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1. Introduction

Gaussian processes are an important class of stochastic processes. On one

hand, in their own way they are simple to analyse and there exist many in-

teresting results for Gaussian processes which make them easier to handle.

On the other hand, Gaussian distribution fits well to many applications or at

least, thanks to the central limit theorem, one can approximate the situation

under study with Gaussian distribution. Moreover, different stylized facts can

be added to the model by manipulating the covariance structure. For these

two reasons Gaussian processes are widely applied in different areas. To sim-

ply name a few, many phenomenons in physics, chemistry, biology, statistics,

queuing theory, machine learning, economy, or sociology can be modelled with

Gaussian processes.

Similarly, in many applications it is of interest to study integrals with re-

spect to some stochastic processes. For instance in financial mathematics, a

stochastic process X is viewed as the driving process of the stock price and the

integral of ψ with respect to X can be viewed as the value of a portfolio, where

ψt represents the amount of stocks on the portfolio at time t. However, usually

the stochastic processes under study are not differentiable and consequently,

standard integration cannot be applied.

Early history of stochastic integration

The early history of stochastic integration (for longer introduction to the his-

tory of stochastic integration and mathematical finance, see [28] which is our

main reference here) can be considered to be originated with standard Brow-

nian motion which is perhaps the most studied Gaussian process. The name

for Brownian motion is due to botanist Robert Brown who noted in his stud-

ies back in 1827 that particles in water seemed to move through the water.

Despite these studies it wasn’t until around the beginning of the 20th century
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Introduction

that the first attempts were made to model Brownian motion mathematically.

These attempts are traced back to three independent sources: Thiele [60] in

his studies on time-series, Bachelier [5, 6] (who is currently seen as the founder

of modern Mathematical finance) in his study of the Paris stock market, and

Einstein [17] who was also modelling the motion of small particles in liquid.

The next step towards modern stochastic integration theory was taken by

Wiener on his construction for Brownian motion in 1923, and as a result of his

contributing study, Brownian motion is also called Wiener process. Contribut-

ing groundwork for stochastic integration theory was also done by Kolmogorov

[31] whose study was motivated by Markov processes. Before turning to Itô

who is seen as the father of stochastic integration theory we also wish to men-

tion Vincent Doeblin (see [10]). Doeblin had many great modern ideas and

perhaps he could have contributed in a significant way to the development of

the theory. However, Doeblin was drafted during World War II and he volun-

teered to go to the front lines. Before he joined the lines he put sketches of

his ideas into a safe box which was only to be opened by himself or after 100

years had passed. Unfortunately, the battle went ill and Doeblin burned his

notes and took his own life. Consequently, the safe box was opened as late as

May 2000 by the request of Doeblin’s brother.

Finally, the most important step in the development of the field was the

contribution of Kyoshi Itô (for a summary on Itô’s work, see Varadhan and

Stroock [61]) and nowadays stochastic integrals with respect to semimartin-

gales are referred to as Itô integrals. Later on (and meanwhile) other persons

have also contributed to the field and nowadays, thanks to Doob, Hunt, Meyer,

Watanabe, and McKean among others, stochastic integration with respect to

semimartingales is well-developed.

”State of the Art”

Recently the development in both Gaussian processes and stochastic integra-

tion has been on generalisations to cover other processes than semimartingales

or in particular, standard Brownian motion. For instance, while Brownian

motion has stationary and independent increments, empirical studies in many

fields of applications show that the assumption of independent increments is

not always very fitting.

Perhaps the most simple process that can capture this phenomenon is frac-

tional Brownian motion; a generalisation of standard Brownian motion. Frac-

tional Brownian motion is still Gaussian and has stationary increments, but

10
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unlike standard Brownian motion, the increments of fractional Brownian mo-

tion are dependent. More precisely, fractional Brownian motion depends on

a parameter, the so-called Hurst index, H ∈ (0, 1) and the value of H deter-

mines the dependence structure. In particular, the case H = 1
2 corresponds

with standard Brownian motion.

Fractional Brownian motion was actually already studied in 1940 by Kol-

mogorov in the context of modelling turbulence [32, 33]. Fractional Brownian

motion appears also on works by Hunt [24], Lévy [36], Yaglom [62], Lamperti

[35] and Molchan and Golosov [45] although Lévy studied slightly different

process. However, the name fractional Brownian motion comes from the pa-

per by Mandelbrot and Van Ness [41] although the name ”Hurst-index” for the

parameter H is due to British hydrologist H. Hurst [25].

While fractional Brownian motion is an interesting process for many applica-

tions, there is one serious problem: fractional Brownian motion is not a semi-

martingale except in the case of standard Brownian motion. Consequently,

integration with respect to fractional Brownian motion is an interesting sub-

ject as classical semimartingale techniques cannot be applied.

In order to define stochastic integration with respect to Gaussian processes

that are not semimartingales, there are two main approaches. The first one is

pathwise integration techniques which are like ”ω-by-ω”-integration techniques,

and the second one is Skorokhod integrals or divergence integrals. In this

thesis the main emphasis is on pathwise techniques on which we give some

more details.

For pathwise stochastic integration techniques there are several different ap-

proaches, and we wish to mention three of them which are used in this thesis.

Firstly, we would like to mention integration based on p-variations developed

by Young [63] and integration based on Hölder continuity of the corresponding

processes developed by Zähle [64]. Namely, if the integrand and the integrator

are together smooth enough, then the corresponding integral exists as a limit

of Riemann-Stieltjes sums. The second approach is a forward integral intro-

duced by Hans Föllmer [19] and this approach is often referred to as Föllmer

integral. The Föllmer integral is a natural way to define integrals in many

applications as it is defined as a limit of certain type Riemann-Stieltjes sums.

Finally, the third approach we apply in this thesis is the so-called generalised

Lebesgue-Stieltjes integral. In the context of stochastic processes, this type

of integration in fractional Besov-type spaces was introduced by Nualart and

Răşcanu [50].

When considering stochastic integration, all of the mentioned integration

11
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techniques have some drawbacks. Firstly, integration based on p-variations or

Hölder continuity of corresponding processes have a natural interpretation as

the integral exists as the limit of corresponding Riemann-Stieltjes sums. How-

ever, for this approach the class of integrands is significantly limited as even

the simple process of form 1{Xt>a} usually has unbounded p-variations. Con-

sequently, Young-integration techniques cannot be applied. Similarly, while

the definition of Föllmer integral usually has a natural interpretation, the ex-

istence of the integral can sometimes be a difficult question. For instance,

in the original paper Föllmer proved the existence of the integral by prov-

ing that such an integral satisfies certain Itô formula, and the existence of

other terms implies the existence of the stochastic integral. Similarly in many

other publications in the literature, the existence of Föllmer integral is usu-

ally not proved directly. Finally, for generalised Lebesgue-Stieltjes integrals

the existence of the integral is usually, at least in principle, a solvable prob-

lem. However, looking at the definition of the integral it is not obvious what

a satisfactory interpretation in view of applications would be. Furthermore,

the same problem occurs if one considers divergence integrals. For instance

in financial mathematics, many interesting results such as integral representa-

tions or hedging equations in finance can be derived using divergence integral.

However, economical interpretation of the hedging equation is difficult [9, 59].

On this thesis

The main emphasis in the literature has been in divergence integrals together

with many applications. Furthermore, for pathwise integrals one usually as-

sumes that the integrands have enough path regularity (such as Hölder con-

tinuity or bounded p-variation) or that the integrator is of a certain type.

For instance, fractional Brownian motion as integrator has received a lot of

attention.

This thesis contributes to the field in several ways. Firstly, we study the

existence of the mentioned integrals for integrands which are not Hölder con-

tinuous nor of bounded p-variation. In particular, we cover the indicators

1{Xu>a}. As an application, we find integral representation for arbitrary ran-

dom variables as pathwise integrals with respect to Gaussian processes. In

this sense we extend similar results derived for fractional Brownian motion to

a much wider class of Gaussian processes. In particular, the Gaussian pro-

cesses under study are not semimartingales. On the other hand, all processes

under study are Hölder continuous of order α > 1
2 . In particular, fractional

12
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Brownian motion with Hurst index H > 1
2 belongs to the class of processes

under study.

Secondly, we study the connection between Föllmer integral and generalised

Lebesgue–Stieltjes integral. More precisely, the results that are derived for

fractional Brownian motion and what we extend to more general Gaussian

processes, apply machinery developed for generalised Lebesgue-Stieltjes in-

tegrals. On the other hand, we wish to interpret the integral as a limit of

Riemann-Stieltjes sums i.e. as a Föllmer integral. In all of our results, the

integral can be understood as a generalised Lebesgue-Stieltjes integral or as a

Föllmer integral. Moreover, the integrals coincide. In details, our research in

Publication I considers the rate of convergence of Riemann-sums to the corre-

sponding Föllmer integral where a derivative of convex function is integrated

with respect to fractional Brownian motion. Furthermore, in Publication II

we prove the existence of Föllmer integrals of a certain type for a wide class

of Gaussian processes which include the particular case of fractional Brownian

motion. Similarly, in Publication III we apply the results of Publication II to

define integral representations for arbitrary processes with respect to Gaussian

processes. Finally, the tools provided by the theory of Malliavin calculus and

divergence integrals are applied in Publication IV, where we consider param-

eter estimation in a certain fractional Ornstein-Uhlenbeck model.

This thesis consists of two parts. The first part is a short introduction to the

topics we consider in this thesis. Mostly we only list the properties and well-

known results on different topics. For some important results we also present

proofs or at least the key points of the proofs. These proofs are gathered from

the literature, and for the derivation the author has no contribution what so

ever. The second part contains the articles themselves.
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2. Gaussian processes

This thesis is about Gaussian processes. In this chapter we introduce the

basic facts of Gaussian processes used in the articles. Especially, we list the

basic properties of fractional Brownian motion. For more details on Gaussian

processes, we refer to books by Adler [1], Hida and Hitsuda [23], Ibragimov and

Rozanov [26], Lifshits [38] or Marcus and Rosen [42]. For recently published

books, see another book by Lifshits [39].

2.1 General facts

Definition 2.1.1. A Gaussian process X = (Xt)t≥0 is a stochastic process

such that for any finite collection of time points t1, . . . , tn ≥ 0 the random

vector (Xt1 , . . . , Xtn) is a multivariate Gaussian random variable.

Definition 2.1.2. Let X = (Xt)t≥0 and Y = (Yt)t≥0 be two Gaussian pro-

cesses. We denote X
law
= Y if the processes have same finite dimensional distri-

butions i.e. for any time points t1, . . . , tn ≥ 0 the random vectors (Xt1 , . . . , Xtn)

and (Yt1 , . . . , Ytn) have the same multivariate distribution.

In what follows we assume that the process is centred i.e. E[Xt] = 0 for

every t ≥ 0.

Definition 2.1.3. A covariance function of a centred stochastic process X =

(Xt)t≥0 is a function R : R2
+ → R defined by

R(s, t) = E[XtXs].

Remark 2.1.1. Any covariance function R is non-negative definite i.e. for

any t1, . . . , tn ≥ 0 and z1, . . . , zn ∈ R we have

n∑
j=1

n∑
k=1

R(tj , tk)zjzk ≥ 0.

15
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Evidently, for any Gaussian process there is a unique non-negative definite

covariance function R(s, t). On the other hand, it is known that for Gaussian

processes the law is uniquely determined by the mean and the covariance

function in a sense that for any two Gaussian processes X and Y with the

same mean and covariance function we have X
law
= Y . Consequently, for any

non-negative definite function R : R2 → R there is a unique (in law) centred

Gaussian process X with covariance structure R(s, t).

We now introduce two important classes of processes which play a large role

in applications. Gaussian examples are given in section 2.3.

Definition 2.1.4. A process X = (Xt)t≥0 is stationary if for every h, t ≥ 0

we have

Xt+h
law
= Xt.

Consequently, the covariance function of a stationary Gaussian process sat-

isfies

R(s, t) = R(0, |t− s|) =: r(|t− s|).

Definition 2.1.5. A process X = (Xt)t≥0 has stationary increments if for

every h, t ≥ 0 we have

Xt+h −Xt
law
= Xh −X0.

For stationary sequences the following property is important for many ap-

plications.

Definition 2.1.6. A stationary sequence (ξn)n≥0 of random variables exhibits

long-range dependence if the autocorrelation function r(k) satisfies

∞∑
k=0

r(k) = ∞.

If
∑∞

k=0 r(k) <∞, then the sequence (ξn)n≥0 exhibits short-range dependence.

Remark 2.1.2. The definition for long-range dependence differs in the liter-

ature. For details see Beran [7] or Giraitis et al. [22].

Definition 2.1.7. Let H > 0. A process X = (Xt)t≥0 is H-self-similar if for

every a > 0

(Xat)t≥0
law
= (aHXt)t≥0.

Note that if X is H-self-similar, it follows that

V ar(Xt) = t2HV ar(X1)

provided that X is square-integrable.
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We give one more result related to Gaussian processes (taken from [42]).

Theorem 2.1.1. A Gaussian process X with covariance function R is Marko-

vian if and only if

R(s, u) =
R(s, t)R(t, u)

R(t, t)

for every s ≤ t ≤ u.

2.1.1 Path properties

In this thesis we mainly consider processes on compact interval [0, T ]. A

stochastic process X = (Xt)t∈[0,T ] can also be viewed as a (random) function

X : [0, T ] → R, and for given ω this function is called the path or the trajectory

of the process. In this section we introduce the main path properties.

Definition 2.1.8. A function f : [0, T ] �→ R is Hölder continuous of order α

if there is a constant C such that for every s, t ∈ [0, T ]

sup
s,t∈[0,T ];s �=t

|f(t)− f(s)|
|t− s|α ≤ C.

The space of Hölder continuous functions on [0, T ] is denoted by Cα([0, T ]).

The definition of Hölder continuity for stochastic processes is similar.

Definition 2.1.9. A stochastic process X = (Xt)t∈[0,T ] is Hölder continuous

of order α if there is a finite random variable C = C(ω) such that for every

s, t ∈ [0, T ] we have

sup
s,t∈[0,T ];s �=t

|Xt −Xs|
|t− s|α ≤ C(ω)

almost surely.

For stochastic processes one can use the following Kolmogorov’s continuity

theorem (see e.g. [52]) to study the continuity of the process.

Theorem 2.1.2. Let X = (Xt)t∈[0,T ] be a stochastic process and assume that

there exist positive constants C, α, and β such that

E|Xt −Xs|α ≤ C|t− s|1+β

for every s, t ∈ [0, T ]. Then there exists a continuous version of X. Moreover,

the version is Hölder continuous of any order a < β
α .

Corollary 2.1.1. Let X = (Xt)t∈[0,T ] be a Gaussian process and assume that

there exists a constant C such that

E[Xt −Xs]
2 ≤ C|t− s|2α (2.1)
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for every s, t ∈ [0, T ]. Then X has a version which is Hölder continuous of

any order a < α.

Proof. Since Xt −Xs is Gaussian, condition (2.1) implies that for every p ≥ 1

we have

E[Xt −Xs]
p ≤ Cp

p |t− s|pα.

Hence by applying Kolmogorov’s continuity theorem we obtain that X has a

version which is Hölder continuous of any order a < α − 1
p . Since this holds

for every p ≥ 1 we obtain the result.

The following Garsia–Rademich–Rumsey inequality is also a powerful tool

to study the continuity of processes (see [50] and [21]).

Lemma 2.1.1. Let p ≥ 1 and α > 1
p . Then there exists a constant C =

C(α, p) > 0 such that for any continuous function f on [0, T ], and for all

0 ≤ s, t ≤ T we have

|f(t)− f(s)|p ≤ CTαp−1|t− s|αp−1

∫ T

0

∫ T

0

|f(x)− f(y)|p
|x− y|αp+1

dxdy.

To conclude this section we introduce one more concept of path-regularity.

Definition 2.1.10. The sequence of points πn = {0 = tn0 < tn1 < . . . < tnk(n) =

T} on the interval [0, T ] is called the partition of the interval [0, T ], and the

size of the partition is defined as

|πn| = max
1≤j≤k(n)

|tnj − tnj−1|.

The p-variation of a function f along partition πn is defined as

vp(f ;πn) =
∑
tk∈πn

|Δftk |p,

where Δftk = ftk − ftk−1
.

Definition 2.1.11. Let f : [0, T ] �→ R be a function.

1. If the limit

v0p(f) = lim
|πn|→0

vp(f ;πn)

exists, we say that f has finite p-variation.

2. If

vp(f) = sup
πn

vp(f ;πn) <∞,
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where the supremum is taken over all possible integers n and partitions πn,

we say that f has bounded p-variation.

We denote by Wp([0, T ]) the class of functions with bounded p-variation on

[0, T ] and we equip this class with a norm

||f ||[p] := (vp(f))
1
p + ||f ||∞,

where ||f ||∞ = sup0≤t≤T |f(t)|. It is known that the space (Wp, || · ||[p]) is a

Banach space.

2.2 Small deviations for Gaussian processes

In this section we briefly introduce some results related to small deviations of

Gaussian processes. The main reference in this context is a survey by Li and

Shao [37]. See also Lifshits [39] for further reading.

Let X be a Gaussian process on [0, T ]. The small deviations for Gaussian

process X refers to the study of behaviour of small ball probability

P( sup
0≤t≤T

|Xt| ≤ ε)

as ε → 0. It is known that in the general setting the behaviour of small ball

probability is closely related to the so-called d-metric entropy and estimating

small ball probability for a Gaussian process X is equivalent to estimating

entropy numbers for that process. More precisely, consider centred Gaussian

process X = (Xt)t∈T with index set T and the Dudley metric defined by the

incremental variance of that process i.e.

d(s, t) := [E|Xs −Xt|2] 12 , s, t ∈ T. (2.2)

Definition 2.2.1. The entropy number N(T, d; ε) is the minimal number of

balls of radius ε that is needed to cover T under Dudley metric defined by (2.2).

The link between entropy numbers and small ball probabilities is that in

general, estimating upper bounds for entropy numbers gives lower bounds for

small ball probabilities and vice versa. Hence the lower bounds for small ball

probabilities are usually easier to obtain.

Next we give the following general results on the lower bounds. For the

proofs, see [37] and references therein.
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Theorem 2.2.1. Let X = (Xt)t∈T be a centred Gaussian process. Assume that

there is a non-negative function φ such that N(T, d; ε) ≤ φ(ε), and c1φ(ε) ≤
φ
(
ε
2

) ≤ c2φ(ε) for some constants 1 < c1 ≤ c2 < ∞. Then there exists a

constant C such that

P( sup
s,t∈T

|Xs −Xt| ≤ ε) ≥ exp(−Cφ(ε)).

For Gaussian processes with index set T ⊂ R, the following theorem explains

the connection of the incremental variance and the lower bound.

Theorem 2.2.2. Let X = (Xt)t∈[0,1] be a centred Gaussian process with X0 =

0. Assume that there is a function σ(h) such that:

1. for all 0 ≤ s, t ≤ 1 we have E(Xs −Xt)
2 ≤ σ2(|t− s|),

2. there are constants 0 < c1 ≤ c2 < 1 such that for every 0 ≤ h ≤ 1 we have

c1σ(2h ∧ 1) ≤ σ(h) ≤ c2σ(2h ∧ 1).

Then there is a constant C depending only on c1 and c2 such that

P( sup
0≤t≤1

|Xt| ≤ σ(ε)) ≥ exp

(
−C
ε

)
.

Remark 2.2.1. The result considers supremum over interval [0, 1]. For arbi-

trary interval one can simply consider a time-changed process.

As already mentioned, the upper bounds are much harder to obtain and it

was pointed out in [37] that the behaviour of the incremental variance is not

an appropriate tool to obtain upper bounds. The following concrete example

was introduced by Lifshits [40].

Example 2.2.1. Let α > 0, t ∈ [0, 1] and let {ξk}k≥0 be a sequence of in-

dependent standard normal random variables. Put ϕ(t) = 1 − |2t − 1| and
define

Xt = ξ0t+

∞∑
k=1

2−
αk
2 ξkϕ(frac(2

kt)),

where frac(·) denotes the fractional part of a real number. In this case we

have a lower bound for incremental variance:

E(Xs −Xt)
2 ≥ c|t− s|α

for some constant c > 0. However, it can be proved that now there are con-
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stants C1 and C2 such that

exp

(
−C1 log

2

(
1

ε

))
≤ P( sup

0≤t≤1
|Xt| ≤ ε) ≤ exp

(
−C2 log

2

(
1

ε

))
.

The example above shows that even if we have a lower bound for incremental

variance, we cannot obtain an upper bound for small ball probability similar to

Theorem 2.2.2. However, in some cases the upper bound can also be derived.

We end the section by giving one result for upper bounds. In Publication III we

apply the proof, but the proof is omitted. Hence, for the sake of completeness,

we present the key points of the proof here. The proof is essentially taken

from Kuelbs et al. [34] and is based on the famous Slepian’s lemma (see [57]).

Lemma 2.2.1. Let Xi and Yi for i = 1, . . . , n be centred Gaussian random

variables such that for every i, j = 1, . . . , n we have E[X2
i ] = E[Y 2

i ] and

E[XiXj ] ≤ E[YiYj ]. Then for any x ∈ R we have

P( max
1≤i≤n

Xi ≤ x) ≤ P( max
1≤i≤n

Yi ≤ x).

Theorem 2.2.3. Assume that the Gaussian process X has stationary incre-

ments and define a function by

σ(h) :=
√
E[Xt+h −Xt]2.

If the function σ satisfies:

1. There exists θ ∈ (0, 4) such that for every x ∈ [
0, 12

]
we have

σ2(2x) ≤ θσ2(x), (2.3)

2. For every 0 < x < 1 and 2 ≤ j ≤ 1
x − 2 we have

6σ2(jx)+σ2((j+2)x)+σ2((j−2)x) ≥ 4σ2((j+1)x)+4σ2((j−1)x), (2.4)

then there exists a constant K > 0 such that for every x ∈ (0, 1) we have

P

(
sup

0≤t≤1
|Xt −X0| ≤ σ(x)

)
≤ exp

(
−K
x

)
.

Proof. Let i be integer such that 1 ≤ i ≤ 1
x , 0 < x < 1, and define ξi = Xix −

X(i−1)x. Furthermore, for integer j satisfying 1 ≤ j ≤ 1
2x , set ηj = ξ2j − ξ2j−1.

21



Gaussian processes

It is clear that we have

max
1≤i≤ 1

x

|ξi| ≤ 2 sup
t∈[0,1]

|Xt −X0|

and

max
1≤j≤ 1

2x

|ηj | ≤ 2 max
1≤i≤ 1

x

|ξi|.

As a consequence, we have

P

(
sup

0≤t≤1
|Xt −X0| ≤ σ(x)

)
≤ P

(
max

1≤j≤ 1
2x

|ηj | ≤ 4σ(x)

)
.

Now by straightforward computations together with assumptions (2.3) and

(2.4) we obtain E[η2j ] = 4σ2(x) − σ2(2x) ≥ (4 − θ)σ2(x) and E[ηiηj ] ≤ 0.

Denote by Φ(x) the cumulative distribution function of a standard normal

variable. By applying Slepian’s Lemma 2.2.1 we get

P

(
max

1≤j≤ 1
2x

|ηj | ≤ 4σ(x)

)
≤ P

(
max

1≤j≤ 1
2x

ηj ≤ 4σ(x)

)

≤
1
2x∏
j=1

P (ηj ≤ 4σ(x)) =

1
2x∏
j=1

Φ

⎛⎝ 4σ(x)√
E[η2j ]

⎞⎠
≤

1
2x∏
j=1

Φ

(
4σ(x)√

(4− θ)σ2(x)

)
.

It remains to note that

1
2x∏
j=1

Φ

(
4σ(x)√

(4− θ)σ2(x)

)
≤ exp

(
−K
x

)

for some constant K.

2.3 Fractional Brownian motion

Standard Brownian motion has stationary and independent increments. Frac-

tional Brownian motion is a generalisation of this by keeping the stationarity of

the increments, but allowing them to be dependent which is a useful property

in many applications. In this section we present the definition of fractional

Brownian motion and list the main properties used in this thesis. For more de-
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tails on fractional Brownian motion, see book by Biagini et al. [8], Embrechts

and Maejima [18], Mishura [43] or Samorodnitsky and Taqqu [55].

Definition 2.3.1. A zero mean Gaussian process BH = (BH
t )t≥0 is a frac-

tional Brownian motion with Hurst index H ∈ (0, 1) if the covariance function

R(s, t) is given by

R(s, t) =
1

2

(
s2H + t2H − |t− s|2H) . (2.5)

It is not clear from the definition that the covariance function (2.5) is a

proper covariance function i.e. it is non-negative definite. For the proof see

e.g. [55].

Remark 2.3.1. If H = 1
2 , we have a standard Brownian motion.

Theorem 2.3.1. Fractional Brownian motion has stationary increments.

Proof. By proposition 3 of section 4 in [38] it is sufficient to show that there

is a function f such that E|BH
t − BH

s |2 = f(|t− s|). This is evident from the

definition of fractional Brownian motion.

Theorem 2.3.2. Fractional Brownian motion is H-self-similar.

Proof. Consider centred Gaussian processes Xt = BH
at and Yt = aHBH

t . By

applying the covariance structure (2.5) of fractional Brownian motion it is

straightforward to see that X and Y have the same covariance functions from

which the result follows.

Remark 2.3.2. An equivalent definition for fractional Brownian motion is

that it is the unique zero mean H-self-similar Gaussian process with stationary

increments. Indeed, this implies that the covariance must be of form (2.5).

Proposition 2.3.1. Let BH = (BH
t )t≥0 be a fractional Brownian motion with

H 
= 1
2 and define the fractional Gaussian noise by

ZH
n = BH

n −BH
n−1, n ≥ 1.

1. If H > 1
2 , then Z

H
n exhibits long-range dependence,

2. if H < 1
2 , then Z

H
n exhibits short-range dependence.

Theorem 2.3.3. Sample paths of fractional Brownian motion are almost

surely Hölder continuous of any order a < H.
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Proof. This follows directly from Corollary 2.1.1 and the covariance structure

(2.5).

Remark 2.3.3. By Arcones [3] the fractional Brownian motion satisfies the

following law of the iterated logarithm:

P

⎛⎝lim sup
ε→0+

BH
t+ε −BH

t

2ε2H
√
log log 1

ε

= 1

⎞⎠ = 1

for every t ≥ 0. As a result we obtain that fractional Brownian motion cannot

be a-Hölder continuous for any a ≥ H.

In what follows we always assume that we have chosen the Hölder continuous

version.

Theorem 2.3.4. Fractional Brownian motion is Markovian if and only if

H = 1
2 .

Proof. This is a direct consequence of Theorem 2.1.1.

We end the section by showing that fractional Brownian motion is not a

semimartingale for H 
= 1
2 . For this we need the following results of variations

for fractional Brownian motion.

Proposition 2.3.2. Let BH = (BH
t )t∈[0,T ] be a fractional Brownian motion

on [0, T ]. Then

1. for every p > 1
H we have v0p(B

H) = 0,

2. for every p < 1
H we have vp(B

H) = ∞.

Proof. 1. Let π be any partition of the interval [0, T ] and fix 1
p < α < H. By

Hölder continuity of BH we obtain

∑
tk∈π

|ΔBH
tk
|p ≤ Cp

∑
tk∈π

|Δtk|αp ≤ Cp|π|αp−1
∑
tk∈π

|Δtk|.

Hence the result follows by letting |π| → 0 and noting that αp > 1.

2. Define equidistant partition by π̃n = {tnk = Tk
n : k = 1, . . . , n}. Then by the

self-similarity of fBm we obtain that

vp(B
H ; π̃n) =

n∑
k=1

|BH
tnk

−BH
tnk−1

|p law
= T pHn1−pH 1

n

n∑
k=1

|BH
k −BH

k−1|p.
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Now the result of ergodic theory implies that

1

n

n∑
k=1

|BH
k −BH

k−1|p → E[BH
1 ]p,

where the convergence can be understood almost surely or in L2. Hence

for p < 1
H we have vp(B

H ; π̃n) → ∞ which clearly implies vp(B
H) =

supπn
vp(B

H ;πn) = ∞.

The following theorem justifies the fact that integration with respect to frac-

tional Brownian motion is not obvious.

Theorem 2.3.5. Fractional Brownian motion is a semimartingale if and only

if H = 1
2 .

Proof. Recall that every continuous semimartingale X has finite quadratic

variation along suitably chosen sequences. On the other hand, for H < 1
2 the

quadratic variation of BH does not exist by Proposition 2.3.2. Consequently,

it cannot be a semimartingale.

Let now H > 1
2 . We argue by contradiction. Assume that BH is a semi-

martingale with decomposition BH =M +A. On the other hand, by Proposi-

tion 2.3.2 BH has zero quadratic variation. As a consequence, the martingale

M has zero quadratic variation which in turn implies that it is constant. Thus

BH =M0+A, and hence BH has bounded variation. This contradicts Propo-

sition 2.3.2, and hence BH cannot be a semimartingale for H > 1
2 .

2.3.1 Integral representation of fBm

Fractional Brownian motion can also be represented as an integral of deter-

ministic kernel with respect to standard Brownian motion. There exist several

such representations. However, in this thesis we only consider compact inter-

val representation introduced by Molchan and Golosov [45]. See also [29] and

[41].

Definition 2.3.2. Define a constant cH by

cH =
1

Γ(H + 1
2)

(
2HΓ(H + 1

2)Γ(
3
2 −H)

Γ(2− 2H)

) 1
2

,

where Γ denotes the Gamma function.
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1. If H > 1
2 , we set

KH(t, s) = cH

(
H − 1

2

)
s

1
2
−H

∫ t

s
(u− s)H− 3

2uH− 1
2du, 0 < s < t <∞,

and KH(t, s) = 0 otherwise,

2. If H ≤ 1
2 , we set

KH(t, s) = cH

(
t

s

)H− 1
2

(t− s)H− 1
2

−
(
H − 1

2

)
cHs

1
2
−H

∫ t

s
(u− s)H− 1

2uH− 3
2du, 0 < s < t <∞,

and KH(t, s) = 0 otherwise.

Using this kernel we have the following representation.

Theorem 2.3.6. Let W be a standard Brownian motion and KH as defined

above. Then ∫ t

0
KH(t, s)dWs (2.6)

defines a fractional Brownian motion with Hurst index H ∈ (0, 1).

The proof can be found e.g. in [29, 45, 46].

2.3.2 Fractional Ornstein-Uhlenbeck processes

In this section we introduce two stochastic processes called fractional Ornstein-

Uhlenbeck processes, which are derived from fractional Brownian motion.

Both processes are defined as integrals with respect to fractional Brownian

motion, and for a moment we take it for granted that such integrals can be

defined. The integration with respect to fractional Brownian motion is intro-

duced in Chapter 3. Moreover, for the reader’s convenience we refer to [50]

on stochastic differential equations driven by fractional Brownian motion. For

more details on fractional Ornstein-Uhlenbeck processes, we refer to [30] and

[11]. For details on classical Ornstein-Uhlenbeck processes we refer to [18].

Classical Ornstein-Uhlenbeck process can be obtained from standard Brow-

nian motion Wt in the following two ways:

1. X
(θ)
t as a solution of the Langevin equation

dX
(θ)
t = −θX(θ)

t dt+ dWt
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with parameter θ > 0,

2. X̃
(α)
t defined as a Lamperti transform of Wt: For α > 0 define a process by

X̃
(α)
t = e−θtWαe2θt ,

with parameter θ > 0.

With straightforward computation we can see that for α = 1
2θ (and a suitably

chosen initial condition) the processes X
(θ)
t and X̃

(α)
t have the same covariance

function and hence they are equivalent in law. Let now H > 1
2 and replace Wt

with fractional Brownian motion BH
t . As a consequence, the processes arising

from different definitions are not the same. The process X
(θ)
t as a solution of a

Langevin equation dX
(θ)
t = −θX(θ)

t dt+dBH
t is called the fractional Ornstein-

Uhlenbeck process of the first kind. Furthermore, with initial condition X0 =∫ 0
−∞ eθs dB̂H

s , where B̂H is two-sided fractional Brownian motion, the solution

can be written as

X
(θ)
t = e−θt

∫ t

−∞
eθs dB̂H

s .

This process is stationary and exhibits long-range dependence.

On the other hand, define a Lamperti transform of fractional Brownian mo-

tion by

X̃
(α)
t := e−αtB

a
(α)
t
,

where α > 0 and a
(α)
t = H

α e
αt
H . By defining an auxiliary Gaussian process

Y
(α)
t =

∫ t

0
e−αs dB

a
(α)
s

we see that X̃(α) can be viewed as a solution to dX̃(α) = −αX̃(α)dt + dY
(α)
t .

Furthermore, by noting that {Y (α)
t/α }t≥0

law
= {α−HY

(1)
t }t≥0, we consider Langevin

type equation dX̃t = −θX̃tdt + dY
(1)
t with some parameter θ > 0. The solu-

tion to this is referred to as the fractional Ornstein-Uhlenbeck process of the

second kind. Furthermore, special selection X0 =
∫ 0
−∞ e(θ−1)s dB

a
(1)
s

leads to

a unique solution

X̃t = e−θt

∫ t

−∞
e(θ−1)s dB

a
(1)
s
.

This process is stationary and exhibits short-range dependence.
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3. Integration with respect to Gaussian

processes

Many stochastic processes of interest are not semimartingales and hence the

classical Itô integration theory cannot be applied. In particular, fractional

Brownian motion is not a semimartingale. In this section we introduce two

approaches to define integrals with respect to Gaussian processes. The first

approach is pathwise integrals, which are under study on Publication I, Pub-

lication II, and Publication III. Another approach to define integrals with

respect to Gaussian processes is the so-called Skorokhod integral or divergence

integral, which is defined as an adjoint operator of the Malliavin derivative.

The tools provided by Malliavin calculus are applied in Publication IV.

3.1 Pathwise integrals

In this section we introduce three kinds of pathwise integrals: Young integrals,

Föllmer integrals, and generalised Lebesgue–Stieltjes integrals. For further

reading, see also [12, 13, 16, 20] on pathwise derivation and pathwise functional

calculus.

3.1.1 Young integral

A contributing work by Young [63] extended classical Riemann-Stieltjes to

cover functions of unbounded variation. More precisely, he noticed that p-

variations can be useful to define integrals. For proofs see also [53].

Theorem 3.1.1. Let f ∈ Wp([0, T ]) and g ∈ Wq([0, T ]) for some 1 ≤ p, q <∞
with 1

p + 1
q > 1. Moreover, assume that f and g have no common points of

discontinuities. Then for any interval [s, t] ⊂ [0, T ] the integral

∫ t

s
fdg

exists as a Riemann-Stieltjes integral.
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Zähle [64] considered Hölder continuous functions and showed that also in

this case the Riemann-Stieltjes integral exists if f and g are together ”smooth

enough”. More precisely, he proved the following:

Theorem 3.1.2. Let f ∈ Cα([0, T ]) and g ∈ Cβ([0, T ]). If α + β > 1, then

for any interval [s, t] ⊂ [0, T ] the integral

∫ t

s
fdg

exists as a Riemann-Stieltjes integral.

3.1.2 Föllmer integral

In applications, especially in financial mathematics, it is a wanted feature to

define stochastic integrals as a limit of Riemann-Stieltjes sums, or so-called

forward integrals. In this section we introduce Föllmer integrals, and for the

results of this section we refer especially to the original paper by Hans Föllmer

[19]. See also Sondermann [58].

Definition 3.1.1. Let (πn)
∞
n=1 be a sequence of partitions πn = {0 = tn0 <

. . . < tnk(n) = T} such that |πn| = maxj=1,...,k(n) |tnj − tnj−1| → 0 as n→ ∞ and

let X = (Xt)t∈[0,T ] be a continuous process. The Föllmer integral of a process

Y with respect to X over interval [0, t] along the sequence πn is defined as

∫ t

0
YsdXs = lim

n→∞
∑

tnj ∈πn∩(0,t]
Y n
tj−1

(
Xtnj

−Xtnj−1

)

if the limit exists almost surely. The integral over the whole interval [0, T ] is

defined as ∫ T

0
YsdXs = lim

t→T

∫ t

0
YsdXs.

Remark 3.1.1. If the processes X and Y are Hölder continuous processes of

order α and β with α+ β > 1, then it can be shown that the Föllmer integral

exists and coincides with the Young integral.

We also remark that while the definition is very useful for applications, it can

sometimes be difficult to show that the Föllmer integral exists. However, in

some cases the existence of the Föllmer integral can be proved. For instance,

this is the case for processes X that have finite quadratic variation. We first

recall the definition of a quadratic variation process.

Definition 3.1.2. Let (πn)
∞
n=1 be a sequence of partitions πn = {0 = tn0 <

. . . < tnk(n) = T} such that |πn| = maxj=1,...,k(n) |tnj − tnj−1| → 0 as n→ ∞. Let
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X be a continuous process. Then X is a quadratic variation process along the

sequence (πn)
∞
n=1 if the limit

〈X〉t = lim
n→∞

∑
tnj ∈πn∩(0,t]

(
Xtnj

−Xtnj−1

)2

exists almost surely.

Lemma 3.1.1. [19] Let X be a continuous quadratic variation process and let

f ∈ C1,2([0, T ]× R). Let 0 ≤ s < t ≤ T . Then

f(t,Xt) = f(s,Xs) +

∫ t

s

∂f

∂t
(u,Xu) du+

∫ t

s

∂f

∂x
(u,Xu) dXu

+
1

2

∫ t

s

∂2f

∂x2
(u,Xu) d〈X〉u.

In particular, the Föllmer integral
∫ t
s

∂f
∂x (u,Xu) dXu exists and has a continu-

ous modification.

For the proof and details, see [19] or [58].

3.1.3 Generalised Lebesgue-Stieltjes integral

In this subsection we briefly introduce the concept of the generalized Lebesgue-

Stieltjes integral which is a powerful tool for studying existence of integrals.

The generalized Lebesgue–Stieltjes integral is based on fractional integration

and fractional Besov spaces. For details on fractional integration we refer to

[54] and for fractional Besov spaces we refer to [50]. See also [43] and [51].

Definition 3.1.3. Let f ∈ L1([a, b]) and t ∈ (a, b). The Riemann–Liouville

fractional integrals Iβa+ and Iβb− of order β ∈ (0, 1) are defined as

(Iβa+f)(t) =
1

Γ(β)

∫ t

a
f(u)(t− u)β−1 du,

(Iβb−f)(t) =
(−1)−β

Γ(β)

∫ b

t
f(u)(u− t)β−1 du,

where Γ is the Gamma-function. The Riemann–Liouville fractional derivatives

Dβ
a+ and Dβ

b− of order β ∈ (0, 1) are defined as

(Dβ
a+f)(t) =

1

Γ(1− β)

d

dt

∫ t

a
f(u)(t− u)−βdu,

(Dβ
b−f)(t) =

−1

Γ(1− β)

d

dt

∫ b

t
f(u)(u− t)−βdu.

Assume that two functions f, g : [a, b] �→ R are such that the right limit
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f(t+) and the left limit g(s−) exist for every t ∈ [a, b) and s ∈ (a, b], and set

fa+(t) = (f(t)− f(a+))1(a,b)(t), and gb−(t) = (g(b−)− g(t))1(a,b)(t).

Definition 3.1.4. Let f and g be such that fa+ ∈ Iαa+(L
p([a, b])) and gb− ∈

I1−α
b− (Lq([a, b])) for some α ∈ (0, 1) and p, q ≥ 1 such that 1

p + 1
q ≤ 1. Then

the generalised Lebesgue-Stieltjes integral over interval [a, b] is defined as

∫ b

a
f dg =

∫ b

a
(Dβ

a+fa+)(s)(D
1−β
b− gb−)(s) ds+ f(a+)(g(b−)− g(a+)).

Furthermore, the integral is independent of β.

Remark 3.1.2. We list some properties of generalised Lebesgue-Stieltjes in-

tegrals which are not evident from the definition. In the following formulas we

assume that all the integrals exist.

• ∫ c
a fdg +

∫ b
c fdg =

∫ b
a fdg,

• for (c, d) ⊂ [a, b] we have
∫ b
a 1(c,d)fdg =

∫ d
c fdg,

• ∫ b
a 1(c,d]dg = g(d)− g(c), provided that g is Hölder continuous,

• if f1 = f2 almost everywhere, then
∫ b
a f1dg =

∫ b
a f2dg.

Next we recall the definition of fractional Besov spaces on [0, T ].

Definition 3.1.5. Fix 0 < β < 1.

1. The fractional Besov space W β
1 = W β

1 ([0, T ]) is the space of real-valued

measurable functions f : [0, T ] → R such that

‖f‖1,β = sup
0≤s<t≤T

( |f(t)− f(s)|
(t− s)β

+

∫ t

s

|f(u)− f(s)|
(u− s)1+β

du

)
<∞.

2. The fractional Besov space W β
2 = W β

2 ([0, T ]) is the space of real-valued

measurable functions f : [0, T ] → R such that

‖f‖2,β =

∫ T

0

|f(s)|
sβ

ds+

∫ T

0

∫ s

0

|f(s)− f(u)|
(s− u)1+β

duds <∞.

Note that ‖f‖1,β is only a seminorm.
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Remark 3.1.3. Consider the space Cα = Cα([0, T ]) of Hölder continuous

functions of order α and let 0 < ε < β ∧ (1− β). Then we have the following

inclusions:

Cβ+ε ⊂W β
1 ⊂ Cβ−ε and Cβ+ε ⊂W β

2 .

For f ∈W β
1 [0, T ] the restriction of f to [0, t] ⊂ [0, T ] belongs to Iβ0+(L

1[0, t]).

Similarly, for g ∈W β
2 [0, T ] the restriction of g to [0, t] belongs to I1−β

t− (L∞[0, t]).

Hence we have the following proposition.

Proposition 3.1.1. [50] Let 0 < β < 1 and let f ∈ W β
2 ([0, T ]) and g ∈

W 1−β
1 ([0, T ]). Then for any interval [a, b] ⊂ [0, T ] the generalized Lebesgue–

Stieltjes integral

∫ b

a
f dg =

∫ b

a
(Dβ

a+fa+)(s)(D
1−β
b− gb−)(s) ds+ f(a+)(g(b−)− g(a+))

exists.

Remark 3.1.4. It is shown in [64] that if the processes X and Y are Hölder

continuous processes of order α and β with α + β > 1, then the general-

ized Lebesgue-Stieltjes integral exists and it coincides with the Young integral.

Hence, according to Remark 3.1.1, in this case the integral can be understood

as the Young integral, the Föllmer integral or the generalised Lebesgue-Stieltjes

integral. Moreover, all integrals coincide.

We will also use the following estimate many times.

Theorem 3.1.3. [50] Let f ∈ W β
2 ([0, T ]) and g ∈ W 1−β

1 ([0, T ]). Then for

any t ∈ (0, T ] we have the estimate∣∣∣∣∫ t

0
f dg

∣∣∣∣ ≤ sup
0≤s<t≤T

∣∣D1−β
t− gt−(s)

∣∣‖f‖2,β .
Corollary 3.1.1. Let f, fn ∈ W β

2 ([0, T ]) and g ∈ W 1−β
1 ([0, T ]). If ||f −

fn||2,β → 0, then ∫ t

0
fndg →

∫ t

0
fdg.

for every t ∈ (0, T ].

3.2 Divergence integral and Malliavin calculus

In this section we briefly introduce Malliavin calculus with respect to certain

Gaussian processes; in particular, for fractional Brownian motion. For more

33



Integration with respect to Gaussian processes

details, we refer to [2], [48] and [47].

Let W be a standard Brownian motion and assume G = (Gt)t∈[0,T ] is a con-

tinuous centred Gaussian process of the form

Gt =

∫ t

0
K(t, s)dWs (3.1)

where the kernel K satisfies supt∈[0,T ]

∫ t
0 K(t, s)2ds < ∞. In particular, the

fractional Brownian motion is of this form by representation (2.6). First we

recall some definitions.

Definition 3.2.1. We denote by EG the set of simple random variables of the

form

F =
n∑

k=1

akGtk

where n ∈ N, ak ∈ R and tk ∈ [0, T ] for k = 1, . . . , n.

Definition 3.2.2. The Gaussian space H1 associated to G is the closure of

EG in L2(Ω).

Definition 3.2.3. The reproducing Hilbert space HG of G is the closure of EG
with respect to the inner product

〈1[0,t],1[0,s]〉H = RG(t, s).

In what follows we will drop G on the notation.

It is known that the mapping 1[0,t] �→ Gt can be extended to an isometry

between the Hilbert space H and the Gaussian space H1. The image of ϕ ∈ H
in this isometry is denoted by G(ϕ). In particular, we have G(1[0,t]) = Gt.

Definition 3.2.4. Denote by S the space of all smooth random variables of

the form

F = f(G(ϕ1), · · · , G(ϕn)), ϕ1, · · · , ϕn ∈ H,

where f ∈ C∞
b (Rn) i.e. f and all its derivatives are bounded. The Malliavin

derivative D = D(G) of F is an element of L2(Ω;H) defined by

DF =

n∑
i=1

∂if(G(ϕ1), · · · , G(ϕn))ϕi.

In particular, DGt = 1[0,t].

Definition 3.2.5. Let D1,2
G = D

1,2 be the Hilbert space of all square integrable

Malliavin derivative random variables defined as the closure of S with respect
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to norm

‖F‖21,2 = E|F |2 + E(‖DF‖2H).

Now we are ready to define the divergence operator δ as the adjoint operator

of the Malliavin derivative D.

Definition 3.2.6. The domain Dom δ of the operator δ is the set of random

variables u ∈ L2(Ω;H) satisfying

∣∣E〈DF, u〉H∣∣ ≤ cu‖F‖L2

for any F ∈ D
1,2 and some constant cu depending only on u. For u ∈ Dom δ

the divergence operator δ(u) is a square integrable random variable defined by

the duality relation

E(Fδ(u)) = E〈DF, u〉H, ∀F ∈ D
1,2

for any F ∈ D
1,2.

Remark 3.2.1. It is well-known that D1,2 ⊂ Dom δ.

We use the notation

δ(u) =

∫ T

0
usδGs.

Example 3.2.1. In the case of standard Brownian motion, we have HW =

L2([0, T ]), and in this case we have

δ(ϕ) =W (ϕ) =

∫ T

0
ϕ(s)dWs.

Remark 3.2.2. In general, the divergence is an extension of the Itô integral.

Moreover, it coincides with the stochastic integral introduced by Skorokhod [56].

For this reason the divergence operator is also referred to as the Skorokhod

integral or the divergence integral.

Recall now the special form of G given by (3.1) and define a linear operator

K∗ from E to L2[0, T ] by

(K∗ϕ)(s) = ϕ(s)K(T, s) +

∫ T

s
[ϕ(t)− ϕ(s)]K(dt, s).

With the help of this operator, the Hilbert space H generated by G can be rep-

resented asH = (K∗)−1(L2[0, T ]). Furthermore, D1,2
G (H) = (K∗)−1

(
D
1,2
W (L2[0, T ])

)
.

Moreover, we can represent δ(G) with δ(W ) by the relation∫ t

0
usδGs =

∫ t

0
(Ku)sδWs
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provided that Ku ∈ Dom δ(W ). Similarly, by considering iterated integrals

with respect to Gaussian process G one can define nth Wiener chaos as the

closed linear subspace of L2(Ω) generated by the random variables {Hn (G(ϕ)) , ϕ ∈
H, ‖ϕ‖H = 1}, where Hn is the nth Hermite polynomial. In this case we have

that the mapping IGn (ϕ⊗n) = n!Hn (G(ϕ)) provides a linear isometry between

the symmetric tensor product H⊗n space and subspace Hn. For details on

Malliavin calculus for multiple stochastic integrals with general Gaussian pro-

cesses we refer to [49].

We end the section with the following proposition (taken from [49]) which

provides a central limit theorem for a sequence of multiple Wiener integrals.

We apply this result in Publication IV.

Proposition 3.2.1. Let {Fn}n≥1 be a sequence of random variables in the

qth Wiener chaos, q ≥ 2, such that limn→∞ E(F 2
n) = σ2. Then the following

statements are equivalent:

(i) Fn converges in distribution to N (0, σ2) as n tends to infinity.

(ii) ‖DFn‖2H converges in L2(Ω) to qσ2 as n tends to infinity.
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4. Summaries of the articles

I. Rate of convergence for discretization of integrals with respect

to Fractional Brownian motion

Let BH be a fractional Brownian motion with H > 1
2 and let f be a convex

function. It was shown in [4] that the integral

S :=

∫ T

0
f ′−(B

H
u )dBH

u

exists almost surely in the sense of the generalised Lebesgue-Stieltjes integral.

Moreover, the integral can be understood as a limit of Riemann–Stieltjes sums

i.e.

Sn :=
n∑

i=1

f ′−(B
H
i−1
n

)(BH
i
n

−BH
i−1
n

) → S (4.1)

where the limit is understood almost surely. In this article we show that

under an additional assumption on the convex function f , the convergence

(4.1) holds also in Lr for a suitable range of r. Moreover, we determine the

rate of convergence. More precisely, let

2H < p <
H

1−H
,

1−H < β <
H

p
,

and define a function C : R → R by

C(a) = max(1, |a|)e−min{a2,(a−1)2}
2 .

Let μ denote the measure associated to the second derivative f ′′. We prove

that if ∫
R

C(a)
1
pμ(da) <∞,
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then for every r ∈ [1, p) there exists a constant C = C(f, r, p,H, β) such that

(E|Sn − S|r) 1
r ≤ C

(
1

n

)H
p
−β

.

As a consequence, the rate of convergence can be brought arbitrary close to

H − 1
2 by letting β → 1−H and p → 2H. For the result we derive an upper

bound for the crossing probability P(BH
s < a < BH

t ) for fractional Brownian

motion, which is an improvement of a similar upper bound derived in [14].

II Pathwise Integrals and Itô–Tanaka Formula for Gaussian

Processes

Let BH be a fractional Brownian motion with H > 1
2 and let f be a convex

function. In [4] it was proved that the following Itô formula

F (BH
T ) = F (0) +

∫ T

0
f ′−(B

H
u )dBH

u

holds where the integral is understood as a generalised Lebesgue–Stieltjes inte-

gral. Moreover, one can understand the integral as a limit of Riemann–Stieltjes

sums. In this article we extend this result for wider class of Gaussian processes.

More precisely, we consider the following class of Gaussian processes:

Definition 1. A centred continuous Gaussian process X = (Xt)t∈[0,T ] with

the covariance R belongs to the class Xα if

1. R(s, t) > 0 for every s, t > 0,

2. the ”worst case” incremental variance satisfies, at t = 0,

sup
0≤s≤T−t

W (t+ s, s) = Ct2α + o(t2α),

where C > 0 and 0 < α < 1,

3. there exist c, δ > 0 such that

V (s) ≥ cs2,

when s ≤ δ,
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4. there exists a δ > 0 such that

sup
0<t<2δ

sup
t
2
≤s≤t

R(s, s)

R(t, s)
<∞.

The definition is rather technical. However, the assumptions are not very

restrictive and are satisfied for many Gaussian processes (For examples and

remarks, see Publication II).

We also derive an Itô–Tanaka formula for Gaussian processes of form Y =

X +M , where M is a Gaussian martingale and X ∈ Xα. In particular, we

show the existence of the Föllmer integral in the Itô–Tanaka formula. To

obtain such a result we generalise the upper bound for crossing probability

P(Xs < a < Xt) derived in Publication I for fractional Brownian motion.

III. Integral representation of random variables with respect to

Gaussian processes

Consider probability space (Ω,F,P) and letW be a standard Brownian motion

in that space. Dudley [15] showed that for any F1-measurable random variable

ξ there exists an adapted process φ such that

ξ =

∫ 1

0
φ(s)dWs.

Later on, Mishura et al. [44] showed that this is also true if standard Brown-

ian motion is replaced with fractional Brownian motion BH and the integral

is understood in the pathwise sense. Motivated by these we generalise the

result to wider class of Gaussian processes. In particular, we consider class

of Gaussian processes similar to Xα defined in Publication II and show that

only local properties of the covariance structure play a role in obtaining such

results. More precisely, we prove that if the assumptions of X ∈ Xα holds for

incremental process Yt = Xt+u −Xu for u, t close to some fixed T , we have:

1. For any distribution function F there exists an adapted process φT such

that
∫ T
0 φT (s)dXs has distribution F ,

2. For any FT -adapted random variable ξ there exists an adapted process ΨT

such that

ξ = lim
t→T−

∫ t

0
ΨT (s)dXs,
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3. if in addition ξ is an end value of a Hölder continuous process of order

a > 1− α, then ξ can be represented as a proper integral i.e.

ξ =

∫ T

0
ΨT (s)dXs,

To prove our results we apply the Itô formula and an estimate for the crossing

probability derived in Publication II. Moreover, we apply small ball probabil-

ities for Gaussian processes X ∈ Xα. For small ball probabilities we simply

assume that a given Gaussian process satisfies a certain upper bound. For

justification we show that a wide class of processes indeed satisfy the given

assumption.

IV. Parameters estimation based on discrete observations of

fractional Ornstein-Uhlenbeck process of the second kind

In mathematical statistics it is of great interest to estimate a certain unknown

parameter of the system from observations. In other words, the aim is to ap-

proximate the unknown. In this article we assume that we have observed a

fractional Ornstein-Uhlenbeck process of the second kind described in subsec-

tion 2.3.2 at discrete time points and we provide strong consistent estimators

for unknown parameters H and θ. Moreover, we prove that our estimators are

asymptotically Gaussian and we find the rate of convergence.

Let X be a fractional Ornstein-Uhlenbeck process of the second kind and

put

Ψ(θ) =
(2H − 1)H2H

θ
B((θ − 1)H + 1, 2H − 1) (4.2)

where B(x, y) denotes the Beta function. As our main theorem we prove the

following:

Theorem 1. Assume we observe Xt at discrete points {tk = kΔN , k =

0, 1, . . . , N} and TN = NΔN . Assume we have ΔN → 0, TN → ∞ and

NΔ2
N → 0 as N tends to infinity. Put

μ̂2,N =
1

TN

N∑
k=1

X2
tk
Δtk and θ̂N := Ψ−1 (μ̂2,N ) (4.3)

where Ψ−1 is the inverse of function Ψ given in (4.2). Then θ̂ is a strongly

consistent estimator of the drift parameter θ in the sense that as N tends to

infinity, we have

θ̂N −→ θ (4.4)
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almost surely. Moreover, as N tends to infinity, we have

√
TN (θ̂N − θ)

d−→ N (0, σ2θ) (4.5)

where

σ2θ =
σ2

[Ψ′(θ)]2
. (4.6)

We also give a formula for σ2. The asymptotic Gaussianity for our estimator

θ̂N is based on the machinery of Malliavin calculus described in section 3.2.

For the Hurst parameter H we give an estimator which is based on a method

of generalised quadratic variations introduced by Istas and Lang [27]. Further-

more, we introduce an estimator θ̃N similar to θ̂N given in (4.3) in a case where

also H is unknown.
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1981.
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Errata

Publication I

1. On p. 24 the right side of the first equation ”= − 1
2σ2

[(
y−aR(t,s)

R(s,s) σ̄
2..′′ should

be ”= − 1
2σ̄2

[(
y − aR(t,s)

R(s,s) σ̄
2..′′
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