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It is not the money that makes the world go 
round. It is the electricity that we use 
everyday to power the lights in our homes 
and our cell phones. How we produce our 
electricity, is the question of the century. If 
the polluting emissions from fossil fuels are 
to be cut down, new clean and safe energy 
sources are needed desperately. 
  
If successful, thermonuclear fusion would 
solve the problem at once and for all. To 
make it work, a massive international 
experiment to demonstrate the possibility of 
commercially produced fusion energy, the 
ITER reactor, is currently being built in 
Cadarache, southern France. Before the 
reactor starts operating, however, modeling 
work is needed to verify proper operation 
parameters. 
  
The theory behind the models has to be solid 
and waterproof. The work presented here 
contributes both to the theory and the 
models used in plasma simulations of 
minoriry particle populations. 
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1. Introduction

The word plasma is commonly associated with plasma televisions and

blood cells, or understood as some nasty weird goo appearing in the Ghost-

busters movie. Within the fusion community the word has a different

meaning and it is used to define 99 %, or even more, of the known matter

in the universe. Stars, for example, are massive dense plasma balls, and

the closest major plasma formation to us is the ionosphere. The name of

this dilute layer surrounding the Earth at the edge of the emptiness of

space refers to the components of plasma: it consists of charged particles,

ions and electrons.

Due to the charged particles the behavior of plasmas greatly differ from

that of neutral gases. The charged particles are influenced not only by

gravity but also by strong electromagnetic forces. In the Sun these forces

are responsible for rapid energetic eruptions of plasma, called solar flares.

On the Earth, remnants of these flares can be occasionally seen as the

high energy particles escaping the solar corona reach the Earth’s mag-

netic field, get diverted towards the geomagnetic poles, and collide with

neutral particles in the upper atmosphere. As a result, a bright light dis-

play, called the Auroras, can be seen in the sky.

Thermonuclear fusion of protons and other light nuclei in high temper-

ature and pressure provides the energy for the Sun to maintain these

events. Mimicking this energy source on Earth has long been desired by

humanity but we do not have the massive gravitational field of the Sun

to shape and control the plasma. Fortunately, just like the solar flares get

guided towards the Earth’s geomagnetic poles, laboratory plasmas can be

confined with carefully designed magnetic fields.

In a fusion reactor, there are solar flares as well. These events of rapid

bursts of energy, called the Edge Localized Modes or ELMs [1, 2, 3, 4] can,

however, cause a great deal of thermal stress to the machine’s plasma
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facing components (PFCs). Methods to mitigate the ELMs have been in-

vestigated and one of the best candidates has turned out to be resonant

magnetic perturbations (RMPs) applied to the plasma edge [5, 6]. These

perturbations increase the transport at the edge restraining the build-up

of the ELMs.

While the external perturbations have beneficial effect on the ELMs,

they are anticipated to affect the confinement of energetic particle popula-

tions negatively [7, 8, 9, 10]. The energetic particles, though forming only

a minority population in the plasma, are crucial as they provide means

to heat the plasma to temperatures needed for fusion. Deterioration of

their confinement could lead to loss of valuable heating power and, also,

to increased heat flux to the PFCs [11, 12, 13]. Thus, any unnecessary

loss should be avoided.

The external RMPs provide one example of local aberrations in the mag-

netic field that cause transport of energetic particles. Another important

source responsible for perturbations and transport is the inherent mag-

netohydrodynamical (MHD) activity [14, 15, 16, 17, 18, 19]. In this the-

sis, first principle methods to study the minority particle transport are

derived and revised, and models specific for energetic particles are devel-

oped.

1.1 Thermonuclear fusion

Fusion is possible when two nuclei come sufficiently close to each other

so that the Strong force can overcame the repulsive electric force between

the nuclei and bind the two into a heavier one. On Earth, the feasible

nuclear fusion reactions are those involving hydrogen isotopes deuterium

(D) and tritium (T):

D+D
50%−−→ He3 (0.82 MeV) + n (2.45 MeV), (1.1)

D+D
50%−−→ T (1.01 MeV) + H (3.02 MeV), (1.2)

D+T→ He4 (3.5 MeV) + n (14.1 MeV), (1.3)

D+He3 → He4 (3.6 MeV) + p (14.7 MeV). (1.4)

The cross sections, 〈σv〉, measuring the probability for a reaction to occur,

are presented in Fig. 1.1. The two possible D-D reaction are presented

together. It is seen that fusion reactions are most easily achieved mix-

ing Deuterium and Tritium together, although obtaining maximal fusion

yield would still require a temperature of roughly 70 keV.
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Figure 1.1. Fusion cross sections for reactions considered for energy production on Earth.
Data adopted from NRL plasma formulary [20].

As the temperatures to achieve fusion are high, it is desired that the

plasma itself would provide enough power to maintain it hot, and excess

use of auxiliary heating could be avoided. The Lawson–criterion [21] spec-

ifies the conditions for ignition, demanding that the losses are overcome

by the energy produced in fusion reactions. In a plasma of 50–50 mixture

of the fuel, a simplified Lawson–criterion for the density n, temperature

T , and energy confinement time τE is given by

nTτE ≥ 12kB
Ef

T 2

〈σv〉 , (1.5)

where Ef is the energy of the fusion products that carry charge (neutrons

do not donate energy to the plasma), and kB is the Boltzmann constant.

The triple product nTτE for the three considered reactions are presented

in Fig. 1.2. Again, the D-T reaction, achieving the lowest value, is seen

the most attractive option. The minimum value, obtained at T=13 keV,

however, still is 1000 times larger than the energy required to detach an

electron from a hydrogen atom.

Keeping the plasma confined at such temperature for long enough is by

no means a trivial task. The options are limited to either isolating the

plasma from its surroundings with a magnetic field, or maximizing the

density so that the confinement can be compared to an explosion. In the

field ofmagnetic confinement, the current flagship concept is the tokamak.
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Figure 1.2. The Lawson’s triple product criterion for fusion reactions considered for en-
ergy production on Earth. Data adopted from NRL plasma formulary [20].

1.2 The tokamak and behavior of charged particles therein

In a tokamak, a magnetic field is exploited to guide the charged par-

ticles and to keep them confined within a torus shaped volume. The

main component of the magnetic field is toroidal, generated with exter-

nal coils. A transformer circuit in the center of the tokamak is used to

induce a toroidal current into the plasma, eventually creating also a so-

called poloidal magnetic field. The internal poloidal field, together with

the external toroidal component, confines the plasma, and the strength

and shape of the field is determined by balancing the magnetic and ki-

netic forces according to the equation

∇p = j×B, (1.6)

where p is the plasma pressure, j is the electric current density, and B is

the magnetic field. A schematic view of the magnetic configuration in a

tokamak is presented in Fig. 1.3.

From Fig. 1.3 one sees that the toroidal field coils are relatively tightly

packed and, thus, in the first approximation to solve the force-balance

equation, the magnetic ripple caused by a finite number of the toroidal

field coils is neglected. As a result, the simplified magnetic geometry of a

tokamak can be expressed in terms of one axisymmetric flux function, ψ,

and the magnetic field is given by [22]

B = g(ψ)∇φ+∇φ×∇ψ, (1.7)
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Figure 1.3. A simplified presentation of the tokamak configuration. Courtesy of EFDA.

where φ stands for to the toroidal angle, and g∇φ is the total toroidal field

including the effect of the plasma.

In this axisymmetric configuration the collisionless particle orbits are

well defined and, when projected onto a poloidal plane, the orbits form

closed contours as illustrated in Fig. 1.4. In the absence of time-dependent

electric and magnetic fields, the poloidal projection of the particle orbit

will be broken only because of Coulomb collisions. The collisions change

the particle velocity space coordinates and can be interpreted as jumps be-

tween different collisionless orbit topologies. This immediately suggests

one approach to describe the collisional transport: to follow the time de-

velopment of the orbits, not the actual particles. This procedure, called

the orbit-averaging [23, 24, 25, 26, 27, 28] reduces the dimensionality of

the problem and, instead of the full six-dimensional phase space (x,v),

three coordinates are enough to describe the evolution of an orbit.

Despite of offering a huge computational benefit when studying mi-

nority particle confinement, the orbit-averaged descriptions of collisional

transport suffer from the loss of applicability. From Figure 1.4 it is evi-

dent that the coordinate ψ, often used as one of the three coordinates in

orbit-averaged methods, does not describe well all the orbits. Also, the

beautiful assumption of axisymmetry, required in orbit-averaging, can be

severely compromised, and not only because of the toroidal ripple. In

ITER, e.g., the test modules for tritium breeding (TBMs) and the neutral

13
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Figure 1.4. Poloidal projections of typical orbit topologies in a Tokamak with an axisym-
metric magnetic field. On the left (a), orbit of a passing (blue) and a trapped
(red) 3.5 MeV alpha particle. On the right (b), orbit of a passing (blue) and
a trapped (red) 3 keV Carbon. Note the completely different trajectories and
deviations from the flux surfaces (light green, ψ). The machine wall is pre-
sented by the black broken line.

beam injectors (NBIs) for auxiliary heating and current drive will perturb

the magnetic field far from axisymmetry. Furthermore, the orbit-averaged

description of collisional transport is limited to regions of closed flux sur-

faces and, as impurities migrate to the plasma from the wall, which is in

contact with the open flux surfaces, more flexible method is needed.

In this thesis the power of non-canonical Hamiltonian guiding center

formalism [29, 30, 31, 32, 33] is harnessed to overcome the limitations of

the orbit-averaged methods. Although many other variations of the guid-

ing center theory exist [34, 35, 36, 37, 38, 39], the non-canonical Hamilto-

nian approach has proven itself the most useful one considering practical

applications. The theory inherently adapts to various 3D effects, is not re-

stricted to closed flux-surfaces, can describe all different orbit topologies,

and expresses the motion in terms of measurable quantities. The power

of the method is that it describes the essential parts of the particle mo-

tion along the orbit while making the rapid gyrating motion around the

magnetic field line redundant. The only limitation of the theory is that

the particle’s Larmor radius has to be small compared to the gradient

lengths of the background electromagnetic fields, and that the fields do

not change rapidly in time compared to the particle’s gyration frequency

(the Larmor radius is ρ = v⊥/Ω, where v⊥ is the velocity perpendicular
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to the magnetic field and the gyration frequency is Ω = qB/m where B

is the magnetic field strength, q is the charge and m is the mass of the

particle). Although the five remaining phase space coordinates needed

for describing the guiding center motion is more than the three required

in orbit-averaged describtion, the computational cost for studying trans-

port is still significantly reduced compared to the fully described particle

motion.

1.3 Organization of the thesis

This thesis presents the essential parts of the theory that is used to de-

scribe the evolution of minority particle populations in tokamak plasmas.

The thesis starts by introducing the very idea behind Monte Carlo sim-

ulations: a connection between Fokker-Planck equation and stochastic

processes is established in Chapter 2. As an example, the theory is ap-

plied to the charged particle kinetic equation and a method is offered to

solve the kinetic equation in terms of stochastic differential equations. In

Chapter 3, the theoretical basis is extended to the guiding center formal-

ism. An explicit derivation of the Hamiltonian guiding center motion is

presented using the Lie-transform theory, and the details leading the to

collisional guiding center motion are presented by elaborating the results

derived in Ref. [40] and in Publication III. In Chapter 4, additional mod-

els, specific for fast ion transport calculations, are summarized from the

Publications I and II and a tool for minority particle simulations, devel-

oped in Publication IV, is described. Finally, the methods presented in

this thesis are used to study fusion born alpha particles in ITER, and the

main results from Publication V are presented.
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2. Basics of kinetic theory

As distribution function contains all information of the system at hand,

transport can be described in terms of it. Macroscopic quantities, e.g.,

density, pressure, and momentum, are be obtained as velocity space mo-

ments of the distribution function, and the changes in the energy and

momentum are obtained as moments of the equation that describes the

time evolution of the distribution function. In this chapter the distribu-

tion function for minority species is established assuming that the back-

ground plasma is not changed radically due to the presence of the minority

population.

2.1 Derivation of the kinetic Fokker-Planck equation

In plasmas, the particles are in constant motion causing microscopic fluc-

tuations in the electromagnetic fields and every particle in the system

feels the fluctuations caused by the others. Exact description of such a

many-body-problem is impossible, as it would require the exact motion

of each particle involved. Since the motion of a particle in a fluctuating

electromagnetic field resembles that of Brownian motion, it is not even

necessary to describe the problem exactly. The electric field fluctuations

can be described in terms of fluctuation spectrum and dielectric response

function, and the average effect of the fluctuations on the particle mo-

tion can be calculated. The particle motion in the phase space due to the

fluctuations can then be ideally considered as a step-like Markov process

driven by Coulomb collisions, and a probabilistic view adopted.

Although the collisions are inherently described at the particle level,

they can be included into the time evolution of a distribution function.

Let τ denote a small time interval during which the particle position z

changes by a random amount Δ. Then, the probability density f(z, t + τ)
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for finding the particle at z after the time τ has passed is obtained as a

weighted sum over different possible jumps

f(z, t+ τ) =

∫
dΔ f(z−Δ, t)Wτ (z−Δ,Δ), (2.1)

where Wτ (z,Δ) is the transition probability (
∫
Wτ (z,Δ)dΔ = 1) for the

jump to happen [41].

Expanding both the distribution function and the transition probability

in Eq. (2.1) around z and t

f(z, t+ τ) =

∫
dΔ

[
f(z, t)Wτ (z,Δ)− ∂

∂z
(f(z, t)Wτ (z,Δ)) ·Δ

+
1

2

∂

∂z

∂

∂z
(f(z, t)Wτ (z,Δ)) : ΔΔ+O(ΔΔΔ)

]
,

(2.2)

and defining the integrals

〈Δ〉 =
∫
dΔWτ (z,Δ)Δ, (2.3)

〈ΔΔ〉 =
∫
dΔWτ (z,Δ)ΔΔ, (2.4)

〈ΔΔΔ〉 =
∫
dΔWτ (z,Δ)ΔΔΔ, (2.5)

Eq. (2.1) is simplified (after division by the time interval τ ) into

f(z, t+ τ)− f(z, t)
τ

=− ∂

∂z
·
(
f(z, t)

〈Δ〉
τ

)
+

1

2

∂

∂z

∂

∂z
:

(
f(z, t)

〈ΔΔ〉
τ

)
+O(

〈ΔΔΔ〉
τ

).

(2.6)

An interesting observation can be made. If, for now, the electric fluc-

tuations are neglected and the transition probability is taken to be a

δ-function peaked at the change in z due to deterministic motion (i.e.,

Wτ = δ(Δz−Δ)), then, taking the limit τ → 0 in Eq. (2.2) gives

∂

∂t
f(z, t) +

∂

∂z
· (żf(z, t)) = 0, (2.7)

which describes the Hamiltonian time evolution of a function f(z(t), t).

This is an expected result, if only Hamiltonian changes in the phase space

were allowed, and is in fact exact: the terms of order O( 〈ΔΔ〉
τ ) and higher

vanish as τ → 0 because in this limit the change in the phase space coor-

dinates approaches Δz→ żτ .

With the electric fluctuations present, the terms of order O( 〈ΔΔΔ〉
τ ) and

higher do not vanish completely byt are usually neglected. In plasmas,

where the number of particles within the Debye-sphere is large, this ap-

proximation is well justified [42]. It can be shown that the first two terms,
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〈Δ〉 and 〈ΔΔ〉, include logarithmically divergent terms, eventually lead-

ing to a Coulomb logarithm, whereas 〈ΔΔΔ〉 and higher order terms do

not contain such a divergent term.

The resulting partial differential equation containing both the Hamilto-

nian motion and collisional effects then is

∂

∂t
f(z, t) = − ∂

∂z
· [(ż+ a(z, t))f(z, t)] +

∂

∂z

∂

∂z
: [D(z, t)f(z, t)] , (2.8)

and is often referred to as the kinetic equation or the kinetic Fokker-Planck

equation. The collisional friction (or drag) vector and diffusion tensor ap-

pearing in the equation, also called the Fokker-Planck coefficients, are

defined according to

a(z, t) = lim
τ→0

〈Δ〉
τ
, (2.9)

D(z, t) = lim
τ→0

〈ΔΔ〉
2τ

. (2.10)

To emphasize the nature of the collisional contribution, it is customary to

write the collisional terms separately from the Hamiltonian contribution,

and express the kinetic equation as

∂

∂t
f +

∂

∂z
· (żf) = C [f ] , (2.11)

where C [f ] is called the collision operator defined as

C [f ] =− ∂

∂z
·
[
af − ∂

∂z
· (Df)

]
≡ − ∂

∂z
· J, (2.12)

and J is the collisional flux density.

2.2 Correspondence to stochastic differential equations

As the Fokker-Planck coefficients could in principle be arbitrary func-

tions, it is not trivial to find a solution to the kinetic equation. Finite

element or finite difference method combined with a time discretization

scheme could be considered because the distribution function vanishes at

the phase space edge imposing a natural boundary condition. In orbit-

averaged studies of collisional transport the phase space contained only

three coordinates, and these numerical methods could be suitable. The

six dimensions of the full charged particle phase space, however, limit the

practicability of the finite elements and other discretization methods.

Fortunately, the origin of the kinetic equation, the random motion of

the particles, suggests an intuitive solution: The motion of the particles
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should also solve the kinetic equation, as the distribution function essen-

tially is an averaged representation of the particles in the system. Kol-

mogorov [43, 44] was one of the first to provide a mathematically rigor-

ous connection between evolution of stochastic processes and the Fokker-

Planck equation. The result according to Kolmogorov is that if the proba-

bility density for a stochastic process z obeys Eq. (2.8), the time evolution

of z is governed by the stochastic differential equation

dz = [ż+ a(z, t)] dt+ σ · dβ, (2.13)

where the matrix σ is defined via a decomposition of the diffusion tensor

2D = σσT . (2.14)

Here the stochastic differential dβ denotes an infinitesimal change in the

Wiener process β which has zero mean and variance t, and the upper

index T denotes a transpose of a matrix. For an introduction to stochastic

processes, see, e.g., Ref. [45].

The connection between the kinetic Fokker-Planck equation and the

stochastic differential equations is not evident. The connection, however,

becomes transparent when the rules of the so-called Itô calculus are ap-

plied. Assuming that z(t) is a Itô process, the Itô differential of an arbi-

trary function φ(z) of that Itô process is then defined as

dφ =
∂

∂z
φ · dz+ 1

2

∂

∂z

∂

∂z
φ : dzdz, (2.15)

which in ordinary calculus could be be considered as a truncated Taylor

expansion of φ(z + dz) − φ(z). Now, if z(t) developes in time according to

the Eq. (2.13), one can apply the Itô rules for mixed differentials

dzdt = 0, dβdt = 0, dβdβ = Idt, (2.16)

and obtain

dφ =
∂

∂z
φ · [(ż+ a)dt+ σ · dβ] + ∂

∂z

∂

∂z
φ : Ddt. (2.17)

With an initial condition z(0) = y, one can calculate the value of function

φ(z) at later times according to

φ(z) =φ(y) +

∫ t

0
dφ

=φ(y) +

∫ t

0

(
∂

∂z
φ · (ż+ a) +

∂

∂z

∂

∂z
φ : D

)
dt

+

∫ t

o

∂

∂z
φ · σ · dβ.

(2.18)
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Then, taking the expectation value of Eq. (2.18) with respect to z gives the

Dynkin’s formula, a sort of stochastic generalization of the fundamental

theorem of calculus,

Ez[φ(z)] = φ(y) + Ez[

∫ t

0
Aφ(z)dt], (2.19)

where the linear operator A is called the generator for the stochastic pro-

cess z(t), and is defined as

Af(z) =
∂

∂z
f · (ż+ a) +

∂

∂z

∂

∂z
f : D. (2.20)

In the Dynkin’s formula, the contribution from the stochastic term still

appearing in Eq. (2.18), vanishes because

Ez[

∫ t

o

∂

∂z
φ · σ · dβ] = 0. (2.21)

The proof can be found for example in Ref. [45].

If z has a probability density f(z, t), the expectation value of an arbitrary

function of z can be expressed as

Ez[φ(z)] =

∫
φ(z)f(z, t)dz, (2.22)

and the Dynkin’s formula becomes∫
φ(z)f(z, t)dz = φ(y) +

∫ ∫ t

0
Aφ(z)f(z, t)dtdz (2.23)

Taking time derivative from both sides gives∫
φ(z)

∂

∂t
f(z, t)dz =

∫
Aφ(z)f(z, t)dz

=

∫
φ(z)A†f(z, t)dz,

(2.24)

where A† is now the adjoint operator of the generator A, and is defined

A†f(z) = − ∂

∂z
· [(ż+ a)f ] +

∂

∂z

∂

∂z
: [Df ] . (2.25)

Rearranging the terms yields∫
φ(z)

(
∂

∂t
f(z, t)−A†f(z, t)

)
dz = 0, (2.26)

and as the function φ was arbitrary, it has to be that

∂

∂t
f(z, t) = A†f(z, t) = − ∂

∂z
· [(ż+ a)f ] +

∂

∂z

∂

∂z
: [Df ] , (2.27)

which is the kinetic Fokker-Planck equation derived in the previous sec-

tion.
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2.3 Kinetic theory in particle phase space

Here, the particle motion is formulated in terms of a non-canonical Pois-

son bracket. This is done as it turns out that the collisional part of the

kinetic equation can be expressed with the Poisson bracket. Later, this

property will be exploited to conduct a guiding center transformation of

the collision operator. Before introducing the guiding center formalism

any further, though, the particle phase space Poisson bracket is derived,

the collisional Fokker-Planck coefficients for the particle phase space are

presented, their conservation properties are discussed, and a stochastic

differential equation describing test particle motion is established assum-

ing a Maxwellian background plasma.

2.3.1 Hamiltonian motion

The non-canonical formulation of the charged particle dynamics derives

from requiring stationarity for the action path integral

A =

∫
γ, (2.28)

with respect to different phase space paths. The differential one-form γ is

γ = γα(z)dz
α −H(z)dt, (2.29)

whereH is the Hamiltonian, and d denotes the exterior derivative (see ap-

pendix A for the details regarding differential forms and exterior deriva-

tive). The one-form γ is, essentially, the differential of the Lagrangian

action. The part γαdzα is referred to as the symplectic part and Hdt as

the Hamiltonian constraint for the phase space motion. The constraint

condition simply states that the particle energy remains constant along

the Hamiltonian orbit. For a modern describtion of classical mechanics

see, e.g., Ref. [46].

Demanding that the variation of the action integral with respect to dif-

ferent phase space paths δz vanishes, i.e., applying the Hamilton’s princi-

ple, gives

0 = δz

∫
γ

=

∫
iδz · dγ

=

∫
iδz ·

[
1

2

(
∂γβ
∂zα

− ∂γα
∂zβ

)
dzα ∧ dzβ − ∂H

∂zα
dzα ∧ dt

]
=

∫
δzα

[
ωαβdz

β − ∂H

∂zα
dt

]
,

(2.30)
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where iδz is the contraction operator with respect to vector field δz (see

the appendix A) and

ωαβ =
1

2

(
∂γβ
∂zα

− ∂γα
∂zβ

)
, (2.31)

is the Lagrange matrix.

As the variation of the path is arbitrary, then, for the integral to vanish,

the condition

ωαβ
dzβ

dt
=
∂H

∂zα
(2.32)

must be true. If the Lagrange matrix is invertible, the equations of motion

are then obtained as

dzα

dt
= Παβ

∂H

∂zβ
(2.33)

where Παβ is the Poisson matrix satisfying ωαβΠ
βγ = δγα. Defining the

Poisson bracket of two arbitrary functions, f and g, according to

{f, g} ≡ ∂f

∂zα
Παβ ∂g

∂zβ
. (2.34)

the equations of motion are finally written with the bracket notation as

dzα

dt
= {zα, H}. (2.35)

The Hamiltonian nature of the equations of motion automatically satis-

fies the Liouville theorem

∂

∂zα

(
J dz

α

dt

)
= 0, (2.36)

stating that the phase space flow is conserved and that the Hamiltonian

trajectories never cross. Here J = detω is the phase space Jacobian for

the coordinates zα. The Liouville theorem also gives the Liouville identies

∂

∂zα

(
JΠαβ

)
= 0, (2.37)

which imply that the Poisson bracket can be written also in a phase space

divergence form

{f, g} = 1

J
∂

∂zα

(
J fΠαβ ∂g

∂zβ

)
. (2.38)

To give an example of the non-canonical Hamiltonian formulation, con-

sider the motion of a particle with a charge q and mass m in a magnetic

field B = ∇×A. The equations of motion are the familiar duo

v̇ =
q

m
v ×B, (2.39)

ẋ = v. (2.40)
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where z = (x,v) forms the non-canonical particle phase space. The Hamil-

tonian is just the kinetic energy

H =
1

2
mv2, (2.41)

and the Lagrangian is given by [47]

L =
1

2
mv2 + qv ·A (2.42)

=(mv + qA) · v −H. (2.43)

The reason for the term qv · A to appear in the Lagrangian is the non-

conservative nature of the Lorentz force. The term v ×B denotes a force

that depends not only on the particles spatial position, but on the velocity

as well.

The one-form γ is then defined as

γ = Ldt (2.44)

= (mv + qA) · dx−Hdt, (2.45)

and the 6×6 Lagrange matrix expressed with 3×3 blocks for the (x,v)

phase space becomes

ω = m

⎛⎝ εijkΩ
k −δij

δij 0

⎞⎠ , (2.46)

where Ωk = qBk/m, and i, j, k ∈ {1, 2, 3}. Inversion of the Lagrange matrix

gives the Poisson matrix

Π = m−1

⎛⎝ 0 δij

−δij εijkΩk

⎞⎠ , (2.47)

and the Poisson bracket can be written explicitly as

{f, g} = 1

m

(
∇f · ∂g

∂v
− ∂f

∂v
· ∇g

)
+
qB

m2
· ∂f
∂v
× ∂g

∂v
. (2.48)

With the bracket and the Hamiltion it is then easy to confirm that the La-

grangian approach yields the very same equations of motion it was sup-

posed to.

As a last note, it is pointed out that the Poisson-bracket can be used to

express the momentum gradient of an arbitrary function as

∂f

∂p
= {x, f}. (2.49)

Later, this property is used to conduct the guiding center transformation

of the Coulomb collision operator.
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2.3.2 Coulomb collisions

The Coulomb collisions change the particles velocity coordinates as illus-

trated in Fig. 2.1, and can be considered as instantaneous jumps from

one Hamiltonian orbit to another, as discussed earlier. Thus, the collision

operator in Eq. (2.12) acts only in the velocity space and becomes

C [f ] =− ∂

∂v
·
[
af − ∂

∂v
· (Df)

]
. (2.50)

The explicit expressions for the Coulomb friction and diffusion coefficients

describing the collisions of species a with other plasma particles are

aa = −
∑
b

cab
m2

a

(
1 +

ma

mb

)∫
dv′fb(v′)

u

u3
=

∑
b

aab (2.51)

Da =
1

2

∑
b

cab
m2

a

∫
dv′fb(v′)

(
I

u
− uu

u3

)
=

∑
b

Dab, (2.52)

where cab = q2aq
2
b ln Λ/ε0, ln Λ is the Coulomb logarithm, qb and fb are the

electric charge and the distribution function of the plasma species b re-

spectively, and u = v − v′. For a comprehensive derivation of the coeffi-

cients, see Refs. [42, 48].

Figure 2.1. A Schematic view of Coulomb collision changing the phase space coordinates
of a particle. the time derivative refers to the Hamiltonian motion and the
red C to a Coulomb collision. Courtesy of Alain Brizard.

The friction and diffusion coefficients can be expressed also as

aab =
cab
m2

a

(
1 +

ma

mb

)
∂hb
∂v

, (2.53)

Dab =
1

2

cab
m2

a

∂

∂v

∂

∂v
gb, (2.54)
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where the Rosenbluth or Trubnikov potentials, hb and gb, are defined

hb(v) =

∫
dv′fb(v′)

1

|v − v′| , (2.55)

gb(v) =

∫
dv′fb(v′)

∣∣v − v′
∣∣ . (2.56)

As the potentials (referring to electrostatic analogy) satisfy the Poisson

equation

∂

∂v
· ∂
∂v

gb = 2hb, (2.57)

one can identify a useful relation between the Fokker-Planck coefficients

aab =

(
1 +

ma

mb

)
∂

∂v
·Dab, (2.58)

and use it to transform the collision operator into the Landau form

Cab [fa] =
∂

∂v
· 1
2

cab
ma

∫
dv′

(
I

u
− uu

u3

)
·
(
fb(v

′)
ma

∂fa
∂v

− fa(v)

mb

∂fb
∂v′

)
, (2.59)

or, alternatively, into a form

Cab [fa] = −
∂

∂v
·
(
Kabfa −Dab ·

∂fa
∂v

)
, (2.60)

where

Kab =
ma

mb

∂

∂v
·Dab =

cab
m2

a

ma

mb

∂

∂v
hb. (2.61)

The latter form proves itself useful regearding the guiding center trans-

formation of the collision operator. It is possible to express the particle

collision operator in terms of the non-canonical Poisson bracket as

Cab [f ] = {xi,maK
i
abfa −m2

aD
ij
ab{x

j , fa}}, (2.62)

and obtain the guiding center collision operator by transforming the par-

ticle Poisson bracket into guiding center Poisson bracket (see Chapter. 3).

With the Landau form one demonstrates the conservation properties

of the collision operator. As the operator is expressed as a divergence

of the collisional flux density, the collisional part of the kinetic equation

takes the form of a conservation law. Thus, it automatically preserves

the particle number. Regarding the momentum conservation, the Landau

form is used to calculate the momentum transfer rate between species a

and b according to

ṗab =

∫
dv mav Cab [f ] ,

=− 1

2
cab

∫
dv

∫
dv′

(
I

u
− uu

u3

)
·
(
fb(v

′)
ma

∂fa
∂v

− fa(v)

mb

∂fb
∂v′

)
.

(2.63)
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As the momentum transfer rate is inherently antisymmetric with respect

to the species, the momentum conservation is proved upon making the

replacement a ↔ b, and observing that ṗab = −ṗba. One also verifies

that ṗaa = 0, i.e., that the total momentum of species a is conserved in

like-species collisions.

For the energy transfer rate a similar calculation gives

Ėab = −
1

4
cab

∫
dv

∫
dv′ v ·

(
I

u
− uu

u3

)
·
(
fb(v

′)
ma

∂fa
∂v

− fa(v)

mb

∂fb
∂v′

)
, (2.64)

which no longer is antisymmetric because of the extra v inside the inte-

grals. Upon making the replacements a↔ b and v↔ v′ one obtains

Ėba =
1

4
cab

∫
dv

∫
dv′ v′ ·

(
I

u
− uu

u3

)
·
(
fb(v

′)
ma

∂fa
∂v

− fa(v)

mb

∂fb
∂v′

)
, (2.65)

and adding Eqs. (2.64) and (2.65) together gives Ėab + Ėba = 0 because(
v − v′

)
·
(
I

u
− uu

u3

)
= 0. (2.66)

Thus the collision operator conserves the energy, and Ėaa = 0 holds.

2.3.3 Stochastic differential equation for a charged particle

If the bulk of the plasma, i.e., the field particles, form isotropic distribu-

tions, the Rosenbluth potentials, hb(v) = hb(v) and gb(v) = gb(v), become

functions of particle energy only. The friction and diffusion coefficients

can then be simplified into

aab =−
(
1 +

mb

ma

)
νab v, (2.67)

Kab =− νab v, (2.68)

Dab =D‖,ab
vv

v2
+D⊥,ab

(
I− vv

v2

)
, (2.69)

where the scalar coefficients are defined

νab =−
cab
m2

a

ma

mb

1

v
h′b(v), (2.70)

D‖,ab =
1

2

cab
m2

a

g′′b (v), (2.71)

D⊥,ab =
1

2

cab
m2

a

1

v
g′b(v). (2.72)

Then, observing the identities(
I− vv

v2

)
·
(
I− vv

v2

)
=

(
I− vv

v2

)
, (2.73)

vv

v2
·
(
I− vv

v2

)
= 0, (2.74)

vv

v2
· vv
v2

=
vv

v2
, (2.75)
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the decomposition of the diffusion matrix according to Eq. (2.14) becomes

rather simple:

σ =
√

2D‖
vv

v2
+

√
2D⊥

(
I− vv

v2

)
, (2.76)

where D‖ =
∑

bD‖,ab and D⊥ =
∑

bD⊥,ab. By direct calculation, one can

verify that σσT = 2D.

The stochastic differential equation describing the particle motion is

constructed according to Eq. (2.13). As the Coulomb collisions only af-

fect the particles velocity coordinates, the equation for the spatial position

reduces to the Hamiltonian motion:

dx = vdt. (2.77)

For the velocity, the equation includes also the Coulomb drag and diffu-

sion, and is explicitly

dv =
( q
m
v ×B− νsv

)
dt+

(√
2D‖

vv

v2
+

√
2D⊥

(
I− vv

v2

))
· dβv, (2.78)

where νs =
∑

b(1 +mb/ma)νab.

An important case of isotropic particle distributions is the Maxwellian

distribution. In minority particle studies, the field particle distributions

are often approximated to be in thermodynamic equilibrium and, thus,

roughly Maxwellian:

fb =
nb

π3/2v3b
exp

(
−v2/v2b

)
, (2.79)

where vb =
√
2kTb/mb and nb are, respectively, the thermal velocity and

density of the field particle species b. With this assumption, explicit ex-

pressions for the scalar friction and diffusion coefficients can be calcu-

lated. The Rosenbluth potentials become

hb =
nb
v
erf(v/vb), (2.80)

gb =nbvbϕ(v/vb), (2.81)

where erf(x) = 2π−1/2
∫ x
0 dt exp (−t

2) is the Error function, and ϕ(x) =

(x + 1/(2x))erf(x) + π−1/2 exp (−x2). Thus, the scalar coefficients can be

given specific expressions

D‖,ab(v) =
1

2

cab
m2

a

nb
v
G(v/vb), (2.82)

D⊥,ab(v) =
1

2

cab
m2

a

nb
v

(
erf(v/vb)−

1

2
G(v/vb)

)
, (2.83)

νab(v) =
cab
m2

a

ma

mb

nb
v2b

G(v/vb)

v
. (2.84)

28



Basics of kinetic theory

where the Chandrasekhar function G(x) is defined as

G(x) =
erf(x)− 2x√

π
exp(−x2)

x2
. (2.85)

With the coefficients in the kinetic equation specified and a stochastic

differential equation explicitly given, the kinetic equation can be solved

via numerical simulation. The Hamiltonian particle motion, however, is

characterized by the rapid cyclotron motion, which sets a strict limit for

the length of the simulation time step, and compromises the practicability

of using the particle phase space in numerical transport studies. Fortu-

nately, the particle kinetic equation can be used as a starting point for

constructing the guiding center kinetic equation, where the rapid time

scale is no longer present but is isolated into non-contributing variables.
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3. Guiding center formalism

The aim of this chapter is to provide a description of collisional transport

in terms of a reduced phase space where the rapid gyromotion is irrele-

vant for both the Hamiltonian motion and Coulomb collisions. For this

task, Lie-transform perturbation methods are applied to the particle ki-

netic equation and the modern guiding center theory is obtained. The

description of Hamiltonian guiding center motion presented here follows

previous derivations [31, 32], intending to elaborate the process more ex-

plicitly. The derivation of the guiding center kinetic equation is then car-

ried out according to the work of Brizard [40], providing an example of

how the guiding center friction and diffusion coefficients are calculated.

Finally, an important proof missing from Publication III is explicitly given

to show that the guiding center diffusion matrix is positive semidefinite

and that the stochastic differential equation describing both the Hamilto-

nian and collisional motion of the guiding center can be constructed also

in nonunifrom magnetic field.

3.1 Preparations for the guiding center transformation

The local particle coordinates, zα = (x0,v0), are first written as zα =

(x0, v‖,0, μ0, ζ0), where v‖,0 is the particle velocity parallel to the magnetic

field, μ0 is the particles local magnetic moment, and ζ0 is the gyroangle

describing the rapid rotation around the magnetic axis. Then, a set of

local rotating orthonormal basis vectors, (b̂(x0), ⊥̂(ζ0,x0), ρ̂(ζ0,x0)), with

ρ = b× v/Ω and Ω = qB/m, is introduced to express the particle velocity

with components parallel and perpendicular to the magnetic field

v = v‖,0b̂+

√
2μ0B

m
⊥̂ = v‖,0b̂+Ωρ× b̂ = v‖,0b̂+ v0,⊥. (3.1)
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The rotating basis is determined with another basis, (1̂(x0), 2̂(x0)), ac-

cording to

ρ̂ =cos ζ01̂− sin ζ02̂, (3.2)

⊥̂ =− sin ζ01̂− cos ζ02̂, (3.3)

and one could wonder what the definition for the fixed basis (1̂, 2̂) is but,

later, it is proven that the choice is free and does not affect the resulting

guiding center motion.

A small parameter, εB = ρ/LB, where LB = B/ |∇B| is the local mag-

netic field gradient length, is used to rate the terms in the particle La-

grangian one-form for initial ordering. As εB ∼ m/q, and the symplectic

part of the particle one-form contains this ratio, a dimensionless ordering

parameter ε, which is not to be mixed with εB, can be introduced by renor-

malization of the particle charge, q → ε−1q. The symplectic part of the

particle one-form then is

γαdz
α = ε−1qA · dx+mv · dx = ε−1γ0 + γ1. (3.4)

One should note that ε is only the ordering parameter, and physical re-

sults are obtained setting ε = 1.

The Lie-transform pull-back and push-forward operators are defined as

Tn =exp(εnLGn), (3.5)

T −1n =exp(−εnLGn), (3.6)

where LGn is the Lie-derivative generated by a vector field Gn, and εn

is used to denote the order of the transformation, when necessary. The

Lie-derivative of a k-form γ is defined

LGγ = iG · dγ + d (iG · γ) , (3.7)

where iG is the contraction operator and d the exterior derivative.

An example of a Lie-transformation can be given if G = a is a constant

and the transformation is applied to a scalar function f(x) and to its ar-

gument x giving

exp(LG)x =x+ a, (3.8)

exp(LG)f(x) =f(x+ a). (3.9)

Referring to T as a transformation is then well justified, as the operation

generated by the field G is a coordinate transformation x→ X = x+ a.
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The Lie-transformation also has an important property, called the the

scalar invariance: the transformations defined with (3.5) and (3.6) satisfy

(T −1n f)(Tnx) = f(x). (3.10)

This property is easily demonstrated if the generating vector field is a

constant a: (T −1f)(T x) = f(T x− a) = f(x+ a− a) = f(x).

The ultimate goal of the perturbation theory is then to generate the

near-identity coordinate transformations, Tgc : zα → Zα and T −1gc : Zα →
zα, where Zα = (X, v‖, μ, ζ) are the guiding center coordinates, and Tgc =
T1T2T3... and T −1gc = ...T −13 T −12 T −11 are the guiding center pull-back and

push-forward operators, respectively. The generating functions for the

guiding center transformation are free parameters and are solved from

the condition that the transformed particle Lagrangian one-form and,

thus, also the Hamiltonian motion, become independent of the fast gyro-

angle, ζ, order by order.

3.2 Lie-transform perturbation theory

According to the definitions of the Lie-transformations, the guiding center

pull-back, Tgc, and push-forward T −1gc are

Tgc = 1 + εLG1 + ε2
(
LG2 +

1

2
L2
G1

)
+ ..., (3.11)

T −1gc = 1− εLG1 − ε2
(
LG2 −

1

2
L2
G1

)
+ ... (3.12)

and the guiding center transformation of the symplectic part of the parti-

cle one-form is

Γ =T −1gc

(
ε−1γ0 + γ1

)
+ dS = ε−1Γ0 + Γ1 + εΓ2 + ..., (3.13)

where the first three terms in the serie are

Γ0 =γ0, (3.14)

Γ1 =γ1 − LG1γ0 + dS1, (3.15)

Γ2 =−
(
LG2 −

1

2
L2
G1

)
γ0 − LG1γ1 + dS2. (3.16)

and the terms are evaluated in the guiding center phase space Zα. The

gauge functions Sn are included for a possibility to clean up terms like

d (iGn · γ)which arise when Lie-derivative is applied. The gauge functions

Sn, however, do not contribute to the resulting Lagrangian matrix in any

order, nor to the equations of motion, because ω = dΓ + d2S = dΓ.
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The explicit expression for the first term in the guiding center Lagrangian

one-form Γ is simply

Γ0 = qA(X) · dX, (3.17)

but for the second term, Γ1, the calculation rule of Lie-derivative, given in

Eq. (3.7), has to be applied. Direct calculation then reveals that

LGnγ0 =qB×GX
n · dX+ d (iGn · γ0) , (3.18)

and one can write the first order perturbative term as

Γ1 = mv‖b̂ · dX+mΩ
(
ρ0 × b̂− b̂×GX

1

)
· dX+ dσ1, (3.19)

where ρ0 = m
q

√
2μ0

mB ρ̂ and σ1 = S1 − iG1 · γ0. Thus, choosing the X-

component of the first generating vector field to be

GX
1 = −ρ0 +GX

1,‖b̂, (3.20)

the gyro-angle dependency is removed from the first order term of the

guiding center Lagrangian one-form. Furthermore, choosing the gauge

function S1 = iG1 · γ0 makes σ1 disappear and one concludes that

Γ1 = mv‖b̂ · dX. (3.21)

Even though the elimination was successful, it did not specify the gener-

ating vector field completely. More components are obtained investigating

the second order term, Γ2, which, after applying the Lie-derivatives, gives

Γ2 =− iG2 · dγ0 −
1

2
iG1 · d (γ1 + Γ1) + dσ2, (3.22)

with σ2 = S2− iG1 · γ1. Using the expression for Γ1, that was just obtained

in Eq. (3.21), the contractions with respect to vector field Gn needed for

Γ2 are

iGn · dΓ1 =mb̂ ·
(
G

v‖
n dX−GX

n dv‖
)
−mv‖GX ×∇× b̂ · dX, (3.23)

iGn · dγ1 =iGn · dΓ1 −mGX ×∇× v⊥ · dX

+m
∂v⊥
∂μ

·
(
Gμ

ndX−GX
n dμ

)
+m

∂v⊥
∂ζ

·
(
Gζ

ndX−GX
n dζ

)
.

(3.24)

Applying the identity given by Eq. (3.18), the expression for Γ2 becomes

Γ2 =− dX ·
(
qB×GX

2 +mb̂G
v‖
1 +

m

2

∂v⊥
∂μ

Gμ
1 +

m

2

∂v⊥
∂ζ

Gζ
1

)
− dX ·

(
mv‖∇× b̂+

m

2
∇× v⊥

)
×GX

1

+mGX
1,‖dv‖ +

mμ

q
dζ + dσ2,

(3.25)
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where also the results

∂v⊥
∂μ

=
v⊥
2μ

ρ̂× b̂ ⇒ ∂v⊥
∂μ

·GX
1 = 0, (3.26)

∂v⊥
∂ζ

= −v⊥ρ̂ ⇒ ∂v⊥
∂ζ

·GX
1 =

2μ

q
, (3.27)

were needed to obtain the final form.

But now, a serious problem is faced because of the term (mμ/q)dζ ap-

pearing in Γ2. For the Hamiltonian dynamics to be free of both ζ and the

way the gyro-angle is defined, the guiding center one-form should remain

invariant under a redefinition

ζ → ζ ′ = ζ + χ(X), (3.28)

and its components should be independent of ζ. The latter condition is

obtained by a careful choice of the generating functions, but the term

(mμ/q)dζ in Γ2 does not remain invariant under such a transformation.

Instead, a term, (mμ/q)∇χ · dX, would appear.

To keep Γ2 invariant, a gyrogauge invariance constraint is needed, and

dζ is replaced with dζ − R · dX, where R is called the gyrogauge field.

Then, for the constrained one-form to be independent of the definition of

ζ, the condition

dζ −R · dX = dζ ′ −R′ · dX

= dζ +∇χ · dX−R′ · dX,
(3.29)

must hold, which further implies that R must satisfy

R′ = R+∇χ. (3.30)

Littlejohn has proved that the choice R = ∇1̂ · 2̂ = ∇⊥̂ · ρ̂ fulfills the cri-

terion [31], and that the guiding center theory can be made independent

of the definition of the gyroangle.

As the gyrogauge invariance is assured, the second order term can be

further simplified by specifying more components for the generating field.

Calculating first

∇× b̂×GX
1 =GX

1,‖κ+ τ
∂ρ0

∂ζ
+ ρ0 · κb̂, (3.31)

where κ = b̂ · ∇b̂ and τ = b̂ · ∇ × b̂, and then

∇× v⊥ ×GX
1 =

2μ

q

(
R+

1

2
τ b̂− (a1 : ∇b̂+ τ)b̂

)
− μρ0 · ∇ lnB

∂v⊥
∂μ

+GX
1,‖ (∇× v⊥)× b̂+ ρ0 ·R

∂v⊥
∂ζ

,

(3.32)
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where a1 = −(⊥̂ρ̂ + ρ̂⊥̂)/2, the second order term Γ2 can be given an

expression

Γ2 =− dX ·
(
qB×GX

2 +mv‖τ
∂ρ0

∂ζ

)
−

(
dX ·

[
mv‖κ+

m

2
∇× v⊥ × b̂

]
−mdv‖

)
GX

1,‖

− dX ·mb̂

(
G

v‖
1 + v‖ρ0 · κ−

μ

q
(a1 : ∇b̂+ τ)

)
− dX · m

2

∂v⊥
∂μ

(Gμ
1 − μρ0 · ∇ lnB)

− dX · m
2

∂v⊥
∂ζ

(
Gζ

1 + ρ0 ·R
)

+
mμ

q

(
dζ −

(
R+

1

2
τ b̂

)
· dX

)
+ dσ2.

(3.33)

where, also the gyrogauge constraint is now present. The expression could

be easily simplified by choosing the functions GX
1,‖, G

μ
1 , G

ζ
1, and GX

2,⊥ so

that the components inside the parentheses would vanish. That choice,

however, is not the preferred one. Before a proper choice can be made,

also the guiding center Hamiltonian has to be considered.

The total guiding center Lagrangian one-form is

Γgc −Hgcdt = ε−1Γ0 + Γ1 + εΓ2 + ...− (H0 + εH1 + ...) dt, (3.34)

where Hgc = T −1gc H = (1 − εLG1 + ...)H, and one can identify that each

pair (Γi+1,Hi) has to be independent of the gyro-angle ζ simultaneously.

In the zeroth order, the transformed Hamiltonian is simply the particle

Hamiltonian evaluated at the guiding center position, namely

H0 =
m

2
v2‖ + μB, (3.35)

and has no ζ dependence as assumed. The first order guiding center cor-

rection, H1, however, is defined in terms of the generating functions ac-

cording to

H1 =− LG1H

=mv‖G
v‖
1 +Gμ

1B + μGX
1 · ∇B

=mv‖G
v‖
1 +Gμ

1B + μB
(
GX

1,‖b̂− ρ0

)
· ∇ lnB,

(3.36)

and needs to be independent of ζ simultaneously with Γ2. If the choice,

setting Γ2 trivially free of ζ, had been made, H1 would not have been

independent of ζ.

Investigating both H1 and Γ2 simultaneously reveals that the choice

GX
1,‖ = 0 is fine. Furthermore, because the term in Γ2 that involves Gv‖

1

is linearly independent of the the terms that involve Gμ
1 , G

ζ
1, or GX

2 , i.e.,
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the perpendicular velocity vector rotates in a plane perpendicular to the

magnetic field, one can choose

G
v‖
1 =

μ

q
(a1 : ∇b̂+ τ)− v‖ρ0 · κ. (3.37)

Then, the easiest choice for H1 to be independent of ζ is to set H1 = 0.

This choice gives the condition

Gμ
1 =μρ0 · ∇ lnB −

mv‖
B

G
v‖
1 , (3.38)

and has also the benefit that, as the first order correction to the guiding

center energy is zero, the guiding center and particle energies are equal

up to first order.

The final form for Γ2 is obtained by first noting the identities

∂v⊥
∂ζ

= −qB
m
× ∂ρ0

∂ζ
,

∂v⊥
∂μ

= −qB
m
× ∂ρ0

∂μ
,

∂ρ0

∂ζ
= −b̂× ρ0 (3.39)

and then choosing the perpendicular component of GX
2 to be

GX
2,⊥ =

τv‖
Ω

ρ0 +
1

2

(
Gζ

1 + ρ0 ·R
) ∂ρ0

∂ζ
+

1

2
(Gμ

1 − μρ0 · ∇ lnB)
∂ρ0

∂μ
, (3.40)

which, together with σ2 = 0, finally yields

Γ2 =
mμ

q
(dζ −R	 · dX) , (3.41)

where R	 = R+(τ/2)b̂. The only first-order component that has not been

assigned yet is Gζ
1 but, as all linearly independent equations have already

been used, obtaining an expression for Gζ
1 would require the perturbation

analysis to be continued up to third order. The third order analysis would

determine an expression also for GX
2,‖ but, as the analysis turns out to be

a rather laborous task, only the results will be given when the outcome

of the Lie-transformations is summarized. An interested reader can, of

course, consult Ref. [32] for the details of the third order analysis.

3.3 Summary of the Lie-transformation results

The perturbation analysis has resulted in a guiding center Lagrangian

one-form

Γ =

(
ε−1qA+mv‖b̂− ε

mμ

q
R	

)
· dX+ ε

mμ

q
dζ −Hgcdt, (3.42)

where the guiding center Hamiltonian is

Hgc =
mv2‖
2

+ μB. (3.43)
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The procedure gave also the first order generating vector field

GX
1 =− ρ0 = −

1

Ω

√
2μB

m
ρ̂, (3.44)

G
v‖
1 =

μ

q
(a1 : ∇b̂+ τ)− v‖ρ0 · κ, (3.45)

Gμ
1 =ρ0 ·

(
μ∇ lnB +

mv2‖
B

κ

)
−
μv‖
Ω

(a1 : ∇b̂+ τ), (3.46)

Gζ
1 =− ρ0 ·R+

∂ρ0

∂ζ
· ∇ lnB +

v‖
Ω
a2 : ∇b̂+

mv2‖
2μB

b̂ · ∇b̂ · ∂ρ0

∂ζ
, (3.47)

and the spatial component for the second order generating vector field

GX
2,‖ =2

v‖
Ω

∂ρ0

∂ζ
· κ+

μ

qΩ
a2 : ∇b̂, (3.48)

GX
2,⊥ =

τv‖
Ω

ρ0 +
1

2

(
Gζ

1 + ρ0 ·R
) ∂ρ0

∂ζ
+

1

2
(Gμ

1 − μρ0 · ∇ lnB)
∂ρ0

∂μ
, (3.49)

where R	 = R + (τ/2)b̂, R = ∇⊥̂ · ρ̂ is the Littlejohn’s gyrogauge field,

τ = b̂ · ∇ × b̂ is the magnetic field-line twist, κ = b̂ · ∇b̂ is the magnetic

field-line curvature vector, and the dyads a1 and a2 are defined

a1 = −
1

2
(⊥̂ρ̂+ ρ̂⊥̂) =

∂a2
∂ζ

, (3.50)

a2 =
1

4
(⊥̂⊥̂− ρ̂ρ̂) = −1

4

∂a1
∂ζ

. (3.51)

These result will be used for constructing the guiding center kinetic

equation. The Hamiltonian evolution of the guiding center motion will

be obtained calculating the guiding center Poisson bracket with the given

Lagrangian one-form. The collisional contribution will be obtained by car-

rying out the guiding center transformation of the particle Fokker-Planck

term by transforming the particle phase space Poisson bracket into the

guiding center phase space. The generating vectors fields will be used to

calculate the gyroangle averages for the reduced guiding center Coulomb

collision operator.

3.4 Hamiltonian equations of motion

The equations describing the Hamiltonian guiding center motion are ob-

tained in a manner described in Sec. 2.3. The minimization of the action

integral leads to the Lagrange matrix, the inversion of Lagrange matrix

to the Poisson matrix, and the Poisson matrix to the Poisson bracket and

to the equations of motion:

Żα = Παβ
gc

∂Hgc

∂Zβ
= {Zα, Hgc}gc. (3.52)
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The two-form dΓgc, needed for constructing the Lagrange matrix, is cal-

culated from the symplectic part of the guiding center Lagrangian one-

form and is given by

dΓgc =
q

ε

1

2

(
∂A	

j

∂Xi
− ∂A	

i

∂Xj

)
dXi ∧ dXj + dv‖ ∧

(
q

ε

∂A	

∂v‖
· dX

)
+ dμ ∧

(
q

ε

∂A	

∂μ
· dX

)
+ ε

m

q
dμ ∧ dζ

=ε−1qεijkB	,kdXi ∧ dXj + dv‖ ∧
(
mb̂ · dX

)
− εdmμ

q
∧ (dζ −R	 · dX) ,

(3.53)

where the definition for the effective vector potential is

A	 = A+ ε(mv‖/q)b̂− ε2(mμ/q2)R	, (3.54)

and B	 = ∇×A	 is the corresponding effective magnetic field.

The Lagrange matrix for the guiding center phase space is then

ωgc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 q
εB

	
z − q

εB
	
y −mb̂x

εmR�
x

q 0

q
εB

	
z 0 q

εB
	
x −mb̂y

εmR�
y

q 0

q
εB

	
y − q

εB
	
x 0 −mb̂z

εmR�
z

q 0

mb̂x mb̂y mb̂z 0 0 0

− εmR�
x

q − εmR�
y

q − εmR�
z

q 0 0 εm
q

0 0 0 0 − εm
q 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.55)

where B	
‖ = B	 · b̂, and the guiding center Jacobian, given by the determi-

nant of the Lagrange matrix, is J = mB	
‖ . Calulation of the inverse gives

the guiding center Poisson matrix

Πgc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − ε̂bz
qB�

‖
ε̂by
qB�

‖
B�

x
mB�

‖
0

ε(̂b×R�)
x

qB�
‖

ε̂bz
qB�

‖
0 − ε̂bx

qB�
‖

B�
y

mB�
‖

0
ε(̂b×R�)

y

qB�
‖

− ε̂by
qB�

‖
ε̂bx
qB�

‖
0 B�

z
mB�

‖
0

ε(̂b×R�)
z

qB�
‖

− B�
x

mB�
‖

− B�
y

mB�
‖

− B�
z

mB�
‖

0 0 −R�·B�

mB�
‖

0 0 0 0 0 − q
εm

− ε(̂b×R�)
x

qB�
‖

−
ε(̂b×R�)

y

qB�
‖

− ε(̂b×R�)
z

qB�
‖

R�·B�

mB�
‖

q
εm 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.56)

and the guiding center Poisson bracket

{f, g}gc =ε−1
q

m

(
∂f

∂ζ

∂g

∂μ
− ∂f

∂μ

∂g

∂ζ

)
+

B	

mB	
‖
·
(
∇	f

∂g

∂v‖
− ∂f

∂v‖
∇	g

)
− ε b̂

qB	
‖
· (∇	f ×∇	g) ,

(3.57)
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where the gyrogauge-independent gradient operator is defined as ∇	 =

∇+R	∂/∂ζ. With the Poisson bracket given, one finally obtains the equa-

tions of motion

Ẋ ={X, Hgc}gc = v‖
B	

B	
‖
+ ε

b̂

qB	
‖
× μ∇B, (3.58)

v̇‖ ={v‖, Hgc}gc = −
μ

m

B	

B	
‖
· ∇B, (3.59)

μ̇ ={μ,Hgc}gc = 0, (3.60)

ζ̇ ={ζ,Hgc}gc = ε−1Ω+ Ẋ ·R	, (3.61)

where the dynamics of X, v‖, and μ are now disconnected from the rapid

evolution of the gyroangle ζ, and μ has become a guiding center invariant.

One can also verify that all equations of motion, including the one for

ζ, are gyrogauge invariant: The explicit expression for the effective mag-

netic field is B	 = B + ε
mv‖
μ ∇ × b̂ − ε2mμ

q2
∇ × R	, and even if the sec-

ond order term would be kept (in the first order theory it is not kept),

the expression would still be gyrogauge invariant because ∇ × R	′ =

∇ × (R	 + ∇χ) = ∇ × R	. Also the equation for the gyroangle is gyro-

gauge invariant because when the transformation ζ → ζ + χ is applied,

ζ̇ ′ − Ẋ ·R	′ = ζ̇ + Ẋ · ∇χ− Ẋ · (R	 +∇χ) = ζ̇ − Ẋ ·R	.

3.5 Guiding center kinetic equation

Armed with the guiding center Poisson bracket and the equations of mo-

tion, the particle kinetic equation can now be transformed into the guiding

center phase space. Here, the basic principles of the transformation are

discussed and accompanied with examples that help to understand the

process.

As was argumented in Sec. 3.1, the coordinate transformations Tgc :

zα → Zα and T −1gc : Zα → zα can be used to transform any scalar field

f defined in phase space z, to a scalar field F defined in phase space Z

according to

F (Z) = (T −1gc f)(Z) = (T −1gc f)(Tgcz) = f(z). (3.62)

Thus, a guiding center transformation of a scalar operator L : f → Lf can

be defined according to

T −1gc (Lf)(z) = (T −1gc L)f(z) = (LgcF )(Z), (3.63)
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where Lgc = T −1gc L is the guiding center transformation of the particle op-

erator L. The particle kinetic equation derived in Sec. 2.1 was originally

expressed in phase space divergence form but, later, both the Hamilto-

nian and collisional parts were expressed in terms of the particle Poisson

bracket according to

∂f

∂t
+ {f,H} = {xi,mKif −m2Dij{xj , f}}. (3.64)

Here the indices i, j refer to Cartesian components of a vector and summa-

tion over repeated indices is assumed. As the guiding center transforma-

tion of the Poisson bracket now exists, the guiding center transformation

of the kinetic equation is carried out according to the rule (3.63) to give

∂F

∂t
+ {F,Hgc}gc = {T−1gc x

i,m(T−1gc K
i)F −m2(T−1gc D

ij){T−1gc x
j , F}gc}gc,

(3.65)

where F is now the guiding center distribution function. A far more use-

ful presentation is obtained if Eq. (2.34) is used to transform the Poisson

brackets into phase space divergence form, and the kinetic equation is

expressed as

∂F

∂t
+ Żα ∂F

∂Zα
= − 1

J
∂

∂Zα

[
J

(
mKαF −m2Dαβ ∂F

∂Zβ

)]
= Cgc[F ], (3.66)

where the guiding center friction and diffusion coefficients, Kα and Dαβ,

are

Kα = (T −1gc K) ·Δα, (3.67)

Dαβ = (Δα)† · (T −1gc D) ·Δβ , (3.68)

and the projection vectors Δα are defined in terms of the guiding center

Poisson tensor

Δα = −Παβ ∂

∂Zβ
T −1gc x = êi{T −1gc x

i, Zα} ≡ {T −1gc x, Zα}. (3.69)

Here êi refers to the Cartesian unit vectors. One should note that, as the

result includes spatial derivatives, the collisional term now introduces

spatial drag and diffusion that were not present in the particle collision

operator that acted solely in the particle velocity space. The spatial com-

ponents only reflect the results of the coordinate transformation which is

illustrated in Fig. 3.1.

The kinetic equation as expressed by (3.66) describes the time evolu-

tion of the guiding center distribution function in phase space (X, v‖, μ, ζ)

that includes the rapidly changing gyroangle ζ. As such, it offers little if
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Figure 3.1. A Schematic view of Coulomb collision after coordinate transformation. Here
the time derivative denotes the Hamiltonian motion and the red C the
Coulomb collisions. The transformation from particle coordinates x,p into
guiding center coordinates X′,P′ introduces a spatial change ΔX′ in the
guiding center position. Courtesy of Alain Brizard.

no benefit at all compared to the particle phase space. If, however, the

guiding center distribution function F is written as a sum

F = 〈F 〉+ F̃ (3.70)

where 〈F 〉 is the gyroangle average of F and F̃ = F − 〈F 〉 is the resid-

ual term, the fact that the Hamiltonian motion of the coordinates X, v‖, μ

is independent of ζ makes it possible to write the guiding center kinetic

equation as two coupled equations, namely

dR
dt
〈F 〉 = 〈Cgc[F ]〉 = 〈Cgc[〈F 〉]〉+ 〈Cgc[F̃ ]〉, (3.71)

dR
dt
F̃ + ζ̇

∂F̃

∂ζ
= Cgc[F ]− 〈Cgc[F ]〉, (3.72)

where the reduced guiding center Vlasov operator is defined as

dR
dt

=

(
∂

∂t
+ Ẋ · ∇+ v̇‖

∂

∂v‖

)
. (3.73)

The equation for 〈F 〉 is still dependent on the fast gyroangle via the cou-

pling term 〈Cgc[F̃ ]〉 but, as is explained in [40], if an approximate solution

of Eq. (3.72) is submitted into Eq. (3.71), the result will be

dR
dt
〈F 〉 = 〈Cgc[〈F 〉]〉+O(εν), (3.74)

where the small parameter εν = ν/Ω is the ratio of the characteristic

collision rate ν and the gyro frequency Ω.

In collisional kinetic theory [49] the ratioΔ = εB/εν is used to categorize

the different collisional regimes and, e.g., the classical collisional regime,
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where collisions dominate the magnetic field nonuniformity, is character-

ized by Δ 
 1. In neoclassical collisionless regime, which is highly rele-

vant for the tokamaks, one has Δ � 1. As the Vlasov part of the kinetic

equation is characterized by the magnetic field nonuniformity (εB) that

appears in the equations of motion, and because εν = εB/Δ, it is justi-

fied to include only the lowest order collision term in the equation for 〈F 〉,
so that the reduced guiding center kinetic equation in the neoclassical

regime becomes

∂〈F 〉
∂t

+ Żα∂〈F 〉
∂Zα

= − 1

J
∂

∂Zα

[
J

(
m〈Kα〉〈F 〉 −m2〈Dαβ〉∂〈F 〉

∂Zβ

)]
, (3.75)

where Zα = (X, v‖, μ) is now the reduced guiding center phase space, and

〈F 〉 is the distribution function in the reduced guiding center phase space.

From here on, the notation 〈F 〉 is dropped, and F refers to the reduced

guiding center distribution function.

3.6 Guiding center Coulomb drag and diffusion coefficients

Before presenting the stochastic differential equation that describes the

Hamiltonian and collisional guiding center motion, the gyroaverages for

the guiding center Coulomb drag, m〈Kα〉 = Kα
gc, and diffusion, m2〈Dαβ〉 =

Dαβ
gc , are needed. Instead of calculating the coefficients directly for the

phase space (X, v‖, μ) where the equations of motion are given, the coef-

ficients for a phase space (X, E , μ), originally calculated in Ref. [40], are

transformed into the desired phase space, as is done in Publication III.

To give an example of the averaging procedure, the calculation of KX
gc is

presented explicitly.

Evaluation of the expression

KX
gc = Ki

gcê
i = −m〈T −1gc K ·Δi〉êi = −m〈êiΔi · T −1gc vT −1gc ν〉, (3.76)

requires the spatial projection dyad êiΔi, together with the guiding center

transformations of the particle friction rate, T −1gc ν, and the particle veloc-

ity, T −1gc v. The transformation of the friction rate becomes simple because,

in the particle phase space, it is only a function of the particle energy.

As discussed during the derivation of the guiding center Lagrangian one

form, the particle energy matches the guiding center energy up to first

order in ε and, thus, one has

T −1gc ν = ν +O(ε2). (3.77)
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For the transformation of the particle velocity, one first notes that the

velocity is a time derivative of the position. Therefore, one can apply the

transformation rule given in Eq. (3.63) and write the guiding center trans-

formed particle velocity as

T −1gc v =

(
T −1gc

d

dt

)(
X+ ερ0 + ε2ρ1

)
=Ẋ+

(
Ẋ · ∇+ v̇‖

∂

∂v‖
+ ζ̇

∂

∂ζ

)(
ερo + ε2ρ1

)
=Ẋ+Ω

∂ρ0

∂ζ
+ ε

(
v‖b̂ · ∇	ρ0 +Ω

∂ρ1

∂ζ

)
+O(ε2).

(3.78)

Here, also the second order correction, ρ1, is needed because the equa-

tion of motion for ζ involves a term ε−1Ω. The spatial projection dyad is

evaluated with the help of the Poisson tensor giving

êiΔi =− êiΠiβ ∂

∂Zβ

(
X+ ερ0 + ε2ρ1 + ...

)
=− ε b̂

qB	
‖
× I− ε2 b̂

qB	
‖
×∇	ρ0 − ε2

Ω

qB	
‖
b̂
∂ρ1

∂v‖
+O(ε3),

(3.79)

and the spatial component for the guiding center friction vector becomes

KX
gc =ε

mνb̂

qB	
‖
×

(
Ẋ+Ω〈∂ρ0

∂ζ
〉+ εv‖b̂ · 〈∇	ρ0〉+ εΩ〈∂ρ1

∂ζ
〉
)

+ ε2
mνb̂

qB	
‖
× 〈∇	ρ0 ·

(
Ẋ+Ω

∂ρ0

∂ζ

)
〉

+ ε2
mν

qB	
‖
Ωb̂〈∂ρ1

∂v‖
·
(
Ẋ+Ω

∂ρ0

∂ζ

)
〉+O(ε3).

(3.80)

The gyroaverages 〈∂ρ0

∂ζ 〉, 〈∇	ρ0〉, and 〈∂ρ1

∂ζ 〉 are zero. The gyro-average

needed for the second last term,

〈∇	ρ0 ·
∂ρ0

∂ζ
〉 = ρ2oτ

2
b̂, (3.81)

is non-zero, but as this term is crossed with the magnetic field unit vec-

tor, the contribution to the spatial friction vector is zero. The last term

requires the expression for ρ1, which essentially is the second order term

in T −1gc x. By definition of T −1gc , one has

ρ1 =

(
1

2
L2
G1
− LG2

)
X

=−GX
2 −

1

2
Gζ

1

∂ρ0

∂ζ
− 1

2
Gμ

1

∂ρ0

∂μ
+

1

2
ρ0 · ∇ρ0,

(3.82)

and since ρ0 is independent of v‖, and
∂ρ0

∂ζ is perpendicular to ∂ρ0

∂μ , we have

∂ρ1

∂v‖
·
(
Ẋ+Ω

∂ρ0

∂ζ

)
=
∂GX

2

∂v‖
·
(
v‖b̂+Ω

∂ρ0

∂ζ

)
− 1

2

∂Gζ
2

∂v‖
ρ20Ω,

=−
2v‖
Ω

∂ρ0

∂ζ
· κ− ρ20a2 : ∇b̂+ ρ20Ω

mv‖
μB

b̂ · ∇b̂ · ∂ρ0

∂ζ

(3.83)
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Noting the relations (3.50) and (3.51), one sees that the gyro-average of

the above expression is zero, and the spatial component for the guiding

center friction vector becomes

KX
gc = ε

ν

Ω	
‖
b̂× Ẋ+O(ε3), (3.84)

where Ω	
‖ = qB	

‖/m.

The rest of the guiding center Fokker-Planck coefficients for the (X, E , μ)
phase-space are calculated in Ref. [40]. The explicit expressions for the

collisional (isotropic) diffusion coefficients are

DXX
gc = ε2

[
(D‖ −D⊥)

μB

2E +D⊥
]
I− b̂b̂

(mΩ	
‖)

2
+O(ε3), (3.85)

DEEgc =
2E
m
D‖ +O(ε2), (3.86)

Dμμ
gc = (1− ελ) 2μ

mB

[
(D‖ −D⊥)

μB

E +D⊥
]
+O(ε2), (3.87)

DXE
gc = −ε

D‖
m

b̂

Ω	
‖
× Ẋ+O(ε3), (3.88)

DXμ
gc = −ε μ

2mE (D‖ −D⊥)
b̂

Ω	
‖
× Ẋ+O(ε3), (3.89)

DEμgc = (2− ελ)D‖
μ

m
+O(ε2), (3.90)

and the collisional (isotropic) friction coefficients are

KX
gc = εν

b̂

Ω	
‖
× Ẋ+O(ε3), (3.91)

KEgc = −2νE +O(ε2), (3.92)

Kμ
gc = −(2− ελ)νμ+O(ε2), (3.93)

where in Eqs. (3.87), (3.90) and (3.93), λ = v‖τ/Ω is related to the magnetic

field-line twist.

To calculate the guiding-center friction and diffusion coefficients for the

phase-space (X, v‖, μ), the chain rule for a Poisson bracket, {F,Zβ} =

{F,Zα} ∂Zβ

∂Zα , is used which allows the new projection vectors to be writ-

ten in terms of the old ones according to Δβ = Δα ∂Zβ

∂Zα , and to obtain

Kα
gc = Kγ

gc

∂Zα

∂Zγ
, (3.94)

Dαβ
gc =

∂Zα

∂Zγ
Dγδ

gc

∂Zβ

∂Zδ
. (3.95)

It is then a simple task to calculate the partial derivatives between phase-

spaces Zα = (X, v‖, μ) and Zγ = (X, E , μ), and to obtain, from Eqs. (3.86)-
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(3.90), the new collisional diffusion coefficients

Dv‖v‖
gc =

D‖
m2

+ (1− ελ)
D⊥ −D‖

m2

μB

E +O(ε2), (3.96)

DXv‖
gc = ε2

v‖
(mΩ	

‖)
2
(D‖ −D⊥)

μB

2E ∇⊥ lnB

+ ε2
v‖

(mΩ	
‖)

2

[
D‖ +

μB

2E (D⊥ −D‖)
]
b̂ · ∇b̂+O(ε3), (3.97)

Dμv‖
gc = (1− ελ)

μv‖
mE (D‖ −D⊥) + ελ

μ

v‖m2
D‖ +O(ε2), (3.98)

where∇⊥ = (I− b̂b̂) ·∇, as well as, from Eqs. (3.92)-(3.93) the new friction

coefficient

Kv‖
gc = −νv‖ − ελ

μB

mv‖
ν +O(ε2), (3.99)

The other coefficients for DXX
gc , DXμ

gc , etc. remain unchanged.

3.7 Stochastic differential equation for a guiding center

The guiding center kinetic equation as it now stands

∂F

∂t
+ Żα ∂F

∂Zα
= − 1

J
∂

∂Zα

[
J

(
Kα

gcF −Dαβ
gc

∂F

∂Zβ

)]
, (3.100)

is not yet in a similar form as the particle kinetic equation was when the

connection to the stochastic differential equation was established. The

connection can be obtained, though, if the equations of motion appearing

in the guiding center kinetic equation are written in the divergence form,

and the diffusion term is written in two parts as was done in Publication

III. As a result, the guiding center kinetic equation can be written as

∂F
∂t

=− 1

J
∂

∂Zα
(JAαF) + 1

J
∂2

∂Zα∂Zβ

(
JDαβF

)
, (3.101)

where the coefficient Aα is

Aα = Żα +Kα +
1

J
∂

∂Zβ
(JDαβ). (3.102)

The stochastic differential equation for a phase-space coordinate Zα thus

becomes

dZα = Aα
gcdt+Σαβ

gc dWβ , (3.103)

where the matrix Σαβ
gc satisfies

Dαβ
gc =

1

2
Σαγ
gc Σ

βγ
gc , (3.104)
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and Wα are independent standard Wiener processes with zero mean and

variance t.

In particle phase-space, it was straight-forward to obtain the matrix σαβ

because the diffusion matrix could be easily diagonalized. In guiding-

center phase-space, the decomposition of Dαβ
gc , however, is not trivial. Use

of the eigenvalue decomposition, for example, requires that the units of

the components of Dαβ are equal. In Publication III, it was discussed

how the decomposition is carried out by writing the diffusion matrix as a

product of three matrices

Dαβ
gc = BαγYγνBνβ , (3.105)

where Bαβ is a diagonal matrix defined so that the entries of Yαβ have

equal units, and the eigenvalue decomposition is then conducted for the

matrix Yαβ. In principle, the components of Bαβ could be arbitrary, as long

as the units match the requirements but, in Publication III, the choice was

Bαβ =

⎛⎜⎜⎜⎝
|X|I 0

0

⎛⎝ v 0

0 E/B

⎞⎠
⎞⎟⎟⎟⎠ , (3.106)

which yielded the normalized matrix components

Yαβ =

⎛⎜⎜⎜⎝
DXX

|X|2
DXv‖
|X|v

B
E
DXμ

|X|
Dv‖X

|X|v
Dv‖v‖
v2

B
E
Dv‖μ
v

B
E
DμX

|X|
B
E
Dv‖μ
v

B2Dμμ

E2

⎞⎟⎟⎟⎠ . (3.107)

In a tokamak, the charged particle position never proceeds to the cen-

ter of the global coordinate system, and the kinetic energy, velocity, and

magnetic field strength are always positive quantities, making the choice

reasonable.

To construct a real-valued Σαβ
gc with eigenvalue decomposition, there is

yet another condition the diffusion matrix must satisfy: the matrix Yαβ

has to be positive semidefinite. In Publication III, it was shown that the

guiding center diffusion matrix has one eigenvalue that is zero, but an

explicit proof for the matrix to be positive semidefinite was not accom-

plished. Clear condition, in terms of the eigenvalues, was given though.

Here, the proof is provided for the first time by noting that the guiding

center transformation of the particle diffusion matrix

T −1gc D = T −1gc D‖
(T −1gc v)(T −1gc v)

T −1gc (v2)
+ T −1gc D⊥

(
I−

(T −1gc v)(T −1gc v)

T −1gc (v2)

)
(3.108)
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is positive semidefinite by definition, because T −1gc D‖ and T −1gc D⊥ are non-

negative (Lie-transformation is scalar invariant). This implies that for

any vector x, one has

x · (T −1gc D) · x ≥ 0. (3.109)

In particular, choosing x = PαΔα gives

0 ≤ PαΔα · (T −1gc D) ·ΔβP β = PαDαβP β . (3.110)

Calculating the gyro-average then yields

0 ≤ 〈PαDαβP β〉 = Pα〈Dαβ〉P β = PαDαβ
gc P

β , (3.111)

and further choosing Pα = Qα/Bαα reveals that

QαYαβQβ ≥ 0, (3.112)

which proves that both the gyroaveraged guiding center diffusion coeffi-

cient Dαβ
gc and the normalized matrix Yαβ are positive semidefinite. This

result proves that the eigenvalue decomposition will yield a real-valued

matrix Σαβ, and guarantees that the stochastic differential equation for

guiding center motion can be constructed.

The most evident result of the guiding center transformation of the par-

ticle collision operator is the appearance of spatial friction and diffusion

in addition to the conventional velocity space transport. In Publication

III, this was demostrated by making the assumption of uniform magnetic

field, and giving an explicit expression for the spatial diffusion. The result

dX =
√
2DX(I− b̂b̂) · WX, (3.113)

where the spatial diffusion coefficient is given by

DX = [(D‖ −D⊥)
μB

2E +D⊥]/[(mΩ	
‖)

2], (3.114)

is reported also in [50]. The results presented in Publication III, how-

ever, significantly differ from the previous studies. For the first time, the

collisional guiding center motion is derived consistently with the Hamil-

tonian motion including also the effects introduced by the magnetic field

nonuniformity.

3.8 A short summary of the guiding center transformation

In this chapter, the guiding center transformation was introduced, and

the rapid gyromotion present in the particle kinetic equation was isolated

48



Guiding center formalism

into variables that are not needed in following the evolution of the guiding

center kinetic equation. The isolation proceeded by first constructing the

Hamiltonian motion of the guiding center phase space to be independent

of the rapid gyroangle. Then, the particle kinetic equation was trans-

formed into guiding center phase space and the rapid gyromotion was ar-

gued irrelevant for the collisional part. As a result, a theoretical descrip-

tion of transport is obtained for a set of coordinates that offers significant

computational benefits compared to particle phase space, but manages

to avoid the shortcomings of orbit averaged methods: the guiding center

theory is not limited to regions of closed magnetic flux surfaces, nor to

axisymmetric magnetic fields.
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4. Fast ion modeling

The essential parts of the theory describing the neoclassical transport of

minority populations in tokamak plasmas was presented in the previous

chapters for both the particle and the guiding center phase space. How-

ever, plasmas exhibit much more complicated phenomena that affect the

minority particles. These include, e.g., the turbulence and MHD activ-

ity. In this Chapter, models that mimic the effects of these two important

transport mechanism are presented (see Publications I and II). The ba-

sic theory and these models are also implemented in Publication IV to

construct a comprehensive numerical tool for minority particle studies.

Finally, a summary of Publication V is given to demonstrate possible ap-

plications for both the theory and the code.

4.1 A model for anomalous radial diffusion

In the introduction, it was noted that the confinement in tokamaks is de-

termined not only by neoclassical transport (see chapters 2 and 3), but

also by turbulent fluctuations in the electromagnetic fields. Although it

is known that turbulence plays an important role, it cannot be inherently

included in minority particle studies because the evolution of the elec-

tric and magnetic fields would require simulating the entire plasma self-

consistently. Thus, the effect of the turbulence on the minority population

has to be approximated as an anomalous diffusive process. In Publication

I, a simple method to include anomalous processes into minority particle

studies was presented and, here, the publication is shortly summarized.

Assuming that an expression for a spatial diffusion coefficient D exists,

and that the flux of particles across some surface obeys Fick’s law, the

evolution of the distribution function due to this diffusive process is given
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by
∂f

∂t
=

∂

∂x
·
(
D
∂f

∂x

)
=

1
√
g

∂

∂ui

(
√
gDgij

∂f

∂uj

)
, (4.1)

where D is given in its natural units m2/s, √g is the Jacobian of the

curvilinear coordinates x = (u1, u2, u3) and the gij = ∇ui · ∇uj are the

components of the symmetric contravariant metric tensor. The motion of

a phase space coordinate ui is then given by the stochastic differential

equation

dui =
1
√
g

∂

∂uj
(√
gDgij

)
dt+ σijdβj , (4.2)

where σikσjk = 2Dgij . The matrix σij can always be constructed with an

eigenvalue decomposition of gij because the metric tensor is always posi-

tive semidefinite. If the stochastic differential equation is then integrated

with the Euler method, the step in ui is given by

Δui =
1
√
g

∂

∂uj
(√
gDgij

)
Δt+

√
Δtσijβj , (4.3)

where βj are now random numbers with unit variance and zero expecta-

tion, e.g., ±1.
At the time of writing Publication I, the author was not yet aware of the

connectiong between the Fokker-Planck equation and stochastic processes

and, instead of expressing the motion of the coordinate ui with Eq. (4.3),

it was assumed that the motion could be described with the evolution of

the expectation value and variance according to

Δui =
d

dt
E[ui]Δt±

√
d

dt
E[(ui − E[ui])2]Δt. (4.4)

This assumption then gave a step

Δui =
1
√
g

∂

∂uj
(√
gDgij

)
Δt±

√
2DgiiΔt, (4.5)

which, in general case, is wrong. Equation (4.3) clearly points out that

also the off-diagonal components of the metric tensor contribute to the

stochastic part. The step given by Eq. (4.5) contains only the diagonal

contribution and, thus, holds only for a coordinate system which is or-

thogonal.

Instead of just offering an expression for the displacement Δui, Publi-

cation I served a deeper purpose. Back in the 1980’s Boozer and Kuo-

Petravic presented their famous Monte Carlo calculations of the neoclas-

sical transport coefficients [51] in the limit of large aspect ratio (plasma

is almost a straight cylinder). To determine the transport coefficient they

52



Fast ion modeling

interpreted the motion of the test particle to be a result of a diffusion pro-

cess where the displacement of the particle position in the radial direction

would be given according to

Δu =
1

s

∂

∂u
(sDguu)Δt±

√
2DguuΔt, (4.6)

where s is the one dimensional differential volume element according to

dx = s(u)du. This operator was then adopted in test particle codes to

model anomalous processes. Now, that most of the tokamaks do not satisfy

assumption of large aspect ratio, the old step given by Eq. (4.6) should not

be used but, instead, the proper step is given by Eq. (4.3).

The difference between the models was explicitly shown in Publication

I using simple toroidal coordinates (r, θp, φ) that relate to cylindrical coor-

dinates (R,φ, z):

R = R0 + r cos θp, z = r sin θp. (4.7)

The metric tensor becomes diagonal with non-zero elements

grr = 1, gθpθp =
1

r2
, gφφ =

1

R2
, (4.8)

and the Jacobian is J = Rr. The one-dimensional Jacobian in Eq. (4.6) is

obtained integrating over θp and φ, giving s(r) = 4π2R0r. With a constant

diffusion coefficient D, the old and new operators then become

Δrold =
1

r
DΔt±

√
2DΔt, (4.9)

Δrnew =

(
1 +

cos θp
R0
r + cos θp

)
1

r
DΔt±

√
2DΔt (4.10)

In the cylindrical limit, with large aspect ratio R0/r � 1, the cosine terms

in the new model can be safely ignored and the old model is recovered.

However, in a tokamkak with finite aspect ratio, neglecting the cosine

terms would lead to particle density that does not obey the diffusion equa-

tion (4.1). The purpose of the publication was thus to show explicitly, that

care should be taken when applying anomalous diffusion in test particle

simulations, and that the model presented in [51] should no longer be

used.

4.2 MHD modes for fast ion transport studies

Energetic particles play a significant role in providing heating and cur-

rent drive in reactor-scale tokamak plasmas [52, 53, 54], but they can
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also drive magnetohydrodynamical (MHD) instabilities like Alfvén Eigen-

modes (AEs) [17, 18, 19]. These instabilities act back on the energetic

particles, resulting in transport of particles and energy. Studies investi-

gating the redistribution of energetic ions in the presence of toroidal AEs

(TAEs) and neoclassical tearing modes (NTMs) have been carried out but,

typically, they have suffered of limitations: the studies on wave-particle

interaction using orbit-following codes are either restricted to the main

plasma, and to an axisymmetric magnetic background [55], or to the time-

independent approximation of the slowly rotating modes, like the neoclas-

sical tearing modes (NTMs) [56]. Calculation of fast ion power loads on

PFCs, however, requires accurate modelling of the background magnetic

field and particle following beyond all the way to the wall.

In Publication II, a model is developed to overcome these limitations.

The paper introduces a method that facilitates combining time-dependent

MHDmodes and a realistic 3D magnetic field, yet allowing orbit-following

up to the first wall with either guiding-center or full-orbit formalism. The

model considered in Publication II mimics the actual helical nature of the

MHD modes that appear on some of the so-called resonant magnetic sur-

faces where the field line itself after n rotations to toroidal direction andm

rotations in poloidal direction. The model uses a similar parametrization

as earlier works [39, 57] but, instead of relying on the straight field-line

coordinates in orbit-following, the equations of motion are expressed in

general Cartesian or curvilinear coordinates.

The modes are introduced as perturbations in the magnetic vector po-

tential and in the electric scalar potential, and the perturbations are in-

cluded into the particle’s Hamiltonian motion by adding the magnetic

perturbation into the symplectic part of both the particle and guiding

center Lagrangian, and the electric perturbation into the Hamiltonian.

Following the earlier approaches, the perturbation in the magnetic vector

potential is taken to be parallel to the unperturbed magnetic field, i.e.,

Ã = α(x, t)B. This corresponds to a perturbation in the radial direction,

as in low-β Alfvén waves or NTMs. If the helical structure of the magnetic

perturbation is rotating, an electric perturbation Φ̃ is induced according

to the Maxwell’s equations. This is the case for fast rotating modes, such

as TAEs. Typically the perturbation parameters α and Φ̃ are decomposed

into terms consisting of a product of a radial profile and a rotating angular
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part:

α =
∑
nm

αnm(ψp) sin (nφ−mθ − ωnt), (4.11)

Φ̃ =
∑
nm

Φ̃nm(ψp) sin (nφ−mθ − ωnt), (4.12)

where ψp is the radial flux surface coordinate (the poloidal magnetic flux),

and θ and φ are the poloidal and toroidal angle variables, respectively. The

definitions for the angles may vary depending on the implementation.

The radial profiles are particular to each (m,n)-mode. They can be given

by purely theoretical expressions [58], theory-motivated parametrizations

[59] or numerical estimates [55], and they define the amplitude of the

perturbed fields. Thus, regardless of the method for obtaining the radial

profiles, the profiles should be adjusted so that the resulting error fields

match the experimental observations. The perturbation causes an island-

like structures to the magnetic field line and the width of these islands

can be measured by, e.g., ECE imaging, and they are proportional to the

square root of the perturbation amplitude. In addition to the main island

located at the resonance surface, there will be a multitude of harmonic

resonances with smaller island widths. Also the widths and locations of

these islands can be deduced from the experiments, helping to restrict the

set of valid parameter values. Moreover, the perturbation amplitude can

be measured by magnetic pick-up coils.

To demonstrate that the method presented in Publication II produces is-

land structures that mimic the structures of the MHD modes, low-energy

test particles (1 keV protons) with velocities parallel to the magnetic field

were traced in the presence of NTM perturbations. The Poincaré plot of

the test particle orbits in the presence of (m,n)-modes (3,2), (2,1), and (3,1)

is presented in Figs 4.1. The structures of each mode are clearly visible,

as are some harmonics appearing closer to separatrix.

For a comparison to the previous methods, a separate study was con-

ducted where the perturbation field was evaluated beforehand and tab-

ulated into the magnetic background input file. The resulting Poincaré

plot is presented in Fig. 4.2, and one can conclude that no visible differ-

ence appears between the new and old methods. In Publication II, also

the time-dependent model for TAEs was tested out and benchmarked to

an axisymmetric code HAGIS [57]. The results agreed well.

Unlike previous approaches, the work presented in Publication II easily

accommodates to non-axisymmetric magnetic fields (toroidal ripple, exter-

nal coils, TBM’s etc). Later, in this thesis, the model is used for estimating
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Figure 4.1. A Poincaré plot of test particle orbits in the presence of NTMs. The perturba-
tion is implemented according to the method described in Publication II and
the particle orbits are calculated using cylindrical coordinates.

Figure 4.2. A Poincaré plot of test particle orbits in the presence of NTMs. The pertur-
bation is evaluated before hand and added to the magnetic background input
file. Hardly any differences can be found compared Fig. 4.1.
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the alpha-particle transport in ITER due to relevant MHD activity. Be-

fore such a, a complete tool for solving the distribution function has to be

developed.

4.3 ASCOT: a tool to solve the kinetic equation

In chapter two, the connection between a kinetic Fokker-Planck equation

and a stochastic differential equation was established. This connection

guarantees that following the trajectories of test particles or guiding cen-

ters according to the corresponding stochastic differential equations offers

a solution to the kinetic Fokker-Planck equation, and that the solution is

the statistical average of the phase space trajectories. The newest version

of ASCOT code, which is described in detail in Publication IV, does exactly

this. It numerically integrates the stochastic trajectories and records the

paths into a multidimensional grid, thus, solving the distribution function

for the minority population.

Although based on the very first principles, the code is highly sophis-

ticated one. Engineering-wise, it has a cabability of handling a full 3-D

magnetic field, and the simulation regime is typically limited by a sur-

face constructed from triangular or quadrilateral elements representing

the first wall of the tokamak device. These features allow accurate mod-

eling of the magnetic field and the wall which both are crucial if one is

interested in, for example, estimating fast ion power loads on the first

wall: Local perturbations in the magnetic field affect the orbit losses, and

protruding structures on the wall are more vulnerable to heat flux from

plasma than the elements further away. In Figs. 4.3(a) and 4.3(b) that

present the fast ion power load in ITER for both purely axisymmetric

and 3-D toroidally rippled magnetic field, the importance of accurately

modelling the magnetic field and wall becomes obvious. The detailed de-

scription of the wall was also one of the main features that lead to the

discoveries published in [60, 61].

Regarding pure computational power, ASCOT solves a problem that has

practically ideal multiprocessor scalability. Because the test particles or

guiding centers do not interact with each other, each of them can be sim-

ulated by harnessing the power of one core completely. Typically, studies

conducted with the code run with 28–215 cores. More can be used if avail-

able but the code can run also with just one core on a regular desktop.

Support exists for two complementary mechanisms for executing paral-
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Figure 4.3. A plot of the alpha-particle power load on the first wall elements in ITER old
scenario 4 with an axisymmetric magnetic field (left) and with the toroidal
ripple included (right). Notice the different colors on the limiter tiles between
the two figures.

lel work, one for high performance computing (HPC) via MPI [62] and

another for high throughput computing (HTC) via HTCondor distributed

computing software [63]. The former is used in the supercomputer envi-

ronment, while the latter exploits idling workstations.

Theorywise, the code stands out from the rest. The conventional way

of solving the kinetic equation including collisional effects is not the one

presented in Chapters 2 and 3 in this thesis. The guiding center trans-

port studies (see, e.g., Refs. [9, 10, 51, 64, 65, 66, 65] to mention some)

typically apply a collision operator that has not been transformed to the

guiding center phase space and, strictly speaking, is valid only for the par-

ticle phase space. This automatically leads to the loss of the spatial trans-

port that arises when the transformation to guiding center phase space

is done. It is also common to use different phase space coordinates for

the Hamiltonian and collisional parts when solving the kinetic equation

with stochastic methods, although it was explicitly shown in Chapters 2

and 3 that both the Hamiltonian and collisional motion contribute to the

very same phase space coordinates. In the new version of ASCOT, the

kinetic equation is solved by the book using the methods summarized in

this thesis.

As the code is often used to gather information from fast ions, it has

an in-built capability to initialize test particles that represent the actual

particles. The sources include energetic ions and neutrons from fusion re-

actions, as well as ions generated by neutral beam injection (NBI) or ion

cyclotron resonance heating (ICRH). The fusion product source is calcu-

lated according to the densities of the reacting particle species and cross

sections provided by Bosch and Hale [67]. Four different reactions have
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been implemented: D(d,n)3He, D(d,p)T, T(d,n)α and 3He(d,P)α. The model

for the NBI source is beamlet-based and, to generate an NBI test particle,

a neutral particle from a random beamlet is chosen and assigned a veloc-

ity in the direction of the beamlet, offset by a usually bi-gaussian disper-

sion. The neutral is then advanced along its velocity vector until it either

hits an obstacle or gets ionized. In the ionization location, a test particle

is recorded. The NBI model is benchmarked and will be published later.

Accurate modeling of the ICRH ions would require self-consistent simula-

tions taking into account the wave field caused by the ICRH antenna and

its interaction with the plasma [68, 69, 70, 71, 72]. The ICRH ion source

model in ASCOT, however, is an approximation where the ICRH accel-

erated ions are obtained assuming that the distribution of ICRH ions is

peaked roughly at the magnetic axis with a finite half-width responsible

for spreading in the radial coordinate ψp . In addition, the ICRH ions

will have the banana turning points at places where the frequency of the

ICRH wave, ω, meets the resonance condition, ω = nΩ, for the nth har-

monic of the wave field. As Ω is proportional to the magnetic field B,

which is roughly a function of the inverse major radius 1/R, this creates

an additional condition, and the ICRH distribution will be roughly limited

to certain resonant major radius rather than spreading freely in ψp.

ASCOT can be used also for modelling impurity transport. The code has

been applied to, e.g., simulating trace element injection experiments [60,

61]. In contrast to fast particles, however, impurities in the SOL have

typically very low energies (of the order of 1–100 eV). As typical flow ve-

locities of Mach 0.5–1 have been measured in the SOL region of various

tokamaks [73], the flows have significant effect on the long range trans-

port of the low energy impurities. Additionally, the charge state of impu-

rity particles can change significantly during simulations, which further

affects their transport. Thus, the code has been enhanced to include also

a model for plasma flows and for effective ionization and recombination

according to the reaction rates imported from the ADAS database [74].

At the time of writing, data for carbon, beryllium, tungsten and nitrogen

have been imported into the code.

Though the primary task for the code is to produce the minority parti-

cle distribution function, it provides the user also with various moments

of the actual distribution. These moments are recorded during the sim-

ulation and can have up to six dimensions. Dimensions common to all

are time and test particle species. The remaining are used for the desired
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phase space coordinates or quantities. The most important profiles avail-

able include the particle density, energy density, parallel energy density,

parallel current, toroidal current, collisional power deposition, collisional

torque deposition, and toroidal j × B torque. The collisional power and

torque depositions depending on the interactions with the background are

produced separately for each background species. For compatibility with

the 1-D transport codes, any distribution can be produced as a function of

the radial coordinate ψp or, alternatively, in a cylindrical (R, z)-grid, and

the actual distribution function is available in four phase space dimen-

sions (R, z, v‖, v⊥) or (R, z, ξ, E), where ξ = v‖/v is the pitch-angle cosine.

An example of an NBI slowing down distribution function is shown in

Fig. 4.4.
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Figure 4.4. An example of an NBI slowing-down distribution function produced by AS-
COT for a JET-like tokamak. One spatial position (R = 3.55, z = 0.19375) at
outer midplane was chosen for presenting the structure of the velocity space.

The older version of the code had been used in various tasks [75, 76, 77,

78, 79] and, especially, to estimate the fast ion transport in ITER [11, 12,

13]. As the new code includes also the model for accounting the effects of

MHD modes, the modes ITER is known to be prone to, it can be used to

complement the previous studies for ITER to estimate the fast ion trans-

port resulting from an interplay between 3-D magnetic field and MHD

activity. Next, such an application of the new ASCOT code is presented

and the results summarized.
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4.4 Transport of alpha-particles in ITER under MHD activity

Gorelenkov andWhite have recently studied the effect of TAEs in ITER on

both fusion alphas and NBI ions [80]. The analysis, however, was limited

inside the main plasma, which can lead to overestimating the losses as

some of the particles will re-enter the plasma. Their model for the toroidal

ripple was an analytic fit to data, neglecting the ferritic inserts (FIs) and

test blanket modules (TBMs). Very similar work was done also by Van

Zeeland et al [81] to study the effect of TAEs in both DIII-D and ITER.

Also this study neglected the details of 3D magnetic field. The effect of

the local perturbations, however, can be significant [11, 12, 13] and, thus,

a study including both the MHD activity (NTMs and TAEs) and the effects

of FIs and TBMs was found necessary.

The detailed results of this study are presented in Publication V and

here only main observations are reviewed. The effect of the NTMs on the

alpha particles was studied in the 15 MA H-mode scenario, including both

(3,2) and (2,1) modes, one at a time. The NTMs were assumed stationary

as the rotation frequency is low. The effect of TAEs was studied in the

9 MA advanced scenario, concentrating on the most unstable mode n =

5. The eigenfunctions (the radial profiles) for the various poloidal mode

numbers were calculated by the LIGKA code [82], and the frequency of

the mode was 51.5 kHz.

Since efficient means to reduce the sizes of the NTMs have been devel-

oped [83, 84], the most important NTM-related question to be addressed

was how large the perturbation amplitude could be if the wall power load

density was to remain within the design limits [85], i.e., within 0.5MW/m2

on the main the wall and 20 MW/m2 in the divertor area. First, scan-

ning the total alpha particle wall power load as a function of the pertur-

bation amplitude, a strong correlation was found, as illustrated in fig-

ures 4.5(a) and 4.5(b). Even with the largest perturbation amplitude,

however, the wall power load densities (see Fig. 5 in Publication V) where

found to remain within the design limits. In fact, if one is to use ECCD

as a tool to mitigate the NTMs, the relevant operation regime would be

δB/B < 0.75 · 10−2 confirming that the NTMs should not pose a threat to

the integrity of the PFCs from the alpha particle point of view.

The study of TAEs supported the earlier studies [80, 81], revealing that

the wall power load would not be increased significantly compared to the

MHD quiescent case. It should be noted, though, that in Publication V
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Figure 4.5. The total alpha particle wall power load vs. perturbation amplitude for a) the
(3,2) NTM, and b) the (2,1) NTM. As the NTMs are expected to be mitigated in
ITER, the relevant operation region will correspond to the first three bullets.

only one toroidal mode and amplitude was used in the simulations, and

that the mode selected was the most unstable from the MHD point of view.

It, however, might not be the most detrimental one considering the fast

ion confinement.

Although no significant effect from TAEs on the wall power load was

found, redistribution inside the plasma was observed. The relative dif-

ference in alpha particle density with and without the n = 5 TAEs is

presented in Fig. 4.6(a). Side by side with the change in the density, the

magnetic field perturbation strength in Fig. 4.6(b) reveals a clear corre-

lation between the transport and the mode structures: the modes appear

to push a portion of the alpha particles outwards from the very core of

the plasma. More importantly, the specific shape of the red region in

Fig. 4.6(a) suggests that the density increase could be a result of increase

especially in the passing particles. To verify the assumption, the velocity

space distribution is presented in Fig. 4.7 and, indeed, particles are found

to experience transport from trapped to passing ones.

As the total plasma density is much higher than the density of fusion

products, even changes of up to 10 % in the alpha particle density do not

sound alarming considering the total density. The redistribution of alpha

particles especially in the core region, however, directly affects also the

alpha heating profile. In Publication V, the power to plasma provided

by alphas was observed to reduce up to 10 % in the core, and similar

increase was observed a bit further away from the core mimicking the

density changes in Fig. 4.6(a). In ITER, the alpha particles are assumed

to provide a significant amount of the total heating power and, therefore,
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Figure 4.6. (a) The relative change in the simulated alpha particle density brought about
by the n = 5 TAE modes. (b) A 2D map of the magnetic perturbation strength
given as a fraction of the background magnetic field strength. A clear corre-
lation between (a) and (b) is observed.
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Figure 4.7. The relative difference of the histogram showing the particle pitch and en-
ergy for the slowing down time with and without the n=5 TAE. There is a
clear velocity-space redistribution from trapped to passing particles.

such a change in the power deposition could lead to local changes in the

temperature profile. The change in the temperature profile would then

affect the source of the fusion products and possibly also the spectrum of

the MHD modes excited by the fusion products. The results presented

in Publication V thus suggest that a more precise investigations, prefer-

ably self-consistent ones, should be initiated on this matter.
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5. Summary and future prospects

In this thesis, the basic theory behind Monte Carlo simulations of minor-

ity populations in tokamak plasmas was discussed at a rather detailed

level. In the beginning of chapter 2, an explicit proof of the connection

between stochastic processes and the kinetic Fokker-Planck equation was

presented to offer a method for solving the kinetic equation in terms of

Monte Carlo simulations. In the end of chapter 2, the necessary expres-

sions to address the kinetic equation of charged particles were given.

Chapter 3 then continued the theoretical treatment by introducing the

guiding center formalism that can be used to eliminate the fast gyromo-

tion from the particle kinetic equation. Since the derivation of the guid-

ing center theory is typically not addressed in dissertations, it was de-

cided that the discussion should proceed in a detailed level. In particular,

because the stochastic differential equation describing both the Hamilto-

nian and collisional motion of a guiding center was derived for the first

time in Publication III, the details of the most important steps were given

explicitly. Together, the chapters 2 and 3 now provide a solid consistent

theoretical basis for anyone interested in the minority particle studies.

The basic theory was then replenished in Chapter 4 with models for

anomalous diffusion and MHD modes presented in Publications I and II

and, finally, applied to conduct a numerical study of fusion born alpha

particles in ITER with the tool develop in Publication IV. The results

from the study were presented in Publication V and confirmed that the re-

distribution caused by neoclassical tearing modes would not comprimise

the integrity of the plasma facing components, if the modes are mitigated

early enough. The study, however, pointed out that more thorough inves-

tigations of the effects of Alfvén Eigenmodes should be carried out. The

observed redistribution of alphas in the plasma core changes the power

deposition to the main plasma and affects the internal heating mecha-
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nism. As ITER is to demonstrate the feasibility of fusion produced energy

on Earth, every megawatt of lost heating power makes the goal more dif-

ficult to achieve. Therefore, it should be verified that the change in the

alpha heating power caused by the modes would not lead to further al-

pha transport: If the heating power changes according to the results pre-

sented in Publication V the temperature profile could experience a similar

change, and a part of the alphas now born in the very core of the plasma

would be born further away from the core. The change in the fast al-

pha population could then change the spectra of the excited MHD modes

which could, in turn, push the alphas even further out from the core. Fu-

ture studies are thus needed to confirm that this cycle would not happen.
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A. Exterior calculus on differential
forms

A differential form ωk of the order k, referred to as k-form, is defined

ωk =
1

k!
ωi1,i2,...,ikdz

i1 ∧ dzi1 ∧ ... ∧ dzik , (A.1)

where d denotes the exterior derivative, ωi1,i2,...,ik is antisymmetric and ∧
is the wedge product. The wedge product, being a generalization of a cross

product ×, is skew commutative: A wedge product of a k-form ωk and an

l-form Ωl satisfies

ωk ∧ Ωl = (−1)klΩl ∧ ωk, (A.2)

and the wedge of two identical k-forms is zero

ωk ∧ ωk = 0. (A.3)

A scalar field f(z) is an example of a 0-form and the differential of the

scalar field, df = ∂αfdz
α, is an example of a 1-form. Thus, for example,

the differential of a Lagrangian action clearly is a one-form.

The exterior derivative of a differential form is constructed using the

identity d2 = 0, the product rule for a k-form ωk and an l-form Ωl

d (ωk ∧ Ωl) = (dωk) ∧ Ωl + (−1)kωk ∧ (dΩl) , (A.4)

and the exterior derivative of a one-form

d (ωαdz
α) =dωα ∧ dzα

=∂βωαdz
β ∧ dzα

=
1

2
(∂αωβ − ∂βωα) dz

α ∧ dzβ .

(A.5)

Using these expressions it is then possible to calculate the exterior deriva-

tive of any differential form. The property that the second exterior deriva-

tive, d2, of any k-form, ωk, is zero, can be most easily demonstrated for a
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zero-form by direct calculation

df =∂αfdz
α (A.6)

d2f =
1

2

(
∂2αβf − ∂2βαf

)
dzα ∧ dzβ = 0, (A.7)

and, in a three dimensional space, this corresponds to the identity ∇ ×
∇f = 0.

The contraction operator iG defined with a vector field G, is a general-

ization of a directional derivative. Operating on a k-form, the contraction

reduces the order to (k−1). The contraction of a wedge product of a k-form

ωk and an l-form Ωl is defined by

iG · (ωk ∧ Ωl) = (iG · ωk) ∧ Ωl + (−1)kωk ∧ (iG · Ωl) , (A.8)

and given the contraction of a one-form according to

iG · ω1 =iG · (ωαdz
α) (A.9)

=Gαωα, (A.10)

the operation iG · ωk can be constructed iteratively. One should note that

the contraction of a zero form is zero.

The Lie-derivative of a k-form ωk is calculated according to the Cartan

identity

LGωk = iG · dωk + d (iG · ωk) . (A.11)

Thus, the Lie-derivative of a scalar field is simply the contraction of the

related one-form according to

LGf = iG · df = Gα∂αf (A.12)

and the Lie-derivative of a one-form ω1 = ωαdz
α, needed in this thesis, is

given by

LGω1 = Gβ (∂βωα − ∂αωβ) dz
α + d (Gαωα) . (A.13)

For example, in a three dimensional space with ω1 = C · dX, the Lie

derivative is

LGω1 = −G×∇×C · dX+ d (G ·C) . (A.14)

68



Bibliography

[1] M Keilhacker, G Becker, K Bernhardi, A Eberhagen, M ElShaer, G FuB-
mann, O Gehre, J Gernhardt, G v Gierke, E Glock, G Haas, F Karger,
S Kissel, O Kluber, K Kornherr, K Lackner, G Lisitano, G G Lister, J Massig,
H M Mayer, K McCormick, D Meisel, E Meservey, E R Muller, H Murmann,
H Niedermeyer, W Poschenrieder, H Rapp, B Richter, H Rohr, F Ryter,
F Schneider, S Siller, P Smeulders, F Soldner, E Speth, A Stabler, K Stein-
metz, K-H Steuer, Z Szymanski, G Venus, O Vollmer, and F Wagner. Con-
finement studies in L and H-type Asdex discharges. Plasma Physics and
Controlled Fusion, 26(1A):49–63, January 1984.

[2] E. J. Doyle, R. J. Groebner, K. H. Burrell, P. Gohil, T. Lehecka, Jr. N. C. Luh-
mann, H. Matsumoto, T. H. Osborne, W. A. Peebles, and R. Philipona. Mod-
ifications in turbulence and edge electric fields at the L–H transition in the
DIII-D tokamak. Physics of Fluids B: Plasma Physics, 3(8):2300–2307, Au-
gust 1991.

[3] J. Stober, M. Maraschek, G.D. Conway, O. Gruber, A. Herrmann, A.C.C.
Sips, W. Treutterer, H. Zohm, and ASDEX Upgrade Team. Type II ELMy
H modes on ASDEX Upgrade with good confinement at high density. Nu-
clear Fusion, 41(9):1123–1134, September 2001.

[4] W Suttrop. The physics of large and small edge localized modes. Plasma
Physics and Controlled Fusion, 42(5A):A1–A14, 2000.

[5] W. Suttrop, T. Eich, J.C. Fuchs, S. Günter, A. Janzer, A. Herrmann,
A. Kallenbach, P. T. Lang, T. Lunt, M. Maraschek, R. M. McDermott,
A. Mlynek, T. Pütterich, M. Rott, T. Vierle, E. Wolfrum, Q. Yu, I. Zammuto,
H. Zohm, and the ASDEXUpgrade Team. First observation of edge localized
modes mitigation with resonant and nonresonant magnetic perturbations
in asdex upgrade. Phys. Rev. Lett., 106:225004, 2011.

[6] W Suttrop, L Barrera, A Herrmann, R M McDermott, T Eich, R Fischer,
B Kurzan, P T Lang, A Mlynek, T Pütterich, S K Rathgeber, M Rott,
T Vierle, E Viezzer, M Willensdorfer, E Wolfrum, I Zammuto, and the AS-
DEX Upgrade Team. Studies of edge localized mode mitigation with new
active in-vessel saddle coils in asdex upgrade. Plasma Physics Controlled
Fusion, 53(12):124014, 2011.

[7] K. Shinohara, T. Kurki-Suonio, D. Spong, O. Asunta, K. Tani, E. Strum-
berger, S. Briguglio, T. Koskela, G. Vlad, S. Günter, G. Kramer, S. Putvin-
ski, K. Hamamatsu, and ITPA Topical Group on Energetic Particles. Effects

69



Bibliography

of complex symmetry-breakings on alpha particle power loads on first wall
structures and equilibrium in ITER. Nuclear Fusion, 51(6):063028, 2011.

[8] K. Tani, K. Shinohara, T. Oikawa, H. Tsutsui, S. Miyamoto, Y. Kusama, and
T. Sugie. Effects of ELM mitigation coils on energetic particle confinement
in ITER steady-state operation. Nuclear Fusion, 52(1):013012, 2012.

[9] K. Shinohara, K. Tani, T. Oikawa, S. Putvinski, M. Schaffer, and A. Loarte.
Effects of rippled fields due to ferritic inserts and ELM mitigation coils on
energetic ion losses in a 15 MA inductive scenario in ITER. Nuclear Fusion,
52(9):094008, 2012.

[10] K. Tani, K. Shinohara, T. Oikawa, H. Tsutsui, S. Miyamoto, Y. Kusama, and
T. Sugie. Effects of elm mitigation coils on energetic particle confinement in
iter steady-state operation. Nuclear Fusion, 52(1):013012, 2012.

[11] T. Kurki-Suonio, O. Asunta, T. Hellsten, V. Hynönen, T. Johnson, T. Koskela,
J. Lönnroth, V. Parail, M. Roccella, G. Saibene, A. Salmi, and S. Sipilä.
ASCOT simulations of fast ion power loads to the plasma-facing components
in ITER. Nuclear Fusion, 49(9):095001, 2009.

[12] T. Kurki-Suonio, O. Asunta, E. Hirvijoki, T. Koskela, A. Snicker, T. Hauff,
F. Jenko, E. Poli, and S. Sipilä. Fast ion power loads on ITER first wall
structures in the presence of NTMs and microturbulence. Nuclear Fusion,
51(8):083041, 2011.

[13] A. Snicker, S. Sipilä, and T. Kurki-Suonio. Orbit-following fusion alpha wall
load simulation for ITER scenario 4 including full orbit effects. Nuclear
Fusion, 52(9):094011, 2012.

[14] JET Team (prepared by G.T.A. Huysmans). Observation of neoclassical tear-
ing modes in JET. Nuclear Fusion, 39(11Y):1965, 1999.

[15] R J Buttery, S Günter, G Giruzzi, T C Hender, D Howell, G Huysmans,
R J La Haye, M Maraschek, H Reimerdes, O Sauter, C D Warrick, H R
Wilson, and H Zohm. Neoclassical tearing modes. Plasma Physics and
Controlled Fusion, 42(12B):B61, 2000.

[16] M. García-Muñoz, P. Martin, H.-U. Fahrbach, M. Gobbin, S. Günter,
M. Maraschek, L. Marrelli, H. Zohm, and the ASDEX Upgrade Team. Ntm
induced fast ion losses in asdex upgrade. Nuclear Fusion, 47(7):L10–L15,
July 2007.

[17] G. Y. Fu, R. Nazikian, R. Budny, and Z. Chang. Alpha particle-driven
toroidal alfvén eigenmodes in tokamak fusion test reactor deuterium–
tritium plasmas: Theory and experiments. Physics of Plasmas (1994-
present), 5(12):4284–4291, 1998.

[18] C.Z Cheng, Liu Chen, and M.S Chance. High-n ideal and resistive shear
alfvén waves in tokamaks. Annals of Physics, 161(1):21 – 47, 1985.

[19] W. W. Heidbrink, E. J. Strait, M. S. Chu, and A. D. Turnbull. Observation
of beta-induced alfvén eigenmodes in the diii-d tokamak. Phys. Rev. Lett.,
71:855–858, Aug 1993.

[20] J. D. Huba. NRL Plasma Formulary. Naval Research Laboratory, Washing-
ton, D.C., 2006.

70



Bibliography

[21] J D Lawson. Some criteria for a power producing thermonuclear reactor.
Proceedings of the Physical Society. Section B, 70(1):6, 1957.

[22] R.B. White. The Theory of Toroidally Confined Plasmas. Imperial College
Press, 2006.

[23] Allan N. Kaufman. Quasilinear diffusion of an axisymmetric toroidal
plasma. Physics of Fluids (1958-1988), 15(6):1063–1069, 1972.

[24] Ira B. Bernstein and K. Molvig. Lagrangian formulation of neoclassical
transport theory. Physics of Fluids (1958-1988), 26(6):1488–1507, 1983.

[25] F. S. Zaitsev, M. R. O’Brien, and M. Cox. Three-dimensional neoclassi-
cal nonlinear kinetic equation for low collisionality axisymmetric tokamak
plasmas. Physics of Fluids B: Plasma Physics (1989-1993), 5(2):509–519,
1993.

[26] L.-G. Eriksson and P. Helander. Monte carlo operators for orbit-averaged
fokker–planck equations. Physics of Plasmas (1994-present), 1(2):308–314,
1994.

[27] V. A. Yavorskij, Zh. N. Andrushchenko, J. W. Edenstrasser, and V. Ya
Goloborod’ko. Three-dimensional fokker–planck equation for trapped fast
ions in a tokamak with weak toroidal field ripples. Physics of Plasmas,
6(10):3853–3867, 1999.

[28] J. Decker, Y. Peysson, A. J. Brizard, and F.-X. Duthoit. Orbit-averaged
guiding-center fokker–planck operator for numerical applications. Physics
of Plasmas (1994-present), 17(11):112513, 2010.

[29] Robert G. Littlejohn. A guiding center hamiltonian: A new approach. Jour-
nal of Mathematical Physics, 20(12):2445–2458, 1979.

[30] Robert G. Littlejohn. Hamiltonian perturbation theory in noncanonical co-
ordinates. Journal of Mathematical Physics, 23(5):742–747, 1982.

[31] Robert G. Littlejohn. Variational principles of guiding centre motion. Jour-
nal of Plasma Physics, 29:111–125, 2 1983.

[32] Alain J. Brizard. Nonlinear gyrokinetic vlasov equation for toroidally rotat-
ing axisymmetric tokamaks. Physics of Plasmas (1994-present), 2(2):459–
471, 1995.

[33] John R. Cary and Alain J. Brizard. Hamiltonian theory of guiding-center
motion. Rev. Mod. Phys., 81:693–738, May 2009.

[34] Theodore G. Northrop. The guiding center approximation to charged parti-
cle motion. Annals of Physics, 15(1):79 – 101, 1961.

[35] Theodore G. Northrop. Adiabatic charged-particle motion. Reviews of Geo-
physics, 1(3):283–304, 1963.

[36] A. I. Morozov and L. S. Solovev. The structure of magnetic fields. In M. A.
Leontovich, editor, Reviews of Plasma Physics, volume 2, pages 1–101. Con-
sultants Bureau, New York, 1966.

[37] H. Vernon Wong. Hamiltonian formulation of guiding center motion and
of the linear and nonlinear gyrokinetic equation. Physics of Fluids (1958-
1988), 25(10):1811–1820, 1982.

71



Bibliography

[38] R. B. White, A. H. Boozer, and Ralph Hay. Drift hamiltonian in magnetic
coordinates. Physics of Fluids (1958-1988), 25(3):575–576, 1982.

[39] R. B. White and M. S. Chance. Hamiltonian guiding center drift orbit calcu-
lation for plasmas of arbitrary cross section. Physics of Fluids (1958-1988),
27(10):2455–2467, 1984.

[40] Alain J. Brizard. A guiding-center fokker–planck collision operator for
nonuniform magnetic fields. Physics of Plasmas, 11(9):4429–4438, 2004.

[41] S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev. Mod.
Phys., 15:1–89, Jan 1943.

[42] Marshall N. Rosenbluth, William M. MacDonald, and David L. Judd.
Fokker-planck equation for an inverse-square force. Phys. Rev., 107:1–6,
Jul 1957.

[43] A. Kolmogoroff. Über die analytischen methoden in der wahrscheinlichkeit-
srechnung. Mathematische Annalen, 104(1):415–458, 1931.

[44] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergeb-
nisse der Mathematik und Ihrer Grenzgebiete. Julius Springer, 1933.

[45] B. Øksendal. Stochastic Differential Equations: An Introduction with Ap-
plications. Hochschultext / Universitext. Springer, 2003.

[46] V. I. Arnold. Mathematical Methods of Classical Mechanics, 2nd. ed. Grad-
uate text in mathematics. Springer-Verlag Pub. Co., 1989.

[47] H. Goldstein. Classical mechanics. Addison-Wesley series in physics.
Addison-Wesley Pub. Co., 1980.

[48] S. Ichimaru. Basic Principles of Plasma Physics: A Statistical Approach.
Frontiers in Physics. Benjamin, 1973.

[49] F. L. Hinton and R. D. Hazeltine. Theory of plasma transport in toroidal
confinement systems. Rev. Mod. Phys., 48:239–308, Apr 1976.

[50] Thibaut Vernay. Collisions in Global Gyrokinetic Simulations of Tokamak
Plasmas using the Delta-f Particle-In-Cell Approach: Neoclassical Physics
and Turbulent Transport. PhD thesis, École polytechnique fédérale de Lau-
sanne, 2013.

[51] Allen H. Boozer and Gioietta Kuo-Petravic. Monte carlo evaluation of trans-
port coefficients. Physics of Fluids, 24(5):851–859, 1981.

[52] T. Oikawa, Y. Kamada, A. Isayama, T. Fujita, T. Suzuki, N. Umeda,
M. Kawai, M. Kuriyama, L.R. Grisham, Y. Ikeda, K. Kajiwara, K. Ushi-
gusa, K. Tobita, A. Morioka, M. Takechi, T. Itoh, and JT-60 Team. Reac-
tor relevant current drive and heating by n-nbi on jt-60u. Nuclear Fusion,
41(11):1575, 2001.

[53] P. R. Thomas, P. Andrew, B. Balet, D. Bartlett, J. Bull, B. de Esch, A. Gib-
son, C. Gowers, H. Guo, G. Huysmans, T. Jones, M. Keilhacker, R. Koenig,
M. Lennholm, P. Lomas, A. Maas, F. Marcus, F. Nave, V. Parail, F. Rimini,
J. Strachan, K-D. Zastrow, and N. Zornig. Observation of alpha heating in
jet dt plasmas. Phys. Rev. Lett., 80:5548–5551, Jun 1998.

72



Bibliography

[54] T E Stringer. Radial profile of alpha -particle heating in a tokamak. Plasma
Physics, 16(7):651, 1974.

[55] S.D. Pinches, V.G. Kiptily, S.E. Sharapov, D.S. Darrow, L.-G. Eriksson, H.-U.
Fahrbach, M. García-Muñoz, M. Reich, E. Strumberger, A. Werner, the AS-
DEX Upgrade Team, and JET-EFDA Contributors. Observation and mod-
elling of fast ion loss in jet and asdex upgrade. Nuclear Fusion, 46(10):S904,
2006.

[56] E. Strumberger, S. Günter, E. Schwarz, C. Tichmann, and the ASDEX Up-
grade Team. Fast particle losses due to NTMs and magnetic field ripple.
New Journal of Physics, 10(2):023017 (21pp), 2008.

[57] S.D. Pinches, L.C. Appel, J. Candy, S.E. Sharapov, H.L. Berk, D. Borba, B.N.
Breizman, T.C. Hender, K.I. Hopcraft, G.T.A. Huysmans, and W. Kerner.
The HAGIS self-consistent nonlinear wave-particle interaction model. Com-
puter Physics Communications, 111(1-3):133 – 149, 1998.

[58] Q. Yu. Numerical modeling of diffusive heat transport across magnetic is-
lands and local stochastic field. Physics of Plasmas, 13(6):062310, 2006.

[59] V. Igochine, O. Dumbrajs, D. Constantinescu, H. Zohm, G. Zvejnieks, and
the ASDEX Upgrade Team. Stochastization as a possible cause for fast
reconnection during mhd mode activity in the asdex upgrade tokamak. Nu-
clear Fusion, 46(7):741, 2006.

[60] J. Miettunen, T. Kurki-Suonio, T. Makkonen, M. Groth, A. Hakola, E. Hirvi-
joki, K. Krieger, J. Likonen, S. Äkäslompolo, and the ASDEXUpgrade Team.
The effect of non-axisymmetric wall geometry on 13C transport in ASDEX
Upgrade. Nuclear Fusion, 52(3):032001, 2012.

[61] J. Miettunen, M. Groth, T. Kurki-Suonio, H. Bergsåker, J. Likonen,
S. Marsen, C. Silva, and S. Äkäslompolo. Predictive ASCOT modelling of
10Be transport in JET with the ITER-like wall. Journal of Nuclear Materi-
als, 438, Supplement(0):S612 – S615, 2013. Proceedings of the 20th Inter-
national Conference on Plasma-Surface Interactions in Controlled Fusion
Devices.

[62] Message Passing Interface Forum . MPI: A Message-Passing Interface Stan-
dard, Version 2.2. High Performance Computing Center Stuttgart (HLRS),
2009.

[63] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed comput-
ing in practice: the condor experience. Concurrency - Practice and Experi-
ence, 17(2-4):323–356, 2005.

[64] Keiji Tani, Masafumi Azumi, Hiroshi Kishimoto, and Sanae Tamura. Effect
of toroidal field ripple on fast ion behavior in a tokamak. Journal of the
Physical Society of Japan, 50(5):1726–1737, 1981.

[65] M. Tessarotto, R. B. White, and L. Zheng. Monte Carlo approach to colli-
sional transport. Physics of Plasmas, 1(8):2603–2613, 1994.

[66] M. Tessarotto, R. B. White, and L. Zheng. Probabilistic approach to Monte
Carlo operators. Physics of Plasmas, 1(8):2591–2602, 1994.

73



Bibliography

[67] H.-S. Bosch and G.M. Hale. Improved formulas for fusion cross-sections and
thermal reactivities. Nuclear Fusion, 32(4):611, 1992.

[68] J. Hedin, T. Hellsten, L.-G. Eriksson, and T. Johnson. The influence of fi-
nite drift orbit width on ICRF heating in toroidal plasmas. Nuclear Fusion,
42(5):527, 2002.

[69] T. Hellsten, T. Johnson, J. Carlsson, L.-G. Eriksson, J. Hedin, M. Laxåback,
and M. Mantsinen. Effects of finite drift orbit width and RF-induced spatial
transport on plasma heated by ICRH. Nuclear Fusion, 44(8):892, 2004.

[70] M. Brambilla. Numerical simulation of ion cyclotron waves in tokamak
plasmas. Plasma Physics and Controlled Fusion, 41(1):1–34, 1999.

[71] J.C. Wright, Jungpyo Lee, E. Valeo, Paul Bonoli, C.K. Phillips, E.F. Jaeger,
and R.W. Harvey. Challenges in self-consistent full-wave simulations of
lower hybrid waves. Plasma Science, IEEE Transactions on, 38(9):2136–
2143, 2010.

[72] Martin Jucker. Self-Consistent ICRH Distribution Functions and Equilib-
ria in Magnetically Confined Plasmas. PhD thesis, École polytechnique
fédérale de Lausanne, 2010.

[73] Nobuyuki Asakura. Understanding the SOL flow in L-mode plasma on di-
vertor tokamaks, and its influence on the plasma transport. Journal of
Nuclear Materials, 363 365(0):41 – 51, 2007. Plasma-Surface Interactions-
17.

[74] ADAS. Atomic data and analysis software. http://www.adas.ac.uk/.

[75] J. A. Heikkinen, W. Herrmann, and T. Kurki-Suonio. The effect of a ra-
dial electric field on ripple-trapped ions observed by neutral particle fluxes.
Physics of Plasmas, 4(10):3655–3662, 1997.

[76] J. A. Heikkinen, S. K. Sipilä, and T. J. H. Pättikangas. Monte Carlo simu-
lation of runaway electrons in a toroidal geometry. Computer Physics Com-
munications, 76(2):215–230, 1993.

[77] J. A. Heikkinen and S. K. Sipilä. Power transfer and current generation
of fast ions with large-kθ waves in tokamak plasmas. Physics of Plasmas,
2(10):3724–3733, 1995.

[78] T. Kurki-Suonio, J. A. Heikkinen, and S. I. Lashkul. Guiding-center sim-
ulations of nonlocal and negative inertia effects on rotation in a tokamak.
Physics of Plasmas, 14(7):072510, 2007.

[79] A. Salmi, T. Johnson, V. Parail, J. Heikkinen, V. Hynönen, T. P. Kiviniemi,
T. Kurki-Suonio, and JET EFDA Contributors. Ascot modelling of ripple
effects on toroidal torque. Contributions to Plasma Physics, 48(1-3):77–81,
2008.

[80] N N Gorelenkov and R B White. Perturbative study of energetic particle re-
distribution by Alfvén eigenmodes in ITER. Plasma Physics and Controlled
Fusion, 55(1):015007, 2013.

74



Bibliography

[81] M.A. Van Zeeland, N.N. Gorelenkov, W.W. Heidbrink, G.J. Kramer, D.A.
Spong, M.E. Austin, R.K. Fisher, M. García Muñoz, M. Gorelenkova,
N. Luhmann, M. Murakami, R. Nazikian, D.C. Pace, J.M. Park, B.J. To-
bias, and R.B. White. Alfvén eigenmode stability and fast ion loss in DIII-D
and ITER reversed magnetic shear plasmas. Nuclear Fusion, 52(9):094023,
2012.

[82] Ph. Lauber, S. Günter, A. Könies, and S.D. Pinches. LIGKA: A linear gy-
rokinetic code for the description of background kinetic and fast particle ef-
fects on the MHD stability in tokamaks. Journal of Computational Physics,
226(1):447 – 465, 2007.

[83] R.J. La Haye, R. Prater, R.J. Buttery, N. Hayashi, A. Isayama, M.E.
Maraschek, L. Urso, and H. Zohm. Cross-machine benchmarking for ITER
of neoclassical tearing mode stabilization by electron cyclotron current
drive. Nuclear Fusion, 46(4):451, 2006.

[84] H. van den Brand, M. R. de Baar, N. J. Lopes Cardozo, and E. Westerhof.
Integrated modelling of island growth, stabilization and mode locking: con-
sequences for NTM control on ITER. Plasma Physics and Controlled Fusion,
54(9):094003, 2012.

[85] T. Hirai, K. Ezato, and P. Majerus. ITER relevant high heat flux testing on
plasma facing components. Materials Transactions, 46(3):412–424, 2005.

75



9HSTFMG*afffjg+ 

ISBN 978-952-60-5559-6 
ISBN 978-952-60-5560-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Science 
Department of Applied Physics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 16

/2
014 

It is not the money that makes the world go 
round. It is the electricity that we use 
everyday to power the lights in our homes 
and our cell phones. How we produce our 
electricity, is the question of the century. If 
the polluting emissions from fossil fuels are 
to be cut down, new clean and safe energy 
sources are needed desperately. 
  
If successful, thermonuclear fusion would 
solve the problem at once and for all. To 
make it work, a massive international 
experiment to demonstrate the possibility of 
commercially produced fusion energy, the 
ITER reactor, is currently being built in 
Cadarache, southern France. Before the 
reactor starts operating, however, modeling 
work is needed to verify proper operation 
parameters. 
  
The theory behind the models has to be solid 
and waterproof. The work presented here 
contributes both to the theory and the 
models used in plasma simulations of 
minoriry particle populations. 

E
ero H

irvijoki 
T

heory and m
odels for M

onte C
arlo sim

ulations of m
inority particle populations in tokam

ak plasm
as 

A
alto

 U
n
ive

rsity 

Department of Applied Physics 

Theory and models for 
Monte Carlo simulations of 
minority particle 
populations in tokamak 
plasmas 

Eero Hirvijoki 

DOCTORAL 
DISSERTATIONS 


	Aalto_DD_2014_016_Hirvijoki_verkkoversio

