2 1 6 2 75

3 0.75 3 3 84

6 0.5 6 0.59 22

D16 16
4 0.5 8 0.59 25

8 0.37 16 0.41 26

2T 24 4 0.66 24 1 81

2O 48 6 0.5 48 0.59 73

4× 1 2C2 266!
60 0.5 480 0.59 32

480 0.19 3840 0.23 21

4× 2 2C2 266!

30 1 5760 1.17 41

320 0.44 15360 1.17 47

360 0.5 23040 1 43

1440 0.2 46080 0.4 19
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6. Joint Grassmann-Stiefel Codes for
Product Codebooks

We consider a product codebook strategy where a single small codebook

is implemented at the receiver to quantize larger MIMO channels, e.g.

aggregate channels of cooperative MIMO base stations or point-to-point

channels with large antenna configuration. This flexible method that

reuses small point-to-point codebooks has many advantages. Only a sin-

gle per-cell codebook needs to be stored for a fixed transmission rank, re-

ducing design problems to smaller spaces which are typically easier to dis-

cretize. Large product codebooks naturally inherit some implementation

properties from the per-cell codebook, e.g. input alphabet and transmit

power per-antenna.

Focusing on the codebook design under this scenario, we propose a novel

joint Grassmann-Stiefel codebook design aiming at good quantization of

Grassmann and Stiefel manifolds with a single codebook, so that prod-

uct codebook quantization becomes competitive with global Grassmann

quantization. We present a vector quantizer to generate Stiefel codebooks

conditioned on a fixed Grassmannian codebook. Some concrete examples

of analytical joint Grassmann-Stiefel packings are also given. We finally

discuss low-complexity codeword selection methods.

6.1 Product Codebook-Based Precoding

We follow the product codebook principle of [16] for feeding back CSI. This

was proposed in order to accommodate to the possible dynamic number of

cooperating BSs and to deal with heterogeneous path loss effects. Details

on the considered CoMP channel model are in Chapter 2. A per-cell code-

book C = {C1, . . . ,Cncb
} of (nt × ns)-Stiefel matrices is shared between

the transmitters and the receiver. This codebook is independent of the

number of cooperating BSs, and large-scale path loss effects. The receiver
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Figure 6.1. Illustration of product codebook principle for nbs = 1, 2 and 3. Normalization
is not shown.

quantizes Vss with a product codebook Cpr. The product codebook is a

Cartesian product of the per-cell codebook: Cpr = 1√
nbs

C ⊗ · · · ⊗ C, i.e. a

codeword in Cpr is a normalized concatenation of nbs single cell codewords.

This is illustrated in Fig. 6.1. Finally, the receiver feeds back the set of

indexes of the codewords of C that form the selected product codeword.

Recall that with ML receiver, when considering the global (nbs×nt)×ns-

system, the performance of the product codebook is related to its interpre-

tation as a discretization of the Grassmann manifold [23,53,56,61]. While

performance of the product codebook is invariant under right unitary ro-

tations of the product codewords, the unitary invariance does not hold

anymore for the per-cell codebook. The space of quantization is then the

Grassmann manifold GC
nt,ns

for only one BS, and the Stiefel manifold VC
nt,ns

for the other (nbs − 1)-BSs.

In Publication VII, we show that for a Haar distributed right singular

space Vss, the optimum Stiefel quantization of a component of Vss is also

Haar distributed. For the first BS, C thus has to be a uniform Grassman-

nian codebook, whereas for the remaining BSs, C also has to be a uniform

Stiefel codebook. To construct uniform per-cell codebook, one can directly

extend the standard Grassmann codebook criteria to the Stiefel manifold.

In Publication VII, we motivate our choice of Stiefel distance by showing

that the minimum Grassmann chordal distance of the product codebook

Cpr can be lower bounded by a function of the Grassmann and Stiefel chor-

dal distances of the per-cell codebook C:

δ2g(Cpr) ≥ min

{
δ2g(C),

δ2g(C) + (nbs − 1)δ2s(C)
n2
bs

}
. (6.1)

The proof is constructive and the bound is thus often tight.

Using a product codebook strategy results in two non-idealities.

i) A single-cell codebook designed to quantize the Grassmann manifold
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Figure 6.2. Performance comparison of product codebooks and global Grassmann code-
books at 10dB SNR.

GC
nt,ns

does not necessarily result in a good quantization of the Stiefel man-

ifold VC
nt,ns

.

ii) A residual loss would be also expected compared to a global codebook

quantizing the larger Grassmannian GC
nbsnt,ns

, corresponding to the signal

eigenspace of the receiver.

To make the performance of product codebook quantization close to op-

timal, we propose a novel joint Grassmann-Stiefel design of the per-cell

codebook C. An example of the achieved performance of such a design is

illustrated in Fig. 6.2(a) and Fig. 6.2(b). Except when the per-cell code-

book size is equal to one bit, the average performance of the proposed

design is close to that of a global Grassmannian codebook (constructed

here via Lloyd’s algorithm). The gain of the proposed design is illus-

trated by comparison with a product codebook based on the same per-

cell Grassmannian codebook but with (putatively) worst choice of Stiefel

representatives. The mean performance of the Grassmann codebook av-

eraged over all possible Stiefel representatives is also shown. The gap

between the best and worst product codebook increase with increasing

number of BSs, while relatively constant with increasing feedback bits.

When the codebook size grows, product codebook performance averaged

over Stiefel representatives is asymptotically reaching the performance

of global codebook.

6.2 Joint Grassmann-Stiefel Codebooks

In order to have good per-cell codebooks that can be used in product code-

books as discussed above, we propose that a codebook is constructed by
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Figure 6.3. Joint Grassmannian-Stiefel codebook design in toy scenario of real codebook
for 3 transmit antennas. On the upper graph the optimum 2-bit Grassman-
nian packing in GR

3,1, a set of 4 antipodal points forming a cube. A Grassman-
nian codeword may be represented by any of the two points of same color,
lying on a line through the origin. On the lower part, two alternatives of 2-
bit Stiefel codebooks generating the above Grassmannian codebook: a square
and a tetrahedron.

first designing a Grassmannian codebook according to standard criteria

such as maximizing the minimum distance or minimizing an average dis-

tortion. Then, the representative in each Grassmannian plane in the code-

book is chosen to optimize a metric on the Stiefel manifold. This means

that we select a good Stiefel codebook conditioned on the codebook being

simultaneously a good Grassmannian codebook.

The joint Grassmann-Stiefel codebook design problem is illustrated by

the toy scenario of building a real codebook of four codewords for a trans-

mission from 3 antennas in Fig 6.3. This leads to a rare example where vi-

sualization of the proposed approach is possible. The real Grassmannian

GR
3,1 that needs to be discretized is the set of lines through the origin in the

3D Euclidean space. It can be understood as the set of antipodal points

on the real unit sphere. The corresponding Stiefel manifold is the space

of all 3D unit-norm vectors, and can be understood as the full sphere. A

Grassmannian code is then a set of antipodal points, and choosing a rep-
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Table 6.1. 2-bit Square Codebook for 2Tx antenna and a proposed modified version max-
imizing the average of the Stiefel distance between the codewords

Square CB 1√
2

⎧⎨⎩
⎡⎣1
1

⎤⎦ ⎡⎣ 1

−1

⎤⎦ ⎡⎣1
i

⎤⎦ ⎡⎣ 1

−i

⎤⎦⎫⎬⎭
Stiefel-improved CB 1√

2

⎧⎨⎩
⎡⎣1
1

⎤⎦ ⎡⎣ 1

−1

⎤⎦ ⎡⎣−1

−i

⎤⎦ ⎡⎣−1

i

⎤⎦⎫⎬⎭
Squared Grass. dist.

Squared Stief. dist.

Square CB Stiefel-improved CB

1

1
� 2

1 �
2

1 �
2

1

1
� 2

2

1

1

1

2

1

2

3

3

3

2

3

resentative for every Grassmannian codeword means simply choosing one

of the two antipodal points on the sphere. A Stiefel-codebook, in turn, is

a spherical code. The best four-codeword Grassmannian packing is found

by taking the vertices of a cube – the eight vertices of the cube consist

of four pairs of antipodal points, i.e. four Grassmannian lines. From

this cube, there is four possible non-equivalent four-codeword spherical

codes: for example by taking only points in the upper hemisphere we get

a square, or by taking two points in both upper and lower hemispheres

we get a tetrahedron. Those two alternative Stiefel codebooks generating

the same Grassmannian code are given in Fig 4.3. The best Grassmann-

Stiefel codebook is obtained by taking the vertices of the cube that form

a tetrahedron. It turns out that the vertices of the tetrahedron gives ac-

tually the optimal 4-point spherical (Stiefel) codes under several crite-

ria [69]. In this simple example, it is thus possible to have a codebook

that is simultaneously an optimal Grassmannian and Stiefel packing.

This design can be applied to modify existing low-complexity codebooks

from the literature. In Table 6.1, we give a Stiefel-improved version of

the 2-bit Square Codebook discussed in Publications III and IV, which is

related to the Mode 1 codebook of WCDMA [93] and the LTE codebook for

2-transmit antennas [51]. The modified version is obtained by only chang-

ing the sign of the third and last codeword. The squared Stiefel distances

between the codewords of the proposed codebook are either 2 or 3, while

for the original codebook they were either 1 or 2. This codebook has been
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found by brute-force search over QPSK alphabet for the three last code-

words. Furthermore, simulations over all possible phases suggest that

this is putatively the best codebook conditioned on the original codebook

maximizing the p−mean Stiefel distance for p = 1, 2,−1 and −2.

6.3 Lloyd-type Algorithm for Joint Grassmann-Stiefel Codebook

A Lloyd-type algorithm to generate a low-distortion Stiefel codebook con-

ditioned on a Grassmann codebook is presented in Publication VII.

The algorithm is a non-trivial generalization of Lloyd’s algorithm, where

a centroid at a given iteration, used to construct a Voronoi cell, is not nec-

essarily the one updated to the new centroid of the cell. In each Voronoi

cell of the Stiefel manifold, the original codeword is not replaced by the

computed centroid. Instead, the algorithm is looking for the closest code-

word to the the centroid using Grassmann distance rather than Stiefel

distance. As a result, for each Voronoi cell, the updated codeword is not

necessarily belonging to the original Voronoi cell. Then the selected code-

word is replaced by the Stiefel representative in its Grassmann equiva-

lence class closest to the centroid. Indeed, during a single iteration some

codewords can be updated several times and some others not at all. This

occurs in particular in the first iterations. This phenomenon is related to

the non-trivial embedding of the Grassmannian to the Stiefel manifold,

and is crucial for convergence. Simulation results show that the proposed

algorithm converges well.

This feature is illustrated in Fig 6.4 for a toy scenario of choosing the

Stiefel representative of a real Grassmann codebook in GR
2,1. The Stiefel

manifold in this case is the unit circle S1, and the Grassmannian is the set

of lines through the origin in 2D, or pairs of antipodal points on a circle.

At Step 1) , the Stiefel representatives of the three Grassmannian lines

have been given in the right half circle. In Steps 2) and 3), the algorithm

generates a random source and partitions the Stiefel manifold based on

a nearest neighbor rule. The Stiefel Voronoi cells corresponding to these

codewords are depicted in blue, red and orange. Non-trivial differences

as compared to the conventional Lloyd’s algorithm can be seen in Step

4) where the algorithm sequentially computes a centroid and updates a

codeword. The centroid of the orange Voronoi cell is depicted in a). It

happens to be closer to the red Grassmannian line than to the orange

one as depicted in b). Thus in c)-d) we update the Stiefel representative

46



Joint Grassmann-Stiefel Codes for Product Codebooks

1) 2)-3)

k = ’orange’

Centroid
i = ’red’

Closest Grass. line Update ’red’

R

Converge to

a) b) c)-d)

4)

4)
k=’red’

k=’blue’

5)

Figure 6.4. Illustration of the Lloyd-type algorithm for a real Stiefel codebook in VR
2,1

∼=
S1 conditioned on a real Grassmannian codebook in GR

2,1.

of the red line to this centroid, not the representative of the orange line.

Next, if we consider the centroid of the red Voronoi region, we update the

representative of the orange line, whereas the centroid of the blue region

leads to the representative of the blue line being fixed. As a consequence,

we have found the optimum three-element Grassmann-Stiefel packing in

5).

6.4 Codeword Selections

For a given codebook, optimum quantization of the nbsnt × ns channel

eigenspace requires exhaustive search over the codebook. Here, the prod-

uct codebook has of cardinality nnbs
cb . This leads to exponential complexity

w.r.t the number of BSs O (
nnbs
cb

)
. Complexity can be reduced from O (

nnbs
cb

)
to O (nbsncb) by selecting per-cell components rather than selecting jointly

the product codeword [16, 86]. In [16], a lower-complexity selection al-

gorithm trading performance against complexity is proposed, based on

two successive exhaustive searches of size nbsncb and knbs , where k is the

cardinality of preselected per-cell sub-codebooks. Independent and serial

selection are proposed for single-stream beamforming in [42,86].

In Publication VII, we discuss five different codeword selection princi-

ples for multi-stream product codebooks. Two joint selection methods of
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complexity O (
nnbs
cb

)
are considered, followed by three selections of com-

plexity O (nbsncb).

• Joint codeword selection is done by selecting the product codeword that

minimizes the global Grassmann distance to Vss [16]. The complexity is

O (
nnbs
cb

)
.

• Joint codeword selection with transformed codebook improved the pre-

vious selection method in case of path loss imbalance [86] by borrowing

the idea of transformed codebooks for spatially correlated channel [54].

The complexity remains O (
nnbs
cb

)
.

• Independent Grassmann codeword selection was an alternative proposed

in [86]. Here, each single cell channel component matrix is quantized in-

dependently using the Grassmann chordal distance. This method leads

to a loss of performance as it does not take into account the phase ambi-

guity between the components of the optimum precoding vector as rec-

ognized in [86], or the more general unitary matrix ambiguity. The com-

plexity is reduced to O (nbsncb).

• Independent Grassmann-Stiefel codeword selection: In order to quantize

the per-cell channel components independently and efficiently, the uni-

tary matrix ambiguity between the different channels should be taken

into account. We suggest that first the strongest channel is quantized

using the Grassmannian distance. Then the unitary rotation R not seen

by this Grassmannian codeword selection can be found by performing a

polar decomposition. The channels from the other BSs, with the rota-

tion R taken into account, are then quantized using the Stiefel distance.

Complexity is O (nbsncb).

• Serial Codeword selection: This method borrows the main idea of serial

selection from [42], adapted here to perform codeword selection with a

transformed codebook in a sequential manner. The strongest channel is

first quantized as in the previous independent selection method. Then

the per-cell components are selected sequentially taking into account

the large-scale channel components. Complexity is O (nbsncb).

Figure 6.5 depicts the variation of performance when the large scale
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Figure 6.5. Spectral efficiency of 4 × 1 and 8 × 2 systems using 2 × 1 and 4 × 2 code-
books respectively, as a function of large scale path gains imbalance. The
strongest channel is fixed at a SNR of 6 dB. Codebooks with one feedback bit
per transmit antenna. The legend indicates the codeword selection methods.
Performance of original codebooks is represented in dashed lines, while for
Stiefel-improved versions, in solid lines.

path gain for the first and the second BS are different. The lower curves

represent 2 cooperative BSs with 2 Tx antennas with 2-bit Square Code-

book and its Stiefel-improved version of Table 6.1. The upper curves rep-

resent two 4-antenna BSs serving a 2 antenna user with 4-bit C-Codebook

from Publication IV and Stiefel-improved version by the proposed Lloyd-

type algorithm. The graph can be interpreted as the performance depend-

ing of the position of the user, from the center of the cell to the cell edge.

The Stiefel-improved codebooks lead to better performance for all code-

word selection methods except independent selection with Grassmann

distance. Using the Stiefel distance consequently improves performance

of independent selection. The serial selection offers slightly better perfor-

mance than independent Grassmannian-Stiefel selection. Both the inde-

pendent Grassmannian-Stiefel selection and the serial selection perform

close to joint selection. The performance gap between joint selection and

independent and serial selection first reduces and then is reversed when

the large scale path gain imbalance grows. With imbalance, joint selec-

tion is not optimal anymore as it quantizes the channel components with

equal weight. Transforming the codebook cures this problem, and gives

the overall best selection method: matching the performance of indepen-

dent selections for large imbalance and joint selection for no imbalance.
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7. Flag Codebooks for MIMO Systems
with Linear Receiver

In point-to-point communications with maximum likelihood (ML) receiver,

the performance of a unitary precoding codebook depends on the distance

properties of the Grassmannian planes generated by the codebook. This

has led to the well-known Grassmannian codebook design [55] where the

codebook is understood as a discretization of the Grassmann manifold.

While Grassmann precoding has attracted much attention, other trans-

mission scenarios or constraints may lead to the need to design codebooks

in other flag manifolds.

We illustrate this by focusing on precoding for MIMO systems with

a linear receiver, such as a zero-forcing (ZF) or minimum mean square

(MMSE) receivers. With a linear receiver, the Grassmannian precoding

design used for ML receivers is not anymore appropriate [57]. In Publi-

cation VIII, the spaces of interest are shown to be simple permutation-

invariant flag manifolds.

Of specific interest is the case when the number of streams, and the

number of receive and transmit antennas are the same. In this set up, the

corresponding Grassmannian collapses to a single point making Grass-

mannian precoding irrelevant. Accordingly, precoding does not improve

the information rate with ML receiver. On the other hand, with linear re-

ceiver, gain may be obtained from precoding using the proposed flag code-

book design. Simulations show that this gain is relatively small when only

few feedback bits are used for more than two transmit antennas. This dif-

fers from the behavior of low-rank transmission, where it is known that a

small number of feedback bits can allow near optimal channel adaptation.
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7.1 Achievable Information Rates

Let the singular values of H be σ
1/2
1 ≥ . . . ≥ σ

1/2
nm with nm = min(nr, nt).

For a fixed precoding vector W ∈ Cnt×ns , the achievable rate depends

on the receiver type. Denote the singular values of the effective channel

Heff = HW by λ
1/2
1 ≥ . . . ≥ λ

1/2
ns .

Maximum Rate: Without water-filling and for a given transmission rank

constraint ns, the maximum achievable rate of the system is [23,87]

Ins =

ns∑
k=1

log2(1 + γσk) ≤ log2 det(I+ γHHH) = Inm (7.1)

where Inm is the maximum achievable rate without transmission rank

constraint.

ML receiver: With maximum likelihood receiver the achievable rate with

precoding W is

Iml(W) = log2 det(I+ γHeffH
H
eff) =

ns∑
k=1

log2(1 + γλk). (7.2)

We have Iml(W) ≤ Ins . The latter is achievable with Wopt = Vns [23]

where Vns ∈ Cnt×ns is a matrix composed by the right singular vectors of

H corresponding to its ns-largest singular values.

Linear receiver: The receiver employs a linear receiver of the form FHH
eff ,

where F = (γHH
effHeff + aIns)

−1. With a = 0, 1, we get a ZF and MMSE

receiver, respectively. The corresponding rate is [39]

Ilr(W) =

ns∑
k=1

log2(1 + γk) , (7.3)

where γk = (Fk,k)
−1 − a is the post-processing SINR of the k-th data

stream. In general we have Ilr(W) ≤ Iml(W). In [57] it is shown that

there exists a unitary matrix U ∈ Uns such that Ilr(WU) = Iml(W) and

a precoder partitioning is proposed accordingly. As for ML receiver, an

optimum precoding matrix is given by Wopt = Vns .

7.2 Linear Receiver versus ML Receiver

The following difference between linear and ML receivers should be stressed:

1) Full rank n-by-n MIMO: For ns = nt = nr, we have Iml(W) =

Inm for any W ∈ Unt and thus unitary precoding does not change the

transmission rate with ML receiver. With a linear receiver, the rate is a

function of the precoding matrix, and Ilr(W) ≤ Inm .
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2) Space of non-equivalent precoder: Let ∼ be the equivalence re-

lation declaring two precoding matrices equivalent, so that W1 ∼ W2, if

and only if I(W1) = I(W2).

ML receiver: The information rate is invariant under any right-unitary

rotations of the precoding codeword: Iml(WU) = Iml(W) for any U ∈
Uns . The set of equivalence classes of precoding matrices is exactly the

Grassmann manifold GC
nt,ns

.

Linear receiver: The statement above does not hold anymore. The infor-

mation rate with linear receiver (7.3) is invariant under permutations and

phase multiplications of columns of the precoding matrix, Ilr(WDP) =

Ilr(W), for any permutation matrix P ∈ Uns and any diagonal matrix

D ∈ Uns . The set of equivalence classes of precoding matrices is thus the

permutation-invariant flag manifold �FC
nt,ns

.

7.3 Codebook Designs

Now we assume that the channel matrix is a random variable and that

the transmitter picks the precoding matrix from a codebook C following a

quantization rule. Given the instantaneous transmission rate I(H,W) of

a precoding matrix W, the average information rate is

I = EH

[
I(H,Cq(H))

]
. (7.4)

The codebook should be designed as a discretization of the space VC
nt,ns

/∼
of equivalence classes of precoding matrices. The task thus becomes:

ML receiver: discretize the Grassmann manifold GC
nt,ns

,

Linear receiver: discretize the flag manifold �FC
nt,ns

.

An optimum quantization q∗(H) = argmax1≤i≤nb
I(Ci) is untractable.

For Grassmannian precoding, quantization with Grassmann chordal dis-

tance, qg(Vns) = argmin1≤i≤nb
dg(Vns ,Ci), has been considered instead

and shown to be asymptotically optimum [23]. Corresponding good code-

books are thus designed by minimizing the average squared distortion

E[d2g(Vns ,Cqg(Vns )
)] [22, 23]. We extend this principle to codebook design

on the flag manifold by replacing the chordal distance dg by the distance

dp defined in (3.11). A corresponding Lloyd’s algorithm providing low-

distortion codebooks is given in Publication VIII.
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7.4 Simulations

We illustrate by simulations the performance of the proposed design for

i.i.d Rayleigh channels, using codebooks generated by the Lloyd’s algo-

rithm described in Publication VIII and the flag orbit codes of Chapter 5.

While the codebooks has been designed using the distance metric dp, we

use the optimal quantization metric, i.e. the information rate, for selec-

tion of the codeword at the receiver. Indeed, unlike for the Grassmann

precoding where optimal selection and chordal distance selection show

similar performance, codeword selection on flag manifold with dp injures

a significant performance loss.

Fig. 7.1 shows the information rate for 4 × 2 MIMO systems with ZF

receiver, rank-2 transmission and 4-bit codebooks in �FC
4,2 and GC

4,2. The

flag manifold codebook outperforms the Grassmannian with more than

1 dB. The performance of the precoding partitioning scheme of [57] is

also depicted. Its performance falls between the Grassmannian and flag

codebooks. In the partitioning, bits are split equally between Grassman-

nian precoding and 2-stream orthogonalization, and codebooks for both

are generated by Lloyd’s algorithms.

Fig. 7.2 shows the information rate for a full-rank system with an equal

number of transmit and receive antennas. Additionally to codebooks from

Lloyd’s algorithm, simulations are performed with flag orbit codes of Chap-

ter 5. The size of the codes is expressed in bits. In this scenario, as pointed

above, precoding is irrelevant if ML receiver is used, while for a linear re-
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Figure 7.1. Information rate with ZF receiver for nt = 4, nr = ns = 2, four-bit (nb = 16)
codebooks designed in flag �FC

4,2 and Grassmann GC
4,2 manifolds, and precoding

partitioning [57] with 2 bits for Grassmannian and orthogonalization each.
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ceiver, precoding has an effect. For 2× 2 systems, it is possible to recover

most of the gap between no precoding and perfect precoding with a few

feedback bits. However, when the number of antennas increases, e.g. for

nt = nr = 4 in Fig. 7.2, the marginal gain for a small number of bits is

small. In the SNR range depicted, the performance gap between no and

perfect precoding is some 5dB. Precoding with 10 bits recovers only half

of this gap. The codebooks from Lloyd’s algorithm perform slightly better

than the orbit code.

The curves on Fig. 2 of Publication VIII correspond to performance with

codeword selection using the flag chordal distance. Thus, in Publica-

tion VIII the performance is lower compared to Fig. 7.2 where optimum

selection is performed.
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8. Conclusions

Motivated by applications to codebook-based unitary precoding for limited-

feedback MIMO systems, we have considered coding in flag manifolds

equipped with chordal distances. Codebook-based unitary precoding is

widely employed, and several codebook designs in the literature are exam-

ples of flag manifold discretization. Analytical constructions are consid-

ered to acquire analytical control of the codebooks, so that e.g. providing

low implementation-complexity for practical systems.

We described spherical embeddings of flag manifolds with the corre-

sponding chordal distances. Flag codes are a subclass of spherical codes,

and coding and geometrical problems on flag manifolds are mathematical

problem of independent interest. We have discussed centroid computa-

tion, volume of metric balls, and Hamming-type bounds on Grassmann

and Stiefel codes with chordal distance. Geometry of manifolds depends

on the choice of the Riemannian metric, implying an Euclidean emded-

ding. With a chordal distance, understanding the corresponding embed-

ding enables leveraging results from Euclidean geometry literature.

Code constructions are based on geometric intuition from the lowest di-

mensional flag manifolds, the circle and the real sphere. We have dis-

cussed the problem of designing closed-form codebooks for two transmit

antennas. The problem reduces to a quantization problem on a real 2-

sphere. Utilizing a simple isomorphism, we were able to derive simple

closed form codebooks from spherical arrangements with inherent low

implementation complexity. The discussed code construction is specific

for two transmit antenna systems and cannot be straight forwardly gen-

eralized to higher dimensions.

For more transmit antennas, i.e. higher dimensional codebooks, we con-

sider three different constructions: orbit codes, extraspecial group con-

structions, and product codebooks.
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We discussed flag orbit codes arising from projective unitary group rep-

resentations. We described few examples in 2D and 4D for the Grassmann

manifold and unitary matrices modulo column permutations and column-

wise rotations. We also described Stiefel orbit codes, as group expansions

of constructed Grassmann orbit codes. For dimensions equal to a power

of a prime, we have presented a construction of Grassmannian packings

related to representation theory of extraspecial groups. We prove the opti-

mality of several of the constructed codebooks with reference to an equal-

power per-antenna constraint. For MIMO precoding, orbit constructions

enable building well structured codebooks. However, an orbit construc-

tion has the drawback of giving very little freedom in controlling the size

of the codes, which often is not an exact number of bits. Also, for many

antenna systems, this requires manipulating very large groups.

We have considered product codebook quantization where codewords

from a single small point-to-point codebook are concatenated to quantize

larger MIMO channels, e.g. channels from cooperative BSs. We have

proposed a joint Grassmann-Stiefel codebook design to diminish the per-

formance gap between product codebook quantization and global Grass-

mannian quantization. We have investigated methods to construct good

Stiefel codebooks conditioned on Grassmannian codebooks. A Lloyd-type

algorithm on Stiefel manifold conditioned on a given Grassmannian code-

book is proposed, as well as some closed-form examples of joint Grassmann-

Stiefel codebooks. For large MIMO system, product codebook framework

is a promising method as it offers very good performance, and also reduces

the codebook design to smaller spaces which are easier to handle.

We finally concentrated on the design of unitary codebooks for MIMO

systems with linear receivers. The correct spaces of quantization are cer-

tain permutation-invariant flag manifolds. The pertinence of the design

principle was illustrated by simulations. In full-rank MIMO with linear

receiver, the capacity is not achieved by default unlike with ML receiver.

Moreover, for more than two transmit antennas, precoding with limited

feedback offers only small gain. Significant amounts of feedback bits are

needed to improve the rates of high-rank MIMO transmission with linear

receivers. This behavior differs significantly from low-rank unitary pre-

coding whose success arises from good marginal gains for few feedback

bits.

Possible directions for future research include extending the volume ball

estimation, kissing radius and Hamming bound to other flag manifolds.
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Using this volume estimation, it would be possible to generalize bounds

on rate-distortion tradeoff in Grassmann manifolds [22] to Stiefel mani-

folds [49] and other flag manifolds. Then, distortion bounds may be used

for evaluating the information rate of flag precoding. Accordingly, it would

be interesting to quantify analytically the observation of Chapter 7 on

the small marginal gain of precoding for full-rank MIMO with linear re-

ceiver. Alternatively, differential precoding could be investigated to cure

this problem. Finally, another direction of future work is to build new

orbit codes by investigating other finite groups.
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Errata

Publication I

p. 2299, first paragraph, the principal angles are given by the SVD of Y †Z

not Y Z†.

Publication III

The symbol of the border of the spherical cap Ci(z) did not print correctly,

as a result both the cap and its border are defined by Ci(z):

• p. 6597, the last equation should be:

Ci(z) = {y ∈ S2(12) : |y − xi|2 = z}.

• p. 6598, the derivation of equation (24) should read:

A(Ci(z) ∩ Vi) =

∫∫
Ci(z)∩Vi

1

2
dz dφi

=

∫ z

0

(
1

2

∫
Ci(z)∩Vi

dφi

)
dz.

The pdf of the squared distance fd2c is then obtained by straightforward

differentiation:

d

dz
(A(Ci(z) ∩ Vi)) =

1

2

∫
Ci(z)∩Vi

dφi,

and finally we have

fd2c (z) =
1

2π

N∑
i=1

∫
Ci(z)∩Vi

dφi.
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Errata

The integral in the last equality can be calculated by taking into account

the fact that the discontinuities of Ci(z) ∩ Vi belong to the borders of Vi.

Publication IV

• p. 5 Table III, the entries of some codewords are incorrect. A corrected

version is given in Table 5.4.

• p. 3 Proposition 2, and p. 4 Proposition 4, totally singular subspaces

should be understood as totally isotropic subspaces. Singular and isotropic

subspaces was the terminology used in [14] when considering vector

spaces over the field of integers modulo 2 and 4, leading to real and

complex packings, respectively.

• p. 3, last line, the normalization {1/
√
2A} is incorrect, the factor 1/

√
2

apply only to the last four codewords of A and not the first two ones.

Publication VIII

• Selection of codewords is not clearly specified in the paper, we provide

details here:

– In Fig. 1, as we were comparing coding in different manifolds, the

codeword selection was performed using the optimal selection that cor-

respond to maximize the information rate. It follows that the state-

ment p. 5 “When using this scheme, we have selected the codeword

minimizing the flag distance dp over all combinations of Grassman-

nian and orthogonalization codewords.” is erroneous.

– In Fig. 2, the codewords selection was performed with the permutation-

invariant flag chordal distance dp.

• Additionally, there are typos on the labelling of Fig. 2: for Nt = 4, the

curves corresponds to 1, 2, 3, and 5 feedback bits.
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