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1. Introduction

This thesis has been divided into two parts. In the first half we have stud-

ied a few of the key properties and processes that define the properties

of interfaces and surfaces. For interfaces in general, the defects can se-

riously affect or even determine the macroscopic properties of materials

even though their size is only of order of few atoms and the concentra-

tion a few ppm. They affect diffusion, and especially in semiconducting

materials, they are electronically active. They can reduce channel mo-

bility, increase leakage current and change the optical properties of the

material.

For surfaces the adatom absorption and diffusion is an important step

in predicting the growth properties of deposited material. Especially on

insulating crystal and thin film surfaces the absorption of metal adatoms

forming nanoclusters is important in understanding the catalytic proper-

ties of these nanoclusters. For these systems the charge transfer between

the surface and the absorbed metal atom also influences the reactivity of

the nanocluster.

Computational methods mentioned in this thesis, namely density func-

tional theory, have been applied to study the properties Si −HfO2 inter-

faces and metal adatoms on alkali halide surfaces. By creating an atomic

scale model and starting from first principles we obtain detailed informa-

tion of the system. These results can then be used to help the design of

better devices and provide explanation of experimental results.

Although widely used and found successful, we find that the methods

we have used in the first part of thesis do not provide high enough ac-

curacy in all aspects. To make reliable predictions in the previous cases

we need to describe defect levels and charge localization with higher ac-

curacy. The second part of the thesis focuses on implementing a better

1



2 CHAPTER 1. INTRODUCTION

method as implemented in so-called the hybrid functionals, and showing

that we indeed improve our description of materials properties.

Our implementation is validated by calculating the properties of five

materials with different electronic properties. The predictive power of the

hybrid method is compared against the results of standard PBE-functional

and different implementations of hybrid functional approach are consid-

ered.

The results of this work have been published in articles I-IV. In publica-

tion I a model Si − HfO2 interface is grown and the properties of defect

states are studied. Publication II explains Green’s functions transport

method and applies this to the same silicon hafnia interface to obtain in-

formation applicable to real life leakage current. Article III concentrates

on absorption, diffusion and charge stability of metal adatoms of gold,

silver and palladium on the surfaces of NaCl, KCl and KBr.

In article IV we present our implementation of the hybrid function-

als into the Siesta density functional code and validate the approach by

studying five materials with different electronic properties. The imple-

mentation of hybrid functional into the SIESTA code has been the most

demanding part of this thesis and in addition to the result, this thesis

focuses on describing the used approach thoroughly.



2. Theory and models

The physics of studied systems at the atomic scale often need to be de-

scribed by quantum mechanics. The properties of a quantum mechani-

cal many-body system are calculated from the many-particle Schrödinger

equation

ĤΨ(r1, . . . , rN ) = EΨ(r1, . . . , rN ), (2.1)

where E is the energy of the many-particle electron state. The Hamil-

tonian of a system of N interacting electrons at sites ri and nuclei with

charge Zi and masses MI at sites RI is given by

H(r) = −1
2

∑
i

∇2
i −

∑
i,I

ZI

|ri −RI | +
1

2

∑
i �=j

1

|ri − rj |

−
∑
I

1

2MI
∇2

I +
1

2

∑
I �=J

1

|RI −RJ | . (2.2)

All units are given in atomic units. As the inverse masses of nuclei are

very small it is common to first assume the kinetic energy of atoms to be

zero while solving the equation for electronic degrees of freedom. Then

later the nuclei degrees of freedom are treated classically. This is the so-

called Born-Oppenheimer or adiabatic approximation.

While methods for solving this equation directly exist, they are compu-

tationally extremely expensive and thus only applicable to systems with

a small number of electrons.

In the framework of this thesis, two approaches to solve the adiabatic

approximation of the quantum many-body problem are applied: Density

functional theory (DFT) and a hybrid method combining DFT and Hartree-

Fock (HF) method calculated with Kohn-Sham orbitals. Both HF and DFT

are approximative methods and, in principle, provide information only on

the ground state of the system.

3



4 CHAPTER 2. THEORY AND MODELS

2.1 Hartree-Fock theory

In Hartree-Fock theory1 the many-body picture is simplified by assuming

all electrons to be uncorrelated except via the antisymmetricity of the

fermionic wavefunction. This mentioned correlation of electrons of the

same spin is called the exchange and all the other electron correlation is

usually referred simply as correlation. This terminology is also adopted in

this thesis. The correlation term in the Hartree-Fock theory is assumed

to be zero.

With these assumptions one can now write the electronic wavefunction

as a determinant of single particle wavefunctions

ΨAS(r1, . . . , rN ) =

∣∣∣∣∣∣∣∣∣∣∣∣

Ψ1(r1) Ψ2(r1) . . . ΨN (r1)

Ψ1(r2) Ψ2(r2) . . . ΨN (r2)
...

...
...

Ψ1(rN ) Ψ2(rN ) . . . ΨN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.3)

If one now writes the many-body Hamiltonian as

H =
∑
i

h(i) +
1

2

∑
i,j;i �=j

g(i, j)

g(i, j) =
1

|ri − rj |
h(i) = −1

2
∇2

i −
∑
n

Zn

|ri −Rn| ,

(2.4)

then the expectation value of the energy becomes into a form of

EHF =
〈
ΨAS |H|ΨAS

〉
=

∑
i

〈
Ψi|h|Ψi

〉

+
1

2

∑
ij

[
〈
ΨkΨl|ΨkΨl

〉− 〈
ΨkΨl|ΨlΨk

〉
]

〈
ΨkΨl|ΨmΨn

〉
=

ˆ
dr1dr2Ψ

∗
k(r1)Ψ

∗
l (r2)

1

|ri − rj |Ψm(r1)Ψn(r2)

(2.5)

For the two electron integrals we can simplify equation 2.5 by defining

operators

J(r)Ψ(r) =
∑
k

ˆ
dr

′
Ψ∗

k(r
′
)
1

r12
Ψk(r

′
)Ψ(r)

K(r)Ψ(r) =
∑
k

ˆ
dr

′
Ψ∗

k(r
′
)
1

r12
Ψ(r

′
)Ψk(r),

(2.6)
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where J is called the Coulombic operator and K the exchange operator.

With these operators we can write the total energy as

E =
∑
k

〈
Ψk|h+

1

2
(J −K)|Ψk

〉
. (2.7)

In practical calculations this equation would be then written into matrix

form using proper basis functions. And the energy and solution to the

ground state is obtained with minimization by iterating the equation self-

consistently.

Though the exchange is treated exactly, neglecting the correlation in

Hartree-Fock theory is a major shortcoming. This makes the results de-

viate from experimental ones in many molecular and bulk systems. Al-

though beyond the scope of this thesis, methods for adding the correlation

into the HF multi-electron wavefunction exists and they are collectively

called post-Hartree-Fock methods2. These methods provide more accurate

results within the HF framework.

2.2 Density functional theory

An alternative approach to treat the adiabatic version of the many-body

hamiltonian in equation 2.2 is DFT1,3. It is very popular in solid state

physics as it provides a feasible way to study system of the size of 1000 of

atoms with acceptable accuracy.

Within DFT functionals of electron density are used to describe the prop-

erties of the many-body systems. Although many improvements have

been made since the theory was first introduced by Kohn and Sham in

1964, there are still difficulties to properly describe e.g. dispersion, mag-

netism, strongly correlated systems and band gaps of semiconductors.

DFT is based on the theorems proposed by Hohenberg and Kohn4:

1. ground state properties of a many-electron system are uniquely deter-

mined by a three dimensional electron density

2. There exists an energy functional E[n] of an electron density that is

minimized by the ground state electron density E[ngs] ≤ E[n].
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The total energy functional uniquely defined by the external potential

vext is written as

EKS [n] = Ts[n] +
1

2

ˆ
drdr

′ n(r)n(r
′
)

|r− r′ | +

ˆ
drVext(r)n(r) + Exc[n], (2.8)

where the terms are the kinetic energy of the non-interacting electrons,

so-called Hartree energy describing Coulombic electron-electron repul-

sion, external potential introduced by nuclei and the so-called exchange-

correlation energy. All the challenging features of the true many-body

problem are hidden in the exchange-correlation term and this term has to

be approximated. If the exact form of this term would be available then

DFT would be exact.

Within the framework of Kohn and Sham5 the challenging many-body

problem of N-interacting electrons in a static external potential is reduced

to a tractable problem of a set of fictitious non-interacting electrons mov-

ing in a effective potential

− 1

2
∇2ψi(r) + Veff (r)ψi(r) = εiψi(r), (2.9)

where ψi are called Kohn-Sham orbitals and reproduce the total electron

density

n(r) =

N∑
i=1

|ψi(r)|2 (2.10)

of the original many-body problem. The effective potential

Veff (r) =

ˆ
dr

′ n(r
′
)

|r− r′ | + Vext(r) +
δExc[n]

δn(r)
(2.11)

is the functional derivative of the energy functional and the last term in

the previous equation is called the exchange-correlation potential.

Equations 2.9-2.11 are termed the Kohn-Sham equations and together

with appropriate approximation to the Exc they provide the basis to solve

the equation above in a self-consistent manner.

2.3 Local exchange-correlation functionals

The most common approximations for the exchange-correlation energy

are the local density approximation (LDA)5 and generalized gradient ap-

proximation (GGA) that comes with different parameterizations such as

PBE6.
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ELDA
xc [n] =

ˆ
drn(r)exc(n(r)) (2.12)

EGGA
xc [n] =

ˆ
drn(r)exc(n(r))F

GGA
x (∇n(r)) (2.13)

LDA approximates the XC energy density at given point by the corre-

sponding value of uniform electron gas. This approximation works re-

markably well for materials where the electron density variations are

very small. GGA’s basically enhance this approximation by taking also

the gradient of the density at given point into account. This approach

works generally better than LDA7.

To get further insight to these functionals we define the two-electron

density

ρ(r, r′) = N(N − 1)
∑

σ2,...,σN

ˆ
dr2...drN|Ψ(r, σ; r2, σ2; ...; rN, σN )|2

= n(r)n(r
′
) + n(r)nxc(r, r

′) (2.14)

where nxc is the exchange-correlation hole. This hole defines the change

in the electron density caused by the presence of an electron at r and maps

back to the equations 2.12 and 2.13 as

Exc =
1

2

ˆ
d3r

ˆ
d3r′

n(r)nxc(r, r
′)

|r− r′| , (2.15)

where nxc is now the angle-averaged version of the exchange-hole. It is

the quality of the approximation for the hole that defines the accuracy of

the functional. The LDA and GGA approximations, albeit they are local

and based on uniform electron gas, provide a rather good description of

the hole for many molecular and bulk materials. This property has made

these so-called vanilla type functionals widely used and successful choice

to study materials properties.

Despite the success, they have known theoretical shortcomings such as

spurious self-interaction where the XC functional does not cancel out elec-

tron’s interaction with itself present in the Hartree term and the lack of

derivative discontinuity3. These shortcomings are obvious with i.e. 3d

transition metal monoxides like MnO, FeO, CoO and NiO. Vanilla type of

functionals underestimate the gap and even give metallic nature for these

antiferromagnetic insulators3.

Also bonding energies are somewhat overestimated, leading to over bind-

ing and especially with GGA’s the accuracy for structural properties for
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heavy elements is rather poor. Furthermore due to the wrong asymptotic

decay of exchange potential (exponential instead of 1/r) the description for

negative ions fails with vanilla type of functionals3. When studying mate-

rials where good description for charge localization, magnetic properties

and band gaps are essential, it is clear we need to go beyond standard

LDA/GGA parameterization.

2.4 Hybrid exchange-correlation functionals

The hybrid approach to generate more accurate functionals was originally

introduced by Becke in 19938.The approach relies on adiabatic connection9

and compared to the standard vanilla type functionals, a fraction of the

local exchange is replaced by the non-local Fock exchange (exchange oper-

ator in equation 2.6 calculated with KS orbitals)

EHF
x = −1

2

∑
k,l

ˆ
dr1dr2ψ

∗
k(r1)ψ

∗
l (r2)g(r1, r2)ψk(r2)ψl(r1). (2.16)

Including even a small fraction of the non-local operator partly cor-

rects the spurious self-interaction and the lack of derivative discontinuity

present in the local functionals10. In general these improvements in func-

tionals provide more accurate geometries and energies over vanilla type

functionals for many molecular and bulk structures. They also give better

description on charge localization, magnetism and provide better values

for the band gap11–20.

The XC energy functional for hybrids is written in the form

Ehyb
xc = aElocal

x + (1− a)Enl
x + Elocal

c , (2.17)

where local refers to a (or a mix of) vanilla type functional and nl is the

non-local exchange. The mixing parameter a determines how much of

the non-local exchange is used in the functional. This is either fitted or

theoretically obtained parameter. In this thesis we use hybrid functionals

based on PBE0 hybrid functional where the parameter a=0.25 is obtained

via perturbation theory21.

For large scale calculations the previous equation is not feasible due

to a huge computational cost. Screened hybrid functionals on the other

hand are able to incorporate Fock exchange into bulk materials with sig-

nificantly lower computational requirements. In addition, screened hy-

brids functionals lack certain undesirable features experienced with the
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full Fock exchange. Without the screening the exchange hole has a tail

contribution that is not cancelled out by the local correlation in these func-

tionals. The use of screening reduces the long range tail of the exchange

yielding better description for the total exchange-correlation hole. Fur-

thermore for some materials, full exchange overestimates the optical gap.

As the screening lowers the amount of exchange, also a better description

of the optical gap for these materials is gained. In depth discussion on the

properties of the orbital dependent functionals is provided in reference10.

With screened functionals the Fock integral kernel of 1/r is split into a

short-range (SR) and long-range (LR) parts and only the short-range part

is included in the functional. In principle this division is arbitrary but the

error function below has the benefit of being easily implemented22

1

r12
=

erfc(ωr12)

r12︸ ︷︷ ︸
SR

+
erf(ωr12)

r12︸ ︷︷ ︸
LR

. (2.18)

The parameter ω is again usually obtained via fitting. In the light of

our hope for an ab initio approach this is not desirable, but nevertheless

this approach provides an excellent tool to calculate properties with the

accuracy comparable to full hybrid functionals and with a feasible com-

putational cost. The general form of a screened hybrid functional is then

given by

Ehyb−SR
xc = aElocal−SR

x + (1− a)Enl−SR
x + Elocal−LR

x + Elocal
c . (2.19)

Here one should also note that also the local functional has been split into

SR and LR parts. This is done by introducing comparable screening func-

tion into the exchange hole of the local functional23. The angle averaged

exchange-hole for GGA functional (similarly for LDA) is defined as

nx(r, r+ u) =
1

N

ˆ
d3rρ2(r)JGGA(s(r), kF (r)u), (2.20)

where kF = (3π2ρ)1/3 is the Fermi wave vector, s = |∇ρ|
2kF ρ the reduced

density gradient and J is the function defining the properties of the hole.

When screening in form of equation 2.18 is introduced, it transfers to the

function J as

Jω,GGA,SR(ρ, s, u) = JGGA(s, u)× erfc

(
ωu

kF

)
. (2.21)

The function J onwards relates to the enhancement factor FGGA
X via inte-

gral equation

FGGA
X (s) = −8

9

ˆ ∞

0
duyJGGA(s, u), (2.22)
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which then is used to obtain the exchange energy for the given GGA type

of functional as

EGGA
X =

ˆ
drρ(r)εLDA(ρ(r))× FGGA

X (s(r)). (2.23)

Here εLDA is the LDA exchange energy density24.

To get the final expression to the exchange energy ESR,GGA
x (n,∇n) of the

given functional we need to calculate this integral equation with screened

J function explicitly.

In this thesis we have used the PBE6 GGA functional in publications

I and II. All the hybrid functional calculations have been done using the

HSE16 screened hybrid functional

EHSE
xc = 0.25EHF−SR

x + 0.75EPBE−SR
x + EPBE−LR

x + EPBE
c . (2.24)

2.5 Green’s functions method for electron transport

To get further insight how a quantum mechanical nanostructure behaves

under potential difference we are interested in understanding the trans-

port properties of the material. In general electron transport is a chal-

lenging problem as it is a many electron problem in non-equilibrium. The

properties of transport in a system are characterized by de Broglie wave-

length, the mean free path and the phase relaxation length of electrons.

The de Broglie wavelength is the electron wavelength at the Fermi level.

If the size of the system is of the same order or smaller than this length

the quantum mechanical properties govern its behavior. In this region

Ohm’s law is no longer valid and a quantum mechanical approach must

be applied.

The mean free path tells us how long a distance an electron travels be-

fore losing its original momentum. In collisions, electrons usually lose

only part of their momentum and thus the mean free path is longer than

the distance travelled between single collisions. Phase-relaxation length

gives the average length an electron travels before losing original phase

in collisions.

Within this thesis, the studied systems have a phase-relaxation length

that is typically large and the sizes of the systems are comparable to the

de Broglie wavelength. These scales allow us to simplify the picture by
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Figure 2.1. General setup for electron transport. Nanostructure (region Ω) is connected
to left and right semi-infinite lead ΩL/R. Leads are considered as ideal crys-
talline structures and nanostructure is the only scattering region.

assuming coherent transport only. This means that the electron phase is

conserved.

If we consider a general system as shown in the figure 2.1, the current

through the nanostructure can be described by the Landauer formula:

I = G0

∑
n

ˆ μL

μR

|tn(E)|2dE, (2.25)

where G0 is the unit conductance and the |tn|2 gives the probability that

incoming electron with energy E is transmitted through the scattering

region Ω in conducting mode n. The leads (reservoirs) are assumed to

be in thermal equilibrium and perfect thermalization of electrons is also

assumed when electrons enter these reservoirs.

Here the studied system are simulated with the setup shown in figure

2.1 using DFT-Green’s functions method. The studied nanostructures are

connected to semi-infinite leads ΩL/R with open boundary conditions. This

means that electrons can travel from and to the leads without reflections.

Green’s functions provide a straightforward way to solve the partial

differential equation in the scattering region with open boundary con-

ditions. In addition they allow one to connect the leads with different

chemical potential to the system and thus provide a theoretical descrip-

tion where finite-size effects do not play a significant role. The derived

solution for the tunneling probabilities and current through the nanos-

tructure is analogous to the Landauer formula (2.25).

The Hamiltonian of the nanostructure is approximated by DFT method

described in previous chapters. Here for Kohn-Sham equations single par-

ticle Green’s functions are used instead of single particle wavefuctions.

The starting point is retarded Green’s function Gr that is the resolvent

operator for equation

(ω − Ĥ(r))Gr(r, r
′
;ω) = δ(r, r

′
), (2.26)
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where ω is the energy and Ĥ is obtained using DFT. This equation also

gives advanced Green’s function Ga as another solution. When Gr is

known so-called lesser Green’s function G< can be calculated. When no

bias voltage is applied and the system is in equilibrium the G< is given

by

G<(r, r
′
;ω) = 2fL/R(ω)G

r(r, r
′
;ω). (2.27)

Here fL/R(ω) are the fermi functions of the leads that are equal in the

equilibrium.

For finite bias the system must be divided into three regions Ω, ΩL and

ΩR as show in the figure 2.1. In this case equation 2.26 transforms into

(ω − Ĥ(r)− Σr
L(ω)− Σr

R(ω))G
r(r, r

′
;ω) = δ(r, r

′
), (2.28)

where Ĥ is the Hamiltonian of scattering region Ω and Σr
L/R are the so-

called self-energies of the leads. These terms describe the electron interac-

tion between Ω and both leads ΩL/R and couple the solution in scattering

region to those on the leads.

Furthermore we define Γ-functions as

iΓL/R = 2iIm(Σr
L/R). (2.29)

Now G< for system with finite bias is given by

G<(r, r
′
;ω) =

− ifR(ω)

ˆ
∂ΩR

ˆ
∂ΩR

Gr(r, rR;ω)ΓR(rR, r
′
R;ω)G

a(r
′
R, r

′
;ω)drRdr

′
R

− ifL(ω)

ˆ
∂ΩL

ˆ
∂ΩL

Gr(r, rL;ω)ΓL(rL, r
′
L;ω)G

a(r
′
L, r

′
;ω)drLdr

′
L,

(2.30)

where the bias defines the difference between fL and fR. When G< is

known, the electron density of the system is given by equation

ρ(r) = − 1

2π

ˆ ∞

−∞
Im[G<(r, r;ω)]dω. (2.31)

The solution for equation 2.28 is then obtained in a self-consistent manner

by starting from initial guess and iterating until the convergence of the

density is below the desired threshold.

When the final solution is obtained we can calculate the current through

the nanostructure. For this we calculate the electron tunneling probabil-

ity between the leads as

T (ω) =

ˆ
∂ΩL

ˆ
∂ΩL

ˆ
∂ΩR

ˆ
∂ΩR

ΓL(rL, r
′
L;ω)G

r(r
′
L, rR;ω)

×ΓR(rR, r
′
R;ω)G

a(r
′
R, rL;ω)drLdr

′
LdrRdr

′
R.

(2.32)
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The current is then calculated as

I =
1

π

ˆ ∞

−∞
T (ω)(fL(ω)− fR(ω))dω. (2.33)

2.6 Basis sets

In the DFT simulations in addition to the choice of exchange correlation

functional, the basis set also contributes significantly to the accuracy. The

popular choices in solid state physics are plane waves or atom centered

basis sets. Plane waves offer a rigorous way of increasing the accuracy

and thus achieving convergence. Atomic centered orbitals on the other

hand require less basis functions, making the calculations faster. Also

they provide a cheap way to model vacuum making them a good option for

studying molecules and surfaces. But compared to plane waves, they do

not have a systematic way of increasing accuracy and thus more consid-

eration in choosing a proper basis is needed.

In this thesis we are using a linear combination of atomic orbitals25,26

(LCAO) as the basis set. Here the KS orbitals are expanded into a linear

combination of chosen basis functions

ΨKS
i =

L∑
j=1

cjiχj , (2.34)

where the functions χj are now atom centered. For a complete basis L

should be infinite, but in practice this is finite and for efficiency as small

as possible. Thus, it is essential to choose the basis functions carefully to

obtain an accurate approximation for the KS orbitals.

The SIESTA methods used in this thesis have adopted a numerical basis

set. Here the atom centered functions are given as

χnlm(r) =

Nzeta∑
i=1

Ri
nl(r)Y

m
l (φ, θ). (2.35)

The nlm are the quantum numbers of each atomic orbital and Y m
l (φ, θ) is

the spherical harmonic function. The radial part is given by numerical

function that has a strict cut-off radius rc at some distance. The minimal

basis set (single-ζ, Nzeta = 1) refers to a basis where only a single radial

function per atomic orbital is used. Within SIESTA this first ζ orbital is

obtained by a solution to an isolated atom. Higher ζ ’s are then obtained

as solutions to positively charged atoms.
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Also polarization orbital may be added where a solution to a higher an-

gular momentum to the corresponding orbital is added to the basis set.

Generally double-ζ (Nzeta = 2) + polarization provides a good compromise

between speed and accuracy in SIESTA.

Another atomic center choice for a basis set commonly used are the

cartesian gaussian type functions (CGTO)’s. Here the atom centered func-

tions are given by

χ(r) =
N∑
i=1

diη
GTO
i ,

ηGTO = Nnormx
lynzmeαr

2
,

where the Nnorm is the normalization factor, xyz are the cartesian coordi-

nates and α is the exponent determining how extended the basis functions

are. Unlike with the SIESTA orbitals here the basis functions in principle

extend to infinity. In practical calculations they are truncated to achieve

a localized and thus computationally efficient basis.

In this thesis we use CGTO’s with the exchange integral in hybrid func-

tionals as there are existing analytical quadratures to solve these kind of

integrals. These are only used as an auxiliary basis set for the numerical

SIESTA orbitals used in the calculations. We are also doing all the cal-

culations with pseudo potentials and thus the basis set formalism is only

used with valence orbitals.

One downside in using LCAO is the basis set superposition error (BSSE)27.

As the atoms move they drag the basis set with them thus changing the

basis set. This can lead to artificial contributions to the energy and forces.

Sometimes this contribution is significant and we need to use counter-

poise correction27 to remove this artificial factor.

2.7 Pseudopotential approximation

The pseudopotential approximation28,29 is another common approxima-

tion in practical calculations after the exchange-correlation functional and

the basis set. In an atom the core electrons are experiencing a strong −Z
r

potential. This combined with the orthogonality requirement makes their

wavefunctions strongly oscillatory, making them computationally more

expensive as denser mesh near the core is required. At the same time
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Ψpseudo

Ψv
rc

Z/r

Vpseudo

Figure 2.2. Schematic illustration of the pseudopotential (dash-dot line) and all-electron
potential (solid) and the corresponding wavefunctions. Pseudopotential and
all-electron potential are equal and give the same wavefunctions outside ra-
dius rc.

the core electrons are affected only very little by the surrounding envi-

ronment. Thus considering these electrons to be fully unaffected by the

environment we can construct an effective potential called the pseudopo-

tential to describe their contribution as illustrated in the figure 2.2.
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3. Structure optimization and molecular
dynamics

To understand how thermal movement of atoms changes the structure or

what is the zero-temperature structure of the studied system one needs

to calculate forces acting on ions. Within DFT-framework we use adia-

batic approximation, as mentioned in the theory chapter, to divide atomic

movement from electronic.

After the electronic self-consistent field (SCF) convergence has been reached,

forces acting on ions may be calculated using Hellman-Feynman theory3,30,31.

Here the DFT forces on ion at position RI are given by

dE

dRI
=

∂E

∂RI
=
∂ < φi|H|φi >

∂RI
=< φi| ∂H

∂RI
|φi > . (3.1)

These forces may then be used to relax the system towards ground-state

at zero temperature or perform molecular dynamics at finite tempera-

ture. The dynamics for atoms are performed classically. In this section

we describe the methods used in this thesis to perform both ionic relax-

ations and molecular dynamics (MD). For molecular dynamics a classical

approach is used.

3.1 Conjugate-gradient method

For the atomic ground-state we usually start from the initial system where

there are still significant forces present after the first SCF iteration cycle.

These forces are then used to move ions after which new electronic SCF

cycle is performed, following a new forces calculation. The task of min-

imizing the atomic system to the zero-force configuration becomes non-

trivial when the system can consist hundreds of atoms.

The minimization techniques used in this thesis can be divided into first

and second order methods. An efficient iterative first order method is

17
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the Conjugate-gradient (CG) methods1 also implemented into the SIESTA

code. Here the stationary point of a given function F(x) is a set of points

xi where (
∂F (x)

∂x

)
xi

= gi = 0. (3.2)

The initial optimization direction is taken into the steepest-descent di-

rection. The subsequent search directions are then constructed as a com-

bination of the new negative gradient and the previous search direction.

Figure 3.1 illustrates how CG method works.

X

Y

0

2

2’

1

Figure 3.1. Illustration of how CG method works for quadratic function in two dimen-
sions. Ellipses are the contour lines of the minimized function f, solid line
present steepest descent method and dashed line CG method. The steepest
descent (steps 0,1,2) is quite far from the minimum after two steps while CG
method (0,1,2

′
) reaches the minimum with two steps.

3.2 Quasi-Newton method

Another iterative minimization technique used in this thesis is the sec-

ond order Broyden-Fletcher-Goldfarb-Shanno32 (BFGS) method. To find a

stationary point of the function F(x) in addition to first order derivatives

present in CG methods also second order derivatives are used. The matrix

of the second order derivatives is called the Hessian matrix(
∂2F (x)

∂x2

)
xi

= Hi. (3.3)

In the Newton method, it is assumed that the function can be locally

approximated as a quadratic Taylor expansion in the region around the

optimum

F (x) = F (xi) + gTi (x− xi) +
1

2
(x− xi)

THi(x− xi). (3.4)
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Requiring the gradient to be zero produces (x − xi) = −H−1g. In quasi-

Newton methods the expensive calculation of the Hessian matrix is re-

placed by gradually building an approximate Hessian from successive

gradient vectors. The initial matrix can be simply an identity matrix re-

sembling a steepest-descent approach. The advantage of this method is

that it reduces the required steps to reach the stationary point compared

to then CG method and in generally outperforms also Newton methods in

speed as the expensive Hessian matrix is not calculated.

On the other hand if the system is far from the minimum the BFGS

may be rather slow or even take the system to a local minimum instead

of the global one. Here CG method should be preferred as it tends to

work reliably even far from the global minimum. One may also combine

these two approaches by starting with CG method and when closer to the

minimum, turn on the second order method.

3.3 Nose Hover thermostat

In experimental situations the temperature is usually kept constant and

thus it is desirable to be able to perform MD simulations at constant tem-

perature. One approach is to introduce an extra force acting on the par-

ticle with the purpose of keeping the temperature constant. In the Nose-

Hoover thermostat1, coupling to a heat reservoir is done in the form of

friction proportional to the particle velocities. The advantage of a Nose-

Hoover thermostat is that the time average value of temperature is equal

to a prescribed value.

The equations of motions in this approach are given by

dri
dt

=
pi

m
;
dpi

dt
= Fi − ζpi; (3.5)

dζ

dt
= (

N∑
i=1

p2i
mi

− 3NkBT )/Q, (3.6)

where pi and ri are the momentum and position of an particle. The magni-

tude of the Q determines the coupling between the reservoir and the real

system. The Q parameter has to be chosen with care as with too small

a parameter, the phase space will not be canonical (constant NVT). And

with too large a parameter, the heat transfer will not be sufficient.

In the light of this thesis we use finite temperature MD as a way to

perform simulated annealing that is an approach to find a good approxi-
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Figure 3.2. Illustration how first Nose-Hoover thermostat is used for MD. The tempera-
ture oscillates around the target temperature of 600K. The minimum energy
configuration is then approached by slowly annealing the temperature down.

mation to the global minimum of a given function in a large search space.

The task of finding equilibrium geometry is rather challenging, especially

if one has no pre-knowledge of the final structure. For the studied hafnia

interfaces this has been the case. In practice this can be achieved by al-

lowing system to fluctuate at a given high temperature and then slowly

cool it down to zero temperature.

3.4 Relaxations in a plane

1

2

Figure 3.3. Illustration of how the relaxation in a plane algorithm works. We define
a normal (110) for the plane and divide our path into plane segments (red
dashed lines). The planes are now perpendicular to the image. Now the
constrained relaxation in each plane is performed and finally the diffusion
path is obtained (black solid line).

For the paper III we implemented constrained relaxation algorithm into

the SIESTA code. This allowed us to probe the diffusion path and most
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importantly diffusion barrier of an atom on the surface. In practice all

paths were calculated at least to (100) and (110) directions. Without any

constraints the atom would have relaxed to the closest energy minima.

The method is shows in the Figure 3.3.
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4. Implementing hybrid functionals

The biggest work in this thesis has been the implementation of the Fock

exchange as in equation 2.6 within a DFT framework into the SIESTA

code. Furthermore, a screened version of Fock exchange has been included

for building screened functionals such as HSE.

For the HSE functional, also a screened version of local PBE exchange

has been implemented. These incredients allow a large variety of func-

tionals to be constructed, though we keep the discussion focused on HSE.

In this section an overview of the used algorithms and approaches are

presented.

4.1 SIESTA code

SIESTA 25,33 is a real space linear combination of atomic orbitals basis

code, implementing the density functional theory (DFT) within the gener-

alized gradient approximation. Core electrons are represented by norm-

conserving pseudopotentials using standard Troullier-Martins parame-

terization. It uses numerical orbitals with a high flexibility wrt. cut-off

radii, number of ζ ’s and number of polarization orbitals used in the cal-

culations. Most of the calculations are done numerically on a real-space

grid.

In SIESTA usually only small number of basis functions per atom are

required and these orbital are rather localized around the nuclei. Thus

SIESTA is relatively fast and makes calculations of hundreds of atoms

feasible within a reasonable accuracy. Localized orbitals furthermore make

the computational task to scale linearly with respect to system size or

number of atoms. Also with localized basis set the user does not pay any

23
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penalty for vacuum in the system making SIESTA a good choice for cal-

culating e.g. surfaces.

4.2 Screened PBE exchange

To obtain the GGA exchange in general we need to have an algorithm for

enhancement factor FX . In the simplest form the general PBE enhance-

ment factor FX can be written as

FX(s) = 1 + κ− κ/(1 + μs2/κ), (4.1)

where κ and μ are parameters of PBE exchange hole 6. This form has

already been implemented into the SIESTA code and has been readily

available.

HSE functional needs PBE exchange to be separated into short range

and long range parts as shown in equation 2.17. For this, one needs to

use the integral formalism shown in equation 2.21. For PBE, J in this is

given as 23

JGGA(s, y) =[−A
y2

1

1 + (4/9)Ay2

+ (
A
y2

+ B + C[1 + s2F(s)]y2

+ E [1 + s2G(s)y4)exp(−Dy2)]
× exp(−s2H(s)y2),

(4.2)

where A-H are parameters or parameterized functions of PBE exchange

hole. The enhancement factor FPBE
X is then obtained as an integral from

equation 2.22 and the integral has an analytical solution 23.

Similar expression can be used for short range (SR) part of FX with

small approximations since for erfc(x) there is no closed form solution.

The used approach is to approximate the complementary error function

and a product of polynomial and exponent function34

erfc(x) ≈ P8(x)exp(−bx2), (4.3)

where P8(x) is 8th order polynomial. In 35 this has been shown to pro-

vide very good accuracy for given functional. With this approximation the

problem reduced to similar solution as with JGGA.

This algorithm has already been presented in 35 and has been imple-

mented at least to Gaussian and VASP codes. Within this work the algo-
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rithm for screened PBE exchange has been rewritten and adopted to the

SIESTA code.

4.3 Algorithms for Fock exchange

4.3.1 Rys quadrature

For evaluating the two electron integrals the most efficient and practi-

cal way we found was to use analytical expression formulate by Lindh,

Ryu and Liu known as the RYS quadrature 36. Here cartesian Gaussians

functions are used to evaluate these integrals.

With SIESTA orbitals we first fit these into an auxiliary basis set of

CGTO’s. For spherical harmonic part this can be done exactly but the

radial component needs to be fitted. Proper amount of gaussians is needed

to minimize the mismatch error and SIESTA orbitals are then expressed

as

χlm
i (r) =

∑
μ

cμiφaμ(r), (4.4)

where the quantum numbers lm are expressed with cartesian exponents

a=(ax, ay, az) of the CGTO.

The primitive electron repulsion integral (ERI) of four unnormalized

GTO’s is a six dimensional integral

[aμbν |cκdλ] =

ˆ
dr1

ˆ
dr2φaμ(r1)φbν(r1)

1

r12
φcκ(r2)φdλ(r2), (4.5)

that needs to be solved. Using the transfer equation36

(a(b+ 1λ| = ((a+ 1λ)b|+ (Aλ −Bλ)(ab|
λ = x,y,z, and 1λ = (δxλ, δyλ, δzλ),

we can reshape the problem and solve the batches of [e0|f0] (where e =

max(a,b,a+ b) and f = max(c,d, c+ d)) instead of the batch [ab|cd].
Furthermore using the Laplace transform for 1/r

1

|r1 − r2| = 2π−1/2

ˆ ∞

0
du exp[−u2(r1 − r2)

2] (4.6)

and write the products of two gaussians as a new gaussian

exp[−α(r−A)2]× exp[−β(r−B)2] = κAB exp[−ζ(r−P)2] (4.7)



26 CHAPTER 4. IMPLEMENTING HYBRID FUNCTIONALS

the the six dimensional integral [e0|f0] can be written into a form

[e0|f0] =
ˆ 1

0
dtPn(t)exp[−t2ρ(P−Q)2]. (4.8)

Here the polynomial Pn(t) is called the RYS polynomial where n is de-

termined by the sum of angular momentums of CGTO’s involved. It has

analytical expressions and in practice the zeroth order term is evaluated

directly and the higher order terms are obtained via recursion. The inte-

grand is finally evaluated exactly by an n-point quadrature as

[e0|f0] =
nRY S∑
α=1

Pn(tα)Wα. (4.9)

Finally we reuse the transfer equation to build the expression for primi-

tive ERI’s and further use those to get the final expression for an exchange

integral over SIESTA orbitals.

4.3.2 Efficient screening

In practical calculations the number of integrals is enormous and this can

be a limiting factor, especially for bulk materials. Still only a minor por-

tion of these integrals give a significant contribution and thus efficient

pre-screening of integrals has be performed making calculations feasible.

The pre-screening neglects integrals yielding a contribution smaller than

user defined parameter states. Choosing a proper parameter is thus es-

sential for doing still accurate calculations, but without extra computa-

tional work.

The Schwarz inequality37 gives an upper bound for the integrals with

respect to distance of orbital pairs

|(μν|λσ)|2 ≤ |(μν|μν)||(λσ|λσ)|, (4.10)

where μ, ν, λ, σ represent the orbital indices and the whole expression in

parenthesis is just a convenient way to write the exchange integral in

shorter notation. This expression is valid for 1/r, SR and LR kernels.

For taking the distance of the two pairs into account, we use the multi-

pole method. For an SR kernel, one way of writing this is

(μν|λσ)SR ≈
L∑
l=0

L
′∑

j=0

qμνl (P)qλσj (Q)
C̃l+j(RPQ)

R
(l+j)
PQ

. (4.11)
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Here q are multipole terms, C̃ the multipole coefficients and RPQ distance

between centers of charge distributions P and Q. As the screening is espe-

cially important for periodic systems where the usage of SR kernel is well

established we write here the expression only for SR kernel. In the code,

a similar expression is applicable for both SR and 1/r kernels.

These two methods defined above already provide an excellent screening

of unimportant integrals. Furthermore this screening can be enhanced by

taking the density matrix elements into account. For semiconducting and

insulating systems the density matrix has been show to decay exponen-

tially as

lim
|r1−r2|→∞

ρ(r1, r2)exp(−
√
Egap|r1 − r2|), (4.12)

where Egap the energy difference between the highest occupied and lowert

unoccupied band or molecular orbital. Multiplying the estimates given by

the two previous methods by the corresponding density matrix elements

provide yet more accurate estimates for the integrals and hence better

screening of elements.

4.4 Parallelization

As nowadays the clusters and supercomputers are more available, the

emphasis in the implementation has been in parallel efficiency. We have

established the parallelization scheme over the orbital pairs in the cal-

culations allowing linear scaling calculations of the exchange calculation

even for a modest size system and over huge amount of CPU’s. The code

has been designed to be parallel in number of CPU’s, memory and system

size, easily allowing a hybrid treatment within SIESTA for thousands of

atoms.

Scaling properties of a bulk CaF2 plus interstial with 97 and 291 atoms

in Fig. 4.1 show that the SR-HFX solver scales nearly ideally with respect

to number of CPU’s.
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Figure 4.1. Scaling properties of SR-HF solver versus PBE solver. The test system is
bulk CaF2 with 97 and with 291 atoms. Here SIESTA version 2.0.2 is used
where PBE scaling is rather poor. This will be improved in future SIESTA
releases.



5. Results

5.1 Si-HfO2 interfaces

Hafnium oxide (HfO2 or hafnia) still is the leading candidate material to

fully or partly replace SiO2 in metal-oxide-semiconductor field-effect tran-

sistors (MOSFETs). Hafnia has a higher dielectric constant which would

allow thicker layers to be used to reduce losses due to tunneling compared

to silica. Furthermore this would allow the miniaturization to continue

beyond the limits set by SiO2. Though it seems an ideal choice there are

many challenges in using hafnia considering the intrinsic properties and

the integration into the fabrication process38–44.

In effort to understand the properties of Si-HfO2 interfaces and the role

of defects we used simulated annealing to construct structures of nonstoi-

chiometric and stoichiometric interfaces with and without saturation with

oxygen. Oxygen vacancies were then generated for stoichiometric struc-

tures by removing individual oxygens at different sites, after which the

structure was again relaxed.

As the system is large and long MD runs were required, the choice of

localized basis was a practical one for performing the simulations. All

simulations here are done using the SIESTA code using norm-conserving

Troullier-Martins pseudopotentials45 and the GGA functional with Perdew,

Burke and Ernzerhof parameterization. We use DZP level basis set, 2 ×
2× 1 kgrid and mesh corresponding to energy cut-off of 150 Ry.

Building of the interface structure was done layer by layer. Initially

there were four layers of silicon with bottom dangling bonds terminated

by hydrogen atoms. The top dangling bonds were oxygen terminated and

29
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on top of this structure HfO2 was added in cycles. First one layer is de-

posited and the system is heated to 600K with Nose thermostat with 5fs

steps and then annealed back to zero K. Then relaxed again and the whole

deposition cycle is again repeated. The structure creation is most compa-

rable to pulsed laser deposition46,47 and remote plasma oxidation48–50.

Finally obtained structures are shows in Fig 5.1 and corresponding elec-

tronic structure added with defects are presented in Fig 5.2.

(a) (b) (c)

Figure 5.1. Relaxed structures obtained with simulated annealing for (a) nonstoichio-
metric Si-HfO2 interface, (b) stoichiometric Si-HfO2 interface and (c) stoi-
chiometric Si-HfO2 interface after addition of saturating oxygen layer.

Our results indicate that direct deposition of HfO2 on top of silicon yield

the creation of undesirable Si-Hf bonds with metallic character. Espe-

cially for undercoordinated Hf or with oxygen vacancies this metallic char-

acter is clearly observed in both projected density of states and from the

electron transport calculations. The main reason is either Hf or oxygen

diffusion to the silicon layer and this diffusion has to be prevented in pro-

duction.

In the light of the methods we know that vanilla type functionals in gen-

eral underestimate the gap3,51,52. The incorrect gap plays also role when

determining whether the defect levels are pinned to conduction band or

to the valence band. Thus better methods would provide further insight

to the system. It could move the defect levels changing the localization of

electrons in the defect or slightly change the geometry also affecting the

gap and the stability of defects.

5.2 Adatom diffusion on alkali halide surfaces

The study of metallic nanoclusters has grown in recent years as they re-

late to real industrial catalysis systems. Although theoretical models are
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Figure 5.2. Projected density of states for the (a) nonstoichiometric Si-HfO2, (b) stoi-
chiometric Si-HfO2 and (c) fully saturated Si-HfO2. And Projected density
of states for HfO2 with an oxygen vacancy at positions (d) A, (e) B and (f)
C in Fig. 5.1. Bulk Si corresponds to silicon atoms in region I of Fig. 5.1,
and inter-Si to silicon atoms in regions II and III. The vertical line marks the
Fermi energy at the highest occupied molecular orbital.

far from novel devices, they can provide vital insight to the underlying

physical processes governing catalysis. Adsorption, growth and forma-

tion of these nanoclusters are such important phenomena. In addition

charge transfer between the surface and adsorbed atoms influence the

nanocluster reactivity and thus is another interesting topic for under-

standing catalysis.

In paper II we use DFT to study adatom diffusion of Au, Ag and Pd

on NaCl(001), KCl(001) and KBr(001) surfaces. We focus on the effects
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on charging as scanning probe microscopy (SPM) and scanning tunnel-

ing microscopy (STM) have the ability to identify and even change the

charge state of individual atoms53–56 on thin films. For the bulk insulat-

ing surfaces considered here similar approaches for individual atoms57–59

are possible with STM and noncontact atomic force microscopy60–63 (NC-

AFM). Understanding the absorption strength, spin, diffusion barriers

and how charging effects these properties and charge stability is crucial in

understanding and designing experiments on these benchmark systems.

We use SIESTA code with PBE functional and optimized basis set with

several ζ ’s optimized for each species. Our surface is represented by 2× 2

conventional unit-cell slab model and properties were converged wrt. k-

points (1×2×2) and the mesh (corresponding to energy cut-off of 175 Ry).

For absorption energies and sites we have used BSSE correction.

(a) (b)

(c) (d)

Figure 5.3. Illustration of a few calculated induced charge-density isosurfaces. (a) Ag
spin up on KCl, (b) Au spin up on NaCl, (c) Ag spin down on KCl and (d) Ag−

spin up on KBr. Accumulated charge is plotted as a light gray and depleted
charge in dark gray isosurface.

Our calculations show that at room temperatures only neutral Pd on

NaCl and KCl are valuable candidates for manipulation. With other sys-

tems, as shown in the figure 5.4, we see rapid diffusion to more strongly

bound sites taking place. For lower temperatures, studying the multiple

charge states of silver becomes possible. Different charge states are illus-
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Figure 5.4. Diffusion barrier for Au, Ag and Pb adatoms on NaCl, KCl and KBr sub-
strates. Three charge states (neutral, ±e) are considered.

trated in the figure 5.3. Ag shows charge multistability on NaCl though

it is generally weakly bound to the surface and highly mobile regardless

of the charge state. For Pd, the neutral charge state is the only stable one

and for gold, Au− is the most stable state across all the surfaces consid-

ered.

Again taking the look from the method point of view we know that

vanilla type functionals have shortcoming with charge localization. They

can e.g. predict unphysical fractional occupations 56. As the charging and

charge stability plays significant role the need for better method is well

established.

5.3 Hybrid calculations of semiconducting materials

As stated with previous results the vanilla type of functionals do not al-

ways provide accurate enough descriptions, especially for semiconduct-

ing and insulating materials. In paper IV we provide hybrid functional

implementation of DFT within the SIESTA code. Both the theoretical

approach of HSE functional and the implementation is validated by cal-

culating properties of five different bulk materials. These results were

compared against PBE and PBESol functionals. Furthermore we have

repeated PBE calculation using the VASP code with plane waves and pro-

jector augmented wave method to treat the valence and core states, re-

spectively.

Studied systems were CaF2 , CeO2 , NaCl, T iO2 (rutile and anatase

phases) and HfO2 (monoclinic, tetragonal and cubic phases). This set of
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Lattice constant (Å)

System PBEa PBEb HSEa HSEb PBEsola Exp.

CaF2 5.60 5.51, 5.5064 5.59 5.47 5.56 5.4565

CeO2 5.43 5.46, 5.4366 5.36 5.40 5.36 5.4167,68

NaCl 5.69 5.70 5.67 5.66 5.60 5.6369

TiO2 a=3.90 3.81 3.89 3.78 3.85 3.7870

anatase c=9.78 9.68 9.75 9.57 9.74 9.5170

TiO2 a=4.70 4.64, 4.6571 4.69 4.59 4.65 4.5972

rutile c=3.03 2.97, 2.9771 3.02 2.96 2.99 2.9672

HfO2 cubic a=5.14 5.08, 5.0773 5.13 5.04 5.15 5.0874

HfO2 a=5.12 5.08, 5.0673 5.11 5.04 5.13 5.1575

tetragonal c=5.24 5.24, 5.1873 5.21 5.16 5.23 5.2975

HfO2 a=5.16 5.1373 5.19 5.13 5.1276

monoclinic b=5.23 5.1973 5.28 5.30 5.1776

c=5.38 5.3173 5.33 5.27 5.3076

β=98.8o 98.8o73 98.8o 98.5o 99.2o76

Band gap (eV)

System PBEa PBEb HSEa HSEb PBEsola Exp.

CaF2 6.7 7.4, 8.064 8.8 9.4 6.6 12.177

CeO2 5.9 6.6 6.2 7.6 6.078

NaCl 5.0 5.0 6.2 6.2 5.0 9.079

TiO2 1.7 2.4 3.3 3.9 3.280

anatase

TiO2 1.5 1.8, 1.781 3.1 3.1 1.5 3.082

rutile

HfO2 cubic 3.3 3.8, 3.8 73 5.3 5.2

HfO2 4.1 4.7, 4.6 73 6.0 6.2

tetragonal

HfO2 3.6 4.173 5.1 5.783

monoclinic

Table 5.1. Lattice constant and band gap values for all calculated systems using SIESTAa

and VASPb. Unreferenced values are calculated in this work. Note that the
CeO2 gap is calculated ignoring the 4f states in the gap, as is the usual con-
vention.

systems ranges from narrow to wide gap insulators, and includes a variety

of lattice structures and valence character.

With SIESTA we have presented the core electrons by PBE generated

norm-conserving pseudopotentials using standard Troullier-Martins pa-

rameterization. The basis set for the combined systems was optimized

for PBE to provide fast and yet relatively accurate results for ground

state properties. The used basis set was double-ζ with polarization for

Na(3s1), Cl(3p5), Hf(6s2), O(2p4), Ca(4s2), Ce(6s2), Ti(4s2,3d2) and double-

ζ for Cl(3s2), Hf(5d2), O(2s2), Ce(5s2, 5p6, 4f2), F(2s2,2p5) and single-ζ for

Ce(5d0). All systems were calculated with a k-point mesh of 7×7×7, a

mesh cutoff of 250 Ry and an energy shift of 5 meV. This provided suffi-

ciently high accuracy to converge the lattice structures.
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In Table 5.1 a comparison of lattice parameters and band gaps for PBE,

PBESol and HSE06 is presented. From a structural point of view HSE06

provides at least as good accuracy as PBE. HSE06 also maintains the

hierarchy of phases for TiO2 and HfO2 seen for with PBE, with rutile and

monoclinic phases predicted as the most stable respectively.

For band gaps the difference for HSE06 becomes more significant as

expected. PBE is known to underestimate the gap even by a factor of

two as is the case with TiO2, CaF2 and NaCl. With HSE, having even

a partial amount of exact exchange corrects this for all the systems. For

TiO2, for both phases, the band gap is now in very good agreement with

experiment, and for HfO2 the HSE06 gap is much closer to experiment.

But for the wider gap materials, the HSE06 gap experiences a significant

underestimation, reflecting the fact that the treatment of exchange is still

an approximation 84.

For CeO2, the difference in band gap between PBE and HSE06 is quite

small as PBE already gives a reasonable value, in agreement with pre-

vious studies 85. However, the 4f -states in the gap, critical in studies

of ceria oxidation, are demonstrated to be much closer to the conduction

band in HSE06, and this is important when studying defects in ceria and

related charge localization 86,87.

In the light of these results we have verified our implementation of a

general solver for performing hybrid functional calculations in the SIESTA

code. Our results are in good agreement with previous studies, and demon-

strate the improvement offered by hybrid functionals in accurate descrip-

tion of electronic structure.
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6. Summary

In this thesis we have first studied HfO2 interfaces. The key findings

show that hafnia is an attractive choice to replace silica as a gate insulator

but needs further studies. Defects and dangling bonds lead to creation

of traps and decrease the gap width. Also a few Si-Hf bonds remained

in studied stoichiometries leading to an elevated tunneling probability

across the interface. These studies suggest that interface structure must

be stabilized to prevent diffusion of hafnium and oxygen. One solution

would be to use some chemical precursor to saturate the dangling bonds.

But these questions would be topics for future studies.

In the adsorption of metal adatoms on alkali halide surfaces we have

studied the role of charge transfer. We have shown how the electronega-

tivity of both adatoms and surface species dominates in the character and

strength of the adatom-surface bonds. Though, considering SPM experi-

ments the manipulation becomes extremely challenging. At room temper-

ature for neutral atoms, Pd on NaCl and KCl is the only stable combina-

tion, whereas all the other atoms and substrates experience a rapid dif-

fusion. Furthermore, the difference of diffusion barrier between charged

states is rather small making the control via charging extremely challeng-

ing. Nevertheless, in general this kind of experiment would parallel the

study of charge state control already demonstrated on thin films and open

the door to the control of adatom mobility via charging.

In contrast to these results we have paid attention to the underlying

method. PBE-DFT, a successful and widely used approach, does also have

its shortcomings. Especially for previously mentioned systems the theo-

retical picture for band gap and charge localization does not provide suf-

ficient accuracy. In order to obtain better accuracy we have implemented

hybrid functional scheme to the SIESTA code. To assess the method

and our implementation we have performed calculation for five different
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bulk materials with different electronic properties. Studied systems were

CaF2, CeO2, T iO2 as rutile and anatase, NaCl and HfO2 in monoclinic,

tetragonal and cubic phases.

The results for given systems show enhanced accuracy especially for

band gap for all the studied systems. Yet it remains clear that even with

hybrid approach the theoretical picture is still an approximation. Fur-

thermore we have paid attention to the actual implementation. The cho-

sen algorithm provides hybrid functional results with rather moderate

computational cost. For parallel computing the cost is even lower, as our

solver scales nearly optimally up to hundreds of cores and possibly even

beyond.

The usage of screened hybrid functionals with condensed matter re-

search seems to be growing in general. Methods have found their way

into variety of major codes and the approach has matured to be an attrac-

tive choice for certain type of systems. The work in this thesis lays the

ground for new class of calculations to be performed also with SIESTA

method. Applying this method and implementation to the interfaces and

surfaces discussed in the first half of this thesis will be something for the

future.
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