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â Clock skew ratio estimate

aS Synchronization accuracy

A Pairwise comparison matrix

C Number of available channels

Ch Hardware clock counter

Ci Time report of a clock i

Ci
j Time report of a clock i at jth synchronization instant

Cl Logical clock counter

CN Complex Gaussian distribution

dI Step size for discretized interference power

Eb Signal energy per bit

f Natural frequency

fc Clock frequency

f (·) Interference function

Fk Fitness of channel k

F (·, ·) Collision time distribution function

g (·) PDF of idle time

G (·) CDF of idle time

Gn (·) n-fold convolution of G (·)

xviii



List of Symbols

GR
n (·) Gn−1 (·) convolved with CDF of residual idle time

H0 Hypothesis 0

H1 Hypothesis 1

H (·) CDF of busy time

Hn (·) n-fold convolution of H (·)
HR

n (·) Hn−1 (·) convolved with CDF of residual busy time

I Interference power
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1. Introduction

1.1 Background

Environments we live in and depend on are full of phenomena of meaning-

ful value. Our observations and responses to a phenomenon can change

the perspective of our interaction with the physical world. The technolog-

ical advancements in the field of wireless communication and embedded

systems and their combination in the form of wireless sensor networks

(WSNs) have revolutionized that perspective that was earlier marred by

the lack of a cost-effective and easy-to-deploy requisite infrastructure.

WSNs provide ad hoc wireless infrastructure to spatially distributed

sensors for the collection of sensory information. Each sensor is a self-

powered unit which integrates sensing, computing and low-range com-

munication capabilities [1]. These sensors, large in number, collaborate

and self-organize to fuse the collected information towards a centralized

application logic of the network.

Initially, wireless sensor networks were used in military applications;

however, a wide range of application areas emerged in the last decade [2].

Industrial monitoring and control, environmental monitoring, structural

health monitoring (SHM), agriculture, passive localization, home automa-

tion and area monitoring is still a conservative list of application areas as

many more are envisioned.

In the future, it is assumed that WSNs will merge into the Internet of

Things (IoT), a ubiquitous connectivity paradigm. The end sensors using

WSN standards and principles will form a capillary network whereas

the IoT will unravel the heterogeneity of isolated WSN islands using

standardized protocols like the Internet. The recent standardization

efforts are reflected by IoT solutions such as Smarter Planet [3] and
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Introduction

6LoWPAN [4].

The applications and usage scenarios of sensor networks are numerous.

However, their realization offers unique challenges to the design of

communication and networking techniques. The challenges arise from the

very characteristics of a WSN; that is, energy and hardware constrained

sensors deployed with high density to provide high fidelity measurements.

As a result, the networking techniques must be power efficient, low in

complexity and scalable enough to ensure reliable data collection from a

sensor field with minimum network maintenance. The diversity in sensor

network applications adds another dimension to the design challenges

since each application has its own requirements.

The varying requirements among applications have resulted in a num-

ber of standards covering the radio and wireless mesh networking aspects

of the communication protocol stack. The dominant radio standard

for low-power WSN applications is IEEE 802.15.4 [5], known as low-

rate wireless personal area network (LR-WPAN). However, no single

networking standard dominates; for instance, Zigbee [6] provides several

application profiles mainly for smart building automation whereas the

standards targeted at wireless automation industry are WirelessHART

[7] and ISA100.11a [8]. All these standards are built on IEEE 802.15.4

specifications mostly operating on a 2.4 GHz license-free band.

1.2 Motivation and Objectives

Despite the standardization efforts, adoption of wireless sensor networks

in monitoring and automation applications is cautious [9]. The main con-

cerns of technology adopters are; would it provide the results comparable

to the existing (wired) infrastructure, can it be relied upon for time-critical

operations. A plausible factor being the applications requiring deter-

ministic network behavior in data collection and aggregation. The data

collection, which extracts the raw sensor readings of a monitored event,

often requires concurrent observations from multiple sensors. The data

aggregation, on the other hand, requires reliable network connectivity to

transfer the observations to a central point in the network. The network

connectivity affects the communication reliability which in turn brings

about increase in latency and energy consumption. Therefore, a WSN-

based alternative to an existing infrastructure is viable only if the data

collection and aggregation can yield a comparable performance. However,
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enabling the desired network behavior within the WSN characteristics is

challenging, owing to the lack of core network management functions.

The focus of this thesis is the provision of such management functions.

These functions relate to the concurrent actuation of the sensors and

communication scheduling, and network adaptation under wireless com-

munication unreliability. All stand essential to set up WSN applications

and their reliable operation.

In respect to concurrent actuation and observations of a physical phe-

nomenon, time synchronization (TS) plays a crucial role. This role is

essential for applications such as SHM, data fusion and localization. En-

ergy efficient medium access scheduling also requires a common reading

of time among the sensors. The provision of a common network-wide

time scale in distributed systems requires the diffusion of a reference

time in the network and a clock synchronization algorithm. The syn-

chronization accuracy is a function of a local clock stability, frequency

of the reference time distribution and robustness of the synchronization

algorithm. WSN applications usually require synchronization accuracy

in sub-microseconds. However, the low cost design of sensors results

in higher clock instability, meanwhile the time distribution frequency is

bounded by the energy constraints.

In this thesis, our first objective is to,"design an energy-efficient TS

framework which can fulfill the synchronization demands of a sensor

network as well as its applications". For this purpose, the design of

a messaging protocol and clock skew estimation algorithm within the

WSN constraints is considered. This design is validated by incorporating

it to an SHM application for vibrational modal analysis and a time-

synchronized communication protocol stack.

The communication reliability depends on the ability of a system to

initialize and self-organize in adverse wireless propagation conditions. In

sensor networks, establishing and maintaining network connectivity is

affected by node failures, fading and radio interference. In this thesis, we

focus on heterogeneous inter-network interference.

Interference in unlicensed bands is the main concern to communication

reliability in low-power sensor networks. The unlicensed bands host wire-

less standards with heterogeneous channel partitioning, transmit power

and medium access rules. As the application domain of these standards

expands, the spectral coexistence in geographical co-location scenarios

is imminent. Any high-power transmissions, for instance from WLAN

3
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terminals in a 2.4 GHz ISM band, can easily degrade the communication

quality of a low-budget sensor link. The packet loss affects the reliability

and also the lifetime of a network owing to the energy drainage by packet

retransmissions. Therefore, the integration of an interference avoidance

strategy to the WSNs is of the utmost importance especially in industrial

and home automation applications where wireless local area network

(WLAN) systems are heavily deployed.

The second objective of the thesis is,"coexistence performance modeling

and enhancement in WSNs under heterogeneous inter-network interfer-

ence". Therein, coexistence modeling relates to link quality analysis in an

interfered sensor network considering traffic and power characteristics

of the interfering network. Whereas, coexistence enhancement builds

on coexistence modeling study to design low-complexity channel ranking

algorithms. The output of a channel ranking algorithm is an ordered list

of channels with respect to a link-quality metric. The link-quality metric

projects the interference disruption on a channel to a sensor link.

1.3 Contribution of the Thesis

This thesis is composed of a summary and nine publications. A brief

overview of the contributions in each publication is given in this section.

1.3.1 Time Synchronization

In Publication I, we analyzed factors contributing to the clock offset under

MAC layer time-stamping of reference broadcasts. By taking care of these

factors in the clock offset budget, we achieved better time synchronization

(TS) accuracy. In order to enhance the scalability of reference broadcast

based TS protocols, a broadcast collision avoidance (BCA) scheme is

proposed. In addition, we investigated the optimal data set size for the

linear regression-based clock skew estimation.

In Publication II, we developed a recursive maximum-likelihood (ML)

clock skew estimation algorithm for reference broadcast protocols. It

is shown that the skew estimation using least square linear regression

yields large estimation error variance owing to the correlation in the

time records of the regression data set. The proposed recursive estimator

utilizes a time-relation model that reflects the correlation in time records,

thus achieving smallest estimation error variance as compared to the
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existing ones as suggested by the experimental validation.

In Publication III, time synchronization is extended to distributed

synchronized sampling in an SHM application. The SHM application,

for the modal analysis of a monitored structure, requires accurate syn-

chronicity among acceleration samples collected by the sensors. The

proposed method ensured accurate synchronicity among samples (with

TS error less than 10 μs) even at sampling frequency of up to 1 KHz.

In terms of modal analysis performance, the measurements from such a

synchronized wireless system deployed on a model bridge provided the

precise identification of natural frequencies of vibration.

In Publication IV, a protocol stack named A-Stack is designed which

provides a flexible development environment for prototyping reliable and

real-time wireless sensor networks (RT-WSNs) applications. A-Stack

incorporates time division multiple access (TDMA)-based medium access,

multi-hop packet time-slot/channel scheduling, and network configura-

tion and formation schemes.

A block diagram categorizing these contributions is shown in Fig. 1.1.

Figure 1.1. Contributions of the thesis on time synchronization

1.3.2 Interference-Aware Coexistence

In Publication V, the coexistence performance of a IEEE 802.15.4-based

WSN link is evaluated under WLAN interference in a test-bed. The test-

bed features the performance evaluation in different wireless channel

models. The conditions for reliable link operation are identified in terms of

interference parameters, strength level and activity factor. Based on these

conditions, two channel ranking algorithms are proposed which learn the

interference parameters using spectrum measurements and heuristically

combine these parameters for channel ranking. The algorithms are

verified in emulated and open-air channels.

In Publication VI, a channel ranking algorithm is developed based
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on the identification and decision theoretic weighting of interference

parameters using channel energy measurements. The ranking algo-

rithm is suitable at WSN initialization with unknown signal levels of

the adjacent links to a sensor node. We showed that weighting the

interference parameters according to their individual influence on the

fitness of a channel achieves significant improvement in channel ranking

performance as compared to the heuristic approach of Publication V.

In Publication VII, a packet delivery ratio (PDR)-estimation-based

channel ranking algorithm is developed where the PDR estimation is

based on spectrum energy measurements. The PDR, including other

parameters, depends on the WLAN traffic distribution which cannot be

satisfactorily predicted with limited measurements. Because of this, the

traffic distributions setting bounds on channel ranking performance are

identified and these bounds are calculated for a given measurement time.

The proposed algorithm establishes relative channel ranking based on

the PDR estimation under the traffic distribution setting upper bound

on ranking error.

The PDR of an interfered link depends on the collision-time distribution

(CTD), which is a function of traffic distributions of the interfering and

interfered networks. The existing packet collision models in the literature

are deterministic which cannot be generalized to realistic traffic scenarios.

In Publication VIII, a stochastic packet collision model is proposed for

coexisting wireless networks by modeling the interference traffic as an

alternating renewal process and analyzed it in particular for coexisting

WSN and WLAN networks. The proposed collision-time model is utilized

to derive theoretical CTDs for periodic, Poisson and gamma inter-arrival

distributions. In addition, the model is verified by using a distribution

fitted to the empirical channel-idle-time distribution shaped by a carrier

sense multiple access with collision avoidance (CSMA/CA) rules in a

multi-terminal WLAN network.

Contrary to Publication VII, which estimates PDR estimation with

respect to the interference traffic distribution, in Publication IX, the pro-

posed PDR estimation method identifies the interference characteristics

by spectrum measurements with respect to the intended traffic distri-

bution of the sensor link. The effectiveness of the proposed estimation

scheme is verified using a sensor platform against the empirical PDR

in emulated multi-path fading channels. Channel ranking in a real

environment using this method of PDR estimation shows promising result
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under interference from WLAN.

A block diagram categorizing these contributions is shown in Fig. 1.2.

Figure 1.2. Contributions of the thesis on interference-aware coexistence of WSNs

1.4 Structure of the Thesis

The remainder of this thesis is organized in five chapters. Each chapter

presents a short introduction to the subject and highlights the contribu-

tions in the subject area. An overview of the related work precedes our

contributions and results.

Following this structure, Chapter 2 presents reference broadcast-based

time synchronization techniques for clock offset adjustment and skew

estimation. Time synchronization service is extended further by providing

interfaces for task synchronization in WSN applications in Chapter 3 and

Chapter 4. Chapter 3 exploits time synchronization service for modal

analysis in structural health monitoring. Chapter 4 uses synchronized

clocks for communication scheduling. Coexistence modeling of WSNs with

WLAN is discussed in Chapter 5 with an objective of link-quality analysis

and estimation. The coexistence modeling is extended to formulate

coexistence enhancement algorithms in Chapter 6. Finally, conclusions

and future research directions are outlined in Chapter 7.
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2. Time Synchronization using
Reference Broadcasts

Time synchronization (TS) is a fundamental service for initialization and

maintenance of wireless sensor networks. From chronological ordering

of information to the synchronous task execution, a common notion of

time is a must requirement for WSN applications. The WSN applications

require accurate network-wide time synchronization, often, in the order

of a few microseconds. For example, sensor data fusion, structural health

monitoring and distributed localization bring forth such synchronization

accuracy demands. Moreover, a time-synchronized network can facilitate

transmission scheduling such as TDMA and radio duty-cycling in an

energy-efficient manner. Since the traditional synchronization schemes

such as Network Time Protocol (NTP) [10] were designed for resourceful

systems with relaxed accuracy requirements, the WSN community inves-

tigates the applicable class of solutions to meet the objectives.

Network-wide time synchronization, in general, is achieved by a combi-

nation of a messaging protocol and the clock synchronization algorithm

[11]. A clock synchronization algorithm estimates the time offset and

clock skew based on the local and received time information exchanged

by a messaging protocol. A clock synchronization algorithm maintains

long term synchronization by reducing the messaging. The messaging

protocols can broadly be categorized as handshake [10, 12] and broad-

cast [13, 14] protocols. In a handshake protocol, a message sender

synchronizes with the receiver, whereas, a set of receivers synchronize

with the reference sender in a broadcast protocol. In this chapter, we

studied the messaging protocol and clock skew estimation using reference

broadcasts since the broadcast protocols are appreciated for their low-

power demands. Our contribution can be summarized as:

• Analyzing the clock offset delay in the sender-receiver path to

enhance synchronization accuracy.

9
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• Optimizing the accuracy of clock skew estimation with least-squares

linear regression by determining the effective regression data set

size for different synchronization periods.

• Validating an efficient recursive maximum-likelihood clock skew

estimator under correlated time measurements.

2.1 Oscillator, Clock and Synchronization

The source of time, in each individual sensor node, is a clock - essentially

a timer - that counts the oscillations of a crystal oscillator at a particular

frequency. Given that the oscillator runs at the expected frequency, the

associated clock will always match with a reference clock. However, due

to imperfections in low-quality oscillators, the clocks gradually diverge

from the reference clock even if initially tuned perfectly [15]. An oscillator

behavior is defined by:

• Accuracy – defines the agreement between the expected and actual

frequency referred to as frequency difference. The accuracy of the

commonly used oscillators in sensor nodes is 40 to 60 parts per

million (PPM): meaning a clock can lose as much as 40 μs in a

second.

• Stability – defines the tendency to stay at the same frequency

over time. The short-term frequency deviations mainly caused by

environmental factors are referred to as clock skew, whereas, long-

term deviations due to aging are referred to as clock drift [13].

Considering these oscillator characteristics, the relationship of a clock

A with respect to the ideal time (t) and a clock B can be modeled by

Eq. (2.1) and Eq. (2.2) respectively without considering clock drift [15].

This relationship is also shown in Fig.2.1.

CA (t) = θ + δ · t (2.1)

CB = θ + δ · CA (2.2)

where θ is the relative clock offset (phase difference) and δ is the relative

clock skew (the change in phase difference with time) between the clocks.

The time offset adjustment provides instantaneous synchronization by

masking the effect of other parameters, whereas the synchronous opera-

tion can be maintained only by identifying and correcting the clock skew

10
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Figure 2.1. A simple clock model of sensor nodes [15]

[13]. Therefore the TS problem involves estimation and compensation of

the clock skew after measuring the time difference at a fixed reference

time instant.

Later in this chapter, we discuss messaging protocols for TS in Sec-

tion 2.2 and clock skew estimation algorithms in Section 2.3 , along with

our contributions based on Publication I and Publication II.

2.2 Time Synchronization Protocols

The rich knowledge on TS of distributed computer networks becomes

ineffective when applied directly to energy and cost constrained WSNs

[16]. NTP, ticking the Internet’s clock in-phase for decades, provides the

synchronization accuracy only in milliseconds and its passive listening

is energy inefficient. Global position system (GPS) [17], on the other

hand, can provide accuracy in nanoseconds but costs additional hardware

and energy, and may also suffer indoor availability. Also, Precision

Time Protocol (PTP) [18] provides accuracy in microseconds, however, the

additional messaging consumes bandwidth and energy.

Owing to its unique design requirements, TS in WSNs has been exten-

sively studied in the past decade. A complete overview of synchronization

schemes in WSNs can be found in [11, 19]. Based on the exchange of time

information in the network, the main theme of the existing protocols can

broadly be categorized as:

Reference Broadcast Protocols: The variants of broadcast protocols,

proposed in the literature, are Reference Broadcast Synchronization

(RBS) [13], Flooding Time Synchronization Protocol (FTSP) [14] and Time

11
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Diffusion Protocol (TDP) [20]. RBS is a receiver-receiver protocol since

the nodes maintain a relative time by sharing the recorded reception

time of a reference beacon. The reference beacon itself does not carry

the time information of the beaconing node. However, the reference

beacon in FTSP is timestamped at the origin as well at the reception,

thus the nodes synchronize with the reference node instead of developing

a receiver-receiver relationship. The timing in FTSP is diffused by the

recipients of a reference beacon in hierarchical fashion. The TDP is a

variant of RBS and FTSP in which one-hop nodes, already synchronized

with the reference node, select a diffusion leader to broadcast the timing

information to second tier nodes.

Handshake Protocols: The prime example of handshake protocols is

Timing-sync Protocol for Sensor Networks (TPSN) [12] that uses two-way

timing exchange. TPSN first creates a hierarchical network as in FTSP

and then nodes at level n synchronize with the ones at level (n − 1). The

other protocols exploiting this sender-receiver scheme are Tiny/Mini-Sync

(TMS) [21] and Lightweight Tree-based Synchronization (LTS)[22].

A TS protocol, in general, can work at any layer of the communication

stack. However, considering random and deterministic delays associated

with each layer, acquiring accurate TS is challenging. The delays can

be grouped into send, medium access, transmission, propagation and

reception times [16]. The delays in the sender-receiver path reduce as the

timestamping is moved down in the stack towards the physical layer. A

common notion in recently proposed protocols is to timestamp the packets

after the medium access has been granted. We analyzed the clock offset

in the sender-receiver path under reference broadcasts and MAC layer

timestamping in Publication I, which we discuss in detail in the following

section.

2.2.1 μ-Sync Protocol

In Publication I, a reference broadcast-based TS protocol is studied with

an objective of eliminating the delays and uncertainties in the sender-

receiver path. A broadcast collision avoidance (BCA) model for enhancing

the scalability of reference broadcast protocols is also outlined. In

addition, we investigated the optimal data set size of the linear regression

based clock skew estimation. The complete contribution is named as μ-

Sync, since our proposal can provide synchronization accuracy of a few

microseconds. In the following sections, we discuss the synchronization
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protocol related details whereas the clock skew estimation is presented in

Section 2.3.1.

The μ-Synch protocol is implemented on the Sensinode Nano.CC2430

[Appendix A.1.2] platform. The protocol works at the MAC layer of a

communication stack, NanoStack [Appendix A.3]. It is integrated as an

add-on feature to IEEE 802.15.4 MAC: transparent to the existing MAC

message flow. A gateway node acting as a reference periodically generates

a synchronization message called a sync-beacon at the MAC layer without

a timestamp. The timestamp is added to the sync-beacon at the very

last stage before transmission. The sync-beacon recipients record their

local times on its reception and adjust their clocks based on a clock offset

budget analysis as discussed later in Section. 2.2.1. The nodes located at

the first hop diffuse the reference time using sync-beacons down in the

network hierarchy.

The time report or timestamp of a clock consists of two parameters:

a hardware-defined hardware clock and a software-defined logical clock.

The hardware clock (Ch), a 16-bit counter, is derived from a hardware

timer driven by a crystal oscillator. On Sensinode Nano.CC2430, the

counter increments at each active clock edge with frequency (fc) ranging

from 0.25 MHz to 32 MHz. Therefore, the minimum tick resolution we

can achieve is tr = 1/fc = 4 μs with a counter period T0 = 262 ms. At each

T0, an interrupt is generated which is acknowledged with an update in

the logical clock counter (Cl). Therefore, the time report of a node A is

CA = Cl · T0 + kc · tr (2.3)

where kc is the value of Ch at an arbitrary time. The timers in

Nano.CC2430 are briefly explained in Appendix A.1.2.

Clock Offset Budget Analysis

The clock offset is the time difference between a reference clock and a

child clock at a fixed time instant. By adjusting the clock offset, the

child clock achieves instantaneous synchronization. For adjusting clock

offset under reference broadcasts, the child node relies on the time report

of the reference clock. The moment the child clock receives the time

report, the reference clock advances by a certain amount depending on

the time length of the critical path (Δτ ) by which the reference clock

has to be adjusted. The μ-Synch timestamps a sync-beacon before the

microcontroller unit (MCU) signals to transmit it, therefore, the Δτ can
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be written as

Δτ = τts-tx + τenc︸ ︷︷ ︸
Tx-side delays

+τprop + τdec + τint-handling + τts-rx︸ ︷︷ ︸
Rx-side delays

(2.4)

The description of these time offset factors is as follows:

• Timestamp insert (τts-tx): the time needed to sample/insert times-

tamp in a message and enabling the radio to transmit the message.

• Message encoding (τenc): the deterministic time after the radio is

enabled to encode a message and transforms it into radio waves.

• Propagation delay (τprop): the time taken by radio waves from a

transmitter antenna to reach a receiver antenna. The propagation

delay is less than a microsecond for distances smaller than 300

meters [14].

• Message decoding (τdec): the deterministic time at a receiver to

transform and decode the radio waves into a binary message. The

message reception is signaled by an interrupt.

• Interrupt handling (τint-handling): the time between an interrupt is

raised and MCU handles it.

• Timestamp read (τts-rx): the time to read the local time after the

message reception interrupt is raised.

We measured Δτ between two nodes using an oscilloscope and compared

it with the one obtained by computing each contributing factor in Δτ . In

either case, Δτ is determined as the time difference between inserting a

reference timestamp at transmitter at time instant t1 and before reading

the local time at the receiver at t2. The average total Δτ is measured

1.1982 ms with negligible variations as compared to the tick resolution.

The computed values of each factor in Δτ add up to a total of 1.1997 ms.

The contributions of each element in the time offset is shown in Fig. 2.2.

Therefore, by carefully performing the clock offset budget analysis in the

sender-receiver path within the timestamping, the nodes achieve accurate

instantaneous synchronization.

Clock Skew and Synchronization Period

The clocks need to be synchronized periodically due to the inaccuracy and

instability inherited by crystal oscillators. The synchronization period

(TS), therefore, depends on the clock accuracy (ε) usually given in parts
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Figure 2.2. Disection of the critical path in reference broadcasts. The sync-beacon is 19
bytes including MAC header and frame control field (FCF) )

per million (PPM) and the synchronization accuracy (aS) required by an

application. Using the worst-case clock skew experienced by a node (δ),

we have TS = (aS − ε) /δ.

We measured the clock skew of nodes with respect to a reference node

with an oscilloscope. Figure 2.3(a) shows a trend in clock skew of five

nodes. The worst-case δ we determined over tens of nodes is 2.4 μs/s. An

enlarged view of a clock in Fig. 2.3(a) in Fig. 2.3(b) shows that the clock

skew line, although linear, has fluctuations as high as ±40 μs owing to

the clocks’ inaccuracy.

0 60 120 180 240 300 360 420 480
−1200

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

1200

Elapsed time (sec)

R
el

at
iv

e 
cl

oc
k 

sk
ew

 w
.r.

t r
ef

er
en

ce
 (µ

se
c) A

B
C
D
E

(a) Clock skew in Nano.2430 nodes

60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

160

180

Elapsed time (sec)

R
el

at
iv

e 
cl

oc
k 

sk
ew

 w
.r.

t r
ef

er
en

ce
 (µ

se
c) A

(b) Magnified view of clock A

Figure 2.3. Clock skew in Sensinode Nano.2430 nodes with respect to a reference node

Synchronization Accuracy Results

Using the clock offset budget analysis, we evaluated the synchronization

accuracy of μ-Synch in single and multiple hop network configurations. In

a single hop scenario, a reference node sends a sync-beacon periodically

to synchronize the adjacent child nodes. The synchronization accuracy

between a reference node and a child node is measured using an oscillo-

scope. Figure 2.4(a) shows the one hope synchronization error. The error

remains close to zero, however, 3-5% reported error values, stemming
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from the inaccuracy of the underlying oscillator, are at ±40 μs. If these

abnormal errors are ignored, the average synchronization error is 1.10 μs

and the worst-case error is 3.67 μs. The multi-hop synchronization error,

with/without ±40 μs errors, is given in Fig. 2.4(b).
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Figure 2.4. Synchronization accuracy in μ-Synch

Network Scalability under Reference Broadcasts

The hierarchical network topology established by a reference broadcast

protocol encounters scalability concerns in the diffusion of reference time

in large networks. This is owing to the exponential increase in synch-

beacons and their possible collisions that can easily degrade the quality

of synchronization. We hypothesize a broadcast collision avoidance (BCA)

mechanism to enhance the scalability under reference broadcasts. The

BCA finds its motivation from the collisions mitigation method proposed

in the IEEE 802.11s standard [23]. In this method, using the synchro-

nized network, the nodes select a random sync-beacon transmission slot

in a time-slotted window. The length of the time window depends on the

required periodicity of the beacons. The nodes adjust their selections upon

conflict with the nodes located up to two hops. The conflict is determined

by embedding the transmission slot of the nodes in the sync-beacons.

2.3 Clock Skew Estimation Algorithms

Regardless of the underlying messaging scheme, the time difference

between the clocks can be kept within required limits by frequently

exchanging the time reports and by compensating for the time offset.

The frequency of transmissions, however, is restrained by the energy

constraints of the WSN applications. Pottie et. al. [24] demonstrated that
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the energy required to transmit 1 Kb of data over 100 meters is equivalent

to the energy required to execute 3 million instructions. This observation

has led to the design of clock synchronization algorithms to decrease the

number of required transmissions [13, 14, 25]. A clock synchronization

algorithm uses past synchronization points to estimate the relative clock

skew. In the following sections, we discuss two such clock skew estimation

algorithms: least-squares (LS) linear regression and recursive maximum-

likelihood (ML).

2.3.1 Least-Squares Linear Regression

In Publication I, we studied the LS linear-regression-based skew esti-

mator. LS linear regression finds a best fit line through the time offset

observations over time. The time offset and clock skew of a node’s clock

with respect to the reference node can be estimated from the intercept

and slope of the line [13]. The main contribution, in this context, is

the adaptation of the regression data set size as per the synchronization

period and the linear time scale of the clock skew to keep the estimation

error within limits. The existing literature [14], on the other hand, applies

a fixed-size regression table irrespective of the linear time frame of the

clocks. However, under different synchronization periods, the table can

contain the past data points which deviate from the linearity resulting in

large estimation errors.

At first, we analyzed the clock skew data, given in Fig. 2.3, for linearity

using offline linear regression. The residual error of the regression line

from the real data gives the clock estimation error. It is observed that

the clock skew remains linear for a regression size holding data of only

16 minutes. In this case, the average residual error is 1.92 μs and the

maximum error is 7.15 μs. As linear regression is performed over a longer

period (2.5 hours) the average residual error increases to 5.51 μs. Besides,

the linearity checks, the normal distribution of the residual error and a

plot of residual error as a function of time, fails if the regression is applied

to data longer than 16 minutes.

Therefore, there are two main limitations in linear-regression-based

skew estimation in the real hardware over a long period: a) the deviations

in the clock skew from linearity, b) limited memory to maintain the

regression table and perform computations. Therefore, one has to find

the optimal time range to perform regression.

The time offset, θ, and clock skew, δ, can be estimated from Eq. (2.5)
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[26].

θ̂ = ȳ − δ̂x̄ (2.5)

where

δ̂ =
υ∑

i=1

(xi − x̄) (yi − ȳ)/

υ∑
i=1

(xi − x̄)2

In Eq. (2.5), υ is the regression size, x = CB is the local time report of a

node with mean x̄, and y = CA is the reference time report with mean ȳ.

Computing δ̂ from Eq. (2.5) usually encounters finite word-length lim-

itations in storing the square of a time report. However, this limitation

can easily be avoided by updating δ̂ as Eq. (2.6).

δ̂ =
1

υ∑
i=1

⎛
⎝ (xi−x̄)

υ∑
i=1

(xi−x̄)(yi−ȳ)
× (xi − x̄)

⎞
⎠

(2.6)

Skew Estimation Methodology and Results

A node performs clock skew estimation using Eq. (2.6) by filling a

regression table of size (υ) based on the time reports received every TS s.

A probe node inquires the two clocks using a probe packet every tS s. The

reference node timestamps the probe packet with its local time, whereas

the child node timestamps the probe message with the estimated global

time. The difference between the two time reports gives the estimation

error.

Since the skew estimation error increases with data older than 13-16

minutes, the size of the regression table should be set accordingly. In

Table 2.1, we compared the effect of two table sizes with respect to TS on

the synchronization error, which can be summarized as:

• Table Size υ1: For sync-beacon period TS1 and TS2 since the estima-

tion is performed over the past 4 and 16 minutes of data respectively,

the table size υ1 suits more to TS2 than TS1 .

• Table Size υ2: For given TS1 and TS2 , the regression table holds

data over the past 8 and 32 minutes. Therefore, table size υ2

is appropriate for skew estimation given that the period is TS1 .

However, it exceeds the linear time scale of a clock for TS2 , resulting

in higher error.

In general, it can be concluded that the skew estimation error increases

with the decrease in the sync-beacon period. Also, the time frame over

which the clock skew estimation is performed depends on the linearity
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Table 2.1. The effect of regression table size on synchronization error (μs). In each cell
the first value is average and the second value is maximum synch. error

Period
Regression size
υ1 = 8 υ2 = 16

TS1 = 30, tS1 = 17 3.95 / 16 2.34 / 08
TS2 = 120, tS2 = 57 3.62 / 12 4.71 / 16

time frame of the clocks. Therefore, the time frame of skew estimation

must be adjusted appropriately for a given synchronization period.

2.3.2 Recursive Maximum-Likelihood Estimation

As mentioned earlier, the clock skew estimation using LS linear regres-

sion is erroneous unless the linear regression is applied to a data set of

appropriate size. In Publication II, we showed that since the received

and local time reports are with reference to an absolute instant, the

entries in the regression table are statistically correlated. Since, the

LS linear regression is not an efficient estimator for a correlated set

of measurements [27], its direct application results in estimation error

variance higher than the lower bound. Therefore, tuning the regression

size in Publication I in fact keeps the estimation error variance within the

limits.

In Publication II, also, a time relation model, reflecting the correlation

in time reports, is proposed and utilized to develop a recursive ML skew

estimator. The experimental validation of the proposed estimator shows

that the estimator achieves the smallest error variance as compared to

the existing ones which can maintain an accuracy of less than 4 μs.

Experimental Evaluation

The performance of the developed estimator in Publication II is verified

using the clock skew data set collected on a wireless sensor platform.

The sensor platform and clock realization is the same as presented in

Section 2.2.1. In a simple scenario of two nodes A and B, Node A sends a

sync-beacon with its current local time (counter value, CA) every TS = 1 s.

Node B compensates its time offset using the reference time transmitted

by Node A for first five beacons. Later, the Node B stops synchronizing

and runs undisciplined. Then on each sync-beacon reception at Node B,

the clock difference between the nodes is retained for further evaluation.

The performance metric for a skew estimation algorithm is time error
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which is the difference between the received reference time of Node A

and the skew compensated time of Node B. As mentioned earlier in

Section 2.2.1, the worst-case time error without skew compensation grows

with 2.4 μs/s. For a sync-beacon index j and skew ratio estimate (â)

associated with jth beacon, we have

Time error = CA
j − âCB

j

The time error performance of different clock skew estimation algo-

rithms is compared in Fig. 2.5(a). This comparison is based on the

recursive ML estimator and recursive LS estimator developed in Publi-

cation II, and LS linear regression with a table size of 8. The recursive

ML estimator outperforms the other two estimators in time error and

stability. The lowest performance of linear regression is mainly due to

low response time and estimation error variance.

The experimental skew data has frequent abnormal jumps either due to

the receiver timestamping procedure or the clocks’ instability as discussed

in Section 2.2.1. Therefore, a consistency check of the time data must

be performed to avoid incorrect update of the clock skew estimate. A

consistency check can be defined as

Kmax ≥
∣∣∣∣CA

j − a
TA
0

TB
0

CB
j

∣∣∣∣ (2.7)

where TA
0 and TB

0 denotes the nominal clock period of Node A and B

respectively.

The received time report satisfying Eq. (2.7) is only considered for a

time update. The Kmax has to be adjusted according to the sync-beacon

period and the communication delay between the timestamping procedure

at both nodes. Figure 2.5(b) shows the effect of Kmax on the time error

under recursive ML estimator demanding a careful adjustment in Kmax

to minimize the synchronization error.

The quantitative statistical parameters of the time error distribution for

different sync-beacon periods TS are given in Table 2.2. The last column

in the table gives the probability of time error larger than 3σ. Using these

values, one can determine the appropriate synchronization period as per

the required synchronization accuracy.
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Figure 2.5. Time error performance of the skew estimation algorithm(s)

Table 2.2. Timer error distribution parameters under the recursive ML estimator.

TS μ σ Pr{
∣∣∣kBcj − âkAcj

∣∣∣ > 3σ}
60 0.176 0.961 1.12%
120 0.408 1.100 1.708%
300 1.640 3.954 1.960%

2.4 Summary

In this chapter, we focused on the time synchronization methods for main-

taining discipline in the diverging clocks on low-cost wireless sensors.

Time synchronization plays an intrinsic role in network organization and

the realization of practical applications. The synchronization accuracy

achieved by these proposed methods encouraged us to explore the chal-

lenges in their application-oriented usage. In Chapter 3, we discuss time

synchronization requirements in structural health monitoring applica-

tions and develop a sampling application that can maintain tight syn-

chronization among the accelerometer and therefore accurately identify

the modal properties of a structure. In Chapter 4, a communication stack

is developed providing time-synchronized, multi-channel and time-slotted

communication suitable for real-time applications.
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3. Time-Synchronized Wireless
Structural Health Monitoring

3.1 Structural Health Monitoring

Structural health monitoring (SHM) is a process of adopting automated

damage identification strategy for aerospace, civil and mechanical engi-

neering infrastructures. It replaces the subjective and labor-intensive

visual inspections to ensure structural integrity meets the life-safety stan-

dards during its life span. The main areas of SHM damage identification

process [28] are:

• Observation of an infrastructure over time using periodically spaced

sensory measurements

• Extraction of damage-sensitive features such as change in modal

properties of the structure from these measurements

• Statistical analysis of these features to determine the current state

of the infrastructure by damage detection, localization, quantifica-

tion and prognostication [29]

The majority of proposed damage detection methods for civil structure

such as dams, bridges, tunnels and buildings, concentrate on vibration-

based damage detection. The vibration-based SHM allows damage iden-

tification from the changes in global vibration characteristics or damage-

sensitive features using time series measurements. Some of the widely

used features are the modal properties (e.g., natural frequency, damping

ratio and mode-shape) of a structure [30]. These features are attractive

for their physical meaning and can be identified using output-only meth-

ods without measuring the excitation owing to their independence from

the input excitation system.
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3.2 Wireless Structural Health Monitoring

SHM systems are traditionally wired, that is the measurements from the

sensors, installed at different locations of a structure, are transferred to

a central data repository through cables. In large structures since the

large sampling points are required, the direct consequence of using cables

is high system, installation and maintenance cost [31]. As a result, a

lower number of sensors poorly scaled to the dimensions of a structure

are installed which provide insight only to the low-order modal properties

of the structure. Therefore, there is a need for higher monitoring fidelity

by increasing the number of sensors [32]. The denser monitoring provides

global damage detection as well as more detailed local investigation of the

structure.

The denser monitoring, however, is only practical if the cost of the moni-

toring system is substantially reduced. Wireless sensor networks provide

such a low-cost solution in large-scale physical systems. Yet, in order to

provide a comparable functionality with wired SHM systems, a wireless

SHM system has to overcome a number of challenges imposed by SHM

applications; for instance high-frequency and high-fidelity synchronized

sampling, and reliable collection of large amount of data.

3.3 Time-Synchronized Sampling for Modal Analysis

The sensitivity and accuracy of damage detection in structures depends on

the accurate extraction of modal analysis parameters. The identification

of modal parameters requires that the sampling process amongst the

sensors must be synchronized during the sampling intervals so that the

structural response time histories collected at different locations can be

accurately aligned on a common time-scale. From the perspective of

SHM applications, in [33][34][35], the effect of time synchronization (TS)

error on output-only modal analysis is investigated. The commonly used

output-only modal analysis techniques can be classified into two groups

depending on their domain of operation (a) the frequency domain (non-

parametric) approach and (b) the time domain (parametric) approach.

In [33][34], the effect of TS error on the reconstruction of mode shapes

is investigated under a frequency domain modal analysis technique. This

analysis concludes that the accuracy of mode-shape reconstruction under

TS errors is a function of mode frequency. The higher modes, which are
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better indicator of structural damage, are more sensitive to TS errors

and a time error of even 30 μs can cause a significant reduction in

the reconstruction of a higher mode shape. In [34], under the same

frequency domain technique as in [33], it is shown that the presence of

TS errors introduces errors in the amplitude and phase of each mode-

shape component, however the main source of error in the identified mode

shapes is the phase shift. The phase shift depends both on the TS errors

and the mode frequency or natural frequency.

In [35][36][37], the correlation function of the structural responses is

studied to analyze the effect of TS error on modal parameters. The

correlation function of the structural responses can be used by time

domain model identification schemes such as Eigensystem Realization

Algorithm (ERA) [38] and Covariance-based Stochastic Subspace Identifi-

cation (SSI-COV) [39][40] method to estimate the modal parameters. The

analysis in [35][37] shows how the TS errors affect the modal parameters

by entering into the correlation function. These studies conclude that

the natural frequencies and damping ratios are unaffected by the TS

errors. However, there are phase and amplitude errors in mode-shape

reconstruction associated with TS error. Although the error in mode-

shape amplitude is negligible, the phase error is meaningful as the mode-

shape phases are important modal characteristics for damage indication.

The basic relationship between phase shift (ϕk) and natural frequency

(fk) of kth mode with a time error Δt is given as ϕk = 2πfkΔt. Under

this relationship, a TS error of 30 μs results in a 1.08-degree phase delay

of a mode at 100 Hz, while the same TS error causes a 10-degree phase

delay at 1 kHz. The phase delay tolerance depends on the application

but as investigated in [41], even a 3.6-degree phase delay can cause a

considerable reduction in the reliability of the mode-shape reconstruction.

3.4 Time Synchronization Techniques for SHM

In wired SHM systems, a traditional signal based synchronization tech-

nique, by sharing a sample clock signal among the sensors via coaxial

cables, provides a high-precision synchronization. In [42], a signal-

based synchronization technique is presented for SHM. However, it is not

feasible to physically connect the entire network for distances over a few

hundred meters, thus creating the demand for time-based synchroniza-

tion techniques over wireless networks.
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In time-based synchronization techniques, network entities have a

common time reference which can be used for the generation of clocks and

events. Time-based synchronization can be achieved with or without a di-

rect connection between the measurement devices. IEEE 1588 [18], IRIG-

B [43], NTP [10] are examples of time-based synchronization techniques

in networked measurement systems. The time-based synchronization

techniques for wireless sensor networks have already been discussed in

Chapter 2. Here, we briefly look into the existing TS techniques in

wireless networks for SHM.

In [44], a GPS receiver is attached to each data acquisition station which

maintains a tight synchronization in the network with a synchronization

mismatch of±25 ns. A GPS based solution, although, fulfills the stringent

synchronization requirements of SHM applications, however, it does

demand more power and the cost of additional hardware also becomes

infeasible. In [45][33], a global beacon-based synchronization method is

used where each wireless sensor resets its clock to zero at the reception

of a synchronization beacon. However, in [45] an additional stable crystal

oscillator is used to maintain synchronization during the sampling period.

This solution, though effective, increases the power consumption and the

cost of the solution. In [33], a hybrid synchronization scheme is used

in which personal area network (PAN) coordinators are synchronized via

a wired connection and the associate nodes to a PAN coordinator are

synchronized with broadcast beacons. By this method, the authors in [33]

have shown a synchronization accuracy of less than ±10 microseconds.

In [46][47] TS techniques developed specifically for WSNs are used for

SHM. In [46], FTSP is used to synchronize a 64-node network deployed at

the Golden Gate Bridge in San Francisco (United States). In [47], TPSN is

used to synchronize a WSN deployed on medieval tower in Trento (Italy).

The reported synchronization error in [47] is 732 μs at the twelfth hop. In

these deployments, the collected vibration data lacks the extensive modal

analysis and therefore the effect of TS errors on the modal analysis is not

evident.

3.5 Time Synchronization Challenges in SHM

In WSNs, the synchronized execution of sampling interval and synchro-

nized sampling at frequencies up to 1 kHz for SHM is hampered by

spatial and temporal time uncertainty in the node and across the network

26



Time-Synchronized Wireless Structural Health Monitoring

respectively. The spatial time uncertainty occurs among the spatially

distributed nodes because of clock skew and drift originated from the

variations in the crystal oscillator of the nodes and the imperfect clocks

offset adjustments. On the other hand, the temporal time uncertainty

takes place inside a node because the sampling application task cannot

keep up with aggressive sampling and the logging of the data.

Since the sampling at such a frequency is resource-demanding, the

nodes have to suspend other tasks in order to reduce the temporal

time uncertainty. Therefore, a time synchronization protocol for re-

synchronizing the clocks cannot be functional during the sampling phase.

Instead the clocks have to be kept synchronized based on the clock

skew estimation from earlier TS points [Publication I]. In addition, the

communication overhead inevitably introduced by a TS protocol must be

limited, in order to avoid shortening the lifetime of the system.

3.6 μ-Sync Framework for SHM

The μ-Sync scheme presented in Section 2.2.1 is developed further for

synchronized sampling in an SHM application in Publication III. Our

analysis showed that μ-Sync keeps the one-hop average timer error below

1.74 μs. Also, the relative temporal uncertainty among the collected

samples always remains lower than 10 μs at sampling frequencies as high

as 1 kHz. The clock skew estimation in the nodes ensures the sampling

task synchronization during the extended sampling period when the

synchronization may not be feasible.

3.6.1 Time Synchronization Evaluation

Originally, μ-Sync is implemented on Nano.2430 platform. However, μ-

Sync is ported to Micro.2420 platform because of its hardware flexibility.

The description of these two platforms can be found in Appendix A.

In Micro.2420, the TS clock is based on Timer-A configured with a tick

resolution of 1 μs. A compare register, TACCR1, associated with Time-A

is utilized to adapt the sampling rate of an accelerometer. At each

sampling interval, TACCR1 generates an interrupt which in turn invokes

the sampling task at the application layer. Appendix A.1.1 explains the

available timers in Micro.2420.

Among others advantages, Micro.2420 platform has a more stable
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crystal oscillator than the Micro.2430. This can be observed by comparing

clock skew in Fig. 3.1 and Fig. 2.3. These figures depict the clock skew in

the undisciplined clocks with respect to a reference node. In general, the

clock skew is linear and varies among nodes. However, the fluctuations

in a Micro.2420 clock are much smaller than the ones observed in a

Nano.2430, which reached to ±40 μs.
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Figure 3.1. Clock skew in Sensinode Nano.2420 nodes with respect to a reference node

In the tests for measuring the synchronization accuracy, a reference

node transmitted a TS beacon every 1 second. The network nodes ad-

justed their clock with respect to this reference time. The synchronization

error was measured by toggling an I/O pin every 65.535 ms. The absolute

average synchronization error was measured to be 1.74 μs and the error

remained below 5 μs by 98.6% of the time.

3.6.2 Sampling Task Synchronization

The synchronized execution of the sampling task and maintaining that

synchronicity within the collected samples across the network, defined as

sampling task synchronization here, is based on the TS service. From this

perspective, the TS service adjusts or translates the local time of a node

to a global reference, whereas, the task synchronization achieves periodic

execution of a task at different nodes in synchrony.

It is implicit that the user task at the application layer demands services

from a TS protocol transparently and without the disruption of the user

task. Since the clock skew makes the clocks diverge from the reference

time at a high rate, the frequent transmission of synchronization beacons

is mandatory. This requirement seems to cause an adverse effect on

periodic execution of the user task. Therefore, in Publication III the inter-
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action of the two tasks, i.e., accelerometer sampling and synchronization

are tailored in such a fashion that they run independently from each

other while the synchronization is performed even while sampling is in

progress. In the proposed solution, the accelerometer sampling and TS

tasks run at the application and the MAC layer, respectively.

The user task handles the activation of the synchronization task for

a desired synchronization beacon rate and synchronization duration.

The synchronization task runs transparently at the MAC layer and the

synchronization beacons are characterized by a unique frame-type sub-

field in the IEEE 802.15.4 frame control field. Before the execution of the

sampling task, synchronization beacons are transmitted for removing the

clock offset and for clock skew estimation. The clock adjustment and skew

estimation procedure is the same as described in Publication I. During the

sampling phase, the clock adjustment is based on a node’s estimated clock

skew with respect to the reference node.

The synchronization phase is followed by a sampling command to the

network by the reference node. The command includes the sampling

parameters such as sampling rate, measurement period, monitored axes,

and accelerometer scale and bandwidth. At the reception of the sampling

command, a network node suspends all other tasks, except for Timer-A

interrupts and the sampling task. This ensures that the application

layer sampling task will completely get the microcontroller’s processing

time, thus reducing the jitter in the acquisition of the samples potentially

introduced by other tasks or interrupts. The sampling task at the

application layer monitors the state changes in the microcontroller’s

I/O port, which is driven by the synchronized Timer-A, and collects a

sample from the accelerometer at each transition. The port is toggled

by exploiting the register TACCR1 and its hardware interrupt, which is

triggered each time TAR value equals the value stored in TACCR1. The

register is updated in an interrupt service routine (ISR) according to the

sampling frequency specified by the sampling task. During the sampling

phase, TAR is periodically readjusted by adding the estimated clock skew

value.

The synchronized sampling for two different nodes is shown in Fig. 3.2.

We measured the task synchronization error between many nodes and it

is found that the tasks are always synchronized to less than 10 μs even

at a sampling frequency of 1 kHz. The possible factors contributing to

the difference between TS accuracy and task synchronization accuracy
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Figure 3.2. Time and task synchronization error

are the jitter in hardware interrupts and the delay in reading the I/O

pin transitions by the sampling task. At the end of the accelerometer

sampling phase, all the other tasks previously suspended are restored,

Timer-A interrupts are deactivated and data collection procedure is acti-

vated.

A complete flow of the events as being executed by a sink node and the

accelerometer nodes is shown in Fig. 3.3.

Figure 3.3. The flow of events in SHM application

3.6.3 Results

The proposed time and task synchronization scheme is integrated to a

configurable wireless system for SHM. This synchronized wireless system

is deployed on a model wooden bridge for experimental modal analysis
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in Publication III. A cable-based monitoring system with high-quality

accelerometers is installed parallel to the wireless system to provide a

baseline for performance comparison. In addition to maintaining the

accurate synchronicity in the collected acceleration samples collected by

the nodes, the wireless system also takes care of the missing samples in

data collection procedure and sampling accuracy.

The structural responses collected by the synchronized wireless system

and the wired system are processed by applying the SSI-COV [39][40]

method. The analysis identified fourteen modes in the frequency range

of 0 to 40 Hz in the model wooden bridge. The absolute average relative

difference between the natural frequencies identified with the wireless

and wired measurements is 0.422%. The variability of damping ratios is

typically very high even between the different wired measurement runs,

e.g., 200%. However, the relative difference between the damping ratios

estimated with the wireless and wired systems is 42.2%. The modal

assurance criterion (ModAC) [48], which measures the consistency of the

two mode shapes, has an average value of 0.943.
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4. Time-Synchronized Communication

Since their advent, wireless sensor networks (WSNs) have paved their

way into home, health and monitoring applications. However, their

adoption have thus far been slow in wireless industrial automation

owing to the lack of open international standards fulfilling the industrial

requirements [49][50].

For industrial applications, the design and operation of WSNs must en-

sure the the management of energy resources, communication reliability

and real-time data delivery. The efficient management of the energy

resources hinges on the scheduling of radio up-time and minimizing

external interferences. By duty cycling, the radio is turned on only for

packet transmission or reception and otherwise, the radio remains in

low-power state. By mitigating the effect of external interferences, not

only is the the energy spent on packet retransmission minimized, but

communication reliability, greatly needed for real-time applications is

enhanced.

The radio duty cycling [51] requires a common sense of time in the

network so that the node pairs can be scheduled to wake up only at

data communication instances. Given that the network communications

are appropriately scheduled such that no two pairs of nodes within the

interference range of each other communicate at the same time, the

intra-network interference can also be removed. Such synchronized

radio scheduling enables energy savings by enhancing the packet delivery

performance with a minimum number of retransmissions and by keeping

the nodes in a low-power state during inactive periods.

A communication channel in low-power WSNs might suffer from fading

and interference from the coexisting wireless systems. Communication

on such a channel can easily result in packet losses and consequently

in packet delays and energy consumption. In order to mitigate the
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channel uncertainties, the radio scheduling on all or least interfered

channels is the optimal solution [52] [53][Publication VII] as compared

to a single-channel communication. Just as with radio scheduling, the

ability to schedule channels also demands tight time synchronization in

the network.

In summary, a robust synchronization procedure, coupled with a well-

designed communication schedule both in time and frequency, can play a

significant role in fulfilling the requirements of industrial applications.

Working on these lines, several industrial organizations have pushed

towards wireless communication standardization in wireless automation.

The standards such as WirelessHART [7] and ISA 100.11a [8] are mile-

stones of these efforts.

WirelessHART and ISA 100.11a implement IEEE 802.15.4 direct se-

quence spread spectrum (DSSS) PHY layer specifications. The medium

access and networking schemes, in these standards, are based on time

synchronized mesh protocol (TSMP) [54]. TSMP provides time-slotted

MAC (i.e., TDMA) with a 10 ms of slot time, channel hopping, channel

blacklisting and security. The centralized network manager ensures self-

organization and self-healing of the network by maintaining up-to-date

routes, routing diversity and communication schedules.

TSMP provides time division multiple access along with a number of

enhancements for time synchronization and frequency diversity. TSMP

utilizes slot-based synchronization on an agreed upon network communi-

cation schedule. The communication schedule is designed by dividing the

medium access in time and frequency and each resulting unit is assigned

to a pair of nodes for communication. Time is sliced up into time slots of

equal length and a constant number of slots make up a slot frame which

repeats itself indefinitely.

In slot-based synchronization, instead of exchanging the explicit times-

tamps, a node is expected to receive a scheduled packet exactly after

Tx offset units from the start of a slot. Every packet is thus implicitly

timestamped and its comparison with the expected Tx offset gives the

synchronization error for offsetting the phase of the next slot frame.

Figure 4.1 shows the time and frequency schedule highlighting the slot

frame adjustments using the Tx offset-based synchronization error.

In addition to Tx offset-based adjustments, Rx node can also indicate

this synchronization error to a transmitter in an ACK packet either

explicitly in the packet or implicitly with its reception time. The syn-
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Figure 4.1. Time and frequency scheduling highlighting the slot frame adjustments
using the Tx offset-based synchronization error

chronization accuracy of slot-based synchronization is less than 1 ms [54].

4.1 A-Stack – A Communication Stack for Industrial Applications

In Publication IV, a TDMA-based communication stack using IEEE

802.15.4 PHY, named A-Stack, is designed. A-Stack provides a flexible

development environment for real-time WSN applications such as wire-

less automation and structural health monitoring. A-Stack includes time-

synchronization, multichannel time-slotted communication and network

formation schemes. The communication stack is flexible enough to incor-

porate any packet scheduling algorithm, both in time and frequency, as

well as network formation and configuration schemes. A-Stack provides

this flexibility with ad-on PC tools that allow network adaptation for given

application requirements.

4.1.1 Motivation for A-Stack Development

The diverse nature of WSN applications limits the design of a single

generic solution [55]. Therefore, a flexible environment is needed that

can ease the development and testing process for application specific

protocols and algorithms. A-Stack, in general, aims at providing an

open-source prototyping environment capable of ensuring real-time and

reliable network operation and, in addition can incorporate any given

network management scheme.
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Specifically, A-Stack targets the demands of industrial applications such

as wireless automation and structural health monitoring. The wireless

automation applications demands real-time data collection with high

reliability. On the other hand, SHM applications require a) collection of

the bulk of the acceleration data from the network reliably, b) accurate

synchronized sampling (in the order of tens of microseconds) of structural

responses across the network. In this context, A-Stack provides time and

frequency diversity to enhance communication reliability and network

bandwidth, and also fulfills the synchronization accuracy demands for

synchronized sampling in SHM applications.

4.1.2 A-Stack Design and Tasks

A-Stack is implemented on Micro.2420 platform by extending its preced-

ing communication stack, called NanoStack. A brief overview of the plat-

form and Nanostack is given in Appendix A. A-Stack, runs on FreeRTOS

real-time operating system. A-stack design, however, is independent of

platform, operating system and communication scheduling scheme. A-

stack design includes the following four tasks.

• MAC task: enables time-slotted communication by handling the

radio and time-synchronized timer events. Each timer event has

an associated event type, event duration, radio channel and commu-

nication pair index. Radio channels can be updated from a list of

favorable channels.

• Packet manager: handles packets based on their type and destina-

tion. It is also responsible for packet routing.

• Service manager: responsible for network configuration and node

joining

• Application task: is any application-dependent task, e.g., time-

synchronized sampling of structural responses.

These tasks are prioritized within the context of real-time operating sys-

tem such that time-critical events are executed in deterministic fashion.

4.1.3 Time Synchronization in A-Stack

In order to enable multi-channel time-slotted communication, all the

nodes in a network must be synchronized to a common time-reference.
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A-stack achieves network-wide synchronization by integrating μ-Sync

synchronization service at the MAC layer. The synchronized clock of a

node is responsible for generating the desired timer events (i.e., time slots)

as well as synchronized sampling in SHM application. The sync-beacons

are scaled to a multi-hop network by the addition of synchronization time

slots in super-frames.

Timer Events

A-stack uses a set of timer events to define a communication schedule of a

node. An event indicates the start of a time-slot within the schedule. The

timer events are based on the hardware interrupts of a node’s clock which

is synchronized to the network’s clock.

In A-stack, the synchronization clock is derived from the Timer-A of

Micro.2420. The basic timer implementation is the same as discussed in

Section 3.6.1. The Timer-A, in addition to maintaining a synchronized

clock, is responsible for initializing the scheduler and to initialize the

generation of timer events. The scheduler is activated only after the

network-wide time synchronization and the distribution of scheduling

information is completed. The timer events are handled in an ISR that

is associated to compare register, TACCR0, of the Timer-A. When a timer

interrupt occurs, the event-handling task is invoked and the TACCR0 is

updated with the next timer event duration. Another compare register

TACCR1 of Time-A works in parallel to control the execution of a sampling

task. The timer event generation and handling interface in A- Stack is

shown in Fig. 4.2.

Scheduling Synchronization Beacons

For maintaining a collision-free schedule in the network, the synchroniza-

tion error among the nodes must be less than the guard time, Tg, in each

time-slot. This condition places an upper bound on the synchronization

period, TS

TS =
Tg −Δt

ε

where ε is the clock accuracy and Δt is the worst time error in μ-Sync. In

Micr.2420 platform, ε = ±40 PPM and with Tg = 3 ms and Δt= 5 μs, we

have TS = 37 sec; that is the clocks must be synchronized every 37 sec.

After the network initialization and distribution of the communication

schedule as explained in Publication IV, the network is synchronized

and time-slotted communication is initiated. During the time-slotted
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Figure 4.2. Timer event generation and handling interface

communication, periodic synchronization beacons propagate down the

network on the dedicated time slots in the transmission schedule.

4.1.4 A-Stack Performance

A-Stack performance is evaluated rigorously in single and multihop

network formations deployed in line-of-sight (LOS) and non-line-of-sight

(NLOS) environments. The main idea of these tests is to evaluate

the nodes’ adherence to the schedule. The communication reliability is

measured in terms of PDR and latency. In these tests, the time-slot

length is 10 ms with 3 ms guard time. The synchronization beacon

is sent every 10 super-frames. The multihop test deployment and the

used communication schedule are shown in Fig. 4.3(a) and Fig. 4.3(b)

respectively.

The PDR results in single-hop LOS tests showed 100 % PDR on all the

utilized channels reflecting the success in the generation and handling of

the timer events according to the schedule on a node. In multi-hop NLOS

tests, the PDR varied among frequency channels from 88-100% which, in

addition to propagation losses in an office environment, can be attributed

to fading and interference for the co-existing WLANs.

In order to gauge the capability of A-stack to maintain time-slotted

communication as well as executing an accelerometer sampling task,

we deployed an A-Stack based network for vibration measurements of

a pedestrian bridge [56]. Each accelerometer-equipped node collects the
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(a) Multihop deployment layout

(b) Communication schedule

Figure 4.3. Schedule used in a multi-hop test. Super-frame length is 500 ms. (Last IDLE
slots in the schedule are truncated). Transmission pipelining is shown on the
schedule with arrows.

vibration measurements of the bridge as explained in Chapter 3. The

vibration measurements can amount to as much as 4 MB of data per

node with a 30 s measurement time. This SHM application demands

high payload throughput requirement in a network of multiple nodes. A-

Stack has proven to be a useful framework for SHM applications requiring

high data-transfer rates, synchronized sampling and long-term reliable

operation.

39



Time-Synchronized Communication

40



5. Coexistence Modeling for
Link-Quality Analysis

Coexistence and unlicensed spectrum sharing of low-rate wireless per-

sonal area networks (LR-WPAN) with WLANs results in their perfor-

mance degradation as studied extensively in the literature [57, 58, 59, 60].

The performance degradation is caused by higher power WLAN transmis-

sions on the overlapping channels. On the other hand, there is a limited

to negligible impact of low power LR-WPAN transmissions on WLAN

[61, 62, 63, 58].

In this asymmetric coexistence scenario, the coexistence modeling of LR-

WPAN is important for a) network performance evaluation b) designing

the coexistence techniques for mitigating the impact of interference.

The coexistence modeling in this chapter is concerned with the design

of coexistence models capable of capturing the impact of interference,

in terms of its power and traffic characteristics, on the quality of an

interfered link. In this context, we proposed packet delivery ratio (PDR)

models for link-quality analysis of an interfered LR-WPAN system under

WLAN coexistence. A PDR model probabilistically combines the impact

of interfering WLAN traffic on LR-WPAN traffic based on the signal-

to-noise-ratio (SNR) and signal-to-noise-plus-interference-ratio (SINR) of

the link, and the traffic characteristics of the two systems [59].

The contributions in this chapter can be summarized as:

• Coexistence performance modeling of a LR-WPAN link under WLAN

interference based on a stochastic packet collision-model

• Spectrum sensing based PDR estimation of an interfered LR-WPAN

link with and without packet collision-modeling
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5.1 Coexistence Performance Analysis

The coexistence performance analysis of two networks is challenging due

to their possible coexistence scenarios and network configurations. For

coexistence analysis of WLAN and LR-WPAN, in particular, selection of

the following aspects play a critical role for a realistic evaluation study:

• The offset between the operational frequencies and the proximity:

these factors can alter the MAC layer operation based on the

measured interference energy.

• Typical network traffic characteristics which are variable especially

in WLANs, due to adaptive PHY transmission rate and network size.

Some experimental studies investigated the coexistence performance of

IEEE 802.15.4 under IEEE 802.11b interference with respect to frequency

offset between the two systems [57, 58]. Petrova et. al. [58] suggested

a minimum frequency offset of 7 MHz for satisfactory IEEE 802.15.4

performance under 3.5 meter’s distance separation of IEEE 802.15.4

from the IEEE 802.11b transmitter. However, the IEEE 802.11b traffic

characteristics are not given in this study. A probabilistic model is

developed in [59], which evaluates the packet error rate (PER) in the

IEEE 802.15.4 network based on the frequency offset, duty cycle and

distance separation of the IEEE 802.11b interferer. The model assumes

that the in-band interference power from IEEE 802.11b to the IEEE

802.15.4 is additive white Gaussian noise (AWGN). The theoretical and

simulation analysis, under saturated periodic WLAN traffic, suggest that

IEEE 802.15.4 needs 8 meter’s distance separation or 7 MHz frequency

offset from IEEE 802.11b to maintain the PER below 0.1%.

The received in-band interference power from IEEE 802.11 depends

on its distance separation and frequency offset from the IEEE 802.15.4.

Therefore, it is more effective to evaluate the PER of a LR-WPAN link

with respect to SINR and the activity factor of IEEE 802.11b, as suggested

in Publication V. The frequency offset and distance-based performance

evaluations are more useful for static network deployment. However, the

aforementioned approach can be adopted for frequency-agile communica-

tion.

In [64], a coexistence model is proposed to evaluate the throughput

performance of IEEE 802.15.4 in different coexistence ranges with IEEE

802.11. The coexistence ranges are defined based on the transmit power
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and receiver sensitivity of the two systems. The analysis presented in [59]

falls into one of the coexistence ranges, i.e., both the IEEE 802.15.4 and

IEEE 802.11 networks do not sense transmissions from each other.

5.1.1 Link-Quality Estimators for Coexisting Networks

The link-quality estimation in wireless sensor networks is a fundamental

element of network management for adapting the network parameters

and protocols. Various network management mechanisms such as MAC

[65], routing [66], topology control [67], clustering [68], channel ranking

[PV], and power control [69] rely on link-quality estimation.

The link-quality estimators, in general, can be categorized as hardware-

based and software-based estimators [70]. The hardware-based estima-

tors are received signal strength indicator (RSSI), link quality indicator

(LQI) and SNR that can be read directly from the radio transceiver.

Several studies have investigated the correlation of these estimators with

PDR [71, 72, 73, 74, 75]. However, these estimators are ineffective

in estimating the link-quality under interference. The software-based

estimators are derived from link measurements. The main software-

based estimator is packet delivery ratio (PDR) which is computed as a

ratio of the successfully received packets to the transmitted packets. A

similar metric is the PER, that is PDR = 1 − PER. A comprehensive

survey on link-quality estimators in LR-WPAN is presented by Baccour

et. al. [70].

A PDR estimator can be based on active or passive link monitoring.

In active monitoring, PDR is estimated by transmitting training packets

and by correlating SINR with PDR [65]. The passive-monitoring-based

PDR estimators are more agile to link dynamics, which can be based on

either a combination of existing traffic and overhearing [76, 75] or energy

detection [77].

In this thesis, energy-detection-based PDR estimation is adopted for

further analysis. This technique is already studied by Stabellini et.

al. [77], however, the underlying coexistence model ignores the traffic

characteristics of the interfering network.
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Figure 5.1. Coexistence scenario of a LR-WPAN with WLAN

5.2 Coexistence Model

We consider the coexistence of IEEE 802.15.4-based LR-WPAN and IEEE

802.11g-based WLAN in a 2.4 GHz unlicensed band. Figure 5.1 sketches

such a coexistence scenario in which a LR-WPAN link is interfered by

WLAN network. The LR-WPAN link, established between a sensor

transmitter (Stx) and sensor receiver (Srx), is a part of a large network.

The link strength on a candidate channel is S. A geographically co-located

WLAN network operates on a channel overlapping with the channel

selected for the sensor link.

The sensor link can experience interference from a WLAN network with

a single communication flow (WLAN-I) or a composite effect of interfering

traffic from a multi-terminal WLAN network (WLAN-II). The objective in

either case is to evaluate the link-quality based on the PDR.

5.2.1 PHY Layer Specifications

IEEE 802.15.4

The PHY layer of IEEE 802.15.4 uses offset quadrature phase-shift keying

(OQPSK) modulation with half-sine pulse shaping [5]. The PHY layer

transmission rate is 250 kbit/s. The bit error rate (BER) of OQPSK
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modulation in an AWGN channel is

Pe = Q
(√

2ζEb/No

)
(5.1)

where ζ is the pulse-shaping factor and Eb/No is the average energy per

bit to the noise spectral density or noise plus interference spectral density

at the receiver input.

IEEE 802.11g

The PHY layer transmission rate of the IEEE 802.11g standard, assumed

in this thesis, is 12 Mbps. This data rate corresponds to quadrature phase-

shift keying - orthogonal frequency division multiplexing (QPSK-OFDM)

modulation.

5.2.2 Traffic Models

LR-WPAN

We consider a typical LR-WPAN traffic model for periodically reporting

constant size measurement data to a sink node. It is assumed that

a sensor transmitter sends a Nb-bit packet at Rb bits/s with packet

transmission time, Tw = Nb/Rb. The packets are sent at a rate λ. In

experimental and numerical evaluations, we use Nb = 480 bits, Rb = 250

kbps and λ = 33 packets/s.

WLAN

We assume a nominal WLAN packet payload size of 500 bytes. Including

headers and the PHY layer specifications this corresponds to a packet

transmission time of T = 0.374 ms. The considered packet inter-arrival

time distributions are stationary periodic, exponential, gamma and hyper-

Erlang. The periodic and exponential distributions are used to model

the packet arrivals in a single-terminal scenario. The gamma and hyper-

Erlnag distributions, as we study later in this chapter, are the potential

candidates to model realistic traffic scenarios, for instance, traffic shaped

by CSMA/CA mechanisms in a multi-terminal WLAN system.

5.3 Packet Delivery Ratio Model

Consider the transmission of a LR-WPAN packet of length Tw. If there is

no interference, the bit error probability is Pe0 and Eb/No in Eq. (5.1) is a

function of SNR = S/PN . Alternatively, if a bit experiences interference,

45



Coexistence Modeling for Link-Quality Analysis

the bit error probability is Pe1 and Eb/No is a function of SINR =

S/ (I + PN ). Here, S is the signal power, PN is the noise power and I

is the interference power.

Let us define q0 = 1−Pe0 and q1 = 1−Pe1 as the bit success probabilities

without and with interference, respectively. Then the success probability

of a packet can be determined from Eq. (5.1) as a function of SNR, SINR

and the number of interfered bits [59] as

PDR = qNb−�
0 q�1 (5.2)

where � is the number of interfered LR-WPAN bits, i.e., the packet

collision-time. The packet collision-time of an interfered link is a function

of traffic distributions, packet size and packet inter-arrival time, of the

interfering and interfered networks [59][78].

Since the PDR model in Eq. (5.2) requires deterministic knowledge of �,

in earlier studies [59, 78], collision-time is analyzed based on determinis-

tic packet collision models. However, these models are limited to periodic

inter-arrivals which cannot be generalized to a realistic traffic scenario,

for example, a sensor link observing a composite effect of traffic from a

multi-terminal WLAN network. Due to this limitation, the collision-time

has to be evaluated by simulations [Publication VII].

In Publication VIII, we proposed a PDR model (Eq. (5.3)) based on

packet collision-time distribution. In this formulation, F (Tw, x) is the

collision-time distribution (CTD) function parametrized by LR-WPAN

packet length, Tw, and collision-time, x.

PDR = qNb
0 F (Tw, 0)+

Nb∑
�=1

(
qNb−�
0 q�1

)(
F (Tw, �Tb)−F (Tw, (�− 1)Tb)

)
(5.3)

Since the interfering traffic is parametrized by packet inter-arrival time

and packet-size distributions, the PDR evaluation of LR-WPAN requires

derivation of CTD using these parameters.

5.4 Stochastic Packet Collision Model

In Publication VIII, we developed a stochastic packet collision model to

capture the temporal effect of WLAN traffic distributions on a LR-WPAN

link. The packet collision model is utilized to derive the CTDs of the LR-

WPAN link under a realistic interfering traffic distribution such as WLAN

traffic originated from multiple terminals and shaped by the CSMA/CA

rules of the associated MAC layer.
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The proposed collision model is based on the observation that the WLAN

traffic can be represented by an alternating renewal process (see Fig.

5.2), where the channel occupancy is one of the states. The statistical

properties of alternating renewal processes where the observation starts

at the state transition instant are already analyzed by Takács [79]. As

the interfered LR-WPAN may access the channel at an arbitrary time, we

consider two probable states of residual hold-time before the next state

transition occurs, and mix them according to the WLAN activity factor.

Figure 5.2. The alternating renewal processs representation of WLAN traffic

Consider an alternating renewal process that can be in one of two states:

on (busy) or off (idle). Let ξ denote the length of off time and η denote

the length of on time. The variables ξ1, ξ2, ξ3, ... are independent and

identically distributed (i.i.d.) random variables (RV) with cumulative

distribution function (CDF) G (x) and mean ξ̄. Also, η1, η2, η3, ... are i.i.d.

RV with CDF H (x) and mean η̄. Let χ (t) denotes the state of the process

at a time instant t. At an arbitrary time instant t > 0, we find the system

in on state with probability ρ and in off state with probability 1− ρ.

Pr {χ (t) = 1} = η̄

η̄ + ξ̄
� ρ (5.4)

Let A denote the set of time instances that the system is in an off state

and B denote the set of time instances when the system is in an on state.

χ (t) =

⎧⎪⎨
⎪⎩
0 if t ∈ A

1 if t ∈ B
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The total time spent in state B in an interval [t0, t] is given by

βo (t) =

t∫
t0

χ (τ)dτ

and the total time spent in state A is given by αo (t) = t− βo (t). The CDF

of the on time, βo (t), is obtained by Takács [79] assuming that the system

is in on state at t0. At time instant t0, however, the process χ (t) can be in

an arbitrary state as shown in Fig. 5.2. The first observed state (at t0) can

be either off as shown in Fig. 5.2.a or on as shown in Fig. 5.2.b. The CDT

for each case can be written as

ω0 (t, x) � Pr {βo (t) ≤ x|χ (t) = 0}

=
∞∑
n=0

Hn (x)
[
GR

n (t− x)−GR
n+1 (t− x)

]
(5.5)

ω1 (t, x) � Pr {βo (t) ≤ x|χ (t) = 1}

=
∞∑
n=0

HR
n+1 (x)

[
Gn (t− x)−Gn+1 (t− x)

]
(5.6)

where

Hn (x) = Pr

{
n∑

i=1

ηi ≤ x

}
, H0 (x) = 1

Gn (x) = Pr

{
n∑

i=1

ξi ≤ x

}
, G0 (x) = 1

HR
n (x) = Pr

{
ηR +

n∑
i=2

ηi ≤ x

}
, H0 (x) = 1

GR
n (x) = Pr

{
ξR +

n∑
i=2

ξi ≤ x

}
, G0 (x) = 1

(5.7)

Hn (x) and Gn (x) denote the nth iterated convolution of H (x) and G (x)

respectively. Also, using ξR and ηR as the residual time of ξ and η, HR
n (x)

and GR
n (x) are the convolutions of Hn−1 (x) and Gn−1 (x) with the CDF of

ξR and ηR, respectively.

Therefore, the joint CDT function from Eqs. (5.4)(5.5)(5.6) is given as

F (t, x) � ρω1 (t, x) + (1− ρ)ω0 (t, x) . (5.8)

5.4.1 WLAN Traffic Distributions

The packet length and idle-time distributions of WLAN can be used in

Eq. (5.8) to determine the distribution of total time overlap of a LR-WPAN
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packet in an interval [t0, t]. The CDF function depends on Hn (x), Gn (x),

and convolution of these functions with CDF of ξR and ηR, respectively.

Busy-time distribution

The packet length of WLAN corresponds to on time in renewal process

terminology. We assume that WLAN has constant packet length, i.e., η̄ =

T , that is equal to the transmission time of a nominal packet size. Thus,

the on time distribution is given by

Hn (x) =

⎧⎪⎨
⎪⎩
0 if x < nT

1 if x ≥ nT
(5.9)

Then, the residual time is uniformly distributed in the interval [0, T ]

HR
n (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 if x < (n− 1)T

x−(n−1)T
T if (n− 1)T ≤ x < nT

1 if x ≥ nT

(5.10)

The constant packet length is assumed to simplify the analysis without

the loss of generality of the approach. For a given packet length distribu-

tion, it is possible to obtain Hn (x) and HR
n (x).

Idle-time distribution

Similar to busy-time distribution, the idle-time of WLAN traffic corre-

sponds to off time in renewal process terminology. In the following we

derive Gn (x) and GR
n (x) for different WLAN inter-arrival distributions.

a) Periodic distribution: For periodic inter-arrival time between packets,

the idle-time, ξ̄ = TIA = 1/λ, is deterministic. Therefore, Gn (x) and

GR
n (x) are given by Eq. (5.9) and (5.10) respectively by replacing T with

TIA.

b) Exponential distribution: Considering the idle-time between the

packets follows exponential distribution with mean ξ̄ = 1/λ, the n-fold

convolution is Erlang-n.

Gn (x) = 1−
n−1∑
j=0

1

j!

(
x

ξ̄

)j

exp

(
−x

ξ̄

)
(5.11)

Since the residual time is also exponential distributed with the same

parameters, Gn (x) = GR
n (x)

c) Gamma and Erlang distributions: For this case, consider a scenario

where r independent WLAN nodes are generating traffic each having a

common exponential distribution with mean 1/λ. Although the traffic
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generated by r independent identical nodes has Erlang-r distribution with

mean ξ̄ = r/λ, we consider gamma distribution with shape parameter α

and rate parameter β to generalize the analysis. The probability density

function (PDF), g (x), and CDF, G (x), of the gamma distribution are given

by

g (x) = g (x;α, β) =
βαxα−1exp(−βx)

Γ (α)
(5.12)

G (x) = G (x;α, β) =
γ (α, βx)

Γ (α)
(5.13)

where γ (·) is the lower incomplete gamma function and Γ(·) is the gamma

function. The n-fold convolution of the gamma distribution function (5.13)

is also a gamma distribution with shape parameter nα

Gn (x) = G (x;nα, β) . (5.14)

The PDF of the residual time is defined by CDF of the state [80] as

gR1 (x) =
1−G (x)

ξ̄
(5.15)

Therefore, the CDF of the residual time is given by

GR
1 (x) =

Γ (α+ 1) + xβΓ (α, xβ)− Γ (α+ 1, xβ)

ξ̄βΓ (α)
(5.16)

where Γ (α, x) is the upper incomplete gamma function.

The distribution function GR
n for n > 1 is

GR
n (x) =

Γ ((n− 1)α+ 1, xβ)− xβΓ ((n− 1)α, xβ)

ξ̄βΓ ((n− 1)α)

+
αΓ (nα) + xβΓ (nα, xβ)− Γ (nα, xβ)

ξ̄βΓ (nα)
(5.17)

d) Idle-time distribution in a WLAN cell under CSMA/CA medium

access: The realistic WLAN traffic properties can be determined only by

including the effects of CSMA/CA medium access rules of the associated

MAC layer. In this context, we first find the empirical channel idle-time

distribution in a multi-terminal WLAN cell and then find an analytical

model fitting the empirical distribution. The fitted model is then used in

the proposed collision-time model to determine the CDT.

We consider a WLAN cell of three nodes generating packets with expo-

nential inter-arrival times and the same mean packet rate, all destined to

a common access point. The nodes are within the carrier sense range of

each other. This setup is realized in ns2 to extract the empirical idle-time

distribution.
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The empirical channel idle-time distribution depicts heavy-tailed behav-

ior and fitting a hyper-Erlang distribution to such distributions is already

studied in [81]. The probability density function (PDF) of mixture of Mr

mutually independent Erlang distributions is given by

g (t;π, α, β) =

Mr∑
j=1

πj
(βjt)

αj−1

(αj − 1)!
βj exp(−βjt) (5.18)

with mixture probabilities πj such that π1+ ...+πMr = 1, shape parameter

α such that the number of phases of the Mrth Erlang distribution are αMr

and scale parameter of the Mrth Erlang distribution is βMr .

Fitting the hyper-Erlang distribution to the empirical data is a mixture-

density parameter estimation problem and the unknown parameters

(π, α, β) can be estimated using the algorithm proposed in [81].

The closed-form expressions for n-fold convolution and residual time of

the hyper-Erlang distribution are not known and the solution proposed

by Ma and King [82] is also computationally extensive. Thus, this

distribution cannot be used to find the CDT using Eq. (5.8). As a result,

we considered approximating the empirical distribution with gamma

distribution by matching the first two moments. The shape (α) and scale

(β) parameters of gamma distribution are determined as

α =
μ2

σ2
, β =

μ

σ2

where μ is the mean and σ2 is the variance of the empirical idle-time data

set.

In order to test the goodness-of-fit of the fitted gamma and hyper-

Erlang distributions, we performed the Kolmogorov-Smirnov (K-S) test

[83]. The resulting D and p-values of K-S test showed that hyper-Erlang

distribution is a better fit compared to gamma distribution. However,

considering the complexity of hyper-Erlang distribution and reasonable

K-S test outcome for gamma distribution, the latter is a rational choice.

Figure 5.3 shows the CDFs of the empirical data, hyper-Erlang and

fitted gamma distributions using the estimated parameters. The gamma

distribution parameters can be used in Eq. (5.16) and (5.17) to find GR
n (x).

5.4.2 Numerical Evaluation

The proposed CTD model is validated for the inter-arrival time distribu-

tions studied in Section 5.4.1 by MATLAB simulations. In simulations, it

is assumed that a LR-WPAN packet starts at t = 0. The initial state of the
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Figure 5.3. Hyper-Erlang and gamma distributions fitting to the empirical idle-time
distribution

WLAN traffic distribution process at t = 0 is determined by comparing a

uniform distributed number against on state probability of the process.

Considering the WLAN process is in on state, the residual on time is

uniformly distributed with ηR ∼ U (0, T ). Otherwise, the residual idle-

time for each traffic distribution is calculated as

• Periodic: the residual idle-time is uniformly distributed as ξR ∼
U (0, TIA − T ).

• Exponential: the residual idle-time is also exponentially distributed

with mean (TIA − T ).

• Erlang-r: since Erlang-r is a composite process, the residual idle-

time can be calculated by generating a random number from gamma

distribution. The shape parameter of gamma distribution is a

uniformly distributed integer from the interval [0, r] and its scale

parameter is
(
TIA−T

r

)
.

• Gamma: the residual idle-time is calculated using Eq. (5.16) and

gamma distribution parameters.

We compared the simulated and theoretical CTDs of an interfered LR-

WPAN link by K-S test. The K-S test showed a perfect match on the con-

tinuous sections of a CDT. As an example, Fig. 5.4(a) shows a comparison

for gamma inter-arrivals with packet rate of 400 packets/s. Figure 5.4(b)

shows a comparison of the CTDs achieved with the theoretical collision-

time model for the studied WLAN inter-arrival distributions.

The impact of WLAN traffic distributions on the PDR of a LR-WPAN

link under two different WLAN packet rates is compared in Fig. 5.5.
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Figure 5.4. Collision time distributions (CTDs) of a LR-WPAN link
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Figure 5.5. Comparison of packet delivery ratio (PDR) under different WLAN traffic
distributions (with SNR = 15 dB)

These results are obtained by using the derived collision-time distribu-

tions in Section 5.4.1 along with Eq. (5.3). It can be seen that periodic

traffic has worse impact on the PDR than any other WLAN traffic

distribution.

5.5 PDR Estimation Using Spectrum Sensing

In this section, we present two PDR estimation schemes for LR-WPANs

under WLAN interference using energy-detection-based spectrum sens-

ing. The first PDR estimation scheme is based on the PDR models

(Eq. (5.2) & (5.3)) which are defined as functions of SNR, SINR, and

collision-time. Since the collision-time is defined by the traffic charac-

teristics of the two coexisting systems, the estimation of the interfer-

ing traffic characteristics might not be a feasible option with limited
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spectrum-sensing time. Therefore, the second PDR scheme concentrates

on estimating the link-quality independent of the collision-time.

5.5.1 Spectrum Sensing

Spectrum sensing is one of the most fundamental elements of cognitive

radio systems to identify spectrum opportunities or white spaces [84]

across frequency, time and space. The spectrum opportunities can be

exploited with different spectrum-sharing schemes by secondary users to

a licensed spectrum [85, 86], and by coexisting networks in unlicensed

bands [87]. The most common spectrum-sensing schemes are matched

filtering, energy detection and cyclostationary feature detection which

differ from one another based on the principles of detection [88]. Each

sensing scheme has an associated complexity versus reliability trade-off

[89].

Energy detection is a low-complexity spectrum-sensing technique for the

detection of primary signal or interference in noise. An energy detector

measures the energy received on a frequency band in a sampling interval.

The absence of primary signal or interference is subject to the measured

energy less than a threshold. The detection reliability, however, has been

the subject of much investigation, since the energy detector is susceptible

to uncertainties in background noise power, especially at very low SNR

[90].

However, in close-proximity coexistence scenarios, a WLAN’s SNR at an

LR-WPAN is expected to be substantially larger. Therefore, the concerns

of detection reliability are reduced and energy detection can be used

effectively. Also, energy detection is the most feasible option for low-

complexity sensor devices without any need of extra hardware since the

energy detector is an essential part of CSMA/CA based medium access

schemes.

A typical energy detector consists of a bandpass filter to reject out

of band noise and adjacent signals, an analog-to-digital converter for

Nyquest rate sampling, a square-law device and an integrator. In order

to measure the energy of the received signal, the output signal of the

bandpass filter with width W is squared and integrated over a sampling

interval Ts. The number of complex samples collected during the sampling

interval are N =W · Ts.

The energy detector output in IEEE 802.15.4-compliant radio

transceivers is always averaged over 8 symbol periods (Ts = 128 μs) [5].
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This average channel energy is called as received signal strength indicator

(RSSI). With bandpass filter bandwidth W = 2 MHz, the number of

complex samples in the sampling interval is N = 256.

5.5.2 PDR Estimation I – Using Packet Collision Model

The PDR estimation using PDR models in Eq. (5.2) requires the es-

timation of interfering network parameters such as signal strength,

activity factor, packet size and inter-arrival-time distributions. The

interference signal strength and activity factor are estimated by spectrum

measurements in Publication VII. However, given the interfering traffic

parameters are known, the existing deterministic packet collision models

[78, 59], apart from simple traffic distributions, cannot be utilized for

theoretical PDR evaluation in realistic traffic scenarios. Therefore, the

temporal effect of coexisting traffic distributions on the PDR is evaluated

by simulations in Publication VII. On the other hand, the stochastic

collision-time model proposed in Publication VIII can be utilized for PDR

evaluation under an arbitrary interfering packet size and inter-arrival-

time distributions.

Concerning the identification of inter-arrival time distributions, the

authors in [87, 91, 92] have studied the statistical modeling of channel

idle periods in a 2.4 GHz band. By using this approach, in Publication

VIII, we showed that packet inter-arrivals in a realistic multi-terminal

WLAN scenario can be approximated with gamma distribution, which is

mathematically more tractable without compromising its goodness-of-fit

as compared to other distributions in terms of Kolmogorov-Smirnov (K-S)

tests. As in [92], the channel energy measurement can be used for the

estimation of the distribution parameters.

Interference Estimators

A sensor receiver estimates the interference strength and activity factor

from energy measurements. A spectrum energy sample is realization of

one of the following hypotheses

X [n] =

⎧⎪⎨
⎪⎩
W [n] H0

Y [n] +W [n] H1

(5.19)

where H0 is the hypothesis corresponding to no signal transmitted and

H1 to signal transmitted, W [n] is a noise sample and Y [n] is the WLAN

signal sample.
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At a certain time instant a channel can be in either an idle or a busy

state. The distribution of the two states depends on the WLAN traffic

distribution. In idle state each energy sample contains pure noise and can

be modeled by a zero mean Gaussian random variable with variance PN ,

where PN stands for the noise power. In a busy state each sample contains

WLAN signal embedded into noise. Since the time domain distribution of

an OFDM signal can be approximated to be Gaussian [93], these samples

can also be modeled by a zero mean Gaussian random variable with

variance (PN + I), where I is the WLAN signal power.

The decision statistic, L, for an energy detector is

L =
N∑

n=1

|X [n]|2 (5.20)

The L is compared with a threshold, γ, to decide whether a WLAN signal

is present or not. The L is known to follow Chi-square distribution [94].

When N is large, Chi-square distribution can be well approximated with

Gaussian distribution [94]. Under this assumption the distributions of L

under two hypotheses are

p (L|H0) ∼ CN
(
NPN , NP 2

N

)
p (L|H1) ∼ CN

(
N (PN + I) , N (PN + I)2

)
(5.21)

where CN stands for the complex Gaussian distribution.

Assuming that the interference level is higher compared to the noise

level and thus, the miss-detection probability is practically zero. There-

fore, we set the threshold γ based on the probability of false alarm, Prfa,

Prfa =

∞∫
γ

p (L|H0) dL ≈ 1

2
erf

⎛
⎝γ −NPN√

2NP 2
N

⎞
⎠ (5.22)

The interference level, Î, is estimated by calculating the sample mean

Î =
1

N̂

N̂∑
j=1

Lj − PN (5.23)

where N̂ is the number of times the calculated decision statistic exceeds

the decision threshold, L > γ.

Similarly the activity factor sample mean estimate, ρ̂, is

ρ̂ = N̂
NTs

(5.24)

where NTs is the total number of times the decision statistic is evaluated.
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5.5.3 PDR Estimation II – Independent of the Packet Collision
Model

The complexity associated with link-quality evaluation of an interfered

network based on the PDR models, given in Eq. (5.2) & (5.3), is their

dependence on collision-time. As discussed in Section 5.3, the collision-

time depends on the activity factor and, packet size and packet inter-

arrival time distributions of the two coexisting systems. With known

parameters, the PDR can be estimated based on the packet collision model

proposed in Section 5.4. However, in reality, these parameters cannot be

determined satisfactorily with limited channel energy measurements.

In Publication IX, a PDR estimation scheme independent of collision-

time estimation is developed using limited spectrum measurements. In

this scheme, the spectrum measurements are adjusted with respect to

the traffic characteristics of the sensor link such that the interference and

noise characteristics can be identified accordingly. The PDR is estimated

based on these measurements in association with the link strength and

the BER specifications of the interfered system. The effectiveness of the

proposed estimation scheme is verified using a Micro.2420 sensor plat-

form against the empirical PDR in emulated multipath fading channels.

Spectrum Measurement Model

The spectrum measurement scheme schedules the energy measurements

instances according to the traffic model of the LR-WPAN link. The

motivation for this scheme is to identify the noise and interference

characteristics that a sensor receiver might experience on the scheduled

link traffic.

A set of successive energy samples completely covering a single packet

duration is collected. A single energy sample is named as a micro-sample

and the set of micro-samples belonging to a single packet as a macro-

sample. Each micro-sample contains average channel energy over a

certain number of packet bits. In total, M macro-samples X1, X2, ..., XM

are collected with a time interval of TI = 1/λ. Figure 5.6 shows this

measurement scheme where xi,j indicates the jth collected micro-samples

belonging to ith macro-samples.

PDR Estimation Model

By using the proposed measurement scheme, PDR is estimated by averag-

ing the successful packet reception corresponding to a macro-sample over
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Figure 5.6. Channel energy measurement scheme

M macro-samples. Here, the packet success is achieved as the product

of success probability of bits in all micro- samples belonging to a macro-

sample. The success probability of bits is obtained by translating SINR,

which is obtained from the signal level of the sensor link and the micro-

sample energy, into a given BER. The signal level of the link is obtained

by transmitting probe packets.

Given that the bit errors occur independently of each other, the packet

success probability for Nb-bit packet can be calculated from Eq. (5.1)

Pr {packet success} =
Nb∏
i=1

(
1−Q

(√
2ζSINRi

))
(5.25)

where SINRi is the SINR corresponding to the ith bit of the packet.

With known link strength (S), we can define SINRi,j as [Publication V]

SINRi,j = S − xi,j (5.26)

where SINRi,j represents the SINR at the receiver corresponding to ith bit

of the jth packet. Assuming the interference is changing slowly within

the two consecutive micro-samples, the SINR for Nb/� consecutive bits can

be assumed to be the same. In this case, the packet success probability

considering only the ith macro-sample can be expressed as

Pr {packet success} =
�∏

j=1

(
1−Q

(√
2ζSINRi,j

))(
Nb
�

)

(5.27)

The PDR estimate can be obtained by averaging Eq.(5.27) over M

collected macro-samples.

PDR =
1

M

M∑
i=1

�∏
j=1

(
1−Q

(√
2ζSINRi,j

))(
Nb
�

)

. (5.28)

Experimental Evaluation

An experimental setup is designed to evaluate the accuracy of the PDR

estimation model given in Eq.(5.28) under WLAN interference. The

58



Coexistence Modeling for Link-Quality Analysis

experimental setup measures the empirical PDR of a LR-WPAN link

under the emulated LOS/NLOS indoor multi-path propagation conditions

of the interfering signal. In the same environment, the receiver node

collects channel energy samples to estimate the PDR.

A wired link is established between two Micro.2420 sensor nodes. A PC

equipped with IEEE 802.11(b/g) PCI wireless adapter is used as WLAN

interfering node. The WLAN signal first undergoes fading in a channel

emulator [95] and then it is combined with an LR-WPAN link before its

reception at the receiver node.

The WLAN generates multicast packets using MGEN v.5.02 [96] at

a fixed packet rate with periodic inter-arrival times. The other traffic

characteristics of LR-WPAN and WLAN are the same as given in Section

5.2.2.

Empirical PDR: The empirical PDR is calculated as a ratio of success-

fully received packets to the total transmitted packets and it is correlated

with SINR. The signal energy from the transmitter node is changed with

an attenuator to obtain PDR ranging from the minimum possible value to

100%. The average SINR is calculated by taking the difference between

the average packet RSSI and the average of channel RSSI samples

exceeding the decision threshold (γ). The γ differentiates between noise

samples and interference-plus-noise samples. For a given probability of

misinterpreting noise from an interfering signal, that is the probability of

false alarm, the γ can be calculated from Eq.(5.22).

Estimated PDR: In the same channel and interference conditions, the

receiver node collects RSSI samples while the transmitter node remains

silent. These RSSI samples are collected according to the LR-WPAN

traffic model such that the time spacing among macro-samples is TI = 30

ms and each macro-sample has a sampling interval equal to the LR-

WPAN packet duration of 1.984 ms. Since Ts = 128 μs, a macro-sample

contains 16 non-overlapping micro-samples. These energy samples are

used for PDR estimation using Eq. (5.28).

Results

The empirical and estimated PDRs are compared under different WLAN

packet rates and wireless channel models. Two single-input single-output

(SISO) WLAN channel models A and D [97, 98] are defined separately

in the channel emulator. The channel models A and D introduce fading

in an interfering WLAN signal corresponding to NLOS and LOS channel
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conditions respectively.

The receiver node performs the channel measurements according to

the intended traffic pattern from the transmitter node under different

interference conditions. The first ten macro-samples collected from each

interferer condition are shown in Figure 5.7.
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Figure 5.7. Captured macro-samples under WLAN interference
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Figure 5.8. Empirical and estimated PDR under WLAN interference

The estimated and empirical PDRs are compared in Figure 5.8. The

estimated PDR closely follows the empirical PDR and the error is less

than 5% in most cases. The transmitter node signal strength in these

experiments is kept such that the SNR at the receiver is greater than

10 dB. Consequently, the receiver node can receive the interference-

free packets correctly. This condition clarifies the relationship between

the lowest PDR and the interference-free macro-samples for any WLAN

packet rate. The PDR under interference with 100 packets/s starts at
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around 80% (Fig. 5.8) which corresponds to 8 out of 10 interference-free

macro-samples (Fig. 5.7.a & c). For a packet rate of 700 packets/s, PDR

starts from 0% (Fig. 5.8) since all the macro-samples are collided with

WLAN packet transmissions (Fig. 5.7.b & d).

The accuracy of the proposed PDR estimation depends mainly on the

number of channel samples. A sufficient number of channel samples will

ensure that the interference traffic and fading conditions are taken into

account properly. However, there is an energy cost associated with the

spectrum sensing. In order to determine the minimum required number

of channel samples, we estimated PDR using a different number of macro-

samples. It is observed that the PDR estimation accuracy is low with

20 macro-samples, whereas, PDR follows the experimental results closely

with 40 macro-samples and insignificant improvement is observed with

60 macro-samples.

5.6 Summary

From network organization to communication protocols, link-quality esti-

mation is crucial for network management. If incorporated appropriately,

it can enhance communication reliability; consequently it can also reduce

communication delays and energy consumption. The link-quality estima-

tion, however, in interfered LR-WPANs is challenging due to the lack of

coexistence models which can reflect the impact of interference power and

realistic traffic characteristics on the link-quality.

In this chapter, we proposed a PDR-based coexistence performance

model. It can evaluate the link-quality of an interfered link under realistic

interfering traffic distributions by using a stochastic packet collision

model. The existing models, whereas, are either limited to simple traffic

distributions [59] or ignore the impact of traffic distributions [77].

We also studied this model for PDR estimation using channel en-

ergy measurements. The PDR estimation requires the estimation of

interference signal strength, activity factor and traffic distribution. In

Publication VII, we studied the estimation of strength and activity factor.

A simple model to approximate the traffic distribution proposed in Pub-

lication VIII together with a channel energy measurement based traffic

distribution estimation scheme [92] can also effectively contribute to the

PDR estimation. On the other hand, for PDR estimation with limited

channel energy measurements, we proposed a PDR model independent
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of traffic estimation. In this model, the spectrum measurements are

adjusted to identify the interference characteristics on the intended traffic

of a sensor link. These measurements together with link strength and

BER specifications are used for accurate PDR estimation.

In the next chapter, we exploit the link-quality analysis presented here

to enhance the coexistence performance in LR-WPANs by identifying the

suitable communication channels.
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6. Coexistence Enhancement by
Channel Ranking

As the spectral congestion mounts with the proliferation of heteroge-

neous wireless technologies and the associated applications, the reliable

operation of a host system in unlicensed bands requires interference

management techniques. Without interference management, the lack

of interference mitigation capability at the physical layer and medium

access coordination may lead to disruptive mutual interference in close

proximity coexistence scenarios. The issue of coexistence and interference

management becomes more critical for WSNs consisting of low-power

embedded nodes when competing for medium access along with high-

power and less resource-constrained nodes. Therefore, low-complexity

coexistence enhancement solutions, enabling sensing and adaptation of

the link layer procedures, must be integrated into such networks to pro-

vide communication reliability. The coexistence enhancement capability

can be achieved by exploiting the spectrum opportunities, i.e., spectrum

holes [99, 84] in frequency and/or time. By learning these spectrum

access opportunities and adapting the behavior of the interfered system

accordingly such that the interference can be avoided can be seen as

implicit medium-access coordination in unlicensed bands [100].

With the overlapping channel allocations in LR-WPAN and WLAN, if

not coordinated properly, even a single interference-free channel may

not be guaranteed for LR-WPAN. The severity of the interference from

WLANs is also verified in a measurement campaign conducted at an

industrial assembly hall (see Fig. 6.1), an environment where WSNs find

applications for industrial monitoring and control. The performance anal-

ysis of LR-WPAN under WLAN interference in Chapter 5 already gave

an understanding of the coexistence concerns in WSNs. In this context,

providing some intelligence to WSN nodes to analyze the environment

and find the channel facing least interference is necessary to guarantee
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a reliable operation under interference. This chapter proposes low-

complexity coexistence enhancement solutions which can take advantage

of a wider channel set, namely, channel ranking.

Figure 6.1. WLAN activity on IEEE 802.15.4 channels in an industrial assembly hall
surrounded by offices with many operational WLANs

Channel ranking here is concerned with the ordering of the available

channels by the sensor nodes with respect to a channel quality metric

(CQM) that reflects the interference severity on the WSN. To this end, the

nodes exploit the scanning capability of the embedded radios to quantify

the perceived interference parameters on the candidate channels. These

interference parameters are incorporated into CQM such that an indi-

vidual node can interpret the interference disruption on its link-quality

when acting as a receiver with neighboring nodes on each channel. Such

a receiver-centric channel ranking approach can easily be integrated into

a distributed multichannel MAC protocol [101].

Our contributions on channel ranking, depending on the design of CQM,

can be summarized as:

• We propose channel ranking schemes using a CQM designed only

from the interference characteristics, signal strength and activity

factor. Since the link-connectivity information (i.e., link strengths

with adjacent neighbors) is unavailable at network initialization,

the problem we address is how to consider the individual effect of

interference parameters in the CQM.

• Given the link-connectivity information available, we propose chan-

nel ranking schemes by using PDR as a CQM. Based on our coex-

istence analysis in the previous chapter, we address the challenges

(such as estimating the interfering traffic distributions) and analyze

the performance of PDR-estimation-based channel ranking schemes.
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6.1 Coexistence Enhancement Solutions

In general, the link-layer solutions enhancing heterogeneous inter-

network coexistence in unlicensed bands, excluding inherent CSMA/CA

- listen before talk, can be based on the following two approaches:

• The Reactive approach orthogonalizes the medium access of a sys-

tem by identifying the spectrum access opportunities in frequency

and/or time domain, also known as dynamic spectrum access (DSA)

[99].

• The Passive approach adapts the medium-access, usually in fre-

quency domain, based on the communication performance under

learning based methods (see, e.g., references [102, 103]).

DSA techniques can alleviate the problems of low spectrum utilization

in licensed bands as well as the spectral congestion in unlicensed bands.

In either role, the unused spectrum is identified by spectrum sensing, a

spectrum decision on the most suitable resource is made and the resource

is updated if the lately selected renders unsuitable for communication.

Although, with equal medium-access rights, the notion of primary and

secondary users is irrelevant in unlicensed bands, however, the DSA

techniques utilized in licensed bands can also be utilized in unlicensed

bands to orthogonalize a system under study against interference.

In DSA, a system can separate the transmissions in time or frequency

domain. In the time domain, a frequency channel is accessed oppor-

tunistically by moving in time to avoid transmissions from the interfer-

ing system. The frequency domain finds the interference-free or least

interfered channels among the candidate channels. A combination of

the two schemes, for example opportunistic medium access on a least

interfered channel, is also possible. Since each approach identifies the

spectrum opportunities through spectrum sensing, the associated energy

overhead and complexity in quantifying and modeling the time domain

channel availability is unsuitable for resource-constrained LR-WPANs.

Therefore, we restrict our discussion here on frequency-domain-based

coexistence enhancement solutions. The time domain exploitation of

spectrum opportunities is addressed in [92, 104, 105, 106]. In the fol-

lowing discussion, channel-management-based coexistence enhancement

solutions for multichannel systems/standards are presented.
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The IEEE 802.15.4e-2012 [107] has proposed two methods for MAC

layer enhancement called channel adaptation and channel hopping.

Channel adaptation is an on-demand method in which a channel is

not changed until the operational channel quality drops lower than a

threshold value. Whereas, in channel hopping the channel is switched

periodically according to a channel-hopping sequence.

In literature, a varity of channel adaptation schemes have been pro-

posed such as channel surfing [108, 109], channel adaptation [110] and

channel switching [111]. In channel surfing [108, 109], the idea is to

switch to a new channel once the interference is detected by a jam-

ming/interference detection module [112] on the current channel. Two

different approaches for channel surfing are introduced in [108, 109]

namely coordinated channel switching, and spectral multiplexing. The

latter approach is similar to the adaptive radio channel allocation scheme

proposed earlier by Won Xu et. al. [110]. In coordinated channel

switching, the entire network adjusts it channel. However, in spectral

multiplexing, the nodes located in an interfered region switch their

channel while the nodes on the boundary of the region act as radio relays

between two spectral zones. The channel-switching proposal by Min et.

al. [111] selects candidate channels based on their estimated utilization

and proactively switches to a throughput-maximizing candidate channel.

The standard specifications offering networking solutions based on

IEEE 802.15.4 MAC/PHY such as Zigbee [6], WirelessHART [7] and

ISA 100.11a [8] have also introduced channel management schemes.

Zigbee uses a method called frequency agility similar to the channel

adaptation. WirelessHART and ISA100.11a implement channel hopping

along with TDMA. Channel blacklisting, a feature which allows avoiding

the unreliable channels, is an optional feature in WirelessHART whereas

ISA100.11a employs adaptive blacklisting [49]. The general MAC layer

protocol proposals exploiting the multichannel diversity in wireless sensor

networks can be found in [53, 113, 114].

A concept similar to adaptive blacklisting is adaptive channel hopping

(ACH): hopping sequence is adapted to avoid congested channels [115,

116, 117]. The ACH algorithm proposed by Yoon et. al. [115], implements

channel hopping within a cluster. The cluster-head periodically generates

the hopping pattern based on ordering of the candidate channels using

link-quality information of each child node on each channel. Han et.

al. [116, 117] developed a demand-based frequency-hopping in which
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the network coordinator switches from normal single-channel to multi-

channel transmission mode upon interference detection. The multi-

channel mode is used only to identify the best channel and the network

network resumes single-channel operation on a newly selected channel.

Dynamic channel selection is another reactive channel management

scheme whereby a channel with least interference or primary activity is

searched. The objective here is to maximize the communication reliability

under interference in unlicensed bands [60, 118, 119, 120] or spectrum

access probability in licensed bands [121, 122, 123, 124, 125]. There

are two different approaches to channel selection: the first approach,

utilizes a channel quality metric to establish an order of the candidate

channels, which is further studied in this chapter, and selects the best

channel whereas the second approach stops the channel search as soon

as a channel satisfying a criteria is found. The channel selection is

followed by a coordination procedure which is studied in the context of

multichannel MAC protocols. The MAC layer protocols making use of

dynamic channel selection can be found in [126, 127].

6.2 Channel Quality Metrics for Channel Ranking

The design factors of a meaningful CQM can be identified by studying

the wireless interference in packet-based coexisting networks. The

interference is caused by the simultaneous packet transmissions on an

overlapping frequency channel. However, the amount of damage that

one packet causes to another is partially determined by the SINR at the

respective receiver, which is the ratio of the received signal strength to

that of the interference and noise. Besides signal strength, the activity

factor of the interference defines the degree of interference [128]. In

this perspective, the relevance of the interference characteristics, signal

strength and activity factor, in the CQM to a sensor node is with respect

to its link strength with its adjacent neighbors. This relationship have al-

ready been modeled by PDR in Chapter 6 which can also be used as CQM.

However, the identification of an interference traffic pattern is beyond

the scope of resource-constrained WSNs. In addition, the connectivity

information at network initialization is unknown and the channel ranks

have to be inferred only using the interference characteristics. In this

case, the intuitive question is which channel to be preferred more, the one

with lower signal strength or the one with lower activity factor.
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A group of existing channel management schemes exploit the various

characteristics of interference such as average interference strength,

activity factor, and traffic burstiness, based on channel energy measure-

ments. These techniques, however, usually consider only one aspect of

interference characteristics for channel quality evaluation. For example,

authors in [60, 120] utilized interference activity factor to determine the

channel quality. Similarly, Noda et. al. [118] determines the channel

ordering based on the burstiness of interfering traffic. The average

interference energy exceeding a certain threshold is utilized to trigger

the channel adaptation in a number of proposals [108, 6, 116]. Since the

preference of one channel over the other depends on the relative influence

of interference strength and activity factor on a sensor link, in this thesis

we consider estimating and combining these two parameters for channel

quality evaluation at network initialization.

Packet delivery ratio (PDR), which is accurate in capturing the link

dynamics under interference, is also used for channel adaptations in

different manners. For example, PDR as a performance metric is used

for channel blacklisting in channel-hopping algorithms [8]. On the other

hand, PDR is used as a CQM for channel selection where PDR is deter-

mined by active approach (using probe packets) [65] or passive approach

(by energy measurements) [77]. The passive approach is further studied

in Publication V and Publication IX. Also, in [102], based on the rewards

assigned to packet transmission outcomes on each channel, a control

strategy is developed for tracking an optimal channel. In this chapter,

based on the coexistence analysis in Chapter 5, we developed channel

ranking schemes using sensing-based PDR estimation such that the effect

of interference traffic distribution is considered appropriately. The earlier

closely related work, [77], neglects the effect of traffic distribution and also

instead of channel ranking the first channel satisfying a certain packet

error rate target is selected.

The other channel ranking schemes, given the network connectivity

information is available, use channel capacity [119] and spectrum access

probability [129, 130] as CQM. However, in [119] the interfering traffic

distribution is ignored. In [129, 130], the optimal channel sensing order

is proposed such that in each time-slot the spectrum access probability is

maximized. However, in [129], the mean SINR is assumed to be a priori

known whereas in [130] channel activity factor is assumed to be a priori

known.
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6.3 System Model

Consider a wireless sensor network with sensor nodes employing low-

power IEEE 802.15.4 compliant radios. The WSN is deployed in a place

where it has to share the radio spectrum with IEEE 802.11 b/g-based

WLAN(s). The WSN performance, depending on its channel selection,

can be harmfully influenced by the WLAN(s) interference (see Fig. 6.2). In

order to enhance WSN performance, we design channel ranking strategies

enabling WSN to react autonomously to interference by selecting the

optimum communication channel(s). In this scenario, each sensor node

estimates the local interference characteristics, interference strength (Îk)

and activity factor (ρ̂k) where k = 1, . . . , C on the candidate channels by

spectrum sensing. The link strength of a sensor node on a channel k

with a neighboring node is denoted by Sk, which is unknown at network

initialization. The physical layer and traffic models for the two systems

are the same as given in Section 5.2.1 and Section 5.2.2. In addition, we

make the following assumptions for channel ranking:

Figure 6.2. Channel ranking in WSN under WLAN coexistence

• WSN is loosely synchronized during the spectrum measurement

phase during which sensors do not communicate.

• Each node ranks the channel using a receiver-centric approach

• The nodes exchange their estimated ranks through a beacon period

[53] or dedicated control channel [131] in multichannel protocols to

agree on the preferred channels or utilize each node’s individual

preference in a distributed way through a decentralized channel-

selection algorithm [101]
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In the following sections, the channel quality metrics used for channel

ranking are described.

6.3.1 Interference Estimators

In the absence of link-connectivity information in the WSN, the channel

quality metric for channel ranking has to be designed exclusively from

the interference characteristics. The perceived interference on a sensor

location is mainly characterized by its signal strength and activity factor.

Therefore, a sensor node must estimate these interference characteristics

on a channel and use them together for defining the interference severity

for a sensor node.

6.3.2 Packet Delivery Ratio

In Chapter 5, we discussed PDR as a link-quality metric in LR-WPANs

under coexisting WLANs and proposed PDR modeling and estimation

schemes. We briefly summarize these schemes here to know their

associated complexity and challenges before applying these models to

channel ranking.

The PDR models given in Section 5.3 are built on the BER evaluation

of a link with and without interference in association with the packet-

collision time. Depending on the deterministic knowledge on packet

collision-time or its distribution, two PDR models are given in Eq. 6.1

and Eq. 6.2 respectively.

PDR = qNb−�
0 q�1 (6.1)

PDR = qNb
0 F (Tw, 0)+

Nb∑
�=1

(
qNb−�
0 q�1

)(
F (Tw, �Tb)−F (Tw, (�− 1)Tb)

)
(6.2)

where q0 = 1−Q
(√

2ζSNR
)

and q1 = 1−Q
(√

2ζSINR
)

. Also, Tw is the

packet transmission time of an Nb-bit LR-WPAN packet with bit duration

Tb, � is the number of interfered bits in a LR-WPAN packet, i.e., the packet

collision time and F (·) is its distribution. Figure 6.3 shows the PDR of a

link with respect to SINR under periodic and Poisson interfering traffic

distributions.

The PDR estimation using these models requires the estimation of

link strength S, interference strength I and packet collision-time. The

collision-time of an interfered link is a function of activity factor ρ and

traffic distributions, packet size and inter-arrival time, of the interfering
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and interfered network. In Section 5.5.2, the estimation of Î and ρ̂ based

on energy measurements is given. However, the estimation of realistic

traffic distributions with limited energy measurements is not feasible. We

will discuss later how we can develop a channel ranking scheme using

PDR as a performance metric without estimating the traffic distributions.
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Figure 6.3. PDR-SINR curves of an interfered sensor link under periodic and Poisson
traffic distributions of WLAN

The PDR model presented in Section 5.5.3 is independent of the packet

collision-time. This model measures the interference characteristics

during the scheduled LR-WPAN traffic using spectrum sensing. These

measurements are used for PDR estimation in association with the link

strength and BER of the LR-WPAN system as

PDR =
1

M

M∑
i=1

�∏
j=1

(
qi,j

)(Nb
�

)
(6.3)

where

qi,j = 1−Q

(√
2ζSINRi,j

)
and PDR is estimated using M macro-samples.

6.4 Interference-Characteristics-Based Channel Ranking

In this section, we present two channel ranking schemes based on the

interference estimators. These ranking schemes are named as heuristic

and decision theoretic channel ranking. In each scheme, the estimators

are derived from the spectrum measurements at a sensor node. In heuris-

tic ranking, the candidate channels are ranked based on interference

strength and activity estimates independently and a combination of the

71



Coexistence Enhancement by Channel Ranking

respective rank gives the final ranks of the channels. On the other hand,

in decision theoretic ranking, at first each estimator is weighted according

to its impact on a sensor location and then combined together to establish

ranking.

6.4.1 Interference Estimators

In Publication V and Publication VI, we proposed different estimators

for estimating the interference strength and activity factor using energy

samples. The properties of an energy detector in an IEEE 802.15.4-

compliant radio has already been discussed in Section 5.5.1. In this

section, we present these estimators and evaluate their performance in

a scenario with known interfering WLAN traffic.

Let Li be the ith decision statistic or RSSI sample. Also, NTs is the

total energy samples collected during a sampling time Ts. Using these

samples, we identify these statistics: minimum channel energy (noise

level), Imin = min
i
(Li), maximum channel energy, Imax = max

i
(Li),

mean channel energy, Ī = 1
NTs

∑NTs
i=1 Li, mean interference energy, Î =

1
N̂

∑N̂
i=1 [Li > γ] where N̂ is the number of times Li is greater than the

threshold γ. Threshold γ, together with acceptable probability of false

alarm, is used to decide the presence or absence of a WLAN signal.

Based on these statistics Type-I and Type-II interference estimators are

proposed in Publication V and Type-III in Publication VI. Table 6.1 gives

a summary of these estimators.

Table 6.1. Interference strength and activity factor estimators

Type Strength Activity Remarks

Type-I Imax
Ī−Imin

Imax−Imin
Closer the Ī to Imax, higher the activity

Type-II Î Ī−Imin

Î−Imin
Closer the Ī to Î, higher the activity

Type-III Î N̂
NTs

We verified these estimators under the interference from a coexisting

WLAN in an indoor office environment. We realized 15 interfered

channels for a sensor node by varying the packet rate and signal strength

of a WLAN interferer as shown in Fig. 6.4. This arrangement can be

viewed as: a sensor node observes fifteen different channels where the five

different activity factors are observed from an interferer with the same

interference level and there are three such interference levels in total. In

this setup, the WLAN interferer generates broadcast packets periodically
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Figure 6.4. Measurement setup

with constant payload using a traffic generator [96]. The sensor node

collects NTs samples in each channel at a sampling interval TI = 5 ms.

The consecutive sampling time instants are observed at ti+1 ≥ ti + TI

where the inequality is owing to the hardware-induced delays.

6.4.2 Heuristic Ranking

In Publication V, two channel ranking schemes are proposed based on

Type-I & II estimators. Each estimator type is evaluated using the energy

measurements in the preceding scenario and channels are ranked with

respect to strength and activity independently. Intuitively, the strength

rank (RI ) of a channel at location s1 should be lower than the strength

ranks at s2 and s3. Similarly, the activity rank (Rρ) of the channels at ρ1

should be higher than the activity ranks at any other ρ. We observed that

the Type-I estimator makes errors both in activity and strength ranks

whereas Type-II and Type-III estimators are accurate in both. The ranks

RI and Rρ based on the Type-II estimator are given in Table 6.2.

Table 6.2. Channel ranks

Activity (ρ)
s1 s2 s3

RI Rρ R RI Rρ R RI Rρ R

100 12 2 14 6 1 7 3 3 6
200 11 6 17 8 5 13 1 4 5
300 14 9 23 10 8 18 4 7 11
500 13 12 25 7 11 18 2 10 12
700 15 15 30 9 14 23 5 13 18

In order to infer the channel ranking, the following two channel groups

are formed:

Group 1: This group maintains the RI ranks.
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Group 2: This group maintains the RI and Rρ ranks. In addition, a final

ranking (R) is developed which is the one-to-one addition of RI and Rρ

ranks.

In Publication V, based on the coexistence performance of IEEE 802.15.4

under WLAN interference, it is recommended to select the channels from

first group given that the SINR on those channels is more than 15 dB.

If no such channel is available either due to low SINR or if sensor link

strength is unknown, the channel has to be picked from the second group.

The final rankings in Table 6.2, which heuristically combines strength

and activity ranks, has certain discrepancies. First, often the final ranks

are the same and it is not apparent to give preference to a channel

with better strength rank or better activity factor rank. Therefore, a

node cannot decide on such channels without knowing the effect the two

estimators have on channel quality. Second, when the strength and

activity values are ranked beforehand then the magnitude or cardinal

utility of the estimators is lost and we encounter a voting paradox for

preferring one channel over another. Therefore, in the next section, we

propose to utilize actual channel occupancy and strength estimates and

scale/weight each estimator as per their impact on channel quality.

6.4.3 Decision Theoretic Ranking

The performance degradation in an interfered sensor link can best be

understood from PDR curves which are drawn as a function of SINR and

interference activity factor. Figure 6.3 shows that the PDR decreases

with the increase in interference packet rate for a given SINR. Also,

the PDR increases with the increase in SINR. In short, the effect of

interferer strength and activity factor on the PDR is relative to the signal

strength of the sensor link. However, given that the sensor link strength

is unknown, first it is difficult to establish a performance metric based

on the interference estimates and secondly the degree to which each

interference parameter will degrade the channel quality is not obvious

for a sensor node.

In Publication VI, channel ranking is based on a fitness function of

weighted interference parameters which is synthesized using the decision

theoretic framework of the Analytic Hierarchy Process (AHP) [132].

The fitness function assigns the weights based on the influence of each

interference parameter on the channel quality from an interfered receiver

perspective. To this end, the fitness function provides a mapping of
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interference parameters to the PDR without knowing the sensor link

strength. We show that weighting the interference parameters according

to their individual influence on the channel quality, as compared to

the heuristic approach adopted in Publication V, achieves significant

improvement in channel ranking performance.

In Publication VI, the interference parameters are estimated for each

channel realization in Fig. 6.4 using Type-III estimators given in Ta-

ble 6.2. These low-complexity estimators achieved the same rankings

as given in Table 6.2, however the problems associated with a heuristic

combination of interference estimates remains the same.

The channel fitness function (Fk) from the interference estimators (Îk)

and (ρ̂k) at a channel k must be defined using an interference function

f (·) such that it gives a point mapping on the PDR curves for the given

link strength and interference parameters.

Fk = f
(
ρ̂k, Îk

)
(6.4)

Therefore, the interference function with respect to PDR curves must

observe the following properties⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 ≤ f (ρ, I) ≤ 1 ∀ [ρ, I]
f (ρ1, I1) ≥ f (ρ2, I2) ρ1 < ρ2, I1 < I2

f (ρ, I) ≥ f (αρ, I) α > 1

Using these properties, we come to the following definition for relative

channel ranking.

Definition 1: A function f (ρ, I) is a mapping function such that for

a given ρ1, I1 and ρ2, I2 if PDR (ρ1, I1) > PDR (ρ2, I2) then the order

f (ρ1, I1) > f (ρ2, I2) is also preserved.

Considering the degree of influence of each interference parameter in

PDR curves, the interference parameters in Eq. (6.4) must be scaled

appropriately. For this purpose, we structure this problem using the AHP

decision theoretic approach. AHP is a multiple criteria decision-making

technique which have been applied to design a routing protocol [133],

cluster-head selection [134] and modeling the application requirements

[135].

AHP has three phases namely decomposition, comparative judgment

and synthesis [132]. The decomposition phase for channel ranking

problem is shown in Fig.6.5. This top-down structure builds a relation-

ship among goal (fitness of channels), criteria (interference parameters)

75



Coexistence Enhancement by Channel Ranking

Figure 6.5. AHP structuring of the channel ranking problem under the interference
estimates

and alternatives (channels). In comparative judgment, the interference

parameters are compared pairwise as to the strength of their individual

influence on the fitness of the channels. These comparisons may be

taken from actual measurements or from a fundamental scale. Saaty

[132] suggested a nine-point scale from z1 to z9 to quantify the pairwise

preferences where z1 represents indifference of the elements and z9 the

extreme dominance of one element to the other. The pairwise comparison

matrix A for I and ρ is

A =

⎡
⎣

I ρ

I zI
zI

zI
zρ

ρ
zρ
zI

zρ
zρ

⎤
⎦ (6.5)

where aij is the ratio of the scale of the ith element to the scale of the

jth element. The A is a consistent matrix and the normalized principle

eigenvector from Aw = λ
′
w gives the desired weight vector w = (wI , wρ).

In the final synthesis phase, the rankings are established by assigning

the weights to each of the criteria. The resulting fitness (Fk) function is

[
F1 F2 . . . FC

]
=

[
wI

wρ

]T [
I
′
1 I

′
2 . . . I

′
C

ρ
′
1 ρ

′
2 . . . ρ

′
C

]
(6.6)

where I
′
k = Îk

Imin
normalizes the interference strength estimate of a

channel k with the minimum interference strength estimate of a channel

in the channels set such that I
′
k ∈ [0, 1]. Similarly ρ

′
k = ρ̂k

ρmax
, where

the temporal occupancy estimate of a channel is normalized with the

maximum occupancy estimate. Equation (6.7) computes the fitness of a

channel by summing the contributions as

Fk = wρρ
′
k + wII

′
k (6.7)

which evaluates the fitness of a channel by assigning the weights to the

normalized values of two interference estimators with Fk ∈ [0, 1].
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Scaling Interference Estimators for Channel Ranking

The PDR curves (Fig. 6.3), do not clearly describe the degree to which

the interference estimators will degrade the channel quality when the

desired link strength is unknown. In order to determine the weights for

interference estimators and find channel ranking, we followed a four-step

procedure:

• True channel ranking is obtained from the PDR curves (Fig. 6.3.a).

Assuming a sensor s1 (Fig. 6.4) has a certain SINR with sensor s2,

the PDR is observed at that SINR for all activity factors. Another

SINR point is selected for location s2 and s3 and the procedure is

repeated. We get PDR for fifteen channels and determine the true

ranking.

• Assuming that the interference strength perceived on a channel

affects z times more than the activity factor on the same channel

where z ∈ [
1
9 , 9

]
and z 	= 0. Then the weight of each estimator is

determined from the eigenvector of Eq. (6.5) and the normalized val-

ues of the interference estimates are weighted to establish estimated

ranking from Eq.(6.7).

• The true and estimated channel rankings are compared element by

element and channel ranking error is computed by the Euclidean

norm of the difference between the two rankings.

• The above steps are repeated for all z.

This procedure is iterated for extensive SINR selections. At first, the

SINR difference between s1–s2 and s2–s3 is kept small to replicate the

scenario in which the interference strength varies slightly among the

channels. We called these channels as Type-I channels. For such channels,

the ranking error is lower if the two interference estimators are scaled

equally. Later, the SINR difference is increased significantly. Here, the

minimum ranking error occurs when the strength estimate is scaled 7-

8 times more than the activity factor. We called these channels Type-II

channels. The transition from Type-I to Type-II channels occurs if the

SINR difference between any two locations is greater than 1.4 dB. The

ranking error for these channel types is shown in Fig. 6.6.a. The vertical

bars along each trend line indicates the confidence interval of ranking

error. The possibility of finding a single best channel under these scales is

shown in Fig. 6.6.b where check mark (
√

) indicates that the best channel

is always found otherwise it is crossed (X).
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From definition 1, the uniqueness of a channel rank is true given that

for any two channels i and j if PDR (ρi, Ii) > PDR (ρj , Ij) then with the

appropriate selection of weights wρ and wI our estimated channel ranks

also follow f (ρi, Ii) > f (ρj , Ij). In our channel ranking, this condition is

closely satisfied for all the channels while it is strictly satisfied for the

unique least interfered channel. This behavior leads to the definition

of two distinct decision rules for assigning weights to the interference

estimators; especially when a node cannot estimate SINR and only

interference estimators are available. The rules are independent from

the PDR-SINR model and a transitional boundary governs the transition

between the rules depending on the spread of the energy level estimator of

interfered channels. The rules are applicable without loss of generality to

any modulation type employed by the sensors for channel ranking. This

distinction makes our proposal for finding the least interfered channels

for network initialization unique.
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Figure 6.6. Channel ranking error in two channel types with respect to the preference
scale of interference estimators

6.4.4 Comparison of Heuristic and Decision Theoretic Ranking

We compared the ranking error in heuristic and decision theoretic ap-

proaches with respect to true channel ranks. The ranking error is given in

Table 6.3 for different SINR separations. Channel ranking under decision

theoretic approach is shown to have better performance than heuristic

ranking. For any selection of SINR separations, decision theoretic channel

ranking outperforms the HCR.

We also observed the impact of channel ranking error on packet loss for
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Table 6.3. Ranking error performance of heuristic and decision theoretic channel ranking

Channel type
SINR (dB) Ranking approach

s1 s2 s3 Heuristic Decision theoretic

Type-I
2.0 2.4 2.6 8.7 2.4 (z = 1)
2.0 2.7 3.4 8.1 1.6 (z = 1)
2.0 3.4 4.8 6.7 2.2 (z = 1)

Type-II
2.0 4.4 6.8 6.3 4.9 (z = 8)
2.0 4.0 9.0 6.8 5.7 (z = 8)
2.0 7.0 9.0 6.4 3.9 (z = 8)

two approaches. Assuming only the five best-ranked channels are used

by a node, we calculated the additional packet loss because of choosing

the wrong channels in the channel set. It is observed that the decision

theoretic approach can mostly identify the ranks accurately and the

additional packet loss is less than 16% as an estimated channel rank,

although misplaced, is ordered quite close to true channel rank. Whereas,

the HCR approach can lead to a packet loss of up to 48%.

6.5 PDR-Estimation-Based Channel Ranking

In this section, we present two PDR-estimation-based channel ranking

schemes. The first scheme determines the relative ranks of the channels

such that the effect of interfering traffic distribution is incorporated

although cannot be estimated by low-power sensors. The second scheme

develops channel ranks based on the accurate PDR estimation.

6.5.1 Scheme I

If the PDR of an interfered link is estimated accurately, it can be

directly used as a channel quality metric for channel ranking. The

PDR estimation using Eq. (6.1) or Eq. (6.2) requires the estimation of

interferer characteristics. The signal strength level and activity factor can

be estimated easily, however, it is difficult to estimate the realistic WLAN

traffic distributions accurately for each measured channel. The realistic

WLAN traffic can be modeled by phase-type distributions [91] that is also

verified in Publication VIII. However, the parameter estimation of such

distributions is difficult with limited energy measurements.

Owing to the constraint on traffic distribution estimation, the exact

PDR cannot be estimated. However, the objective is not to estimate
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the exact PDR but to determine the relative ranks of the channels,

that is, find the channels which can yield the highest PDR. Therefore,

a relative channel ranking scheme is formulated in Publication VII by

studying the effect of different traffic distributions on channel ranking

performance by extensive simulations. The ranking performance under

a traffic distribution is measured in two-steps as: (a) PDR is estimated

for each measured channels based on their SINR and activity factor

estimates, and by assuming a traffic distribution, (b) channels are ranked

with respect to estimated PDRs and the ranking error probability (REP)

is measured. A channel ranking algorithm is proposed based on the traffic

distribution giving the upper bound on REP for PH traffic. In addition, a

numerical approximation to calculate the lower and upper bound on REP

is presented such that for a given REP target the appropriate channel

measurement time can be set.

Ranking Error Probability

A channel ranking algorithm is reliable if the ranks of the channels are

mostly determined correctly. A channel ranking error occurs when a

channel with the higher PDR is ranked lower than the channel with the

lower PDR channel. The channel ranking performance can be described

in terms of REP. We studied the effect of traffic distributions on the REP

by simulations.

The simulations are carried out for two channels such that the PDR in

channel 1 is always higher than that of channel 2. In each simulation

run we first compute the interference and activity estimates for both

channels. Then, we calculate their PDR for periodic, Poisson and PH

traffic distributions. If the PDR for channel 1 is estimated to be lower

than that of channel 2, a ranking error occurs. The REP is computed as

an average of such ranking errors. The REP for these traffic distributions

is shown in Fig. 6.7. The notable observations from Fig. 6.7 are:

• The REP decreases with the increase in measurement time, since

the errors in interference and activity estimates decrease.

• The REP decreases with the decrease in SINR. A rational justifica-

tion for this observation is the slope of the PDR curves with respect

to SINR (see Fig. 5.5).

• The REP for PH traffic always falls within that of periodic and

Poisson distributions. This behavior suggests that a single periodic
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and Poisson flow can be used as the lower and upper bounds on REP

for any interfering traffic distribution.

Channel Ranking Algorithm

As observed in Fig. 6.7, the periodic and Poisson traffic distributions give

the lower and upper bound respectively on REP for PH traffic, a channel

ranking algorithm can be designed such that a sensor node estimates the

interference level and the activity factor for all the channels and subse-

quently their PDR by using Poisson traffic. The channel with the highest

PDR estimate is ranked higher and it is favored for communication.

The channel ranking must be established based on the upper bound

on ranking error in case the sensor must guarantee a certain REP.

In addition, a lower bound on the REP can be obtained by estimating

the PDRs by using periodic traffic distribution. Hence, even though

the WLAN interfering traffic is usually modeled with phase-type (PH)

distributions, the periodic and the Poisson traffic distributions allow us

to bypass the traffic estimation process and relatively rank the channels

based on their SINR and activity factor estimates. In the next section, a

numerical approximation to calculate these bounds quickly is presented.

Channel Ranking Error Approximation

A low complexity and fast method for evaluating REP is desirable such

that a sensor can determine the measurement time quickly for a target

REP. In this section one such method to estimate the REP for Poisson and

periodic traffic is proposed.

Assuming the interference level is well above the noise level, the

miss-detection probability is practically zero. Also, by maintaining the

false alarm rate under 10−3 we can make the following approximation:

in the NTS
times the decision statistic is evaluated at most one false

alarm event may occur. Therefore, one may assume there are only four

possible outcomes (or cases) when the activity is estimated. The Case 1

corresponds to the situation where a false alarm does not occur for any

channel. The Cases 2 and 3 correspond to the situation where one false

alarm occurs for the second and first channel, respectively. Finally, the

Case 4 describes the situation where both channels suffer from a false

alarm. Therefore, the REP can be approximated as a sum of only four

terms.
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Prε ≈
4∑

j=1

Prcj · Prεj (6.8)

where the Prε stands for the REP, Prcj , j = 1, . . . , 4 stands for the

probability that the jth case occurs and Prεj denotes the REP in the jth

case.

In order to calculate Prεj , j = 1, . . . , 4, it is assumed, without any loss

of generality, that the channel 1 is characterized by the lower PDR.

While calculating the PDR curves in Fig. 6.3, the interference level

is discretized. Let us assume that NI interference levels are utilized,

I
(j)
i , j = 1, . . . NI , and the discretization step is denoted by dI. Given

the actual interference level, Ii, the probability the interference level is

estimated to be I
(j)
i is obtained by integrating the PDF of 1/Ni

∑Ni
j=1 L

(j)
i

in the interval I
(j)
i ± dI/2. Since the sum of normal random variables

follows the normal distribution, one can calculate the parameters of the

distribution 1/Ni
∑Ni

j=1 L
(j)
i . For instance, for case 1 the mean value of

1/Ni
∑Ni

j=1 L
(j)
i is μi = Ii + PN because no false alarm is assumed to occur.

Assume PDR1,j is the PDR in channel 1 when the interference level

takes the jth out of the NI total possible values. Then, the interference

level of channel 2, I ′2, resulting in a PDR equal to PDR1,j can be obtained

by moving horizontally until the PDR curve of channel 2 is met. The

REP Prεi is computed by integrating over the set of interference levels

making the PDR of channel 2 lower than PDR1,j . This is equal to the

CDF value of a normal distribution with parameters μ2, σ2 evaluated at

I ′2. Mathematically, the REP Prεi can be expressed as:

Prεi =

NI∑
j=1

⎛
⎜⎜⎝

I
(j)
1 +dI/2∫

I
(j)
1 −dI/2

1√
2πσ2

1

e
− (x+PN−μ1)

2

2σ2
1 dx

⎞
⎟⎟⎠×12

(
1 + erf

(
I ′2 + PN − μ2√

2σ2
2

))

(6.9)

In Table 6.4, the proposed method to evaluate the REP is validated

against simulation results for periodic and Poisson traffic using exem-

plary values. The results illustrate that the four terms are enough to

obtain a sufficient approximation for the REP.

6.5.2 Scheme II

The PDR formulation in Eq. (5.2) requires the estimation of interfering

traffic distribution which is not feasible for power-limited WSNs. Owing

to this constraint, the channel ranking scheme presented in the previous
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Table 6.4. REP results for periodic and Poisson traffic by simulations and numerical
approximation. In each row the top value refers to the simulation result and
the bottom value to the numerical approximation

Traffic type Activity (PPS)
SINR (dB)

6.5/6.0 5.5/5.0

Periodic
200/205

0.1482 0.1124
0.1436 0.1095

300/305
0.0602 0.0384
0.0588 0.0381

Poisson
200/205

0.2236 0.1300
0.2196 0.1278

300/305
0.2028 0.0644
0.2013 0.0632

section resorts to relative channel ranking based on PDR estimation,

from SINR and activity factor estimates, assuming the traffic distribution

giving upper bound on ranking error.

However, the PDR model presented in Publication IX and discussed in

Section 5.5.3 allows accurate PDR estimation and therefore can directly

be used for channel ranking. This model estimates PDR of an interfered

link with a spectrum measurement scheme which incorporates the in-

terfering traffic characteristics the link will experience on its scheduled

traffic. In Publication IX, the channel ranking performance of this model

is verified by ranking the channels in a IEEE 802.15.4-based sensor

network in the presence of WLAN interference.

The considered environment is an indoor office space. In this envi-

ronment, the spectral activity from co-located WLANs on the candidate

channels to the sensor network is such that a sensor node can sense

WLAN activity on any channel other than channels 25 and 26. A snapshot

of perceived interference at a sensor location is shown in Fig. 6.8. This

sensor acts as a receiver and establishes a LOS communication link with

another sensor. The sensor estimates PDR on each channel and then

ranks all 16 available channels based on the estimated PDRs.

The PDR estimation on a channel depends on the the link strength and

interference characteristics. We measured the average link strength over

a channel with probe packets. It was observed that the link strength

did not vary much on a given channel however it varied significantly

across channels due to frequency-selective fading [52]. On the other hand,

the interference characteristics were taken into account by collecting 40

macro-samples. After estimating PDR on a channel, empirical PDR is
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Figure 6.8. Perceived interference strength on IEEE 802.15.4 channels

calculated over 1000 packets. These steps are repeated for all 16 channels

and the channels are sorted according to PDRs. Table 6.5 shows the

estimated and actual ranks.

Table 6.5. Channel ranking based on PDR estimation and empirical PDR

PDR Channel Rank
Channel # Experiment Estimate Experiment Estimate

11 70 78 16 15
12 71 76 15 16
13 76 79 14 14
14 78 80 13 13
15 99 99 6 6
16 97 96 8 8
17 97 95 9 9
18 86 82 12 12
19 99 99 7 7
20 100 100 1 1
21 100 100 2 2
22 90 95 10 10
23 90 90 11 11
24 100 100 3 3
25 100 100 4 4
26 100 100 5 5

Table 6.5 shows that the estimated ranks based on PDR estimation are

as accurate as the ranks based on the empirical PDR. There is one ranking

mistake in which channels 11 and 12 are misplaced due to the fact that

these channels had very close PDRs.

These results highlight the effectiveness of the proposed PDR estima-

tion scheme for channel ranking in WSN. Under this scheme, the PDR

can be estimated without prior knowledge or estimation of the interfering

traffic patterns. Also, in a large sensor network given that all the

sensors have with the same traffic model, a receiver node can determine

the PDR estimates of the associated links with a single set of channel

measurements.
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6.6 Summary

In this chapter, low-complexity channel ranking schemes are proposed for

coexistence enhancement in WSNs in the presence of WLAN interference.

The channel ranking schemes are receiver-centric; that is, a receiver esti-

mates the link-quality to an adjacent node on the candidate channels and

determines the channel ranks accordingly. The link-quality is estimated

using a channel quality metric (CQM) that is designed with respect to the

availability of connectivity information in a sensor network; for instance

at network initialization the link strengths to the adjacent nodes are not

known whereas it is known at network operation phase.

For channel ranking at network initialization, interference parameters,

signal strength and activity factor are used in Publication V and Publi-

cation VI. How these parameters individually effect a sensor link with

unknown link strengths is also considered.

We further studied packet delivery ratio based channel ranking schemes

in Publication VII and Publication IX. Since PDR estimation requires

interfering traffic distribution, our first scheme establishes a relative

channel ranking with respect to a traffic distribution giving a bound on

the ranking error. In the second scheme, channel ranking is based on the

exact PDR estimation scheme.
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7.1 Conclusions

By enabling to instrument and gather information through untethered

sensors, WSNs provide an efficient infrastructure to interact with the

physical world. WSNs are a low-cost and easy-to-deploy alternative to

wired remote sensing networks with higher monitoring fidelity and fault-

tolerance. In the past decade, these attributes encouraged numerous

WSN-based sensing and actuation applications. Realizing an application,

however, greatly depends on the network management protocols and algo-

rithms that can guarantee coordination and connectivity among sensors

over low-power wireless links.

In this thesis, the author studied network management functions that

enable the usage of WSNs for time- and reliability-sensitive applications.

These applications require an accurate timing service for coordinated task

execution and energy-efficient medium-access scheduling. The medium

access, whereas, must be scheduled on the portions of the allocated

spectrum that guarantee communication reliability. In this respect, the

studied management functions are time synchronization, and interfer-

ence awareness under spectral coexistence.

Time synchronization is provided by a combination of a messaging

protocol and clock synchronization algorithm.

The messaging protocol diffuses the reference time in the network

using either handshake or broadcast schemes. Broadcast schemes are

appreciated for their low energy demands. In this thesis, a broadcast-

based scheme is studied with a focus on the elaboration of associated

synchronization aspects.

The clock synchronization algorithms are responsible for time correction
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in the nodes based on the received reference time reports. The time

correction is achieved by offset adjustment in a local clock with respect

to the reference clock. The author analyzed the factors contributing to the

clock offset budget in the sender-receiver path of the reference broadcasts.

Together with MAC layer timestamping, this analysis provided accurate

synchronization as validated using a sensor platform. In addition, a

method for scalable diffusion of reference time reports is hypothesized.

The offset adjustment provides instantaneous synchronization only

because the clocks deviate with time. The deviations originate from the

inaccuracy and instability of the oscillator driving a clock. As a result,

the nodes rely on periodic reference time reports, which causes drainage

of resources. However, the identification of clock skew (change in phase

difference with time) can provide time correction frequently with less

frequent reference time reports. In this thesis, the author investigated a

LS linear-regression-based clock skew estimator. It is shown how the non-

linearity in the clock skew affects the synchronization accuracy unless the

regression size is adapted according to the synchronization period. The

author also provided the clock skew data of sensors to validate a recursive

ML clock skew estimator. The ML estimator achieves smallest estimation

error variance by utilizing a time relation model that reflects correlation

in the clock offset measurements.

The question of how well the synchronization service translates into the

application requirements asks for the design of interfaces using synchro-

nized clocks. In this thesis, the author extending the synchronization

service to task synchronization in an SHM application and time-slotted

communication. The task synchronization was aimed at maintaining

tight synchronicity among acceleration samples collected by distributed

sensors. By enabling such synchronicity among the sensors, WSN pro-

vided accurate extraction of modal analysis parameters. The author also

developed a synchronization interface for communication scheduling in

a protocol stack. This interface allowed reliable execution of a schedule

which exploits time and channel diversity.

In the past decade, IEEE 802.15.4 has emerged as a de facto PHY layer

standard for low-power WSNs. It operates universally on a 2.4 GHz

unlicensed band. The 2.4 GHz band, however, is crowded by standards

with heterogeneous medium access rules. The spectrum sharing under

geographical coexistence had been a reliability concern for IEEE 802.15.4,

specifically from WLAN systems. In this thesis, the author addressed this
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concern by modeling the coexistence performance of WSNs and extended

it to formulate interference-aware coexistence enhancement schemes.

Under spectral coexistence, the link-quality in an interfered network

is a function of SNR, SINR and packet collision-time. The collision-

time itself depends on the activity factor, packet size and packet inter-

arrival time distributions of the two coexisting networks. By combining

all these factors, the link-quality can be effectively modeled in terms of

PDR. However, modeling collision-time is a complex process and there

exist deterministic models only in the literature. In this thesis, the author

proposed a stochastic packet collision model which provided theoretical

evaluation of collision-time distribution for a given traffic scenario. The

model is demonstrated to be effective for link-quality analysis in the

presence of simple to realistic interfering traffic distributions.

Given the PDR is estimated quickly and efficiently, it can play a vital

role in network management. The author studied two energy-detection-

based PDR estimation models. The first PDR model requires the esti-

mation of interference parameters. The estimation of these parameters

is discussed with respect to their complexity for sensors. In reality,

these parameters cannot be determined satisfactorily with limited energy

measurements. The second PDR model is independent of estimating the

parameters separately. Instead, in this scheme, the energy measurements

are collected considering the traffic on the sensor link. The PDR is then

estimated using these measurements in association with the link strength

and the BER specifications of the interfered system.

The coexistence analysis reveals the severity of WLAN interference. Un-

less, an interference-aware operation on favorable channels is enforced, a

WSN cannot ensure reliability to the application. In this respect, the

author developed low-complexity channel ranking schemes for coexistence

enhancement. The channel ranking is based on a channel quality metric

(CQM). In general, the CQM design is such that a node, acting as a

receiver, can interpret the quality of an interfered link on a channel.

The CQM design, in particular, depends on the availability of network

connectivity information. If available, PDR can also serve as CQM

otherwise the CQM has to be designed using interference parameters only.

At network initialization, the signal strengths of the links to the

neighbors are unknown. The question then arises: which channel should

be preferred more, the one with lower signal strength or the one with

lower activity factor?. This thesis studied two solutions to the problem:
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heuristic combination of interference parameters and a decision-theoretic

weighted combination of each parameter. The ranking under decision

theoretic approach resulted in fewer ranking errors. The challenges in

using PDR as CQM for channel ranking are also explored in this thesis.

The author studied the impact of interfering traffic distributions on

channel ranking error for a given measurement time. In order to bypass

the traffic estimation process, an algorithm to establish relative channel

ranking is proposed. For this purpose, traffic distribution setting upper

bound on ranking error is utilized for ranking and a numerical method

to calculate the ranking error probability is developed. In addition, the

ranking performance of the PDR estimation scheme, which does not rely

on separate estimation of interference parameters, is also validated.

7.2 Future Work

We briefly discuss here the directions for future work that are closely

related to the motivation of this thesis.

The time synchronization error grows with the number of hops from the

reference clock. A possible future direction is to model the behavior of

networked clocks to keep the synchronization error bounded. In addition,

we noticed that the clock mismatch observed in the distributed collection

of acceleration samples is higher than the original clock mismatch. A

study is required to analyze and compensate for the factors contributing

to the time errors in distributed task execution.

We analyzed the effect of interfering packet distributions on the packet

delivery ratio of an interfered link. In this analysis, mean SINR is

assumed for multi-terminal scenarios. Modeling SINR distribution under

realistic node locations and channel fading, and formulating the PDR

model accordingly is an interesting research problem. For channel

ranking, the possible future topic of research is collaborative ranking. The

motivation for this study is to minimize the sensing overhead by scanning

fewer channels at a node and using neighbors’ recommendations to find

the ranks of the remaining channels.
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A. Sensinode WSN Platforms

In this appendix we briefly describe the hardware and software compo-

nents of WSN platforms developed by Sensinode [136]. These platforms,

in this thesis, are referred to as Micro.CC2420 and Nano.CC2430 based on

the utilized radio transceivers. The software, operating system and com-

munication stack, are common in both platforms. Although, Sensinode

has discontinued these platforms, the main components on which these

platforms are built on are widely accepted by the WSN community.

A.1 Hardware Components

The hardware description mainly covers the microcontroller unit (MCU)

and radio chip of a platform.

A.1.1 Micro.CC2420

Micro.2420 platform integrates Texas Instruments’ MSP430 MCU and

CC2420 radio. The MCU has an 8 MHz clock source, 10 KB RAM and 256

KB flash memory. CC2420 is a low-power IEEE 802.15.4-compliant radio

transceiver with an effective data rate of 250 Kbps. Micro.2420 platform

is powered by a battery voltage of 1.5 V to 2.6 V. The platform supports

additional sensors through two external connectors.

Hardware Timers

The MCU of Micro.2420 provides two 16-bit timers, Timer-A and Timer-B.

Timer-B runs as local clock of the node for task scheduling and other

MAC layer operations, for example random back-off, acknowledgments

expiry time, etc. Timer-A is free and it is used for time synchronization in

Publication III and Publication IV. Timer-A has one 16-bit counter (TAR)

and three 16-bit configurable compare/control registers (TACCRx). The
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source of Timer-A is 8 MHz clock derived from an external 16 MHz crystal

oscillator which can be further divided to take on the user’s desired tick

resolution.

A.1.2 Nano.CC2430

Nano.CC2430 platform is based on Texas Instruments’ CC2430 System-

on-Chip (SoC) solution. The SoC is designed specifically for IEEE 802.15.4

and Zigbee applications. CC2430 combines the performance of CC2420

radio with 8051 MCU. The CC2430 clock source is a 32 MHz crystal

oscillator with 8 KB RAM and 128 KB flash memory. Nano.CC2430 supply

voltage range is 2.0 V to 3.6 V.

Hardware Timers

Nano.CC2430 has one 16-bit timer (Timer1), one 24-bit Sleep Timer, one

MAC timer (Timer2) and two 8-bit timers (Timer3, Timer4). Sleep Timer is

used to maintain the local clock and task scheduling. Timer2 and Timer3

are used to implement backoff and ACK expiry time. We used Timer1

to realize a time synchronization clock in Publication I. Timer1 has one

16-bit counter (T1CCTx) and three independent compare/capture channels.

The clock source of the timer is 32 MHz crystal oscillator. The counter

increments at each active clock edge while the clock edge frequency can

be varied from 0.25 MHz to 32 MHz.

A.2 Software Components

The integral software components of the platforms are explained in the

following sections.

A.3 Protocol Stack – NanoStack

NanoStack is a protocol stack which implements IEEE 802.15.4 MAC and

also provides drivers for CC2420 and CC2430 radios. The stack includes

6LoWPAN, User Datagram Protocol (UDP), Internet Control Message

Protocol (ICMP) and Simple Sensor Interface (SSI). A custom protocol can

be defined for NanoStack as a protocol element.

NanoStack v1.x provides a socket interface to the application layer for

data communication. It also provides memory management features for
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flexible buffer operation. For further details on NanoStack architecture

and buffer management, one can refer to the work by Sergio et al. [137].

NanoStack was initially distributed under GPL license but as of January

2009 the stack is closed.

A.4 Operating System – FreeRTOS

FreeRTOS is an open-source real-time operating system for small embed-

ded systems [138]. It supports large variety of processor architectures and

compilers. FreeRTOS provides a micro-kernel with a scheduler, MCU-

specific code, memory allocation, queues, and semaphores along with

system-timer functionality. The scheduler is capable of running tasks in

preemptive, cooperative and hybrid modes. By using scheduler and inter-

task communication, FreeRTOS can switch between different tasks and

run them apparently concurrently.

NanoStack v1.x is executed as a single task in the FreeRTOS en-

vironment. It uses FreeRTOS timing facilities and implements some

extensions, such as an asynchronous timer service. The FreeRTOS source

tree used by NanoStack is not modified, which gives NanoStack the

flexibility to upgrade the FreeRTOS version without update patches.
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