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The stringent requirements of 4G access 
networks have triggered the embodiment of 
low-power relay nodes as part of the 
network infrastructure. Various types of 
relays are supported in IEEE 802.16m and 
LTE-Advanced considering different  
capabilities and backhauling characteristics. 
The matter of this study is the Layer 3 relay 
node whose wireless backhaul link and 
access link to the user operate on the same 
frequency band. Challenges pertaining to 
realizing such technology within LTE-
Advanced context are addressed herein. A 
feasibility study of different relaying modes 
is provided and the performance of relay 
deployments is evaluated in different 
propagation environments. Further, novel 
techniques are proposed to alleviate the 
backhaul link limitation and to address 
resource allocation, load balancing and 
interference coordination in such multi-hop 
heterogeneous deployments. The significant 
system performance improvement achieved 
along with the energy efficiency of relay 
nodes proves that relaying is a viable 
enhancement technology. 
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Abstract 
The set of stringent requirements for 4G radio access networks has triggered the embodiment 

of new small low-power nodes, e.g. relay, Femto and Pico access nodes, as part of the network 
infrastructure. Various types of relay nodes are currently supported in IEEE 802.16m and 
3GPP LTE-Advanced, e.g. inband Layer 2 or Layer 3 nodes and outband nodes, considering 
different functional capabilities and backhauling characteristics. In general, relay nodes are 
characterized by compact physical characteristics, low power consumption, a wireless 
backhaul link to the core network, and relaxed installation guidelines with respect to radiation 
and planning regulation. In specific, inband relay nodes, the matter of this study, are Layer 3 
access nodes with time-multiplexed transmission and reception on their wireless backhaul and 
access links, which operate on the same frequency band. These characteristics impose serious 
challenges on one hand, but allow for significant improvements on the other hand. 
 
In this context, the deployment flexibility of relay nodes simplifies the network planning  
procedure and reduces deployment costs. On the other hand, low power transmission and 
limited antenna capabilities result in small relay cell coverage areas which will lead to load 
imbalances. Besides, multiplexing backhaul and access communications on different 
subframes implies the need for suitable two-hop resource allocation and scheduling. Further 
challenges are attributed to increased interference levels compared to macrocell deployments, 
as well as the introduction of a new interference type known as relay-to-relay interference 
resulting from the misalignment of access and backhaul link dedicated subframes at different 
relay nodes. 
 
The research towards this thesis has addressed these challenges within 3GPP LTE-Advanced 
context. A feasibility study of different relaying modes is provided and the performance of relay 
deployments is evaluated in different propagation environments. Thereafter, simple network 
planning techniques are proposed to alleviate the limitations of the inband backhaul link. 
Further, novel techniques are investigated to address resource allocation and scheduling, load 
balancing and interference coordination. The performance of proposed techniques along with 
the energy efficiency of relay nodes is evaluated. Results show in general significant gains and  
validate relaying as an efficient enhancement technology. 
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JFRN Jainś fairness index in a RN cell

K Number of candidate eNBs in RSP

KeNB Length of data block to be transmitted by eNB

KUE Length of data block to be transmitted by UE

L Downlink path loss estimate including log-normal shad-

owing

lim Limit function

Lk Path loss on access link to serving RN k

Ll Path loss on access link to interfering RN l

LOS Line-of-sight communication

M Number of candidate RN locations in RSP

Ma Total number of resources available on the access link

MeNB Number of eNB coded symbols to be transmitted in a

transmission phase P1

mi Number of PRBs scheduled for RN i

Mr Total number of PRBs available for the relay link in a

macrocell

MUE Number of UE coded symbols to be transmitted in a

transmission phase P2

NRN Number of relay nodes deployed in a macrocell

NLOS Non-line-of-sight communication

P Probability density function

PN Thermal noise power

P out
p2p Outage probability for a point-to-point communication

scheme

P out
3P Outage probability for a three-phase communication

scheme

PTx,i Transmit power of macrocell i

PL Downlink path loss [dB]

xvi



List of Abbreviations and Symbols

Prob Probability

P1 Transmission phase 1

P2 Transmission phase 2

R Rate per PRB

Ra Achievable rate on the access link

Ri Achieved rate per PRB of RN i on the relay link.

Rij Rate per PRB for a UE j served by RN i

Re End-to-end rate experienced by a UE served by RN k

Rr Achievable rate on the relay link

RRN-eNB Exchange ratio of an RN to an eNB

RSRPeNB RSRP of an eNB at the UE

RSRPRN RSRP of an RN at the UE

S Overhead scaling accounting for LTE DL overhead, e.g.

control channel

SE Spectral efficiency

SEDF End-to-end spectral efficiency of a decode-and-forward

relaying scheme

SEmax Maximum achievable spectral efficiency

TPD,k Throughput achieved by UE k on the direct link

TPij End-to-end throughput achieved by UE j served by RN i

TPa
ij Throughput achieved by UE j on the access link to RN i

TPr
ij Throughput reserved for transmitting data on relay link

directed to UE j served by RN i

TPR,ij Throughput achieved by UE j in RN cell i

UD Number of UEs in a macrocell served directly by an eNB

ui Number of UEs served by RN i

UR Number of UEs served by all RNs in a macrocell

X eNB transmission power reduction parameter in CRE

Y Biasing in handover and cell selection parameter in CRE

α Constant term in Okumura-Hata path loss model

xvii



List of Abbreviations and Symbols

β Path loss exponent

Γ SINR on a link

ΓAF End-to-end SINR at UE in a two-hop amplify-and-

forward relaying scheme

γi-j Instantaneous link SNR

γm,i Relay link SINR at the mth RN candidate location in

macrocell i

γm̂,i Relay link SINR towards eNB i at the best RN location

selected according to LS RSP strategy.

γm,̂i Relay link SINR at mth RN candidate location towards

best serving cell which is chosen according to CS RSP

strategy.

Γm,i Relay link SIR of an RN at mth candidate location to-

wards eNB serving macrocell i

Γmax Lowest SINR value at which SEmax is achieved

Γmin Minimum SINR level on the control channel, below

which data detection is not possible

ε Shadowing correlation coefficient

ζm,i Random variable modeling log-normal shadowing be-

tween an RN at mth candidate location and eNB serving

macrocell i

μm,i Mean of the Gaussian-distributed relay link SIR in RSP

ν Standard deviation of the Gaussian-distributed relay

link SIR in RSP

ρ Average link SNR

ρLI Loop interference SNR

σ Standard deviation of the log-normal shadowing

σi,j Square root of the inverse of the rate parameter of the

exponential distribution of fading coefficients ai,j

τa Normalized portion of resources allocated for communi-

cating on the access link

xviii



List of Abbreviations and Symbols

τr Normalized portion of resources allocated for communi-

cating on the relay link

τr,k Normalized portion of resources allocated for communi-

cating on the relay link of RN k

υ Mean SIR on the access link

Υ Access link SINR
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1. Introduction

1.1 Motivation

The Universal Mobile Telecommunications System (UMTS) Terrestrial

Radio Access Network (UTRAN) Long Term Evolution (LTE) has been

designed as a revolutionized successor of Third Generation (3G) radio ac-

cess technologies (RATs). Three fundamental technologies have shaped

the LTE radio interface, namely, multi-carrier multiple access, multiple-

antenna technology, and fully packet-switched radio interface design [1].

The first technology has been realized via Orthogonal Frequency-Division

Multiple Access (OFDMA) in downlink (DL) and Single-Carrier Frequency

Division Multiple Access (SC-FDMA) in uplink (UL). Such access schemes

introduced the frequency domain as a new dimension of flexibility in sys-

tem design. Along that, the multiple antenna technology enabled the ex-

ploitation of the spatial domain as yet another new design dimension,

by making use of space-diversity and supporting techniques such as pre-

coding, beamforming and spatial multiplexing. Similarly, the adoption of

packet-switching along all the layers of the protocol stack and reducing

the transmission time interval (TTI) to 1ms opened spacious rooms for

cross-layer optimization.

Early standardized releases of LTE, i.e. Release 8 and Release 9, con-

stituted a major step towards the International Mobile Telecommunica-

tions (IMT)-Advanced technologies of the International Telecommunica-

tion Union - Radiocommunications Sector (ITU-R). The IMT-Advanced

RATs are expected to offer increased broadband capacity with high qual-

ity of service (QoS) for the Internet and next generation multimedia ser-

vices, such as, high-definition TV (HDTV) content, video chat, mobile TV,

and real-time gaming. Such advanced RATs are necessary to address the
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rapid-paced growth in data-based wireless access, high data rates demand

and capacities required by the data-intensive services and applications

dominating the market especially where smart phones and tablets are

widely utilized.

The requirements set for the IMT-Advanced technologies are defined

by ITU-R in a circular letter issued in March 2008 calling for candidate

RATs [2]. In response to ITU-R circular letter, 3rd Generation Partner-

ship Project (3GPP) made a formal submission in September 2009 propos-

ing that LTE Release 10 and beyond would be evaluated as a candidate

IMT-Advanced technology [3]. The proposed RAT, referred to as LTE-

Advanced, promises to go beyond the IMT-Advanced requirements [4]. In

technology evolution, LTE-Advanced defines the framework for further

significant advancements to LTE Release 8 and Release 9. While LTE Re-

lease 8 supports peak data rates exceeding 300 Mbps in DL and 75 Mbps

in UL, LTE-Advanced Release 10 is promising to offer up to 1 Gbps in

DL and 500 Mbps in UL in low mobility environments. Extended carrier

bandwidths up to 100 MHz will be supported in LTE-Advanced while the

maximum bandwidth in Release 8 is limited to 20 MHz. Furthermore,

increased spectral efficiency up to 30 bps/Hz in DL and 15 bps/Hz in UL,

along with improved cell edge capacity, decreased user and control plane

latencies and a more homogeneous user experience over the cell area are

urged [4].

To address these stringent requirements, different technologies were in-

vestigated in the 3GPP study items on LTE-Advanced: Bandwidth ex-

tension through carrier aggregation (CA), relay node (RN) deployments,

improved multiple-input multiple-output (MIMO) schemes, coordinated

multi-point transmission and reception (CoMP), and local area optimiza-

tion features such as femto cell deployments [5, 6]. Such technologies are

the corner stone of LTE-Advanced RATs and promise to offer solutions to

overtake the limitations of previous radio access networks. For example,

the very high peak data rates cannot be achieved solely through enhance-

ments of the spectral efficiency, e.g. via advanced MIMO techniques; a

significant increase in transmission bandwidth is indispensable. Consid-

ering the scarcity of spectrum and unavailability of very wide contiguous

spectrum, CA promises to be a valuable solution. Similarly, RN deploy-

ments are expected to provide the improved cell edge capacity and a more

homogeneous user experience.

To recognize the need for RN deployments, it is important to note that
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for high carrier frequencies, e.g. around the 2.6 GHz carrier frequency

where LTE-Advanced will mostly operate, radio propagation losses are

more severe, especially at the cell edge, resulting in significant capacity

and coverage problems. Such problems could be tackled by increasing the

density of enhanced Node B (eNB), aka base stations, or equivalently by

decreasing the cell coverage area. Such a solution is, however, unappeal-

ing for network operators, as it implies high extra costs, inferred from the

linear proportionality of the infrastructure costs of a homogeneous wire-

less system to the number of eNBs deployed [7].

In this context, RN deployments offer a promising solution. Installing

RNs results in lower operational expenditure (OPEX) of 30% and more [8]

and faster network upgrade when operators aim to improve QoS [9]; the

cost-efficiency of RNs is investigated in [10, 11]. Further, RNs promise to

increase the network capacity [12, 13] and to better distribute resources in

the cell, or alternatively, extend the cell coverage area [III] [12, 14, 15, 16].

Hence, relaying has been investigated as a potential technology in the

first study item of LTE-Advanced Release 10. 3GPP study items evaluate

the maturity of a technology to be incorporated in the standardization

within moderate effort. The evaluation focuses as well on the performance

enhancement resulting from adopting the technology and howmuch it can

help achieve the requirements set by ITU-R for the RAT. Therefore, it was

of great value to assess the viability of relaying within the LTE-Advanced

framework, research and eventually propose novel practical solutions to

the serious challenges posed when attempting to realize the technology in

practice.

1.2 Relaying in Standardization

Multi-hop data communication with decode-and-forward (DF) relay func-

tionality was first standardized in Institute for Electrical and Eletronics

Engineering (IEEE) standard IEEE 802.16j mobile multi-hop Worldwide

interoperability for Microwave Access (WiMAX) which is an amendment

to the existing single-hop mobile WiMAX standard IEEE 802.16e [17].

The evolution of relay technologies within IEEE and 3GPP standard-

ization bodies have been following since then similar paths in the suc-

cessor IEEE 802.16m and LTE-Advanced specifications [18]. Both stan-

dards consider fixed DF RNs, aka Advanced Relay Station (ARS) in IEEE

802.16m terminology, mainly as a coverage enhancement technology im-
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proving the user experience over the network area, although capacity im-

provement capabilities are not, by any means, excluded. As well, both

IEEE 802.16m and LTE-Advanced require maintaining the backwards

compatibility with previous standard releases (IEEE 802.16e in WiMAX

and Release 8 and Release 9 in LTE).

Such amendment to the conventional macrocell deployment is referred

to as local area extension because it is foreseen that single-hop networks

are still deployed to provide overlaying wide area access whereas RNs

or ARSs complement the coverage and/or capacity requirement, where

needed. Generally, relays are characterized by wireless backhaul connec-

tion, low power consumption and compact physical characteristics. The

wireless backhaul link enables deployment flexibility and eliminates the

high costs of a fixed backhaul. Furthermore, relays do not have strict

installation guidelines with respect to radiation, visual disturbance and

planning regulation. Thanks to such characteristics, RNs can be mounted

on structures like lamp posts with power supply facilities, thus signifi-

cantly reducing the site acquisition costs [8].

From a functionality perspective, relays are divided into Type 1 and

Type 2 RNs in 3GPP terminology, whereas the corresponding classifica-

tion in IEEE 802.16m is non-transparent and transparent ARSs. Type 1

RNs and non-transparent ARSs are Layer-3 access nodes which are con-

sidered as stand-alone eNBs; each has a physical cell ID of its own, trans-

mits its own synchronization channels and reference and control signals,

and supports functionalities such as scheduling, radio resource manage-

ment (RRM) and hybrid automatic repeat request (HARQ). On the other

hand, the latter type supports up to Layer-2 functionalities only. Type 1

RNs and non-transparent ARSs are expected to provide better coverage

extension, whereas Type 2 RNs and transparent ARSs could be more fa-

vorable in providing capacity enhancements [19].

RNs and ARSs are further classified according to their resource utiliza-

tion strategy on the backhaul and access links. The communication be-

tween the user equipment (UE) and its serving RN or ARS on the latter

link is carried out on the Uu interface in LTE-Advanced or R1 interface

in IEEE 8021.6m. Whereas, the wireless connection to the core network

on the former link is carried out on the Un interface with an eNB in LTE-

Advanced or on the R1 interface with an advanced BS in IEEE 802.16m;

in this work the wireless backhaul link will be referred to as the relay

link. In 3GPP specifications, Type 1 and Type 1b RNs are defined as in-
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band RNs which utilize the same frequency band on both the access and

relay links. For Type 1 RNs, both links are time-division multiplexed im-

posing hard limitations on resource utilization efficiency. On the other

hand, Type 1b RNs are assumed to experience high signal isolation be-

tween the relay and access links, due to well-separated and well-isolated

antenna structures, so that both links can be operated simultaneously.

This is though rarely the case in outdoor deployments, but could be the

case in e.g. underground train stations where the transceiver for the re-

lay link is placed outdoor whereas the transceiver for the access link is

located in the station underground. 3GPP also defines out-band relaying

as Type 1a where exclusive resources are utilized on each link thus al-

lowing simultaneous communications. This however may increase the de-

ployment costs since a separate extra spectrum is needed. It is worth not-

ing that similar classification is considered in IEEE 802.16m with time-

division transmit and receive (TTR) and simultaneous transmit and re-

ceive (STR) modes [18].

1.3 Scope of the Thesis and Research Questions

The main objective of this thesis is to validate the viability of relaying

technology as a candidate amendment to current RATs, and complement

and enhance the current knowledge and techniques required to realize it

in practical LTE-Advanced deployments. The research work in this the-

sis has been going side by side with the standardization of RNs in LTE-

Advanced, starting with Release 10 study item up till the release freeze

and further till Release 11 study item. Thus, the research herein has

been as well contributed in part to 3GPP as technical reports supporting

the advancement of relaying standardization.

Within this context, the scope of the thesis has been limited within the

boundaries set gradually by the discussions and agreements about re-

laying within 3GPP standardization. The research work tries to adhere

to the requirements, performance evaluation methodology, system model

and scenarios defined by LTE-Advanced, practicality of the proposed so-

lutions and backward-compatibility with earlier standardization releases.

A big part of the research work specifically focuses on the performance of

Type 1 inband RNs in DL as a coverage extension means. As the re-

search work has been conducted within the LTE-Advanced framework,

3GPP terminologies will be used throughout the remaining part of the
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thesis report.

Throughout our research work towards this thesis, we address the fol-

lowing research questions:

1. Is relaying a viable enhancement technology for current RATs? What

relaying modes would best fit 3GPP-defined technologies and what per-

formance gains do relay nodes promise in different deployment environ-

ments?

2. How to alleviate the backhaul link limitation in inband relaying mode

and what improvements will this bring to the end-to-end user perfor-

mance?

3. How to best partition resources and schedule users and relay nodes in

a 3GPP LTE based network?

4. How to best address load imbalance in relay-enhanced networks while

ensuring simplicity and backward compatibility with 3GPP LTE Re-

lease 8 and Release 9 standards.

5. What is the impact of relay node deployment on inter-cell interference

levels and how to best mitigate resulting network performance degrada-

tions?

6. How efficient are relay nodes in terms of energy consumption?

1.4 Contributions and Structure of the Thesis

The main contribution of the thesis is related to Type 1 inband relaying

which was found to be a valid candidate to LTE-Advanced deployments,

since it significantly improves the coverage performance and provide a

more homogeneous ubiquitous user experience.

First, the research herein briefly investigates different relaying modes

and corresponding communication schemes in terms of outage probability

considering the utilization of network coding as a powerful means to im-

prove spectral efficiency of relaying schemes. Then, proceeding in align-

ment with LTE-Advanced study item agreements, we prove that DF half-
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duplex RNs are well suited for deployment in LTE networks and promise

to offer significant coverage extension or capacity gains in various propa-

gation environments. Guidelines for network dimensioning are thus given

and exchange ratios between traditional eNBs and Type 1 and Type 1b

RNs are formulated in this context to enable better assessment of the

cost efficiency of RNs to provide required capacity or coverage extension

in different scenarios. In an attempt to alleviate the limitations of the

backhaul link of Type 1 RNs and narrow the performance gap with re-

spect to Type 1b RNs, simple, yet efficient, network planning techniques

are then proposed and evaluated. Significant gains were shown which

attributed to the adoption of site planning gains in the performance eval-

uation methodology of RNs in the 3GPP specification TR 36.814 [20].

After discussing on the mode of relaying to be adopted, its promised

gains in different propagation environments and a suitable network plan-

ning methodology, the thesis work proposes practically viable solutions to

solve problems of inband Type 1 relaying pertaining to resource alloca-

tion efficiency and scheduling, load imbalance and interference. Further,

the energy efficiency of relay deployments utilizing proposed techniques

to address these challenges is investigated in different scenarios. Thor-

ough performance evaluations for the proposed and reference techniques

are carried out within 3GPP LTE-Advanced Case 1 (urban scenario) and

Case 3 (suburban scenario) context considering different deployments of

RNs per macrocell. The utilized channel models, system model and sim-

ulation parameters adhere to 3GPP requirements and definitions. Thus,

simulation results provided herein gives an indication of the performance

in realistic scenarios.

The remainder of this thesis is organized as follows. Chapter 2 discusses

on the relaying mode suitable for LTE deployments, whether RNs utiliz-

ing such a mode is justifiable in terms of coverage and capacity perfor-

mance, and finally on how to efficiently plan a relay network deployment.

Thereafter, Chapter 3 addresses radio resource management challenges

in inband Type 1 RNs within the LTE-Advanced context presenting our

contributions on solving issues related to resource allocation and schedul-

ing, load imbalances, and interference. Further, the chapter highlights

the energy efficiency of RN deployments. Finally, the thesis is concluded

in Chapter 4.
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1.5 Summary of Publications

The thesis is a summary of ten publications listed above and appended

at the end of this manuscript. In what follows we briefly summarize the

contribution of each paper.

Publication [I] provides an analytical comparison of different relaying

modes and the corresponding communication schemes taking into consid-

eration network coding as a promising enhancement to classical relaying

techniques. Closed form expressions of the outage probability for differ-

ent schemes are derived when assuming Gaussian distributed channel in-

puts, necessary conditions on achieving diversity for discrete channel in-

puts are as well given and practical coding schemes based on turbo codes

are investigated. It is shown that for discrete channel inputs a proposed

scheme allows a diversity gain for higher rates compared to a conventional

bi-directional relaying scheme without network coding.

Publication [II] investigates the performance of full-duplex AF and half-

duplex DF RNs as two candidate enhancement technologies in 3GPP LTE-

Advanced study item. Performance evaluation considers AF RN loop back

signal interference due to leakage of transmit signal to receive antenna

and the ability of multiple DF RNs to transmit concurrently to multiple

users on the access link. Results show that the concurrent transmissions

improve the spectral efficiency provided by DF RNs over AF RNs one, thus

qualifying DF mode as a suitable candidate for LTE-Advanced RNs.

Publication [III] investigate the feasibility of half-duplex Type 1 DF RN

deployments in terms of system throughput and cell coverage area exten-

sion as compared to Type 1b RN and traditional homogeneous single-hop

macrocells. Relay backhaul link overhead of Type 1 RNs is taken into con-

sideration as a limiting factor. [III]extends the study comparing inband

RNs to picocells in [12] to a comparison between Type 1 and Type 1b relay

nodes in different propagation characteristics. As well, the effect of the re-

laying overhead on the system performance in inband RN deployments is

studied therein. System level simulations show that Type 1 and Type 1b

(similar to picocells) inband relay deployments offer low to very high gains

depending on the deployment environment. As well, it is shown that the

effect of the relaying overhead is minimal on coverage extension whereas

it has more impact on system throughput.

Publication [IV] complements the studies [I-III] proposing simple tech-

niques for planning relay network deployments to alleviate the limita-
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tions on throughput of the relaying backhaul overhead in in-band relay-

ing. In this context, two approaches, namely, location selection and cell

selection are analytically modeled and their impact on the quality of the

relay link, end-to-end user rate, resource allocation on the two hops, up-

per bounds on planning gains, access link limitations and deployment of

multiple RNs is studied. Results show significant gains on the link and

end-to-end levels.

Publications [V] through [X] extend further on the previous contribu-

tions and focus on tackling radio resource management issues arising dur-

ing network operation, specifically on the downlink of in-band Type 1 RNs

within LTE-Advanced deployments.

Publication [V] investigates resource assignment and scheduling aim-

ing specifically at satisfying two main requirements of LTE-Advanced,

namely, better cell edge coverage and spectral efficiency and more homo-

geneous user experience in the network. The publication evaluates the

performance of different schemes for resource sharing among RNs and

prioritization techniques of RN UEs on the relay link coupled with the

corresponding scheduling on the access link. A combination of resource

sharing based on the number of RN UEs and relay link prioritization

and scheduling achieving max-min fairness is proposed. A comprehen-

sive system-level simulation campaign is carried out in 3GPP urban and

suburban models considering 4 and 10 RNs per cell, which shows that the

proposed scheme achieves high system fairness and significant through-

put gains at the low and mid throughput regimes at no or negligible loss

in cell throughput.

Publication [VI] explore further the issue of resource management fo-

cusing though on solving the problem of low resource utilization efficiency

resulting from load imbalances in the network. In particular, two relay

cell range extension techniques, introducing a bias to cell selection and

handover thresholds along with reduction in eNB transmission power, are

investigated. Resource assignment is jointly considered with relay cell

range extension aiming at optimizing different key performance metrics

pertaining to the network operator preferences. Further, the realization

of cell range extension as part of network planning and offline optimiza-

tions is discussed. Results based on a similar simulation campaign as in

[V] reveal that the investigated solution yields better resource utilization

efficiency compared to the conventional scheme and thus achieves signifi-

cant throughput gains.
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Publications [VII, VIII, IX] address interference problems resulting from

full frequency reuse in relay-enhanced networks. Publication [VII] pro-

poses an interference coordination scheme to mitigate traditional inter-

cell interference among RN cells and resulting interference from RN cells

on macrocell UEs in their vicinity. The scheme is considered on top of

the relay cell range expansion and resource assignment techniques pre-

sented in [V-VI] and jointly optimized to improve further the system per-

formance. Neighboring RNs are configured with different scheduling pat-

terns, such that UEs in neighboring macrocell or RN cells suffering from

an aggressor RN’s interference are scheduled on subframes with lowest

probability that they will be interfered by the aggressor RN. Results con-

firm that the interference imposed by RNs can be reduced and that cell

edge and cell average throughput gains are observed. It is worth noting

though that traditional inter-cell interference is not the only interference

model experienced in in-band relay deployments. Publications [VIII, IX]

investigate a new interference model referred to as relay-to-relay inter-

ference which could occur due to misalignment of access and backhaul

transmissions in neighboring RN cells. In [VIII] a divide-and-conquer ap-

proach is proposed to alleviate the impact of relay-to-relay interference,

by exploiting the localized nature of the interference and hence avoids the

need to perform a network-wide subframe configuration alignment. On

the other hand, publication [IX] investigates simple subframe configura-

tion alignment schemes to solve the problem in deployments considering

directional antennas on the backhaul link of RNs. Both solutions prove to

alleviate the problem and enhance the system performance in the corre-

sponding targeted deployment scenario.

Finally, publication [X] evaluates the energy efficiency of RN deploy-

ments. Specifically, the work investigates the impact of deploying dif-

ferent numbers of small nodes on reducing area power consumption, or

alternatively, on enhancing the throughput power consumption of access

networks.
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2. Towards Relay-enhanced Networks

Relaying was first used in wired communications in repeaters of long-

distance telegraph circuits. Since then, many relaying modes and com-

munication schemes have been studied [21, 22], specifically in the context

of wireless communications.

2.1 Relaying Modes and Communication Schemes

Different relaying modes have been proposed in the literature in search

for optimal performance. The main modes can be classified into AF, DF,

compress-and-forward (CF), and mixed-forward schemes that combines

DF and CF functionalities. The modes differ in terms of functionality,

required relaying capabilities and knowledge, and complexity. In what

follows, we briefly highlight some of the well known relaying modes:

• Amplify-and-forward - AF: The relay simply acts as an analog repeater,

amplifying the noisy signal and then forwarding it to the destination

terminal [23]. Note that the noise (including interference) will be also

amplified. This scheme requires knowledge of the channel coefficients

at the receiver to properly combine the two received signals from the

relay and source. The amplify-and-forward scheme is however a sim-

ple strategy and was proved to achieve full diversity in certain relaying

schemes [23, 24]; a system is considered to achieve full diversity gain,

if it can tolerate the deep fading, i.e. outage, of one of its links. Several

relaying strategies based on AF scheme have been proposed, such as the

bursty amplify-forward (BAF) [25], where the relay transmits for only a

fraction of its total allocated time. BAF scheme achieves better perfor-

mance than classical AF in the low signal-to-noise ratio (SNR) regime.
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• Decode-and-forward - DF: The relay in this scheme decodes the signal,

re-encodes, and then forwards it to the destination [23]. DF schemes as-

sumes that the full codebooks of the source are known at the relay [26].

The complexity of DF scheme is much higher than that for AF. Several

strategies based on DF schemes have been considered in literature: A

classical DF relay simply decodes and forwards the data without error

checking. There are also DF strategies where the relay remains silent

in case of decoding error (assuming the use of cyclic redundancy check

(CRC) as error detection code), selective DF strategies where the relay

transmits in case the SNR on the relay route is better than a specific

threshold, incremental DF strategies where the relay transmits only

in case extra information is still needed at the destination to decode

the message, thus achieving high spectral efficiency especially at high

SNR [27], and multipath DF strategy where multipath routing and DF

functionalities are combined by using the rate splitting technique [23].

A comparison of some DF and AF schemes is presented in [28].

• Compress-and-forward - CF: In CF schemes, the relay samples, quan-

tizes, compresses and then forwards the signal to the destination termi-

nal; CF based relaying strategies require knowledge of the channel out-

put distribution at the relay - a more relaxed requirement as compared

to DF schemes which need the full codebooks [23, 26]. Different relaying

schemes which process the signal but do not decode it before transmis-

sion, as in the case of CF scheme, are also proposed in the literature,

namely, clean-and-forward approach [29] and denoise-and-forward ap-

proach [30]. Also, mixed schemes of CF and DF have been proposed.

A comparison of DF, CF and mixed schemes is presented in [26]. The

mixed scheme of [26] has a complexity in between CF and DF schemes

and requires the knowledge of a codebook beside the channel output dis-

tribution.

The mentioned relaying modes may still need to different communica-

tion arrangements depending on the availability of side information at the

receiver from the source and the time multiplexing scheme of the source,

RN and destination transmissions. The latter can as well be shaped by

the utilization of network coding. In this context, relaying can be classi-

fied into classical multi-hop relaying and cooperative relaying, where in

the former the destination receives the message from RN only, as opposed

12



Towards Relay-enhanced Networks

to the latter where messages are received from RN and the source. Fig-

ure 2.1 illustrates (a) the traditional point-to-point communications and

various examples of relaying schemes, namely (b) classical four-phase re-

laying, (c) classical cooperative four-phase relaying, and (d) cooperative

three-phase relaying with network coding.

Classical relaying has been considered as an enhancement to traditional

point-to-point communications in various works in literature [23]. Fur-

thermore, cooperative communications in relay channels has promised

still further gains, especially when network coding is utilized. Cooper-

ative communications offers the possibility of achieving diversity gains as

side information received directly from the source is made available at the

receiver beside the signal received from the relay, i.e., the receiver receives

two or more signals carrying the same or complementary information over

different paths. It is important to note that such gains are not obtainable

in classical relaying and point to point communications as only one signal

is received from the relay at the destination. Thus, schemes (a) and (b) lag

behind cooperative schemes (c) and (d). The performance of the different

schemes can be evaluated by investigating the outage behavior and the

achievable cooperative diversity gain [I].

In our contribution [I], we show that a diversity gain is achievable for

the classical cooperative relaying (Figure 2.1 (c)) scheme and three-phase

scheme (Figure 2.1 (d)) when assuming Gaussian channel inputs as op-

posed to the point-to-point communications (Figure 2.1 (a)) for example.

Moreover, it is shown that for discrete channel inputs, e.g. Binary Phase

Shift Keying (BPSK), the three-phase scheme allows a diversity gain for

higher rates compared to classical cooperative relaying.

The first conclusion is seen by deriving the outage behavior and investi-

gating the asymptotic behavior of a communication scheme when the SNR

is very high. Specifically, if the outage probability decays inversely pro-

portional to the average SNR on the channels, the system will not achieve

diversity gain. However, if it decays inversely proportional to the square

of average SNR, then the scheme achieves a diversity order of two, i.e. it

can tolerate the deep fading of one of its links. To briefly highlight this,

we illustrate in what follows the outage behavior and diversity gains for

point-to-point traditional communications and the three-phase coopera-

tive relaying with network coding scheme.

Let us assume that the eNB and the UE wish to communicate data

blocks of lengths KeNB and KUE, respectively, over a wireless channel
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Figure 2.1. Communication Schemes: (a) Point-to-point Communication, (b) Classical 4-
Phase relaying, (c) Classical 4-Phase cooperative relaying, and (d) 3-Phase
cooperative relaying with network coding.

with noise, propagation pathloss and fading. The aforementioed schemes

in Figure 2.1 are to be impacted by slow, flat Rayleigh fading. The fading

coefficient is denoted by ai,j , where i, j ∈ {eNB, RN, UE} and channels

are reciprocal, i.e. ai,j = aj,i. We assume as well that the coherence time

of the channels is in the order of the total transmission time. Due to

the Rayleigh fading assumption, coefficients ai,j are zero-mean, indepen-

dent, circularly symmetric, complex Gaussian random variables (RVs),

and |ai,j |2 is exponentially distributed with parameter σ−2i,j :

P|ai,j |2(υ) =
1

σ2
i,j

· exp
(
− υ

σ2
i,j

)
, υ ≥ 0. (2.1)

Consider the point-to-point communication scheme of Figure 2.1 (a),

where eNB and UE transmit MeNB and MUE coded symbols in total, in

the first and second phases P1 and P2, respectively. To achieve reliable

communications, the following conditions on the achievable rates on the

links should hold:

Ep2p
1 : KeNB ≤ MeNB · C(γeNB-UE), (2.2)

Ep2p
2 : KUE ≤ MUE · C(γUE-eNB), (2.3)

where γi-j is the instantaneous link SNR, C(γi-j) is the link capacity given

by C(γ) = log2(1 + |aij |2 · ρ) = log2(1 + γij), ρ is the average link SNR and

Ep2p
1 and Ep2p

2 are defined as the events where conditions (2.2) and (2.3)

hold respectively. We can then define the complement of an outage event
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as:

Ēout
p2p = Ep2p

1 ∩ Ep2p
2 . (2.4)

Knowing that

P (|aij |2 ≤ K) = 1− exp(− K

σ2
ij

),K ≥ 0, (2.5)

the outage probability for a point-to-point communication scheme can be

formulated as:

P out
p2p = P (|aeNB-UE|2 ≤ 2

max(
KeNB
MeNB

,
KUE
MUE

) − 1

ρ
)

= 1− exp(−2
max(

KeNB
MeNB

,
KUE
MUE

) − 1

ρσ2
eNB-UE

). (2.6)

The asymptotic behavior of this scheme at high SNR is as follows:

lim
ρ→+∞ ρ · P out

p2p =
2
max(

KeNB
MeNB

,
KUE
MUE

) − 1

σ2
eNB-UE

. (2.7)

The 1/ρ behavior in (2.7) indicates that the point-to-point communication

scheme does not offer diversity gains in high SNR regime. Similar conclu-

sions hold for the classical 4-phase relaying scheme.

The derivation of the outage behavior of the 3-phase relaying scheme

with network coding given in Figure 2.1 (d) is obtained similarly. For the

asymptotic behavior, there holds [I]:

lim
ρ→+∞ ρ2 · P out

3P =
σ2
eNB−RN + σ2

UE−RN

σ2
eNB−RNσ2

UE−RNσ2
eNB−UE

· (2
3
2

KeNB+KUE
MeNB+MUE − 1)2, (2.8)

Contrary to the traditional schemes, the 1/ρ2 behavior in (2.8) indicates

that the three-phase scheme with network coding offers diversity gains in

high SNR regime. Similar conclusion holds for the classical 4-phase co-

operative relaying scheme when assuming Gaussian-distributed channel

input. Such behavior is clearly illustrated in Figure 2.2, where the co-

operative relaying schemes outperform the traditional scheme especially

at high SNR region where performance is dominated by the ability of the

scheme to achieve diversity. Network coding still offers for the 3-phase

scheme noticeable gain over classical cooperative 4-phase scheme.

In contrast to the case of Gaussian-distributed channel input, however,

the 4-phase cooperative relaying scheme may not achieve diversity gain

when assuming coded BPSK channel input, as illustrated in Figure 2.3.

For such practical coding scheme, diversity gain may be achieved if the

utilized channel coding rate is lower than 1/2 [I]. The upper limit on the

channel coding rate is relaxed to 2/3 for the 3-phase scheme [I].
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Figure 2.2. Outage behavior of point-to-point scheme, classical 4-phase cooperative re-
laying scheme and 3-phase cooperative relaying scheme with network coding
when assuming Gaussian-distributed channel input.

Figure 2.3. Outage behavior of point-to-point scheme, classical 4-phase cooperative re-
laying scheme and 3-phase cooperative relaying scheme with network coding
when assuming BPSK channel input.

16



Towards Relay-enhanced Networks

Though it has been proved that cooperative relaying, especially when

considering network coding, clearly outperforms classical multi-hop relay-

ing and by far point-to-point communication used in current RATs, only

classical DF (4-phase) and AF relaying were proposed by 3GPP partners

to be included in the study item on LTE-Advanced. Although, there was

no justification by 3GPP members for excluding other relay modes, vari-

ous reasons could be behind such choice. On one hand, cooperative relay-

ing with network coding introduces significant complexity to standardiza-

tion especially when addressing signaling and control channel issues and

considering that it would require changes at the different layers of the

protocol stack [22]. Second, considering that an RN and an eNB will be

supporting two distinct cells, the eNB would be wasting resources trans-

mitting the same information being forwarded by the RN to a UE, when

it can serve another UE in its cell. Other reasons could be attributed to

the data flow asymmetry of the uplink and downlink channels. Besides,

AF RNs can be easily integrated into current networks, and DF relaying

is mature enough and integrating it into current standards is relatively

straightforward.

As the scope of the research towards this thesis is limited to realizing

relaying in practice in alignment with 3GPP LTE-Advanced standardiza-

tion, only classical DF and AF relaying have been investigated in the rest

of the thesis.

2.2 Relaying Mode Selection in LTE-Advanced

Before introducing relays to LTE networks, it is important to decide on

what type of RNs to deploy, or in other words, what relaying mode to

adopt. Hence, a discussion on the role of classical two-hop AF and DF

RNs has been conducted within the 3GPP study item on LTE-Advanced.

In this context, our contribution [II] provides a preliminary analytic com-

parison between full-duplex AF and half-duplex DF relaying within the

LTE-Advanced framework. Performance evaluation assumes AF RN loop

back signal interference and concurrent DF RN transmissions on the ac-

cess link with full frequency reuse in the network, i.e. frequency reuse

factor of one.

While the introduction of DF RNs requires more standardization efforts

and increases the system complexity, AF RNs, on the other hand, suffer

from loop interference (LI) that refers to the leakage of transmit signal
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to receive antenna [31, 32]. Concurrent transmission and reception at

the same frequency band due to the full-duplex operation of AF RNs re-

quires two separated antennas. However, since a high physical isolation

between the antennas cannot be always guaranteed (such arrangement

is costly and usually feasible only in specific deployment scenarios, e.g.

where outdoor-to-indoor isolation is possible), the signal being transmit-

ted on the access link of the AF RN is overheard in the receiving antenna

of the relay link. The strength of such interference depends significantly

on the antenna isolation and is herein modeled by the loop interference

SNR ρLI .

In [II], the impact of LI in AF RNs and concurrent transmission to multi-

ple users in DF RNs are investigated considering simple scenarios where

at most two hops are allowed. Such scenarios are interesting from a prac-

tical perspective in case of DF relaying where the system complexity is

strongly related to the number of hops and in case of AF relaying where

interference may start to ping pong between RNs on consecutive hops.

Additionally, two-hop relaying induces acceptable communication delay.

Performance evaluation can be carried out in terms of the end-to-end

spectral efficiency (SE) between an eNB and a UE. Therefore, SE of AF

and DF RN deployments are to be modeled in terms of the respective

SNRs on the relay and access links, ρeNB−RN and ρRN−UE , respectively.

First, link-level SE is formulated as:

SE = Beff · log2(1 +Aeff · ρ), (2.9)

where the parameters Beff = 0.88 and Aeff = 1/1.25 are, respectively, the

bandwidth and SNR efficiency factors that are selected so that SE model-

ing fits with the set of LTE adaptive modulation and coding curves [33].

In AF relaying, the signal-to-interference-plus-noise ratio (SINR) at UEs

connected to RN is obtained as follows. The total useful signal power is a

combination of both the signal received directly from eNB and the two-hop

signal which is amplified by RN. On the other hand, the total interference

plus noise power contains the effect of the loop back signal, relayed noise

and UE receiver noise. Extending the analysis in [34] by explicitly in-

cluding the effect of LI, the end-to-end SINR ΓAF at UE, which is used to

estimate the system SE using (2.9), is found to be [II]

ΓAF =
ρeNB−RN · ρRN−UE + ρeNB−UE (1 + ρLI + ρeNB−RN )

ρeNB−RN + (1 + ρRN−UE) (1 + ρLI)
. (2.10)

18



Towards Relay-enhanced Networks

On the other hand, the end-to-end SE in DF RN deployments, assuming

balanced relay and access links, can be formulated as [II]

SEDF =

(
1

SEeNB−RN
+

1

NRN · SERN−UE

)−1
, (2.11)

where NRN is the number of DF RNs deployed in the macrocell. Herein, it

was assumed that the eNB transmits exclusively to the NRN RNs, which

then transmit concurrently to their UEs.

Evaluating the performance of both deployments according to the above

derivations and parameter settings given in [II], it is shown that the loop

interference reduces the AF relaying efficiency, especially at high access

link SNR. The performance of AF relaying decreases rapidly if strong loop

interference is experienced. This may happen when e.g. AF relay antenna

installation is not done properly or the transmit/receive antenna isolation

is difficult to obtain, due to site or cost limitations. Further, it is shown

that DF RNs are more attractive for cell edge deployments providing a

better performance as compared to the direct link SE. On the other hand,

AF RN deployments are more suitable near the middle of the cell. It is

worth noting that in both deployments AF relaying performs better than

DF relaying assuming single DF RN transmission. The conclusion how-

ever changes as concurrent transmissions take place. Figure 2.4 shows

that DF RN deployments outperform AF RN deployments already with

moderate number of concurrent transmissions when the number of RNs

deployed per cell increases.

Considering that the focus of relaying in early releases of LTE-Advanced

is on coverage enhancements around the cell edge and that 4 to 10 RNs

are expected to be deployed per cell, DF RNs prove to be a more plausible

solution than AF ones. In what follows, the study will hence focus on

two-hop half-duplex DF relaying.

2.3 Relay Network Deployment Viability

Different environments exhibit different propagation characteristics which

reflect on eNB and RN coverage areas rendering the network planning a

rather challenging task. Small coverage areas may lead to high access

node density and considerably high costs for operators. Hence, it is im-

portant to validate the RN deployments in different radio environments

and give guidelines to the expected deployment costs. Due to increasing

rate requirements, it is equally important to investigate the performance
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Figure 2.4. Performance of AF and DF RNs when considering loop interference and dif-
ferent number of concurrent DF RN transmissions. SEeNB−UE is assumed
to be 0.7 bit/s/Hz, relay link SNR is 16 dB better than that of the direct link
partly due to outdoor deployment of RNs, and ρLI = -5 dB.

of RNs in terms of throughput in different propagation scenarios.

It was early acknowledged in 3GPP LTE-Advanced study item that the

propagation modeling is of essential importance when designing and as-

sessing different RN deployments. This fact was reflected in the 3GPP

discussion on the distance dependent path loss model which was open for

quite a long time during which the model was changed several times. The

first proposed 3GPP model, given in [35], consists of only a non-line-of-

sight (NLOS) component and is based on the NLOS ITU-R Urban Micro

model [36]. The related scenario, which we refer to as Scenario 1 (Sc1),

assumes that both UEs and RNs always experience NLOS propagation

conditions to their donor eNB and thus, the so-called single slope model

of the form

PL = 10 log10 (α) + 10 · β · log10 (d) [dB] (2.12)

is applied, where d is the distance between the access point (eNB or RN)

and the UE. In single slope models like Okumura-Hata, the constant term

α contains the impact of factors such as carrier frequency, and eNB and

UE antenna heights, while the path loss exponent β does not usually de-

pend on the terminal antenna height. The model in (2.12) is feasible for

densely built areas when a UE is on the street level and the line-of-sight

(LOS) probability is very small. Following this model, the RN-UE path
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loss model on the access link will exhibit aggressive attenuation compared

to macrocells due to low RN antenna height.

The single slope model is pessimistic since it does not take into account

the fact that being in LOS conditions is becoming more and more proba-

ble when cell sizes are getting smaller. This is especially true when UEs

are connected to RNs. Hence, the assumption of considering exclusively

a NLOS connection as in [35] might be valid only in very densely popu-

lated cities. In the 3GPP evaluation framework, users are assumed to be

indoors and the channel model is applied where the path loss towards the

building is determined before adding the penetration loss. In many sce-

narios, there is a LOS connection or at least a clearly dominant direction

in the channel between the RN and the building where the UE is located.

Therefore, the link suffers from smaller path loss than the channel that

assumes propagation over rooftops as in [36].

To address the above-explained propagation characteristics, a proba-

bilistic dual slope model was proposed in [37] for the RN access link. The

model given in (2.13) is not a conventional dual slope model where a cer-

tain breakpoint distance is assumed; it considers the breakpoint through

a probability and is based on measurements.

PL = Prob (LOS) · PL (LOS) + Prob (NLOS) · PL (NLOS) , (2.13)

PL (LOS) = 10 log10 (αLOS) + 10 · βLOS · log10 (d) , (2.14)

PL (NLOS) = 10 log10 (αNLOS) + 10 · βNLOS · log10 (d) . (2.15)

The corresponding model, which we refer to as Scenario 2 (Sc2), as-

sumes a mixed LOS/NLOS modeling of the RN access channel. The path

loss on the access link is a weighted combination of two, LOS and NLOS,

components, where the weighting factor decays as the UE-RN distance

increases. The model in [37], however, does not consider environments,

where users in a macrocell deployment may experience LOS propagation

conditions with their donor eNB.

Finally, the 3GPP propagation Scenario 3 (Sc3), which is based on the

model in [20], considers environments with better propagation conditions

as compared to both models in Scenario 1 and Scenario 2, to both eNB

and RN. This scenario applies probabilistic dual slope model on all three

links and defines a LOS probability function versus the UE-eNB or UE-

RN distance. The model thus accounts for the case where a UE is in LOS

condition with their eNB or RN, and as well for cases where the UE might
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be round-the-corner and experience NLOS condition.

The scenarios reflect three possible propagation conditions where RNs

may be deployed. As the performance of a network depends significantly

on the propagation conditions, it is essential to validate the deployment of

RNs in all mentioned environments and give guidelines to the deployment

costs and prospective gains. Performance evaluation can be carried out

in terms coverage extension and network capacity enhancements of RN

deployments. For the latter case, average cell throughput and throughput

cumulative distribution function (CDF) plots assuming a fixed coverage

area, i.e. fixed inter-site distance (ISD) between eNBs, can be utilized

to assess the gain of RN deployments. In the former case, results can

be given in terms of an exchange ratio between the RNs and macrocell

eNBs [III] [12, 13]. Exchange ratios indicate how many small nodes like

RNs are needed to replace a conventional eNB, while still ensuring the

required coverage in the network. In this context, we use the evaluation

methodology of [13], where the cell coverage requirement is defined in

terms of the 10%-ile throughput CDF level. The 10%-ile level reflects the

performance of the worst UEs, which might go easily into outage.

Let us describe the applied comparison methodology in the following.

Assume a predefined ISD0 between macrocell eNBs and that RNs are de-

ployed at the edge of each macrocell. Then, the deployed RNs will increase

the system throughput with respect to the reference macrocell (eNB-only)

deployment. Yet, if the system is scaled by increasing the ISD, then the

cell edge throughput can be decreased until the new deployment admits

the same 10%-ile throughput as that of the reference eNB-only deploy-

ment. In the above procedure, the number of deployed RNs per cell can

be varied to obtain different extended ISD and RN density combinations

that fulfill the coverage criterion (10%-ile throughput CDF level).

The different RN density and ISD combinations are referred to as ISO-

performance deployments. The eNB-only deployment is referred to by

the combination (0, ISD0) and the different ISO-performance RN deploy-

ments are referred to by (NRN, ISDext); recall that NRN refers to the num-

ber of RNs deployed per macrocell. The ISO-performance deployments are

used to define the trade-off between number of RNs deployed per macro-

cell to satisfy the given coverage criterion.

It is worth noting that although the ISO-equivalent deployments per-

form similarly in terms of coverage, they may result in different exchange

ratios according to the relative extension in ISD achieved, ISDext− ISD0,
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Figure 2.5. ISO-performance curves of urban Type 1 and Type 1b RN deployments con-
sidering various propagation environments. The curves imply the exchange
ratio between RNs and eNBs when guaranteeing certain coverage require-
ment in the network.

with respect to the number of RNs deployed, NRN. The exchange ratio

RRN-eNB for a specific (NRN, ISDext) combination can be modeled as [III]:

RRN-eNB =
3 ·NRN · (ISDext/ISD0)

2

1− (ISDext/ISD0)
2 . (2.16)

After simulating several combinations (NRN, ISDext), the so-called ISO-

performance curve is obtained and the minimum exchange ratio can be

computed. The solution can then be used to e.g. estimate the maximum

costs of an RN site when the costs of macrocell sites are known. In Fig-

ure 2.5, ISO-performance curves are given for Type 1 and Type 1b RNs

in an urban (ISD0 = 500m) LTE-Advanced deployment considering the

three investigated propagation environments. Recall that though both

RN types are in-band RNs, the latter can operate in full-duplex mode

due to enough isolation between the access link and relay link (see Sec-

tion 1.2). Hence, the presented study illustrates as well the impact of the

half-duplex in-band backhaul operation of Type 1 RNs, i.e. the impact of

backhaul relaying overhead.

Two conclusions are clearly deductible from Figure 2.5. On one hand,

the ISO-performance differences between Type 1 and Type 1b RNs are

relatively small in all three scenarios, which means that in terms of cover-
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age extension, the half-duplex operation mode in Type 1 RNs have limited

impact on system performance. On the second hand, there is a significant

difference between the ISO-performances of RN deployments in different

propagation environments. The required numbers of RNs in ISO com-

binations of Scenario 3 are smaller than those in Scenario 2, which in

turn is much more favorable for relaying than Scenario 1. The impact of

propagation conditions is as well reflected in the number of RNs required

to cover the cell edge in each of the scenarios [III]; whereas, 7 RNs are

needed in the first scenario to cover one tier on the cell edge and provide

coverage of roughly 20% of the macrocell area, 5 RNs in Scenario 2 and

Scenario 3 almost double the coverage area.

The exchange ratios presented in Table 2.1 and calculated using (2.16)

reflect the performances shown by the ISO plots of Figure 2.5 and values

can be used to compare Type 1 and Type 1b RNs in terms of costs. Note

that such cost can be used to compute the total cost of ownership (TCO),

where the extra expenses incurred to insure enough antenna isolation on

the access and relay links in Type 1b RN deployments should be taken

into account. According to Table 2.1, in-band Type 1 RNs are appealing,

cost-wise, if RN TCO is less than 1/120 times that of a macrocell eNB.

In Scenario 2 and Scenario 3, the cost limitation diminishes significantly

down to 1/30 and 1/18 times that of an eNB. Similarly, for Type 1b RNs,

the exchange ratio falls from 1/86 in Scenario 1 to 1/26 and 1/15 in Sce-

nario 2 and Scenario 3, respectively, indicating a higher cost efficiency.

It is worth noting that similar conclusions are obtained in suburban

deployments (ISD 1732 m), where Type 1 and Type 1b RNs provide prac-

tically the same performance in terms of coverage extension showing that

in-band relay link for Type 1 RN does not incur noticeable costs on re-

source utilization in coverage-oriented rural/suburban areas [III]. Type 1

relay deployments, as compared to Type 1b RN deployments, are hence

well justified since they incur less costs than Type 1b RNs. The con-

clusions hold as well when comparing Type 1 RN and picocell deploy-

ments [12].

Investigating the capacity enhancement of RN deployments, we con-

clude that UEs connected to Type 1 RNs can in general experience better

throughput than in eNB-only deployment but only Type 1b RNs clearly

increase the number of UEs that admit extremely high throughput [III].

The conclusion is illustrated in Figure 2.6 that presents the achieved av-

erage cell throughput gains with respect to the eNB-only reference case.
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Considered Scenario Best Exchange Ratio

Type 1 RN Type 1b RN

Scenario 1 1/120 1/93

Scenario 2 1/30 1/26

Scenario 3 1/18 1/15

Table 2.1. Exchange Ratios of Type 1 and Type 1b RNs in urban deployments considering
different propagation environments.

Figure 2.6. Average cell throughput gains (%) in urban Type 1 and Type 1b RN deploy-
ments with different propagation conditions. Macrocell eNB-only deployment
is used as a reference.

We note that a 2-tier deployment can be used to increase the cell rate

when employing Type 1b RNs but in case of Type 1 RNs the gain from the

second tier is small. It is also worth noting that in the coverage investi-

gations the large throughput performance difference between Type 1 and

Type 1b RNs was not well visible in the coverage extension capabilities of

RNs because the difference at the 10%-ile throughput level is small.

After comparing the performance of RNs in all three scenarios, we no-

tice that relaying benefits can significantly differ, as was the case in the

coverage extension study [III]. RN deployments in Scenario 2 show better

performance than in Scenario 1: When LOS conditions are experienced on

the access link, the performance of relay deployments is clearly enhanced

whereas the eNB-only performance does not change. When comparing

Scenario 2 and Scenario 3, it was found that RN deployments in the for-
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mer scenario achieve higher relative gain in average cell throughput com-

pared to the eNB-only deployment. This is due to the considerably high

throughput levels of eNB-only deployments in Scenario 3 where the UEs

close to the eNB experience a LOS connection and hence achieve much

higher throughputs as compared to those in Scenario 2. Such UEs con-

tribute significantly to the average cell throughput as compared to those

on the cell edge.

In suburban deployments, results show that gains from RN deployments

are similar in case of Type 1 and Type 1b RNs [III]. However, a signifi-

cant difference in RN performance in the three propagation scenarios is

observed. RN deployments perform remarkably better in Scenario 2 and

Scenario 3 as compared to Scenario 1. Note that significant capacity im-

provements are achieved by RN deployments in all scenarios as compared

to eNB-only deployments.

2.4 Relay Network Planning

In what preceded, we have discussed on what types of RNs and relaying

modes are to be considered for LTE-Advanced, and investigated the im-

pact of propagation characteristics of various environments on RN tech-

nology giving guidelines to RN density per cell and expected deployment

costs. Herein, we proceed further to the network planning phase and in-

vestigate simple techniques which promise to significantly boost the RN

deployment performance.

The performance evaluation of in-band Type 1 RNs in [III] highlighted

the limitations of the relay link in terms of capacity enhancement capabil-

ities of such RNs (see Figure 2.6). It was shown that there is a potential

for significant extra throughput gain, if these limitations are relaxed. One

approach to address such a problem is characterized by relay site planning

(RSP) techniques which aims at enhancing the relay link, the bottle-neck

in this case, enabling shifting more resources to the access link [IV].

Network planning tools are routinely used by operators to improve the

system performance and to provide a satisfactory service with minimal de-

ployment expenditure. In this context, the deployment flexibility of RNs

can be exploited to enhance the system performance through simple RSP.

Such flexibility stems in part from the wireless backhaul between RN and

eNB, RN’s compact physical characteristics and low power consumption,

and relaxed installation guidelines with respect to radiation and planning
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Figure 2.7. Exemplified single-interferer relay site planning model.

regulation. These characteristics allow RNs to be mounted on structures

like lamp posts with power supply facilities, offering ample potential de-

ployment sites.

Conventionally, an RN is deployed at a predefined location and it is

forced to connect to the closest eNB. Yet, flexibility in choosing the lo-

cation, referred to as location selection (LS), and to which donor eNB to

connect, referred to as cell selection (CS), gives further degrees of free-

dom in deployment [IV]. Performing LS, random deployment of RNs is

avoided and an RN location is chosen from a set of possible locations. As

exemplified in Figure 2.7, LS takes into account the shadowing properties

at the three different candidate RN locations and considers their links’

qualities toward the serving donor eNB in order to optimize the relay link

quality. Yet, in some potential RN locations, the shadowing toward the

interfering eNB can be low which may make such locations not desirable.

Considering CS then, RN can be served by a neighboring cell rather than

the severely shadowed closest eNB. That is, for a specific location, the RN

is set to connect to the eNB with the best received signal at the RN and

not necessarily the closest.

In what follows, we build upon the concepts presented in [38] to deduce

a simple model for the impact of RSP on the performance of RNs and

present an analytical framework which explains and justifies RSP gains

on the relay link and on the end-to-end UE rate. It is important to es-
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tablish an understanding of how the qualities of both access and relay

links will shape the end-to-end UE performance, and hence evaluate the

user-experienced impact of the proposed RSP strategies.

The two investigated RSP strategies are modeled as follows.

Location Selection: In location planning it is assumed that there are

M potential locations for RN deployment in cell i out of which we select

the best location in terms of SINR. In each location, RN is assumed to be

served by a predefined eNB solely. Then, the SINR in the selected location

is of the form

γm̂,i = max{γm,i : m = 1, 2, ...,M}, (2.17)

where γm,i is the SINR for the mth location in the ith cell.

It is worth noting that the location of the RN is to be decided on as

part of the network planning phase. Operators usually perform coverage

prediction simulations and carry out extensive drive tests, which could be

used as input (long term average statistics) to identify the best location

for an RN. LS is hence not considered to be performed on a short-term

basis.

Cell Selection: For a specific RN location, the RN selects to connect to the

best donor eNB out of K alternatives. That is, if cell selection is enabled,

then SINR at the mth RN candidate location is given by

γm,̂i = max{γm,i : i = 1, 2, ...,K}. (2.18)

Herein, cell selection is assumed to happen according to long term aver-

age statistics rather than instant changes of the channel conditions which

might lead to the ping-pong effect. The frequency of reselecting a new cell

is hence low.

To evaluate the performance of both RSP techniques, let us assume a

simple propagation model given as:

L = α · dβ · 10ζ/10. (2.19)

Parameters α and β are, respectively, a propagation constant and the

path loss exponent, which together define the NLOS distance-dependent

path loss given in (2.12). RV ζ models log-normal shadowing with stan-

dard deviation σ. Such model accounts for the fact that different locations

with the same distance to the serving eNB may exhibit differences in av-

erage received signal levels, i.e. the average received signal level changes

with location due to shadowing process caused by different numbers of
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various obstructing large objects [39, 40, 41]. It is further assumed that

at the mth RN location the shadow fading variables ζm,i and ζm,j with re-

spect to the ith and jth eNBs are correlated according to the model of [42],

whereas variables ζm,i and ζn,i, corresponding to different RN locations,

are practically uncorrelated for ISD of 50 m [43].

If we assume a dominant interferer model on the relay link, the SINR

can be approximated by the signal-to-interference ratio (SIR). Then, the

relay link SIR Γm,i [dB] at location m and served by donor cell i can be

modeled as a Gaussian-distributed RV with mean μm,i and standard de-

viation ν,

μm,i = 10 · log10
(
PTx,i

PTx,j

)
+ β · 10 · log10

(
dm,j

dm,i

)
,

ν2 = Var {Γm,i} = 2(1− ε)σ2,

where PTx,i and PTx,k are the transmit powers of the serving and interfer-

ing eNBs, respectively, and ε is the correlation coefficient related to any

pair of eNBs [42]. The CDF is of the form

Fm,i(Γ) =
1

2

[
1 + erf

(Γ− μm

ν
√
2

)]
, (2.20)

where erf refers to the error function.

If LS RSP strategy of (2.17) is carried out in cell i over M candidate

locations, then the CDF of the SIR attains the form

Fm̂,i(Γ) =
M∏

m=1

Fm,i(Γ). (2.21)

On the other hand, if CS is performed following (2.18), we have

Γm,̂i = max{Γm,i,Γm,j} = max{Γm,i,−Γm,i}
= |Γm,i|, i �= j.

(2.22)

Hence, the probability distribution function (PDF) of Γm,̂i is defined by

a folded normal distribution and the corresponding CDF is given by

Fm,̂i(Γ) =
1

2

[
erf
(Γ + μm

ν
√
2

)
+ erf

(Γ− μm

ν
√
2

)]
. (2.23)

If both LS and CS are applied in RSP, then the SIR CDF attains the

form

Fm̂,̂i(Γ) =

M∏
m=1

Fm,̂i(Γ). (2.24)

After modeling the SIR on the relay link for the different technique com-

binations, the impact of RSP can be illustrated as given in Figure 2.8

based on analytical formulations (2.20), (2.21), (2.23) and (2.24). When
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Figure 2.8. CDF of relay link SIR in RN cell-edge deployment. Dashed curves correspond
to LS only and solid curves consider both LS and CS. Numbers of potential
relay locations are M = 1 (�), M = 2 (◦) and M = 4 (�). The relative
distances from the RN to the serving eNB and to the interfering eNB are,
respectively, 0.9 · ISD

2
and 1.1 · ISD

2

using CS and LS on the relay link, a significant gain is achieved at the

low percentiles of the SIR CDF, highlighting especially the impact of CS.

Enabling CS on the relay link alleviates the effects of the severe shadow-

ing toward the serving BS, which contributes to SIR on low CDF levels.

However, as the number of candidate RN locations increases, the improve-

ment in relay link quality from LS becomes more prominent, whereas that

of CS becomes less significant because the probability of having a worse

signal to the serving eNB than that to a nearby eNB decreases. As op-

posed to enabling CS alone, LS offers clear gains over all the SIR CDF

levels. When utilizing both CS and LS with M = 4 candidate locations,

gains of 11 dB and 6.5 dB are achieved at the 5%-ile and 50%-ile SIR CDF

levels, respectively.

Considering such gains on the relay link, it is interesting to investigate

the impact of RSP on the end-to-end UE performance. For that purpose,

we first need to model the SINR on the access link. We adopt the single-

interferer model of [44], where block Rayleigh fading conditions are as-

sumed. The instantaneous channel coefficients are modeled as indepen-

dent and identically distributed zero-mean complex Gaussian RVs and,

thus, signal powers follow exponential distribution. The CDF of the ac-
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cess link SINR Υ is given, according to [44, A.7], as:

F (Υ) = 1− υ

υ +Υ
e−Υ/Ῡk ,

υ =
Ῡk

Ῡl
=

E
{
PTx,k/Lk

}
E
{
PTx,l/Ll

} ,

Ῡk = E

{
PTx,k

PNLk

}
, Ῡl = E

{
PTx,l

PNLl

}
,

(2.25)

where PTx,k and PTx,l are the transmit powers of the serving and inter-

fering RNs, respectively, Lk and Ll are the corresponding respective path

losses, and PN is the thermal noise power. Furthermore, Ῡk and Ῡl are

the mean SNRs which depend on the user distance and the shadowing to

the serving and interfering RNs, respectively, and υ defines the mean SIR

on the access link.

Let us assume that resources allocated for the relay link and access

link communication constitute τr and τa of the total available resources,

respectively, where resource normalization is given as τr + τa = 1. Fur-

ther, let us consider NRN RNs per cell, where RN k is to be scheduled

on a portion τr,k of the total available resources on the relay link, and∑NRN
k=1 τr,k = τr. Hence, the end-to-end rate experienced by a single UE

served by RN k can be defined as the minimum of the user rate achieved

on the relay and access links:

Re = min

(
τr,k

τr,k + τa
·Rr,

τa
τr,k + τa

·Ra

)
, (2.26)

where rates on the relay and access links are scaled by the portion of

resources allocated to each, and Rr and Ra are the achievable rates on the

relay and access links, respectively, defined similar to SE in (2.9) and they

are independent RVs. Thus, the CDF of the end-to-end rate for the case

where neither LS nor CS is applied is then formulated as

Fe;m,i(R) = Fr;m,i

(
(τr,k + τa)R

τr,k

)
+ Fa

(
(τr,k + τa)R

τa

)

− Fr;m,i

(
(τr,k + τa)R

τr,k

)
· Fa

(
(τr,k + τa)R

τa

)
.

(2.27)

The rate distributions Fe;m̂,i and Fe;m,̂i when performing LS and CS,

respectively, and the rate distribution Fe;m̂,̂i considering both RSP tech-

niques are formulated using (2.21), (2.23) and (2.24).

Following the above modeling, Figure 2.9 shows the CDF of the optimal

end-to-end UE rate (upper bound) when assuming a dynamic resource al-

location which achieves the equilibrium on both access and relay links at

any instance. Similar conclusions as for the relay link SIR distributions
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Figure 2.9. End-to-end rate distribution considering optimal resource allocation on ac-
cess and relay links. Dashed curves correspond to LS only, whereas solid
curves consider also CS. Numbers of potential relay locations are M = 1 (�),
M = 2 (◦) and M = 4 (�). RN is positioned at the macrocell edge. The
mean access link SNR toward the serving RN and the access link SIR are,
respectively,

(
Ῡk

)
dB

= 20 dB and (υ)dB = 20 dB.

are noticed, where significant gains are achieved as a result of RSP tech-

niques. Gains up to around 365% and 85% are achievable on the 5%ile

and 50%-ile CDF levels, respectively. Note that the former level reflects

the cell coverage, whereas, the latter indicates the median UE rates. Such

gains are achieved as a result of enhancing the relay link and hence mov-

ing resources to the access link.

It is worth noting that the impact of RSP has been investigated in stan-

dardization [45, 46], and was eventually modeled as an improvement to

the relay link channel in 3GPP evaluation guidelines [20]. The given mod-

eling therein will be used throughout the rest of this thesis.
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3. Radio Resource Management in
Relay-deployments

In-band Type 1 RNs are characterized by compact physical characteris-

tics, low power consumption and time-multiplexed transmission and re-

ception on the relay and access links. Though the former two characteris-

tics are partly responsible for RN deployment flexibility enabling simple

RSP techniques which provide significant gains [IV], they, as well, result

in small RN cell coverage within the overlaying macrocell, which may

lead to load imbalances. Additionally, the realization of relay and access

communications on the same frequency band implies the need for a bal-

ance in resource partitioning among the different links which compete for

resources at the eNB and proper two-hop resource allocation. Further

challenges in relay deployments are attributed to increased interference

levels in the network compared to homogeneous deployments, as well as

the introduction of a new interference type known as RN-to-RN interfer-

ence. The latter is due to the misalignment of reception and transmission

on the access and relay links of different RNs. In this section, we ad-

dress the mentioned radio resource management challenges and study

the performance of proposed simple practical solutions which adhere to

the LTE-Advanced framework.

3.1 System Model and Simulation Environment

Herein, we introduce the system and simulation parameters which will be

used to evaluate the proposed RRM techniques. Unless otherwise stated,

the parameters apply for Sections 3.2 through 3.5.

The simulated network is represented by a regular hexagonal cellular

layout with 19 tri-sectored sites, i.e. 57 cells in total. RNs are regularly

deployed at the sector borders. Urban (3GPP Case 1) and suburban (3GPP

Case 3) scenarios with ISD of 500 m and 1732 m, respectively, are consid-
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Figure 3.1. RN deployments where (a) 4 RNs and (b)10 RNs are deployed at the macrocell
edge.

ered [20]. For each scenario, deployments with 4 (1 tier of RNs) and 10

RNs (2 tiers of RNs) per cell are investigated, see Figure 3.1. Simulation

parameters follow the latest parameter settings agreed in 3GPP [20] and

are summarized in Table 3.1.

Indoor users are assumed, where 25 uniformly distributed UEs are drop-

ped per sector and the full buffer traffic model is applied. In total, 250 user

drops are simulated using a system level semi-static simulator, where re-

sults are collected from the inner most sector only, to ensure proper mod-

eling of interference (two tiers of tri-sector sites). Note that a frequency

reuse factor of one (full frequency reuse) is considered among the RNs and

macrocells in the network.

R = S ·BW ·Beff · log2 (1 +Aeff · Γ) . (3.1)

A resource-fair round robin (RR) scheduler is utilized at the eNB to

schedule macro-UEs on the direct link. All available resources in a cell

are assumed to be used, and hence a pessimistic interference modeling is

considered. The SINR to link throughput mapping is carried out by the

approximation given in (3.1), where the bandwidth and SINR efficiencies

of Table 3.1 are utilized to adapt the mapping to LTE specifications, tak-

ing the LTE modulation and coding scheme (MCS) into consideration [33].

Further, a minimum SINR level Γmin is used on the control channel, be-

low which data detection is not possible, i.e. the achievable rate is zero. In

(3.1), BW is the bandwidth per PRB, SEmax is the maximum SE depend-

ing on the highest MCS for a given Γmax and S is the overhead scaling

accounting for LTE DL overhead. Note that the rate per PRB R is as-

sumed to be the same for all of the PRBs assigned to a UE given that fast
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fading is not considered and a full buffer model is assumed.

In the considered two-hop relay based deployment, each UE is either

served directly by an eNB or indirectly via an RN. Cell selection and han-

dover decisions are performed based on periodic measurements of the ref-

erence signal received power (RSRP) from different access nodes at the

UE in DL. A UE is then served by the access node having the highest

RSRP.

Two antenna sets are considered for RNs. Directional antennas are as

well assumed at the RNs for backhaul transmission, while Omni-direction-

al antennas are assumed for the access link transmission.

3.1.1 Channel Models

Relay site planning is assumed as modeled in [20]. In this context, the

relay link quality improvement is modeled by increased LOS probabil-

ity and lower pathloss towards the donor eNB when experiencing NLOS

propagation conditions. Log-normal shadow fading is as well modeled

and applied for NLOS propagation conditions only, while fast fading is

not simulated. Channel models for 3GPP urban and suburban scenarios

are given in Table 3.2; see Section 2.3 for model description.

3.1.2 Frame Structure in FDD LTE Networks

An LTE radio frame duration is 10 ms and it comprises 10 subframes.

We consider frequency division duplex (FDD) mode, where the UL and

DL are each allocated exclusive 10 MHz transmission bandwidth. As full

frequency reuse is expected among the RN cells and macrocells in LTE-

Advanced, macro-UEs and relay-UEs are served on the same resources

by eNBs and RNs, respectively. When considering the resource alloca-

tion strategy defined for in-band Type 1 RNs in [20], relay and access link

transmissions are time-division multiplexed. This is depicted in Figure

3.2 where, as exemplified, two subframes are reserved for DL relay link

transmissions and thus data transmission gaps are experienced on the

access link. The transmission gaps, where UEs should not expect any

data transmission, but the reference and control signals, are realized by

configuring Multi-Media Broadcast over Single Frequency Network (MB-

SFN) subframes. The use of MBSFN subframe structure allows back-

wards compatibility; LTE Release 8 UEs, after reading the control chan-

nel and reference signals in the first OFDM symbols, would know that
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Parameter Value

System Parameters

Carrier Frequency 2 GHz

Bandwidth BW 180 KHz

Number of PRBs 50

Highest MCS 64-QAM, R = 9/10

Penetration Loss 20 dB

SINR Efficiency Aeff 0.8

Bandwidth Efficiency Beff 0.88

Overhead Scaling S 0.75

Thermal Noise PSD -174 dBm/Hz

SINR Lower Bound Γmin -7 dB

eNB Parameters

Transmit Power 46 dBm

Elevation Gain 14 dBi

Noise Figure 5 dB

Antenna Configuration Tx-2, Rx-2

Antenna Pattern A(θ) = -min [12(θ/θ3dB)2, Am],

θ3dB = 70o, Am = 25 dB

UE Parameters

Noise Figure 9 dB

Antenna Configuration Tx-1, Rx-2

Antenna Pattern Omni-directional

RN Parameters

Transmit Power 30 dBm

Noise Figure 5 dB

Antenna Configuration Tx-2, Rx-2

RN-eNB Elevation Gain 7 dBi

RN-UE Elevation Gain 5 dBi

Access Link Antenna Pattern Omni-directional

Relay Link Antenna Pattern A(θ) = -min [12(θ/θ3dB)2, Am],

θ3dB = 70o, Am = 20 dB

Table 3.1. Simulation Parameters.
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Distance d [Km]

Direct Link (eNB - UE)

PL(LOS) = 103.4 + 24.2 log10(d)

PL(NLOS) = 131.1 + 42.8 log10(d)

Urban Model - ISD 500 m

Prob(LOS) = min(0.018/d,1)(1-exp(-d/0.063))+exp(-d/0.063)

Suburban Model - ISD 1732 m

Prob (LOS) = exp(-(d-0.01)/0.2)

Access Link (RN - UE)

PL(LOS) = 103.8 + 20.9 log10(d)

PL(NLOS) = 145.4 + 37.5 log10(d)

Urban Model - ISD 500 m

Prob(LOS) = 0.5 - min(0.5,5exp(-0.156/d)) + min(0.5,5exp(-d/0.03))

Suburban Model - ISD 1732 m

Prob (LOS) = 0.5 - min(0.5,3exp(-0.3/d)) + min(0.5,3exp(-d/0.095))

Relay Link (eNB - RN)

β 5, towards donor eNB

0, towards interfering eNBs

α 3, towards donor eNB

1, towards interfering eNBs

PL(LOS) = 100.7 + 23.5 log10(d)

PL(NLOS) = 125.2 + 36.3 log10(d)− β

Urban Model - ISD 500 m

Prob(LOS) = 1 - (1-(min(0.018/d,1)(1-exp(-d/0.072)) + exp(−d/0.072)))α
Suburban Model - ISD 1732 m

Prob (LOS) = 1 - (1-exp(−(d− 0.01)/0.23))α

Log-normal Shadowing

Standard Deviation σ 8 dB on the direct link

10 dB on the access link

6 dB on the relay link

Decorrelation Distance 50 m

Correlation Factor 0.5 between sites

1 between cells of same site

Table 3.2. Utilized Channel Models in Urban and Suburban Scenarios.
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Figure 3.2. FDD DL LTE-Advanced frame structure considering Type 1 RNs.

no data should be expected in the following symbols which can therefore

be used by the RNs to exclusively communicate with the eNB. In addi-

tion, the set of MBSFN subframes is semi-statically assigned, where a

maximum of 6 subframes can be configured out of the subframes 1, 2, 3,

6, 7, and 8 (other sub-frames contain indispensable synchronization and

broadcast channels) [47]. It is to be noted that both macro-UEs and RNs

can be co-scheduled on such subframes.

To support resource scheduling on the subframes allocated to the re-

lay link, a new physical control channel, Relay-Physical Downlink Con-

trol Channel (R-PDCCH), is defined in LTE-Advanced. R-PDCCH carries

scheduling grants for RNs on the Relay-Physical Downlink Shared Chan-

nel (R-PDSCH).

3.1.3 Performance Evaluation Criteria

Performance evaluation is carried out in terms of the 5%-ile throughput

CDF level, 50%-ile throughput CDF level and the average cell through-

put. It is worth noting that the former reflects the cell edge performance

which implies the cell coverage, whereas the 50%-ile CDF level reflects

the median performance of UEs in the system. This is especially impor-

tant measure when identifying cases where few UEs with very high TP

significantly increase the average UE throughput.

In our work, we focus on techniques to improve the low throughput

regime, i.e. 5%-ile throughput CDF level, to achieve a more homogeneous

user experience over the cell area and thus a high level of fairness in the

system.

Jain’s fairness index (JF) is used herein as a criterion to evaluate the
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system fairness. The index value one indicates full fairness where all

UEs achieve the same throughput. Equations (3.2) and (3.3) model JF

within the RN cells and macrocell (including relay-UEs and macro-UEs),

respectively. Therein, NRN is the number of RNs deployed in macrocell m,

UD is the number of UEs in the macrocell served directly by the eNB, UR

is the number of UEs served by all RNs in the macrocell, ui is the number

of UEs served by RN i, TPR,ij is the throughput achieved by UE j in RN

cell i, and TPD,k is the throughput achieved by UE k on the direct link.

JFRN =

(∑NRN
i=1

∑ ui
j=1TPR,ij

)2
UR
∑NRN

i=1

∑ ui
j=1TP

2
R,ij

. (3.2)

JFeNB =

(∑NRN
i=1

∑ ui
j=1TPR,ij +

∑ UD
k=1TPD,k

)2
(UR + UD)

(∑NRN
i=1

∑ ui
j=1TP

2
R,ij +

∑ UD
k=1TP

2
D,k

) . (3.3)

3.2 Resource Sharing and Scheduling

Type 1 RNs support a relaying mode where the relay link transmission is

time-division multiplexed with the access link transmission on different

subframes, whereas macro users share the same resources with the RNs

at the eNB. Therefore, system performance depends strongly on how good

is the competition for resources at the eNB managed. Hence, it is impor-

tant to investigate the resource sharing among and within the links.

In [48], time-division and frequency-division multiplexing of relay and

access link transmissions were investigated in order to maximize through-

put and/or fairness. Moreover, an RR scheduler was utilized on each link

to allocate resources for UEs and RNs. However, optimizing either cri-

terion should not only consider the subframe allocation for access and

relay links; it should as well jointly consider, along the access/relay link

resource split, proper corresponding techniques for scheduling on the dif-

ferent links and prioritization of relay-UEs on the relay link since it is

usually the bottleneck.

The split of resources among the access and relay links was also ad-

dressed in different 3GPP technical contributions [49, 50, 51], where a fair

split of resources among relay-UEs and macro-UEs was achieved by allo-

cating resources to the relay link proportional to the ratio of the number of

relay-UEs to the total number of users in the cell. Besides, independent

proportional fair (PF) schedulers were utilized on each link. However,
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knowing that the relay link experiences better propagation conditions as

compared to the direct link, and that relay-UEs experience abundance of

resources in the RN cells, then, such an approach favors relay-UEs over

the eNB-served macro-UEs in terms of throughput. Another approach

was followed in [52, 53], where a resource sharing on the relay link ac-

cording to the buffer state at the RNs was investigated along with PF

scheduling on the links and the resource split at the eNB was optimized.

The considered technique benefits more the relay-UEs with a better ac-

cess channel quality; the method as such does not focus on achieving strict

fairness among RN UEs although the PF scheduler at the RNs still guar-

antees a certain level of fairness.

In [V], we target a more homogeneous performance of UEs in the RN

cells - a requirement of LTE-Advanced, and at the same time we consider

a proper choice of resource split between macro-UEs and RNs in order to

guarantee a good performance at the low and mid throughput regime. We

adopt the model of [52] and investigate a resource sharing algorithm on

the relay link jointly with a prioritization technique of the relay-UEs data

flows at the eNB. The considered resource sharing algorithm on the relay

link allocates resources to RNs based on the ratio of the number of UEs

served by an RN to the total number of relay-UEs in the cell. Besides, the

prioritization technique on the relay link along with the corresponding

scheduling on the access link guarantees max-min fairness.

3.2.1 Resource Splitting between RNs and UEs

In a heterogeneous system where RNs and macro-UEs share the same

resources (see Figure 3.2), the system performance is reflected by a bal-

ance between the three links, namely, direct, relay and access links. In

particular, the relay link experiences better channel conditions than the

direct link and the resources available per UE are abundant on the access

link while a high competition on resources between the RNs and macro-

UEs is experienced at the donor eNB. Thus, allocating a high number

of subframes exclusively to the relay link will yield a gain on the high

throughput regime, whereas the direct link will starve and deteriorate

the performance at the low throughput regime. Hence, to target a better

performance for low-rate users, a balance need to be achieved between the

direct and relay links taking into consideration that extreme allocation of

resources on either side would push the users to a bad throughput regime.

When the target is a homogeneous UE performance in the network and
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Deployment Scenario Number of

MBSFN Subframes

3GPP Urban Scenario - 4 RNs per cell 2

3GPP Urban Scenario - 10 RNs per cell 4

3GPP Suburban Scenario - 4 RNs per cell 4

3GPP Suburban Scenario - 10 RNs per cell 6

Table 3.3. Optimum MBSFN subframe (equivalently, number of RN-exclusive subframes
at eNB) configuration assuming no co-scheduling of RNs and macro-UEs at
the eNB.

good average throughput, the subframe allocation given in Table 3.3 is

proved to provide the required performance [V]. For simplicity, we have

assumed that a subframe at the eNB is exclusively allocated to either RNs

or macro-UEs.

3.2.2 Resource Sharing among RNs

Assuming the LTE frame structure in Section 3.1.2 (see Figure 3.2) and

RN-exclusive relay link subframe configuration of Section 3.2.1, the next

step is to investigate the resource allocation to the different RNs on the re-

lay link, i.e. RN scheduling at the eNB. In this context, different schedul-

ing techniques could be utilized, such as resource-fair RR scheduling or

variations of PF scheduling. Whereas the former schedules the RNs on

the same number of resources irrespective of their QoS requirements or

channel quality, the latter takes into consideration the channel quality

and tries to enhance the throughput over time making use of multi-user

diversity.

Knowing that the RN is not the end user, pure PF scheduling on the

relay link at the eNB will not be a suitable solution as it does not con-

sider the users channel qualities and hence requirements from the RN

on the second hop. Therefore, it is worth considering a variation of PF

which takes into account the total UE throughput requirement from an

RN which in turn reflects the channel quality of each UE served by the

RN. In our contribution [V], we investigate such scheme, referred to as

the Achievable Sum Instantaneous Throughput (ASIT). ASIT allocates

resources to RNs according to the proportion of the sum instantaneous

throughput achievable on the access links of an RN to the total achiev-

able sum instantaneous access throughputs of all RNs in the cell. The

number of resources mi scheduled for an RN i in ASIT is given as:
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mi =

∑ui
j=1Rij/ui∑NRN

i=1

∑ui
j=1Rij/ui

Mr, (3.4)

where Rij is the rate per PRB given as in (3.1) for a UE j served by RN

i, ui is the number of UEs served by RN i, and Mr is the total number

of PRBs available for the relay link. This scheme requires the knowledge

of the instantaneous throughput of each RN at the eNB, which is neither

standardized nor practically favorable.

A more feasible approach which depends solely on standardized avail-

able information at the eNB is the Access UE Proportional (AUP) schedul-

ing. The resource shares in AUP scheme are defined according to the ratio

of the number of UEs attached to an RN i, ui, to the total number of relay-

UEs UR. Thus, the number of resources allocated to an RN is given as:

mi =
ui
UR

Mr. (3.5)

Note that in this manner, AUP is achieving resource fairness for all UEs

by viewing the RN as transparent entity on the two-hop communication.

3.2.3 Data Flow at eNB

After investigating techqniques for RN resource allocation, it is impor-

tant to study how much data is to flow for each UE, i.e. UE data flow

prioritization on the relay link. We consider two types of user data flow

prioritization schemes, one which depends on the achievable UE instan-

taneous throughput on the access link (AUIT), implicitly depending on

channel quality, and one which achieves max-min fairness (MMF). In

AUIT scheme, a UE j connected to RN i is expected to achieve the fol-

lowing end-to-end throughput TPij :

TPij = min

(
Ma

ui
Rij ,

Rij∑ ui
k=1Rik

miRi

)
, (3.6)

where mi is calculated according to the resource allocation scheme on the

relay link at the eNB, and Ma is the total number of resources available

on the access link.

On the other hand, user data flow prioritization in an MMF scheme is

achieved as follows:

1. Initialize for every UE j in RN cell i the access link throughput TPa
ij =

MaRij

ui
.
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2. Sort the UEs in an ascending order of TPa
ij .

3. Iterate over all UEs, j = 1...ui, in RN cell i

(a) calculate the UE throughput on the relay link

TPr
ij =

miRi
ui

+

∑ j−1
k=1

miRi−MaRik
ui

ui−(j−1) , where Ri is the achieved rate per PRB

of RN i on the relay link. TPr
ij =

miRi
ui

+

∑ j−1
k=1

miRi−MaRik
ui

ui−(j−1) , where Ri is

the achieved rate per PRB of RN i on the relay link.

(b) if TPa
ij ≤ TPr

ij , then set the end-to-end throughput TPij to TPa
ij for

UEs j = j...ui and exit the iteration loop.

(c) Otherwise, set TPij to TPr
ij and continue the iteration loop.

3.2.4 Performance Evaluation

Considering the MBSFN/RN-exclusive subframe configuration according

to Table 3.3, we evaluate the performance of the aforementioned resource

allocation strategies and prioritization techniques according to the system

and simulation models given in Section 3.1. It is worth noting that these

techniques will only impact the performance of relay-UEs and thus no

effect will be imposed on macro-UEs.

In what follows, we define the reference model to utilize ASIT-based

scheduling of RNs at the eNB and AUIT-based UE prioritization and

scheduling on the access link. We refer to the proposed scheme, where

AUP scheduling at the eNB along with MMF prioritization and access

link scheduling are utilized, as the hop-optimization model. Herein, we

aim at enhancing the low percentile throughput and the fairness in the

system aiming at a ubiquitous homogeneous user experience in the net-

work. Note that RR scheduler is used in eNB-only deployment scenarios.

Figure 3.3 presents the end-to-end UE throughput CDF for 4 RNs and

10 RNs per sector deployments in 3GPP Case 1 scenario with an ISD of

500 m. Results show, in both deployments, a clear gain at the low and

mid throughput regimes brought by the hop-optimization model over the

reference model.

The gains in end-to-end user throughput at the mid to low rate regimes

are realized, however, at the expense of a negligible loss in the cell av-

erage throughput of about 1%. This is mainly due to the fact that RNs
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Figure 3.3. CDF of UE throughput in 4-RN and 10-RN deployments in ISD 500 m urban
scenario.

experience similar channel qualities to the eNB and hence exchanging re-

sources among them on the access link will not lead to a high loss in relay

link throughput. Beside that, the extra throughput achieved at the relay

link of an RN is mostly translated to access link gain as the latter is not

the bottleneck to the system performance.

The throughput gains at the low and mid throughput regimes as a re-

sult of the hop-optimization model yield as well higher fairness. As de-

picted in Figure 3.4, the deployment of 10 RNs per sector (ISD 500 m)

may even result in a deterioration of the system fairness as is the case for

the reference model. Figure 3.4 presents the CDF of Jain’s fairness index

for relay-UEs and for the UEs in the whole system. It is clear that the

hop-optimization model results in a much better fairness in the RN cell,

which in turn leads to better system fairness. It is worth noting that more

pronounce gains are obtained in the suburban scenario with ISD 1732 m

[V].

3.3 Relay Cell Range Extension

In Section 3.2.1, we have seen that the relay link is actually the bottle-

neck for the system performance considering that it competes with the
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Figure 3.4. CDF of Jain Fairness Index reflecting the fairnes in the RN cells and the
system as a whole for 10-RN deployment, ISD 500 m urban scenario.

macro-UEs for resources available at the eNB. Accordingly, we end up

with abundance of resources on the access link of the RNs which are not

utilized, whereas the eNB is overloaded. This problem is a direct impli-

cation of the low transmission power and limited antenna capabilities of

RNs which implies small coverage areas and hence low load.

A practical solution for the problem of resource utilization inefficiency in

RN deployments is given by relay cell range extension (CRE). CRE can be

realized by introducing a bias to cell selection and handover decisions [54]

along with a reduction in eNB transmit power [55][VI]. CRE results in an

extension of the RN cells, thus, achieving a better load balance in the

network.

CRE techniques has been as well investigated for picocell deployments

in [56, 57, 58, 59] showing significant gains. It is worth noting, however,

that picocells are differentiated from in-band RNs by a fixed backhaul

link, assumingly satisfying the capacity requirements on the access link

without adding any load on eNB. On the other hand, Type 1 relay deploy-

ments are characterized by the wireless in-band relay link, where RNs

and macro-UEs compete for the same resources at eNB. For instance,

handing over a UE from an eNB to a Type 1 RN cell requires that the

eNB still allocates additional resources on the relay backhaul link of the
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Figure 3.5. Relay CRE via power reduction and biasing: Received power (a) and extended
coverage (b).

RN to serve the UE on the two-hop connection.

To better illustrate the CRE concept, let us model a reduction of eNB

transmission power by X dB and biasing by Y dB. Considering that the

RSRP changes proportional to the transmit power of the access nodes, the

RSRP of an eNB after power reduction received at the UE can be modeled

as: RSRPext
eNB = RSRPeNB − X. On the other hand, after adding a bias

to the RN cell selection and handover procedure, the cell selection can be

formulated as: argmax{RSRPext
eNB,RSRPRN+Y }. The concept is illustrated

in Figure 3.5.

Considering that both, power reduction and biasing, have the same im-

pact on cell selection and handover procedure, they can be modeled as a

common effective biasing, which is the sum of both values. The cover-

age extension for different effective biasing values is given in Figure 3.6.

A moderate extension value of 6dB results in an extra 15% of the total

macrocell coverage in urban scenarios being served by RNs. On the other

hand, in suburban scenarios, coverage extension is limited to an extra 5%

of the total macrocell area being served by RNs afer CRE.

Such behavior is explained by the different characteristics of the propa-

gation models in both scenarios. It is worth noting that deploying 10 RNs

per sector instead of 4 RNs does not increase the RN coverage area pro-
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Figure 3.6. Extension of RN cells coverage area as percentage of total macrocell area in
terms of effective biasing in urban and suburban scenarios.

portionally. This is due to the overlap in extended RN cells and relatively

lower increase in the total RN coverage since the second tier of RNs is

deployed closer to the eNB; each tier consists of 5 RNs (see Figure 3.1).

In what follows, we illustrate the impact of CRE on the performance of

RN deployments.

3.3.1 CRE Performance Evaluation

Though both CRE techniques are expected to bring throughput gains due

to better load distribution, the impact on SINR is different. The SINR dis-

tribution is degraded when biasing cell selection and handover thresholds.

Handing over cell-edge macro-UEs to RNs results directly in degradation

in SINR values and leads to outage for biasing values as of 7 dB. Such

behavior is a result of embracing UEs into the RN cell, while they suffer

from eNB interference that is stronger than that of the signal from their

own serving RN cell; cell selection has been forced against the experienced

radio signal conditions.

On the other hand, eNB transmission power reduction translates into

lower interference levels on relay-UEs, whereas RNs still transmit at the

same power level. Further, UEs joining the RN cell were cell-edge UEs
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Key Performance Bias Power Reduction Number of

Indicator [dB] [dB] MBSFN Subframes

5%-ile TP Level 1 10 3

50%-ile TP Level 0 8 4

Average TP 7 10 4

Table 3.4. CRE settings configuration achieving optimum performance for different key
performance indicators in 3GPP urban scenario with 4-RN deployment.

with SINR around the 0 dB level, and hence lowering the interference on

them and handing them over to an RN with good signal will significantly

improve their experienced SINR levels. In an urban scenario, which is

typically interference limited, macro-UEs are not affected by power re-

duction. However, in a coverage-limited suburban scenario, SINR degra-

dation is experienced by cell-edge macro-UEs.

Hence, effective CRE should adapt power reduction parameter X and

biasing parameter Y according to the propagation conditions and deploy-

ment scenario. Yet another influential parameter in CRE is the resource

allocation at the eNB and RN. Allocated resources are to conform with the

extended range and load of RN cells. Combinations of the parameters will

lead to different performance at the 5%-ile, 50%-ile, and mean through-

put. Therefore, a desired performance can be achieved by properly setting

X, Y and the number of RN-exclusive MBSFN subframes to maximize the

key performance indicator (KPI) reflecting the requirements of a network

operator.

Table 3.4 presents the CRE settings optimizing the 5%-ile, 50%-ile, and

mean throughput in a 4-RN urban deployment [VI]. First of all, compared

to the optimum configuration in Table 3.3, it is seen that CRE require dif-

ferent subframe configuration at the eNB, mainly shifting more resources

to the relay link as the RN cell load increases. For example, if we aim

at optimizing the cell edge UE performane by focusing on the 5%-ile UE

throughput as the performance criterion, a very large eNB power reduc-

tion and a mere 1 dB bias are to be used. This is due to the fact that

the considered urban scenario is interference limited; as discussed be-

forehand, biasing degrades the SINR of cell edge UEs due to increased

interference levels, whereas eNB power reduction improves their expe-

rienced SINR levels since interference is reduced. On the other hand, in

order to enhance the average UE throughput, focus is to be put on increas-

ing the high throughput regime UEs. This is achieved for X + Y = 17dB
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Figure 3.7. UE throughput distribution considering different KPIs as optimization crite-
rion in DL of 4-RN urban scenarios.

and allocating one more subframe for relay link communication.

The corresponding throughput performance is illustrated in the through-

put CDFs given in Figure 3.7. In contrast to the SINR behavior, a clear

gain in UE throughput is experienced. Similar CRE behavior is as well

experienced in 10-RN deployments in urban scenarios (see Figure 3.8 (a)),

whereas the gains in suburban scenarios are moderate (see Figure 3.8 (b))

[VI].

In a nutshell, deploying RNs and extending their coverage relaxes fur-

ther the competition for resources at the eNB thus boosting the perfor-

mance of macro-UEs. As well, the power reduction reduces the interfer-

ence in the system and combined with biasing in some cases, it provides

abundance of resources for UEs which can then overcome any deteriora-

tion in SINR. However, it is worth noting that in some cases, large CRE,

e.g. case of maximizing average UE throughput, can cause notable degra-

dation in the 5%-ile throughput due to very high interference on the RN

cell edges, where UEs are forced by CRE into the RN cells, though their

experienced radio conditions are bad. For some UEs, the loss in SINR

cannot be compensated by scheduling more resources and might in some

cases even lead to radio link failures. In this context, inter-cell inter-

ference coordination (ICIC), when jointly considered with CRE, might be
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Figure 3.8. Achieved DL gains of RN deployments with/without CRE in 4-RN and 10-RN
deployments: (a) urban scenario and (b) suburban scenario. K1 illustrates
the CRE gain when optimizing the cell edge performance, i.e. 5% throughput
CDF level. Similarly, K2 and K3 optimize the 50%-ile level and average UE
throughput, respectively.

helpful in certain deployment scenarios to overcome such problem and

relax the range extension. In the following subsection, we elaborate on

that.

3.3.2 Interference Coordination and Cell Range Extension

ICIC techniques within the LTE framework, Release 8 and Release 9,

are limited to the frequency and power domains. Frequency planning, by

means of allocating exclusive subbands to neighboring access nodes (hard

or static frequency reuse), seems to be the most straight forward method

to avoid co-channel interference. Another well-known approach is the
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fractional frequency reuse, where a part of the spectrum is fully reused

among access nodes whereas the other part is assigned via an exclusive

hard frequency reuse approach. The main advantage of such approach

is the very high SINR levels where UEs are not interfered by neighbor-

ing cell, however, the loss in throughput due to inefficient utilization of

resources made them unfavourable for LTE. Finally, soft frequency reuse

utilizes the whole spectrum at all access nodes though with a non-uniform

power spectrum allowing to limit the interference on certain parts of the

spectrum by each access node. ICIC techniques promise moderate to low

gains, though they are mostly inefficient in highly loaded cells scenario.

In LTE-Advanced, a new degree of freedom was introduced allowing

ICIC techniques to utilize time-domain resource coordination, labeling

such schemes as enhanced ICIC (eICIC). The extension is seen as a com-

plement to range extension in heterogeneous networks. eICIC techniques

promise to relax the range expansion by significantly lowering the eNB in-

terference on UEs moved to the small cells (RNs or picocells) upon range

expansion. For that reason, almost-blank subframes (ABS) are used at

the eNB; ABSs are configured in 40 ms patterns to align with the uplink

HARQ round trip times [1]. The result of utilizing ABSs lead to a tricky

tradeoff between decreasing number of available resources at eNB com-

pared to better SINRs for UEs connected in the small cells and chance

for further range expansion which offloads the macrocell. Whereas, good

results are expected for hot-spot scenarios considering Picocells, gains

might easily vanish or even losses might be experienced in a coverage-

enhancement scenario, where the distribution of UEs is homogeneous.

Different works in literature have touched on static frequency plan-

ning [60, 61] and adaptive frequency planning [62] to mention a few.

There have been also various dynamic ICIC schemes for RN networks

with full frequency reuse, e.g. [63, 64]. However, most of the work on

ICIC/eICIC and CRE has been conducted assuming picocell deployments

[59, 65, 66, 67, 68, 57, 69], where high gains were shown.

However, the main difference between picocells and RNs is that the han-

dovered UEs due to CRE are still to be indirectly served via the eNB. This

imposes a notable load on the eNB as compared to the picocell scenario.

Further the access link cannot be fully utilized due to the relay link limi-

tation and hence less resources are usable on the access link of an RN as

compared to a picocell. Main issue still is that such limitations might not

allow enough offloading for the eNB to compensate the loss of resources.
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The considered scenario herein is an example of such scenarios; we as-

sume homogeneous UE drops in a network and full buffer traffic model.

Hence, in our contribution [VII], we focus on the interference from RNs

to other RNs or macrocells. Relay deployments add to the macrocells un-

derlying small cells which reuse the same set of resources with the macro-

cells. On one hand, with cell edge deployments, the impact of traditional

inter-cell interference between macrocells will be relaxed due to relaying

deployment where macrocell UEs are mostly away from macrocell edges.

On the other hand, new cell edges and hence interference is experienced

by introducing RNs.

The main idea in [VII] is to overcome the interference from RNs by us-

ing time-domain interference coordination based on the observation that

the access link of an RN is usually underloaded. The unutilized resources

on the access link are packed into subframes, where the RN will not gen-

erate notable interference on other access nodes; this eases the coordi-

nation since alignment is done on subframe-level in time-domain rather

than PRBs. Depending on the number of unutilized subframes and their

location within a radio frame, different subframe patterns are created. In

this context, scheduling on the access link with different subframe prior-

itizations patterns at neighboring RNs is expected to enhance the perfor-

mance of cell edge UEs. The critically interfered cell-edge UEs served by

the neighboring cells of an aggressor RN, i.e. RN interfering reception of

serving cell at UE, are to be scheduled on non-utilized subframes of the

interfering RN. Similarly, the eNB schedules its UEs on resources where

they experience lowest interference from RNs. The subframe patterns,

i.e. combination of unutilized subframes, can be modified on the fly to

account for multi-user diversity (though not fully utilized) ; information

can be relayed to neighboring RNs and eNBs directly using the Relative

Narrowband Transmit Power (RNTP) message [1] or through a central

entity.

Results show clear SINR improvement in urban deployments, where RN

interference was mainly limiting the UE SINR after reducing the eNB

interference by means of eNB power reduction CRE. When aiming at op-

timizing the 5%-ile throughput in urban depployments, the proposed in-

terference coordination scheme provides extra 10% (in 4-RN deployment)

and 35% (in 10-RN deployment) throughput gain when using eNB-only

deployment as a reference scheme. In suburban deployments marginal

gains are observed, namely 1% gain in 4-RN deployment and 7% gain in
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the 10-RN deployment, are observed at the 5%-ile throughput on top of

CRE gains over macrocell deployments.

It is worth noting that relay-UEs, whose throughput is limited by the

relay link, do not benefit from interference coordination. However, the

scheme improves the access link SINR and reduces the number of re-

sources required on the access link, consequently reducing the interfer-

ence imposed on the macro-UEs. Cell-edge relay-UEs, for which the num-

ber of scheduled PRBs on the access link is the bottleneck, will benefit

though. In addition, simulations in suburbanmodels showmarginal gains

in the 4-RN deployment, since it is not the co-channel interference but the

received power levels which limit the system performance in suburban

scenarios.

3.3.3 Practical Realization Considerations

The 3GPP LTE specifications impose limitations on the optimization of

CRE. Specifically, the cell selection and handover parameters (power re-

duction and biasing parameter values) and the number of configured MB-

SFN subframes, need to be aligned in DL and UL, such that a UE is con-

nected to the same access node (eNB or RN) both in UL and DL and the

same subframe configuration is utilized. As optimum CRE settings might

be different for DL and UL, either of them shall be prioritized in terms of

performance or a tradeoff is needed; in both cases, this will influence the

choice of CRE settings [VI].

Another practical limitation comes from the complexity pertaining to

choosing the optimal CRE parameter configurations. Assuming power

reductions up to 10 dB, biasing up to 7 dB, and up to 6 backhaul sub-

frames with granularity of 1 unit for each parameter, a comprehensive

brute-force approach to performance optimization would require 528 net-

work trial runs in DL. This may prove too time consuming and costly

to network operators. In this context, optimization algorithms such as

Taguchi’s method can be used to automate the CRE settings optimization

and reduce significantly the network trial runs required during network

planning or offline optimization [70, 71]. Taguchi’s method uses nearly

orthogonal arrays to select a reduced set of parameter combinations from

the full search space to be tested from the full search space. The number

of selected combinations determines the number of network trials being

carried out and evaluated against a performance measure. Using all the

trials’ results, a candidate solution is found and the process is repeated

53



Radio Resource Management in Relay-deployments

till a desired criterion is fulfilled. Performing CRE utilizing Taguchi’s

method, it is noticed that the required network runs can be kept below

10% of the network runs needed in the exhaustive search approach [VI];

trial network runs can be still significantly reduced by aiming at gains

close to the optimum rather than targeting optimum performance.

3.4 Relay-to-Relay Interference

Due to time-division multiplexing of relay link and access links for in-

band relaying (see Section 3.1.2), a new interference type known as RN-to-

RN interference, aka access-to-backhaul interference, may occur in DL of

relay-enhanced deployments. RN-to-RN interference is experienced when

an RN transmits on its access link and interferes the backhaul recep-

tion on the relay link of another RN. RN-to-RN interference can occur

due to asynchronous operation in FDD systems, which results in partial

overlapping between the reception and transmission on relay and access

links. Another main reason for such interference is the misalignment in

scheduling relay link transmissions at different eNBs, or consequently

misaligned configuration of MBSFN subframes at RNs; this is the case as

eNBs adapt the subframe configuration according to network variations,

e.g. cell loads or traffic. In this context, an RN-to-RN interference free

system is a one where perfect inter-node synchronization is achieved and

a system-wide MBSFN subframe configuration is applied.

As opposed to traditional inter-cell interference where the serving cells

usually admits the best signal quality at the receiver, RN-to-RN interfer-

ene might be several folds stronger than the received serving cell signal

power level due to the small RN cell coverage area and thus the rela-

tively close-by deployment of RNs; e.g. 70 m inter-RN distance is typical

in different deployments [III]. Hence, there is an urge to investigate the

impact of RN-to-RN interference within LTE-Advanced, especially since

RN-to-RN interference has not been adequately addressed in 3GPP stan-

dardization or scientific community in general. In 3GPP technical con-

tributions [72] and [73], the impact of RN-to-RN interference was briefly

analyzed. Yet, current works on relaying deal with RN-to-RN interfer-

ence on a network-scale assuming tight synchronization among different

access nodes and a system-wide subframe configuration alignment. How-

ever, this does not allow optimizations e.g. according to the cell loads and

traffic variations in a network.
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In our contributions [VIII, IX], we address the problem by aligning the

subframe configuration at different network levels to avoid RN-to-RN in-

terference. In [IX], the problem is investigated in scenarios assuming dif-

ferent degrees of inter-eNB coordination resulting in different subframe

alignment capabilities among the eNBs, e.g. intra-cell alignment where

all RNs in one macrocell have the same subframe configuration as op-

posed to intra-site alignment where the same configuration is utilized for

all RNs in the 3-sector site. Results show that RN-to-RN interference

can have moderate to severe impact on the system performance of RN

deployments. Furthermore, it has also been shown that intra-cell sub-

frame configuration alignment and use of directional antennas (DAs) at

the RN for the relay link can relax the impact of interference. Yet, such an

approach remains short from solving the problem, especially when consid-

ering a large number of RNs per cell and unavailability of DAs due to cost

constraints [VIII].

The characteristics of RN-to-RN interference imply that an optimum

solution should consider the locality of such problem and approach it ac-

cordingly; RN-to-RN interference is a local problem which originates from

RNs deployed in the close vicinity of each other and is thus confined to

a relatively small area considering the signal power degradation due to

propagation. That is, interference is confined to cases where RN pairs

admit low signal attenuation between them, e.g., either due to short dis-

tance or LOS propagation conditions. Thus, there is no need to coordinate

and align subframe configuration for all RNs in the network or within

a macrocell as this might introduce unnecessary rigidity in the system.

Rather, a localized solution where RN-to-RN interference is divided into

many small local problems and then handled accordingly seems to be a

promising approach [VIII]. The goal is two-folded: high flexibility to adapt

to network variations, and mitigating RN-to-RN interference in the area

where it is a problem.

In this manner, a divide-and conquer approach (DCA) was proposed in

[VIII], which requires inter-eNB coordination and partial subframe con-

figuration alignment. DCA follows a centralized approach where a pro-

posed Operations, Administration and Maintenance (OAM) interference

management entity decides on the subframe configuration of each RN

in the network based on interference measurements from the different

eNBs. In particular, DCA proposes a two-step solution, namely grouping

of RNs in exclusive groups according to interference measurements, possi-
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Figure 3.9. Distribution of the relay link geometry for different subframe configuration
alignment strategies in 10-RN suburban scenario. Relay link geometry is
defined as the wideband SINR level when assuming 1x1 Tx-Rx antenna con-
figuration.

bly with RNs belonging to different cells, and then aligning the subframe

configurations within each group. The size of the group could be either

limited or made flexible according to the interference conditions in the

network. In the former case, flexibility in subframe configuration comes

at the cost of lower SINR performance on the relay link due to higher RN-

to-RN interference. Note that DCA creates some level of overhead and

increases the system complexity.

Figure 3.9 illustrates the impact of RN-to-RN interference in a 3GPP

suburban scenario where 10 RNs are deployed per macrocell and omni-

directional antennas are utilized at the RNs on both access and relay

links. Performance is studied in terms of the relay link geometry, which

is the wideband SINR level when assuming 1x1 Tx-Rx antenna config-

uration at the RNs and eNBs. The system-wide configuration alignment

and completely disaligned configuration are taken as refereces for the two

extremes of RN-to-RN interference, i.e. no interference at all and worst-

case scenario interference. It is seen that interference in the worst case

can severely hurt the SINR on the backhaul link with more than 5 dB

SINR degradation against the best case on most of the CDF levels. Align-
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Figure 3.10. Distribution of the number of RNs whose subframe configuration is aligned
to avoid RN-to-RN interference in 10-RN suburban scenario. System-wide
configuration alignment (not shown in Figure) requires that all RNs in the
network have the same configuration and is thus not shown herein as it
scales with the network size.
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ing the subframe configuration within the macrocell, i.e. intra-cell align-

ment, significantly relaxes the impact of interference, though it falls short

from providing close to optimum results. Since such scheme does not re-

quire inter-eNB coordination, the interference from RNs outside the same

macrocell is very high thus reducing the efficiency of interference mitiga-

tion. Finally, it is seen from Figure 3.9 that DCA can almost completely

mitigate the impact of RN-to-RN interference providing SINRs with less

than 0.5 dB degradation from the ideal system-wide configuration align-

ment. This is achieved by aligning the subframe configuration within

relevant RN groups. The distribution of the number of RNs grouped to-

gether is given in Figure 3.10; DCA aligns the configuration for a small

number of RNs, which, though, are not necessarily in the same macrocell.

It is worth noting that the impact of RN-to-RN interference is more pro-

nounced in such a deployment scenario due to the high number of de-

ployed RNs, better propagation conditions and unavailability of DAs at

RNs. Intra-cell subframe configuration alignment can provide excellent

mitigation capabilities if DAs are used and low number of RNs are de-

ployed in the cell [IX].

3.5 Energy Efficiency of Relay Deployments

In what preceded we have investigated the capacity and coverage en-

hancements brought by relay-enhanced networks and addressed different

challenges arising therein. In this section, we present our investigation

[X] on energy efficiency of RNs, which is another decisive factor in adopt-

ing the relay technology.

Energy efficient networks are important for extending the battery life of

a UE, reducing the operation costs of a network operator, enhancing cor-

porate image of operators and vendors alike, and providing a lower total

energy consumption which reflects in a lower CO2 footprint and negative

impact on environment.

The evolution of RANs is ultimately leading to unavoidable increase in

energy consumption. Yet efficient networks can significantly limit such

increase and still provide the required performance. Energy efficiency can

be evaluated in terms of the area power consumption (APC) required to

achieve a certain coverage criterion and in terms of the throughput power

consumption (TPC) in a predefined coverage area [74].

TPC studies the energy efficiency from a bit-per-power unit perspective,
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which is a viable metric when aiming at evaluating the gain in capacity

brought by RN deployments. On the other hand, APC evaluates whether

the coverage increase brought by RN deployments is justified in terms of

the power consumption increase. APC assesses the power consumption of

a network relative to its coverage area and is measured in kilowatt per

square kilometer. In this context, we normalize the energy consumed by

the coverage area assuming a fixed coverage criterion, e.g. 10%-ile UE

throughput CDF level; whereas for TPC, the coverage area itself is fixed.

APC will thus be evaluated following the coverage extension methodology

presented in Section 2.3. This is especially interesting since the deploy-

ment prioritization of RN networks in LTE-Advanced early releases aims

at coverage enhancement and extension capabilities of RNs.

For this evaluation, we adopt the power models presented in [75]. There-

in, the power consumption of different access nodes is modeled as the sum

of the static and dynamic power consumptions. Static power is the power

consumed to keep the access node on. The static power depends on factors

such as the minimum transmit power (related to e.g. control signalling),

power amplifier efficiency, static signal processing overhead, and cooling

loss. On the other hand, the dynamic power consumption depends on

factors such as power amplifier efficiency, dynamic signal processing per

link, number of active links (cell load), and dynamic transmit power per

link.

The model in [75] considers a traditional base station without dynamic

power saving mechanisms and hence the power model is described by the

static part only. In contrast to macrocell power consumption model, due

to smaller coverage and thus more dynamic variation of the number of

served UEs, the power model for RNs consists of both a static and a dy-

namic part. In our study [X], the power model is a modified form of that of

a micro base station given in [75]. Specifically, we take into consideration

the rate of an RN being on (when there is at least one UE in the cell), num-

ber of configured MBSFN subframes where no transmission takes place,

and the access activity factor, i.e. transmission on only part of the access

link resource blocks.

The energy efficiency of RN deployments is illustrated in Figure 3.11

and Figure 3.12. Figure 3.11 shows the APC for urban RN deployments.

Though introducing RNs increase the power consumption in the network,

the coverage extension they offer is achieved at a lower unit power per

unit area cost, thus increasing significantly the energy efficiency of such
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Figure 3.11. Area Power Consumption of RN deployments in 3GPP urban scenarios.

Figure 3.12. Throughput Power Consumption of RN deployments in 3GPP urban scenar-
ios.
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networks. It is worth noting that such gain is as well attributed to the

fact that the urban scenario is interference-limited. On the other hand,

APC savings in the suburban model are moderate since RNs do not enable

notable ISD extensions considering the power consumption overhead they

add to the network [X].

Figure 3.12 illustrates that the RN deployments achieve low efficiency

improvements and even low losses for some deployments. This is mainly

due to two reasons. First, the deployment prioritization aims at improv-

ing the cell edge performance and not the capacity of a hot-spot scenario

and hence the capacity improvement is somehow limited. This includes

the scheduling scheme applied herein, where we assumed a max-min fair

scheduler which aims at improving the throughput of bad users at the ex-

pense of lower throughput for cell center UEs. The second reason is that

RNs are limited by the backhaul link being the bottleneck on the two-hop

communication. Similar performance is seen in suburban scenarios [X].

It is worth noting that the above results highlight the ¨raw¨ energy ef-

ficiency of RN deployments in comparison to macrocell deployments. In

this context, different studies aiming at enhancing the UE energy con-

sumption, e.g. [76, 77, 78], or the energy consumption of access nodes,

whether macrocells or micro base stations, e.g. [79, 80, 81], are still valid

and corresponding benefits can be harnessed in both network types.
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4. Conclusions

In-band relaying has been investigated in a study item of 3GPP LTE-

Advanced and later standardized as a promising cost-efficient approach

to alleviate propagation losses at high carrier frequencies especially at

cell edges and to achieve a more homogeneous user performance in the

network. The research towards this thesis has gone side by side with

the standardization efforts aiming to validate the viability of relaying as

an enhancement technology to current RATs and solve problems arising

when realizing the relaying technology in practice. The work herein has

addressed different problems within the context of LTE-Advanced.

First, the feasibility of different relaying modes have been studied and

the performance of relay node deployments have been evaluated in terms

of coverage and capacity enhancements in different propagation environ-

ments. Among the proposed 3GPP relaying types, half-duplex DF in-band

relaying was proven to provide better performance than full-duplex AF

relaying. In specific, it has been shown that Type 1 DF RNs provide

clear capacity and/or coverage improvements in some scenarios, though

the performance significantly depends on the propagation conditions on

the access link and the probability of being in LOS conditions. Further,

it was shown that the overhead of in-band relaying is low in coverage en-

hancement scenarios, though the impact is significant on capacity. In this

context, simple RN network planning techniques were proposed which

significantly boost the SINR on the backhaul relay link and hence the

experienced end-to-end user throughput.

Second, radio resource management challenges related to resource al-

location and scheduling, load balancing and interference coordination in

relay deployments were addressed. It was shown that throughput fair-

ness can be significantly improved in the network by properly splitting

resources between the RNs and UEs at the eNB and utilizing max-min
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fairness to prioritize UEs on the relay link and schedule them on the

access link of RNs. Thereafter, the resource utilization efficiency in the

network was improved by extending the RN cell ranges which proved to

be an important load balancing feature providing large gains at differ-

ent throughput regimes. The combination of ICIC and CRE was as well

investigated showing that ICIC can slightly relax CRE limitations lead-

ing to moderate gains. Another interference type referred to as RN-to-

RN interference arising from misalignment of access and backhaul trans-

missions of in-band RNs was then investigated. It was shown that local

alignment of subframe configuration can mitigate RN-to-RN interference

in different scenarios. Finally, the energy efficiency of in-band RNs was

analyzed showing yet another advantage of RN deployments as energy-

efficient coverage-enhancers.
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Errata

Publications V, VII, VII, IX, and X

• The expression of LOS probability for the relay link channel model in

the suburban scenario ("ISD 1732m - Suburban Model"), given in the

Simulation Parameters table, should be corrected as follows: Prob(LOS) =

1 − (1 − exp(−(R − 0.01)/0.23))α. The equation in the published papers

includes a typo where the 0.23 factor in the denominator is mistakenly

given as 1.15. Note though that the right parameter value is used in

simulations and hence presented results and conclusions remain valid.

Publication II

• A typo occured in the abstract of the publication, where the terminology

’3G’ in the sentence ’In this paper, we consider the performance of full du-

plex Amplify-and-Forward (AF) and half duplex Decode–and-Forward

(DF) Relay Nodes (RNs) from 3G LTE-Advanced perspective.’ should

have been ’3GPP’.
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