
9HSTFMG*affgii+

Aalto University publication series
DOCTORAL DISSERTATIONS 20/2014

Incremental Satisfiability Solving and
its Applications

Siert Wieringa

A doctoral dissertation completed for the degree of Doctor of
Science (Technology) to be defended, with the permission of the
Aalto University School of Science, at a public examination held at
the lecture hall T2 of the school on 14 March 2014 at 12.

Aalto University
School of Science
Department of Computer Science and Engineering

Supervising professor
Assoc. Prof. Keijo Heljanko

Thesis advisor
Assoc. Prof. Keijo Heljanko

Preliminary examiners
Prof. João Marques-Silva, University College Dublin, Ireland
Dr. rer. nat. Carsten Sinz, Karlsruhe Institute of Technology, Germany

Opponent
Prof. Karem Sakallah, University of Michigan. Currently on leave at
the Qatar Computing Research Institute.

Aalto University publication series
DOCTORAL DISSERTATIONS 20/2014

© Siert Wieringa

ISBN 978-952-60-5568-8
ISBN 978-952-60-5569-5 (pdf)
ISSN-L 1799-4934
ISSN 1799-4934 (printed)
ISSN 1799-4942 (pdf)
http://urn.fi/URN:ISBN:978-952-60-5569-5

Unigrafia Oy
Helsinki 2014

Finland

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Siert Wieringa
Name of the doctoral dissertation
Incremental Satisfiability Solving and its Applications
Publisher School of Science
Unit Department of Computer Science and Engineering

Series Aalto University publication series DOCTORAL DISSERTATIONS 20/2014

Field of research Computer Science and Engineering

Manuscript submitted 1 November 2013 Date of the defence 14 March 2014

Permission to publish granted (date) 17 January 2014 Language English

Monograph Article dissertation (summary + original articles)

Abstract
The propositional logic satisfiability problem (SAT) is a computationally hard decision

problem. Despite its theoretical hardness, decision procedures for solving instances of this
problem have become surprisingly efficient in recent years. These procedures, known as SAT
solvers, are able to solve large instances originating from real-life problem domains, such as
artificial intelligence and formal verification. Such real-life applications often require solving
several related instances of SAT. Therefore, modern solvers posses an incremental interface
that allows the input of sequences of incrementally encoded instances of SAT. When solving
these instances sequentially the solver can reuse some of the information it has gathered across
related consecutive instances.

This dissertation contains six publications. The two focus areas of the combined work are

incremental usage of SAT solvers, and the usage of parallelism in applications of SAT solvers.
It is shown in this work that these two seemingly contradictory concepts form a natural
combination. Moreover, this dissertations unifies, analyzes, and extends the results of the six
publications, for example, by studying information propagation in incremental solvers through
graphical visualizations.

The concrete contributions made by the work in this dissertation include, but are not limited

to: Improvements to algorithms for MUS finding, the use of graphical visualizations to
understand information propagation in incremental solvers, asynchronous incremental
solving, and concurrent clause strengthening.

Keywords Incremental satisfiability solving, parallel satisfiability solving, applications of
satisfiability solving

ISBN (printed) 978-952-60-5568-8 ISBN (pdf) 978-952-60-5569-5

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942

Location of publisher Helsinki Location of printing Helsinki Year 2014

Pages 218 urn http://urn.fi/URN:ISBN:978-952-60-5569-5

Contents

Contents 1

Preface 3

List of Publications 5

Author’s Contribution 7

1. Introduction 9

1.1 Contributions of the publications 10

1.2 New contributions in this dissertation 11

2. Definitions 13

2.1 Incremental solver usage . 16

2.2 Parallel SAT solving . 18

2.3 Tools . 18

3. Visualizing incremental solver behavior 21

3.1 The hyperactive variable visualization 22

3.2 The clause involvement visualization 25

3.3 The timed clause involvement visualization 30

4. Model Checking 31

4.1 Circuits . 34

4.2 Properties . 35

4.3 Bounded Model Checking . 37

4.4 Completeness . 39

4.5 Analyzing the solver usage . 41

4.6 IC3 and PDR . 47

4.7 The solver usage of IC3 and PDR 49

1

Contents

5. Finding Minimal Unsatisfiable Subsets 55

5.1 Classical algorithms for MUS finding 56

5.2 Constructive algorithm using associated assignments 58

5.3 Model rotation . 59

5.4 Weakening the termination condition 62

5.5 Blocked rotation edges . 63

5.6 Proof of a conjecture by Belov et al. 65

5.7 Using the solver efficiently . 68

5.8 Redundancy removal techniques 72

6. Asynchronous incremental solving using Tarmo 79

6.1 Distribution modes . 82

6.2 Conflict clause sharing . 83

6.3 Interactive graphical visualizations 85

6.4 Applications . 86

7. Cube and Conquer 87

7.1 The weakness of search space splitting 88

7.2 Cube solving phase: Independent, incremental or parallel . 90

8. Concurrent Clause Strengthening 93

8.1 The solver-reducer architecture 94

8.2 Employing concurrency versus parallelization 95

8.3 Applications and competitions 95

9. Conclusions 97

Bibliography 99

A. SMV model for Example 4.10 109

B. Errata for the publications 111

Publications 113

2

Preface

The defense of this dissertation is the final step of the doctoral research

project which I conducted at the Department of Information and Com-

puter Science at Aalto University. I wish to thank all my colleagues for

the good time I had in the past years. The two department heads during

these years, Prof. Pekka Orponen and Prof. Ilkka Niemelä, were always

easily accessible, which contributed to the pleasant working atmosphere.

The defense of this work will be facilitated by the Department of Com-

puter Science and Engineering, to which I have been transferred while

I was in the final stages of writing this dissertation. The most impor-

tant source of funding for this research project has been the Academy of

Finland. The personal grants I received from the Nokia Foundation and

Wihurin Rahasto are also gratefully acknowledged.

I would like to thank my pre-examiners Prof. João Marques-Silva and

Dr. Carsten Sinz for their professional evaluation of this dissertation. I

thank Prof. Karem Sakallah for agreeing to act as an opponent for the de-

fense of this work. I wish to thank my co-authors Dr. Hans van Maaren,

Dr. Marijn Heule, Dr. Oliver Kullmann, and M.Sc. Matti Niemenmaa. I

especially would like to thank my co-author Prof. Armin Biere, as he has

motivated me tremendously on several occasions. In particular, he en-

couraged me to write what became Publication II, which was a crucial

step in defining my own research direction. I thank my supervisor and

co-author Assoc. Prof. Keijo Heljanko for all his help, first facilitating my

life in Finland and then guiding me through this research project. Above

all I wish to thank him for giving me the space and time I needed to find

my own direction.

For comments and advice regarding my research Dr. Tommi Junttila

was always available, and hence I would like to thank him for the positive

influence he had on this work. The final professional contact I wish to

3

Preface

thank is Dr. Niklas Eén. Niklas and his wife Luige let me live and work

for one month at their family home in Berkeley, California. This was a

unique experience, which was very motivational and inspirational. It was

simply wonderful to receive so much trust and generosity from one of the

most important researchers in my field.

Outside the academic world I want to thank my friends at Teekkarien

Autokerho, who form the basis of my social life in Finland. I thank Ossi

Väänänen for helping me with the Finnish language in the dissertation

release. I want to thank my parents, as they have always supported me

regardless of which path I decided to take. I also wish to especially men-

tion my deceased friend Dick, just because he would have liked that. I

think we both considered our friendship as something special.

Finally, I would like to thank my fiancée Céline, who at the time of

the defense of this dissertation will have become my wife. The love and

attention she has given me have made my life so much more valuable.

Her continuous support has made me grow in many ways, and it is hard

to imagine how I would have finished this work without her.

Espoo, Finland, February 10, 2014,

Siert Wieringa

4

List of Publications

This dissertation consists of an overview and of the following publications

which are referred to in the text by their Roman numerals.

I Hans van Maaren and Siert Wieringa. Finding Guaranteed MUSes

Fast. In Proceedings of the 11th International Conference on Theory

and Applications of Satisfiability Testing (SAT), Lecture Notes in

Computer Science, volume 4996, pages 291-304. Guangzhou, China,

May 2008.

II Siert Wieringa. On Incremental Satisfiability and Bounded Model

Checking. In Proceedings of the First International Workshop on

Design and Implementation of Formal Tools and Systems (DIFTS),

CEUR workshop proceedings, volume 832, pages 46-54. Workshop

affiliated to the 11th International Conference on Formal Methods in

Computer-Aided Design (FMCAD), Austin, Texas, November 2011.

III Marijn J.H. Heule and Oliver Kullmann and Siert Wieringa and

Armin Biere. Cube and Conquer: Guiding CDCL SAT Solvers by

Lookaheads. In Revised Selected Papers of the 7th international

Haifa Verification Conference (HVC), Lecture Notes in Computer

Science, volume 7261, pages 50-65. Haifa, Israel, December 2011,

published 2012.

IV Siert Wieringa. Understanding, Improving and Parallelizing MUS

Finding Using Model Rotation. In Proceedings of the 18th Interna-

tional Conference on Principles and Practice of Constraint Program-

ming (CP), Lecture Notes in Computer Science, volume 7514, pages

672-687. Québec City, Canada, October 2012.

5

List of Publications

V Siert Wieringa and Keijo Heljanko. Asynchronous Multi-core Incre-

mental SAT Solving. In Proceedings of the 19th international con-

ference on Tools and Algorithms for the Construction of Analysis of

Systems (TACAS), Lecture Notes in Computer Science, volume 7795,

pages 139-153. Held as part of European Joint Conferences on The-

ory and Applications of Software (ETAPS), Rome, Italy, March 2013.

VI Siert Wieringa and Keijo Heljanko. Concurrent Clause Strengthen-

ing. In Proceedings of the 16th international conference on Theory

and Applications of Satisfiability Testing (SAT), Lecture Notes in

Computer Science, volume 7962, pages 116-132. Helsinki, Finland,

July 2013.

6

Author’s Contribution

Publication I: “Finding Guaranteed MUSes Fast”

The author of this dissertation is responsible for the writing of Publication

I, as well as for the development of the software described in it. The pre-

sented algorithm is derived from an original idea by Hans van Maaren.

Publication II: “On Incremental Satisfiability and Bounded Model
Checking”

The author of this dissertation is solely responsible for Publication II.

Publication III: “Cube and Conquer: Guiding CDCL SAT Solvers by
Lookaheads”

The author of this dissertation is responsible for the discussions on in-

cremental SAT and “parallel solving of the cubes” in Publication III. Fur-

thermore, the author performed extensive empirical evaluations of the

presented technique, both during its development and for the results sec-

tion presented in the publication.

Publication IV: “Understanding, Improving and Parallelizing MUS
Finding Using Model Rotation”

The author of this dissertation is solely responsible for Publication IV.

7

Author’s Contribution

Publication V: “Asynchronous Multi-core Incremental SAT Solving”

The author of this dissertation is responsible for the contents of Publica-

tion V. The second author of the publication, Keijo Heljanko, has provided

comments to the manuscript, guidance, and supervision.

Publication VI: “Concurrent Clause Strengthening”

The author of this dissertation is responsible for the contents of Publica-

tion VI. The second author of the publication, Keijo Heljanko, has pro-

vided comments to the manuscript, guidance, and supervision.

8

1. Introduction

The dissertation consists of six publications and a unifying introduction,

studying approaches to solving the propositional satisfiability problem.

The two concepts that form the focus of this dissertation are incremental

solver usage and parallelism. Propositional satisfiability, which is typi-

cally abbreviated SAT, is the problem of finding a satisfying truth assign-

ment for a given propositional logic formula, or determining that no such

assignment exists. This classifies the formula as respectively satisfiable

or unsatisfiable. SAT is an important theoretical problem as it was the

first problem ever to be proven NP-complete [Coo71].

Despite the theoretical hardness of SAT, current state-of-the-art deci-

sion procedures for SAT, known as SAT solvers, have become surprisingly

efficient. Subsequently these solvers have found many industrial appli-

cations. Such applications are rarely limited to solving just one decision

problem. Instead, a single application will typically solve a sequence of

related problems. Modern SAT solvers handle such problem sequences

through their incremental SAT interface [WKS01, ES03b]. Using this in-

terface repeatedly loading common subformulas can be avoided. More im-

portantly, it allows the solver to reuse information across several related

consecutive problems. The resulting performance improvements make in-

cremental SAT a crucial feature for modern SAT solvers in real-life appli-

cations.

Incremental solving can provide performance improvements, for exam-

ple, for algorithms that view a SAT solver as an NP-oracle to which they

perform repeated calls. An example of this type of usage is in algorithms

for finding minimal unsatisfiable subsets [Mar10], which are discussed

in Publication I and Publication IV. Other applications of incremental

solvers include efficient implementations of abstraction refinement loops,

guiding the search of a solver, and even handling queries to a symbolically

9

Introduction

represented database.

As even the most modest personal computer is nowadays equipped with

one or several multi-core processors it is logical and worthwhile to study

the use of concurrency in applications of SAT solvers. One may view in-

cremental usage of a solver as a means of solving several related formu-

las sequentially using one process, whereas parallel SAT solving is usu-

ally described as a method for solving one formula using multiple concur-

rent processes. From that point of view, using a solver incrementally and

employing parallelism seem like exact opposites. However, if we take a

slightly more high-level view it becomes clear that these two complimen-

tary techniques form a natural combination. In many applications con-

currency can be efficiently employed by performing several independent

subtasks simultaneously (e.g. [SEMB11]). In between parallel solving of

a single formula, and performing completely independent subtasks simul-

taneously, there is the option of combining incremental solving and paral-

lelism, by solving several related problems concurrently, as we showed in

Publication V.

1.1 Contributions of the publications

Publication I. Proposes a constructive algorithm for MUS finding. Al-

though the algorithm itself can no longer compete with the current state-

of-the-art algorithms it provided two significant contributions to the field

of MUS finding. The first is an improvement of constructive MUS finding

algorithms by the addition of a redundancy test. The second contribution

is the use of satisfying assignments that are returned by the solver as a

result of these redundancy tests, in order to reduce the total number of

such tests required by the algorithm.

Publication II. Discusses Bounded Model Checking, a practical appli-

cation of incremental SAT solvers, and the sequences of formulas this

application generates. The publication discusses the difference between

solving the formulas independently and solving them sequentially using

an incremental solver, in terms of solver run time. A visualization of vari-

able activity is proposed, which gives some insight into how information

propagates across consecutive related formulas. These insights are re-

lated to the observed run times of the solver.

10

Introduction

Publication III. Proposes Cube and Conquer, a method which aims to

combine the strengths of SAT solvers of the look-ahead and CDCL type.

A look-ahead solver is used to partition a SAT formula into tens of thou-

sands of subformulas, each of which is solved using a CDCL solver. The

method has been shown to perform well for several hard instances of SAT.

Publication IV. Discusses the excellent practical performance of a tech-

nique for improving MUS finding algorithms called model rotation, and

aims to provide an explanation for this performance. It shows that for for-

mulas which possess certain common properties model rotation is guar-

anteed to be successful. Furthermore, it proposes an algorithmic opti-

mization of the technique, and discusses parallelization of MUS finding

algorithms.

Publication V. Discusses parallel solving of incrementally encoded for-

mula sequences. It proposes the asynchronous interface, a natural exten-

sion of the most commonly used incremental solver interface that allows

efficient parallelization for applications using incremental solvers. This

interface is implemented in the solver TARMO, which successfully partic-

ipated in the Hardware Model Checking Competitions of 2011 and 2012.

Publication VI. Advocates performing additional reasoning in parallel

with conventional single-threaded SAT solvers. It proposes one concrete

instance of this general idea, called the solver-reducer architecture. In this

architecture, a conventional CDCL solver is extended with a second com-

putation thread, which is solely used to strengthen the clauses learned by

the solver. This provides a simple and natural way to exploit the widely

available multi-core hardware. The technique is empirically shown to pro-

vide a consistent run time reduction for solving unsatisfiable benchmarks.

More impressively, the average performance is shown to improve with re-

spect to the total amount of CPU time required.

1.2 New contributions in this dissertation

Besides the discussion of the existing work in the attached publications,

this dissertation contains several new contributions. In Chapter 3 we pro-

pose a new visualization of incremental solver behavior, called the clause

involvement visualization. This visualization is used in a new study of

the behavior of solvers used by BMC algorithms provided in Chapter 4,

which significantly extends the work of Publication II. Moreover, Chap-

11

Introduction

ter 4 provides a discussion of the solver usage of the recent IC3 and PDR

algorithms. Chapter 5 also includes several new elements, such as the dis-

cussion of undocumented features of an implementation of the algorithm

from Publication I, and a discussion of redundancy removal techniques.

Moreover, the work of Publication IV is extended with two new contribu-

tions. Namely, a proof that minimal unsatisfiable formulas may contain

clauses that are unreachable by model rotation, and a proof of a conjecture

from [BLM12].

12

2. Definitions

In this chapter we provide definitions that we will use throughout this

document. We start by defining the notation we use for basic propositional

logic concepts, followed by a description of several basic algorithmic con-

cepts relating to incremental and parallel SAT solving. We conclude this

chapter with a discussion of the tools used for the experiments that are

discussed in this document.

A literal l is either a Boolean variable x or its negation ¬x. We define

¬¬l = l, to represent that double negations cancel out. An assignment α

is a set of literals such that if l ∈ α then ¬l /∈ α. If l ∈ α we say that literal

l is assigned the value true. If ¬l ∈ α it is said that l is assigned the

value false, or equivalently that l is falsified. If for some literal l neither

l nor ¬l is in the assignment α then l is unassigned. For an assignment

α we denote by ¬α the negation of the assignment, which is defined as

¬α = {¬l | l ∈ α}.
A clause c is a set of literals c = {l0, l1, · · · , ln} representing the disjunc-

tion
∨
c = l0 ∨ l1 · · · ∨ ln. Clause c is satisfied by assignment α if and only

if c contains a literal assigned true by α, i.e. c ∩ α �= ∅. A cube d is a set of

literals d = {l0, l1, · · · , ln} representing the conjunction
∧
d = l0∧ l1 · · ·∧ ln.

Hence, cube d is satisfied by assignment α iff d ⊆ α. A propositional logic

formula is in conjunctive normal form (CNF) if it is formed as a conjunc-

tion of disjunctions, i.e. a set of clauses. A CNF formula F is satisfied by

an assignment α if every clause in F is satisfied by α. If no such assign-

ment exist then the CNF formula is unsatisfiable.

Conventional SAT solvers can only handle formulas represented in CNF.

Therefore, throughout this work the word formula will always refer to a

propositional logic formula in CNF form. The only exception is in the def-

inition of several simple example formulas, which for clarity are not writ-

ten in CNF. In such cases conversion to CNF is always implicitly assumed

13

Definitions

as a part of the solving process.

For a clause c, let Var(c) be the set of Boolean variables represented by

the literals of c. For a formula F , let Var(F) be the set of all Boolean vari-

ables that appear in F , i.e. Var(F) = ⋃{Var(c) | c ∈ F}. An assignment α

is complete for a formula F if no variable in Var(F) is unassigned in α.

A clause consisting of exactly one literal is called a unit clause. The

negation of a clause c should represent a logical constraint that forbids

all assignments satisfying c. Hence, it is defined as ¬c = {{¬l} | l ∈ c},
which is a set of unit clauses. Note the difference with the definition of

the negation of an assignment, which is a set of literals.

The formula F under the assignment α is denoted Fα. It is defined as the

result of removing all clauses satisfied by α from F , followed by shrinking
the remaining clauses by removing literals that are falsified by α. For-

mally:

Fα = { c \ ¬α | c ∈ F and c ∩ α = ∅ }.

Let iup(F , α) be the assignment α that is the result of executing the

following iterative unit propagation loop:

while there exists a unit clause {l} ∈ Fα do α = α ∪ {l}.

Moreover we define F|α = F iup(F , α), which is the result of simplifying

formula F under assignment α by iterative unit propagation. If ∅ ∈ F|α
we say that assignment α is a conflicting assignment. If on the other hand

F|α = ∅ then assignment α satisfies F .
The DPLL algorithm [DLL62] is the classical algorithm for determining

the satisfiability of CNF formulas. It starts from the formula F and an

empty assignment α, and alternates between iterative unit propagation

and branching decisions. During a branching decision, or simply decision,

the algorithm picks a decision variable xd that is unassigned by α and

assigns it to either true or false. Whenever iterative unit propagation

leads to a conflict the algorithm backtracks to the last decision to which

it had not backtracked before, and negates the assignment made at that

decision. This backtracking search continuous until either all variables of

F are assigned, or all branches of the search tree have been unsuccess-

fully explored. In the former case α satisfies F , in the latter case F is

unsatisfiable.

Most of the modern SAT solvers applied in practical applications are of

the Conflict Driven Clause Learning (CDCL) type [MS96, MMZ+01]. Just

like the basic DPLL procedure the search for a satisfying assignment pro-

14

Definitions

ceeds by alternating between iterative unit propagation and branching

decisions. The crucial difference is in what happens when a conflict is

reached. In this case, a CDCL solver will analyze the sequence of deci-

sions and implications that lead to the conflict. During this conflict anal-

ysis the solver derives a conflict clause, which is a clause implied by the

input formula that gives a representation of the “cause” of the conflict. By

including the conflict clause in the set of clauses on which iterative unit

propagation is performed hitting another conflict with the same cause can

be avoided. The database storing these clauses in the solver is called the

learnt clause database, and we will often refer to the conflict clauses in

this database as learnt clauses.

An important property of the most popular clause learning scheme for

CDCL solvers, called first unique implication point (1-UIP) [MS96], is that

each conflict clause contains exactly one literal that was falsified by the

last decision or the subsequent unit propagation. This literal is called the

asserting literal. After conflict analysis the CDCL solver must backtrack.

Unlike the DPLL procedure CDCL solvers use non-chronological back-

tracking, which is driven by the conflict clauses. By definition all literals

in a conflict clause are assigned the value false by assignment α when

it is derived. After learning conflict clause c, the solver backtracks until

the earliest decision at which all literals of c except the asserting literal

la are assigned false. The literal la is then assigned the value true, as

this is required to satisfy c. Subsequent unit propagation may yield a new

conflict which is handled in the same way.

Variable State Independent Decaying Sum (VSIDS) [MMZ+01] is an im-

portant heuristic used in modern CDCL solvers. It associates with every

variable a value called the activity of the variable. Whenever a conflict

clause is derived the activity of all variables involved in its derivation is

increased. Periodically the activity of all variables is decreased. A mod-

ern CDCL solver will prefer branching on variables with a high activity.

Note that those are the variables that have been most actively involved

in recent conflict clause derivations. The two watched literal scheme was

also proposed in [MMZ+01]. It provides an efficient way of implementing

iterative unit propagation, and remains a crucial engineering feature in

today’s SAT solvers.

15

Definitions

2.1 Incremental solver usage

An early work considering incremental SAT solving is [Hoo93]. The main

idea was to speed-up the solving of a single formula by repeatedly solving

a growing subset of its constraints. Removal of constraints from the solver

was not considered.

A general definition for the incremental satisfiability problem is given in

[WKS01], where it is defined as solving each formula in a finite sequence

of formulas. The transformation from a formula to its successor in the

sequence is defined by two sets, a set of clauses to be added and a set of

clauses to be removed. Although it is possible to implement a SAT solver

that allows arbitrary removal of clauses between consecutive formulas,

there is a complication in that when a clause is removed also all conflict

clauses whose derivation depends on that clause must be removed. Main-

taining sufficient information in the solver to achieve this has significant

drawbacks on its performance and thus arbitrary clause removal is not

implemented in any state-of-the-art solver.

Alternative solutions exists. For example, in the interface of the SAT

solver ZCHAFF [MFM04], it is possible to assign clauses to groups, and

those groups can be removed as a whole. The SMT-LIB standard [BST10]

for SMT solver1 input defines the push- and pop-interface. In this ap-

proach the subproblems are maintained on a stack and the solver aims

to solve the union of the problems on that stack. The simplest and most

commonly used interface for incremental SAT solvers however is the one

defined in [ES03b] and first used in the solver MINISAT [ES03a]. This

solver interface does not contain a function for removing clauses. Instead,

a solver with this interface can determine the existence of satisfying as-

signments that include a specified set of assumptions. The interface is

defined by the following two functions:

• addClause(Clause clause)

• solve(Cube assumptions)

Calling solve given assumptions cube d will make the solver determine

the satisfiability of Fd rather than that of F . Using this interface clause

removal can be simulated as follows: Instead of adding clause c to the

solver the clause c ∪ {¬x} is added, where x is a variable that does not

1Solvers for Satisfiability Modulo Theories (SMT) allow input formulas that com-
bine pure propositional logic with other logics.

16

Definitions

occur in the original formula, called a selector variable. When the formula

is solved under an assumptions cube d such that x ∈ d the solver is forced

to search for an assignment satisfying c, in order to satisfy c ∪ {¬x}.
However, without the assumption x the solver can assign x to false to

satisfy c ∪ {¬x} without having to satisfy c. In fact, we can even add the

unit clause {¬x} to make sure that x will remain falsified forever. Modern

solvers such as MINISAT will in this case (eventually) delete the satisfied

clause c ∪ {¬x} from memory completely.

With the exception of [NR12], solving under n assumptions is imple-

mented by forcing the first n branching decisions to assign the assump-

tion literals true. If the solver reaches a conflict that requires it to undo

any of these forced decisions then a final conflict clause is derived, and

the solver reports the result “unsatisfiable under assumptions”. The final

conflict clause represents a subset of the assumptions that is sufficient to

yield this result.

In this dissertation an input sequence for an incremental SAT solver will

be considered as a sequence of jobs 〈φ0, φ1, · · · 〉. A job φi is characterized by

a set of clauses CLS(φi) and a single cube assumps(φi). Each job φi induces

a formula F(φi) consisting of all its clauses and all clauses in previous

jobs, and one unit clause for each literal in its cube of assumptions.

F(φi) =

⎛
⎝ ⋃

0≤j≤i
CLS(φj)

⎞
⎠

︸ ︷︷ ︸
CLAUSES(φi)

∪
⎛
⎝ ⋃

l∈assumps(φi)

{l}
⎞
⎠ .

Note that these definitions appear also in Publication V. They have

been chosen to match solvers using the interface of [ES03b]. Calling

addClause(c) for all c ∈ CLAUSES(φi) followed by a call to solve(assumps(φi))

will make such solver solve F(φi).

In the rest of this work “solving a job” refers to the process of determin-

ing the satisfiability of the CNF formula induced by that job. Also, we

will often refer to job φi as simply job i, where i denotes the position of

the job in the sequence counting from 0. Performing a solver call refers

to calling the solver’s solve function, and thus performing one solver call

corresponds to solving one job. This terminology is used interchangeably.

SAT solvers can be used in one of two ways. Either they are used to

solve a single formula which is stored on disk, typically in the DIMACS

file format2. Or, they are integrated into an application that uses the

2See, e.g. rules of the SAT competitions: http://www.satcompetition.org

17

Definitions

solver as part of some more high-level task. The latter type of usage has

typically been considered to be the only way to exploit the incremental

features of the solver. In [WNH09] we defined the iCNF file format for in-

cremental SAT solving. This is a simple extension of the DIMACS format

in which not only clauses, but also assumption sets can be represented.

In this way, job sequences can be stored on disk, and subsequently used

as benchmarks for testing the incremental features of SAT solvers.

2.2 Parallel SAT solving

Two major approaches for parallelizing SAT algorithms can be distin-

guished [HJN09]. The first is the classic divide-and-conquer approach,

which aims to partition the formula to divide the total workload evenly

over multiple SAT solver instances [BS96, SLB09, ZBH96]. The second

approach is the portfolio approach [HJS09, XHHLB08, MSSS12]. Portfo-

lio systems do not partition the input formula, but rather run multiple

solvers in parallel each of which attempt to solve the same formula. The

system finishes whenever the fastest solver is done. Both approaches can

be extended with some form of learnt clause sharing between the solver

threads (e.g. [AHJ+12]). Although other techniques have recently been

developed (e.g. [HJN11] and Publication III) portfolio solvers have re-

ceived the majority of the research attention in recent years. Some insight

into the performance of these approaches is provided in [HM12]. The lim-

ited parallelizability of the proof system underlying modern SAT solvers

is studied in [KSSS13].

2.3 Tools

Throughout this document we use MINISAT as the SAT solver for exper-

iments. It was written by Niklas Eén and Niklas Sörensson [ES03a], and

is a commonly used baseline in research on satisfiability solvers. Its im-

plementation is easy to understand and extend, while still offering decent

performance. We use version 2.2.0 which is the last version officially re-

leased by Niklas Sörensson. We did not modify the solver itself, although

we modified its file parser to read the iCNF file format, and we added sev-

eral datastructures and printing routines to obtain the extra information

needed to draw the visualizations presented in this document.

18

Definitions

The second tool we use throughout this document is AIGBMC, by Armin

Biere. This is a simple implementation of a Bounded Model Checking

(BMC) algorithm (see Chapter 4). Its input file format is the AIGER for-

mat, a representation of Boolean Circuits using only and-gates, inverters,

and latches. Although AIGBMC has features for checking liveness proper-

ties, in this work we used it only for simple safety properties, i.e. invari-

ants. The encoding of the BMC problem into SAT provided by AIGBMC

for such properties is a simple initialized unrolling of the circuit, with a

constraint forcing a violation of the invariant in the last timepoint, as is

explained in Chapter 4 (see Example 4.8). We made several modifications

to AIGBMC, and in this document will always refer to this modified ver-

sion. The first modification we made was to replace SAT solver PICOSAT

[Bie08] used in the original version by MINISAT. The second modification

was to add an option which makes AIGBMC continue to encode and solve

jobs when it has already found a counterexample, i.e. solved a job with

result satisfiable. The third modification was to add an option to solve

only one single job individually, without using the solver’s incremental

features. Links to all the tools used, including their extensions and mod-

ifications, are available in the online support material that can be found

at: http://www.siert.nl/thesis.

19

Definitions

20

3. Visualizing incremental solver
behavior

Incremental SAT solvers are used in a diverse range of applications. In

this document we analyze the behavior exposed by these solvers for sev-

eral such applications. In order to unify our analysis we propose the use

of graphical visualizations, starting with the hyperactive variable visual-

ization proposed in Publication II. Other work on visualizations for SAT

solvers focusses on the visualization of the input formula, as well as on

visualization of steps performed within the DPLL-algorithm [Sin07]. The

authors of [DZK13], aim to visualize the execution of a MUS finding al-

gorithm which internally uses a SAT solver. Both [Sin07] and [DZK13]

go beyond simply visualizing the algorithm and also allow the user to in-

teract. In this way, the user can resolve non-determinism and manually

make choices that are otherwise left to search heuristics. A special version

of the ASP solver1 CLASP [GKNS07], called CLAVIS, provides a means of

logging information to create visualizations of problem structure, heuris-

tic information, and execution steps.

The previously mentioned tools aim at visualizing as much information

as possible about the execution of their algorithm and the content of their

data structures. As such they can be useful to demonstrate how solvers

work on small problems, but their application to studying the behavior

on large scale problems is severely restricted. With billions of decisions,

hundreds of thousands of conflicts, and gigabytes of data stored in the

solver, visualizing everything is simply not an option.

As in this work we are particularly concerned with the behavior of SAT

solvers used incrementally we focus our analysis on the propagation of

information between jobs. When a SAT solver is used incrementally it

reuses learnt clauses, as well as other information such as the activity of

1Answer Set Programming (ASP) is a form of declarative programming. ASP
solvers and SAT solvers internally use many similar techniques.

21

Visualizing incremental solver behavior

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100

hy
pe

ra
ct

iv
e

va
ria

bl
es

jobs

Figure 3.1. Hyperactive variable visualization for benchmark bc57sensorsp2neg.

variables and clauses, across jobs. The visualization of hyperactive vari-

ables proposed in Publication II illustrates how the activity of variables

propagates across jobs.

3.1 The hyperactive variable visualization

Visualization of hyperactive variables, can provide some useful insights

in behavior of incremental solvers using the VSIDS decision heuristic on

instances from Bounded Model Checking (BMC) [BCCZ99]. BMC is de-

scribed in Section 4.3 in more detail, but for now it suffices to understand

BMC as a solver application which generates a sequence of jobs for an

incremental solver.

To visualize the behavior of the solver we are interested in which vari-

ables are the most active, and especially in whether this activity remains

high across several jobs. We consider a variable hyperactive if its activity

is within the highest 2% of variables with non-zero activity. The hyperac-

tivity visualization provides an illustration of the state of the hyperactive

variables in the solver at a specific point in time. Examples of the hyper-

activity visualization from Publication II are given in the Figures 3.1 and

3.2. The figures correspond to two benchmarks from the Hardware Model

22

Visualizing incremental solver behavior

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

hy
pe

ra
ct

iv
e

va
ria

bl
es

jobs

Figure 3.2. Hyperactive variable visualization for benchmark eijk.S1238.S.

Checking Competition 20072 (HWMCC’07), named bc57sensorsp2neg and

eijk.S1238.S, respectively. For the work presented in [WNH09] these

benchmarks were encoded as sequences of jobs for a SAT solver, repre-

sented in iCNF files, using the BMC encoding of [HJL05]. The data in the

figures has been obtained by solving those two iCNF files.

All the variables that are hyperactive at least once are represented by

an integer value on the y-axis of the graph. The variables are sorted on

the y-axis by their index such that if we define y(v) as the integer on the

y-axis corresponding to the variable with index v then for any v′ > v we

have y(v′) > y(v). If a variable v became hyperactive after solving job k,

and lost its hyperactivity after solving job k′ > k then a horizontal line is

drawn in the graph from job k to k′ at the position y(v) on the y-axis. In

other words for all variables v and all job intervals [k, k′) on which v was

hyperactive a line is drawn from (k, y(v)) to (k′, y(v)). One may observe

from the Figures 3.1 and 3.2 that both plots are empty in their top left

corner. This means that variables with larger indices become active later.

The reason for this is that the set of variables grows with every job, and

each new variable is given an index larger than that of all old variables

by the solver.

The hyperactive variable visualization can provide insight in the char-

2http://fmv.jku.at/hwmcc07

23

Visualizing incremental solver behavior

acteristics of the particular BMC instance that was being solved. The

bottom right corner of Fig. 3.1 is almost completely filled by all the hor-

izontal lines drawn on it. This means that many of the variables that

become hyperactive stay hyperactive. As the sequence of jobs grows the

solver keeps using variables that were already active before to derive new

conflict clauses. In other words, the search behavior of the solver is global

with respect to the set of all jobs. Another thing that may be noticed is

that starting from job 104 all lines become horizontal, which means that

the variable activities no longer change. For this particular benchmark

the first 104 jobs (i.e. jobs 0 to 103) are unsatisfiable, after which all con-

secutive jobs are satisfiable. The horizontal lines in the figure illustrate

that the solver has been able to extend the satisfying assignment for each

job starting from job 104 into a satisfying assignment for the consecutive

job, without reaching conflicts that caused the set of hyperactive variables

to change. The easy extension of satisfying assignments to consecutive

jobs is a property of BMC as a solver application. A satisfying assignment

corresponds to a counterexample, and in practice we are not interested in

extending such counterexamples over consecutive jobs. However, it illus-

trates that we can observe application specific properties using visualiza-

tion of solver statistics.

The behavior illustrated for a different BMC problem in Fig. 3.2 is very

different. With every job only a few variables are active. For this bench-

mark a counterexample does not exist, which implies that regardless of

the length of the generated sequence all jobs in it are unsatisfiable. The

visualization shows that the solver is able to prove the unsatisfiability of

each job using only a very small number of recent variables. We say that

the search behavior of the solver is local with respect to the last jobs in

the sequence. When such behavior is observed one may expect the exis-

tence of a small inductive invariant, as we will explain in more detail in

Chapter 4.

Note that the readability of the graphs, and in fact our ability to derive

some behavioral insight from it, depends heavily on the continuous intro-

duction of new variables for every job. This means that this visualization

is not useful for applications in which the number of variables does not

grow continuously with the number of jobs.

24

Visualizing incremental solver behavior

3.2 The clause involvement visualization

In this section we will propose a new type of visualization, called the

clause involvement visualization. It provides an alternative illustration

of the involvement of clauses in the solver’s conflict clause derivation pro-

cess. Examples are given in the Figures 3.3 to 3.6. Each figure consists of

two separate plots with identical horizontal axes placed above each other.

These plots illustrate the state of the solver at a specific point in time,

i.e. after completing the solving of a specific job. The plots are filled with

vertical bars, and the height of each bar corresponds to the number of

clauses in a set. The clause sets correspond to specific jobs denoted on the

horizontal axis. Unit clauses are considered as truth assignments to vari-

ables, and are thus not counted as elements of these sets. In each figure,

the top plot corresponds to sets of problem clauses, whereas the bottom

plot visualizes sets of learnt clauses.

The total height of a bar positioned in a problem clause plot (upper plot)

represents the number of clauses that were added to the solver for that

job, i.e. the height of the bar for job φi corresponds to |CLS(φi)|. Hence, the
total number of problem clauses ever introduced in the solver is the sum of

the height of all the bars. In a learnt clause plot (lower plot) the height of a

bar corresponds to the number of learnt clauses derived during the solving

of the corresponding job, in other words, the number of conflicts the solver

encountered solving that job. Each bar is divided into three partitions that

represent the division of the set of clauses into three subsets, organized

as follows:

“Recently used” ⊆ “remains” ⊆ “total”.

Note that due to the size of these sets not all three partitions are nec-

essarily visible on each bar. The bottom partition of each bar is filled

according to the style labeled “Recently used” in the legend. The height

of this partition represents the number of clauses from this set that was

used in a conflict clause derivation during the solving of the last job in the

sequence.

Both problem- and learnt clauses may get deleted from the solver as a

result of simplifications due to unit propagation. Moreover, learnt clauses

may be removed as the solver attempts to keep the size of the learnt clause

database under control. This clause deletion is visualized by the differ-

ence in height between the middle- and top partitions. On each bar, the

height of the middle partition, labeled “SAT - remains” or “UNSAT - re-

25

Visualizing incremental solver behavior

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

Recently used

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70 80

le
ar

nt
 c

la
us

es

jobs

Figure 3.3. Clause involvement visualization, benchmark bc57sensorsp2neg and k = 80.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

SAT - total
SAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

le
ar

nt
 c

la
us

es

jobs

Figure 3.4. Clause involvement visualization, benchmark bc57sensorsp2neg and k =

104.

26

Visualizing incremental solver behavior

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

SAT - total
SAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

le
ar

nt
 c

la
us

es

jobs

Figure 3.5. Clause involvement visualization, benchmark bc57sensorsp2neg and k =

110.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

le
ar

nt
 c

la
us

es

jobs

Figure 3.6. Clause involvement visualization, benchmark eijk.S1238.S and k = 50.

27

Visualizing incremental solver behavior

mains” in the legend, represents the number of clauses that still existed

in the solver when the last job in the sequence was solved. The fill style of

the middle- and top partitions depends on whether the corresponding job

finished with result satisfiable or unsatisfiable.

Unlike the figures presented in Section 3.1 the data for the clause in-

volvement figures in this chapter is not obtained by solving iCNF files, but

by directly running AIGBMC on the original AIGER format benchmarks.

The Figures 3.3 to 3.5 illustrate the state of the solver after solving three

different prefixes of the sequence of jobs generated and solved by AIGBMC

for HWMCC’07 benchmark bc57sensorsp2neg. Note that despite the dif-

ferent encoding the data visualized in the Figures 3.3 to 3.5 concern solv-

ing the same BMC problem as the one given in Fig. 3.1, and hence the

first satisfiable job in this sequence is job 104.

In Fig. 3.3 the state of the solver just after finding job 80 unsatisfiable

is illustrated. The clearly visible bottom partition on most of the bars

illustrates that problem- and learnt clauses from many jobs are used in

conflict clause derivations during the solving of job 80. The same behavior

can be observed in Fig. 3.4, which illustrates the state of the solver just

after finding job 104 satisfiable. In this way, these figures also visualize

the global nature of the solver’s search on this problem.

It was already observed in the discussion of Fig. 3.1 provided in Section

3.1, that once the solver finds a satisfying assignment for job 104 it can

easily extend this assignment to a satisfying assignment for consecutive

jobs. The same behavior can be seen in Fig. 3.5 which shows the state of

the solver after solving job 110. One may observe from that figure that no

new conflicts are encountered during the solving of the jobs 105 to 110. As

a result, there are no clauses involved in conflict clause derivations during

the solving of job 110, and thus the bottom partitions of all bars are empty.

The conflict free jobs thus wiped out the history about the global search

behavior of the earlier jobs from the picture. If this is desired, a clause

involvement visualization that gives a more robust picture of the conflict

history can be obtained by redefining what “Recently used” means. For

example, it could be defined as a clause that was used during one of the

last 1000 conflict clause derivations.

We already showed how global search behavior can be observed from

the clause involvement visualization. Figure 3.6 visualizes the state of

the solver after finding job 50 of HWMCC’07 benchmark eijk.S1238.S

unsatisfiable using AIGBMC. Here, a very local search behavior is visible:

28

Visualizing incremental solver behavior

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250
pr

ob
le

m
 c

la
us

es

UNSAT - total
UNSAT - remains

SAT - total
SAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250

le
ar

nt
 c

la
us

es

CPU time (s)

Figure 3.7. Timed clause involvement visualization, benchmark bc57sensorsp2neg and
k = 104.

Only the most recently created clauses are used in conflict clause deriva-

tions during the solving of job 50. The clause involvement visualization

can thus illustrate global or local search behavior for BMC problems, just

like the hyperactive variable visualization. This is not surprising once one

recalls that variable activity and recent conflict clause derivations are di-

rectly related: The more active a variable, the more it has been involved

in recent conflict clause derivations. The advantage of the clause involve-

ment visualization is, however, that it can also be used to illustrate the

behavior of solvers in applications for which the set of variables does not

continuously grow with every job.

To make observations about solver behavior, we typically used videos

providing an animation of the clause involvement visualizations for con-

secutive jobs, rather than static pictures. We developed an extension

of MINISAT which displays the clause involvement visualization while

the solver is running, continuously updating it to match the state of the

solver3.

29

Visualizing incremental solver behavior

3.3 The timed clause involvement visualization

The clause involvement visualization provides clear pictures for solver ap-

plications in which the solving of each job requires a substantial amount

of work, or at least generates a substantial number of conflicts. However,

incremental solvers are also commonly used in applications where only a

small fraction of the jobs are actually causing a non-negligible amount of

work for the solver. In such cases, the clause involvement visualization

will not provide readable pictures. A solution is to set the width of each

bar based on the amount of CPU time spend solving the corresponding

job. The result is the timed clause involvement visualization. An example

is provided in Fig. 3.7, which is a timed version of Fig. 3.4.

3This extension of MINISAT, as well as examples of these animated visualiza-
tions, are available from: http://www.siert.nl/thesis

30

4. Model Checking

The most successful industrial application of SAT solvers is arguably in

the area of formal verification. We will discuss some basic concepts relat-

ing to the verification of finite state systems. The discussion is meant to

enable our discussion of SAT solver usage in formal verification, and it is

by no means a complete overview of verification techniques. The provided

solver usage discussion uses the visualizations proposed in Chapter 3, and

can be seen as a major extension of the work performed in Publication II.

It also relates directly to Publication V, which considers verification ap-

plications as important targets for parallelization.

Model checking [CGP01] is a popular formal verification technique. In

model checking, one is given a formal model of a system and asked to

prove or disprove a property of this model. The properties are often spec-

ified in a temporal logic [Pnu77], and Kripke structures are a commonly

used formalism for finite state systems.

Definition 4.1 (Kripke structure). A Kripke structure is a tuple M =

(S, I, T, L) where S is a finite set of states, I ⊆ S is the set of initial states,

T ⊆ S × S is the transition relation, and L : S → 2AP is a function that

labels each state with the subset of the atomic propositions AP that hold

in that state. Moreover, the transition relation T is such that for all s ∈ S

there exists some s′ ∈ S such that (s, s′) ∈ T .

Example 4.2. We will define a Kripke structure that represents a simple

traffic light controller, which has only one possible operation sequence

that is depicted in Fig. 4.1. The states of the Kripke structure are labelled

with atomic propositions from AP = {red, orange, green}, representing the

lights that are lit in that state of the traffic light controller. The Kripke

31

Model Checking

Figure 4.1. Traffic light operation sequence.

structure M = (S, I, T, L) is completely defined as follows:

Let S = {s0, s1, s2, s3},
and I = {s0},
and T = {(s0, s1), (s1, s2), (s2, s3), (s3, s0)},
and L(s0) = {red},
and L(s1) = {red, orange},
and L(s2) = {green},
and L(s3) = {orange}.

Kripke structures can be represented as graphs, and for our example

Kripke structure this representation is given in Fig. 4.2. The states of a

Kripke structure can be given a bit-vector representation. As we have four

states we need at least two bits to represent the state of this Kripke struc-

ture. For this example we chose a minimal representation that operates

as a two-bit binary counter:

state bit-vector representation symbolic representation

s0 00 s#0 (x0, x1) = ¬x1 ∧ ¬x0
s1 01 s#1 (x0, x1) = ¬x1 ∧ x0

s2 10 s#2 (x0, x1) = x1 ∧ ¬x0
s3 11 s#3 (x0, x1) = x1 ∧ x0

Now that we have shown by example how the states of a Kripke struc-

ture can be given a bit vector representation, we can encode the states

and the transition relation symbolically, using propositional logic formu-

las. For Example 4.2 the symbolic representations s# for all states s of

the Kripke structure are given alongside the bit-vector representations.

Observe that these are simply conjunctions of literals that force the state

variables x0, · · · , xn−1 to attain values representing the bit-vector repre-

sentation of the state.

32

Model Checking

s0

{red}

s1

{red, orange}

s2

{green}

s3

{orange}

Figure 4.2. The Kripke structure defined in Example 4.2 as a graph.

Definition 4.3 (Symbolically representing a set of states). For any

set of states X ⊆ S we will denote its symbolic representation as X#, a

formula over a set of state variables {x0, · · · , xn−1}, such that:

If and only if s ∈ X then

s#(x0, · · · , xn−1) ∧
X#(x0, · · · , xn−1) is satisfiable.

Definition 4.4 (Symbolic transition relation). The transition relation

T of a Kripke structure is a set of pairs of states. It can therefore be

represented symbolically by a formula T# over two sets of state variables,

such that:

If and only if (s, s′) ∈ T then

s#(x0, · · · , xn−1) ∧
T#(x0, · · · , xn−1, x′0, · · · , x′n−1) ∧
s′#(x′0, · · · , x′n−1) is satisfiable.

Model checking using symbolic representations of systems is called sym-

bolic model checking [McM93]. Originally, manipulations on Binary De-

cision Diagrams (BDDs) were used for symbolic model checking, but in

recent years SAT based techniques have become very popular [BCCZ99,

SSS00, McM03, SB11].

Example 4.5. To complete the symbolic representation defined in Exam-

ple 4.2, let us first define for each of the three colors the set of states in

which that color is included in the labelling, e.g. Red = {s | red ∈ L(s)} =
{s0, s1}. The symbolic representation can now be completed by defining

33

Model Checking

Figure 4.3. Transition relation of the traffic light controller as a circuit.

Figure 4.4. Unrolling of the transition relation of Fig. 4.3.

the symbolic representation of all sets involved:

Let I#(x1, x0) = s#0 (x1, x0) = ¬x1 ∧ ¬x0,
and Red#(x1, x0) = s#0 (x1, x0) ∨ s#1 (x1, x0) = ¬x1,
and Orange#(x1, x0) = s#1 (x1, x0) ∨ s#3 (x1, x0) = x0,

and Green#(x1, x0) = s#2 (x1, x0) = x1 ∧ ¬x0,
and T#(x1, x0, x

′
1, x

′
0) = (s#0 (x1, x0) ∧ s#1 (x

′
1, x

′
0)) ∨

(s#1 (x1, x0) ∧ s#2 (x
′
1, x

′
0)) ∨

(s#2 (x1, x0) ∧ s#3 (x
′
1, x

′
0)) ∨

(s#3 (x1, x0) ∧ s#0 (x
′
1, x

′
0)) =

(x′0 ↔ ¬x0) ∧ (x′1 ↔ x0 xor x1).

4.1 Circuits

In Fig. 4.31 the symbolically represented transition relation T#, defined

in Example 4.5, is presented as a Boolean circuit. To evaluate the state

of the system after k timepoints we unroll the transition relation. This

means that we simply create k cascaded copies of the transition relation

circuit, constraining the state bits of the first copy by a circuit represent-

ing the initial state formula. The unrolling of the transition relation of

our example is shown in Fig. 4.4, where the circles containing the value

0 on the left represent the initial state constraint, which forces the state

bits at timepoint zero to false. Our example system has only exactly one

1Figures 4.3 to 4.5 were made using the online circuit editor CircuitLab: http:
//www.circuitlab.com

34

Model Checking

Figure 4.5. Transition relation of a traffic light controller with sensor input.

initial state, and each state has exactly one successor. In other words,

this system has no inputs. As a result, for any unrolling of this circuit the

value of all variables follows directly from the unrolled transition relation.

We will now extend our example to include an input signal.

Example 4.6. Assume that our traffic light controller from Example 4.2 is

extended with an external sensor that detects whether a car arrives at a

traffic light somewhere on the crossing. Let us modify the controller such

that if the controller is in state s0 (red light only) or s2 (green light) then

it will remain in that state until a car passes the sensor. This adds non-

determinism in the modified transition relation T of the Kripke structure,

where the states s0 and s2 now each have two possible successor states.

T = { (s0, s0), (s0, s1), (s1, s2), (s2, s2), (s2, s3), (s3, s0) }.

Let us denote by isensor the state of the sensor input signal, where the

input true means that a car is passing the sensor. The new transition

relation must enforce x′0 = ¬x0 ∧ isensor. This transition relation is given

as a circuit in Fig. 4.5. Note that if we unroll this circuit, then there will

be a “loose input wire” for each timepoint, that corresponds to the state of

the input sensor at that timepoint.

4.2 Properties

Once we have decided on a formal model for our system we may want to

verify some properties of this model. Such properties are typically formal-

ized in a temporal logic [Pnu77], but in this document we will use only

informal descriptions. Two basic types of properties exist. The first type

of properties are the safety properties. A safety property is a property

that is such that if it does not hold, then there exists a finite execution

path of the system that violates the property. Properties of this type in-

35

Model Checking

tuitively state that “something bad will never happen”. An example of a

safety property for a traffic light controller would be “the green and the

red lamp are never lit at the same time”. If the property holds then any

state in which the green and red lamp are both lit must be unreachable

from the initial states of the Kripke structure representing the traffic light

controller. Otherwise, the counterexample, e.g. the execution path that il-

lustrates that the property does not hold, is a finite path that starts in an

initial state and ends in a state in which the green and red lamp are both

lit.

The second type of properties are called liveness properties. Such proper-

ties, intuitively speaking, state that “something good will eventually hap-

pen”. For example, for a traffic light controller a natural liveness property

would be “for all execution paths of the system, if the red lamp is on,

then there is a state in the future in which the green lamp is on”. The

counterexample against a liveness property is always an infinite execu-

tion path. This is because this type of property requires some event to

happen in the future, but it places no bound on how far in the future

this event may happen. As we only consider finite state systems any in-

finite execution must contain a loop. Hence, a counterexample against

the property is an execution path in which at some state the red light is

on, after which the execution path eventually reaches a loop without the

green light ever being lit along this path.

Note that the traffic light controller of Example 4.6 does not satisfy the

stated liveness property. A counterexample against the property is the

infinite execution that starts in the initial state s0, and remains there for-

ever. In terms of cars and traffic lights this corresponds to a case where

the light is red and no car ever passes, hence the light will never turn

green. Although this is a valid counterexample against the liveness prop-

erty, it is probably not considered as a bug in the controller2. To avoid this

type of counterexamples we may add a fairness constraint to the problem

description for our model checker. A fairness constraint is a logic con-

straint that must be satisfied infinitely often in every infinite execution

of the system that the model checker may consider. A natural fairness

constraint for our traffic light controller is “a car passes the sensor”, as

we are only interested in infinite executions in which cars keep arriving.

2Real-life traffic light controllers are obviously much more complex. Built-in
timers may ensure fairness in such systems.

36

Model Checking

4.3 Bounded Model Checking

Bounded Model Checking (BMC) [BCCZ99] was the first popular SAT

based model checking technique, and it remains popular today. In BMC

we restrict ourselves to testing the existence of a counterexample of a

bounded length k using a SAT solver. First, we must represent the initial-

ized unrolling of the transition relation over k-timepoints in the solver.

This is straightforward, one simply creates k + 1 copies of the state bits,

then constrains the first copy using the initial state constraint, and every

consecutive copy using the transition relation. Any satisfying assignment

to such a formula corresponds directly to an execution path that is valid

in the system model.

Example 4.7. An unrolling over three timepoints of the circuit in Fig. 4.5

corresponds to the following formula. Each of the four copies of the states

bits x0 and x1 correspond to one of the timepoints 0 to 3, as follows:

I#(x1@0, x0@0) ∧
T#(x1@0, x0@0, x1@1, x0@1) ∧
T#(x1@1, x0@1, x1@2, x0@2) ∧
T#(x1@2, x0@2, x1@3, x0@3).

This formula expands to:

(¬x0@0 ∧ ¬x1@0) ∧
(x0@1 ↔ ¬x0@0 ∧ isensor@0) ∧
(x1@1 ↔ x0@0 xor x1@0) ∧
(x0@2 ↔ ¬x0@1 ∧ isensor@1) ∧
(x1@2 ↔ x0@1 xor x1@1) ∧
(x0@3 ↔ ¬x0@2 ∧ isensor@2) ∧
(x1@3 ↔ x0@2 xor x1@2).

To test whether a path of length k exists that violates a safety property,

we simply add a constraint that states that the safety property P is vio-

lated at timepoint k. Clearly, this formula will be satisfiable if and only if

an execution violating the property of length k exists.

Example 4.8. Let us extend the set of constraints defined in Example 4.7

to require an execution path that violates the safety property “the green

light is off” at timepoint 3. The property can be represented symbolically

by P#(x1, x0) = ¬Green#(x1, x0). We add the violation of this safety prop-

37

Model Checking

erty at timepoint 3 as a constraint, i.e. we add the following constraint:

¬P#(x1@3, x0@3) = ¬(¬Green#(x1@3, x0@3)) = x1@3 ∧ ¬x0@3.

Adding this constraint to the constraints of Example 4.7 yields a satisfi-

able formula, because an execution in which the green light is lit at time-

point 3 exists. An example of such an execution is the path s0 → s1 → s2 →
s2, which is the path that the system will traverse if isensor@0 is assigned

true, and isensor@2 is assigned false.

Typically BMC algorithms start from bound k = 0, and as long as the

solver returns unsatisfiable for the encoded set of constraints this bound

is increased by one. The constraint that P is falsified in the last state is

the only constraint that depends on the value of k, hence this constraint

must be removed when the bound is increased3. If we want to be able

to start from k larger than zero, or increment k by more than one at a

time, we may want to encode our formula such that it is satisfiable if a

counterexample of length at most k, rather than exactly k, exists. As we

illustrated in Publication V this type of encoding facilitates efficient par-

allelization of BMC algorithms. The first method to obtain this type of

semantics is to modify the encoding. This can be done by including the

definition of the violated safety property for every timepoint, and then

adding a constraint that forces the disjunction of all of those to hold. Ob-

serve that this disjunction will still be a constraint that must be removed

when k is increased.

The second method, which we used in Publication V, is to use the stan-

dard “exactly k” encoding, but to modify the system and state invariant

such that once the modified system reaches a bad state it stays in a bad

state forever. For this purpose we created the tool AIGMOD4.

Definition 4.9 (Operation of AIGMOD). For a system with n state bits,

with good states represented symbolically by P#, initial states by I#, and

the transition relation by T#, let the modified system with n+1 state bits

3Recall that clause removal for a solver using the assumptions interface can be
simulated by using selector variables.
4Available from: http://www.siert.nl/thesis

38

Model Checking

be defined as follows:

Let P#
mod(x0, · · · , xn) = ¬xn,

and I#mod(x0, · · · , xn) = I#(x0, · · · , xn−1) ∧
(xn ↔ ¬P#(x0, · · · , xn−1)),

and T#
mod(x0, · · · , xn, x′0, · · · , x′n) = T#(x0, · · · , xn−1, x′0, · · · , x′n−1) ∧

(x′n ↔ (xn ∨ ¬P#(x′0, · · · , x′n−1)).

Observe that the extra state bit xn is assigned true at any timepoint in

which the original system is in a bad state. Moreover, whenever xn is

assigned true it remains true forever. Hence, the assignment of true to

xn represents that the original system has traversed a bad state.

Bounded Model Checking can also be used for finding counterexamples

against liveness properties, using e.g. its original encoding [BCCZ99], or

the more advanced the encoding of [HJL05]. The basis is the same k times

unrolled transition relation and initial state formula. However, the way in

which violation of the property is encoded is different. Most importantly,

the constraints must enforce that any satisfying execution path contains a

loop, as this is the only way to represent an infinite path using a sequence

of k states.

4.4 Completeness

Bounded model checking is a powerful technique to find counterexamples.

In theory it can also be used to prove properties, but in practice this ability

is very weak [BCCZ99, BHJ+06, Bie09]. In this section we will discuss

some techniques aimed at complete model checking using SAT solvers. In

this discussion we will limit ourselves to the verification of simple safety

properties, i.e. invariants.

The diameter of a Kripke structure is the length of the longest shortest

path between any two states in the state set S [BCCZ99]. If we prove

that no execution violating the invariant exists for length equal to the

diameter of the Kripke structure, then we have proven that no counterex-

ample exists at all. This is because if there exists a counterexample, then

the shortest counterexample uses a path from the initial state to the bad

state that is at most as long as the diameter. Unfortunately, computing

the diameter of a Kripke structure that is represented symbolically is dif-

ficult [Bie09]. However, any upper bound on the diameter can be used as

a completeness threshold (CT) for BMC [BCCZ99].

39

Model Checking

A trivial upper bound on the diameter of the Kripke structure is the

number of states in it, but for any real-life system this is far too large to

be useful as a CT. The length of the longest loop-free path starting from

any initial state is another upper bound on the diameter of the system. It

is also known as the forward radius. Observe that any shortest counterex-

ample will start in an initial state, and traverse only good states until it

reaches the final bad state. Hence, the length of the longest loop-free path

through good states that ends in a bad state is also an upper bound on

the diameter of the system. This completeness threshold is known as the

backward radius, and it is used by a complete SAT based model checking

technique called k-induction or temporal induction [SSS00, ES03b].

Just like for normal BMC, k-induction operates using a growing bound

k. To perform k-induction for bound k, we first perform BMC for that

bound. This is called the base step. If a counterexample is found then

the safety property is violated. If no counterexample is found, we ask

a SAT solver whether there exists a path through good states that ends

in a bad state of length k This is called the induction step. If no such

path exist, then k is at least as large as the backward radius, and thus no

counterexample against the property can exist. This technique is not com-

plete, as there may be a path leading to a bad state with an infinite prefix

of good states. In order to make k-induction a complete model checking

technique we need to add constraints that force the backward path to be

a loop-free path. The simplest way to achieve this is to forbid every pair

of state variable copies to assume identical values, however this leads to

a number of extra constraints that is quadratic in k. Although solutions

requiring fewer constraints exists (e.g. [KS03]) such constraint sets tend

to be harder to solve. Here, incremental solvers can play an invaluable

role. It was observed in [ES03b] that we can simply leave out all of the

loop-free path constraints, request the solver for a path of length k leading

to the bad state, and only if the path contains a loop encode a constraint

forbidding that specific loop before trying again. Typically, only a few of

such refinement iterations are required before a loop-free path is found.

Solving such an incomplete set of constraints (known as an abstraction

of a problem), and adding constraints only as long as we do not obtain

an answer to the original problem is known as Counter Example Guided

Abstraction Refinement (CEGAR).

Other techniques for complete SAT-based symbolic model checking ex-

ists. Amongst the most successful are techniques based on interpolation

40

Model Checking

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50
pr

ob
le

m
 c

la
us

es

UNSAT - total
UNSAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

le
ar

nt
 c

la
us

es

jobs

Figure 4.6. Clause involvement visualization for benchmark eijk.S1238.S and k = 50.

[Cra57], first proposed in [McM03]. A recent and powerful SAT-based

symbolic model checking technique is the IC3 algorithm [Bra11], which

will be discussed in the Sections 4.6 and 4.7.

4.5 Analyzing the solver usage

In Publication II we discussed the observation that there exist job se-

quences from BMC, for which it takes less time to solve all jobs from

zero up to any arbitrary k using the solver’s incremental features, than

it takes to solve only job k without those features. We observed that all

benchmarks with this property expose a very local behavior in the incre-

mental solver, in the sense that to prove the last job unsatisfiable conflict

clauses are generated using only the immediately preceding jobs. One

example of such a job sequence used in Publication II was corresponding

to the encoding of HWMCC’07 benchmark5 eijk.S1238.S. The clause in-

volvement visualization resulting from solving that benchmark directly

using AIGBMC up to the rather arbitrarily chosen bound k = 50 is given

in Fig. 4.6. Note that this same figure already appeared in Chapter 3 as

Fig. 3.6. The behavior exposed by this benchmark both in terms of local-

ity and in terms of run time behavior is extreme, but not uncommon. It is

caused by the existence of a small inductive invariant in the benchmark,

5http://fmv.jku.at/hwmcc07

41

Model Checking

in other words a small proof by induction of the property reflected in the

benchmark. To clarify this, let us consider a simple example system.

Example 4.10. Consider a system that consists of a 3-bit counter x, and

a 4-bit counter y. Let the only initial state constraint be that the counter

y has value zero. Note that this system has 27 = 128 states, of which

23 = 8 are initial states. The transition relation is defined as follows: If

the current state value of x is its maximum value 7, then the next state

value of both counters is zero. Otherwise, the next state value of both

counters is their respective current state value incremented by one.

Now let us verify the property that the value of counter y always re-

mains smaller than 8. In other words, the most significant bit of the

counter y is assigned false throughout any initialized execution of the

system. Observe that this property holds, as y counts the number of times

x is incremented before it reaches zero, and x is a 3-bit counter.

Any state where y ≥ 8 is a bad state. Consider a state in which counter

x has value xb and counter y has value yb with yb ≥ 8. The longest path

through good states leading to this bad state is of length exactly xb, be-

cause in the first state of that path the counter x will have value zero and

counter y will have a value larger than zero. The transition relation does

not allow any transitions into such a state. The backward radius of this

model is 8, because this is the largest possible value for xb.

This system and its property are given as an SMV [McM93] model in

Appendix A. The SMV model was converted to an AIGER file using a tool

called SMVTOAIG6. The clause involvement figures where subsequently

obtained by running AIGBMC. In Fig. 4.7 the inductive behavior can be

easily observed, as all conflict clauses are derived from the last set of

jobs. The figure shows the behavior for k = 30, but any choice of k that

is substantially larger than 8, say starting from 12, would be suitable to

illustrate the behavior we discuss here. Observe that the last 8 jobs are

the most heavily used in the conflict clause derivations that lead to the

unsatisfiable result for job 30. Some problem clauses from jobs 20 − 22

were also used, but this is simply a result of the solver’s heuristically

guided search process. Note that a proof using only the last 8 jobs for any

k ≥ 8 is guaranteed to exist for this example system. The key to this fact

is the incremental usage of the solver: Whenever it starts to solve job k, it

has already proven that no counterexample of length k−1 exists, i.e. there

are no bad states amongst the first k − 1 states. The transition relation

6This tool is included in the AIGER 1.9 toolset: http://fmv.jku.at/aiger

42

Model Checking

 0
 10
 20
 30
 40
 50
 60
 70

 0 5 10 15 20 25 30
pr

ob
le

m
 c

la
us

es

UNSAT - total
UNSAT - remains

Recently used

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30

le
ar

nt
 c

la
us

es

jobs

︷ ︸︸ ︷8

Figure 4.7. Clause involvement visualization for the BMC problem described in Example
4.10 solved using AIGBMC up to k = 30.

over 8 states as represented by the problem clauses of the last 8 jobs, in

conjunction with the constraint that all states are good except the last

which is bad, is unsatisfiable, because the backward radius of the system

is 8.

For benchmark eijk.S1238.S, the extremely local behavior observable

in Fig. 4.6 can also be explained by its backward radius, which is only

2. This means that the property in this benchmark can easily be proven

using k-induction. Studying the behavior of BMC without completeness

checks on this benchmark is nevertheless interesting from the point of

view of studying incremental solver behavior.

As mentioned before, for the encoding of this benchmark used in Publi-

cation II, solving all jobs sequentially up to any k can be achieved faster

than solving just job k. The direct encoding using AIGBMC does not have

this property, it instead generates sequences for which each of the indi-

vidual jobs is very easy, also for large k. However, the encoding used in

Publication II has the property that the satisfiability of job k corresponds

to the existence of a counterexample of length at most k. We can enforce

this same semantics for each job generated by AIGBMC by first applying

AIGMOD to the benchmark, in other words by modifying the benchmark

according to Definition 4.9. Note that in general this type of change has

several practical benefits, most notably allowing efficient parallelization,

43

Model Checking

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50

tim
e

(s
)

jobs

Figure 4.8. Run time behavior for benchmark eijk.S1238.S after manipulation with
AIGMOD.

as discussed in Publication V. The change has no effect whatsoever on the

behavior of AIGBMC when it uses its solver in the conventional incremen-

tal way, and thus it will yield a clause involvement visualization identical

to Fig. 4.6. This is because whenever the incremental solver proceeds to

job k it has already proven that there exist no counterexample of length

k − 1, and hence the modification by AIGMOD does not lead to any extra

work for the incremental solver. However, solving the jobs generated by

AIGBMC independently becomes much harder, as the solver must prove

that no bad state is reached at any timepoint. As a result, we obtain

the run time behavior also observed in Publication II, which we illustrate

in Fig. 4.8. The height of a bar in this figure denotes the amount of time

spend solving the corresponding job independently, in other words without

using any incremental features. This data was obtained from 50 indepen-

dent runs of AIGBMC which, as discussed in Section 2.3, has been modified

to allow solving only a single job at a time. The thick curve illustrates the

behavior of AIGBMC using it in the conventional incremental fashion, re-

porting its total run time each time it proceeded to the next formula in

the sequence. The dotted curve is meant to further emphasize the poor

performance of non-incremental solving, by illustrating the cumulative

run time of solving all jobs sequentially and independently. Note that the

superior performance of solving the whole sequence incrementally just to

44

Model Checking

achieve solving the last job is the result of guiding the solver in a way that

is natural for the problem that it is solving.

By illustrating how we can observe properties of BMC problems in the

clause involvement visualization, we hope to have already given some in-

sight into how visualization can play a role in understanding behavior

of solver applications. In the previously discussed case, we knew that a

small inductive invariant existed and used this as an argument to explain

the observations. However, such observations may be used in the opposite

direction. If a solver consistently derives conflicts from a small number of

recent jobs in a BMC problem sequence, then the existence of an inductive

invariant is likely. Hence, if this observation is made, either manually or

automatically, it could be used to direct effort towards finding this induc-

tive invariant.

Although all kinds of properties of the problem and its encoding may be

observed from the clause involvement visualization, one should not forget

that it represents a snapshot of the involvement in clause derivations dur-

ing the solving of one particular job. To make observations about solver

behavior, it is preferable to use animated visualizations, i.e. videos of

clause involvement visualizations for consecutive jobs, rather than static

pictures. We give an example in which looking at more than one picture

can avoid drawing an incorrect conclusion7. Looking at Fig. 4.9, the clause

involvement visualization for HWMCC’11 benchmark8 pdtvisgigamax2

and k = 57, one may expect that this is a model checking problem with a

small backward radius. There exist other individual values of k, both

smaller and larger than 57, for which one could be easily tempted to

draw the same conclusion. However, the visualization for k = 58 given

in Fig. 4.10 tells a different story, as the solver used problem clauses from

all jobs in conflict clause derivations for job 58. Using other model check-

ing algorithms we have been able to determine that the backward radius

of this system is at least 50, and possibly much larger. Nevertheless, when

considering initialized paths of this system the incrementally generated

proofs of unsatisfiability are apparently small for many k. This may still

provide useful insight, and could still be used as guidance towards finding

an inductive invariant. In this particular case a small inductive invari-

ant does exist, and a representation of it as a 7 clause CNF formula can

7Clause involvement videos for the benchmarks discussed in this Section are
available from: http://www.siert.nl/thesis
8http://fmv.jku.at/hwmcc11

45

Model Checking

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

Recently used

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50

le
ar

nt
 c

la
us

es

jobs

Figure 4.9. Clause involvement for HWMCC’11 benchmark pdtvisgigamax2 and k =

57.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 10 20 30 40 50

pr
ob

le
m

 c
la

us
es

UNSAT - total
UNSAT - remains

Recently used

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50

le
ar

nt
 c

la
us

es

jobs

Figure 4.10. Clause involvement for HWMCC’11 benchmark pdtvisgigamax2 and k =

58.

46

Model Checking

be found in a fraction of a second by TREBUCHET, a tool that will be dis-

cussed in the next section.

4.6 IC3 and PDR

A powerful and novel model checking algorithm called IC3 was recently

introduced9 [Bra11]. It currently represents the state-of-the-art in com-

plete symbolic model checking algorithms. In [EMB11] an alternative

description of IC3 is given, which is named Property Driven Reachability

(PDR). There are some technical differences between IC3 and PDR. For

example, IC3 requires testing that no counterexamples of length zero or

one exist before starting the algorithm, whereas PDR does not require

such special case handling. The work on PDR moreover advocates the use

of ternary simulation to improve constraint strengthening steps used by

the IC3 algorithm. On a conceptual level both algorithms are nevertheless

identical.

We provide a basic high-level description of the algorithm, which is di-

rectly based on the explanation found in [KJN12]. A proof of a property

P generated by IC3 is a formula Proof# that symbolically represents a

state set Proof for which all of the following properties hold:

(a) All initial states are included in Proof , i.e. I ⊆ Proof .

(b) If s ∈ Proof and (s, s′) ∈ T then s′ ∈ Proof .

(c) P holds for all states in Proof , i.e. Proof ⊆ P .

Proof is an over-approximation of the set of states reachable from the

initial state. It forms an inductive proof that P holds in every initialized

execution of the system, where property (a) is the base case and (b) is

the induction step. To create such a proof, the IC3 algorithm builds a

sequence of formulas F#
0 · · ·F#

k . Each of these symbolically represents a

state set Fi, called a frame, satisfying all of the following properties:

(i) I ⊆ F0.

(ii) Fi ⊆ Fi−1 for i > 0.

(iii) P holds for all states in Fi.

(iv) If s ∈ Fi−1 and (s, s′) ∈ T then s′ ∈ Fi for i > 0.

9IC3 stands for Incremental Construction of Inductive Clauses for Indubitable
Correctness.

47

Model Checking

The basic strategy employed by the IC3 algorithm is to add constraints

to the frames in a way that maintains the properties (i)-(iv) until for all

s ∈ Fk and (s, s′) ∈ T it holds that P holds in s′. In other words, it refines

the over-approximation of the reachable set of states until all successor

states of the states in the last frame satisfy the property P . Once this

happens, a new frame Fk+1 such that F#
k+1 = P# is created, and k is

incremented. The algorithm terminates once F#
i = F#

i+1 for some i and

then provides F#
i as the proof. If this happens the frame properties (i)

and (ii) imply that the proof satisfies property (a). The frame property

(iv) and the termination condition F#
i = Fi+1 imply that (b) holds, and

property (iii) implies property (c) of the proof.

IC3 uses a SAT solver to ensure that the conditions (i)-(iv) are main-

tained throughout its execution. There are two types of solver calls. The

first type of calls are those performed in the outer loop of the algorithm, to

check whether there is a state not satisfying property P that is reachable

from a state in the last frame Fk. This is a formula of the form displayed

in the left column Table 4.1. If this formula is unsatisfiable a new frame

is created. If, however, the formula is satisfiable, then there exists a state

in the last frame from which a bad state is reachable. The algorithm now

enters a loop that attempts to block this bad state, in other words, a loop

that tries to improve the reachable state set approximations provided by

the frames in such a way that properties (i)-(iv) are maintained. This is

achieved by repeatedly calling the SAT solver to check the existence of a

predecessor s ∈ Fi−1 that leads to a state sb ∈ Fi that must be blocked,

where (s, sb) ∈ T and s �= sb. This is represented by formulas of the second

type, displayed in the right column of Table 4.1. If the property P does not

hold then the algorithm will fail to block some path to a bad state, which

proves the existence of a counterexample.

∃s ∈ Fk s.t. (s, s′) ∈ T and s′ /∈ P ∃s ∈ Fi s.t. s �= sb and (s, sb) ∈ T

↔ ↔
F#
k (xn, · · · , x0) ∧ F#

i (xn, · · · , x0) ∧
T#(xn, · · · , x0, x′n, · · · , x′0) ∧ ¬s#b (xn, · · · , x0) ∧
¬P#(x′n, · · · , x′0) T#(xn, · · · , x0, x′n, · · · , x′0) ∧

s#b (x
′
n, · · · , x′0)

Table 4.1. The form of the two types of formulas the IC3 algorithm uses a SAT solver for.

48

Model Checking

4.7 The solver usage of IC3 and PDR

The inventor of IC3 stated in [Bra12] that the incremental SAT solver us-

age of IC3 is different from that of other solver applications. We took a

look at the solver usage of the PDR implementation TREBUCHET found

in Niklas Eén’s model checking tool collection ZZ10. This implementation

uses a SAT solver incrementally, but it also uses more than one instance

of that solver per run of the algorithm. The default solver used by TRE-

BUCHET is a recent version of MINISAT by Niklas Sörensson. The clause

involvement visualization does not result in readable pictures for this ap-

plication, as its solver usage is atypical, with a large number of jobs, and

a small number of conflicts.

The Figures 4.11 and 4.12 show how the average number of conflicts di-

vided by the number of solver calls progresses over time. Each line in the

plot denotes a separate solver instance. Remarkably enough, the num-

ber of conflicts per solver call is always very small, often even below one.

Observe also that, for these two benchmarks, no single solver instance is

used for more than a couple of seconds. We generated similar plots for

all HWMCC’12 benchmarks11 that TREBUCHET could solve within 5min-

utes, and found that such low numbers of conflicts are typical behavior. As

a compact summary of that experiment we provide Table 4.2. The table

is sorted by the column “conflicts per call”. The values given in the last

row of the table, for benchmark 6s126, differ significantly from the other

entries. The reason is that for this benchmark a counterexample of length

zero exists (i.e. ¬P ∩ I �= ∅).
The experiment motivates future work on how to exploit IC3’s atypical

solver behavior. It seems like using a conflict driven SAT solver for prob-

lems that constitute very few conflicts may not be the optimal choice. Alan

Mishchenko, developer of the model checking environment ABC [BM10],

tried an alternative.

Quote 4.11 (Alan Mishchenko, private communication). Some time

ago I tried to use a simplistic circuit-based solver, which is geared to small

incremental low-conflict or no-conflict SAT problems. This solver made a

big difference in the efficient implementation of SAT-based signal corre-

spondence whose run time was improved more than 10x compared to the

previous implementation, making it applicable to sequential circuits with

10http://bitbucket.org/niklaseen
11http://fmv.jku.at/hwmcc12

49

Model Checking

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10

co
nf

lic
ts

 p
er

 s
ol

ve
r c

al
l

CPU time (s)

6s172 - 30 solver instances

Figure 4.11. Conflicts per solver call for a satisfiable HWMCC’12 benchmark.

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10

co
nf

lic
ts

 p
er

 s
ol

ve
r c

al
l

CPU time (s)

beemtrngt4b1 - 215 solver instances

Figure 4.12. Conflicts per solver call for an unsatisfiable HWMCC’12 benchmark.

50

Model Checking

more than 1M AIG nodes. However, the main difference of using SAT in

IC3/PDR, is that in addition to the circuit, there is a substantial number

of CNF clauses constraining the values of flop output variables. There-

fore, a pure circuit-based solver without efficient support for two-literal

watching needed to perform the clause-based BCP would not be effective

in this application.12

It seems that for the majority of the work performed the only solver

features IC3 and PDR require are fast iterative unit propagation, and the

ability to compute a final conflict clause. However, as final conflict clause

computation requires almost all the bookkeeping needed for full conflict

clause analysis it is not clear how to design a solver that can be faster by

focusing on these two features alone13.

It would be interesting to study IC3 and PDR as solver applications in

more detail. A possible direction would be to classify the jobs generated

by this algorithm based on their theoretical or empirical hardness. This

can be done considering these jobs as individual problems, or as elements

of the job sequence in which they appear. Clearly, jobs that are easy for a

solver that has already solved a sequence of related jobs are not necessar-

ily easy as individual problems. We performed the following experiment

to illustrate that it is the incremental usage of the solver that enables

solving a large fraction of the jobs without reaching any conflicts.

Experiment 4.12. We modified TREBUCHET to print the clauses and as-

sumptions sets that it sends to its SAT solver also into a set of iCNF files,

one file for each solver instance. The 30 iCNF files generated for bench-

mark 6s172, also used for Fig. 4.11, contained in total 99233 jobs. We gave

the 30 files one by one to MINISAT, which solved all jobs in each of the

files incrementally, leading to a total of 46950 conflicts, an average of half

a conflict per job. We subsequently solved the 99233 jobs independently

using the same solver without using any incremental features. The re-

sulting sum of conflicts was 1672105, which is more than 35 times larger,

and corresponds to an average of 16.8 conflicts per job.

The 215 iCNF files generated for beemtrngt4b1, also used for Fig. 4.12,

contained in total 367220 jobs. Incremental solving results in 202954 con-

flicts (0.6 per job). Independent solving of all jobs results in 2373878 con-

flicts in total (6.5 per job). Clearly, for the two cases studied here, incre-

12Flop output variables are the same as system state bits. Clause-based Boolean
Constraint Propagation (BCP) is the same as iterative unit propagation.
13This insight was provided by Niklas Eén in a private communication.

51

Model Checking

mental usage is what enables solving a large fraction of the jobs without

reaching any conflicts.

Many of the jobs generated by the IC3 algorithm correspond to satisfi-

able formulas, as this corresponds to all cases where the state sets repre-

sented by the frames must be further refined. As the number of conflicts

is on average very small, the satisfying assignments of consecutive jobs

are apparently close together in the search space. This property is ex-

actly what is exploited by a technique called model rotation, for another

incremental solver application called MUS finding (see Chapter 5). This

technique prunes away substantial amounts of relatively easy work from

the solver. The research into, and possible development of, a similar tech-

nique for IC3 is an ambitious target for future work.

benchmark solver solver conflicts conflicts max. conflicts

instances calls per call in one call

6s102 3 13151 3002 0.23 15

6s157 1 273 68 0.25 1

6s159 2 1588 390 0.25 5

6s162 240 174116 52280 0.30 25

6s51 9 93452 28911 0.31 19

6s194 31 199156 72595 0.36 16

beemldelec4b1 1 1201 485 0.40 46

6s43 22 109087 46642 0.43 75

beemfwt1b1 7 96327 42570 0.44 168

beempgmprot1b1 12 110280 50124 0.45 128

6s172 30 99233 46950 0.47 45

6s164 647 575192 279651 0.49 167

bob05 2 10780 5399 0.50 24

bob1u05cu 2 10780 5399 0.50 24

beemgear2b1 48 83007 42125 0.51 26

beembrptwo4b1 27 47389 25785 0.54 35

beemmcs1f1 11 8969 4875 0.54 22

beemlmprt5f1 38 41811 22791 0.55 16

beemtrngt2b1 55 72745 39869 0.55 28

beemtrngt4b1 215 367220 202954 0.55 35

beemfish4f1 226 188972 113495 0.60 24

6s34 64 197903 122575 0.62 21

beemlann2f1 37 37417 25232 0.67 13

beemtrngt3f1 586 506412 344180 0.68 25

beemlptna5f1 7 32688 22750 0.70 24

6s109 113 195247 139491 0.71 50

6s108 4 22776 16713 0.73 55

— table continues on the next page —

52

Model Checking

benchmark solver solver conflicts conflicts max. conflicts

instances calls per call in one call

bobsmoci 298 897107 667288 0.74 712

beemexit5f1 65 100170 75679 0.76 41

beemsnpse4f1 11 22055 17362 0.79 35

bobsmi2c 43 113225 89359 0.79 40

beembrp1f1 1175 1291474 1097954 0.85 28

beemrether6b1 1 1470 1270 0.86 58

beemtlphn5f1 260 695364 617253 0.89 258

beemhanoi1b1 197 453390 420086 0.93 124

pdtpmsns3 465 841812 813971 0.97 394

pdtpmssfeistel 66 180266 193179 1.07 543

beemptrsn1b1 225 239484 266603 1.11 66

beembkry1b1 46 41454 47897 1.16 56

beemndhm2f2 21 157640 189897 1.20 2083

beemldfilt4b1 304 535316 685360 1.28 111

beemrshr2b1 3 38207 51712 1.35 433

beemmcs4b1 563 703701 1000462 1.42 293

6s6 83 146992 214201 1.46 241

beemloyd2b1 6 8290 12402 1.50 45

eijkbs3330 55 68514 135582 1.98 1313

beemlmprt1b1 103 113713 236450 2.08 224

6s132 78 64206 135747 2.11 1928

beemmsmie1b1 108 123919 264616 2.14 586

6s173 67 178647 535369 3.00 222

beemfrogs1b1 78 290266 1255448 4.33 593

beemlifts8b1 1 2457 11143 4.54 332

neclaftp3002 1 374 1833 4.90 162

pdtpmsviper 7 63418 372162 5.87 8092

beemcoll1b1 1 8367 50754 6.07 3176

6s120 1 1169 15955 13.65 2163

bobsmrisc 3 85159 1246113 14.63 44768

bjrb07amba10andenv 1 7033 125837 17.89 5233

bobaesdinvdmit 3 97804 1936190 19.80 64302

beemprng1b1 1 603 13323 22.09 818

beempgsol5b1 2 5409 158305 29.27 12235

6s126 1 1 43709 43709.00 43709

Table 4.2. Statistics for HWMCC’12 benchmarks solved within 5 minutes by TRE-
BUCHET.

53

Model Checking

54

5. Finding Minimal Unsatisfiable
Subsets

This chapter discusses algorithms for finding minimal unsatisfiable sub-

sets. It provides an extended discussion of the results published in Publi-

cation I and Publication IV. This includes the discussion of several pre-

viously undocumented features of an implementation of the algorithm

presented in Publication I. Moreover, we provide several new theoretical

results related to the work performed in Publication IV.

An unsatisfiable formula is minimal unsatisfiable, if removing any of its

clauses makes it satisfiable. A Minimal Unsatisfiable Subset (MUS) of a

formula is a subset of clauses of the formula that is minimal unsatisfiable.

A clause whose removal from an unsatisfiable formula makes the formula

satisfiable is called a critical clause. Here, we provide a generalized def-

inition of criticality which can also be applied with respect to satisfiable

formulas.

Definition 5.1 (Critical clause). A clause c is critical1 with respect to

formula F if and only if the following equivalent claims hold:

• F \ {c} does not imply c.

• F \ {c} has a satisfying assignment not satisfying c.

• (F \ {c}) ∪ ¬c is satisfiable, where ¬c = { {¬l} | l ∈ c }.

Throughout this chapter we will simply write that a clause is critical,

without mentioning of the formula with respect to which it is critical if

this is clear from the context Observe that a tautological clause, i.e. a

clause c containing l ∈ c and ¬l ∈ c for some literal l, can never be criti-

cal. In the following discussion we therefore assume, without loss of gen-

erality, that formulas do not contain tautological clauses. A formula is

1Alternative names found in the literature are transition clause (e.g. [GMP08,
ML11]) and necessary clause (e.g. [KLM06]).

55

Finding Minimal Unsatisfiable Subsets

Algorithm 1 Basic destructive MUS finding algorithm

Given: An unsatisfiable formula F .

1. M = ∅
2. while F �= M

3. pick a clause ci ∈ F \M
4. if F \ {ci} is satisfiable then

5. M = M ∪ {ci}
6. else

7. F = F \ {ci}
8. return F

irredundant [Lib05] if all of its clauses are critical. A formula is minimal

unsatisfiable if and only if it is unsatisfiable and irredundant.

The complexity class DP contains all languages L such that L = L1 ∩
L2 where L1 ∈ NP and L2 ∈ coNP. Testing irredundancy of a formula

is an NP-complete problem [Lib05], whereas testing whether a formula

is unsatisfiable is a coNP-complete problem. Hence, testing whether a

formula is minimal unsatisfiable is in the complexity class DP. In fact, it

is DP-complete [PW88].

5.1 Classical algorithms for MUS finding

Most well known algorithms for MUS finding are based on repeated calls

to a SAT solver [Mar10]. Such algorithms have been categorized as con-

structive, destructive or dichotomic [GMP08]. All these algorithms are

based on iteratively identifying critical clauses. Constructive algorithms

start from an empty formula and add clauses until the formula becomes

unsatisfiable. When this happens, the last clause that was added is crit-

ical with respect to the constructed formula. This was first observed in

[dSNP88]. Destructive algorithms, on the contrary, start from the full for-

mula and remove clauses until the formula becomes satisfiable. When this

happens, the last clause removed is critical with respect to the formula it

is removed from. The dichotomic approach identifies critical clauses using

a binary search over the set of clauses in the input formula [HLSB06].

Possibly the simplest algorithm for MUS finding is the classical destruc-

tive algorithm, for which pseudocode is given in Alg. 1. It starts from the

complete formula F and an empty set M . The set M represents the set

56

Finding Minimal Unsatisfiable Subsets

Algorithm 2 Basic constructive MUS finding algorithm

Given: An unsatisfiable formula F .

1. M = ∅
2. while F �= M

3. R = M

4. L = ∅
5. while R is satisfiable

6. pick a clause ci ∈ F \R
7. R = R ∪ {ci}
8. L = {ci}
9. F = R

10. M = M ∪ L

11. return F

of clauses that the algorithm has proven critical. In every iteration the

algorithm tests for a clause ci that is still in F and not yet in M whether

it is critical with respect to the clauses in F . If it is, then it is added toM ,

otherwise it is removed from F . This continues until F and M are equal,

which means the algorithm has found a MUS of F .
A basic constructive MUS finding algorithm is given in pseudocode in

Alg. 2. The algorithm repeatedly identifies one critical clause by starting

from a satisfiable formula R, and adding clauses to it until it becomes

unsatisfiable. Any clauses that have not been added to R once it becomes

unsatisfiable can naturally be removed from F . The set L is keeping track

of the last clause added to R, and thus throughout the algorithms execu-

tion always contains at most one clause. When R becomes unsatisfiable

the clause in L is critical.

The basic destructive algorithm Alg. 1 performs at most m calls to the

SAT solver, where m = |F|. The number of SAT solver calls the construc-

tive algorithm presented in Alg. 2 performs is bounded by m × k where

k is the size of the largest MUS in F . However, this does not mean that

constructive algorithms are not interesting. First of all, it was shown in

[ML11] that a more elaborate constructive algorithm requiring only |F|
solver calls does exist. Secondly, the basic constructive algorithm Alg. 2

performs a lot of calls to the solver for problems that are severely under-

constrained, and thus easy to solve. All solver calls inside one round

are performed in a naturally incremental fashion, starting from a sim-

57

Finding Minimal Unsatisfiable Subsets

Algorithm 3 Constructive MUS finding algorithm from Publication I

Given: An unsatisfiable formula F .

1. M = ∅
2. while F �= M

3. R = M

4. P = ∅
5. while F �= R

6. pick a clause ci ∈ F \R
7. if R ∪ ¬ci is satisfiable then

8. αi = a complete assignment satisfying R ∪ ¬ci
9. R = R ∪ {ci}
10. P = {cj | cj ∈ P and αj satisfies ci} ∪ {ci}
11. else F = F \ {ci}
12. M = M ∪ P

13. return F

ple problem and gradually extending it. Thus one round of the algorithm

is arguably simply an organized way of solving one problem, rather than

a loop solving k independent problems. We will continue this discussion

in Section 5.7.

5.2 Constructive algorithm using associated assignments

In Publication I a constructive algorithm for MUS finding was presented.

In Alg. 3 we give pseudocode for this algorithm. This presentation of the

algorithm is different from the original presentation in Publication I, but

nevertheless matches the original implementation of the algorithm. The

publication made two significant contributions.

The first improvement of Alg. 3 with respect to Alg. 2 is that a clause is

only added to the growing set R if it is critical with respect to R. This is

achieved by testing the satisfiability of R ∪ ¬ci instead of the satisfiability
of R, before adding ci. The idea is that for a clause to be critical with

respect to a MUS of F it has to be critical with respect to all subsets of

that MUS.

The second improvement is in the construction of the set P of potentially

critical clauses. An invariant of this algorithm is that all clauses in the

set P are critical with respect to R, and hence they are “potentially crit-

58

Finding Minimal Unsatisfiable Subsets

ical” with respect to a MUS of F . The invariant is maintained using the

satisfying assignments returned by the SAT solver.

Definition 5.2 (assoc). An associated assignment (assoc) for a clause

c ∈ F is a complete assignment α for the formula F that satisfies the

formula F \ {c} and does not satisfy c.

Note that by definition the existence of an assoc for a clause c ∈ F im-

plies that c is critical for F . In Alg. 3 on Line 8 an assoc, i.e. an assignment

associated with ci proving its criticality with respect to R, is stored. Be-

cause ci is critical with respect to R it is also added to P , on Line 10.

However, the addition of ci to R may mean that some clauses that were

already in P are no longer critical. Thus, on Line 10 only those clauses

in P are maintained for which the previously stored assoc satisfies the

newly added clause, i.e. is still an assoc for the new set R. The use of

truth assignments to witness criticality apparently was an inspiration for

the development of model rotation [ML11], which is used in the most suc-

cessful MUS finders today, and which is discussed in detail in Section 5.3.

The implementation of this algorithm used for the performance evalua-

tion presented in Publication I, was named MINIUNSAT, after the solver

MINISAT it is based on. At the SAT competition2 of 2011 there was a spe-

cial track for MUS finders, in which an updated version of this MUS finder

named MINIUNSAT2 competed. It contained several undocumented im-

provements compared to the original algorithm.

First of all, we observed that for correctness and termination it is suffi-

cient to initialize R on Line 3 to any R ⊂ F such that M ⊆ R. This means

that the number of SAT solver calls per round can be limited to a constant

smax by initializing R as follows:

Let R = M if |F| − |M | ≤ smax,

and R ⊂ F s.t. M ⊆ R and |F| − |R| = smax if |F| − |M | > smax.

During the competition MINIUNSAT2 was using this type of initializa-

tion with constant smax = 100. The second undocumented feature is a

redundancy check that we will discuss in Section 5.8.

5.3 Model rotation

In [ML11] a technique called model rotation was introduced. Shortly af-

ter the original publication it was improved to recursive model rotation
2http://www.satcompetition.org

59

Finding Minimal Unsatisfiable Subsets

Algorithm 4 Recursive model rotation

Given:

• A formula F .
• A set M ⊆ F of critical clauses.

• A clause ci ∈M .

• An assoc αi ∈ A(ci,F).

subroutine modelRotate(F ,M, ci, αi)

1. for l ∈ ci do

2. αj = rotate(αi,¬l)

3. if

⎛
⎝exactly one clause cj ∈ F is not

satisfied by αj and cj /∈M

⎞
⎠ then

4. M = M ∪ {cj}
5. modelRotate(F ,M, cj , αj)

[BM11], which has become a standard technique for MUS finders. Model

rotation provides another way of benefiting from the satisfying assign-

ments returned by the solver used for MUS finding.

Definition 5.3 (Set of assocs). Let A(c,F) be the set of all assocs for

c ∈ F .

Clearly, for any formula F and clause c ∈ F a single assoc α ∈ A(c,F) or
prove that A(c,F) = ∅ can be obtained by testing the satisfiability of the

formula (F \ {c}) ∪ ¬c using a SAT solver. Model rotation is an algorithm

that given an assoc for a clause attempts to find an assoc for another

clause by negating a single literal in the assoc.

Definition 5.4 (Rotation function). Let rotate(α, l) be a function that

negates literal l in assignment α, i.e.: rotate(α, l) = (α \ {l}) ∪ {¬l}.

The pseudocode for the recursive model rotation algorithm is shown in

Alg. 4. The algorithm can be used as a subroutine in any MUS finding al-

gorithm, whenever a new critical clause is discovered. For example, to use

model rotation inside the basic destructive algorithm3, it should be exe-

cuted after every addition of a clause ci to M on Line 5 of Alg. 1. Observe

that the required assoc αi is the satisfying assignment the solver found

when it solved the formula F \ {ci}, where F was known to be unsatis-

fiable. In Publication IV we viewed model rotation as an algorithm that

3In e.g. [ML11, BLM12, MJB13] the combination of Alg. 1 with Alg. 4 is named
the hybrid algorithm.

60

Finding Minimal Unsatisfiable Subsets

traverses a graph with one vertex for each clause, called the flip graph.

Definition 5.5 (Flip graph). For a formula F the flip graph GF = (V,E)

is a graph which has a vertex for every clause, i.e. V = F . Each edge

(ci, cj) ∈ E is labelled with the set of literals L(ci, cj) such that:

L(ci, cj) = {l | l ∈ ci and ¬l ∈ cj}.

The set of edges E of the flip graph is defined by (ci, cj) ∈ E if and only if

L(ci, cj) �= ∅.

Even though (ci, cj) ∈ E if and only if (cj , ci) ∈ E in this work the flip

graph is considered to be a directed graph. This is useful for defining the

rotation edges. The undirected version of this graph is sometimes referred

to as the resolution graph (e.g. [Sin07]), and will be further discussed in

Section 5.8.

Definition 5.6 (Rotation edges). Given a formula F , let the sets of pos-

sible rotation edges4 EP , and guaranteed rotation edges EG be defined

as:

EP = {(ci, cj) | ci, cj ∈ F and |L(ci, cj)| = 1}, and:

EG = {(ci, cj) | ci, cj ∈ F and |L(ci, cj)| = 1 and for all ck ∈ F
such that ck �= cj it holds that L(ci, cj) �= L(ci, ck)}.

In Fig. 5.1 the flip graph for an example formula Ffig5.1 is given. Because

there are no two clauses ci, cj ∈ Ffig5.1 such that |L(ci, cj)| > 1 it holds

that the set of possible rotation edges EP is equal to the set of all edges

E in the flip graph. However, only the solid edges in the figure belong

to the set of guaranteed rotation edges EG. The dotted edges are not in

the set EG because the two outgoing edges from vertex c1 have the same

label L(c1, c2) = L(c1, c3) = {x}. In Publication IV we prove the following

theorem:

Theorem 5.7. Let F be an unsatisfiable formula and EG the set of guar-

anteed rotation edges it induces. If (ci, cj) ∈ EG then for any assoc αi ∈
A(ci,F) an assignment αj = rotate(αi,¬l) such that L(ci, cj) = {l} is an

assoc αj ∈ A(cj ,F).

This theorem implies that if we find an assoc for a clause then model

rotation is guaranteed to find an assoc for all clauses that are reachable

4Note that the set EP corresponds to all pairs of clauses (ci, cj) on which resolu-
tion ci ⊗ cj can be performed without creating a tautology.

61

Finding Minimal Unsatisfiable Subsets

c1

x

c2

¬x ∨ y

c3

¬x ∨ z

c4

¬y ∨ ¬z

{¬x}

{x}

{¬x} {x}
{¬z}

{z}

{y} {¬y}

Figure 5.1. The flip graph for the formula Ffig5.1 = {{x}, {¬x, y}, {¬x, z}, {¬y,¬z}}.

from that clause over edges in EG. It is shown in Publication IV that

formulas which are commonly used for benchmarking MUS finding algo-

rithms contain large numbers of guaranteed rotation edges. Using this

observation we computed, for a set of formulas typically used for bench-

marking MUS finders, an upper bound on the minimum number of calls

to a SAT solver needed by the destructive algorithm Alg. 1 when it is us-

ing Alg. 4 as a subroutine. This number is typically much smaller than

the number of clauses in the input formula. We used this observation to

argue about the strength of model rotation.

Example 5.8. From Theorem 5.7 it follows that an assoc exists for every

clause for which there is a path over edges in EG from a clause for which

an assoc exists. Thus for formula Ffig5.1 presented in Fig. 5.1 obtaining

any assoc α ∈ A(ci,Ffig5.1) for i ∈ {2, 3, 4} is sufficient to determine that

all clauses in the formula are critical. Obtaining an assoc for clause c1

may however be less effective. Note that:

A(c1,Ffig5.1) = { {¬x,¬y,¬z}, {¬x,¬y, z}, {¬x, y,¬z} }.

Although by replacing ¬x by x the second and third assoc in this set can be

rotated into a valid assoc for c2 and c3 respectively, no negation of a single

literal will make the first assoc into a valid assoc for any other clause in

the formula Ffig5.1.

5.4 Weakening the termination condition

In Publication IV we present an algorithmic improvement for the recur-

sive model rotation algorithm Alg. 4. We show an example for a formula

with nine clauses in which starting from an assoc for one clause we find an

assoc for five other clauses. We then showed that if the algorithm would

62

Finding Minimal Unsatisfiable Subsets

have been modified by removing the condition c /∈M from Line 3 it would

have found an assoc also for the three other clauses. The problem is that

after removing this condition the algorithm is no longer guaranteed to ter-

minate, as the algorithm may traverse a cycle in the flip graph. In other

words, to guarantee termination we must weaken the condition in such a

way that a vertex may be visited several times, but not infinitely often.

Visiting the same vertex twice with the same assoc is not useful, so a

simple weakened termination condition would be to check when we reach

a critical clause whether we already reached this clause using the same

assoc. However, this requires storing a potentially exponential number of

assocs with every critical clause. In [BLM12] it was suggested to store a

limited number rd (“rotation depth”) of assocs with each clause identified

as critical, and to allow rd distinct traversals of the same critical clause.

The authors did not manage to achieve a performance improvement using

this technique. Our solution requires less memory, does not require choos-

ing any constants, and provides a consistent performance improvement.

Observe that visiting a critical clause multiple times may be useful be-

cause rotation may yield different results when started from a different

assoc. Therefore, our intention was to define a termination condition that

would enforce that different traversals of the same clause are on differ-

ent paths. Our solution is given in pseudocode in Alg. 5. It associates

with every literal l in every clause c a Boolean value seen(c, l). Whenever

model rotation is called from the MUS finder the value seen(c, l) is set to

false for all clauses and all literals. If the subsequent recursive calls to

model rotation find an assoc for a clause c after rotation of literal l and

seen(c, l) is false then seen(c, l) is set to true before traversing c. If on the

other hand seen(c, l) is already true then clause c is not traversed.

5.5 Blocked rotation edges

In Publication IV we defined a subset of possible rotation edges EG ⊆
EP on which rotation is guaranteed to succeed. Here, we discuss a new

result5 regarding the possible existence of edges in EP on which rotation

5The content of the Sections 5.5 and 5.6 has not been previously published. It
does appear in a technical report [Wie13] that was made publicly available before
the completion of this dissertation.

63

Finding Minimal Unsatisfiable Subsets

Algorithm 5 Improved recursive model rotation

Given:

• A formula F .
• A set M ⊆ F of critical clauses.

• A clause ci ∈M .

• An assoc αi ∈ A(ci,F).

subroutine improvedModelRotate(F ,M, ci, αi)

I. for all c ∈ F and all l ∈ c do seen(l, c) = false

II. improvedMRRec(F ,M, ci, αi)

subroutine improvedMRRec(F ,M, ci, αi)

1. for l ∈ ci do

2. αj = rotate(αi,¬l)

3. if

⎛
⎝exactly one clause cj ∈ F is not

satisfied by αj and seen(cj ,¬l) = false

⎞
⎠ then

4. seen(cj ,¬l) = true

5. M = M ∪ {cj}
6. improvedMRRec(F ,M, cj , αj)

is guaranteed to fail.

Definition 5.9 (Blocked rotation edge). An edge (ci, cj) ∈ EP is blocked

if for all αi ∈ A(ci,F) we have rotate(αi,¬l) /∈ A(cj ,F), where l is the

literal such that L(ci, cj) = {l}.

Corollary 5.10. If and only if (ci, cj) ∈ EP is a blocked edge then (cj , ci) ∈
EP is a blocked edge.

Naturally, an edge (ci, cj) ∈ EP is a blocked edge if either A(ci,F) = ∅
or A(cj ,F) = ∅. However, we will show that blocked edges may also exist

between two critical clauses.

Lemma 5.11. Let F be a formula, and ci, cj ∈ F a pair of clauses such that

L(ci, cj) = {l}. If for some literal l′ �= l it holds that F \ {ci, cj} |= l ↔ l′

then the edge (ci, cj) ∈ EP is blocked.

Proof. For all αi ∈ A(ci,F) it holds that ¬l ∈ αi and αi satisfies F\{ci, cj},
thus ¬l′ ∈ αi holds. But then any assignment rotate(αi,¬l) contains l

and ¬l′ and therefore does not satisfy F \ {ci, cj}. It follows that no such

assignment can be an assoc for cj .

64

Finding Minimal Unsatisfiable Subsets

Lemma 5.11 can be generalized, for example, by replacing the literal l′

with any formulaQ such that l does not occur inQ and F\{ci, cj} |= l↔ Q.
Hence, the lemma provides a sufficient condition for blocking the edge

between two critical clauses ci and cj , but this is not a necessary condition.

An interesting observation is that we can create an irredundant formula

F with a clause ci ∈ F such that for all cj ∈ F all edges (ci, cj) ∈ EP are

blocked. This means that for this formula model rotation starting at ci

can never find an assoc for any other clause, neither can model rotation

starting from any other clause result in an assoc for clause ci.

Example 5.12. Consider the following irredundant satisfiable formula F :

F = { c0 = x ∨ y,

c1 = p ∨ ¬x, c2 = ¬p ∨ x,

c3 = q ∨ ¬x, c4 = ¬q ∨ x,

c5 = r ∨ ¬y, c6 = ¬r ∨ y,

c7 = s ∨ ¬y, c8 = ¬s ∨ y }.

Note that this formula represents four equivalences p↔ x, q ↔ x, r ↔ y,

and s ↔ y. Together, these make sure that for all c ∈ F it holds that the

edge (c0, c) ∈ EP is blocked. The formula can be made minimal unsatisfi-

able without breaking this property, for example by adding one clause for

each one of the three satisfying assignments of the formula. This yields

the following minimal unsatisfiable formula F ′:

F ′ = F ∪ { c9 = p ∨ q ∨ ¬r ∨ ¬s ∨ x ∨ ¬y,
c10 = ¬p ∨ ¬q ∨ r ∨ s ∨ ¬x ∨ y,

c11 = ¬p ∨ ¬q ∨ ¬r ∨ ¬s ∨ ¬x ∨ ¬y }.

5.6 Proof of a conjecture by Belov et al.

In [BLM12] a conjecture is presented that we prove here. The conjecture

states a property of the rotation graph, which was defined alongside the

conjecture. Here we state an equivalent definition for the rotation graph

using slightly different notation.

Definition 5.13 (Rotation graph). Let F be an unsatisfiable formula,

and let Unsat(F , α) be the set of clauses in F not satisfied by assignment

α, i.e. Unsat(F , α) = {c | c ∈ F and c ∩ α = ∅}. The rotation graph

RF = (VR, ER) is a directed graph which has a vertex for each complete

65

Finding Minimal Unsatisfiable Subsets

{¬x, y,¬z}
{c1}

{x, y,¬z}
{c3}

{x, y, z}
{c4}

{¬x, y, z}
{c1, c4}

{x,¬y,¬z}
{c2, c3}

{x,¬y, z}
{c2}

{¬x,¬y, z}
{c1}

{¬x,¬y,¬z}
{c1}

x ∈ c1¬x ∈ c3

¬z ∈ c4

z ∈ c3

¬z ∈ c4

x ∈ c1

z ∈ c3

¬x ∈ c2

x ∈ c1

y ∈ c2 ¬y ∈ c4y ∈ c2 ¬y ∈ c4

x ∈ c1¬x ∈ c2, c3

Figure 5.2. The rotation graph for the formula Ffig5.1.

assignment to the variables of F . There exists an edge (α, α′) ∈ ER if

α′ = rotate(α,¬l) for some literal l ∈ ⋃
Unsat(F , α).

Example 5.14. Figure 5.2 provides the rotation graph for our example

formula Ffig5.1. All vertices are labeled with a complete assignment α to

the variables x, y and z, and with the set of clauses Unsat(Ffig5.1, α). For

clarity each edge in the graph is labeled with the literal that justifies its

existence.

A witness assignment, as mentioned in the following quote, is exactly

the same as an assoc.

Quote 5.15 (Conjecture from [BLM12]). Let F be a minimally unsatis-

fiable formula, and letRF be the rotation graph of F . Then, there exists a

witness assignment v such that the traversal of RF starting from v visits

at least one witness assignment for each clause c ∈ F .

The possible existence of critical clauses that are connected only through

blocked edges in the flip graph, as in Example 5.12, does not disprove this

66

Finding Minimal Unsatisfiable Subsets

conjecture. This is because the traversal of the rotation graph as defined

here may pass through assignments α for which |Unsat(F , α)| > 1, i.e. it

may perform rotation through assignments that are not an assoc for any

clause. The intuition behind the following lemma is that from any com-

plete assignment we can always traverse an edge in the rotation graph

which brings us strictly closer to a chosen destination assoc.

Lemma 5.16. Let F be an unsatisfiable formula, and let αj be an assoc for

some clause cj ∈ F , i.e. αj ∈ A(cj ,F). Moreover, let αi be a complete

assignment which is not an assoc for cj , i.e. αi /∈ A(cj ,F). Then there

exists a literal l ∈ ⋃
Unsat(F , αi) such that l ∈ D where D = αj \ αi.

Proof. Let ci ∈ Unsat(F , αi) such that ci �= cj . Such a clause must exists

because Unsat(F , αi) is both non-empty (as F is unsatisfiable), and not

equal to {cj} (as αi is not an assoc for cj). As αj satisfies ci while αi does

not, it must hold for some l ∈ ci that l ∈ αj and l /∈ αi, hence l ∈ D.

Lemma 5.17. Let F be an unsatisfiable formula, let cj ∈ F be a critical

clause, and let αi be a complete assignment for to the variables ofF . There

exists a path in the rotation graph starting from the vertex corresponding

to assignment αi to an assoc αj ∈ A(cj ,F).

Proof. We will show how to construct a rotation path starting from αi

that is guaranteed to end in an assoc for cj . For some αj ∈ A(cj ,F) let

D = αj \ αi. The path begins at the vertex corresponding to assignment

α = αi. The path is completed when we reach an assignment α that is

an assoc for cj . By combining Definition 5.13 and Lemma 5.16 we may

observe that if α is not an assoc for cj then there exists a literal l ∈ D such

that (α, α′) ∈ ER for α′ = rotate(α,¬l). Hence, the path can proceed from

α to α′, after which l can be removed from D. At α′ we repeat the previous,

i.e. either we find that α′ is an assoc for cj or we compute the next step

in the path. As one element is removed from D in every step the path is

guaranteed to end in an assoc for cj .

Lemma 5.17 states that starting from any complete assignment there

exists a path to an assoc for any arbitrary critical clause. Hence, the

conjecture in Quote 5.15 must hold. In fact, we can even strengthen the

conjecture to the following corollary.

Corollary 5.18. Let F be an unsatisfiable formula, and let RF be the ro-

tation graph of F . Starting from any complete assignment to the variables

67

Finding Minimal Unsatisfiable Subsets

of F (any vertex in VR), there exists a path in RF that visits an assoc for

every clause c ∈ F such that A(c,F) �= ∅.
Clearly, a variant of model rotation that may traverse all edges in the ro-

tation graph (called unrestricted EMR in [BLM12]) can reach an assoc for

any critical clause in the input formula, starting from any complete as-

signment. Unfortunately this result does not provide much insight in the

strength of conventional model rotation.

5.7 Using the solver efficiently

A powerful way to improve the implementation of MUS finding algorithms

is by using a proof-logging SAT solver, i.e. a solver which can provide a

proof of unsatisfiability. The set of clauses used in such a proof is by defi-

nition always an unsatisfiable subset of the solver’s input formula. Hence,

if we use a proof-logging solver for Alg. 1 then on Line 7 of the pseudocode

we can delete from F any clause that is not used in the proof provided by

the solver. Although the power of such techniques has been reconfirmed

recently [NRS13], the approach has not been particularly popular. Its dis-

advantages are that storing proofs may require a large amount of memory,

and that state-of-the-art solvers with proof-logging features have not been

widely available. This may be changing in the near future as recently

there has been an interest in generating compact unsatisfiability proofs

[HHW13], and implementing proof-logging has been actively encouraged

by the SAT competition2 of 2013.

A commonly used implementation of the destructive algorithm given in

Alg. 1 uses an incremental SAT solver without proof-logging features, by

making use of selector variables. For each clause ci ∈ F a selector vari-

able si is created in the solver. Recall that selector variables, discussed

in Chapter 2, are auxiliary variables that do not occur anywhere in the

original formula F . Instead of loading the formula F the set of clauses

{ci ∨ ¬si | ci ∈ F} is loaded in the solver. The solver can now be used

to test the satisfiability of any subformula of the original formula F by

solving under a set of assumptions that contains literal si for each clause

ci that we wish to include during the test. The final conflict returned by

the solver can be used to delete more than one clause per iteration, i.e.

on Line 7 of the pseudocode we can delete any clause ci for which selector

si does not occur in the final conflict. This is called clause set refinement

[ML11], and it is crucial for the performance of this algorithm. An impor-

68

Finding Minimal Unsatisfiable Subsets

tant optimization of the implementation is to add the unit clause {si} to
the solver for every clause ci we add to M , and the unit clause {¬si} for
any clause ci that we remove from F .
As already discussed in Section 5.1, MUS finding algorithms may differ

in the number of calls they make to the SAT solver that they use inter-

nally. Dichotomic algorithms [Jun04, GMP08] are particularly interesting

from a theoretical point of view, as they require only O(k × log(m)) calls

to a solver. Unfortunately these algorithms do not perform well in prac-

tice [BLM12] as they fail to efficiently exploit incremental SAT solving

technology. A recent dichotomic-style algorithm called the progression al-

gorithm [MJB13] also requires only O(k × log(m)) solver calls to compute

a MUS, and has been shown to have excellent performance in practice.

Just looking at the number of SAT solver calls an algorithm will perform

does not give much information about the practical performance of the

algorithm. Its not how often we make the solver do work, but how much

work the solver performs in total that counts. The constructive algorithms

of Alg. 2 and Alg. 3 perform at most k calls to a SAT solver per round,

however all solver calls in one round form a natural way of introducing

the problem F to the solver one clause at a time.

Experiment 5.19. The set of application benchmarks from the SAT com-

petition2 in 2011 contained 65 unsatisfiable benchmarks that could be

solved using the solver MINISAT 2.2.0 within ten minutes on our hard-

ware. We performed two experiments with this set of unsatisfiable bench-

marks. A memory limit of 7.5GB was employed.

The first experiment simulates the first round of a constructive MUS

finding algorithm by adding the clauses from the input file one clause at

a time, and running the solver after every clause addition. As can be seen

from Fig. 5.3 using this approach 53 of the 65 benchmarks were still found

unsatisfiable within ten minutes. The memory limit was never exceeded.

Note that we used one solver call per clause, and that this type of repeated

addition of clauses corresponds to the type of incremental solving of a

single problem envisioned in [Hoo93].

For the second experiment we added a selector variable to every clause

in the 65 formulas, and then solved each of those formulas using a single

solver call under the set of assumptions that requires all selector vari-

ables to attain the value false. In this experiment the solver returned the

answer unsatisfiable for only 37 formulas. For the remaining 28 formu-

las the solver failed because the time limit was exceeded in 18 cases, and

69

Finding Minimal Unsatisfiable Subsets

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

C
P

U
 ti

m
e

(s
)

instances solved

MiniSAT 2.2.0 (#65)
Incremental clause addition (#53)

Clauses with selector variables (#37)

Figure 5.3. Cactus plot for Experiment 5.19.

because the memory limit was exceeded in 10 cases.

One of the problems with the selector variable approach is that it sig-

nificantly harms the solvers ability to propagate and learn. If all prob-

lem clauses have a selector variable then every learnt clause will contain

the assumption literals for all the clauses used in its derivation. This

increases the memory usage and slows down the unit propagation proce-

dure. This problem was addressed in [LB13], where the authors propose

to shorten such learnt clauses by using auxiliary variables as shorthands

for disjunctions of assumption literals. It should be noted that, unlike the

other two approaches, the selector variable based implementation pro-

vides a simple way of extracting unsatisfiable cores through clause set

refinement. For this reason the performance comparison in Experiment

5.19 is arguably not completely fair.

Model rotation can substantially reduce the number of solver calls re-

quired by a MUS finding algorithm. It exploits the close proximity of

satisfying assignments, in terms of Hamming distance, of consecutive sat-

isfiable solver calls performed by such algorithms. As a result, the solver

calls that are avoided using model rotation are usually not those corre-

sponding to hard jobs. Figures 5.4 and 5.5 show the timed clause involve-

ment visualization for the learnt clauses alone, for an execution of the

70

Finding Minimal Unsatisfiable Subsets

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6

le
ar

nt
 c

la
us

es

CPU time (s)

UNSAT - total
UNSAT - remains

SAT - total
SAT - remains

Recently used

Figure 5.4. Timed clause involvement visualization for Alg. 1, given benchmark barrel5
from [BCCZ99].

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 0.5 1 1.5 2 2.5 3

le
ar

nt
 c

la
us

es

CPU time (s)

UNSAT - total
UNSAT - remains

SAT - total
SAT - remains

Recently used

Figure 5.5. Timed clause involvement visualization for Alg. 1 using rotation Alg. 5, given
benchmark barrel5 from [BCCZ99].

71

Finding Minimal Unsatisfiable Subsets

destructive algorithm6 Alg. 1, with and without the use of model rotation

algorithm Alg. 5. The clause involvement plots for the problem clauses

have been left out because these would have been empty. This is because

the first job was very easy in these two cases, and thus the corresponding

problem clause set bar would have been too narrow to see. After the first

job no problem clauses are added to the solver7, hence there would not be

any bars visible for other jobs either. Observe that the two figures illus-

trate a very similar solver behavior, but the scale of the horizontal axes

are different. Without model rotation 5383 solver calls were performed,

whereas with model rotation only 2953 solver calls were necessary. The

reduction of the number of easy satisfiable solver calls can be seen from

the figures, as Fig. 5.5 seems like a condensed version of Fig. 5.4, where

all the whitespace caused by “invisibly narrow” bars has been removed.

The other thing that may be observed is that there is no visible evidence

of clause reuse. This is not surprising as the learnt clauses on average

contain many selector variables, and are thus providing logically weak

and “job local” constraints.

5.8 Redundancy removal techniques

In this section we will discuss various forms of redundancy removal that

can be implemented in MUS finding algorithms. In Section 5.3 we defined

the flip graph, and already mentioned the existence of its undirected and

unlabeled version called the resolution graph, which we will now formally

define.

Definition 5.20 (Resolution graph). Let the resolution graph GR
F =

(V,E) of a formula F be the undirected graph with vertices V = F and

edges (ci, cj) ∈ E if and only if for some l ∈ ci we have ¬l ∈ cj .

Resolution can only be performed between any two clauses that are con-

nected in the resolution graph. By definition every clause in a minimal

unsatisfiable formula F is used in any resolution refutation of F , thus the
resolution graph of any minimal unsatisfiable formula F is connected.

This justifies the following redundancy removal technique that was im-

6The MUS finder used to generate these figures is a simple selector variable
based implementation built on top of MINISAT. It is available from: http://
www.siert.nl/thesis
7Except unit clauses, but those are not visualized.

72

Finding Minimal Unsatisfiable Subsets

plemented in MINIUNSAT2.

Definition 5.21 (Resolution graph based redundancy removal).

Given a clause c that is critical with respect to the unsatisfiable formula

F , remove any clause c′ ∈ F for which there exists no path from c to c′ in

the resolution graph.

Note that this check can be performed by any MUS finding algorithm

once it has determined at least one critical clause. However, destructive

algorithms implemented using clause set refinement or using core extrac-

tion from the resolution refutation, will perform this same reduction au-

tomatically as a side-effect of unsatisfiable SAT solver calls. As a result,

these type of redundancy removal techniques tend to have little effect on

the average performance of such algorithms. It is nevertheless not hard

to construct a motivating example.

Example 5.22. Let Fmu be a minimal unsatisfiable formula, which is con-

structed such that a satisfying assignment for any proper subformula of

Fmu can be found in a fraction of the time it takes to prove that Fmu is

unsatisfiable. Instances of the pigeon hole problem are an example of

such formulas. Let Fsat be an easy to solve satisfiable formula that has

no variables in common with Fmu, i.e. Var(Fsat) ∩ Var(Fmu) = ∅. Let

F = Fmu ∪ Fsat be the input of a destructive MUS finder, such as Alg. 1 or

Alg. 4. It would be easy for these algorithms to prove that Fmu is irredun-

dant, as this would require solving only easy satisfiable problems. How-

ever, as the algorithms rely on solving unsatisfiable problems to identify

redundancy, they must perform the difficult task of proving F unsatisfi-

able to reduce F to Fmu.

Using the redundancy removal technique from Def. 5.21 this can be

avoided. If on input F the algorithm is lucky (or clever) enough to perform

the first solver call for F \{c} where c ∈ Fmu, then it will easily find that c

is critical. None of the clauses of Fsat are connected to c in the resolution

graph, and hence all of Fsat can be removed. Consequently, the algorithm

can complete without ever having to prove any formula unsatisfiable.

This redundancy check can be generalized, making it stronger. It is well

known that any clause that contains a pure literal, i.e. a literal whose

negation does not exist in the formula, can always be removed from an

unsatisfiable formula without rendering the formula satisfiable [DLL62].

The reason is that such a clause can always be satisfied by assigning the

pure literal to true, and this has no implications for any clause of the

73

Finding Minimal Unsatisfiable Subsets

formula that does not contain that pure literal. Autarkies can be seen as

a generalization of the pure literal rule over multiple literals.

Definition 5.23 (Autarky [MS85]). An autarky, or autark assignment,

is an assignment that satisfies all clauses it touches, i.e. all clauses that

contain a variable which is assigned true or false by the assignment.

Corollary 5.24. An assignment α is an autarky for a formula F if and

only if for all l ∈ α and all c ∈ F such that ¬l ∈ c it holds that α ∩ c �= ∅.

The empty assignment α is a trivial autarky for any formula. Clauses of

an unsatisfiable formula that are satisfied by an autarky can not be used

in any resolution refutation of the formula [KLM06]. Hence, a MUS finder

may delete clauses that are satisfied by an autarky [BK09]. Searching for

maximal autarkies in order to trim unsatisfiable clause sets has been sug-

gested in [KLM06] and explored in [LS08]. However, finding a maximal

autarky is more difficult than finding a single MUS. The authors of [LS08]

argue that autarky detection can nevertheless be a useful preprocessing

step for algorithms that perform a more difficult task such as finding all

MUSes [LS05] or finding the smallest MUS. Autarky detection for redun-

dancy removal is also discussed in [ML11, BLM12]. The interactive MUS

finder of [DZK13] implements an algorithm for redundancy removal by

autarky identification.

A proof of correctness for the redundancy removal technique of Def. 5.21

can be given in terms of the existence of an autarky for the parts of the

resolution graph that are disconnect from the critical clause.

Lemma 5.25. Given a clause ci that is critical with respect to the unsat-

isfiable formula F . Let U ⊆ F be the set of disconnected clauses removed

by the redundancy removal technique defined in Def. 5.21. There exists

an autarky α for formula F that satisfies all clauses in U .

Proof. Let αi ∈ A(ci,F), i.e. αi is a satisfying assignment for F \ {ci}.
Clearly αi satisfies all clauses in U , but it is not an autarky for F as it

touches ci but does not satisfy it. Let α be obtained by removing from αi

all literals whose negation appears in the clauses of F\U , i.e. α = αi\{¬l |
cj ∈ (F \ U) and l ∈ cj}. We will prove that α satisfies all clauses in U . To

obtain a contradiction assume that α does not satisfy some clause ck ∈ U .

Because αi satisfies ck there is some l ∈ ck such that l ∈ αi. If l /∈ α then

there must exists some cj ∈ (F \ U) such that ¬l ∈ cj . But if ¬l ∈ cj and

l ∈ ck then there exists an edge between cj and ck in the resolution graph,

74

Finding Minimal Unsatisfiable Subsets

Algorithm 6 Reducing an assignment to an autarky

Given: A formula F and an assignment α.

1. while exists l ∈ α and c ∈ F such that ¬l ∈ c and c ∩ α = ∅
2. α = α \ {l}
3. return α

which contradicts the definition of U . Hence, α satisfies all of U . Also,

α touches no clauses in F \ U except for possible clauses containing pure

literals, which it satisfies. Hence, α is an autarky for F that satisfies all

clauses in U .

The proof of Lemma 5.25 shows that a subset of the assoc for a criti-

cal clause is satisfying all clauses that are disconnected from the critical

clause in the resolution graph. Instead of performing the reachability

check on the resolution graph we may use Alg. 6 to reduce an assoc into

the maximum autarky that is a subset of that assoc, and then remove all

clauses satisfied by the assoc.

Lemma 5.26. Algorithm 6 returns the maximum autarky that is a subset

of the assignment it is given as input.

Proof. Clearly, the assignment α returned by Alg. 6 satisfies all clauses

it touches, hence it is an autarky. It is also maximal, because the algo-

rithm starts from a complete assignment and only deletes literals that

are touching unsatisfied clauses.

Definition 5.27 (Redundancy removal based on Alg. 6). Given a

clause ci that is critical with respect to the unsatisfiable formula F , and

an assoc αi ∈ A(ci,F). Remove from F any clause satisfied by the autarky

α ⊆ αi obtained as output from Alg. 6 given input αi.

Lemma 5.25 proves that this new redundancy removal technique is at

least as strong as the redundancy check of Def. 5.21. It is not hard to

see that it is in fact strictly stronger, as the autarky may satisfy more

clauses than just those disconnected from any critical clause in the reso-

lution graph. Another redundancy check that may be performed is blocked

clause elimination [Kul99].

Definition 5.28 (Blocked clause [Kul99]). A clause c ∈ F is blocked

with respect to literal l if for all c′ ∈ F such that ¬l ∈ c′ the result of

performing resolution c⊗ c′ is tautological.

75

Finding Minimal Unsatisfiable Subsets

Corollary 5.29. A clause c ∈ F is blocked with respect to literal l if for all

c′ ∈ F it holds that L(c, c′) �= {l}.

Definition 5.30 (Blocked clause elimination). Redundancy removal

by blocked clause elimination is the result of iteratively removing blocked

clauses from the formula until none remain.

The authors of [BJM13] found by experimental evaluation that remov-

ing blocked clauses from the input formula did not significantly affect the

average performance of their MUS finder. Our MUS finder TARMOMUS,

which is discussed in Publication V, maintains the set of edges EP and

thus, because of Corollary 5.29, can easily perform blocked clause elimi-

nation on every intermediate formula between the input formula and the

output MUS. Our evaluations are consistent with [BJM13] and show that

although this repeated blocked clause elimination can be useful for some

benchmarks, it is harmful for others.

Although blocked clauses are redundant they may appear in resolution

proofs, and these proofs may be considerably shorter than those not using

any blocked clauses8. As the MUS finder must eventually discover an un-

satisfiable subformula that contains no blocked clauses one would expect

that their removal can only affect the performance positively, especially

as their removal is not guaranteed to happen as a side effect of clause

set refinement or unsatisfiable core extraction. However, this is not the

case, as even to a MUS finder redundant clauses may be beneficial. For

example, redundant clauses can help to avoid assocs that are subopti-

mal starting points for model rotation. In Example 5.8 it was shown that

clause c0 ∈ Ffig5.1 has an assoc which can not be rotated. This assoc can be

avoided by adding the redundant clause x∨y∨z to the formula. This type

of redundancy addition can be generalized, although one must be cautious

when adding redundant clauses that are not redundant with respect to all

MUSes of the formula in the solver.

Another form of redundancy addition is inspired by the constructive al-

gorithm of Publication I, and its use in destructive algorithms was pro-

posed in [ML11]. Instead of testing F \ {c} for a formula F that is known

to be unsatisfiable, an algorithm may test (F \ {c}) ∪ ¬c. Because F is

unsatisfiable the latter formula is satisfiable if and only if the former is,

but as it is more constrained it may be easier to solve. A major downside

8The original motivation for the definition of blocked clauses was to generalize
the characteristics of clauses created by the extension rule of the extended reso-
lution proof system [Kul99].

76

Finding Minimal Unsatisfiable Subsets

of all redundancy addition techniques is that they will yield clause-set

refinement and proof extraction techniques useless when the solver con-

structs a resolution refutation using the added redundant clauses. It was

suggested in [ML11, BLM12] that these are the cases where redundancy

checking techniques such as autarky detection could be beneficial.

77

Finding Minimal Unsatisfiable Subsets

78

6. Asynchronous incremental solving
using Tarmo

In [WNH09] we introduced TARMO, which at that time was only envi-

sioned to be a special purpose parallel solver for bounded model checking.

Two different version of TARMO competed successfully in the Hardware

Model Checking Competitions of 2011 and 2012. The competing versions

can be seen as parallelizations of the simple BMC algorithm implemen-

tation AIGBMC, which was described in the Chapters 2 and 4. TARMO

was also discussed in Publication III. In Publication V we generalized the

ideas of TARMO, making explicit the notion of asynchronous incremental

SAT. This is a simple concept that allows combining incremental SAT and

parallelism in an application specific manner, as we will discuss in this

chapter.

The original version of TARMO, as discussed in [WNH09], was motivated

by a particular run time profile often observed for job sequences originat-

ing from BMC. As discussed in Chapter 4, BMC problems can always be

encoded such that rather than testing the length of a counterexample of

exactly k steps, we check the existence of a counterexample of at most

k steps. Any sequence of jobs that can be generated using such a BMC

encoding will consist either only of unsatisfiable jobs, or start with a fi-

nite prefix of unsatisfiable jobs, followed by only satisfiable jobs. It has

been observed for the latter type of sequence, that amongst the first sat-

isfiable jobs there is often a job which is significantly easier to solve in-

dependently than any of the preceding jobs. Figure 6.1 is an illustration

of this behavior taken from Publication II, for the job sequence generated

for HWMCC’07 benchmark bc57sensorsp2neg.

To explain how to read the illustration given in Fig. 6.1, let us recall that

a similar figure already appeared in Chapter 4 as Fig. 4.8. The height of

a bar in these two figures denotes the run time of a solver used to solve

only the formula induced by that job, without using incremental solving.

79

Asynchronous incremental solving using Tarmo

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

tim
e

(s
)

jobs

Figure 6.1. Run time behavior for benchmark bc57sensorsp2neg.

The thick curve illustrates the behavior of the same solver used incre-

mentally on the sequence of jobs, reporting its total run time each time it

proceeded to the next job in the sequence. The dotted curve illustrates the

cumulative run time of solving all jobs sequentially and independently.

Note that the top of the bars is always below the thick curve. In other

words, unlike the example in Chapter 4 solving one problem k indepen-

dently consistently takes less time than solving the problems from 0 to k

incrementally. Clearly, if we are just interested in proving the existence of

a counterexample, rather than finding the minimal counterexample, then

simply solving the easy satisfiable job 106 independently would be a fast

way to obtain that result. However, this requires knowing in advance at

which index an easy satisfiable job resides. A similar run time profile with

easy satisfiable jobs following hard unsatisfiable ones was observed for a

different application, called automated planning, in [RHN06]. That work

proposed a solution in which a set of unsolved jobs from the sequence are

solved concurrently, in the hope that the process “leaps over” the diffi-

cult jobs, by solving an easy satisfiable job that is several jobs ahead of

the last solved unsatisfiable one. However, [RHN06] did not consider the

use of incremental solvers, which are crucial for the performance of BMC

algorithms. Note that even in cases such as depicted in Fig. 6.1 the incre-

mental solver provides unmatched robust behavior. By this we mean that

80

Asynchronous incremental solving using Tarmo

if we want to try to solve only the easy jobs individually, then there is not

a lot of room for unlucky guesses as to where those easy jobs are before

the incremental solver becomes a better choice. The asynchronous solver

interface of Publication V provides a way to submit a job sequence to the

solver, while leaving the solver the freedom to solve jobs concurrently or

out-of-order.

Recall from Chapter 2 that each job in a conventional incremental solver

is representing the formula that is made from all problem clauses of that

job and all preceding jobs, in conjunction with a set of assumptions that

is specific to that job.

F(φi) =

⎛
⎝ ⋃

0≤j≤i
CLS(φj)

⎞
⎠

︸ ︷︷ ︸
CLAUSES(φi)

∪
⎛
⎝ ⋃

l∈assumps(φi)

{l}
⎞
⎠ .

The clauses are entered in the solver using the addClause function,

whereas the assumptions cube that completes a job is passed through the

solve function. Note that the addClause and solve functions are part of

the interface of a SAT solver, and they control the execution of this partic-

ular computer program. The solve function is blocking, in the sense that

the call to this function will not return to the calling application until the

SAT solver determines the satisfiability of the job. Hence, as long as a

job is not solved the application using the solver can not start to add the

clauses for consecutive jobs.

The main idea proposed in Publication V is to extend the solver’s in-

terface with a non-blocking version of the solve function called addCube.

Without enforcing the blocking semantics it is possible to think of the

solver as a reactive system. The system is given jobs as input and as out-

put it reports the result of solving those jobs. The communication between

the application and the solver is asynchronous: The application may pro-

ceed to submit more jobs while the solver has not yet reported the result

for a previously submitted job. Moreover, the results may be reported by

the solver out-of-order with respect to the order of the jobs in the input

sequence.

81

Asynchronous incremental solving using Tarmo

6.1 Distribution modes

The asynchronous interface provides a way of giving a sequence of jobs to

an incremental solver, in which different strategies for solving jobs from

that sequence may be implemented. TARMO is a multi-core solver for in-

cremental SAT problems, which provides the conventional “synchronous”

incremental solver interface, as well as the asynchronous interface. Each

individual solver thread used inside TARMO is a copy of the solver MINI-

SAT. TARMO divides the sequence of jobs it is given over the available

solver threads. We call a strategy for dividing the available jobs over the

available solver threads a distribution mode. The simplest distribution

mode simply gives all jobs to all solver threads. In this way, we obtain a

portfolio of incremental solvers. This distribution mode will be referred to

as distribution mode multiconv, for multiple conventional.

Another natural strategy for parallelization within these settings would

be to define a distribution mode such that no two solver threads ever work

on the same job concurrently. A simple distribution mode that satisfies

this constraint is the one in which each solver thread is given the first job

from the sequence that has not yet been given to another solver thread.

This strategy was named multijob in Publication III and Publication V1

In general, any distribution mode that satisfies the following condition

can be easily implemented in TARMO:

Condition 6.1. A solver thread that has previously worked on job φi may

only be given a job φj such that CLAUSES(φi) ⊆ CLAUSES(φj).

The reason this condition must be satisfied is that each of the solver

threads is a copy of MINISAT, and thus once clauses have been added to

these solver threads they can no longer be removed. Tarmo can use any

one of the individual solver threads to solve any subsequence of jobs, and

by Condition 6.1 it is also allowed to solve two jobs out of order using the

same solver thread if those two jobs share the same clause set.

The third and final distribution mode that is available by default in

TARMO is called multijob+. It is the same as the multijob distribution

mode, except that if no new jobs are available then a solver thread will

be given the oldest unsolved job that satisfies Condition 6.1, if such a job

exists. Note that such an older unsolved job is always a job that another

solver thread is also already trying to solve. In this way multijob+ pro-

1In the original BMC-focussed publication [WNH09] it was named multibound.

82

Asynchronous incremental solving using Tarmo

φ0 φ1 φ2 φ3 φ4

φ0 φ1 φ2 φ3 φ4

φ0 φ3

φ1 φ2 φ4

φ0 φ3 φ4

φ1 φ2 φ4

multiconv

multijob+

multijob

Figure 6.2. Example of all standard distribution modes in TARMO.

vides the distribution mode multijobwith a fall-back to distribution mode

multiconv, to prevent idle solvers.

Example 6.2. In Fig. 6.2 the parallel solving of 5 jobs using two solver

threads is shown for each one of the three discussed distribution modes.

The length of the arrows indicates the time it takes to solve the job. For

this example, the lengths have been hand picked and do not correspond

to an actual experimental result. In the example the run time for job φ4

was chosen smaller for distribution mode multiconv than for the other

two distribution modes. This was done because it corresponds to behav-

ior that will be often seen in practice: Incremental SAT solvers improve

performance by reusing information across jobs. Hence, the downside of

the multijob strategy is that each solver thread individually solves less

jobs, and thus also gathers less information. In the example, for the

multijob strategy, the job φ3 has not been solved by the second solver,

which may mean that it misses some information that would have made

it solve job φ4 faster. Conflict clause clause sharing between solver threads

can help to reduce this effect, and will be discussed in Section 6.2.

The execution of job φ4 by the first solver thread is drawn using a dotted

line for distribution modes multiconv and multijob+, because it is inter-

rupted once the second solver thread finishes this last job in the sequence.

6.2 Conflict clause sharing

Sharing of conflict clauses between solver threads is an important build-

ing block in any parallel solver (e.g. [AHJ+12]). Typically this is per-

83

Asynchronous incremental solving using Tarmo

formed in parallel solvers for single formulas, in other words, between

solver threads that all solve the same job, or partitions of the same job. In

TARMO multiple solver threads may be solving different jobs concurrently.

Hence, care must be taken when employing sharing of learnt clauses be-

tween those solver threads. Note that in general a clause c derived while

solving a job φi can be used in the solving process of any job φj such that

CLAUSES(φi) ⊆ CLAUSES(φj).

To achieve correct clause sharing with low overhead the database in

TARMO is organized as a set of queues. There is one queue for each unique

clause set, i.e. one queue q(φi) for each job φi such that CLS(φi) �= ∅. For
jobs φj such that CLS(φj) = ∅ we have q(φj) = q(φi) for the largest i such

that i < j and CLS(φi) �= ∅. If a solver thread wants to share a learnt

clause it derived while working at job φi it pushes it in the corresponding

queue q(φi). A solver thread that is solving job φj can safely introduce any

clause that it can find in the queues q(φi) for all i ≤ j to its learnt clause

database.

For all solver threads s, and all queues q, there exists a pointer p(s, q)

that points to the last element in queue q that solver s has seen. If solver

s wants to read from queue q it reads the clauses starting from p(s, q),

and then updates the pointer to indicate it has now seen all clauses in q.

If solver s wants to write to queue q, it must first read all clauses from q

that it has not yet read. After this, swrites the new clauses to queue q and

updates the pointer. By this simple mechanism each solver thread reads

every clause only once, and never reads the clauses it has itself provided

to the database. There is no mechanism to avoid duplicates, i.e. the same

clause occurring multiple times in the database. Clauses that have been

read by all solver threads are deleted from memory.

Example 6.3. Consider an execution of TARMO with two solver threads

s0 and s1, using a shared clause database that is in the state given in

Fig. 6.3. Assume that solver thread s0 is solving job φ21 and solver thread

s1 is solving job φ22. Both solver threads have already read all clauses

that are in queue q(φ20). At some point solver thread s1 has accessed

queue q(φ21), but since then s0 has been writing four new clauses to that

queue which have not yet been read by s1. Solver thread s0 has not read

any of the clauses from q(φ22), and it is also not allowed to do so as long

as it is still trying to solve job φ21.

84

Asynchronous incremental solving using Tarmo

...

c20,0

c20,1

c20,2

c20,3

c20,4

q(φ
20
)

c21,0

c21,1

c21,2

c21,3

c21,4

c21,5

q(φ21)

c22,1

c22,2

c22,3

c22,4

q(φ22)

p(s0, φ20)

p(s1, φ20)

p(s0, φ21)

p(s1, φ21)

p(s1, φ22)

p(s0, φ22)

Figure 6.3. Example state of the clause database in TARMO.

6.3 Interactive graphical visualizations

The version of TARMO that was developed along with Publication V pro-

vides a graphical interface, to visualize its internal activity. This can be

used to study the effect of different distribution modes, and it also proved

useful for improving the performance of the tool during its development.

The graphical interface of TARMO consists of two windows, one of which

visualizes which jobs are run on which solver threads, and a second which

visualizes the content of the shared clause database. The visualization is

dynamic, in other words it is continuously updated to match the current

solver state.

These dynamic visualizations are not as useful when presented stati-

cally as a picture, but we nevertheless give one example in Fig. 6.4. The

example concerns the state of TARMO after 7.5 seconds of solving bench-

mark bc57sensorsp2neg using four solver threads and distribution mode

multijob. The top window illustrates the solving history of the four solver

threads using four horizontal bars with different colors, similar to the way

this was done using arrows in Fig. 6.2. The colors correspond to the result

of solving the job on that solver thread, i.e. satisfiable, unsatisfiable or not

finished. Further information displayed on the top window concerns the

loading of jobs in the solver. The bottom window visualizes the content

of the queues of the shared clause database. When used dynamically, it

is possible to see from this window how many clauses there are in each

queue, how many clauses remain queued in memory, and which clauses

have been seen by which individual solver thread.

85

Asynchronous incremental solving using Tarmo

Figure 6.4. Graphical interface of TARMO.

6.4 Applications

Because of the available synchronous interface TARMO can be used to re-

place any conventional incremental solver, in particular, it can be used as

a drop-in replacement for MINISAT. Because only one job can be specified

at a time through the synchronous interface the operation of TARMO is in

such case limited to the behavior provided by the multiconv distribution

mode. We showed in Publication V that this can already yield substantial

speed-ups for real applications. In many cases further improvements are

possible by using the asynchronous interface to create an application spe-

cific parallelization. This is illustrated in Publication V for BMC, MUS

finding, and a combination of BMC with an implementation of the IC3 al-

gorithm. The application of TARMO in a technique called Cube and Con-

quer is proposed in Publication III and discussed in Chapter 7.

86

7. Cube and Conquer

To finish first, first you have to finish.

- Juan Manual Fangio

In Publication III a technique called Cube and Conquer (C&C) was in-

troduced that aims at solving hard instances of the satisfiability problem.

The technique uses a look-ahead solver [HvM09], to determine a partition-

ing of a formula into tens-of-thousands, or even millions of pieces. Each of

these partitions is defined by a conjunction of literals, and hence called a

cube. Solving of the independent cubes can be performed using a conven-

tional CDCL solver, in either a sequential or parallel fashion. A recent ex-

tension called Concurrent Cube and Conquer executes the look-ahead and

CDCL solver concurrently [vdTHB12]. A state-of-the-art implementation

of Concurrent C&C can be found in the solver TREENGELING [Bie13]. The

discussion in this chapter is limited to the original version presented in

Publication III.

The motivation for this work came from Oliver Kullmann, who gen-

erated problems that he could solve by using an ad-hoc combination of

a look-ahead solver and a CDCL solver much faster than using either

approach independently. Like CDCL solvers, look-ahead solvers are an

extension of the classical DPLL procedure [DLL62]. A look-ahead on a

variable x determines the heuristic quality of x as a decision variable by

computing the reduced formulas F|{x} and F|{¬x}. If the computation of

the reduced formula for either the literal x or the literal ¬x leads to a

conflict then the literal is called a failed literal, and it is assigned false.

A typical look-ahead procedure weighs the clauses that are shortened in

length by the assignment, but that do not become satisfied, i.e. the clauses

in F|{x} \ F and F|{¬x} \ F . Typically, the variables whose assignment in

both polarities cause a large reduction are considered the best decision

variables.

The idea behind C&C is that the computationally expensive decision

heuristic of the look-ahead solver can be used to create a partitioning on

87

Cube and Conquer

x5

x7

t

x8

t

f

x2

t

t f

x9

f

t f

x2

f

x3

f

x7

t

f t

f

x8

t

x9

t

t f

f

F0 := F ∧ (x5 ∧ x7 ∧ ¬x8)

F1 := F ∧ (x5 ∧ x7 ∧ x8 ∧ x2)

F2 := F ∧ (x5 ∧ ¬x7 ∧ x9)

F3 := F ∧ (x5 ∧ ¬x7 ∧ ¬x9)

F4 := F ∧ (¬x5 ∧ ¬x2 ∧ ¬x3)

F5 := F ∧ (¬x5 ∧ x2 ∧ x8 ∧ x9)

F6 := F ∧ (¬x5 ∧ x2 ∧ x8 ∧ ¬x9)

cut-off leaf

refuted leaf

Figure 7.1. Example partitioning.

important variables, after which the CDCL solver can solve the partitions.

Use of a look-ahead solver for partitioning had been suggested before in

[HJN10]. This earlier work considered splitting the formula into dozens

of partitions for parallel solving. C&C on the other hand partitions the

formula into thousands or sometimes even millions of pieces, and aims

at combining the strong features of both solver architectures. The idea

is that the look-ahead solver can break the “hard combinatorial core” of

a difficult problem, after which the conflict driven solver is used to solve

the localized partitions. For some problems this was shown to outperform

either one of the independent approaches, even if the cubes are solved

sequentially.

Figure 7.1 illustrates an example partitioning. It shows a binary search

tree as explored by the look-ahead solver, and the resulting partitions of

the input formula F . Each internal node in the tree corresponds to a

decision variable, and arcs labeled “t” denote the assignment true to the

variable, whereas “f” denotes the assignment false. There are two types

of leaf nodes, those corresponding to branches that were refuted because

of a conflict, and those for which the cut-off heuristic decided that the

partition should be solved by a CDCL solver. Observe that there is one

partition for each cut-off leaf. Several cut-off heuristics are discussed in

[HJN10] and Publication III.

7.1 The weakness of search space splitting

From the point of view of proof complexity theory, splitting a formula into

pieces and solving the pieces independently is always a bad idea. For un-

satisfiable formulas partitioning can only increase the length of the short-

est resolution refutation. This is because a solver that is given the com-

88

Cube and Conquer

plete formula can chose to refute one of the partitions at a time, whereas

solving each of the partitions independently may require creating a refu-

tation for the same subformula multiple times. This is a problem with

search space splitting techniques in general [HJN09]. If a formula has

two MUSes, and we split the formula such that both partitions contain

one MUS, then solving both partitions requires finding a resolution refu-

tation for both MUSes, whereas to prove the whole formula unsatisfiable

only one such refutation would have to be found. On the other hand, if we

split an unsatisfiable formula on a variable that is outside any MUS, then

we end up with two partitions as hard as the original one. This is not just

a theoretical problem, but also happens in practice.

Experiment 7.1. Let Fph11 and Fph20 denote the two unsatisfiable for-

mulas, which represent the pigeon hole problem for 11 and 20 pigeons,

respectively. Let the two formulas be generated over disjoint sets of vari-

ables, i.e. Var(Fph11) ∩ Var(Fph20) = ∅. For this experiment, the satisfi-

able formula F ′ph20 was obtained by removing one arbitrary clause c from

Fph20, i.e. F ′ph20 = Fph20 \ {c}. Subsequently, the formula F was obtained

by merging Fph11 and F ′ph20 into one formula1 F = Fph11 ∪ F ′ph20.
Clearly, the formula F is unsatisfiable, and the shortest refutation of

F is equal to the shortest refutation of Fph11. However, given F as an

input to the modified look-ahead solver MARCH_CC presented in Publica-

tion III resulted in 51940 cubes, of which only 7 contained a variable from

Var(Fph11). This is due to the heuristic used in the look-ahead solver,

which considers variables from Var(F20) as the most important because

their assignment causes the largest reduction of F .

Solving these partitions independently clearly means performing a lot

of unnecessary work. When solving F under cubes d for which F ′ph20|d is

unsatisfiable the solver must create a refutation for one of the unsatisfi-

able cores Fph11 or F ′ph20|d. There are also thousands of cubes d for which

F ′ph20|d is satisfiable2. To independently solve any one of these partitions

the solver must find a refutation for Fph11. This is clearly not an im-

provement comparing to solving just the original formula, which requires

finding the refutation for Fph11 only once.

Experiment 7.1 considers a carefully constructed bad case example, but

it is not simply underlining a theoretical argument. This same behav-

1This example formula is available from: http://www.siert.nl/thesis
2The existence of several thousands such cubes has been confirmed by experi-
ment, the exact number has not been determined.

89

Cube and Conquer

ior can occur for any unsatisfiable formula with a significant amount of

redundant clauses. Redundancy in unsatisfiable formulas is common in

real-life problems as illustrated, for example, by the number of MUSes

found in recent SAT competition benchmarks [LM13]. Arguably, even this

particular example, a conjunction of multiple pigeon hole-like cores, is the

encoding of a practical problem: An instance of the pigeon hole problem

can represent the impossibility of routing n+ 1 wires through n channels

in an FPGA3 [ARMS03].

From the start of this project the look-ahead solver was meant to be

used to split the hard core of a problem. One could say that if a problem

contains a large amount of redundancy, then it clearly is not just a hard

core, and thus C&C is simply not the right technique to solve it. The

original idea always included using a formula simplifier, before running

the look-ahead solver, to remove redundancy and hopefully obtain a single

core. In Publication III the simplifier integrated in the solver LINGELING4

was used for this purpose. For the bad case constructed in Experiment

7.1, this has little effect, as the simplifier does not manage to remove

many redundant clauses from this formula. As a result, the total number

of cubes generated for the simplified formula is only marginally smaller

(51724), while the number of cubes that include a variable from Var(Fph11)

remains equally small (7).

7.2 Cube solving phase: Independent, incremental or parallel

In Section 7.1 we ignored the fact that the cubes do not have to be solved

completely independently. If an incremental solver is used the informa-

tion sharing between the solving of the consecutive cubes, then generating

the same refutation over and over again should be avoidable. C&C can

use the incremental solver by simply placing all clauses in the solver at

once, and then submitting the cubes as sets of assumptions. In the early

stages of the development of C&C, Marijn Heule discovered that an effi-

cient way to use an incremental solver in this application was through the

solver MINISAT with the modifications to read the iCNF file format that

we proposed in [WNH09].

Example 7.2. An incremental job sequence used to represent a C&C par-

titioning of formula F will have CLS(φ0) = F and CLS(φi) = ∅ for all i > 0.

3Field-programmable Gate Array, a type of programmable logic device.
4http://fmv.jku.at/lingeling

90

Cube and Conquer

We can complete the definition of the 7 jobs based on the partitions dis-

played in Fig. 7.1 as follows:

Let assumps(φ0) = {x5, x7,¬x8},
and assumps(φ1) = {x5, x7, x8, x2},
and assumps(φ2) = {x5,¬x7, x9},
and assumps(φ3) = {x5,¬x7,¬x9},
and assumps(φ4) = {¬x5,¬x2,¬x3},
and assumps(φ5) = {¬x5, x2, x8, x9},
and assumps(φ6) = {¬x5, x2, x8,¬x9}.

For a formula like the one constructed for Experiment 7.1, the first cube

d for which F ′ph20|d is satisfiable will require the solver to prove the unsat-
isfiability of Fph11. Because there are no clauses that link the variables of

subformula Fph11 and subformula F ′ph20 the solver’s final conflict will be

the empty clause if cube d contained no variables from Var(F11). Once the

solver has derived an empty final conflict clause it clearly does not need

to proceed to solve any future jobs.

Although information sharing between the solving processes for differ-

ent cubes can be beneficial and even crucial, it may be seen as a means

of compensating for a failed partitioning. An ideal partitioning function

will provide such localized partitions that information sharing between

the solver process is unnecessary, allowing trivial parallelization by solv-

ing multiple cubes concurrently. As sharing remains desirable in practice,

TARMO, with its asynchronous interface discussed in Chapter 6, provides

exactly the right features for parallelizing the solving of the cubes.

Although Publication III discusses the use of TARMO for the technique,

it was not used for the empirical evaluation in that Publication. TARMO

was at the time outperformed by a solver called ILINGELING, a version

of the solver LINGELING, modified to read iCNF files especially for this

application. The version of TARMO that was available at the time used

an excessive amount of memory for C&C, because it was not implemented

to deal with tens-of-thousands of small jobs. The new implementation of

TARMO discussed in Publication V was developed with this experience in

mind, as a result its performance for C&Cwas greatly improved. More im-

portantly, these were crucial steps towards making TARMO a true multi-

purpose tool.

As was shown in Publication III, C&C works well for some hard bench-

marks. Even if solving a hard problem by splitting it in many easy pieces

91

Cube and Conquer

is not the most elaborate strategy, it is a strategy that can enable eventu-

ally solving problems that would otherwise be too large to handle. Intu-

itively speaking, it can prevent a solver from “choking”, instead allowing

it to continuously make progress by solving small partitions one by one.

This line of thought is the reason for the quote, which originates from car

racing, at the beginning of this chapter.

The recent work on Concurrent C&C [vdTHB12], where partitions are

dynamically partitioned further when they are found to be difficult for

the CDCL solver, is a natural extension of this technique. Although this

technique has not matured yet, it does have the potential to become one

of several powerful complementary SAT solving techniques. This is un-

derlined by the excellent performance of the Concurrent C&C implemen-

tation TREENGELING in the most recent SAT competition5.

5http://www.satcompetition.org/2013

92

8. Concurrent Clause Strengthening

This chapter discusses a technique called Concurrent Clause Strengthen-

ing, which was recently proposed in Publication VI. This technique pro-

vides a novel way of exploiting the availability of multi-core hardware in

SAT solvers.

Although a lot of research effort has been invested in the development

of parallel SAT solvers (e.g. [BS96, ZBH96, HJS09, HJN11]), their perfor-

mance remains relatively modest. Limitations of the two most common

approaches to parallel solving, the portfolio and search space splitting ap-

proaches, have been identified [HJN09]. Limitations to the paralleliz-

ability of resolution as a proof system are discussed in [KSSS13]. These

results do not imply that applications of SAT solvers can not yet fully

benefit from the availability of multi-core and multi-processor hardware.

As we have noted before, independent concurrent execution of subtasks is

common practice in, for example, industrial applications of model check-

ing [SEMB11]. Asynchronous incremental satisfiability, as proposed in

Publication V and discussed in Chapter 6, provides an intermediate level

between completely independent concurrent execution, and parallelized

solving of single formulas.

An important observation is that it is the parallelization of the search

performed by a SAT solver that is proving to be difficult to achieve. Mod-

ern SAT solvers interleave search with several additional reasoning pro-

cedures. A recent example is inprocessing [JHB12], but the more estab-

lished conflict clause strengthening procedures [ES05, SB09, VG11] also

belong to this category. Performing such additional reasoning in paral-

lel with search provides an alternative way of using concurrency in a

SAT solver. In Publication VI we proposed the solver-reducer architecture,

which implements concurrent conflict clause strengthening. We provided

an empirical evaluation of its performance used in combination with two

93

Concurrent Clause Strengthening

solver reducer

work set

result queue

Figure 8.1. The solver-reducer architecture.

different solvers, MINISAT and GLUCOSE [AS09].

8.1 The solver-reducer architecture

The solver-reducer architecture uses two concurrently executing threads,

which are called the SOLVER and the REDUCER. The SOLVER acts like

any conventional SAT solver, except for its interaction with the REDUCER.

The interaction between the SOLVER and the REDUCER is limited to pass-

ing clauses through two shared-memory data structures called the work

set and the result queue. The work set is used to pass clauses from the

SOLVER to the REDUCER, the result queue is used for passing clauses in

the opposite direction, as illustrated in Fig. 8.1.

Whenever the SOLVER learns a clause it writes a copy of that clause to

the work set. The REDUCER reads clauses from the work set and tries to

strengthen them, in other words given a clause c such that F |= c it tries

to find a clause c′ ⊂ c for which F |= c′ still holds. When the REDUCER suc-

cessfully reduces the length of a clause, it places the new shorter clause

in the result queue. The SOLVER checks frequently whether there are

any clauses in the result queue. If this is the case the SOLVER enters the

clauses from the result queue in its learnt clause database.

This technique was shown to yield a consistent reduction of wall clock

time for unsatisfiable formulas in Publication VI. Wall clock time is de-

fined as the amount of time that passes from the start to the finish of

the solving process, and this measure is independent of the amount of re-

sources that are used during that time. CPU time on the other hand is the

sum of the time spend by each of the cores used, i.e. if a single program

uses all the computation power of two CPU cores concurrently then the

CPU time grows twice as fast as the wall clock time. We showed that our

technique can also yield a reduction of the average amount of CPU time

required for solving unsatisfiable formulas.

94

Concurrent Clause Strengthening

8.2 Employing concurrency versus parallelization

One may consider a parallelization of an algorithm as a strategy for as-

signing any number of simultaneously available computation resources

to performing a single task. By that definition Publication VI does not

present a parallelization of a SAT solver, as only the use of exactly two

concurrent computation threads is considered. However, existing tech-

niques for parallelizing SAT algorithms can be used in combination with

our two threaded solver, in order to obtain a generic parallelization.

During the development of the architecture we did consider employing

more than two computation threads directly, for example by using multi-

ple REDUCER threads for one SOLVER. A problem with running multiple

concurrent REDUCER threads is that each of them will be individually

weaker than one single REDUCER, unless they all operate on the same

set of learnt clauses, which would be difficult to implement efficiently. As

typically the REDUCER can not handle all the conflict clauses derived by

one SOLVER, running multiple SOLVER threads with one REDUCER does

not seem sensible. Eventually, we decided to focus on the basic technique.

The algorithm used for conflict clause strengthening in our implementa-

tion of the REDUCER is very similar to the vivification algorithm [PHS08]

for strengthening problem clauses. Observe that the REDUCER’s algo-

rithm can be made as computationally cheap or expensive as desired.

Within the implementation discussed in Publication VI the balance be-

tween the computational load of the SOLVER and the REDUCER can be

easily shifted. For example, the REDUCER can be made weaker, but faster,

by reducing the maximum size of its learnt clause database. On the other

hand, its algorithm can be made stronger, but slower, by either increasing

the size of this database, or even by allowing the REDUCER to assign some

variables by branching decisions if simply assigning all literals in the in-

put clause to false does not lead to a conflict. As an extreme example

one may even consider running multiple REDUCER threads recursively,

i.e. run a REDUCER on the learnt clauses of another REDUCER.

8.3 Applications and competitions

One of the strengths of the solver-reducer architecture is that it main-

tains the original interface of the SAT solver, and thus this technique

can be employed in any solver application without further modifications.

95

Concurrent Clause Strengthening

Niklas Eén has integrated our solver-reducer solvers into his ZZ model

checking environment1. For the PDR implementation TREBUCHET in ZZ

these solvers provide no performance gains. This is not surprising, given

the solver usage of PDR, which is characterized by an extremely small

number of conflicts per job, as we discussed in Section 4.7. However, pre-

liminary experiments suggest that the performance of the BMC imple-

mentation inside ZZ can benefit from the application of concurrent clause

strengthening.

The solvers MINIRED and GLUCORED, based on MINISAT and GLU-

COSE, respectively, served to illustrate the performance improvements

over their respective base solvers in Publication VI. The number of mod-

ifications with respect to those base solvers was kept as small as possi-

ble, and the solvers were not extensively tuned. The relatively poor per-

formance of GLUCORED at the SAT competition 20132 can be partially

explained by this lack of tuning. Another problem is that it is missing a

mechanism for deleting a clause from the SOLVER’s learnt clause database

whenever a reduced version of that clause is provided by the REDUCER.

This is particularly problematic given the long execution times allowed in

the competition (up to 5000 seconds). Although this feature would not be

difficult to implement, it was originally left out for simplicity, and because

it is not necessary for MINIRED, as we explained in Publication VI.

Answer Set Programming (ASP) is a form of declarative programming.

There exist dedicated solvers for ASP (e.g. [GKNS07]), but an ASP pro-

gram can also be translated to a single instance of SAT (e.g. [JN11]).

Tomi Janhunen et al. submitted several tool-chains to the ASP compe-

tition of 20133. One of these, named LP2SOLRED-MT, employed our two

threaded solver GLUCORED to solve the SAT encoding of an ASP prob-

lem. The other tool-chain, named LP2SAT-MT, was identical except that

it employed the parallel solver PLINGELING4 version ’al6’ with 6 threads.

The version using GLUCORED solved 574 benchmarks, whereas the ver-

sion using PLINGELING solved only 495.

This natural approach to applying concurrency in SAT solvers is the

first of a kind. The illustrated efficiency shows that it holds a promise for

the future. To deliver on this promise, more research into which features

of this technique contribute most to its efficiency is required.

1http://bitbucket.org/niklaseen
2http://www.satcompetition.org/2013
3http://www.mat.unical.it/aspcomp2013
4http://fmv.jku.at/lingeling

96

9. Conclusions

This dissertation studies modern SAT solvers in real-life applications,

with a focus on incremental solver usage and parallelism. The disser-

tation consists of six publications and this unifying introduction.

The scientific content of this dissertation begins in Chapter 3, where a

visualization of incremental SAT solver behavior from Publication II is

discussed. This discussion is followed by the presentation of a new vi-

sualization of such behavior, called the clause involvement visualization.

Chapter 4 discusses model checking, a prominent formal verification tech-

nique. We explain basic model checking concepts in order to facilitate a

study of the behavior of incremental solvers in these applications. The

proposed visualizations support this study, in which behavior observable

from such figures is related to known properties of the problems they rep-

resent. Furthermore, observations on the behavior of incremental solvers

used inside the recent IC3 and PDR algorithms provide insights that un-

derline the need for future research into efficient solving strategies for

this application.

Chapter 5 discusses an application of incremental SAT solvers called

MUS finding, which is also the subject of Publication I and Publication

IV. The discussion provided in Chapter 5 focuses on providing insight in

the inner working of existing algorithms. To this aim we provide a dis-

cussion on the design of such algorithms, the solver behavior they induce,

and extensions of these algorithms using extra redundancy removal tech-

niques. Furthermore, we extend a theory from Publication IV, and prove

a conjecture from [BLM12].

The use of parallelism plays a major role in this dissertation, throughout

the publications, and starting from Chapter 6 of this unifying introduc-

tion. In that chapter we discuss asynchronous incremental SAT solving,

which we proposed in Publication V. This technique is a simple and nat-

97

Conclusions

ural extension of the most commonly used incremental solver interface,

the assumptions interface. It provides a means of combining incremen-

tal solving with parallel solving, and eases implementation of application

specific parallelizations. Asynchronous incremental solving provides an

alternative between parallelizing the solving of a single formula, and par-

allel execution of independent subtasks.

The Cube and Conquer technique discussed in Chapter 7, and presented

in Publication III, can be seen in several ways: It is a technique for faster

solving, an application of incremental SAT solvers, and a method for par-

allel SAT solving. It is based around splitting a formula into pieces and

solving the pieces individually, but it is significantly different from pre-

viously proposed search space splitting techniques. Such techniques typ-

ically aim to give multiple concurrent solver threads an equal share of

work, whereas this technique instead aims at using the strength of look-

ahead solvers to break the hard core of a problem into tens-of-thousands

of highly localized pieces. The pieces are subsequently solved using one

or multiple conventional CDCL solvers.

In Chapter 8 we discuss the solver-reducer architecture that was pre-

sented in Publication VI. It shows that using concurrency in a SAT solver

is not limited to parallelization of the solver’s search. Instead, one may

use concurrency to aid a conventional CDCL search procedure. A solver

using the proposed solver-reducer architecture performs conflict clause

strengthening in parallel with a conventional CDCL search procedure.

In Publication VI this was shown to yield a consistent performance im-

provement for solving of unsatisfiable formulas. The solvers build using

this architecture can replace any conventional solver in any application.

Moreover, concurrent clause strengthening is just one instantiation of the

general idea of applying concurrency in SAT solvers without parallelizing

their search.

As a whole, this dissertation aims to provide insight into key elements

of SAT solvers in practical applications. This work is motivated by the

believe that future improvements in our ability to solve computationally

hard problems depend crucially on our understanding of the current tech-

nology.

98

Bibliography

[AHJ+12] Gilles Audemard, Benoît Hoessen, Saïd Jabbour, Jean-Marie
Lagniez, and Cédric Piette. Revisiting Clause Exchange in Parallel
SAT Solving. In Cimatti and Sebastiani [CS12], pages 200–213.

[ARMS03] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A.
Sakallah. Solving difficult instances of Boolean satisfiability in the
presence of symmetry. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 22(9):1117–1137, 2003.

[AS09] Gilles Audemard and Laurent Simon. Predicting Learnt Clauses
Quality in Modern SAT Solvers. In Craig Boutilier, editor, Proceed-
ings of the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI), Pasadena, California, USA, July 11-17, 2009, pages
399–404, 2009.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic Model Checking without BDDs. In Rance
Cleaveland, editor, Proceedings of the 5th International Conference
on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), held as part of the European Joint Conferences on the
Theory and Practice of Software (ETAPS), Amsterdam, The Nether-
lands, March 22-28, 1999, volume 1579 of Lecture Notes in Com-
puter Science, pages 193–207. Springer, 1999.

[BHJ+06] Armin Biere, Keijo Heljanko, Tommi A. Junttila, Timo Latvala,
and Viktor Schuppan. Linear Encodings of Bounded LTL Model
Checking. Logical Methods in Computer Science, 2(5:5):1–64, 2006.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh,
editors. Handbook of Satisfiability, volume 185 of Frontiers in Ar-
tificial Intelligence and Applications. IOS Press, 2009.

[Bie08] Armin Biere. PicoSAT Essentials. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT), 4(2-4):75–97, 2008.

[Bie09] Armin Biere. Bounded Model Checking. In Biere et al.
[BHvMW09], pages 457–481.

[Bie13] Armin Biere. Lingeling, Plingeling and Treengeling Entering the
SAT Competition 2013. In Proceedings of SAT Competition 2013,
volume B-2013-1 of Department of Computer Science Series of Pub-
lications B, pages 51–52. University of Helsinki, 2013.

99

Bibliography

[BJM13] Anton Belov, Matti Järvisalo, and João Marques Silva. Formula
Preprocessing in MUS Extraction. In Nir Piterman and Scott A.
Smolka, editors, Proceedings of the 19th International Conference
on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS), held as part of the European Joint Conferences on
Theory and Practice of Software (ETAPS), Rome, Italy, March 16-
24, 2013, volume 7795 of Lecture Notes in Computer Science, pages
108–123. Springer, 2013.

[BK09] Hans Kleine Büning and Oliver Kullmann. Minimal Unsatisfiabil-
ity and Autarkies. In Biere et al. [BHvMW09], pages 339–401.

[BLM12] Anton Belov, Inês Lynce, and João Marques Silva. Towards effi-
cient MUS extraction. AI Communications, 25(2):97–116, 2012.

[BM10] Robert K. Brayton and Alan Mishchenko. ABC: An Academic
Industrial-Strength Verification Tool. In Tayssir Touili, Byron
Cook, and Paul Jackson, editors, Proceedings of the 22th Inter-
national Conference on Computer Aided Verification (CAV), Edin-
burgh, Scotland, UK, July 15-19, 2010, volume 6174 of Lecture
Notes in Computer Science, pages 24–40. Springer, 2010.

[BM11] Anton Belov and João Marques Silva. Accelerating MUS extraction
with recursive model rotation. In Bjesse and Slobodová [BS11],
pages 37–40.

[Bra11] Aaron R. Bradley. SAT-Based Model Checking without Unrolling.
In Ranjit Jhala and David A. Schmidt, editors, Proceedings of the
12th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), Austin, Texas, USA, January 23-
25, 2011, volume 6538 of Lecture Notes in Computer Science, pages
70–87. Springer, 2011.

[Bra12] Aaron R. Bradley. Understanding IC3. In Cimatti and Sebastiani
[CS12], pages 1–14.

[BS96] Max Böhm and Ewald Speckenmeyer. A Fast Parallel SAT-Solver
- Efficient Workload Balancing. Annals of Mathematics and Artifi-
cial Intelligence, 17(3-4):381–400, 1996.

[BS11] Per Bjesse and Anna Slobodová, editors. Proceedings of the 11th In-
ternational Conference on Formal Methods in Computer-Aided De-
sign (FMCAD), Austin, Texas, USA, October 30 - November 2, 2011.
FMCAD Inc., 2011.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB
standard version 2.0, 2010. Available from: http://www.smtlib.org.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
checking. MIT Press, 2001.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures.
In Conference Record of Third Annual ACM Symposium on Theory
of Computing STOC, 1971, Shaker Heights, Ohio, USA, pages 151–
158. ACM, 1971.

100

Bibliography

[Cra57] William Craig. Linear Reasoning. A New Form of the Herbrand-
Gentzen Theorem. Journal of Symbolic Logic, 22(3):250–268, 1957.

[CS12] Alessandro Cimatti and Roberto Sebastiani, editors. Proceedings
of the 15th International Conference on Theory and Applications of
Satisfiability Testing (SAT), Trento, Italy, June 17-20, 2012, volume
7317 of Lecture Notes in Computer Science. Springer, 2012.

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A ma-
chine program for theorem-proving. Communications of the ACM,
5(7):394–397, 1962.

[dSNP88] J. L. de Siqueira N. and Jean-Francois Puget. Explanation-Based
Generalisation of Failures. In Yves Kodratoff, editor, Proceedings
of the 8th European Conference on Artificial Intelligence (ECAI),
Munich, Germany, August 1-5, 1988, pages 339–344. Pitmann Pub-
lishing, 1988.

[DZK13] Johannes Dellert, Christian Zielke, and Michael Kaufmann. MUS-
tICCa: MUS Extraction with Interactive Choice of Candidates. In
Järvisalo and Van Gelder [JV13], pages 408–414.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient
implementation of property directed reachability. In Bjesse and
Slobodová [BS11], pages 125–134.

[ES03a] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In
Enrico Giunchiglia and Armando Tacchella, editors, Selected Re-
vised Papers of 6th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT), Santa Margherita Ligure,
Italy, May 5-8, 2003, volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer, 2003.

[ES03b] Niklas Eén and Niklas Sörensson. Temporal induction by incre-
mental SAT solving. In Proceedings of First International Work-
shop on Bounded Model Checking (BMC), volume 89 of Electronic
Notes in Theoretical Computer Science, pages 543–560, 2003.

[ES05] Niklas Eén and Niklas Sörensson. MiniSat v1.13 - A SAT Solver
with Conflict-Clause Minimization. Poster presented at the 8th In-
ternational Conference on Theory and Applications of Satisfiability
Testing (SAT), St. Andrews, UK, June 19-23, 2005. Available from:
http://www.minisat.se.

[GKNS07] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-
Driven Answer Set Solving. In M. Veloso, editor, Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence
(IJCAI), pages 386–392. AAAI Press/The MIT Press, 2007.

[GMP08] Éric Grégoire, BertrandMazure, and Cédric Piette. On Approaches
to Explaining Infeasibility of Sets of Boolean Clauses. In Proceed-
ings of the 20th IEEE International Conference on Tools with Artifi-
cial Intelligence (ICTAI), Dayton, Ohio, USA, November 3-5, 2008,
volume 1, pages 74–83. IEEE Computer Society, 2008.

101

Bibliography

[HHW13] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Verifying
Refutations with Extended Resolution. In Maria Paola Bonacina,
editor, Proceedings of the 24th International Conference on Auto-
mated Deduction (CADE), Lake Placid, NY, USA, June 9-14, 2013,
volume 7898 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2013.

[HJL05] Keijo Heljanko, Tommi A. Junttila, and Timo Latvala. Incremental
and Complete Bounded Model Checking for Full PLTL. In Kousha
Etessami and Sriram K. Rajamani, editors, Proceedings of the 17th
International Conference on Computer Aided Verification (CAV),
Edinburgh, Scotland, UK, July 6-10, 2005, volume 3576 of Lecture
Notes in Computer Science, pages 98–111. Springer, 2005.

[HJN09] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Partitioning Search Spaces of a Randomized Search. In
Roberto Serra and Rita Cucchiara, editors, Proceedings of Emer-
gent Perspectives in Artificial Intelligence, XIth International Con-
ference of the Italian Association for Artificial Intelligence (AI*IA),
Reggio Emilia, Italy, December 9-12, 2009, volume 5883 of Lecture
Notes in Computer Science, pages 243–252. Springer, 2009.

[HJN10] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Partitioning SAT Instances for Distributed Solving. In
Christian G. Fermüller and Andrei Voronkov, editors, Proceedings
of the 17th International Conference on Logic for Programming, Ar-
tificial Intelligence, and Reasoning (LPAR), Yogyakarta, Indonesia,
October 10-15, 2010, volume 6397 of Lecture Notes in Computer
Science, pages 372–386. Springer, 2010.

[HJN11] Antti Eero Johannes Hyvärinen, Tommi A. Junttila, and Ilkka
Niemelä. Grid-Based SAT Solving with Iterative Partitioning and
Clause Learning. In Jimmy Ho-Man Lee, editor, Proceedings of the
17th International Conference on Principles and Practice of Con-
straint Programming (CP), Perugia, Italy, September 12-16, 2011,
volume 6876 of Lecture Notes in Computer Science, pages 385–399.
Springer, 2011.

[HJS09] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. ManySAT: A
Parallel SAT Solver. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT), 6(4):245–262, 2009.

[HLSB06] Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric
Boussemart. Extracting MUCs from Constraint Networks. In Ger-
hard Brewka, Silvia Coradeschi, Anna Perini, and Paolo Traverso,
editors, Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI), Riva del Garda, Italy, August 29 - September
1, 2006, volume 141 of Frontiers in Artificial Intelligence and Ap-
plications, pages 113–117. IOS Press, 2006.

[HM12] Antti Eero Johannes Hyvärinen and Norbert Manthey. Designing
Scalable Parallel SAT Solvers. In Cimatti and Sebastiani [CS12],
pages 214–227.

102

Bibliography

[Hoo93] John N. Hooker. Solving the incremental satisfiability problem.
Journal of Logic Programming, 15(1&2):177–186, 1993.

[HvM09] Marijn Heule and Hans van Maaren. Look-ahead based SAT
solvers. In Biere et al. [BHvMW09], pages 155–184.

[JHB12] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing
rules. In Bernhard Gramlich, Dale Miller, and Uli Sattler, edi-
tors, Proceedings of the 6th International Joint Conference on Au-
tomated Reasoning (IJCAR), Manchester, UK, June 26-29, 2012,
volume 7364 of Lecture Notes in Computer Science, pages 355–370.
Springer, 2012.

[JN11] Tomi Janhunen and Ilkka Niemelä. Compact Translations of Non-
disjunctive Answer Set Programs to Propositional Clauses. In Mar-
cello Balduccini and Tran Cao Son, editors, Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning - Essays
Dedicated to Michael Gelfond on the Occasion of His 65th Birthday,
volume 6565 of Lecture Notes in Computer Science, pages 111–130.
Springer, 2011.

[Jun04] Ulrich Junker. QUICKXPLAIN: Preferred Explanations and Re-
laxations for Over-Constrained problems. In Deborah L. McGuin-
ness and George Ferguson, editors, Proceedings of the 19th Na-
tional Conference on Artificial Intelligence, 16th Conference on In-
novative Applications of Artificial Intelligence, San Jose, Califor-
nia, USA, July 25-29, 2004, pages 167–172. AAAI Press / The MIT
Press, 2004.

[JV13] Matti Järvisalo and Allen Van Gelder, editors. Proceedings of the
16th International Conference on Theory and Applications of Satis-
fiability Testing (SAT), Helsinki, Finland, July 8-12, 2013, volume
7962 of Lecture Notes in Computer Science. Springer, 2013.

[KJN12] Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. SMT-
Based InductionMethods for Timed Systems. InMarcin Jurdzinski
and Dejan Nickovic, editors, Proceedings of the 10th International
Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), London, UK, September 18-20, 2012, volume 7595 of
Lecture Notes in Computer Science, pages 171–187. Springer, 2012.

[KLM06] Oliver Kullmann, Inês Lynce, and João Marques Silva. Categori-
sation of Clauses in Conjunctive Normal Forms: Minimally Unsat-
isfiable Sub-clause-sets and the Lean Kernel. In Armin Biere and
Carla P. Gomes, editors, Proceedings of the 9th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT),
Seattle, WA, USA, August 12-15, 2006, volume 4121 of Lecture
Notes in Computer Science, pages 22–35. Springer, 2006.

[KS03] Daniel Kroening and Ofer Strichman. Efficient Computation of
Recurrence Diameters. In Lenore D. Zuck, Paul C. Attie, Agostino
Cortesi, and Supratik Mukhopadhyay, editors, Proceedings of the
4th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), New York, NY, USA, January 9-
11, 2003, volume 2575 of Lecture Notes in Computer Science, pages
298–309. Springer, 2003.

103

Bibliography

[KSSS13] George Katsirelos, Ashish Sabharwal, Horst Samulowitz, and
Laurent Simon. Resolution and Parallelizability: Barriers to
the Efficient Parallelization of SAT Solvers. In Marie des-
Jardins and Michael L. Littman, editors, Proceedings of the 27th
AAAI Conference on Artificial Intelligence, Bellevue, Washing-
ton, USA, July 14-18, 2013. AAAI Press, 2013. Available from:
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6421.

[Kul99] Oliver Kullmann. NewMethods for 3-SAT Decision andWorst-case
Analysis. Theoretical Computer Science, 223(1-2):1–72, 1999.

[LB13] Jean-Marie Lagniez and Armin Biere. Factoring Out Assumptions
to Speed Up MUS Extraction. In Järvisalo and Van Gelder [JV13],
pages 276–292.

[Lib05] Paolo Liberatore. Redundancy in logic I: CNF propositional formu-
lae. Artificial Intelligence, 163(2):203–232, 2005.

[LM13] Mark H. Liffiton and Ammar Malik. Enumerating Infeasibility:
Finding Multiple MUSes Quickly. In Carla P. Gomes and Meinolf
Sellmann, editors, Proceedings of the 10th International Conference
on Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR), York-
town Heights, NY, USA, May 18-22, 2013, volume 7874 of Lecture
Notes in Computer Science, pages 160–175. Springer, 2013.

[LS05] Mark H. Liffiton and Karem A. Sakallah. On Finding All Min-
imally Unsatisfiable Subformulas. In Fahiem Bacchus and Toby
Walsh, editors, Proceedings of the 8th International Conference on
Theory and Applications of Satisfiability Testing (SAT), St. An-
drews, UK, June 19-23, 2005, volume 3569 of Lecture Notes in Com-
puter Science, pages 173–186. Springer, 2005.

[LS08] Mark H. Liffiton and Karem A. Sakallah. Searching for Autarkies
to Trim Unsatisfiable Clause Sets. In Hans Kleine Büning and
Xishun Zhao, editors, Proceedings of the 11th International Con-
ference of Theory and Applications of Satisfiability Testing (SAT),
Guangzhou, China, May 12-15, 2008, volume 4996 of Lecture Notes
in Computer Science, pages 182–195. Springer, 2008.

[Mar10] João Marques Silva. Minimal Unsatisfiability: Models, Algorithms
and Applications (Invited Paper). In IEEE International Sympo-
sium on Multiple-Valued Logic (ISMVL), pages 9–14. IEEE Com-
puter Society, 2010.

[McM93] Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.

[McM03] Kenneth L. McMillan. Interpolation and SAT-Based Model Check-
ing. In Warren A. Hunt Jr. and Fabio Somenzi, editors, Proceed-
ings of the 15th International Conference on Computer Aided Veri-
fication (CAV), Boulder, CO, USA, July 8-12, 2003, volume 2725 of
Lecture Notes in Computer Science, pages 1–13. Springer, 2003.

[MFM04] Yogesh S. Mahajan, Zhaohui Fu, and Sharad Malik. ZChaff2004:
An Efficient SAT Solver. In Holger H. Hoos and David G. Mitchell,

104

Bibliography

editors, Revised Selected Papers of 7th International Conference on
Theory and Applications of Satisfiability Testing (SAT), Vancouver,
BC, Canada, May 10-13, 2004, volume 3542 of Lecture Notes in
Computer Science, pages 360–375. Springer, 2004.

[MJB13] João Marques Silva, Mikolás Janota, and Anton Belov. Minimal
Sets over Monotone Predicates in Boolean Formulae. In Natasha
Sharygina and Helmut Veith, editors, Proceedings of the 25th Inter-
national Conference on Computer Aided Verification (CAV), Saint
Petersburg, Russia, July 13-19, 2013, volume 8044 of Lecture Notes
in Computer Science, pages 592–607. Springer, 2013.

[ML11] João Marques Silva and Inês Lynce. On Improving MUS Extrac-
tion Algorithms. In Sakallah and Simon [SS11], pages 159–173.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation Conference,
DAC, Las Vegas, NV, USA, June 18-22, 2001, pages 530–535. ACM,
2001.

[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability in less than
2n steps. Discrete Applied Mathematics, 10(3):287 – 295, 1985.

[MS96] João Marques Silva and Karem A. Sakallah. GRASP - a new search
algorithm for satisfiability. In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD), San Jose, CA, USA,
November 10-14, 1996, pages 220–227. ACM and IEEE Computer
Society, 1996.

[MSSS12] Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf
Sellmann. Parallel SAT Solver Selection and Scheduling. In
Michela Milano, editor, Proceedings of the 18th International Con-
ference on Principles and Practice of Constraint Programming (CP),
Québec City, QC, Canada, October 8-12, 2012, volume 7514 of Lec-
ture Notes in Computer Science, pages 512–526. Springer, 2012.

[NR12] Alexander Nadel and Vadim Ryvchin. Efficient SAT Solving under
Assumptions. In Cimatti and Sebastiani [CS12], pages 242–255.

[NRS13] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Efficient
MUS Extraction with Resolution. In Proceedings of the 13th Inter-
national Conference on Formal Methods in Computer-Aided Design
(FMCAD), Portland, OR, USA, October 20-23, 2013, pages 197–
200, 2013.

[PHS08] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying Propo-
sitional Clausal Formulae. In Malik Ghallab, Constantine D. Spy-
ropoulos, Nikos Fakotakis, and Nikolaos M. Avouris, editors, Pro-
ceedings of the 18th European Conference on Artificial Intelligence
(ECAI), Patras, Greece, July 21-25, 2008, volume 178 of Frontiers in
Artificial Intelligence and Applications, pages 525–529. IOS Press,
2008.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science

105

Bibliography

(FOCS), Providence, Rhode Island, USA, 31 October - 1 November
1977, pages 46–57. IEEE Computer Society, 1977.

[PW88] Christos H. Papadimitriou and David Wolfe. The Complexity
of Facets Resolved. Journal of Computer and System Sciences,
37(1):2–13, 1988.

[RHN06] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Planning as
satisfiability: parallel plans and algorithms for plan search. Artifi-
cal Intelligence, 170(12-13):1031–1080, 2006.

[SB09] Niklas Sörensson and Armin Biere. Minimizing Learned Clauses.
In Oliver Kullmann, editor, Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing
(SAT), Swansea, UK, June 30 - July 3, 2009, volume 5584 of Lec-
ture Notes in Computer Science, pages 237–243. Springer, 2009.

[SB11] Fabio Somenzi and Aaron R. Bradley. IC3: Where monolithic and
incremental meet. In Bjesse and Slobodová [BS11], pages 3–8.

[SEMB11] Baruch Sterin, Niklas Eén, Alan Mishchenko, and Robert Brayton.
The Benefit of Concurrency in Model Checking. In Proceedings of
the 20th International Workshop on Logic and Synthesis (IWLS),
San Diego, CA, June 3 - 5, 2011, pages 176–182, 2011.

[Sin07] Carsten Sinz. Visualizing SAT Instances and Runs of the DPLL
Algorithm. Journal of Automated Reasoning, 39(2):219–243, 2007.

[SLB09] Tobias Schubert, Matthew D. T. Lewis, and Bernd Becker. PaMi-
raXT: Parallel SAT Solving with Threads and Message Pass-
ing. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT), 6(4):203–222, 2009.

[SS11] Karem A. Sakallah and Laurent Simon, editors. Proceedings of
the 14th International Conference on Theory and Applications of
Satisfiability Testing (SAT), Ann Arbor, MI, USA, June 19-22, 2011,
volume 6695 of Lecture Notes in Computer Science. Springer, 2011.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking
Safety Properties Using Induction and a SAT-Solver. In Warren
A. Hunt Jr. and Steven D. Johnson, editors, Proceedings of the 3th
International Conference on Formal Methods in Computer-Aided
Design (FMCAD), Austin, Texas, USA, November 1-3, 2000, vol-
ume 1954 of Lecture Notes in Computer Science, pages 108–125.
Springer, 2000.

[VG11] Allen Van Gelder. Generalized Conflict-Clause Strengthening for
Satisfiability Solvers. In Sakallah and Simon [SS11], pages 329–
342.

[vdTHB12] Peter van der Tak, Marijn Heule, and Armin Biere. Concurrent
Cube-and-Conquer, poster presentation. In Cimatti and Sebastiani
[CS12], pages 475–476.

[Wie13] Siert Wieringa. Some notes on model rotation. arXiv.org online e-
print service, 2013. Available from: http://arxiv.org/abs/1308.2142.

106

Bibliography

[WKS01] Jesse Whittemore, Joonyoung Kim, and Karem A. Sakallah.
SATIRE: A New Incremental Satisfiability Engine. In Proceedings
of the 38th Design Automation Conference (DAC), Las Vegas, NV,
USA, June 18-22, 2001, pages 542–545. ACM, 2001.

[WNH09] Siert Wieringa, Matti Niemenmaa, and Keijo Heljanko. Tarmo: A
Framework for Parallelized Bounded Model Checking. In Lubos
Brim and Jaco van de Pol, editors, Proceedings of the 8th Interna-
tional Workshop on Parallel and Distributed Methods in verifiCa-
tion (PDMC), Eindhoven, The Netherlands, November 4, 2009, vol-
ume 14 of Electronic Proceedings in Theoretical Computer Science,
pages 62–76, 2009.

[XHHLB08] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of
Artificial Intelligence Research, 32:565–606, 2008.

[ZBH96] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. PSATO: a
Distributed Propositional Prover and its Application to Quasigroup
Problems. Journal of Symbolic Computation, 21(4):543–560, 1996.

107

Bibliography

108

A. SMV model for Example 4.10

MODULE main

VAR

x0 : boolean;

x1 : boolean;

x2 : boolean;

y0 : boolean;

y1 : boolean;

y2 : boolean;

y3 : boolean;

ASSIGN

init(y0):=FALSE;

next(y0):=!max & (y0 xor yc0);

next(x0):=x0 xor xc0;

init(y1):=FALSE;

next(y1):=!max & (y1 xor yc1);

next(x1):=x1 xor xc1;

init(y2):=FALSE;

next(y2):=!max & (y2 xor yc2);

next(x2):=x2 xor xc2;

init(y3):=FALSE;

next(y3):=!max & (y3 xor yc3);

109

SMV model for Example 4.10

DEFINE

yc0:=TRUE;

xc0:=TRUE;

yc1:=y0 & yc0;

xc1:=x0 & xc0;

yc2:=y1 & yc1;

xc2:=x1 & xc1;

yc3:=y2 & yc2;

max:=x0 & x1 & x2 & TRUE;

CTLSPEC AG(!y3);

110

B. Errata for the publications

• Publication I: A reference to [HLSB06] should have appeared after

the words ’recent work’ in the first sentence of the related work sec-

tion. Note that the ’latter work’ referred to in the sentence following

the missing reference is also supposed to refer to [HLSB06].

• Publication IV: The description of the algorithmic improvement of

model rotation does not describe that the initialization of the array

’seen’ is performed before every non-recursive call to the model rota-

tion subroutine. See Section 5.4 of this document for an improved

algorithmic description.

111

9HSTFMG*affgii+

	Aalto_DD_2014_020_Siert_Wieringa_verkkoversio

