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synthesis principle used in analog synthesizers. In subtractive synthesis, a spectrally rich 
oscillator signal is modified with a time-varying filter. However, the trivial implementation of  
the oscillator waveforms typically used in this synthesis method suffers from disturbing 
aliasing distortion. Filter-based algorithms that produce these waveforms with reduced 
aliasing are studied in this thesis. 
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vähentävän synteesin toimintamallin digitaalista mallintamista. Vähentävässä synteesissä 
spektriltään rikasta oskillaattorisignaalia muokataan aikamuuttuvalla suodattimella. Tässä 
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algoritmeja, joilla voidaan generoida lähdesignaaleja, joissa laskostumista on vaimennettu. 
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1. Introduction

The history of electronic music dates back to the late 19th century. The first well-

known electronic synthesizer was the Telharmonium [Cahill, 1897]. However,

the Telharmonium was a huge system that required a roomful of electronics.

The first electronic synthesizers that were portable by a man were constructed

in the early 20th century. The development of electronic synthesizers truly

began between the World Wars when sound-generation units like the Theremin

[Théremin, 1925], the Ondes Martenot [Martenot, 1931], and the Hammond

organ [Hammond, 1934] were introduced.

These early electronic synthesizers build up the complex tone using primitive

waveforms, like sinusoids and triangular waves, without any modification. In

the 1950s, and especially in the 1960s and 1970s, many electronic synthesizers

added a modifying filter to the sound production chain. This sound generation

technique, called subtractive synthesis, starts with a spectrally rich source

signal that is shaped with a time-varying, typically a lowpass-type, filter.

Especially the subtractive synthesizers built by the Moog Music company, one

of which is shown in Fig. 1.1, were popular during the 1960s and 1970s. For

instance, one of the most sold classical music records of that era, “Switched-on

Bach” by Wendy Carlos1, contained compositions of J. S. Bach played on the

Moog Modular synthesizer. In addition to music productions, analog synthesizers

started to gain popularity also in movie studios in the 1960s and 1970s, and

the first popular movie whose film score contained parts played on a Moog

synthesizer was the James Bond film “On Her Majesty’s Secret Service” from

1969.2

In the 1980s and 1990s subtractive synthesis appeared to become a rare sound

1This record received three Grammy awards in 1969, including the best classical
record award. Source: http://www.grammy.com/nominees/search?artist=&field_
nominee_work_value=Switched-On+Bach&year=1969&genre=All (last viewed on
February 26, 2014).
2Sources: http://en.wikipedia.org/wiki/Analog_synthesizer and http://en.
wikipedia.org/wiki/John_Barry_(composer) (last viewed on February 26, 2014)
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Figure 1.1. Moog Modular synthesizer. Photo copyright by Mark Smart. Used with permission.

generation principle as frequency modulation (FM) synthesis and sampling

synthesis gained popularity. At the same time, digital signal processing started

to overtake the analog electronics as the technological paradigm also in music

synthesizers. However, in the mid-1990s musicians rediscovered the “warm”

timbre of the analog synthesizers.

To meet the increased interest in subtractive synthesis, a Swedish music

technology company Clavia introduced the NordLead synthesizer (shown in

Fig. 1.2) in 1995. That synthesizer was the very first digital synthesizer that

emulated the complete sound generation chain of analog synthesizers using

digital signal processing tools [Smith, 1996; Välimäki et al., 2006; Erkut et al.,

2008], though some of the features of analog synthesizers were modeled earlier

in Roland’s JD-series of synthesizers.

Together with the NordLead synthesizer, Clavia coined the term “virtual

analog”. It represents the digital simulation of analog audio devices [Smith,

1996; Välimäki et al., 2006; Erkut et al., 2008]. Since 1995, research on virtual

analog synthesis, i.e., digital emulation of subtractive synthesis, has increased

2
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Figure 1.2. Original Clavia NordLead synthesizer from 1995. Photo copyright by Clavia DMI
AB. Used with permission.

both in academia and in music technology companies such as Yamaha, Korg,

Roland, Native Instruments, Access, and Arturia. Nowadays, both hardware

and software implementations are available from the aforementioned and many

other companies.

Furthermore, more and more interest has been shown on the topic in the past

few years [Pekonen and Välimäki, 2011]. A special focus in the research has

been on source signal generation, i.e., oscillator algorithms, a subtopic that has

justly been studied due to the aliasing issue in the generation of the traditionally

used source signals.

Almost all oscillator algorithm studies have focused on finding a method that

does not produce audible aliasing. However, the ultimate objective of virtual

analog synthesis is to produce a faithful digital representation of the signal

generated by an analog synthesizer. It should be noted that these two objectives

are not mutually exclusive. The antialiasing oscillator algorithms can be used

in modeling of an analog synthesizer waveforms, as will be illustrated in this

thesis.

1.1 Scope and content of this thesis

This thesis presents the recent development of the oscillator algorithms used in

virtual analog synthesis with a special focus on the advances in time-varying

filter-based approaches. The thesis consists of a summary and seven articles

that have been published in or accepted for publication in international, peer-

reviewed journals or scientific conferences.

The summary part of the thesis first presents the traditionally used source

waveforms and the aliasing problem in trivial oscillator algorithms in Section 2.

Section 3 provides an overview of antialiasing oscillator algorithms, the topic

of Publications I–V. Section 4 discusses the audibility of aliasing distortion, a

topic that was investigated in more detail in Publication VI. Modeling of the

3
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waveforms of analog synthesizers, a topic that was addressed for the first time

in Publication VII, is presented in Section 5. Finally, Section 6 summarizes

the main results of the thesis, and Section 7 concludes the thesis and discusses

directions for future research on the topic.

4



2. Trivial Oscillator Algorithms

The waveforms that are typically used in subtractive synthesis [Olson et al.,

1955; Moog, 1964] are depicted in Fig. 2.1. These waveforms, which originate

from the function generators used for the analysis of analog circuits, are com-

posed of piece-wise linear or constant segments. Due to the well-defined shape

of these waveforms, they can be referred to as geometric waveforms. In addition,

they are often called classical waveforms. This name is justified by the fact

that they are often used to exemplify the classical analysis tools of signals and

systems theory (see for example [Carlson et al., 2002, pp. 25–29]).

2.1 Continuous-time classical geometric waveforms

Because the classical geometric waveforms are periodic, the phase of a waveform

can be understood to wrap around whenever a new period begins. The phase

signal, the so-called phasor signal, can be expressed mathematically as

φ(t)= 2π f0t−2π� f0t� = 2π f0t mod 2π, (2.1)

where t is the time (continuous variable) in seconds, f0 is the (time-varying) fun-

damental frequency of oscillation in Hertz, and �·� denotes the floor function, i.e.,
rounding to the closest integer smaller than or equal to the function argument.

The phasor values given by (2.1) range from zero to 2π. However, it is practical

to express the phasor value as a fraction of the period, in which φ(t) can be

normalized to be between zero and one:

ϕ(t)= φ(t)
2π

= f0t−� f0t� = f0t mod 1. (2.2)

The normalized phasor signal ϕ(t) can be efficiently used in the oscillator algo-

rithms, as will be seen shortly.

The sawtooth waveform, plotted in Fig. 2.1(a), is given by

s(t)= 2ϕ(t)−1= 2 f0t+1−2
∞∑

k=−∞
u(t−kT0), (2.3)
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Figure 2.1. Amplitude-normalized classical waveforms typically used in subtractive synthesis: (a)
sawtooth, (b) square, and (c) triangular wave. (d) Inverted sawtooth, (e) rectangular
pulse, and (f) asymmetric triangular waveforms are also used. P denotes the pulse
width, or the duty cycle, of the asymmetric waveforms.

where T0 = 1/ f0 is the oscillation period in seconds, k ∈Z is an indexing variable,

and u(τ) is the Heaviside unit step function [Kreyszig, 1999, pp. 265–266],

u(τ)=

⎧⎪⎨
⎪⎩
1, when τ> 0, and

0, when τ< 0.
(2.4)

Note that u(0) is not defined, but it is typically set to 0.5 [Abramowitz and

Stegun, 1972, p. 1020]. The inverted sawtooth (see Fig. 2.1(d)) can be obtained

by multiplying the expressions of (2.3) by −1. Note that the term 2 f0t+1 in the

latter form of (2.3) represents the rising ramp of the sawooth waveform, and the

sum of the time-shifted Heaviside unit step functions, u(t−kT0), are responsible

for resetting the sample value back to −1 when the phasor wraps around.

The closed-form expression of the square wave, shown in Fig. 2.1(b), is

r(t)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, when ϕ(t)< 0.5,

0, when ϕ(t)= 0.5, and

−1, when ϕ(t)> 0.5,

= sgn(0.5−ϕ(t))= s(t−0.5T0)− s(t)

= 2
∞∑

k=−∞
[u(t−kT0)−u(t− (k+0.5)T0)] −1,

(2.5)

where sgn(τ) is the signum (sign) function [Carlson et al., 2002, p. 64],

sgn(τ)= 2u(τ)−1=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, when τ> 0,

0, when τ= 0, and

−1, when τ< 0.

(2.6)
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The first Heaviside unit step functions inside the sum of the last form of (2.5)

steps up the amplitude of the waveform and the latter step function steps it

down.

The triangular wave (see Fig. 2.1(c)) is given by

st(t)=

⎧⎪⎨
⎪⎩
4ϕ(t)−1, when ϕ(t)≤ 0.5, and

−4ϕ(t)+3, when ϕ(t)≥ 0.5,

= 1−2|s(t)|

= 4 f0
∫t

−∞
r(τ)dτ

= 8 f0
∞∑

k=−∞
[(t−kT0)u(t−kT0)

− (t− (k+0.5)T0)u(t− (k+0.5)T0)] −4 f0t−1.

(2.7)

The first form of (2.7) can be obtained from Fig. 2.1(c) by writing linear functions

for the ascending and descending slopes of a single triangle pulse. The second

form is obtained by noting that by taking the absolute value of the sawtooth

waveform one gets an inverted triangle wave that is between 0 and 1. The third

form is obtained by noting that the time derivative of the triangle waveform is

a scaled square wave. In the last form of (2.7), the first term inside the sum

represents the ascending ramp and the second term the descending ramp of a

triangle pulse, and the term 4 f0t−1 removes the drifting DC offset created by

the summation term.

The square and triangular waves given above are symmetric, i.e., they have a

duty cycle, or pulse width, of 50 %. In principle, the triangular and rectangular

pulse waves could also be asymmetric, as depicted in Figs. 2.1(e) and (f). The

asymmetric rectangular pulse wave, plotted in Fig. 2.1(e), having a duty cycle of

P ∈ [0,1], which can be time-varying, is given by

r(t;P)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, when ϕ(t)< P,

0, when ϕ(t)= P, and

−1, when ϕ(t)> P,

= sgn(P −ϕ(t))

= s(t−PT0)− s(t)+2P −1

= 2
∞∑

k=−∞
[u(t−kT0)−u(t− (k+P)T0)] −1.

(2.8)
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The asymmetric triangular wave (see Fig. 2.1(f)) is

st(t;P)=

⎧⎪⎨
⎪⎩

2ϕ(t)−P
P , when ϕ(t)≤ P,

1+P−2ϕ(t)
1−P , when ϕ(t)≥ P,

= 1− r(t;P)−2r(t;P)P +4r(t;P)ϕ(t)
1− r(t;P)+2r(t;P)P

= f0
P(1−P)

∫t

−∞
[r(τ;P)+1−2P]dτ

= 2 f0
P(1−P)

∞∑
k=−∞

[(t−kT0)u(t−kT0)

− (t− (k+P)T0)u(t− (k+P)T0)] − 2 f0t
1−P

−1.

(2.9)

The first form of (2.9) is obtained by writing linear functions for the ascending

and descending slopes of a single pulse, and second formula combines the two

piece-wise definitions into a single formula. The third form of (2.9) is obtained

by noting that the time derivative of the asymmetric waveform is a scaled

asymmetric rectangular pulse wave with the DC component removed. In the

last form of (2.9), the terms inside the sum again represent the ramps of the

triangular wave and remaining term removed the drifting DC offset caused by

the summation term.

Note that, when P = 0.5, (2.8) and (2.9) are equal to (2.5) and (2.7), respectively.

When P = 0, the asymmetric triangular wave becomes the inverted sawtooth

wave and the rectangular pulse wave is equal to −1 for all t. When P = 1, the

rectangular pulse is a constant +1 and the asymmetric triangular wave becomes

the sawtooth wave.

2.2 Trivial digital implementations

As the closed-form expressions of the classical waveforms show, they can be

constructed from the normalized phasor signal. Therefore, using the phasor

signal in the digital generation of the waveforms is efficient. The discrete-time

phasor is trivially obtained by sampling the normalized phasor signal

p(n)≡ϕ(nT)= f0nT mod 1, (2.10)

where n ∈ Z is the discrete-time variable, i.e., the sample index, and T is the

sampling interval in seconds. By examining the difference between the phasor

signal values at consecutive sample indices, (2.10) can be rewritten as

p(n)= (p(n−1)+ f0T) mod 1. (2.11)

The trivial digital oscillator algorithms can be constructed by replacing the

continuous-time phasor signal with the discrete-time phasor signal in the re-
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spective closed-form expressions given above. Block diagrams of the trivial

algorithms are shown in Fig. 2.2. Note that Fig. 2.2(a) shows the block diagram

for the general asymmetric triangular oscillator. The sawtooth and symmetric

triangular oscillators can be implemented more efficiently than with the gen-

eral algorithm (see (2.3) and (2.7)), and the block diagrams of these efficient

implementations are given Figs. 2.2(c) and 2.2(d), respectively.

2.3 Aliasing problem in trivial oscillators

Unfortunately, the trivial digital oscillators suffer from aliasing distortion be-

cause the continuous-time waveforms are not bandlimited. This can be veri-

fied by deriving the Fourier series representation (see for example [Kreyszig,

1999, pp. 240–242] and [Carlson et al., 2002, pp. 25–26] for the theory) of the

continuous-time waveforms.

The Fourier series representation of the rectangular pulse waveform is given

by

r(t;P)= 1−2P +4
∞∑

k=1

sin(kPπ)
kπ

cos(2πkf0t−kPπ)

= 1−2P +4P
∞∑

k=1
sinc(kP)cos(2πkf0t−kPπ),

(2.12)

where sinc(τ)= sin(πτ)/(πτ) [Carlson et al., 2002, p. 26] is the sinc, i.e., sine car-

dinal, function. The Fourier series representation of the asymmetric triangular

wave is

st(t;P)=−2
∞∑

k=1

sin(k(1−P)π)
k2P(1−P)π2

sin(2πkf0t−k(P −1)π)

=− 2
Pπ

∞∑
k=1

sinc(k(1−P))
k

sin(2πkf0t−k(P −1)π)

= 2
(1−P)π

∞∑
k=1

sinc(kP)
k

sin(2πkf0t−kPπ).

(2.13)

Again, when P is one of the special cases given above (0, 0.5, or 1), (2.12) and

(2.13) can be simplified. When P = 0.5, (2.12) becomes

r(t;0.5)= 2
∞∑

k=1
|sinc(k/2)|cos(2πkf0t) (2.14)

and (2.13) simplifies to

st(t;0.5)=−4
π

∞∑
k=1

|sinc(k/2)|
k

cos(2πkf0t). (2.15)

Note that sinc(τ)= 0∀τ ∈ {Z\0} [Carlson et al., 2002, p. 26], which means that

the symmetric rectangular pulse and triangular waves have only odd harmonics.

9



Trivial Oscillator Algorithms

p(n) +
−

P

sgn
r(n;P)

+
−

1

×
2

4
×

+
−

+

+ inv

× y(n)

(a)

p(n) +
−

P

sgn r(n;P)

(b)

p(n)
2

sgn+

−1

s(n)

(c)

p(n)
2

+

−1

s(n)
abs

2
+

−

1

st(n)

(d)

Figure 2.2. Trivial digital algorithms for the classical waveforms: (a) asymmetric triangular, (b)
rectangular pulse, (c) sawtooth, and (d) symmetric triangular oscillators. Box “sgn”
applies the signum function (see (2.6)) to its input, box “inv” inverts its input, and
box “abs” outputs the absolute value of its input.

When P = 1, the second expression in (2.13) becomes

st(t;0)= s(t)=−2
π

∞∑
k=1

1
k
sin(2πkf0t) (2.16)

because sinc(0) = 1 [Carlson et al., 2002, p. 26]. With P = 0, the asymmetric

triangular wave becomes the inverted sawtooth, whose Fourier series represen-

tation is the same as (2.16) but without the minus sign. This can be verified by

substituting P = 0 into the last expression of (2.13). Similarly, when P = 0 or

P = 1, the scaling factor sin(kπP) in (2.12) is equal to 0 for all k ∈ Z, meaning

that (2.12) reduces to −1 and 1, respectively.

As the Fourier series representations of the classical geometric waveforms

show, the waveforms have infinitely many harmonics. However, in digital

systems the frequencies that will be represented faithfully by the samples is

limited to the Nyquist limit, which is the half of the sampling frequency fs = 1/T.

This means that a component whose frequency is fs/2+ f will alias (fold back) to

10



Trivial Oscillator Algorithms

fs/2− f [Bateman, 1980, pp. 105–106; Roads, 1998, pp. 27–31] because

cos(2π( fs/2+ f )nT +φ0)= cos(2π( fs/2− f )nT +φ0) (2.17)

for all n ∈ Z and for any values of the initial phase φ0. This equality can be

proved by rewriting the left side of the equation using the angle sum, symmetry,

shift, and periodicity properties of the sine and cosine functions.

The spectra of the trivial sawtooth wave, rectangular pulse waves that have

a duty cycle of 0.5 and 0.25, and the (symmetric) triangular wave are given

in Fig. 2.3 for the fundamental frequency 2.093 kHz and sampling rate 44.1

kHz. The non-aliased components are indicated with crosses, the rest is aliasing

distortion.

The effect of the duty cycle on the harmonic structure is visible in Fig. 2.3.

The symmetric rectangular pulse and triangular waves are missing the even

harmonics (see Figs. 2.3(b) and (d), respectively), and the rectangular pulse

wave with duty cycle of 0.25 lacks every fourth harmonic (Fig. 2.3(c)) and it has

a direct current (DC) component.

The sawtooth and rectangular pulse waves have a spectral tilt of about 6 dB per

octave (component amplitudes ∼ 1/k), as indicated with the dashed line in Figs.

2.3(a), (b), and (c). The spectral envelope of the (asymmetric) triangular wave

decays approximately 12 dB per octave (∼ 1/k2), as shown with the dashed line

in Fig. 2.3(d). This means that especially with high fundamental frequencies the

trivially generated waveforms will contain relatively strong aliased components.

This aliasing distortion can be heard as an annoying noise-like hiss and hum,

and/or as beating [Alles, 1980; Moore, 1990; Burk, 2004; Puckette, 2007].

However, human hearing renders some of aliasing distortion inaudible, which

effectively means that some aliasing can be allowed. Further information about

algorithms that take this into account is given in Section 3, and details about

the processes that affect the audibility of aliasing are discussed in Section 4.

11



Trivial Oscillator Algorithms

0 5 10 15 20

−40

−20

0

Frequency (kHz)

M
ag
ni
tu
de

(d
B
)

(a)

0 5 10 15 20

−40

−20

0

Frequency (kHz)

(b)

0 5 10 15 20

−40

−20

0

Frequency (kHz)

M
ag
ni
tu
de

(d
B
)

(c)

0 5 10 15 20
−80
−60
−40
−20

0

Frequency (kHz)

(d)

Figure 2.3. Spectra of trivially generated (a) sawtooth wave, (b) rectangular pulse wave with
a duty cycle of 0.5, (c) rectangular pulse wave that has duty cycle of 0.25, and (d)
symmetric triangular wave for the fundamental frequency 2.093 kHz and sampling
rate 44.1 kHz. The non-aliased components are indicated with crosses. The dashed
line in (a), (b), and (c) illustrates the approximately 6-dB-per-octave spectral envelope.
In (d), the dashed line is the approximately 12-dB-per-octave spectral tilt.
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3. Antialiasing Oscillator Algorithms

This section reviews the existing antialiasing oscillator algorithms, which can

be categorized into four groups: ideally bandlimited, quasi-bandlimited, alias-

suppressing, and ad-hoc oscillator algorithms. Each group has distinct properties

that differentiate it from the others, and in the following sections these different

features are discussed.

3.1 Ideally bandlimited oscillator algorithms

Some of the existing antialiasing oscillators try to avoid aliasing completely.

These algorithms can be understood to generate waveforms that have a finite

number of harmonics so that the highest component does not exceed the Nyquist

limit. An obvious choice for a such algorithm is the additive synthesis approach

[Chaudhary, 1998], where the waveforms are generated by summing individual

harmonics below a given cut-off frequency fc ∈ [0, fs/2]. In other words, the

additive synthesis oscillator computes the first � fc/ f0� terms of the Fourier series

representation of the waveform (see Sec. 2.3).

However, the number of components the additive synthesis oscillator is re-

quired to add up is inversely proportional to the fundamental frequency. This

means that the computational load of the additive synthesis oscillator heavily

depends on the fundamental frequency, and especially at low fundamental fre-

quencies the load may become an issue in applications that require minimal

load. This issue can be partly relaxed by ignoring the non-aliased components

that are, for example, more than 60 dB softer than the fundamental frequency.

This relaxation sets an upper limit for the components to be generated1.

The issue of the f0-dependent computational load can be overcome in an

alternative way. Because the samples of the waveform require a summation

1The actual number of harmonics to be generated is the minimum of the number of
non-aliased components and this limit.
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of well-defined functions, single periods of the finite sums can be precomputed

and stored as tables that are read in a loop to generate the waveform. This

algorithm, the wavetable synthesis oscillator [Chamberlin, 1985; Burk, 2004],

has a constant computational load at all fundamental frequencies. By reading

the look-up table at different rates, the fundamental frequency can be varied

from its nominal value [Chamberlin, 1985; Massie, 1998; Burk, 2004].

Although the wavetable synthesis oscillator provides a great computational

saving with respect to the additive synthesis oscillator, the memory space re-

quired for the look-up tables of the wavetable synthesis oscillator may be an

issue in memory-sensitive applications. When all harmonics below a given

cut-off frequency are desired to be generated at all fundamental frequencies, the

number of look-up tables becomes huge. As with the additive synthesis oscillator,

the number of tables can be reduced by ignoring weak components.

Alternatively, a finite sum of harmonically related sinusoids can be expressed

as a fraction of two sinusoids both of which depend on the current sample index

and the fundamental frequency [Winham and Steiglitz, 1970; Moorer, 1976;

Lazzaro and Wawrzynek, 2004]. Note, however, that this “discrete summation

formulae” (DSF) approach typically requires a modifying filter to produce the

classical waveforms. Furthermore, it can have numerical issues when the term

in the denominator of the expression is close to zero.

The bandlimited waveforms can also be generated by synthesizing their spec-

tral content in the frequency domain and applying the inverse (fast) Fourier

transform [Rodet and Depalle, 1992] to the synthetic spectrum [Stilson, 2006, p.

212; Deslauriers and Leider, 2009]. However, since the harmonic components

of a waveform may not exactly correspond to the frequency bins, the spectrum

synthesis requires interpolation. Ideal interpolation is a theoretical idea, and

in order to have an implementable algorithm the ideal interpolation needs to

be approximated [Deslauriers and Leider, 2009]. However, the interpolation

approximation induces noise in the spectrum, which can be understood to be a

special kind of aliasing distortion.

From the discussion given above one can conclude that all of the ideally

bandlimited oscillator algorithms are a trade-off between sound quality and

the computational issues. Therefore, they may not be the ideal solution for

every application, but they do offer good reference implementations for the other

techniques reviewed next.
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3.2 Quasi-bandlimited oscillator algorithms

While the ideally bandlimited oscillator algorithms do not allow any aliasing,

quasi-bandlimited oscillator algorithms take some advantage of the psycho-

physiology of human hearing. Human hearing is known to be insensitive at

high frequencies (see Section 4 for more details), which means that the oscillator

algorithm can be allowed to produce some aliasing at high frequencies. In other

words, a quasi-bandlimited oscillator algorithm can be interpreted to produce a

signal that is a lowpass-filtered version of the continuous-time waveform so that

the lowpass filter is a realizable filter with a non-infinitesimal transition band.

3.2.1 Fundamentals of the quasi-bandlimited oscillator algorithms

The first quasi-bandlimited oscillator algorithm was suggested by Stilson and

Smith [1996a]. They noted that by differentiating a continuous-time classical

geometric waveform with respect to time, once in the case of the sawtooth and

rectangular pulse wave and twice in the case of the triangular wave, one obtains

a sequence of impulse functions. When the time derivative of the waveform

is lowpass filtered, each impulse is replaced with the impulse response of the

filter. Then, by integrating2 the obtained bandlimited impulse train (BLIT), an

approximately bandlimited waveform is obtained [Stilson and Smith, 1996a;

Stilson, 2006].

In the ideal BLIT synthesizer, the impulses are replaced with the impulse

response of the ideal lowpass filter, the well-known sinc function. The sinc

function can also be called the ideal basis function of the BLIT algorithm. With

this ideal basis function the BLIT algorithm becomes in fact an alternative

formulation to the DSF expression [Stilson and Smith, 1996a]. However, the

sinc function is infinitely long, which means that it needs to be windowed in

order to have an implementable realization of the BLIT algorithm [Stilson and

Smith, 1996a]. The windowed sinc function is typically stored in a look-up table

[Stilson, 2006; Välimäki and Huovilainen, 2007].

Yet, because the fundamental frequency and hence the oscillation period can

be arbitrary, the discontinuities are not located at sampling instants. Therefore,

the mid-point of the look-up table needs to be shifted in time, which means that

the table needs to be oversampled in order to have proper positioning of the

bandlimited impulse function for each discontinuity [Stilson and Smith, 1996a;

Stilson, 2006]. Furthermore, the look-up table can be interpolated to improve

the accuracy of the non-tabulated basis function values.

2Again, twice in the case of the triangular wave.
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As mentioned above, the BLIT oscillator needs an integrator3 in order to

produce the desired waveform. However, if the BLIT values are slightly off from

their infinitely accurate values, the integration leads to a drifting DC offset. A

second-order leaky integrator that has a transmission zero at DC can be used to

avoid this issue [Brandt, 2001].

Brandt also suggested that the integration can be performed in advance. By

integrating the BLIT basis function, or the minimum-phase representation of the

look-up table as Brandt originally proposed, an approximation of the bandlimited

step function is obtained [Brandt, 2001]. Because the classical waveforms can

be constructed by summing time-shifted step functions (see Sec. 2.1), replacing

the unit step functions in the respective formulations with the bandlimited step

function approximation effectively yields a bandlimited waveform.

At every discontinuity the integrated function is read from the table, and when

the end of the table is reached, the table-read process outputs a constant one.

This technique, called the bandlimited step function (BLEP) algorithm, leads to

an efficient realization that avoids the numerical issues the BLIT algorithm has.

However, Brandt did not provide the ideal basis function for the BLEP algo-

rithm. In Publication I, the closed-form expression for the ideal BLEP basis

function, which is the integral of the sinc function, is derived. Like the sinc

function, it is also infinitely long and impractical to use as is. Therefore, it

also needs to be approximated in order to have an implementable realization.

One approach is to apply a window function to the BLEP residual, that is the

difference between the ideal BLEP basis function and the unit step function.

This residual function is then added onto the waveform at the discontinuities

[Välimäki and Huovilainen, 2007; Leary and Bright, 2009].

The table-based BLIT and BLEP oscillators can be implemented in two ways.

The look-up process can be centralized so that the algorithm first reads or

interpolates the table values that are used as the coefficients of a finite impulse

response (FIR) filter. The FIR filter is then triggered with an impulse that

has the same polarity as the discontinuity4. Alternatively, the look-up table

entries can be decomposed into a polyphase FIR filter structure. In this approach

all polyphase branches are triggered with the impulse, and the samples of the

bandlimited impulse function are obtained by mixing the outputs of the branches

depending on the needed shift [Välimäki and Huovilainen, 2007].

3In digital systems, the integrator is in practice implemented as an accumulator.
4Here, the polarity of a discontinuity means the direction of the waveform transition:
a transition upwards (for instance from −1 to 1 in the rectangular pulse wave) has
positive polarity while the transition in the other direction has negative polarity.
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3.2.2 Basis function approximations

In order to have a good alias-reduction performance, both the oversampling

factor and the effective length of the look-up table need to be quite large (see

for example Nam et al. [2010, Sec. IV], and Publication I, Sec. IV.A, for analyses

of table-based BLIT and BLEP algorithms, respectively). This can be become

an issue as the effective length of the table also affects the highest obtainable

fundamental frequency when the implementation does not allow overlapping im-

pulse functions [Pekonen, 2007]. When the algorithm is implemented using only

one filter structure, the oscillation period cannot be shorter than the effective

length of the table.

Alternative basis function approximations have been developed to overcome

the aforementioned issues. These approximations typically have short basis

functions but their alias-reduction performance is clearly better than that of the

tabulated basis functions of same (effective) length. One of these approximations

generates the bandlimited impulses using modified FM [Timoney et al., 2008;

Lazzarini and Timoney, 2010b]. Another approach, a feedback delay loop [Nam

et al., 2009], generates the BLIT using an infinite loop that delays the previously

outputted impulse by the given period. This algorithm, in fact, yields a truly

bandlimited impulse train, but the generated signal is slightly inharmonic [Nam

et al., 2009]. Recently Tassart proposed an approach where the bandlimited

impulse train is obtained by modeling an analog lowpass filter digitally using

its state-space representation [Tassart, 2013a]. Generation of nonlinear-phase

bandlimited impulse functions was also studied by Rodet [1984] but in the

context of granular synthesis.

An efficient way to approximate the ideal basis function in the BLIT oscillator

is to use fractional delay filters [Nam et al., 2010]. This approximation approach

is motivated by the fact that the ideal BLIT basis function, the sinc function,

is also the approximation target in fractional-delay filter design [Nam et al.,

2010; Pekonen et al., 2010]. The fractional-delay filter designs used for the

approximation include allpass filters [Nam et al., 2010] as well as interpolation

polynomials implemented as FIR filters [Frei, 2002; Välimäki and Huovilainen,

2007; Pekonen, 2007; Nam et al., 2010]. Especially the polynomial approach

provides a great improvement in alias-reduction performance compared to the

table-based approach [Välimäki and Huovilainen, 2007; Nam et al., 2010]. Fur-

thermore, the polynomial-based basis functions remove the need for a look-up

table completely because the basis function can be computed while generating

the impulses.
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In addition to the derivation of the ideal BLEP basis function, Publication

I extends the polynomial-based basis function design to BLEP residuals. The

BLEP basis function approximations are constructed by integrating interpola-

tion polynomials in closed form, yielding basis functions that can be evaluated

during the waveform synthesis. The proposed polynomial basis functions pro-

vide intuitive control of the alias-reduction performance in terms of polynomial

length and order, and the best basis functions presented in Publication I are

shown to provide excellent alias-reduction performance.

In Publication I, the fourth-order B-spline polynomial BLEP oscillator is

found to provide the best alias-reduction performance based on computational

measures (see Section 4.3 for more details). It is shown to produce a sawtooth

waveform that is perceptually alias-free in the range of fundamental frequencies

typically used in music. Moreover, it is computationally efficient to implement,

as one can observe from its Farrow-like [Farrow, 1988; Välimäki, 1995; Franck,

2008] block diagram given in Fig. 3.1.

In Publication II, the performance of table-based quasi-bandlimited oscillators

are shown to be improved by tabulating a function other than the sinc function.

When the effective length of the look-up table is short, the windowed sinc

function is not the best option to be tabulated in the BLIT oscillator. Instead,

one can use a controllable window function as proposed in Publication II, Sec. 4.1.

Alternatively, one can also optimize the look-up table entries using a perceptually

informed optimization problem to reduce aliasing distortion (see Publication II,

Sec. 4.2).

Both the controllable window functions and the optimization procedure pre-

sented in Publication II yielded bell-shaped look-up tables5. An example of a such

look-up table is shown in Fig. 3.2 where the weighted least-squares-optimized

basis-function table and the sawtooth signal generated with the BLIT algorithm

using the optimized table and the second-order leaky integrator proposed by

Brandt [2001] are plotted.

Publication III extends the optimization procedure introduced in Publication II

to polynomial basis-function designs. By optimizing the polynomial coefficients

so that a perceptually informed measure of aliasing distortion is minimized,

the alias-free range of fundamental frequencies of the BLIT generator and the

BLEP sawtooth oscillator are shown to be extended to be well above the range

of fundamental frequencies used in music.

5Plots of the basis function tables exemplified in Publication II can be found
at its companion page http://www.acoustics.hut.fi/publications/papers/
dafx10-optosctables/.
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Figure 3.1. Block diagram of the fourth-order B-spline BLEP sawtooth or rectangular pulse
oscillator algorithm. The trigger signal is zero when the trivial signal does not have
a discontinuity in between samples. When a discontinuity is detected, the trigger
signal is either 1 or −1, depending on the polarity of the discontinuity. d is the
fractional delay of the discontinuity, as explained in Publication I, pp. 3–4.
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Figure 3.2. (a) Weighted least-squares-optimized basis function table and (b) the sawtooth signal
generated by filtering a sequence of the basis functions. The sawtooth signal is
obtained by integrating the impulse train with the leaky second-order integrator
proposed by Brandt [2001].

Figure 3.3 shows the optimized polynomial basis functions for the BLIT and

BLEP oscillators exemplified in Publication III. These polynomial basis functions

can be synthesized with a third-order FIR filter as discussed in Publication

III, Sec. II. The coefficients for the optimized BLIT filter as a function of the

fractional delay d of the discontinuity (see Publication I, pp. 977–978, for details)
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Figure 3.3. Optimized polynomial basis functions for the BLIT and BLEP oscillators: (a) BLIT
basis function, (b) BLEP function (integrated BLIT function), and (c) BLEP residual
function. The unit step function is plotted with a dashed line in (b).

are

b0(d)= 0.00029+0.01474d+0.01851d2+0.15485d3,

b1(d)= 0.18783+0.45327d+0.44866d2−0.46625d3,

b2(d)= 0.62351+0.04817d−0.95010d2+0.46625d3, and

b3(d)= 0.18839−0.51631d+0.48306d2−0.15485d3,

(3.1)

and for the BLEP residual filter they are

b0(d)= 0.00029d+0.00737d2+0.00617d3+0.03871d4,

b1(d)= 0.05254+0.18783d+0.22663d2+0.14955d3−0.11656d4,

b2(d)=−0.5+0.62351d+0.02409d2−0.31670d3+0.11656d4, and

b3(d)=−0.05254+0.18839d−0.25816d2+0.16102d3−0.03871d4.

(3.2)

Note that the polynomial coefficients given in Publication III are given as a

function of the general time variable. The polynomial coefficients given here are

obtained by translating the polynomial definition range to [0,1].

In Publications I, II, and III, as well as in the most of the other papers

dealing with quasi-bandlimited oscillator algorithms, the basis-function designs

resulted in linear-phase functions. The only nonlinear-phase basis-function

generators have been proposed by Brandt [2001], Nam et al. [2009, 2010], and

Tassart [2013a]. However, the minimum-phase BLEP proposed by Brandt and

allpass filter based algorithms discussed by Nam et al. utilize discrete-time

functions that do not have well-defined continuous-time representations. The

algorithm developed by Tassart samples the transition matrix of the state-

space representation, yielding an approximation of the continuous-time impulse

response of the prototype filter.

In Publication IV, a general technique that transforms a nonlinear-phase

continuous-time basis function to a discrete-time basis-function generator is

derived. In this technique, the continuous-time function is designed using

analog lowpass filter design, and it is transformed to obtain a set of parallel
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infinite-impulse response (IIR) filters that generate the basis function with given

fractional offsets.

Figure 3.4 shows an impulse train and the rectangular pulse wave generated

with a transformed fifth-order elliptic filter, excitation signals of which are

approximated with third-order polynomials. The impulse train (see Fig. 3.4(a))

shows that the generated basis function is clearly not linear-phase and that

most of the impulse energy is concentrated at the beginning of the impulse

signal. This means that the rectangular pulse wave has most of its amplitude

variations right after the discontinuities, as can be seen in Fig. 3.4(b). With

linear-phase basis functions, the variations are always symmetric with respect

to the discontinuity (see, for example, Publication I, Fig. 2(c)).

The quasi-bandlimited oscillator algorithms typically produce waveforms in

which the higher harmonics are attenuated from the their nominal levels. This

problem can be overcome by applying a post-equalizing filter that boosts those

components close to their nominal levels while keeping the level of the lower har-

monics almost intact. Using a low-order post-equalizing filter suffices to perform

the boosting, and the filter can be designed using any design process. Moreover,

the post-equalizing filter can be a FIR filter, as exemplified in Publication I, or

an IIR filter, as is illustrated in Publications II and III.

3.3 Alias-suppressing oscillator algorithms

The alias-suppressing oscillator algorithms differ greatly from the ideally band-

limited and quasi-bandlimited algorithms. Whereas in the two other categories

of oscillator algorithms the objective is to remove aliasing as much as possible

especially at low frequencies, the alias-suppressing algorithms allow aliasing in

the entire audio band. However, the objective is to suppress aliasing distortion

so that, in the best case, it becomes inaudible.

The alias-suppressing oscillator algorithms can be interpreted to sample a

signal that has the same harmonic structure as the target waveform but with a

faster decaying spectrum than the target. The sampled signal contains aliasing

in the entire audio band, like in the trivial approach, but clearly suppressed

compared to the trivial algorithm. After the sampling, the spectral tilt is restored

to the target tilt by filtering the sampled signal with a digital post-processing

highpass filter.

The earliest of alias-suppressing algorithms was based on oversampling of the

trivial algorithm [Chamberlin, 1985]. By doubling the sample rate the aliased

components of the sawtooth and rectangular pulse wave will have an amplitude

21



Antialiasing Oscillator Algorithms

0 20 40 60 80 100

0

0.5

Sample index

L
ev
el

(a)

0 20 40 60 80 100

−1

0

1

Sample index

(b)

0 5 10 15 20
−80
−60
−40
−20

0

Frequency (kHz)

M
ag
ni
tu
de

(d
B
)

(c)

0 5 10 15 20
−80
−60
−40
−20

0

Frequency (kHz)

M
ag
ni
tu
de

(d
B
)

(d)

0 0.5 1 1.5 2 2.5
−100

−50

0

Frequency (× fs)

M
ag
ni
tu
de

(d
B
)

(e)

Figure 3.4. (a) Bandlimited impulse train and (b) the rectangular pulse wave generated by
the nonlinear-phase oscillator algorithm when the fundamental frequency of the
waveform is 1.047 kHz and the sample rate is 44.1 kHz. Their spectra are shown
in (c) and (d), respectively. A fifth-order elliptic (Cauer) filter that has the cutoff
frequency at 3

4π, passband ripple of 1 dB, and stopband attenuation of 81 dB is used
as the prototype filter. The magnitude response of the prototype filter is given in (e).
The excitation signals are approximated with third-order polynomials.

that is at least 6 dB lower (see Sec. 2.3) than in the case of trivial sampling. In

the case of triangular wave, the aliased components will be attenuated by at

least 12 dB. With a high enough sampling rate aliasing distortion can be reduced

to become inaudible [Chamberlin, 1985; Puckette, 2007]. However, in order

to have a good alias-suppression performance, the oversampling factor needs

to be quite high. Furthermore, the higher sampling rate results in increased

computational load of the algorithm. On the other hand, the sampled signal has

exactly the spectral tilt of the target, which means that this approach does not

need a post-processing filter.

Another alias-suppressing sawtooth algorithm starts by full-wave rectifying a

sine wave whose frequency is half of that of the target waveform [Lane et al.,

1997]. The spectral shape of the resulting signal decays faster than that of
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the sawtooth waveform, and by applying a f0-tracking highpass filter and a

fixed lowpass filter, an approximation of the sawtooth waveform is obtained. By

applying additional operations to the sawtooth algorithm, the rectangular pulse

and triangular waveforms can also be generated from the sinusoid [Lane et al.,

1997].

An algorithm related to the one proposed by Lane et al. [1997] generates the

sawtooth signal by differentiating a squared, trivial sawtooth [Välimäki, 2005].

This approach is motivated by noting that the square of the trivial sawtooth

waveform is also the integral of the waveform. The integration benefits the

suppression of aliasing because the spectrum of an integrated signal decays by

approximately 6 dB per octave faster than the spectrum of the integrand. This

can be proved by analyzing the properties of the Laplace transform [Kreyszig,

1999, pp. 258–263]. Hence, the sampled squared sawtooth waveform contains

less aliasing than the trivial waveform. Then, by applying a difference filter,

the first-order FIR filter that has a zero at DC, the spectral tilt is adjusted to

the original decay rate while keeping aliasing at low and middle frequencies

practically unaltered [Välimäki, 2005].

Because integration increases the spectral tilt of a signal by about 6 dB

per octave while differentiation reduces it by the same amount, it is obvious

that the operation described above can be extended to higher integration and

differentiation orders [Välimäki et al., 2010]. By increasing the order of the

approach, i.e., the number of integrations applied, aliasing can be suppressed

more than with a lower-order approach. Moreover, by running the differentiated

polynomial waveform (DPW) algorithm at a higher sampling rate, aliasing

distortion can be suppressed even more [Välimäki, 2005; Välimäki et al., 2010].

Furthermore, this approach is not limited to only oscillator algorithms: it has

been extended to wavetable synthesis too [Franck and Välimäki, 2012, 2013].

However, this DPW algorithm requires a post-scaling operation that is in-

versely proportional to the fundamental frequency raised to a power smaller

than the order of the algorithm. This means that the required post-scaling

gain can exceed the numerical limits of the implementation platform at low fun-

damental frequencies even with moderately small algorithm orders [Välimäki

et al., 2010].

The rectangular pulse and triangular waveforms can be generated by intro-

ducing additional operations to the sawtooth DPW algorithm [Huovilainen and

Välimäki, 2005; Välimäki and Huovilainen, 2006; Välimäki et al., 2010; Huovi-

lainen, 2010]. Alternatively, the rectangular pulse waveform can be obtained
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from the sawtooth signal by applying a FIR comb filter [Lowenfels, 2003]6. The

duty cycle of the resulting waveform is controlled via the delay line length that

sets the locations of the notches of the comb filter. Similarly, the FIR comb filter

can be applied to the squared sawtooth signal to produce a triangular wave

[Puckette, 2007].

3.4 Ad-hoc oscillator algorithms

This category of oscillator algorithms contains a set of techniques that synthesize

signals that resemble the classical geometric waveforms. The objective of these

algorithms is not necessarily to be antialiasing. Instead, they typically utilize

readily available simple signal processing methods to produce similar-looking

waveforms that sound approximately the same as the target waveforms.

A set of ad-hoc algorithms try to reduce aliasing by post-processing the output

of a trivial oscillator. By full-wave rectifying a slightly DC-shifted sawtooth

signal and then by removing the offset, the spectral envelope of the aliased

portion of the sawtooth waveform gets modified [Lisle and McDonald, 1993].

Alternatively, by taking the absolute value, the logarithm, and exponentiating

the trivial sawtooth, the sharp discontinuities of the waveform will be replaced

with smooth transitions [Chidlaw and Muha, 2004].

The algorithm proposed by Chidlaw and Muha [2004] performs its operations

on all samples of the waveform. However, it suffices to replace a few samples

around the discontinuities with values computed from a sinusoidal [Kleimola

et al., 2011c] or polynomial [Kleimola and Välimäki, 2012; Ambrits and Bank,

2013] transition function. These approaches can be applied to any discontinu-

ities, and the polynomial function has been shown to be an efficient technique

to remove the transient issues occurring in the DPW algorithm7 when the

fundamental frequency is varied rapidly [Kleimola and Välimäki, 2012].

Publication V proposes two linear post-processing algorithms for the task

of aliasing distortion reduction. Because aliasing is more easily heard at low

frequencies below the fundamental (see Section 4), it can be suppressed by

highpass filtering the alias-corrupted waveform. Aliasing between the harmonic

components can be suppressed by filtering the oscillator output with a comb

6Actually, the rectangular pulse wave can be obtained from any sawtooth signal by
applying a FIR comb filter.
7The reader may note that the DPW algorithm too can be understood to perform
post-processing on the trivial sawtooth waveform. However, it has a close connection
to continuous-time waveforms while these other post-processing algorithms do not.
Therefore, it is not categorized as an ad-hoc oscillator algorithm.
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filter. In Publication V, the applicability of both FIR and IIR comb filters to the

task is analyzed.

However, the filters proposed in Publication V suffer from a couple of issues, as

one can see in Fig. 3.5. The simplified highpass filter, whose f0-dependent pole is

computed from the linear function in Eq. (3) of Publication V, has a lower cutoff

frequency than the exact filter as shown in Fig. 3.5(a). Moreover, the omitted

scaling factor boosts high frequencies slightly. This can be seen in Fig. 3.5(b),

where the spectrum of the trivially generated sawtooth waveform that has been

filtered with the FIR comb filter and the simplified highpass filter. However, in

general, the comb filters suppress the higher harmonics of the original signal

because the filter response is inharmonic. The inharmonicity is due to the

fractional delay filter that applies frequency-dependent, i.e., dispersive, delay to

the signal. The dispersion effect is visible in the spectrum of the IIR comb and

highpass filtered response plotted in 3.5(c). The crosses and circles indicate the

levels of the non-aliased harmonics and their target levels, respectively.

The attenuation caused by the dispersion depends heavily on the fundamental

frequency that is used to define the location of the first 0-dB peak of the comb

filter. However, Figs. 3.5(b) and (c) also show that the suppression caused by the

dispersion effect is much milder with the FIR than with the IIR comb filter. Yet,

the IIR comb filter provides better alias suppression than the FIR comb filter

between the waveform harmonics.

The filtered waveforms are plotted in Figs. 3.5(d), (e), and (f) for the simplified

highpass filter, the cascade of the FIR comb and highpass filter, and the cascade

of the IIR comb and highpass filter, respectively. The output of the cascade of

the FIR comb filter and the simplified highpass filter (see Fig. 3.5(e)) is almost

an exact replica of the only highpass filtered waveform (Fig. 3.5(d)), indicating

that the effect of the FIR comb filtering is fairly subtle.

The rest of the ad-hoc algorithms utilize nonlinear tricks to generate classical-

looking, pseudo-geometric waveforms. One of these algorithms uses waveshap-

ing, or amplitude distortion, that is applied to the output of a sinusoidal oscillator.

The rectangular pulse wave can be easily obtained from a (DC-shifted) sinu-

soid by applying a sign-function-like sigmoid function [Timoney et al., 2009a;

Lazzarini and Timoney, 2010a]. The sawtooth and triangular waves can also

be generated with waveshaping functions. Alternatively, the sinusoid can be

distorted with a mix of Chebychev polynomials [Pekonen, 2007].

In addition to the amplitude distortion, the sinusoidal oscillator can be dis-

torted by shaping the phasor signal. By passing the phasor signal through a

two-piece linear phase distortion (PD) function, the shape of the sinusoid starts
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Figure 3.5. (a) Frequency response of the highpass filter with the approximated filter pole (solid
line) and with the exact filter pole (dashed line), and the spectra of the (b) FIR-comb
filtered and (c) IIR-comb filtered trivial sawtooth waveform that is also filtered with
the simplified highpass filter. The fundamental frequency, which is also the cutoff
frequency of the highpass filter, is 2.941 kHz and the sample rate is 44.1 kHz. The
fractional delay filter in the FIR and IIR comb filters is a first-order allpass filter. The
crosses and circles in (b) and (c) indicate the actual and ideal levels of the waveform
harmonics, respectively. The output waveforms of the simplified highpass filter, the
cascade of the FIR comb and the highpass filters, and the cascade of the IIR comb
and the highpass filter are shown in (d), (e), and (f), respectively.

to resemble a sawtooth waveform [Ishibashi, 1987]. A pseudo-rectangular pulse

wave is obtained with a four-piece PD function. The sharpness of the transition

of the pseudo-classical waveforms and the pulse width of the pseudo-rectangular

pulse wave depend on the control points used in the PD function.

A PD function can be decomposed into a linear part and a time-varying part,

implying that phase distortion is effectively a subset of a more general phase

modulation synthesis approach. Therefore, the PD function can be implemented

by adding a modulation function to the unmodified (linear) phasor signal. This

approach can be used in the traditional (wavetable) oscillator implementation

that generates the phase-modified sinusoid.

The PD oscillator algorithm can also be implemented in couple of alternative

ways. Lazzarini et al. [2007] proposed a structure that enables FM to be applied

to arbitrary signals. By modulating the delay-line length (in practice, the point at

which the output is read), the phase of the signal is modified. This approach can

use any sinusoidal oscillator as the input signal, relaxing possible issues raised

by the modification of the phase of the actual sinusoidal oscillator. However,
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the modulated delay-line length is not necessarily an integer. Therefore, this

method requires a fractional delay filter to take this issue into account [Laakso

et al., 1996]. In order to avoid amplitude modifications, the fractional delay filter

used is an allpass type [Lazzarini et al., 2007].

The phase modulation introduced by the modulated delay line can also be

generated with a single time-varying first-order allpass filter [Timoney et al.,

2009b]. By modulating the coefficients of the allpass filter, the filter introduces

a time-varying phase delay that effectively results in the same output as phase

modulation. By applying different coefficient modulation signals, the different

pseudo-classical waveforms can be obtained [Timoney et al., 2009a,b; Lazzarini

et al., 2009b; Lazzarini and Timoney, 2010a].

Because the allpass filter is a recursive filter, the coefficient modulation may

cause the filter to become unstable even when the coefficients vary in a range

where the time-invariant filter is stable [Laroche, 2007]. The properties of time-

varying first-order allpass filter were analyzed by Pekonen [2008], who showed

that the time-varying first-order allpass filter responds to a bounded input with

a bounded output, i.e., it is stable, when the modulation signal is in the range

[−1,1], end points included, independent of the input signal.

It should be noted that the implementation of the time-varying allpass filter

affects the output dramatically. The filter structure discussed by Pekonen

[2008] is the transposed direct form II, which has transient issues when the

modulation signal changes rapidly [Timoney et al., 2009a,b]. With alternative

filter structures the transient can be removed or suppressed, as shown in Fig.

3.6. The stability condition for these other implementations can be shown to be

exactly the same as with the transposed direct form II.

However, the modulation signal of the single time-varying allpass filter is

not simple when pseudo-classical waveforms are synthesized [Timoney et al.,

2009a,b; Lazzarini and Timoney, 2010a]. This is shown in Fig. 3.6(c). The

modulation signal can be simplified by cascading a set of time-varying first-

order allpass filters. This approach was proposed by Kleimola et al. [2009] who

noted that the input sinusoid as the modulation signal is sufficient when the

length of the allpass filter chain is large enough. The stability conditions of the

time-varying allpass filter chain were analyzed by Pekonen et al. [2009].

Kleimola et al. [2011c] generalized the phaseshaping principle and defined

the PD function as a control interface for the resulting timbre. By choosing an

alternative PD function and possibly cascading it with another function, one can

obtain pseudo-classical waveforms that are different from the original waveforms

generated by the two- or four-piece PD functions. However, the design of the
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Figure 3.6. PD-like sawtooth waveform generated by a coefficient-modulated allpass filter when
the filter structure is (a) direct form I and (b) transposed direct form II. The coefficient
modulation signal with which the waveform is obtained is plotted in (c).

multi-part PD function requires careful tuning, and it is prone to introducing

rapid amplitude changes that result in harsh aliasing distortion [Kleimola et al.,

2011c; Kleimola, 2013]. This issue can be softened by using the alias-reduction

techniques mentioned earlier in this section.

Pseudo-classical waveforms can also be generated using the feedback FM

algorithm [Tomisawa, 1981], where the output of a sinusoidal oscillator is fed

back to its frequency control [Schoffhauzer, 2007]. By controlling the amount of

feedback, the spectral content of the oscillator output and hence the amount of

aliasing can be controlled. The same idea can be applied the amplitude control

of the sinusoidal oscillator [Lazzarini et al., 2009a; Kleimola et al., 2011b,a].

The classical-looking waveforms can be generated by modifying the feedback

signal with a waveshaping function.

Another amplitude-related approach is to apply bit-wise logical operations to

a sinusoid [Kleimola, 2008]. In this approach, the individual bits of the digital

representation of the samples are modified via Boolean arithmetic rules that are

applied to the bits of the sinusoid and a modulation signal. This purely digital

amplitude modification can result in harsh amplitude changes, which effectively

increases aliasing distortion [Kleimola, 2008].
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4. Audibility of Aliasing in Classical
Waveforms

As pointed out in the previous section, many antialiasing oscillator algorithms

take advantage of the knowledge of human hearing. While the ideally band-

limited waveform could be the ultimate objective of an antialiasing algorithm,

the physiological constraints of human hearing relaxes the requirement for

a such an extreme objective. In fact, these constraints allow the waveform

eventually to have quite a lot of aliasing distortion before it becomes audible.

4.1 Psychoacoustic phenomena affecting the audibility of aliasing

There are two psychoacoustic phenomena that contribute to the audibility of

aliasing. The first one is the frequency masking phenomenon. When an aliased

component is close to a non-aliased component in frequency, it is rendered

inaudible if its amplitude is small enough [Zwicker and Fastl, 1990; Moore,

1997]. The closer the aliased component is to the harmonic peak, the larger the

amplitude of the aliased component can be before it becomes audible.

The second factor that affects the audibility of aliasing is the hearing threshold.

If the amplitude of the aliased component is, in general, very small, it may not

have enough power to excite the sensory system [Zwicker and Fastl, 1990; Moore,

1997]. The hearing threshold has a great impact especially at high frequencies as

the threshold increases steeply above 15 kHz. When the fundamental frequency

of the waveform is high, the hearing threshold defines the audibility of aliasing

at low frequencies too. In such cases, the frequency masking threshold of

the fundamental component becomes a smaller contributor than the hearing

threshold [Zwicker and Fastl, 1990; Moore, 1997].

The actual threshold of aliasing audibility results from the combination of both

of these phenomena. While the hearing threshold affects the audibility in all

conditions, the overall frequency masking threshold depends on the non-aliased

components and the pattern they form. Therefore, the audibility of aliasing
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depends on both the waveform and on its fundamental frequency.

Both of the abovementioned psychoacoustic phenomena have been studied

extensively [Wegel and Lane, 1924; Egan and Hake, 1950; Greenwood, 1961;

Zwicker and Fastl, 1990; Moore, 1997]. From these studies, statistical threshold

patterns have been drawn. While the statistically obtained threshold of hearing

can be understood as a general threshold for any kind of signal, the setups used

for the frequency masking threshold studies differ greatly from the aliasing

issue occurring in the digital classical waveforms.

The frequency masking threshold studies use either a pure tone masking

another [Wegel and Lane, 1924] or a noise signal masking a pure tone [Egan

and Hake, 1950; Greenwood, 1961; Zwicker and Fastl, 1990]. However, the

aliasing issue occurring in the digital classical waveform differ from those setups.

Although aliasing distortion of digital classical waveforms do have a wideband

noise-like spectrum, it is also periodic. This means that the aliased components,

if audible, can sound like a noise signal, but some of its components can also

be heard as tonal components. To date, only Schimmel [2012] has studied the

audibility of aliasing distortion in digital audio synthesis.

4.2 Audibility of aliasing in trivially generated sawtooth signals

In Publication VI, the audibility of aliasing in the trivially generated digital

sawtooth wave is for the first time investigated using a listening test. The

test subjects were exposed to ideally alias-free and (trivially) alias-corrupted

signals in an adaptive three-alternative forced-choice test where the threshold

of audibility of aliasing was sought.

The test hypothesis in Publication VI assumes that the frequency masking

phenomenon contributes more to the audibility of aliasing between the harmonic

components, apart from very high frequencies. In practice, this means that

aliasing distortion above the fundamental frequency is mostly masked by the

non-aliased components. Below the fundamental frequency, on the other hand,

the frequency masking is expected not to play such a big role because the

frequency masking threshold rolls off faster below the masker than above it

[Wegel and Lane, 1924; Egan and Hake, 1950; Greenwood, 1961; Zwicker and

Fastl, 1990; Moore, 1997]. Instead, the hearing threshold is assumed to have a

more significant effect at very low frequencies than the frequency masking.

The results of the listening test conducted in Publication VI support this hy-

pothesis. The thresholds obtained with and without the masker, i.e., the ideally

bandlimited sawtooth signal, are statistically different when aliasing distortion
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was above the fundamental frequency. Below the fundamental frequency no

statistical difference was found.

Based on the verified hypothesis and the numerical results of the test, design

rules for the aliasing distortion pattern generated by an antialiasing oscillator

algorithm are also described in Publication VI. By complying with these rules,

the waveform produced by the algorithm will be perceptually alias-free.

The design rules are obtained by computing the maximum allowed levels for

the aliased components below and above the fundamental frequency. Below the

fundamental frequency, the most prominent component is the first component

from the first-order generation of aliasing, i.e., from the frequencies that would

be between the Nyquist limit and the sampling frequency, that folds back to

this frequency range. Based on informal listening tests, the most likely audible

component above the fundamental frequency is the strongest component between

the first and the second harmonic component. The aliased components at higher

frequencies are not heard as easily.

After these components are found, their levels can be computed from their

harmonic index using the Fourier series expression of the sawtooth waveform.

These levels must be modified by the required attenuation obtained from the

test. By attenuating this modified level also by the magnitude of the variation

in the confidence interval, the design rules for that fundamental frequency are

obtained. The general design rules are obtained by finding the minimum allowed

levels at different frequencies.

At frequencies that fold back close to DC, this requirement can be considered

to be too strict. It can be relaxed by finding the minimum allowed level up to the

fundamental frequency that corresponds to the aliased frequency. In addition,

the requirement can be ignored at frequencies that fold above 15 kHz because

human hearing is insensitive to the components above that frequency (see the

discussion in Sec. 4.1).

The general design rules derived in Publication VI are shown in Fig. 4.1 with

the solid line. The dotted line indicates relaxed design levels at frequencies that

fold back close to DC. Also shown in Fig. 4.1(a) are the spectral envelopes of the

sawtooth signals that have a fundamental frequency of 3.951 kHz when they are

generated using the second-order and fourth-order Lagrange polynomial BLEP

(see Publication I) method. The spectral envelopes of the sawtooth obtained

with the fourth-order B-spline and optimized polynomial (see Publication III)

are plotted in Fig. 4.1(b).

Figure 4.1(a) shows that the sawtooth signal generated with the second-order

polynomial BLEP (dashed line) is not alias-free at this fundamental frequency,
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Figure 4.1. Maximum allowed levels of aliased components (solid line) and the spectral envelopes
of the sawtooth waveform that is generated with the polynomial BLEP approach
using (a) the second-order (dashed line) and fourth-order Lagrange (dash-dotted
line), and (b) the fourth-order B-spline (dashed line) and optimized (dash-dotted line)
polynomial basis function approximations. The envelopes of the sawtooth signals
are for the fundamental frequency of 3.951 kHz, and the sample rate is 44.1 kHz.
The dotted line represents the relaxed level requirement for the frequencies that fold
back close to DC.

confirming the analysis made with the computational measures of aliasing dis-

tortion (discussed below in Sec. 4.3) and the observations made with informal

listening tests. The fourth-order Lagrange approximation (dash-dotted line)

appears to contain some aliasing above the fundamental frequency but at fre-

quencies that fold back between 13 and 15 kHz. However, it should be noted that

with the fundamental frequency of 3.951 kHz there are no first-order generation

aliased components in that frequency range.

The fourth-order B-spline approximation and the optimized polynomial ap-

proach that comply with the design rules, spectral envelopes of which are shown

in Fig. 4.1(b) with dashed and dash-dotted lines, respectively, are completely

alias-free. This verifies the analysis made with the computational measures of
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the audibility of aliasing.

Note that the possibly applied signal manipulations, such as filtering, modu-

lation, and distortion, can affect audibility of aliasing of the signal. Especially

variations in the fundamental frequency of the waveform have a prominent

effect. However, in Publication VI the focus was on audibility of aliasing in the

pure sawtooth signals with fixed fundamental frequencies.

4.3 Computational measures of audibility of aliasing

Unfortunately, a listening test that examines the audibility of aliasing of a set

of oscillator algorithms with all possible parameter combinations would take a

huge amount of time to perform. In fact, a test that would analyze all possible

combinations of a single algorithm would take a lot of time to complete. To

avoid such tedious work, the algorithms can be analyzed using computational

measures that simulate human hearing. Measures that have been used for the

analysis of oscillator algorithms include a model of the hearing threshold and

the frequency masking phenomenon and the noise-to-mask ratio (NMR).

The first measure utilizes the statistically obtained thresholds for both the

hearing threshold and the frequency masking threshold obtained from the tone–

masking-tone experiments. The use of this model for the evaluation of aliasing

distortion was first proposed by Nam et al. [2010]. The overall threshold for

the audibility of aliasing is obtained by computing the maximum of the hearing

threshold and the individual frequency masking thresholds of the non-aliased

components. If there are aliased components above the threshold, the waveform

contains audible aliasing distortion according to this measure.

The NMR measure, which was originally proposed for the evaluation of audio

codecs [Brandenburg, 1987; Brandenburg and Sporer, 1992], can be interpreted

as a simplified version of the model proposed by Nam et al. While the Nam

model uses as accurate expressions as possible for the thresholds, the NMR

measure uses less complex expressions. The actual NMR algorithm compares a

corrupted signal to the alias-free, or, more generally, the error-free signal. The

algorithm gives a numeric value that tells what the ratio of the unwanted part of

the corrupted signal to the threshold is. If the ratio is below 0 dB1, the waveform

is assumed to be alias-free.

In addition to the listening test, Publication VI analyzes the applicability of

these computational measures to the automatic analysis of the audibility of

1However, in audio coding, −10 dB is considered to be the threshold of audibility for
coding artefacts.
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aliasing by comparing the results of the listening test with the results of the

measures. The Nam model was found to yield conservative results. Moreover,

the NMR measure was also observed to have limitations. Analysis of test signals

that do not contain aliasing according to the listening test were found by these

two measures to have clearly audible aliasing.

The contradiction with the Nam model is present especially when the signal

contains aliased components whose frequencies are in the range where the

frequency masking thresholds of two harmonic components are about to cross.

The operation that combines the individual frequency masking thresholds is sus-

pected to be the cause of this difference in the results, as discussed in Publication

VI. The Nam model uses the maximum value of the components assuming that

the higher threshold solely determines the overall threshold. However, there are

studies that imply that also the weaker masking threshold contributes to the

overall threshold and that the overall threshold can be obtained as a nonlinear

combination of the individual thresholds [Green, 1967; Lufti, 1983, 1985; Humes

and Jesteadt, 1989].

In the NMR analysis, signals that were alias-free according to the listening

test yielded NMR results that suggested that the signals contained clearly

audible aliasing distortion. A closer inspection of the NMR results indicated that

aliasing distortion below the fundamental frequency of the signal was ranked

disturbing by the NMR algorithm. The deviation was found to be caused by

the hearing threshold model used by the NMR algorithm as it does not take

into account the rise of the hearing threshold at low frequencies. To take the

contribution of the threshold into account, A-weighted signals were analyzed

to study the NMR in Publication VI. These NMR results were found to be more

consistent with the listening test than the non-weighted results.

In addition, there is the “perceptual evaluation of audio quality” (PEAQ)

measure. The PEAQ measure is, in principle, a combination of multiple com-

putational measures developed for audio quality evaluations [International

Telecommunication Union, 1998] mainly in audio codec development and analy-

sis. The PEAQ algorithm runs a selection of evaluation algorithms and combines

their results into a single number on the mean opinion score scale. However,

it was noted to yield inconsistent results in the algorithm testing performed in

Publication I. The inconsistency may be caused by the similar minor limitations

of the algorithms used in the PEAQ analysis as the Nam model and the NMR

measure have. In order to yield consistent results also with the PEAQ algo-

rithm, the contradicting results of the underlying analysis algorithms should be

analyzed more closely in a separate study.
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The goal of the oscillator algorithms presented in Section 3 was to approximate

the ideal continuous-time waveforms in order to reduce aliasing. However, the

actual source waveforms generated by the analog synthesizers differ from the

ideal textbook waveforms [Kleimola, 2005; Kleimola et al., 2010; Kleimola, 2013].

Moreover, the analog waveforms typically sound less harsh than the textbook

waveforms. In order to have a true analog oscillator model, these differences

need to be taken into account.

An obvious approach to modeling of analog waveforms is the sampling/wavetable

synthesis. However, when several different synthesizers are desired to be mod-

eled in a single unit, the amount of memory needed for the different waveforms

becomes easily huge. On the other hand, parametric models that, by a change of

model parameters, can reproduce close approximations of the waveforms of the

analog synthesizers result in dramatically reduced memory requirements.

Parametric models for an analog oscillator is developed for the first time in

Publication VII. Before Publication VII, only ad-hoc modeling approaches were

proposed. De Sanctis and Sarti [2010] developed a wave-digital filter model

for an astable multivibrator circuit that can used to generate analog classical

waveforms. Kleimola et al. [2010], in turn, proposed an ad-hoc PD model for the

Moog sawtooth oscillator.

The authors of Publication VII introduced a general post-processing approach

that filters the output of an antialiasing oscillator algorithm. In this approach,

the objective is to find a low-order filter that tries to match the spectrum of

the signal generated by an antialiasing oscillator algorithm to the spectrum

of the analog waveform. The filter applied for the task in Publication VII is a

first-order IIR filter.

One may wonder whether the accuracy of the post-processing approach can be

improved by estimating higher-order post-processing filters. However, modeling

of the fundamental-frequency-dependent filter parameters can become harder
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Figure 5.1. (a) Coefficient of the first-order feedback term and (b) a pole radius of the second-
order post-processing filter as a function of the fundamental frequency estimated for
the ideally bandlimited oscillator.

as the filter order is increased. This issue is illustrated in Fig. 5.1 with the

feedback term of the second-order post-processing filter that was fitted to the

ideally bandlimited oscillator in the least-squares sense in the case of the Moog

sawtooth oscillator. Figure 5.1(a) shows that the estimated coefficient of the first-

order feedback term varies quite a lot for neighbouring fundamental frequencies.

Even the pole radius, plotted in Fig. 5.1(b), does not show an easily modelable

behaviour as a function of the fundamental frequency. Therefore, using a higher-

order filter may not ultimately provide a better model of the analog waveform

than the first-order filter.

As mentioned in Publication VII, use of fundamental-frequency-dependent

recursive post-processing filters requires careful design. Alternatively to general

filter design techniques, one can use the parametric recursive filters, such as

those introduced by, e.g., Regalia and Mitra [1987] and Tassart [2013b].

The PD model of the Moog sawtooth waveform, introduced by Kleimola et al.

[2010], is generalized in Publication VII. The PDmodel is valid because the Moog

sawtooth resembles the PD sawtooth waveform. While the model by Kleimola

et al. uses only a quarter of a sinusoid with a small tweak at the transition

regions, the PD model presented in Publication VII uses the whole period and

sets the speed of the transition with the control point of the PD sawtooth model.

The post-processing approach of the Moog sawtooth waveform yields a more

general modeling technique. While the PD model was well matched to the

Moog sawtooth, the approach may not work with the waveforms generated by

other analog synthesizers. On the other hand, as pointed out above, the post-

processing approach can be applied to any analog synthesizer waveforms by

estimating the filter parameters for the waveforms that are to be modeled. With

this technique, a virtual analog synthesizer can generate the source waveforms of

multiple analog synthesizers by filtering the output of an antialiasing oscillator

algorithm with different post-processing filters.
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Publication I: “Perceptually informed synthesis of bandlimited
classical waveforms using integrated polynomial interpolation”

In Publication I, the polynomial BLEP approach, originally proposed by Välimäki

and Huovilainen [2007], is extended to higher-order integrated interpolation

polynomials. In addition, the closed-form basis function of the ideal BLEP is

derived in Publication I. The proposed polynomials are shown to yield excellent

alias reduction when analyzed using computational measures. Moreover, the

computational cost of these polynomials is indicated to be low.

Publication II: “On minimizing the look-up table size in quasi
bandlimited classical waveform oscillators”

While Publication I illustrates that the alias-reduction performance of the poly-

nomial basis functions is superior to the traditional tabulated windowed basis

function approach, the table-based algorithm is not completely useless. Publica-

tion II shows that by sampling a parametric window function or by optimizing

the table values using a perceptually informed objective function, aliasing dis-

tortion can be reduced significantly also in the table-based oscillator algorithm.

Publication III: “Optimized polynomial spline basis function design
for quasi-bandlimited classical waveform synthesis”

In Publication III, the optimization procedure presented in Publication II is

applied to polynomial basis-function designs. Compared to the integrated in-

terpolation polynomials in Publication I, the resulting polynomials are shown

to yield even better alias reduction than the interpolation polynomials. The
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waveforms generated by the polynomial BLIT and BLEP algorithms are ana-

lyzed and found to be alias-free at all fundamental frequencies typically used in

music. In fact, the algorithms are shown to produce alias-free waveforms that

have only one component in the hearing range in the extreme cases at very high

fundamental frequency.

Publication IV: “Nonlinear-phase basis function generators for
quasi-bandlimited waveform synthesis”

Most of the basis function designs, including those introduced in Publications

I–III, for quasi-bandlimited oscillator algorithms are linear-phase functions. Pub-

lication IV introduces a novel nonlinear-phase approach to the basis-function

design. The proposed approach transforms an analog prototype filter to a set

of parallel digital IIR filters that sample the impulse response of the prototype

filter with arbitrary time shifts. The resulting digital system is triggered with

short burst-like signals that can be approximated efficiently with low-order poly-

nomials. By choosing the prototype filter properly, the nonlinear-phase approach

can provide excellent alias-reduction performance with low computational com-

plexity.

Publication V: “Filter-based alias reduction for digital classical
waveform synthesis”

Publication V proposes new linear post-processing approaches with which alias

distortion can be reduced. The proposed filters can be applied to the output of

any oscillator algorithm to improve the alias-reduction performance. By filtering

the waveform with a highpass filter, alias distortion can be suppressed below the

fundamental frequency. However, in order to get the best overall alias-reduction

performance the waveform needs to be filtered with an IIR comb filter.

Publication VI: “Audibility of aliasing distortion in sawtooth signals
and its implications to oscillator algorithm design”

Before Publication VI, the audibility of aliasing distortion produced by the

different oscillator algorithms were analyzed using computational measures and

informal listening tests. In Publication VI, the threshold of audibility of aliasing

in a trivially sampled sawtooth signal is sought with a formal listening test.
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The previously used computational measures are analyzed in the light of the

results obtained from the test. In addition, generic thresholds of the audibility

of aliasing distortion are proposed to help with the oscillator algorithm design.

Publication VII: “Discrete-time modelling of the Moog sawtooth
oscillator waveform”

Apart from a couple of special cases, the objective of oscillator algorithms has

been the ideal textbook waveforms. However, the waveforms produced by an

analog synthesizer differ from these ideal signals. In Publication VII, two

alternative parametric approaches for the modeling of the sawtooth waveform

generated by the MiniMoog analog synthesizer are proposed. Of the proposed

alternatives, the second approach that filters the output of an antialiasing

oscillator algorithm can also be applied to other waveforms.
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7. Conclusions

This thesis presented the recent development in the oscillator algorithm design

for virtual analog synthesizers. A special focus was on time-varying filter-based

algorithms that yield efficient algorithms and great alias reduction. In addition,

some problems on the audibility of aliasing distortion and the modeling of the

actual analog waveforms were addressed.

Even though the oscillator algorithms discussed in this thesis seem to offer

alternative implementations, the problem of finding a computationally efficient

antialiasing oscillator algorithm is not completely solved yet. As discussed by

Pekonen and Välimäki [2011], there is no optimal oscillator algorithm that has

all three desirable properties:

1. it generates alias-free signals in the range of musically interesting fundamen-

tal frequencies, such as from 20 Hz to 8 kHz,

2. it is computationally efficient and has low memory consumption, and

3. it does not require a division by a time-varying parameter, like the fundamen-

tal frequency.

For instance, the algorithms proposed in Publications I and III have the first

two properties. However, the computation of the fractional delay value (see

Publication I, Eq. (13)) requires a division by the fundamental frequency. On

the other hand, many of the ad-hoc algorithms (see Section 3.4) may have the

third property, but they do not fulfill the first or the second requirement.

In addition, audibility of aliasing distortion is still a topic that has not been

investigated thoroughly. Publication VI was the first ever publication that dealt

with the topic, but it focused only on the trivially sampled sawtooth. The other

waveforms (rectangular pulse wave with different pulse width, triangular wave,
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and asymmetric triangular wave) as well as other aliasing patterns, e.g., differ-

ent spectral tilts, need to be studied to find general thresholds for audibility of

aliasing. Moreover, the study in Publication VI used a few discrete fundamental

frequencies. The data between these frequencies also need to be analyzed. Simi-

larly, the effects of different modulations applied to the fundamental frequency,

e.g., glissando and vibrato, on audibility requires additional studies. Likewise,

the threshold of audibility of aliasing should be investigated also for special

oscillator effects like supersaw and hard/soft sync [Stilson, 2006; Välimäki and

Huovilainen, 2006; Nam et al., 2010; Kleimola et al., 2010; Timoney et al., 2012].

Another topic that will gain interest in source-signal research is the modeling

of the output waveforms of analog synthesizers. This research is needed for

realistic virtual analog synthesis modeling. So far, only the sawtooth waveform of

the MiniMoog Voyager has been modeled (Kleimola et al. [2010] and Publication

VII). In the future, different analog synthesizers will be analyzed. In addition

to extending the selection of modeled synthesizers, the models will most likely

use signal-based and circuit-based techniques, just like with the synthesizer

filters [Stilson and Smith, 1996b; Fontana, 1997; Huovilainen, 2004; Stilson,

2006; Välimäki and Huovilainen, 2006; Hélie, 2006; Civolani and Fontana,

2008; Stinchcombe, 2008; Hélie, 2010; Fontana and Civolani, 2010; Huovilainen,

2010; Hélie, 2011; Germain, 2011; Zambon and Fontana, 2011; Smith, 2012;

Daly, 2012; Parker and D’Angelo, 2013]. The first approach tries to model

the waveform of the oscillator output while the second technique models the

oscillator circuitry.

In addition to the actual models of the analog synthesizer oscillators, the

perceptual aspect of the differences between the analog and modeled waveforms

should also be investigated. A particularly interesting issue would be to find the

threshold at which the modeling accuracy is sufficient. In addition, the oscillator

effects that are used in analog oscillators would require listening tests to verify

the perceptually correct behavior of the models.
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Errata

Publications I, II, and VII have an error in their first reference. The referred

paper has three authors (Olson et al. [1955]), not two as in the aforementioned

publications.

Publication V

The first expression of Equation (2) was originally presented by Lane [1990], and

it was first utilized by Lane et al. [1997] in virtual analog oscillator algorithms.

The article misses citations to those publications.

Publication VII

The caption of Figure 11 refers erroneously to the third-order B-spline BLEP

method. The waveforms plotted in Figures 11(e) and (f) are obtained from the

fourth-order B-spline BLEP algorithm. The article text refers to the correct

algorithm.

51



Errata

52



9HSTFMG*affiig+ 

ISBN 978-952-60-5588-6 
ISBN 978-952-60-5586-2 (pdf) 
ISSN-L 1799-4934 
ISSN 1799-4934 
ISSN 1799-4942 (pdf) 
 
Aalto University 
School of Electrical Engineering 
Department of Signal Processing and Acoustics 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-D

D
 2

6
/2

014 

Digital modeling of the subtractive sound 
synthesis principle used in analog 
synthesizers has been a popular research 
topic in the past few years. In subtractive 
sound synthesis, a spectrally rich oscillator 
signal is filtered with a time-varying filters. 
The trivial digital implementation of the 
oscillator waveforms typically used in this 
synthesis method suffers from disturbing 
aliasing distortion. This thesis presents 
efficient filter-based algorithms that 
produce these waveforms with reduced 
aliasing. In addition, perceptual aspects of 
audibility of aliasing and modeling of analog 
synthesizer oscillator output signals are 
addressed. 

Jussi P
ekonen 

F
ilter-B

ased O
scillator A

lgorithm
s for V

irtual A
nalog Synthesis 

A
alto

 U
n
ive

rsity 

Department of Signal Processing and Acoustics 

Filter-Based Oscillator 
Algorithms for Virtual 
Analog Synthesis 

Jussi Pekonen 

−

+

−

+

V+

V−

V+

V−

DOCTORAL 
DISSERTATIONS 




