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1. Introduction

During the past decades there has been a huge technological evolution

in the computer, mobile communication and information technologies [1].

This fast development has to a large extent based on a deep understanding

on semiconductor physics and extremely advanced manufacturing meth-

ods of semiconductor components. Even though during the recent years,

due to reaching the limit of the downsize scaling, the focus in theoretical

research has shifted away from the basic semiconductors to novel mate-

rials like carbon nanotubes and graphene based materials, the band gap

engineering and the defect control of conventional semiconductors is still

under active theoretical and experimental research. Doping traditional

III-V compound semiconductor materials, e.g., with nitrogen opens new

possibilities for optical telecommunications and high-efficiency solar cells

[2, 3]. Recently, electron spin in silicon has been studied extensively as a

possible realization of a spin qubit for quantum computing [4, 5].

Alongside with the rapid speed up of computer power also computational

theories and methods have taken huge leaps. The foundations of quantum

mechanics at the early 20th century [6] set the base for atomic scale calcu-

lations. The development of the density functional theory (DFT) [7, 8] in

1960s enabled calculations for complicated structures that can be solved

by nowadays computers. The methods in the field of computational ma-

terials science provide sophisticated state of the art approaches for solv-

ing complicated many-electron problems from first principles, where the

methods are derived directly from quantum mechanics. They provide a

fast and cheap alternative for the experimental research and can open in

research completely new viewpoints which could be otherwise difficult or

impossible to achieve.

In this thesis, modifications of electronic structures of III-V compound

semiconductors due to alloying by different group V atoms was studied
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Introduction

using DFT. We also studied native point defect energetics and the im-

pact of defects on the characteristic features, i.e., the p-type conductiv-

ity, of the undoped GaSb. The main result of this thesis was the devel-

opment and implementation of a quantum mechanical model to describe

the N-induced modifications on the electronic structure of GaAs1−xNx and

GaP1−xNx alloys, which was further extended to GaBi1−xBix alloys. We

also performed careful research for charged defects in GaAs and GaSb

by implementing a recently published finite-size effect correction scheme

[9, 10].

This thesis is organized as follows. In chapter 2 we review the current

status of group V impurity alloyed III-V compound semiconductors and

the underlying theory. In chapter 2 also a short summary of point defects

in semiconductors is made. Chapter 3 presents applications of N doped

III-V compound semiconductors in solar cells and long wavelength lasers.

In chapter 4 the DFT methodology for ground state electronic structure

calculations is reviewed and the supercell (SC) approach for point defect

formation energy calculations is explained. In chapter 4 the implemented

correction scheme for charged defects is also explained in detail. In chap-

ters 5 and 6 the computational results for N and Bi alloyed III-V com-

pound semiconductors, namely GaAs, GaSb and GaP, and native point

defect energetics in GaSb are summarized. Finally chapter 7 is a conclud-

ing review of the main results of the dissertation and projects possible

applications and future work.
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2. Electronic structure of III-V
compound semiconductors: effect of
isovalent group-V impurity alloying
and point defects

Semiconductors have laid the foundations of the modern information tech-

nology and solid state electronics. Elemental silicon is the most important

semiconductor material and a superior choice for electronic devices due to

its thermal properties, highly reliable processing techniques and cheap

cost [1, 11]. However, due to its indirect band gap silicon has very poor

optical properties [1]. Instead, GaAs is a binary III-V compound semicon-

ductor which due to its direct band gap and excellent electron transport is

a superior material for optoelectronic applications [1]. In this thesis the

focus is on the binary III-V compound semiconductors: GaAs, GaP and

GaSb.

The III-V compound semiconductors most commonly crystallize into a

zinc-blende structure although exceptions can be found, e.g., the wurtzite

structure of GaN. The zinc-blende structure is composed of two interpene-

trating face-centered cubic lattices of the two atom species. The other

lattice is shifted 1/4 of the diagonal of the conventional cell with respect

to the other one. Thus, in the zinc blende structure each atom has four

nearest neighbors of the opposite type in a tetrahedral Td configuration

(see figure 2.1).

The key feature in semiconductors is that their conductivity can be

greatly modified by doping them with impurity atoms. By doping the

semiconductor with impurity atoms having more valence electrons com-

pared to the host material atoms leads to n-type conductivity, i.e., elec-

trons are the charge carriers, and the impurity atoms are called donors.

Instead, doping the semiconductor with impurities having less valence

electrons leads to p-type conductivity, i.e., holes are the charge carriers,

and impurity atoms are called acceptors. However, in this thesis the iso-

valent doping of III-V compound semiconductors was studied, i.e., impu-

rity atoms have an equal number of valence electrons compared to the

3
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Figure 2.1. N atom substituting an As atom in GaAs in the zinc-blende structure. The
figure is generated using the XCrySDen program [12].

substituted host material atoms. Especially the focus was on N and Bi

alloying of these materials. Figure 2.1 shows as an example a N atom

substituting an As atom in GaAs.

2.1 N alloyed III-V compound semiconductors: band gap tailoring

By inserting just a small fraction of N atoms into III-V compound semicon-

ductors (around 0.1% in GaAs) already leads to significant modifications

on the electronic structure of these materials. These modifications occur

as band gap narrowing at low N concentrations [13] (<3%) and anoma-

lously heavy effective electron masses which decrease with the increasing

N concentration [14]. The band gap narrowing with increasing N concen-

tration is in some sense counterintuitive because the band gap of GaN,

Eg = 3.27 eV in zinc blende structure, is much wider than that of any

of the conventional III-V compound semiconductors, e.g., GaAs, GaP and

GaSb.

Perhaps one of the earliest studies of N doped III-V compound semicon-

ductors was performed by Thomas et al. in 1965 [15]. They studied N

doped GaP and found that the characteristic features in the absorption

and fluorescence spectra of GaP can be explained by an isolated substi-

tutional nitrogen atom and nitrogen-nitrogen (NNi) pairs at neighboring

phosphorus sites. In the case of GaAs1−xNx alloys the first observation

of different N complexes was reported by Liu et al. as late as 1990 [16].

Here, x stands for the fraction of As sites occupied by N atoms with re-

spect to all As sites. They performed luminescence measurements and

4



Electronic structure of III-V compound semiconductors: effect of isovalent group-V impurity alloying and point defects

forced by tuning the hydrostatic pressure the states related to NNi pairs

to enter into the band gap one after the other. These states then became

the major exciton recombination channel. Later in 1990s it was realized

that controlling the N concentration in GaAs can be used to decrease the

band gap of GaAs [17]. This observation lead to a huge interest towards

GaAs1−xNx alloys. These alloys could be lattice matched to GaAs and

due to their tunable band gap could be used in multi junction solar cells,

where each junction is optimized to the wavelength of the light it collects

[18]. During the past decade a large band gap narrowing, larger than

that in GaAs, was reported in GaSb1−xNx alloys [19]. This led to several

experimental and computational studies of this alloy, because due to a di-

rect, relatively small band gap, GaSb1−xNx alloys show a large potential

in fabricating long wavelength lasers.

Alongside with the observation of a decreasing band gap in N doped

III-V compound semiconductors, theories trying to explain the origin of

this phenomenon began to emerge. The first explanations came from the

experimentalists [20] who suggested that the band gap reduction is due

to an impurity band formation owing to N-N interactions. However, at

late 1990s it was stated that the band gap reduction can be explained

by the interaction between the N resonant state and the host material

conduction band edge (CBE) [21]. This model, called the band anticross-

ing model (BAC) [21], soon became the most widely accepted model up

to date (see below for details). Other popular schemes are based on the

empirical pseudo-potential method [13]. In the method empirically cor-

rected pseudopotentials, commonly adjusted to reproduce the experimen-

tal bulk band gaps [13], are used to solve the Schrödinger equation non-

self-consistently for the system in question. Based on the empirical pseu-

dopotential method Kent and Zunger concluded that the CBE formation

in GaAs1−xNx and GaP1−xNx alloys involves interactions between the

nitrogen-induced localized cluster states and the perturbed host states

[22].

Despite huge expectations concerning N doped III-V compound semi-

conductors, fulfilled promises are not largely claimed up to date. This is

mostly because the electronic properties of the bulk material, e.g., the elec-

tron mobility significantly decreases due to N substitution [23]. The de-

teriorating electron mobility is often connected to the resonant-scattering

from N complexes [24] and N-related defects. However, the origin of the

poor electron mobility in these materials is still largely debated.

5



Electronic structure of III-V compound semiconductors: effect of isovalent group-V impurity alloying and point defects

2.1.1 Band anticrossing model for the large band gap bowing

The BAC model was first introduced to explain the band gap narrowing in

GaInNAs alloys by Shan et al. in Ref. [21]. Soon the model was extended

to other III-V-N compound semiconductors such as GaAs1−xNx [25] and

GaP1−xNx [26] as well as to II-VI semiconductor ternaries [27]. The BAC

model is build above the Anderson impurity model [28] which describes

the influence of atoms, having available inner shells, to electronic struc-

tures of metals.

According to the two-level BAC model, the N resonant state above the

CBE of GaInAs and GaAs interacts with the host material CBE. This

interaction is then treated as a perturbation leading to the eigenvalue

problem [21] ∣∣∣∣∣∣
E − EM VMN

VMN E − EN

∣∣∣∣∣∣ = 0, (2.1)

where EM is the host CBE energy, EN the energy of the N state and VMN

describes the interaction strength between the N state and the host CBE.

The eigenvalue problem has the solution

E± =
EN + EM ±

√
(EN − EM )2 + 4V 2

MN

2
. (2.2)

Equation (2.2) has the appealing feature that it predicts the existence of

the two states E− and E+. These states can be also verified experimen-

tally [25, 21] and Eq. (2.2) can be forced to reproduce the measured E−
and E+ states as a function of the N concentration, by adjusting the in-

teraction term VMN properly based on fitting the E− and E+ states to the

experiments. The concentration dependence of VMN is observed to have

the form βx
1
2 [29].

In the case of GaP1−xNx alloys it is well known that the N induced states

are formed into the gap [13], below the host CBE, and the BAC model, as-

suming N states above the host CBE, cannot be directly applied. However,

the problem is circumvented by assuming that now the N induced band

in the gap is instead pushed downwards due to BAC interaction with the

host CBE.

Despite the success of the BAC model to reproduce the experimental

band gap behavior with respect to N concentration, the model is still

largely debated. This is because the BAC model completely relies on fit-

ting the theoretical E− and E+ states to the experimental ones and a very

limited number of theoretical predictions can be drawn from the model.
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Another struggling feature is the fact that computational studies, using

periodic boundary conditions and thus actually modeling ordered alloys

instead of random alloys, predict a rather linear band gap reduction as a

function of the N concentration which is in contradiction with experiments

[13, 30]. On the other hand, the BAC model predicts the same nonlinear

concentration dependence for both the ordered and random alloys which

is in a severe disagreement with the superior first principles calculations.

2.1.2 Replacing N with Bi

During the recent years the focus on research has gradually shifted from

N alloying of III-V compound semiconductors to Bi alloying of these ma-

terials, in which a similar band gap narrowing is observed. This shift is

related to the above-mentioned problems of manufacturing N doped ma-

terials with competent electronic properties. The problem is commonly

suggested to be related to a large size mismatch between the N and As

atoms and thus replacing N with Bi is often considered to be a solution

[31].

In contrast to N-alloyed III-V compound semiconductors, the Bi induced

states are formed into the valence band instead of the conduction band

and the band gap narrowing is caused by the VBE upwards shift. Perhaps

the first theoretical study considering Bi-doped GaAs was performed by

Janotti et al. in Ref. [32] who predicted the existence of the hypothetical

GaBi alloy, not yet realized in experiments, and suggested the Bi alloying

of GaAs as a possible solution to manufacture 1 eV band gap materials

for photovoltaic cells. Soon after this Fluegel et al. [33] reported a huge

concentration-dependent spin-orbit (SO) splitting in GaAs1−xBix alloys.

In Ref. [34] it was noted that it may occur that the SO splitting energy be-

comes larger than the band gap in GaAs1−xBix alloys. This phenomenon,

together with a large band gap, could provide new opportunities for near-

infrared laser due to a suppression of the Auger recombination processes

from the valence band edge (VBE) into the CBE. Recent photomodulated

spectroscopy measurements by Kudrawiec et al. [35] have further enlight-

ened the nature of VBE and the SO splitting in GaAs1−xBix alloys. They

found that due to Bi incorporation of 3% the E0 transition from the top

of the VBE to the bottom of the conduction band significantly broadens

compared to that of the E0 +�SO transition from the spin split-off band

to the bottom of the conduction band. They also observed a large red shift

for the E0 transition, while the E0+�SO transition was found to be rather
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insensitive, indicating that the large SO splitting is due to the upwards

shift of the valence band maximum (VBM).

Alberi et al. explained the narrowing of the band gap of GaAs1−xBix
alloys using the valence band anticrossing model (VBAC) [36]. In this

model the localized Bi state in GaAs1−xBix interacts with the host mate-

rial VBE, pushing it upwards causing the band gap reduction. However,

in contrast to GaAs1−xNx alloys, theoretical studies up to this day do not

clearly confirm the existence of localized Bi states in the valence band

[37, 38]. Instead it is suggested that the Bi states should be viewed as a

strongly perturbed host states [38].

2.2 Point defects in III-V compound semiconductors

In a perfect crystal each atom has a strictly defined position in a three-

dimensional periodic lattice. Imperfections are deviations from this per-

fect three-dimensional array and they are crucial for the mechanical and

electrical properties of the material. These imperfections in the perfect

three-dimensional periodic crystal can be divided into lattice defects and

impurities (foreign atoms). There are zero-dimensional (point), one-dimen-

sional (line) and two-dimensional (planar) lattice defects [39]. Point de-

fects consists only of one or a few atoms while one-dimensional defects are

line defects like edge dislocations. Planar defects are for example grain

boundaries or antiphase boundaries [39]. However, in this thesis the only

lattice defects considered are the point defects in III-V compound semi-

conductors.

There are three main types of point defects in a compound semiconduc-

tor of type AB: a vacancy defect is formed when a normally occupied

lattice site is vacant, an interstitial defect is a defect that occupies a

normally unoccupied site in the lattice and an antisite defect is a defect

were an atom of type A occupies a site of atom B, or vice versa. Also more

complex defect structures can exist, like a vacancy antisite pair or a split-

interstitial. Impurities can be intentional or unintentional. Intentional

substitution of impurities in the host semiconductor is called as doping

and it is the key factor in semiconductor technology, whereas detrimental

impurities can be unintentionally incorporated during the growth process.

Creating a defect into a perfect structure always requires energy. How-

ever, the creation of a defect also increases the entropy of the system and
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(a) (b)

Figure 2.2. Example of an isolated defect (a) and a defect in the SC approximation (b).
The red circles represent the defect and the blue circles the bulk material.
The dashed lines in (b) represent the SC boundaries.

thus formation of a defect may lower the Gibbs free energy

G = H − TS, (2.3)

where H is the enthalpy, T the temperature and S is the entropy. Thus,

the Gibbs free energy can have a minimum at a finite defect concentration

and the equilibrium defect concentration is obtained from the thermody-

namics [39]. In defect calculations the key quantities obtained are the

formation energies and the charge transition levels. The defect calcula-

tions are commonly performed within the DFT framework using the SC

approximation. The SC is periodically repeated over the whole space and

to prevent the defect from interacting with its own periodic images the

defect in question must be surrounded by a large enough number of host

material atoms. This structure is called as the SC. The concept of SC

is illustrated in figure 2.2 in the case of a single defect in a SC. The SC

approach is particularly popular, because it allows the use of various tech-

niques popular in computational material science. Especially, in the SC

approach plane waves are a natural choice for the basis functions in the

numerical solution due to the Bloch’s theorem [40] and the problem can

be transformed efficiently into the reciprocal space using the fast Fourier

transform. The DFT methodology to calculate the formation energies of

point defects is explained in detail in section 4.3.
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3. Applications in solar photovoltaic
cells and long wavelength lasers

3.1 Multi-junction solar cells

The operation principle of a single p− n junction solar cell is based on the

creation of an electron-hole pair. An electron-hole pair is created when a

photon of the energy Eν larger than the band gap Eg of the solar cell semi-

conductor material excites an electron from the material valence band

into the conduction band leaving a hole in the valence band [41]. A single

junction p− n solar cell is formed by bringing into a contact n- and p-type

semiconductor materials. The Resulting p−n junction allows the electrons

photo excited to travel only in one direction across the junction, from the

p side to the n side, and the holes in the opposite direction. By bringing

an external load into contact with the solar cell through external leads

allows the electrons to travel from the n side through the load back to the

p side, where they recombine with the holes. A schematic illustration of

the solar cell operation is shown in figure 3.1(a).

The solar cell efficiency is limited by the fact that only photons with

energies Eν > Eg can create electron-hole pairs while photons of smaller

energy are lost in the sense of energy harvesting. Also the photon energy

exceeding the band gap energy is lost as heat. Thus only a part of a vis-

ible light, composed of photons with different energies, can be utilized in

a single junction solar cell. For a single p − n junction solar cell the max-

imum efficiency is limited by the Shockley-Quisser (SQ) limit [42], which

describes the energy conversion efficiency of the sunlight into electrical

energy. The SQ limit for the most widely used silicon solar cells is around

29% [43]. To overcome the SQ limit of the single junction solar cells more

advanced solar cell architectures have been developed during the years.

Especially, important are the multi junction solar cells (described below)

11
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(a) (b)

Figure 3.1. Schematic illustration of a single p − n junction solar cell operation (a). Ge-
ometry of a multi junction solar cell (b). In (a) the grey area indicates the
depletion region. In (b) band gaps Eg decrease from top to bottom, i.e.,
Eg1 > Eg2 > Eg3.

and the best efficiencies to date have been achieved using these multi

junction solar cells [41, 18].

In multi junction solar cells several materials with different band gaps

are connected in series in a stacked manner (see figure 3.1(b)), with the

materials band gap decreasing from the top to the bottom of the stack [41].

The idea in the multi junction solar cell is that the band gap of each ma-

terial layer is tuned to harvest photons of a certain energy range. Thus,

multi junction solar cells can greatly improve the efficiency compared to

single junction solar cells by harvesting photons from a much larger en-

ergy range. In the multi junction approach the theoretical efficiency is

raised up to 86% in the case of infinitely many layers and concentrated

sunlight [44].

The first monolithic (junctions connected in series) multi junction so-

lar cells in production for space applications consisted of three layers

GaInP/GaAs/Ge. A clearly better efficiency was projected for three- and

four-junction solar cell structures based on III-V compound semiconduc-

tors and by requiring materials with band gaps smaller than that of GaAs

[45]. That is why the observation by Weyers et al., claiming that the band

gap of GaAs can be reduced by substituting just a small fraction of As

atoms by N atoms [17] (see section 2.1), attained a considerable attention,

because these alloys could provide the needed band gaps with the optimal

lattice constant. Soon the GaInNAs became the most prominent material

in multi-junction solar cell applications [18]. However, the expectations

for N alloyed III-V compound semiconductors in the solar cell applica-

tions are still not largely fulfilled. This is because the N-alloyed III-V-

12
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based multi-junction devices suffer from short minority carrier diffusion

lengths, the roots of which are still unknown. Long diffusion lengths are

essential for high-efficiency solar cells to efficiently collect the photogen-

erated carriers [18].

Very recently the Fraunhofer Institute for Solar Energy Systems and

the collaborators launched a press release for a new world record in solar

cell efficiency of 44.7 % at 297 suns [46]. The world record was obtained

using a four-junction III-V multi-junction solar cells. In the manufactur-

ing process an advanced wafer bonding technique was used which allows

high-quality connection of two semiconductor crystals, which cannot be

otherwise matched. However, the details of the used III-V semiconductor

materials was not given in the press release.

3.2 Long wavelength lasers

The data transmission distance in a fiber network reduces as the trans-

mission rate increases. For example for the standard 850 nm wavelength

vertical cavity surface-emitting lasers (VCSEL) the transmission distance

decreases from 7-8 km down to about 50 m, when the data transmission

rate increases from 100 Mbps to 10 Gbps [2]. The 50 m transmission dis-

tance is simply too small to be used in any practical optical network. How-

ever, for optical networks operating with long wavelengths of 1.3 or 1.55

μm the transmission distance may be several kilometers with the 10 Gbps

transmission rate [2]. With these wavelengths the pulse dispersion and

absorption losses are minimized in silica-based optical fibers [47]. Thus

there is a huge interest towards VCSELs operating with wavelengths of

1.3 or 1.55 μm.

Lasers operating at wavelengths of 1.3 or 1.55 μm can be manufactured

using InGaP or InGaAlAs grown on the InP substrate [2, 48]. However,

there are significant drawbacks in the case of VCSELs, related to ther-

mal and optical gain properties, with these materials. Thus, significant

advances would be gained if VCSEL lasers could be manufactured on a

GaAs substrate. That is because in the case of GaAs the standard 850 nm

VCSEL structure could be utilized, resulting in an easier manufactur-

ing process, better optical and electronic confinements and a monolithic

growth process [2, 48]. To manufacture VCSEL lasers on GaAs requires

materials with band gaps from 0.78 to 0.95 eV lattice matched to GaAs [2].

Finding such an alloy was long considered to be impossible until Weyers

13



Applications in solar photovoltaic cells and long wavelength lasers

et al. [17] discovered that the band gap of GaAs reduces with the increas-

ing N concentration. Up to this day several reports have described lasers

operating at around the 1.3 μmwavelength, grown on GaAs substrate and

utilizing the GaInNAs alloys as the material with the band gap smaller

than 1 eV [49, 50].
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4. Computational methods for ground
state electronic structure
calculations

The starting point for the electronic structure calculations is the many-

body Schrödinger equation for both nuclei and electrons [51]

Ĥ = − h̄2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI | +
1

2

∑
i �=j

e2

|ri − rj |

−
∑
I

h̄2

2MI
∇2

I +
1

2

∑
I �=J

ZIZJe
2

|RI −RJ | , (4.1)

where lowercase subscripts stand for electrons and uppercase subscripts

for nuclei. Above, h̄ is the reduced Planck constant, e is the elementary

charge, ZI is the number of protons in nucleus I and me, MI are the

masses of an electron and a nucleus I, respectively. However, solving

Eq. (4.1) even for a small number of atoms, not to speak of real systems,

is a formidable tasks and approximations are required. The first and per-

haps the most important one is the Born-Oppenheimer approximation. In

this approximation the nuclear kinetic energy, i.e., the fourth term in Eq.

(4.1), is considered to be negligible and it is omitted. Further, the whole

system wave function is separated into nuclear and electronic parts and

the electronic part is considered to depend on the nuclei only parametri-

cally. Thus, one obtains the Schrödinger equation for the electrons

ĤeΨe = (− h̄2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI | +
1

2

∑
i �=j

e2

|ri − rj |

+
1

2

∑
I �=J

ZIZJe
2

|RI −RJ |)Ψe

= EeΨe. (4.2)

In the case of non-interacting electrons, solving Eq. (4.2) is a relatively

easy task and even analytic expressions can be found for non-interacting

electron gas. However, the reason that makes solving of Eq. (4.2) ex-

tremely cumbersome, is the fact that electrons are correlated with each

other through the Coulomb potential. Thus, finding numerical methods
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for solving Eq. (4.2) has evolved to real state of the art methods since the

early decades of the 20th century.

The first methods for solving Eq. (4.2) numerically were the Hartree-

Fock (HF) like methods. In these methods the multi-electron wave func-

tion is approximated by a correctly anti-symmetrized Slater determinant

of single electron orbitals. The unknown single-electron orbitals are then

calculated from the HF equations [6] obtained through the variational

principle. The problem of the HF method is that it completely neglects the

electron-electron Coulomb correlation. To overcome this deficiency several

post-HF methods have been developed during the years. One popular

approach is the Møller-Plesset perturbation theory, where the electron-

electron Coulomb correlation is treated as a small perturbation [52].

Regardless of the success of the HF methods, the real breakthrough

in the electronic structure calculations was the DFT, the predecessor of

which was the Thomas-Fermi model [51]. DFT was sparked by the Ho-

henberg-Kohn theorem [7] published in 1964 which set the foundings of

the theory. This theorem states that all the ground state properties of

the system are uniquely determined by the ground state electron density.

However it was the Kohn-Sham equations [8] which made the DFT appli-

cable to electronic structure calculations. The DFT method is discussed

in more detail in the next section.

Nowadays there exist various ab initio electronic structure codes utiliz-

ing state of the art methods for solving the Kohn-Sham equations. These

methods include the SC approximation, pseudopotential approach, Bril-

louin zone integration and the projector-augmented wave method [53].

In this thesis the ground state electronic structure calculations are per-

formed using the Vienna ab initio simulation package (VASP) [54].

4.1 Density functional theory

The key idea in time independent DFT is to replace the complicated many-

body problem of interacting particles, with the simplified one of non-inter-

acting particles. The missing correlation and exchange part of the simpli-

fied problem is then completed by an exchange-correlation functional. In

the Hartree atomic units, in which me = e = h̄ = 1/(4πε0) = 1, the DFT
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energy functional for a system of N electrons reads as [51]

E[n] =
N∑
i

∫
ψ∗i

(
−1

2

)
∇2ψidr+

∫
n(r)Vextdr

+

∫ ∫
n(r)n(r′)
|r− r′| dr

′dr+ EXC [n(r)] + EII . (4.3)

Above, the first term is the kinetic energy of the non-interacting electron

system, the second term accounts for the interaction between the elec-

trons and the external potential (normally due to the nuclei, the second

term in Eq. (4.2)), the third term is the Hartee energy of electrons, the

fourth term, EXC , is the exchange-correlation energy and the last term is

the interaction energy between the nuclei (i. e., the last term in Eq. (4.2)).

The electron density n(r) is obtained from the single electron orbitals ψi

as

n(r) =
N∑
i

|ψi|2, (4.4)

The orbitals ψi minimizing the energy functional of Eq. (4.3) are ob-

tained by varying Eq. (4.3) with respect to the ψ∗i under the constraint∫
ψ∗i (r)ψj(r)d

3r = δi,j . This leads to the Kohn-Sham equations [8](
−1

2
∇2 + Vext(r) + VH(r) + VXC(r)

)
ψi(r) = εiψi(r), (4.5)

where VH is the Hartree potential of electrons

VH(r) =

∫
n(r′)
|r− r′|dr

′ (4.6)

and VXC is the exchange-correlation potential

VXC(r) =
δEXC [n(r)]

δn(r)
. (4.7)

The Kohn-Sham equations must be solved self-consistently and the gen-

eral procedure is to start with a guessed initial electron density n(r). The

orbitals ψi are then solved from Eq. (4.5) and the energy functional Eq.

(4.3) is evaluated. The new electron density is obtained from Eq. (4.4) and

the new orbitals ψi are solved. This procedure is repeated until the con-

vergence of the energy is obtained. The self-consistent cycle above can be

accelerated bymixing the electron densities from the current and previous

steps of the cycle and using efficient matrix diagonalization schemes for

the Kohn-Sham-Hamiltonian (Eq. (4.5)) [54]. It is also possible to directly

minimize the energy functional Eq. (4.3) instead of the self-consistent

cycle [55].

The Kohn-Sham scheme is in principle exact. However, the exact form of

the exchange-correlation functional is unknown and approximations are

needed.
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4.1.1 Local density approximation

In local density approximation (LDA) the exchange-correlation energy per

electron εxc(n(r)) at a given point depends only on the electron density

at that point. Thus the exchange-correlation energy is obtained as an

integral

Exc[n] =

∫
n(r)εxc(n(r))dr. (4.8)

In LDA the exchange-correlation energy per electron can be decomposed

into exchange and correlation part

εxc(n(r)) = εx(n(r)) + εc(n(r)). (4.9)

The analytic form of the exchange part is taken to be that of a homoge-

neous electron gas [51]. However, the analytic form of the correlation part

is unknown, except at the low- and high-density limits, and various ana-

lytical expressions for the correlation part has been developed during the

years [56, 57].

In general LDA should work well for the systems with slowly varying

electron densities resembling the homogeneous electron gas. The obvious

deficiency in LDA are the spurious self-interaction terms, i.e., the electron

interacts with itself so that the self-Hartree and self-exchange-correlation

energies are not exactly cancelled by the non-local exchange interaction

in the HF approximation. In addition, there is a depletion of the elec-

tron density around a given electron, called as the exchange-correlation

hole, due to the exchange and correlation effects. In LDA the exchange-

correlation hole is spherically symmetric [58] while in real systems this is

not true. Despite these evident deficiencies LDA works surprisingly well

also in many inhomogeneous systems with rapidly decaying electron den-

sities. The reason for this is that the exact exchange-correlation energy

depends only on the spherical average of the exchange-correlation hole

and the hole should contain exactly one charge unit [58]. The spherical

LDA exchange-correlation hole resembles that of the spherical average of

the real exchange-correlation hole and it also fulfills the above mentioned

sum rule [58].

The success of LDA has led to many schemes in which LDA is only

moderately corrected in a (semi) local manner. Among them the gener-

alized gradient approximation (GGA) is the most common. In GGA the

exchange-correlation functional also depends on the gradient of the den-

sity, which should better take into account the slow variations in the elec-

tron density.
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4.1.2 Hybrid functionals

The idea of the hybrid functionals is to substitute a part of the DFT ex-

change by the exact HF exchange. The first practical formulation of the

hybrid functional approach was given by Becke [59], who wrote the ex-

change energy functional as a linear interpolation between the noninter-

acting and fully-interacting systems in the form

Exc =
1

2
Ex +

1

2
ULDA
xc , (4.10)

where Ex is the pure exchange energy of the Kohn-Sham Slater determi-

nant and ULDA
xc is the energy corresponding to the LDA exchange-corre-

lation [59]. The problem with this approach is a huge computational cost

and a poor performance with metallic systems [60]. These problems orig-

inate from the slow decay of the HF exchange, which also depends on the

band gap of the material.

To overcome the above mentioned deficiencies Heyd et al. [60] intro-

duced the so-called screened hybrid functional. The idea of the screened

hybrid-functional is to replace a portion of the short-range DFT exchange

by a short-range HF exchange. This is achieved by decomposing the

Coulomb operator of the HF exchange into short- and long-range parts

using the screening parameter ω

1

r
=

erfc(ωr)

r
+

erf(ωr)

r
, (4.11)

where the first term is the short-range part of the HF exchange and the

second term is the long-range part. In above erf and erfc are the error and

complementary error functions, respectively. The exchange-correlation

energy is then calculated as [60]

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω)

+EPBE,LR
x (ω) + EPBE

c . (4.12)

Above, the parameter a determines the portion of the short-range HF ex-

change and it is called as the HF mixing constant. The PBE stands for

the PBE functional which is one of the GGA functionals [61]. The short

range DFT exchange is obtained by scaling the PBE exchange-correlation

hole by the short-range Coulomb screening factor and the long-range DFT

exchange is obtained as EPBE,LR
x (ω) = EPBE

x − EPBE,SR
x (ω) [60]. The HF

mixing constant a can be evaluated to be 1/4 according to the perturbation

theory [62]. However, a more common practice to determine the HF mix-
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ing constant is to adjust it so that the calculated band gap of the system

in question agrees its experimental value [63].

Even in the case of screened hybrid functionals the calculations are com-

putationally much heavier compared to calculations done with the local

functionals. In Ref. [64] Kuisma et al. derived a computationally ef-

ficient method based on GLLB approximation [64, 65]. In this method

the exchange-correlation potential is divided into screening and response

parts. In Ref. [64] the screening part was evaluated using a modified

PBE functional and the exchange response part was evaluated analogous

to Ref. [65]. In Ref. [64] the method was found to significantly improve

the calculated band gaps while being computationally as fast as the GGA

approximation.

4.1.3 Spin-orbit coupling in DFT calculations

The SO coupling is a relativistic effect and it couples the electron spin into

its own orbital motion. The SO coupling is especially important for heavy

element systems in which electron velocities become relativistic. In solids

the SO coupling modifies the band structures of materials by removing

state degeneracies near the Fermi level. For example in the case of GaAs

the SO coupling separates the heavy and light hole bands at the VBE and

a split-off band occurs at a lower energy. This is evident from figure 4.1

where DFT band structures are shown in GaAs in the case of a 2-atom

unit cell with and without the SO coupling.

For a hydrogenic atom the relativistic electron Hamiltonian can be ap-

proximated to be of the form [6]

H = H0 +Hkin +Hdar +HSO. (4.13)

Above, H0 is the non-relativistic Hamiltonian and Hkin is the relativistic

kinetic energy correction obtained from the relativistic momentum-energy

relation

Hkin = − p4

8m3c2
, (4.14)

where m is the electron mass and c the speed of light. Further, Hdar is the

Darwin correction obtained from the Dirac equation [6]

Hdar =
h̄2

8m2c2
∇2V, (4.15)

where V is the potential energy due to the nucleus. Finally HSO is the SO

coupling term obtained from the Dirac equation [6]

Hso =
1

2m2c2
1

r

d

dr
V (r)L · S, (4.16)
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Figure 4.1. DFT calculated band structure in GaAs in the case of 2-atom unit cell without
SO coupling (a) and with SO coupling (b).

where L and S are the angular and spin momenta respectively. In Ref.

[66] MacDonald et al. derived a fully relativistic augmented-plane-wave

method, starting from the radial Dirac equation. A similar approach is

used in the VASP code and the relativistic effective potential is divided

into a diagonal part containing the relativistic kinetic energy correction

and the Darwin correction, the scalar relativistic part, and the SO opera-

tor [67].

Due to the SO coupling the electron wavefunctions become spinors, i.e.,

ψα
i (r) = ϕiχ

α, (4.17)

where χα is a two-component spinor. The 2x2 density matrix is then ob-

tained as

nαβ(r) =
∑
i

ψα
i ψ

β∗
i . (4.18)

The Hamiltonian also becomes non-diagonal in spin and the DFT calcula-

tions must be performed in the noncollinear mode. In the VASP code [54]

the electron density is obtained as a trace of density matrix nαβ(r) in the

noncollinear mode [68]

nTr(r) =
∑
α

nαα(r). (4.19)

The 2x2 density matrix can be also written as

nαβ(r) = [nTr(r)δαβ + 
m(r) · 
σαβ ]/2, (4.20)

where, 
m(r) is the magnetization density and 
σ = (σx, σy, σz)where σx, σy, σz
are the Pauli spin matrices. The magnetization density 
m(r) is obtained

as


m(r) =
∑
α,β

nαβ(r) · 
σαβ . (4.21)
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4.2 Bloch theorem and the supercell approach

Solving Eq. (4.2) in the DFT framework still requires solving the elec-

tron wavefunctions for infinitely many electrons extended over the whole

crystal lattice [40]. However the problem is made solvable by the Bloch’s

theorem [40].

The Bloch theorem states that in a periodic lattice with the periodic

potential U(r + L) = U(r), where L is a lattice vector, an electron wave

function can be written in the form

ψk(r) = eik·ruk(r), (4.22)

where uk(r) has the periodicity of the Bravais lattice. The k indicates the

wave vector and it can be restricted into the first Brillouin zone. Because

uk(r) is periodic in L it can be written as a Fourier series in the form

uk(r) =
∑
G

ck,Ge
iG·r, (4.23)

where G is a reciprocal lattice vector. Thus the electronic wave function

can be written as a sum of plane waves in the form [40]

ψk(r) =
∑
G

ck+Ge
i(k+G)·r. (4.24)

The Bloch theorem transforms the problem of infinitely many electrons

with wave functions extending to infinity into a problem of infinitely many

k-points within the first Brillouin zone [40]. The problem of infinitely

many k-points can be circumvented by noticing that the wave function

changes only little between two k-points close to each other. Thus, in cal-

culations it is enough to choose only a limited number of k-points within

the first Brillouin zone. The further consequence of the Bloch theorem is

that the energy levels of an electron are functions of k having the period-

icity of the reciprocal lattice, i.e., En(k + G) = En(k) [69]. Here n is the

band index. The functions En(k) are known as the band structure which

is one of the most important properties characterizing the solid.

A typical approach in DFT calculations is to choose a specific geometry

with a limited number of atoms, which as periodically repeated fills the

whole space, and perform the calculation within this geometry. In the

case of bulk calculations the geometry can be chosen to be the primitive

cell of the system. For example in the case of GaAs with the zinc-blende

structure, the primitive cell contains only two atoms and the system can

be solved with ease within the DFT formalism.
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4.3 Formation energy calculations for point defects

In the SC approximation (see sections 2.2 and 4.2) the defect formation

energy is calculated as [70]

Ef = Etot[def + bulk]− Etot[bulk]−
∑
i

niμi

+q(Ev + Ef )−ΔE. (4.25)

Above, Etot[def + bulk] and Etot[bulk] are the energies of the defect and

bulk SCs, respectively, Ev is set equal to the valence band maximum

(VBM), Ef is the Fermi level referenced to the VBM. Further, ni is the

number of removed (a negative number) or added (a positive number)

atoms of type i and μi is the chemical potential of atom of type i which

is added or removed. The method to calculate the chemical potentials is

explained in the case of GaSb in section 6. The last term ΔE is an energy

correction term, discussed below, which accounts for the spurious interac-

tions between a charged defect and its periodic images, which need to be

taken into account to get the correct isolated defect formation energy.

In formation energy calculations for point defects one is normally in-

terested in the formation energy of an isolated defect. However, in the

SC approximation the supercell and at the same time the defect is peri-

odically repeated over the space (see figure 2.2). The SC method can be

still considered to be accurate if the defects are not interacting with their

periodic images. However, in the case of defects interacting over the SC

boundaries the obtained formation energy no more describes the energy

of an isolated defect, but the energy depends on the SC size converging to

that of an isolated defect in the limit of an infinitely large SC. The situa-

tion is particularly severe in the case of charged defects in which case the

defects are interacting with each other through the long-range Coulomb

interaction and the problem cannot be overcome by just increasing the SC

size.

4.3.1 Electrostatic finite-size effect correction for charged
defects

In the case of SC calculations for charged defects a homogeneous neutral-

izing background charge must be introduced into the system to prevent

the SC energy from diverging [71]. In the plane wave codes utilizing peri-

odic boundary conditions this corresponds to omitting the divergentG = 0

term when calculating the Hartree potential in the reciprocal space (i. e.
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the third term in equation 4.3). Introducing a defect into a bulk SC gives

rise to a constant shift in the electrostatic potential, which cannot be de-

termined from SC calculations alone [70]. Thus when comparing energies

of defect and bulk SCs the electrostatic potential of the defect SC must be

aligned with the electrostatic potential of the bulk SC using the potential

alignment constant C [70], see below. In practice the energy convergence

problem in the case of charged defects could be solved by replacing the pe-

riodic Hartree energy of the defect charge density by its nonperiodic coun-

terpart. However the problem is that the exact form of the defect charge

density is unknown and the charge density has to be approximated. The

first attempt to solve the problem was the estimation of the interaction

energy by the Madelung energy of point charges embedded into a homo-

geneous neutralizing background charge [72], i.e.,

ΔE =
αq2

2εL
, (4.26)

where α is the Madelung constant of the structure, q the defect charge, ε

the macroscopic dielectric constant and L is the lattice constant of the SC.

Makov and Payne [73] added a further term scaling as L−3 and describing

the quadrupole moment of the distribution of the extra defect charge q

into Eq. (4.26). With these two terms the energy correction can be fitted

to calculated SC energies and the energy of the isolated defect can be

extrapolated to the limit L→∞.

Recently, Freysoldt et al. [9] introduced a method in which the energy

correction term consists of two terms, Einter and Eintra. The Einter term

takes into account the self-interaction of the sum of the defect charge den-

sity and background charge with the artificial periodic potential, i.e.,

Einter =
1

2

∫
Ω
[qd(r) + n][Ṽq/0(r)− Vq/0(r)]dr, (4.27)

where qd(r) is the defect charge distribution, n is the neutralizing back-

ground charge, Ω is the SC volume and Ṽq/0, Vq/0 are the periodic and non

periodic defect potentials with respect to the neutral defect. The Eintra

term removes the interaction between the background charge and the po-

tential Vq/0

Eintra =

∫
Ω
nVq/0dr. (4.28)

The potentials Ṽq/0, Vq/0 are then divided into short- and long-range parts

in the form Vq/0(r) = V lr
q (r) + V sr

q/0(r), Ṽq/0(r) = Ṽ lr
q (r) + Ṽ sr

q/0(r). The long-

range potential V lr
q (r) is the macroscopically screened Coulomb potential

and the potential Ṽ lr
q (r) is obtained from the V lr

q (r) potential using the
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discrete Fourier transform (assuming that the extra defect charge density

is contained within the SC). The short-range potentials are approximated

to be the same for the periodic and non-periodic potentials up to the po-

tential alignment constant C

Ṽ sr
q/0(r) = V sr

q/0(r) + C. (4.29)

By combining Eqs. (4.27) and (4.28) the energy correction term can be

expressed in the form

ΔE = Einter + Eintra

= Elat
q − qΔq/0, (4.30)

where

Elat
q =

∫
Ω

[
1

2
[qd(r) + n][Ṽ lr

q (r)− V lr
q (r)] + nV lr

q (r)

]
dr, (4.31)

Δq/0 =
1

Ω

∫
Ω
V sr
q/0(r)dr, (4.32)

and

V sr
q/0(r) = Ṽq/0(r)− Ṽ lr

q (r)− C. (4.33)

Above, C is the potential alignment constant defined in Eq. (4.29). It is

worth mentioning that the Δq/0 term equals to −C because the periodic

potentials integrated over the periodic region equal to zero. The some-

what confusing point in the above derivation occurs in Eqs. (4.27) and

(4.28). In equation (4.27) the term nVq/0(r) is taken into account by a fac-

tor one half, i.e., the term is treated as a self-interaction term, while in

equation (4.28) the term is taken into account as a whole, i.e. the back-

ground charge interacts with an external field, which seems to be a con-

tradiction. Further, we were not able to reproduce the good convergence of

the formation energy of the charged Ga vacancies with respect to SC size

using Eq. (4.30) as was reported in Ref. [9]. In Ref. [10] the correction

term was formulated in the form

ΔE =

∫
Ω

1

2
qd(r)

(
Ṽ lr
q (r)− V lr

q (r)
)
dr+ qC

=
2π

εΩ

|G|≤Gcut∑
G �=0

qd(|G|)2
|G|2 − 1

πε

Gcut∫
0

qd(g)
2dg + qC, (4.34)

where qd(g) is the model charge distribution in the reciprocal space and

Gcut is an appropriately chosen cut-off radius ensuring the convergence

of the correction term. In this form the correction term is a more flexible
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version of the Madelung correction (Eq. (4.26)). It is important to notice

that Eq. (4.34) equals to Eq. (4.30) if the terms containing background

charge n are omitted in Eq. (4.31). In this thesis the correction term is

calculated using equation (4.34).

The intriguing property of the above method is that the potential align-

ment term and the validity of the approximation for the defect charge

density can be visualized by comparing the calculated long range defect

potential Ṽ lr
q (r) to that obtained from the SC calculations far from the

defect. If the model charge density is appropriate the calculated Ṽ lr
q (r)

should reproduce the potential Ṽdefect − Ṽbulk (Ṽdefect and Ṽbulk are the de-

fect and bulk SC electrostatic potentials), so that their difference forms

far from the defect a constant plateau which equals to the potential align-

ment constant C. This is illustrated in figure 4.2. However, it is worth

mentioning that if the point-like approximation for the defect charge dis-

tribution is not valid not much can be done.
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Figure 4.2. Different potential terms related to energy correction term in the case of gal-
lium vacancy in GaAs in the -3 charge state. The potentials are averaged
over the planes along the z-axis of the SC. The defect is located at the origin.
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5. Nitrogen and Bi induced
modifications in the electronic
structures of GaAs, GaP and GaSb

5.1 Substitutional nitrogen in GaAs and GaSb

It is well known that replacing As atoms by just a small fraction of N

atoms in GaAs leads to a significant decrease in the band gap as a func-

tion of N concentration [17]. In GaSb1−xNx alloys the effect is even larger

than in GaAs1−xNx alloys [19]. The reason for the larger band gap re-

duction in GaSb1−xNx is often suggested to be related to the larger elec-

tronegativity mismatch between the N and Sb atoms compared to that

of the N and As atoms. Consequently, in the BAC model the interaction

between the N resonant state and the host material CBE would then be

stronger in the GaSb1−xNx alloy. Although GaSb1−xNx alloys have been

modelled successfully using TBmethods [74], DFT studies of this material

are cumbersome because of the well known underestimation of the band

gap when the (semi) local functionals are used. In the case of GaSb1−xNx

alloys the band gap completely closes when LDA is used and observing

the N-induced band gap narrowing becomes unfeasible.

In Publication I we studied GaAs1−xNx and GaSb1−xNx alloys within

the DFT formalism using the HSE06 hybrid functional. The HSE06 func-

tional gives band gaps near to the experimental ones and enables the

band structure calculations for GaSb1−xNx alloys without any empirical

parameter fitting. The main goal in Publication I was to study the modifi-

cations in the electronic structure of GaSb1−xNx alloys and compare those

to GaAs1−xNx alloys. In addition, we studied the relative binding energies

of different two-N-atom configurations in a SC. Besides configurations in

which N atoms substitute Sb atoms we considered also the N2 dimer on

the Sb site.

The main conclusion in Publication I was that N affects the band struc-
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tures of both GaAs and GaSb qualitatively and even quantitatively simi-

larly. In both alloys N forms a localized state above the CBE resulting in

a sharp peak in the LDOS at the N atom. The peak forms a long tail, hav-

ing equal lengths in the two materials, extending into the band gap and

causing the band gap narrowing. According to our calculations the most

likely reason for the larger band gap reduction in GaSb1−xNx compared

to that in GaAs1−xNx is the positions of the bulk CBEs with respect to

the N induced resonant states in these alloys. In addition we found that

in GaSb the formation of the N2 dimers is energetically favorable. This

may cause that notable amounts of nitrogen exist as N2 dimers instead of

substitutional nitrogen, which may lead to the poor quality of GaSb1−xNx

alloys for electronic applications.

5.2 N-N interactions in GaAs1−xNx and GaP1−xNx alloys and the
band gap bowing

In Publication I it was observed that the band gap reduction in GaAs1−xNx

and GaSb1−xNx alloys is caused by localized N states extending towards

the band gap. Furthermore, it was observed that the band gap reduction

in the case of multiple N atoms in the SC depends on the configuration of

the substituted N atoms in accordance with the previous studies [13, 75].

These observations suggest that the N atoms are somehow coupled to each

other, even if the actual mechanism for N-N interactions remained open

in Publication I.

The work in Publication II was sparked by the observation that the CBE

charge density in GaAs1−xNx and GaP1−xNx alloys is agglomerated along

the zigzag chains originating from strong and relatively short Ga-N bonds

and characterized by a strong intertwining of the electron structure and

ion relaxation. This is illustrated in figure 5.1 which shows the CBE

charge density in the case of a single N atom in the SC of 512-atoms in

GaAs. In the figure, the twelve zigzag chains are directed along the twelve

〈110〉 directions. In Publication II it was also observed that the N-induced

characteristic features in the electronic structures of these materials man-

ifest themselves as localized peaks in the LDOSs at the N atom. These

peaks were found to remain stationary with respect to the N concentra-

tion, but the broadenings of these peaks, occurring as long low intensity

tails, increase and extend longer into the band gap leading to a stronger

band gap reduction with the increasing N concentration. These observa-
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Figure 5.1. CBE partial charge density in the Ga256As255N SC, viewed along the 〈111〉
direction. The isosurface shown corresponds to a density isovalue of 0.0012.

tions are in a good agreement with the band broadening picture suggested

by Deng et al. [76] indicating that the band gap narrowing is related to

N-N interactions. Figure 5.2 indeed shows how the N atoms become cou-

pled through the zigzag chains. Due to the periodic boundary conditions

used in the SC-DFT calculations there is always another N atom standing

on the same zigzag chain, as is shown in figure 5.2. Thus the N atoms be-

come coupled to each other through these chains and with the increasing

N concentration the distances between the N atoms become smaller lead-

ing to a stronger coupling and larger broadening of the N-related states

as can be seen in the LDOSs in Publication II.

In Publication II the DFT calculations were limited to only a few N

atoms in a SC under the periodic boundary conditions. To overcome this

deficiency we developed a TB model based on our SC-DFT calculations.

In the developed TB model the N atoms are allowed to interact with each

other only along the 〈110〉 directions and the matrix elements between N

atoms i and j are defined as hi,j = k/rαi,j if the N atoms i, j are connected

through a zigzag chain and hi,j = 0 otherwise. The calculation of the ma-

trix elements in the SC approach and Γ-point approximation is discussed

in more detail in Appendix A. The parameters k and α are obtained by

fitting the produced eigenvalue distributions to the LDOSs of our SC-DFT

calculations (see Publication II for details). The obtained parameters for

GaAs1−xNx are k = −0.67 eVÅα, α = 1.28 and for GaP1−xNx k = −0.59
eVÅα, α = 1.43. The small values of α for both materials indicates that

the N atoms are coupled to each other through a long-range interaction.
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(a) μ = 0.002 (b) μ = 0.002

Figure 5.2. (Color online) Partial charge-densities in the (110) planes corresponding to
CBE in Ga108As107N (a) and Ga108P107N (b) SCs. The yellow spheres corre-
sponds to Ga atoms, the brown spheres to As atoms and the tan spheres to P
atoms. N atoms are located inside the centers of high charge accumulation.
The μ-value indicates the isovalue used.

This is possible due to a directional, effectively 1-d interaction preventing

the total energy from diverging. The developed TB model takes only into

account the interactions between the N atoms. With this model we are

able to simulate tens of thousands of N atoms randomly distributed in

the host material in accordance with the experimental conditions. Within

the developed model we obtain eigenvalue distributions corresponding to

the broadening of the N induced states which can be compared to experi-

mental measurements.

In Ref. [77] Ivanova et al. measured scanning tunneling spectra of

GaAs1−xNx alloys and observed characteristic features in the spectra cor-

responding to an isolated N atom and to nearest neighbor N-N atom pairs.

These features are also present in our calculated eigenvalue distribu-

tions as shown in figure 5.3 in the case of 3.1% N concentration in the

GaAs1−xNx alloy. In figure 5.3 the two side peaks are due to the nearest

neighbor N-N pairs and the peak in the middle corresponds to the isolated

nitrogen.

In experiments the often measured key quantities in GaAs1−xNx and

GaP1−xNx alloys are the E− and E+ states as a function of the N concen-

tration (see section 2.1.1). In our model these states correspond to the

minimum and maximum eigenvalues of the calculated eigenvalue distri-

butions (see figure 5.3). It is important to notice that our model produces

a continuous distribution of eigenvalues between the extreme eigenvalues

corresponding to the broadening of the N-induced states. In Publication
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Figure 5.3. TB eigenvalue distribution corresponding to a random sample of 13,824 N
atoms (3.1% concentration) in the GaAs1−xNx alloy.

II we randomly distributed different numbers of N atoms into a large SC

and solved these systems using the developed TB method. At each con-

centration the minimum and maximum eigenvalues were recorded and

averaged over 100 samples. In this way we obtained the E− and E+ states

as a function of the N concentration.

In the case of GaAs1−xNx and GaP1−xNx alloys the E− and E+ states

are directly measured in experiments allowing a direct comparison to our

calculated E− and E+ states. This is done in figure 5.4. In addition the

results calculated by the SC-DFT scheme are shown. In Publication II

the calculated E− and E+ states, shown in figure 5.4, are found to be

in a good qualitative and quantitative agreement with the experimental

results. The calculated E− and E+ states show the typical square-root-

like behavior as a function of the N concentration in the case of random

structures while the SC-DFT calculated E− state shows a linear depen-

dence. The wrong concentration dependence of the band gap reduction

in SC-DFT calculations [13, 30] can be well explained by the directional

interaction between the N atoms. Due to the periodic boundary condi-

tions the N atoms of the neighboring SCs are always located on a common

zigzag chain leading to a surplus of N-N interactions compared to random

distributions.
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Figure 5.4. Experimental and calculated E− and E+ states as a function of N concentra-
tion in (a) GaAs1−xNx and (b) GaP1−xNx. The blue circles and squares give
the calculated random-system TB and the SC-DFT results, respectively. The
red triangles are the experimental data for GaAs1−xNx (data is from Ref. [25]
(measurement temperature 300 K)) and GaP1−xNx (red upright triangles are
from Ref. [20] (20 K) and red downright triangles are from Ref. [26] (room
temperature)).

5.3 Bi induced modifications in the electronic structures of
GaAs1−xBix alloys

After the observation in Publication II that the band gap narrowing in

GaAs1−xNx and GaAs1−xPx alloys is connected to the broadening of the N

induced states due to N-N interactions, a natural next step was to study if

the same mechanism is also valid in GaAs1−xBix alloys. Despite the large

number of computational studies considering GaAs1−xBix alloys only a

few ab initio studies with the band structure and DOS calculations can

be found. Thus the location of Bi states within the valence band as well

as the anomalously large SO splitting are still puzzling problems in this

alloy. In Publication III we studied Bi-induced modifications in the elec-

tronic structure of GaAs. In this work we used the DFT framework within

LDA. The SO coupling was included in all calculations.

In Publication III we observed a similar localized peak near the VBE

which broadens with the increasing Bi concentration as was observed in

Publication II in the conduction band of GaAs1−xNx alloys. However the

band structures, figures 5.5(a), 5.5(b) and 5.5(c), show different character-

istics compared to band structures of GaAs1−xNx alloys in Publication II.

In GaAs1−xNx, substitutional N atoms form a flat impurity-like band of

s-character corresponding to the localized peak observed in the LDOSs at

the N atoms. However, in the case of GaAs1−xBix a similar impurity-like

band corresponding to the localized peak near the VBE cannot be seen.

This is in agreement with the suggestion by Zhang et al. [38] that no new
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Figure 5.5. (Color online) Band structures for bulk Ga108As108 (a), Ga108As107Bi (b) and
Ga32As31Bi (c). The energy zero coincide with the conduction band minimum
(CBM). The vertical lines are guide to an eye and indicate the positions of the
high-symmetry points.

states are added to the valence band and the Bi states could be interpreted

as strongly perturbed host states.

Despite the differences in the band structures of GaAs1−xBix alloys com-

pared to GaAs1−xNx alloys, the VBE charge density in GaAs1−xBix alloys

was found to resemble the CBE charge density in GaAs1−xNx alloys in

Publication II, i.e., the VBE in GaAs1−xBix alloys becomes agglomerated

along the zigzag chains originating from the Bi atoms. This leads to inter-

actions between the Bi atoms and to the broadening of the mixed Bi-bulk

states near the alloy VBE in analogous to the broadening of the N-induced

states in GaAs1−xNx alloys. The broadening of the mixed Bi-bulk states

then leads to a broadening of the alloy VBE resulting in the band gap

narrowing. In Publication III we modelled the broadening of the mixed

Bi-bulk states using the same TB model as in Publication II. However, in

the case of GaAs1−xBix alloys we cannot directly compare the calculated

E− and E+ states to experiments, as in the case of GaAs1−xNx alloys, be-

cause in experiments only the band gap at different Bi concentrations is

measured instead of E− and E+ states. Thus in Publication III we calcu-

lated the band gap reduction at different Bi concentrations in the case of
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Figure 5.6. Relative positions of the CBM and VBM in bulk GaAs, GaAs1−xNx and
GaP1−xNx. The distance C indicates the distance between the mixed Bi-bulk
state near the alloy VBE and the bulk VBM.

randomly distributed Bi atoms using the equation

ΔEg(x) = −max{s(x)− C, 0} − bx. (5.1)

Above, x stands for the Bi concentration, b is the CBM downwards shift

per percent originating from the Vegard’s law, s(x) is the splitting of the

peak corresponding to the mixed Bi-bulk states near the alloy VBE in the

random structures and C is the distance of the peak corresponding to the

mixed Bi-bulk states near the alloy VBE from the bulk VBM (see figure

5.6).

In Publication III the calculated band gap behavior was found to be in a

qualitative and quantitative agreement with the experimental one. How-

ever, it was also observed that the strict location of the mixed Bi-bulk

states in the valence band is a function of the Bi concentration decreasing

with the increasing Bi concentration. The dependence of the calculated

Bi states on the Bi concentration was also observed in Refs. [37, 38]. In

Publication III the location of the mixed Bi-bulk states was approximated

to be constant which creates some uncertainty to the predictive power of

the applied TB model. One of the main conclusions in Publication III was

that the anomalously large SO splitting energy can be explained to result

from the VBE broadening due to the Bi-Bi interactions. This conclusion

is in agreement with the photomodulated spectroscopy measurements of

Kudrawiec et al. [35] which show that the E0 + ΔSO transition is rather

insensitive to the addition of 3% Bi, indicating that the increase of the SO

splitting is due to the rising VBE.
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6. Hybrid functional study of native
point defect energetics in GaSb

GaSb is an interesting material from both material and device point of

views. It can be used as a substrate material for other III-V compounds

covering a wide spectral range from 0.8 to 4.3 μm [78]. The electronic

properties of GaSb can be also significantly modified by substituting a

small fraction of Sb by N [19, 79], which was also observed in our own cal-

culations in Publication I. Undoped GaSb is always p-type and the p-type

conductivity is often connected to native point defects, e.g., Ga vacancies

and antisites [78]. However, the origin of the p-type conductivity is still

debated. In GaSb also a strongly asymmetric self-diffusion, in which Ga

atoms diffuse over three orders of magnitude faster than Sb atoms, has

been reported [80]. The strongly asymmetric self-diffusion is explained by

atoms diffusing in their own sublattices via vacancies [80] or as intersti-

tials [81].

In Publication IV we studied the native point defect energetics in GaSb

within the DFT framework using the HSE06 hybrid functional. The for-

mation energies were computed using Eq. (4.25) and for charged defects

the energy correction term was calculated using Eq. (4.34). Due to the

HSE06 hybrid-functional we were able to overcome the significant under-

estimation of the GaSb band gap when LDA is used. In GaSb the chemical

potentials, occurring in Eq. (4.25), are obtained as follows. In Ga (Sb)-rich

growth conditions μGa (μSb) equals to that of μGa[bulk] (μSb[bulk]) and in Sb

(Ga) -rich growth conditions μGa (μSb) is obtained as μGa = μGaSb−μSb[bulk]
(μSb = μGaSb−μGa[bulk]), where μGaSb is the energy of the two-atom unit of

bulk GaSb [70]. The chemical potentials for bulk Ga and Sb are calculated

in their point symmetries Cmca and R3̄m, respectively.

In Publication IV the use of the HSE06 hybrid functional was found

to significantly affect the defect formation energies. The HSE06 hybrid

functional clearly increases the formation energies compared to the lo-
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Figure 6.1. Formation energies for stable charge states of point defects in GaSb as a func-
tion of the Fermi level in the Ga-rich (a) and Sb-rich (b) growth conditions.

cal functionals and qualitatively seems to favor the more positive charge

states. The lowest-energy defects were found to be the Ga antisite, Ga

interstitials and the Sb antisite. Figures 6.1(a) and 6.1(b) show the for-

mation energies for different defects as a function of the Fermi level in the

Ga-rich and Sb-rich growth conditions, respectively. The most prominent

candidate for the source of p-type conductivity was found to be the Ga2−Sb ,

Ga1−Sb antisites. However, in a strong contrast to a previous DFT study

[81], where LDA was used, also the energies of the Sb2+Ga, Sb
1+
Ga antisites

were found to be significantly low in the Sb-rich growth conditions.

In the Sb-rich growth conditions the donor-like Sb antisites would turn

the substrate into n-type or at least compensate the p-type conductivity,

which is not observed in experiments. In Publication IV we suggested,

based on our climbing-image nudged elastic band method calculations

[82], the possibility that the positively-charged SbGa transforms into a

neutral C3v state to explain the absence of donor-like Sb antisites in ex-

periments. We also studied the carbon and oxygen impurities, which are

common acceptors in AlSb [83]. We found that especially the interstitial,

acceptor-like, oxygen has a notably low formation energy and could also

compensate for the electrical activity of the SbGa antisite.
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7. Conclusions

7.1 Developed theory to describe electronic structures of III-V-N
alloy semiconductors

In this dissertation an alternative quantummechanical theory to describe

N-induced modifications in electronic structures of III-V compound semi-

conductors was developed and further extended to Bi alloying of these

materials. In the developed theory the band gap narrowing in III-V-N al-

loys originates solely from N-N interactions and the host material atoms

only mediate the interaction. The developed method is in a contrast to

the currently most widely accepted band anticrossing (BAC) model, in

which the band gap narrowing results from the interaction between the

N-induced states and the host material conduction band edge (CBE). The

great advantage of the developed theory is that it can be mathematically

described using the developed tight binding (TB) model, which rely purely

on ab initio methods and there is no need for any external fitted param-

eters. The developed TB model allows simulation of huge random struc-

tures and a direct comparison between the theory and experiments, e.g.,

the measured scanning tunneling spectra [77] can be compared to the cal-

culated energy distributions. In the developed TB model the occurrence of

the E− and E+ states are a natural consequence of the N-N interactions

and the model correctly predicts their behavior as a function of the N con-

centration. Further, the model explains in a natural way the difference

between the simulations performed for ordered structures compared to

those for random structures. These are clear improvements over the BAC

model in which the band gap as a function of the N concentration must be

first either experimentally measured or simulated in random structures

to obtain the needed parameters of the model for the mechanism of the
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band gap narrowing.

The essential feature in the developed theory is that the CBE becomes

strongly agglomerated along the zigzag chains in the 〈110〉 directions and
loses its bulk character with the increasing N concentration. The direc-

tional interaction is due to a strong intertwining of the electronic struc-

ture and ionic relaxation. This feature should be studied in a future work

in more detail as a possible solution to the observed poor electron mobility

in these alloys. Further, according to the developed model the alloy loses

its strict band structure and the energy bands become distributed over a

wide energy range. This is in accordance with the effective band structure

model in random alloys by Popescu et al. in Ref. [84].

7.2 Generalization of the developed model to GaAs1−xBix alloys

In Publication III the developed model to describe the N-induced modifi-

cations of GaAs1−xNx alloys was successfully generalized to GaAs1−xBix
alloys in which the electronic structure modifications occurs in the valence

band. Our calculations confirm the previous assumption by Zhang et al.

[38] that Bi does not induce clear impurity-like states in GaAs1−xBix al-

loys, but instead, the Bi states are strongly mixed with the bulk states. In

Publication III we showed that the band gap narrowing is a result of the

broadening of these mixed Bi-bulk states due to the Bi-Bi interactions.

One of the main conclusions in the case of GaAs1−xBix alloys was that

the experimentally observed anomalously large spin-orbit (SO) splitting

energy is a natural consequence of the valence band edge (VBE) broaden-

ing. This conclusion may hinder some of the expectations for this mate-

rial in spintronic applications. However, the possibility for the damping of

the Auger recombination process from the VBE into the SO-split-off band

should not be affected, although it may be not so dominating as in the

case of a sharp bandstructure of an ordered solid.

7.3 Native point-defect energetics in GaSb and the connection to
p-type conductivity

In Publication IV the native point-defect energetics was extensively stud-

ied in GaSb to explain the growth-condition independent p-type conductiv-

ity. In contrast to earlier computational studies related to GaSb we used

a hybrid functional in our density functional theory (DFT) calculations
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instead of the local density approximation (LDA). Importantly, the more

accurate exchange-correlation-energy functional was found to affect not

only the band gap but also qualitatively and quantitatively the calculated

formation energies. Even though our calculations supported the p-type

conductivity in the Ga-rich growth conditions the results did not give di-

rect support for the p-type conductivity in the Sb-rich growth conditions

because of the predicted abundance of donor-like SbGa antisites. To ex-

plain the p-type conductivity in the Sb-rich growth conditions we studied

using the climbing-image nudged elastic band method the possibility that

the donor-like SbGa antisites transform into metastable neutral C3v con-

figurations. Our calculations revealed that the neutral C3v configuration

is located at the same level in energy as the Td configuration separated

by a relatively small barrier. This would allow effective thermal excita-

tions from the neutral Td configuration into the C3v configuration after

capturing the excess electrons into a strong and narrow resonance above

the CBE. However, it is not clear what could prevent the electrons to be

excited and the relaxation back to the Td configuration. To confirm or re-

ject our hypothesis would require accurate experimental measurements

for the energetics of different defects, which are not currently available.
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A. Calculation of the matrix elements in
the developed tight-binding method

In the developed TB model the non-diagonal matrix elements hi,j , describ-

ing the interaction between nitrogen atoms at sites i and j, are defined as

hi,j = k/rαi,j if the atoms i and j are connected trough a zig-zag chain (the

linear chains in the twelve 〈110〉 directions) and hi,j = 0 otherwise. The

diagonal terms hi,i are set to an arbitrary chosen constant value Es∗ which

describes the energy of the isolated N-induced states.

In the SC approximation with periodic boundary conditions and the Γ-

point approximation the non-zero matrix elements hi,j (without restric-

tion of the interaction to the zigzag chains) have the form

hi,j =
∑
L

k

|r̂i,j + L|α , (1.1)

where r̂i,j is the connecting vector between N atoms at sites i and j at

the SC and L is the SC lattice vector. The units are in electron volts and

Figure 1.1. Illustration of the procedure determining whether the N atoms i and j are
connected by a zigzag chain or not. The figure shows the situation in which
the SC contains 16 atoms, labelled 1,2,...,16 and the row element in question
is 1. If the row element would have some other index i the atom i should be
first translated at the origin, i.e., at the position of the atom 1 in the figure.
The yellow dashed lines indicate that atoms 6,8,11,14, and 16 are connected
by a zigzag chain to atom 1. The atom 11 is connected in four octants of space
whereas the others are connected in two octants.
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angstroms. To determine if a N atom i is connected to a N atom j or its

periodic replicas the SC is translated so that the atom i (the row element)

is at the origin of the SC. Then dot products between the normalized con-

necting vector r̂i,j/|r̂i,j | and the normalized direction vectors 〈110〉/√2 are

taken. Here, 〈110〉 indicates any of the directions î + ĵ, î − ĵ, ..., ĵ + k̂. If

any of the dot products is 1 or -1 then the atoms i and j are connected by a

zigzag chain. The above procedure must be repeated for N atoms j in ev-

ery octant of the three-dimensional space, labeled by φ below. In practice

this is done by periodically translating the N atoms j into every octant.

If the atom i is connected to the atom j in a particular octant it is also

connected to all periodic replicas of the atom j in that direction separated

by the distance
√
2L. This is illustrated in two dimensions in figure 1.1.

The restriction of the interactions to the interconnecting zig-zag chains

modifies Eq. (1.1) so that in the case of simple-cubic SCs it becomes

hi,j =
∑
φ

∞∑
n=0

k(
ri,jφ +

√
2nL

)α , (1.2)

where φ runs over all the octants in which the N atoms i and j are con-

nected and L is the lattice parameter. The diagonal term reads as

hi,i = Es∗ + 12
∞∑
n=1

k(√
2nL

)α . (1.3)

The inner sum in Eq. (1.2) is the Hurwitz zeta function and it can be eval-

uated efficiently using the Euler-Maclaurin summation formula [85]. The

Euler-Maclaurin summation was originally used to approximate definite

integrals. However, it can be also used to approximate finite and even

infinite sums of the form
b∑

n=a

f(n) ∼
∫ b

a
f(x)dx+

f(a) + f(b)

2

+

∞∑
k=1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
, (1.4)

where Bk is the k:th Bernoulli number and fk is the k:th derivative of the

function f . In the case of Hurwitz zeta function the function f is

f(s, q) =
1

(q + n)s
(1.5)

and the k:th derivative is easily calculated obtaining

fk(s, q) =

(
k−1∏
i=0

(−s− i)
)

1

(q + n)s−k
, (1.6)

where Π is the product symbol.
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[3] N. Lopeź, L. A. Reichertz, K. M. Yu, K. Campman, W. Walukiewicz, “Engi-
neering the Electronic Band Structure for Multiband Solar Cells”, Physical
Review Letters, 106, 028701 (2011)

[4] G. Wolfowicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov,
P. Becker, H.-J. Pohl, M. L. W. Thewalt, S. A. Lyon, J. L. Morton, “Atomic
clock transitions in silicon-based spin qubits”, Nature Nanotechnology, 8,
561 (2013)

[5] A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl,
M. Möttonen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves,
D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, A. S. Dzurak,
“Single-shot readout of an electron spin in silicon”, Nature, 467, 687 (2010)

[6] F. Schwabl, Quantum Mechanics, Springer, Berlin, 3rd ed. (2002)

[7] P. Hohenberg, W. Kohn, “Inhomogeneous Electron Gas”, Physical Review,
136, B864 (1964)

[8] W. Kohn, L. J. Sham, “Self-Consistent Equations Including Exchange and
Correlation Effects”, Physical Review, 140, A1133 (1965)

[9] C. Freysoldt, J. Neugebauer, C. G. Van de Walle, “Fully Ab Initio Finite-
Size Corrections for Charged-Defect Supercell Calculations”, Physical Re-
view Letters, 102, 016402 (2009)

[10] C. Freysoldt, J. Neugebauer, C. G. Van de Walle, “Electrostatic interactions
between charged defects in supercells”, Physica status solidi B, 248, 1067
(2010)

[11] S. M. Sze, Semiconductor devices: Physics and Technology, John Wiley and
Sons, New York (1985)

[12] A. Kokalj, “Computer graphics and graphical user interfaces as tools in sim-
ulations of matter at the atomic scale”, Computational Materials Science,
22, 155 (2003)

43



Bibliography

[13] P. R. C. Kent, A. Zunger, “Theory of electronic structure evolution in GaAsN
and GaPN alloys”, Physical Review B, 64, 115208 (2001)

[14] Y. Zhang, A. Mascarenhas, J. F. Geisz, H. P. Xin, C. W. Tu, “Discrete and
continuous spectrum of nitrogen-induced bound states in heavily doped
GaAs1−xNx”, Physical Review B, 63, 085205 (2001)

[15] D. G. Thomas, J. J. Hopfield, C. J. Frosch, “Isoelectronic Traps Due to Nitro-
gen in Gallium Phosphide”, Physical Review Letters, 15, 857 (1965)

[16] X. Liu, M.-E. Pistol, L. Samuelson, S. Schwetlick, W. Seifert, “Nitrogen pair
luminescence in GaAs”, Applied Physics Letters, 56, 1451 (1990)

[17] M. Weyers, M. Sato, H. Ando, “Red Shift of Photoluminescence and Absorb-
tion in Dilute GaAsN Alloy Layers”, Japanese Journal of Applied Physics,
31, 853 (1992)

[18] J. F. Geisz, D. J. Friedman, “III-N-V semiconductors for solar photovoltaic
applications”, Semiconductor Science Technology, 17, 769 (2002)

[19] T. D. Veal, L. F. J. Piper, S. Jollands, B. R. Bennet, P. H. Jefferson, P. A.
Thomas, C. F. McConville, B. N. Murdin, L. Buckle, G. W. Smith, T. Ashley,
“Band gap Reduction in GaNSb alloys due to the anion mismatch”, Applied
physics Letters, 87, 132101 (2005)

[20] H. Yaguchi, S. Miyoshi, G. Biwa, M. Kibune, K. Onabe, Y. Shiraki,
R. Ito, “Photoluminescence excitation spectroscopy of GaP1−xNx alloys:
conduction-band-edge formation by nitrogen incorporation”, Journal of
Crystal Growth, 170, 353 (1997)

[21] W. Shan, W. Walukiewicz, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J.
Friedman, J. M. Olson, S. R. Kurtz, “Band Anticrossing in GaInAs Alloys”,
Physical Review Letters, 82, 1221 (1999)

[22] P. R. C. Kent, L. Bellaiche, A. Zunger, “Pseudopotential theory of dilute III-V
nitrides”, Semiconductor Science Technology, 17, 851 (2002)

[23] D. L. Young, J. F. Geisz, T. J. Coutts, “Nitrogen-induced decrease of the elec-
tron effective mass in GaAs1−xNx thin films measured by thermomagnetic
transport phenomena”, Applied Physics Letters, 82, 1236 (2003)

[24] M. Reason, Y. Jin, H. A. McKay, N. Mangan, D. Mao, R. S. Goldman, X. Bai,
C. Kurdak, “Influence of N on the electronic properties of GaAsN alloy films
and heterostructures”, Journal of Applied Physics, 102, 103710 (2007)

[25] P. J. Klar, H. Grüning, W. Heimbrodt, J. Koch, F. Höhnsdorf, W. Stolz,
P. M. A. Vicente, J. Camassel, “FromN isoelectronic impurities to N-induced
bands in the GaNxAs1−x alloy”, Applied Physics Letters, 76, 3439 (2000)

[26] W. Shan, W. Walukiewicz, K. M. Yu, J. Wu, J. W. Ager, E. E. Haller, H. P.
Xin, C. W. Tu, “Nature of the fundamental band gap in GaNxP1−x alloys”,
Applied Physics Letters, 76, 3251 (2000)

[27] W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller,
I. Miotkowski, M. J. Seong, H. Alawadhi, A. K. Ramdas, “Interaction of Lo-
calized Electronic States with the Conduction Band: Band Anticrossoing in
II-VI Semiconductor Ternaries”, Physical Review Letters, 85, 1552 (2000)

44



Bibliography

[28] P. W. Anderson, “Localized Magnetic States in Metals”, Physical Review,
124, 41 (1961)

[29] C. Harris, A. Lindsay, E. P. O’Reilly, “Evolution of N defect states and optical
transition in ordered and disordered GaP1−xNx alloys”, Journal of Physics:
Condensed Matter, 20, 295211 (2008)

[30] V. Virkkala, V. Havu, F. Tuomisto, M. J. Puska, “Hybrid functional study of
band structures of GaAs1−xNx and GaSb1−xNx alloys”, Physical Review B,
85, 085134 (2012)

[31] R. N. Kini, L. Bhusal, A. J. Ptak, R. France, A. Mascarenhas, “Electron Hall
mobility in GaAsBi”, Journal of Applied Physics, 106, 043705 (2009)

[32] A. Janotti, S.-H. Wei, S. B. Zhang, “Theoretical study of the effects of isova-
lent coalloying of Bi and N in GaAs”, Physical Review B, 65, 115203 (2002)

[33] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, T. Tiedje,
“Giant Spin-Orbit Bowing in GaAs1−xBix”, Physical Review Letters, 97,
067205 (2006)

[34] S. J. Sweeney, Z. Batool, K. Hild, S. R. Jin, T. J. C. Hosea, “The Potential
Role of Bismide Alloys in Future Photonic Devices”, 1–4, 13th International
Conference on Transparent Optical Networks (ICTON), IEEE, Stockholm
(2011)

[35] R. Kudrawiec, J. Kopaczek, P. Sitarek, J. Misiewicz, M. Henini, S. V.
Novikov, “Unusual broadening of E0 and E0 + ΔSO transitions in GaAsBi
studied by electromodulation spectroscopy”, Journal of Applied Physics,
111, 066103 (2012)

[36] K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watking,
C. X. Wang, X. Liu, Y.-J. Cho, J. Furdyna, “Valence-band anticrossing in mis-
matched III-V semiconductor alloys”, Physical Review B, 75, 045203 (2007)

[37] M. Usman, C. A. Broderick, A. Lindsay, E. P. O. O’Reilly, “Tight-binding
analysis of the electronic structure of dilute bismide alloys of GaP and
GaAs”, Physical Review B, 84, 245202 (2011)

[38] Y. Zhang, A. Mascarenhas, L.-W. Wang, “Similar and dissimilar aspects
of III-V semiconductors containing Bi versus N”, Physical Review B, 71,
155201 (2005)

[39] S. Elliot, The Physics and Chemistry of Solids, Wiley, Chippenham, Wilt-
shire (2006)

[40] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, “It-
erative minimization techniques for ab initio total-energy calculations”, Re-
views of Modern Physics, 64, 1045 (1992)

[41] A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering,
John Wiley and Sons, Chichester, West Sussex, England (2003)

[42] W. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p − n

Junction Solar Cells”, Journal of Applied Physics, 32, 510 (1961)

45



Bibliography

[43] R. M. Swanson, “Approaching the 29% limit efficiency of silicon solar cells”,
889–894, Photovoltaic Specialists Conference, 2005. Conference Record of
the Thirty-first IEEE, IEEE (2005)

[44] A. De Vos, “Detailed balance limit of efficiency of tandem solar cells”, Jour-
nal of physics D, 13, 839 (1980)

[45] S. R. Kurtz, D. Myers, J. M. Olson, “Projected Performance of Three- and
Four-Junction Devices Using GaAs and GaInP”, 1–4, 26th IEEE Photo-
voltaic Specialists Conference, IEEE, Anaheim, California (1997)

[46] F. Dimroth, “World Record Solar Cell with 44.7 % Efficiency”,
http://www.ise.fraunhofer.de/en/press-and-media/press-releases/

presseinformationen-2013/world-record-solar-cell-with-44.

7-efficiency (2013)

[47] P. S. Zory, Quantum well lasers, Academic Press Inc., London (1993)

[48] C. A. Broderick, M. Usman, S. J. Sweeney, E. P. O. O’Reilly, “Band engi-
neering in dilute nitride and bismide semiconductor lasers”, Semiconductor
Science and Technology, 27, 094011 (2012)

[49] M. Kondow, T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara,
Y. Yazawa, M. Okai, “GaInNAs: A Novel Material for Long-Wavelength
Semiconductor Lasers”, IEEE Journal of selected topics in quantum elec-
tronics, 3, 719 (1997)

[50] G. Steinle, F. Mederer, M. Kicherer, R. Michalzik, G. Kristen, A. Y. Egorov,
H. Riechert, H. D. Wolf, K. J. Ebeling, “Data transmission up to 10 Gbit/s
with 1.34 μm wavelength InGaAsN VCSELs”, Electronic Letters, 37, 632
(2001)

[51] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods,
CAMBRIDGE UNIVERSITY PRESS, Cambridge (2004)

[52] C. Møller, M. S. Plesset, “Note on an Approximation Treatment for Many-
Electron Systems”, Physical Review, 46, 618 (1934)

[53] G. Kresse, D. Joubert, “From ultrasoft pseudopotentials to the projector
augmented-wave method”, Physical Review B, 59, 1758 (1999)

[54] G. Kresse, J. Furthmüller, “Efficiency of ab-initio total energy calculations
for metals and semiconductors using a plane-wave basis set”, Computa-
tional Materials Science, 6, 15 (1996)

[55] K. Baarman, J. VandeVondele, “A comparison of accelerators for direct
energy minimization in electronic structure calculations”, The Journal of
Chemical Physics, 134, 244104 (2011)

[56] J. P. Perdew, A. Zunger, “Self-interaction correction to density-functional
approximations for many-electron systems”, Physical Review B, 23, 5048
(1981)

[57] G. L. Oliver, J. P. Perdew, “Spin-density gradient expansion for the kinetic
energy”, Physical Review A, 20, 397 (1981)

46



Bibliography

[58] O. Gunnarson, B. I. Lunqvist, “Exchange and correlation in atoms,
molecules, and solids by the spin-density-functional formalism”, Physical
Review B, 13, 4274 (1976)

[59] A. D. Becke, “A new mixing of Hartree-Fock and local density functional
theories”, The Journal of Chemical Physics, 98, 1372 (1993)

[60] J. Heyd, G. E. Scuseria, M. Ernzerhof, “Hybrid functionals based on a
screened Coulomb potential”, The Journal of Chemical Physics, 118, 8207
(2003)

[61] J. P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation
Made Simple”, Physical Review Letters, 77, 3865 (1996)

[62] J. P. Perdew, M. Ernzerhof, K. Burke, “Rationale for mixing exact exchange
with density functional approximations”, The Journal of Chemical Physics,
105, 9982 (1996)

[63] H.-P. Komsa, A. Pasquarello, “Assessing the accuracy of hybrid function-
als in the determination of defect levels: Application to the As antisite in
GaAs”, Physical Review B, 84, 075207 (2011)

[64] M. Kuisma, J. Ojanen, J. Enkovaara, T. T. Rantala, “Kohn-Sham potential
with discontinuity for band gap materials”, Physical Review B, 82, 115106
(2010)

[65] O. Gritsenko, R. van Leeuwen, E. van Lenthe, E. J. Baerends, “Self-
consistent approximation to the Kohn-Sham exchange potential”, Physical
Review A, 51, 1944 (1995)

[66] A. H. MacDonald, W. E. Pickett, D. D. Koelling, “A linearised relativistic
augmented-plane-wave method utilising approximate pure spin basis func-
tions”, Journal of Physics C, 13, 2675 (1980)
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