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Abstract 
Power amplifiers (PAs) are inherently nonlinear devices. Linearity of a PA can be achieved 

by backing off the PA to its linear region at the expense of power efficiency loss. For signals 
with high envelope fluctuation such OFDM system, large backoff is required, causing 
significant loss in power efficiency. Thus, backoff is not a favourable solution. Digital  
predistorters (PDs) are widely employed for linearizing PAs that are driven to the nonlinear 
regions. In broadband systems where PAs exhibit memory effects, the PDs are also required to 
compensate the memory effects. 
 
This thesis deals with the development of digital PDs for broadband PAs in OFDM systems 
using the Simplicial Canonical Piecewise Linear (SCPWL) function. The SCPWL function 
offers a few advantages over polynomial models. It imposes a saturation after the last 
breakpoint, making it suitable for modelling nonlinearities of PA and PD. The breakpoints of 
the function can be freely placed to allow optimum fitting of a given nonlinearity. It is suitable 
for modeling strong nonlinearities. Analysis of the SCPWL spectra property shows that the 
function models infinite order of intermodulation distortion, even with small number of 
breakpoints. The accuracy of the model can be improved by increasing the number of 
breakpoints. 
 
The original real-valued SCPWL function is extended to include memory structure and 
complex-valued coefficients, resulting in the proposed baseband SCPWL model with memory. 
The model is adopted in the development of the Hammerstein-SCPWL PD and memory-
SCPWL PD. Vector projection methods are developed for static SCPWL PDs identification. 
Adaptive algorithms employing the indirect and direct learning architectures are developed for 
identifying the Hammerstein-SCPWL PD and memory-SCPWL PD. By exploiting the 
properties of the SCPWL function, the algorithms are simplified. A modified Wiener model  
estimator is employed to circumvent the non-convex cost function problem of block models. 
This further reduces the complexity of the Hammerstein PD algorithms. The thesis also 
analyses the effects of measurement noise on indirect learning SCPWL filter. Due to its linear 
basis function, the SCPWL filter coefficients do not suffer the coefficient bias effects which are  
observed in polynomial models. The performance of the proposed SCPWL PDs are compared 
with state-of-the-art polynomial-based PDs by simulations and measurements. 

Keywords Predistorter, power amplifier, nonlinear distortion, memory effects, adaptive 
linearization, piecewise linear function, OFDM 

ISBN (printed) 978-952-60-5619-7 ISBN (pdf) 978-952-60-5620-3 

ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942 

Location of publisher Helsinki Location of printing Helsinki Year 2014 

Pages 191 urn http://urn.fi/URN:ISBN:978-952-60-5620-3 





Preface

The research leading to this thesis has been carried out in the Department

of Signal Processing and Acoustics, Aalto University (formerly known as

Signal Processing Laboratory, Helsinki University of Technology) from

2004 - 2012. The early stage of the research was supervised by Prof. Timo

Laakso and the later stage was supervised by Prof. Risto Wichman.

First, I would like to express my sincere gratitude to my supervisors.

I am grateful to Prof. Risto Wichman for taking my research under his

supervision and for helping me finish this work. I thank him for his many

constructive comments which have helped improve this manuscript. I am

also grateful to Prof. Timo Laakso for his encouragement, guidance and

advice during the early stage of this work. I would also like to extend my

sincere gratitude to Dr. Stefan Werner for his guidance and help in this

work. The insightful discussions, suggestions and constructive comments

he provided have contributed to the quality of this thesis. I also thank

Prof. Juan Cousséau for the insightful discussions and suggestions dur-

ing his visits at the laboratory. The help from Prof. José Luis Figueroa

and Marcelo Bruno are also highly appreciated. Prof. Markus Rupp and

Dr. Ernst Aschbacher are also acknowledged for their advice and collabo-

ration during my research visit at the Vienna University of Technology.

I would like to thank the preliminary examiners, Prof. Paulo Diniz and

Prof. Pedro Julián for their time and effort in reviewing the manuscript.

Their comments and suggestions have helped improve the quality and

clarity of this manuscript.

I am grateful to my former colleagues at the Department of Signal Pro-

cessing and Acoustic who have created an exceptionally nice and friendly

working atmosphere. Besides your being always helpful and supportive,

I miss those lunch conversations which were funny, smart and most of

all, inspiring at times. I thank Dr. Màrio Jorge Costa, Dr. Alexandra

Oborina, Dr. Traian Abrudan, Dr. Jussi Salmi, Dr. Fernando Hugo Gre-

gorio, Dr. Andreas Richter, Dr. Fabio Belloni, Dr. Sachin Chaudhari, Dr.

Pekka Jänis, Tuomas Aittomäki, Marian Bicǎ, Taneli Riihonen, Pramod
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â estimate of scalar a

a∗ conjugate of scalar a

|a| modulus of scalar a

aH conjugate transpose of vector a

A−1 inverse of matrix A

ci the i-th coefficient of SCPWL function

c coefficient vector of SCPWL function

c�i the i-th coefficient of memory-SCPWL function of the �-

th branch

c� coefficient vector of the �-th delay branch of memory-

SCPWL function

C complex domain

di the i-th digital symbol sequence

dn,i delay of the i-th pulse of a pulse train associated with the

n-th SCPWL basis

Dn the n-th reference symbol

E[·] expectation operator

fk the k-th OFDM subcarrier frequency

fs sampling frequency

fA
(·) AM/AM function

fp
(·) AM/PM function

G desired linear gain at the PD-PA output

G (k) derivative of the PA nonlinear function associated with

the k-th sample

H linear filter function of the PA

mi slope of the i-th SCPWL segment

Mn the number of pulses in the pulse train associated with

the n-th SCPWL basis

xi



List of Symbols

n sample number

N number of discrete samples in one OFDM symbol

Nb total number of transmitted bits

Ne total number of erroneous bits

Ns number OFDM subcarriers

N[·] nonlinear function of the PA

Pdc DC power

Pi RF input power

Pi,avg mean input signal power

Pi,sat input saturation power

Po RF output power

Po,avg mean output signal power

Po,sat output saturation power

P[·] nonlinear function of the PD

Q vector projection matrix

Q linear filter function of the PD

s(t) baseband representation of OFDM symbol

si length of the i-th SCPWL segment
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1. Introduction

1.1 Motivation

Power amplifier (PA) is an essential component in the wireless transmit-

ter. It amplifies the transmitted signal so that the signal power attenua-

tion caused by path loss can be compensated. On the other hand, PAs are

inherently nonlinear in their response. The undesired effects of nonlinear

distortion caused by a PA include inband signal distortion and spectral

spreading into adjacent channels, in which, the latter may cause adjacent

channel interference [1, 2]. The easiest way to avoid nonlinear distor-

tion is by backing off the PA to its linear region. However, this solution

comes at the cost of power efficiency loss. Systems that employ multicar-

rier schemes such as orthogonal frequency division multiplexing (OFDM)

and multi-carrier code division multiple access (MC-CDMA), produce high

peak-to-average power ratio (PAPR) signals. Due to the high PAPR signal,

large backoff is required to avoid nonlinear distortion, resulting in signifi-

cant power efficiency loss. Poor power efficiency translates to heat dissipa-

tion problem, higher power consumption and increased carbon footprint.

In mobile networks, power efficient operation of the base stations is cru-

cial for operational cost saving and reduction of carbon footprint [3, 4].

On the mobile terminal side, the incentive of power efficiency is a pro-

longed battery life. Thus, external linearization techniques for compen-

sating nonlinear effects of efficiently operated PAs are required.

There are a variety of linearization techniques for radio frequency (RF)

PAs, such as feedback and feedforward linearizers and predistorter (PD).

Among these techniques, digital PD is known to be the most appealing

method [1, 2] due to its relatively good performance, broader operating

bandwidth, cost effectiveness and flexibility, when compared to the other

1
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Figure 1.1. The operational principle of a predistortion linearizer

techniques. In the recent literature, digital PDs are widely proposed for

linearization of PAs in third generation (3G) [5,6], WiMAX [7,8] and long

term evolution (LTE)/LTE-Advanced (LTE-A) [9] systems.

The working principle of predistortion linearizer is illustrated in Fig. 1.1.

The characteristic of the PD P[·] is ideally the exact inverse of the PA non-

linearity, N[·]. The PD is placed before the PA, predistorting the input

signal so that the resultant output of the PA is a linearly amplified ver-

sion of the input signal given by

y(t) = N
[
P[x(t)]

]
= Gx(t), (1.1)

where G is ideally a linear gain. From this simple illustration of PD op-

eration, it is easy to follow that accurate modeling of N[·], and thus P[·]
is essential for obtaining an effective PD. This, in turn, requires a suit-

able function to be chosen for modeling the nonlinearities and an efficient

method for identifying the model parameters.

In narrowband systems such as the second generation (2G) GSM sys-

tem, PA nonlinearities are characterized by the amplitude-modulation-to-

amplitude-modulation conversion (AM/AM) and amplitude-modulation-

to-phase-modulation conversion (AM/PM). Thus, memoryless nonlinear

models are adequate for characterizing the PA and PD. In broadband

systems such as 3G, LTE/LTE-A and WiMAX systems, the nonlinear be-

haviour of the PA becomes frequency-dependent, which is also known as

memory effect. Thus, nonlinear models with memory are required in or-

der to capture the frequency-dependency of PAs and PDs in broadband

systems. In the literature, much research efforts are made in develop-

ment of nonlinear models with memory for the purpose of PD design.

Most of the models proposed are simplified Volterra models or polynomial-

based models [5,10–12]. Blocks models such as Wiener and Hammerstein

models and the cascades of them are also commonly adopted for model-

ing nonlinear PAs and PDs with memory [13–17]. The nonlinear blocks

2
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of these block models are also most commonly characterized by polyno-

mial models. A weakness of polynomial models is their limitation in mod-

eling strong nonlinearities. High order polynomials exhibit Runge phe-

nomenon [18, Chapter 4.3.4] when used for modeling strong nonlineari-

ties and pose numerical problems associated with parameter estimation.

Orthogonal polynomial [19] and more recently, Zernike polynomial [12],

which possess better numerical property are proposed for PD implemen-

tation. The piecewise linear (PWL) nonlinear model proposed in this the-

sis is another alternative nonlinear model suitable for modeling strong

nonlinearity without posing numerical problems.

It is well-understood that PA characteristics slowly drift as the device

ages. In addition, in LTE/LTE-A systems, advanced techniques such as

adaptive modulation [20] and scalable bandwidth [21] schemes are adopted

to enhance throughput and optimize spectrum sharing. The operating

signal condition of these systems (e.g., operating bandwidth, power level

and digital modulation size) undergo frequent changes, and thus, causing

variation in the PA characteristics. In order for the PD to be effective, the

time-varying characteristics of the PA must be tracked, leading to the re-

cent focus on development of adaptive PD identification algorithms. The

indirect [5,10] and direct learning [16,22–24] methods are most commonly

employed for PD training, with the former being more popular due to its

simplicity and efficiency.

A major issue of the indirect learning method is its sensitivity to mea-

surement noise at the feedback path [25, 26]. An analysis in [25] shows

that measurement noise at the feedback path of an indirect learning filter

induces a bias in the estimates of polynomial filter coefficients. The effect

is known as coefficient bias effect. The authors proposed a technique for

reducing the bias. However, the technique increases the complexity of the

PD algorithm significantly. A more efficient method based on the modified

least squares (LS) method for reducing the noise induced bias is proposed

in [27]. The direct learning algorithm is not affected by measurement

noise. However, the downside of the direct learning method is its compu-

tational complexity, incurred by the need for the PA model estimation and

filtering of the reference input signal with the PA estimates [22, 28, 29].

In [16,23], the authors simplified their proposed direct learning PD iden-

tification algorithm by assuming that the PA model is known. It is shown

that the optimal performance of a direct learning PD can only be obtained

when both PA and PD models are identified iteratively [30].

3
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In summary, in order to obtain an effective PD, models with simple

structure and sufficient support for characterizing the essential modes of

the PA and PD behaviour are required. Then, efficient algorithms needs to

be developed for identifying the PD model parameters. In addition, issues

that hinder the performance of the PD have to be addressed, for instance,

measurement noise and computational complexity issues associated with

the indirect learning or direct learning architectures, respectively.

1.2 Scope of the thesis

This thesis considers development of digital PDs for broadband PA in

OFDM systems using the Simplicial Canonical Piecewise Linear (SCPWL)

function [31, 32]. The scope of the thesis includes characterization of

broadband PAs and PDs, development of efficient PD identification al-

gorithms and performance evaluation of the proposed PDs.

The SCPWL function is used as a basis for developing baseband piece-

wise linear (PWL) models that are suitable for modeling baseband nonlin-

earities with memory. The proposed baseband SCPWL model is employed

for modeling Hammerstein-SCPWL PDs and memory-SCPWL PDs. PD

identification algorithms based on vector projection method and adap-

tive filtering method employing the indirect and direct learning architec-

tures, are developed. By exploiting the properties of the SCPWL function,

methods are developed to improve the efficiency of the identification algo-

rithms. The performance of the proposed SCPWL PDs are evaluated and

compared with well-known state-of-the-art digital PDs in the literature.

The performance evaluation and comparison are performed by computer

simulations in MATLAB R© environment, circuit level simulations in the

Agilent Advanced Design System (ADS), and by measurements on a prac-

tical PA in a testbed.

1.3 Contributions

The contribution of this thesis work are as follows.

The original real-valued SCPWL function proposed in [32] is employed

in this work for developing digital PDs. As digital PDs operate in base-

band, using complex-valued functions for modeling the nonlinear PA and

PD is more convenient. Otherwise, the in-phase and quadrature-phase
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components of the baseband signal will have to be modeled separately us-

ing two real-valued functions. In this work, a complex-valued baseband

SCPWL model is proposed. In order to cater for broadband characteris-

tics of the PAs and PDs, the model also includes memory structure, as

expressed in (3.19). The proposed SCPWL model is suitable for modeling

strong nonlinearity and does not pose numerical problems during param-

eter estimation. It is particularly suitable for modeling PA and PD types

of nonlinearities as the model imposes a saturation after a given maxi-

mum input signal level. The proposed SCPWL model is adopted in the

development of Hammerstein model PDs and memory-SCPWL PD.

The properties of the SCPWL function are studied and its linear affine

property is found to be a useful for simplifying the PD algorithms. The

spectral property of the SCPWL function is analyzed and some insights

are gained on how the function introduces intermodulation products (IMD).

The operation of the SCPWL basis functions is found to spread the spec-

trum of the input signal, producing infinite IMD products. In other words,

the SCPWL function is capable of modeling nonlinearity of infinite order.

The accuracy of the model improves as the number of segments is in-

creased.

For identification of the SCPWL PDs, two approaches are proposed.

Firstly, vector projection based methods, namely, the image projection

method and inverse coordinate mapping (ICM) method are developed for

efficient identification of static SCPWL PDs. In the second approach,

adaptive filtering method based on the least mean square (LMS) algo-

rithm (see e.g., [33]), adopting both the indirect and direct learning ar-

chitectures, are developed for adaptive identification of SCPWL PDs with

memory, i.e., the Hammerstein-SCPWL PD and memory-SCPWL PD. In

order to improve computational efficiency in these algorithms, the prop-

erties of the SCPWL function are exploited for techniques to simplify

these algorithms. In addition, for identification of Wiener and Hammer-

stein models, which is often hindered by non-convex cost function prob-

lem [34–36], the thesis adopts a modified Wiener model estimator leading

to reduced computational complexity.

Acknowledging the issue of measurement noise at the feedback path of

indirect learning filters, the thesis also provides an analysis on the effects

of noise on the indirect learning SCPWL filter. It is found that, due to its

linear basis functions, the SCPWL filter coefficients are not affected by

noise-induced coefficient bias effect which affects polynomial filters
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The performance of the proposed SCPWL PDs are evaluated and com-

pared with well-referenced polynomial based PDs by extensive system

level simulations in MATLAB� environment and circuit-level simulations

in the Agilent ADS environment. The memoryless SCPWL PD is also

evaluated on a real PA (ZVE8G) by Minicircuits. The main metrics used

for evaluating the performance of the PDs are the adjacent channel power

ratio (ACPR), error vector magnitude of received digital symbols and bit-

error rate (BER). Results showed that the SCPWL PDs performances are

comparable to the state-of-the-art polynomial based PDs.

1.4 Structure of the thesis

The thesis consists of an introductory part and seven original publica-

tions. The introductory part consisting of Chapter 2 through Chapter 6.

Chapter 2 provides a review on the problems of nonlinear distortion and

memory effects caused by PAs and their effects on broadband communica-

tions systems. Then, factors that affect the linearity and efficiency of a PA

are discussed and metrics commonly used for evaluating PD performance

are defined. The high PAPR of OFDM signal and the problems it causes

are also discussed.

Chapter 3 summarizes the contribution on modeling of PA and PD non-

linearities using the SCPWL function. The chapter begins with a review

of the most employed nonlinear models for modeling broadband nonlinear

PAs. Then, the proposed complex-valued baseband SCPWL model with

memory is presented. The findings on the studies of the SCPWL func-

tion properties and the advantages of modeling PAs and PDs using the

SCPWL function are outlined. The chapter concludes with a summary of

the thesis contribution in the aspects of broadband PAs and PDs charac-

terization.

Chapter 4 presents the SCPWL PD identification algorithms developed

in this work. First, the PD identification algorithms found in the litera-

ture are reviewed. Then, the proposed vector projection based methods for

mapping of the static SCPWL PD from the static SCPWL PA and the in-

direct learning and direct learning adaptive algorithms for adapting the

SCPWL PDs with memory are presented. An analysis of measurement

noise effects on indirect learning filters is provided. The convergence is-

sues of the direct learning method are also discussed.

The results of performance evaluations and comparisons of the proposed
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SCPWL PDs and well-referenced polynomial based PDs are summarized

in Chapter 5. The simulation environments and measurement testbed

used are illustrated.

The thesis contribution is summarized and concluded in Chapter 6.

1.5 Summary of publications

This section provides a summary for the original publications included in

this thesis.

In all the publications, equations/algorithms derivation, experiment de-

sign, programming of simulations software in MATLAB R© and writing re-

lated to the proposed SCPWL PD designs have been performed by the au-

thor. In [II] and [V], the measurement system setup and all parts involv-

ing the polynomial based Secant-PD were performed by the co-authors,

Peter Brunmyr and Ernst Ashbacher, respectively. In [VII], the setup

of the MATLAB R© ADS-Ptolemy co-simulation has been performed by co-

author Marcelo Bruno. The rest of the co-authors have contributed by

providing constructive comments to the writing and/or supervising of the

research work.

Publication [I] introduces the application of the simplicial canonical piece-

wise linear (SCPWL) function in predistorter (PD) design for nonlinear

power amplifiers (PAs). The operation of the SCPWL function on an input

signal is reviewed and its linear affine property, which is characterized by

the user-defined breakpoints, is studied. The linear affine property gives

rise to a special structure in the SCPWL basis function matrix. With

the special structure, matrix inversion associated with least squares (LS)

parameter identification can be avoided. Instead, the inverse of the ma-

trix, which is a tri-diagonal full rank matrix, can be constructed from the

known values of the user-defined breakpoints. Due to the linear affine

property, an orthogonal projection method, which identifies the PD char-

acteristic from that of the PA using a 2-by-2 projection matrix, is also

developed. The real-valued SCPWL function was used to characterize

the static nonlinearity (AM/AM) of a Wiener model PA. The orthogonal

projection method and the constructed inverse basis function matrix are

used in the PD parameter identification. It is shown that the overall com-

putational complexity of SCPWL PD parameter identification is reduced

compared to conventional LS identification of a polynomial PD.

Publication [II] is a short conference article reporting part of the work
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in [V], where the proposed SCPWL PD and polynomial PD are tested on

a practical PA in a testbed.

In [III], the orthogonal projection method in [I], which requires the lin-

earized gain of the PD-PA to be normalized to 1, is extended in this paper

to allow any arbitrary linearized gain. The enhanced PA-to-PD charac-

teristic projection method is called the inverse coordinate mapping (ICM)

method. In this paper, a Hammerstein model PD is used for linearizing

a Wiener model PA. The nonlinear parts of the PA and PD are character-

ized as a quasi-static nonlinearities (AM/AM and AM/PM). The SCPWL

parameters of the PD nonlinear block (AM/AM and AM/PM) are identi-

fied by the non-iterative approach using the ICM method and the inverse

basis function matrix constructed from the known values of the function

breakpoints. The dynamic blocks of the PA and PD are modeled using

linear filters. The PD linear filter parameters are iteratively identified

using the indirect learning architecture with least mean square (LMS)

algorithm. A comparison in performance is made between the proposed

SCPWL PD and one that the nonlinear parts are modeled using orthogo-

nal polynomials [19].

In [IV], we categorize nonlinear distortion caused by the PA in systems

that transmit high peak-to-average-power ratio (PAPR) signal such as

OFDM into compressive gain distortion (nonlinear amplification) or sig-

nal peak clipping distortion. Linearization technique can be employed for

compensating compressive gain distortion. However, considerable level of

backoff is still required to avoid signal peak clipping, leading to power effi-

ciency loss. This paper considers a combined peak-to-average-power ratio

(PAPR) reduction and predistorter (PD) scheme for compensating nonlin-

ear distortion and improving power efficiency. A simple static nonlinear

PA modeled by a traveling wave tube amplifier (TWTA) is simulated in

order to demonstrate the improvement in linearization performance and

total degradation (TD) provided by the combined scheme as compared to

either PD or PAPR reduction alone. While the PAPR reduction technique

is effective in reducing clipping noise, it is ineffective in reducing adjacent

channel power ratio (ACPR). The combined scheme is shown to provide

an ACPR improvement twice as good as when the PD is applied alone.

The TD gain obtained by combining the two methods is equal to the sum

of the gains obtained by the PD and PAPR reduction individually.

Publication [V] presents the measurement results of testing a memory-

less SCPWL PD and a memoryless polynomial PD on a practical PA, Mini-
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circuit ZVE-8G. The measurement testbed consists of a signal processing

part (MATLAB R©, ADC, DAC) and an RF part (up/down-converter, pre-

amps.) and the output of the PA is measured using a spectrum analyzer.

Both the PDs are identified in the signal processing part using input-

output data obtained by exciting the PA with a 5 MHz random phase

multitone signal. The parameter of the SCPWL PD is identified using

the reduced-complexity non-iterative method outlined in [I]. The inverse

coordinate mapping method (ICM) detailed in [III] is used instead of the

orthogonal projection method. The output signal of the polynomial PD is

iteratively searched using the secant method for root-finding. The PDs

are tested under two PA operating scenarios, i.e., in a mildly nonlinear

region and driven into the nonlinear region. The SCPWL PD is found to

be more effective for the PA with stronger nonlinearity. The comparison

of computational complexity for the two PDs during PD identification and

operation are provided.

Publication [VI] investigates how intermodulation distortion (IMD) com-

ponents are introduced by the SCPWL function. This information is im-

portant for reflecting if an SCPWL function with a given number of pa-

rameters is sufficient for capturing all the significant IMD components

generated by a PA. The operation of the SCPWL basis function on sinu-

soids and multi-tone signals are analyzed. It is shown that, in frequency

domain, each SCPWL basis spreads the spectrum of the input signal re-

sulting in an output signal with infinite IMD order. From the analysis, ex-

pressions that can be used to predict the output spectrum of the SCPWL

basis is derived. It follows that the modeling accuracy of the function is de-

termined by the number of linear affine segments (i.e., number of SCPWL

parameters) used to define the SCPWL function. Increasing the number

of model parameters improves the accuracy of function in modeling each

IMD component. Unlike polynomial models, increasing the number of

segments above the optimum order does not degrade the SCPWL model

quality.

In [VII], a novel complex-valued SCPWL function with memory struc-

ture suitable for modeling baseband PA and PD nonlinearities is intro-

duced. The new memory-SCPWL model can be reduced to a quasi-static

model by choosing a memory length of 1. The proposed model is used

for implementing a memory-SCPWL PD and a Hammerstein-SCPWL PD.

Adaptive algorithms based on the indirect and direct learning methods

are derived for PD parameter identification. The linear affine property
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of the function and the knowledge of the user-defined breakpoint values

are exploited for simplifying the algorithms. For instance, the derivative

of the PA model appears in the expression of the direct learning algo-

rithm. Using the known SCPWL parameters, an expression for approx-

imating the derivative of the PA model is derived. For analysis of the

effects of noise at the feedback path of the indirect learning filter, we de-

rived an expression for the error induced by noise in the SCPWL basis.

The expression shows that measurement noise does not cause coefficient

bias effects on SCPWL coefficients, as it does to polynomial coefficients.

This finding is confirmed by simulation results. The proposed adaptive

SCPWL PDs are evaluated on broadband PAs (modeled as Wiener or

Wiener-Hammerstein systems) by MATLAB R©simulations. The perfor-

mance of the proposed SCPWL PDs are compared with that of well-known

state-of-the-art memory polynomial and generalized memory polynomial

PDs, in terms of error vector magnitude (EVM) and adjacent channel

power ratio (ACPR). The indirect learning memory-SCPWL PD is also

evaluated on the Freescale MRF6S23100H LDMOS PA in 802.16d sys-

tem by circuit level simulations in the ADS-Ptolemy co-simulation envi-

ronment.



2. Effects of nonlinear PA and High
PAPR of OFDM signal

Power efficiency and linearity are two contradicting requirements in PA

design. A design aiming at improving efficiency is inevitably compromis-

ing the linearity of the PA [1,37,38]. The effects of nonlinear amplification

include distortion of the inband signal and interference to the adjacent

channels. As discussed earlier, power backoff is not an ideal solution for

reducing nonlinear distortion as it trades off the power efficiency of the

PA. Particularly, for systems which signal exhibits high envelop fluctu-

ation, or high peak-to-average power ratio (PAPR), power backoff leads

to substantial power efficiency loss. Furthermore, in broadband systems,

PAs also exhibit memory effects which give rise to frequency-dependent

nonlinear behaviour. Compensation of nonlinear distortion in these sys-

tems becomes more complicated. In order to maintain a good tradeoff

between power efficiency and linearity, it is best to drive to PA to a suf-

ficiently power efficient region and leave an acceptable level of nonlinear

distortion for compensation using an external device such as a digital PD.

This chapter provides background on the effects of nonlinear PA and

high PAPR of OFDM signal on communications signal. Linearity and ef-

ficiency of a PA and the factors that affect the tradeoff between these fig-

ures are discussed. The effects of nonlinear distortion on communications

signal are reviewed and the high PAPR of OFDM signal is also discussed.

In Section 2.1, factors that influence the power efficiency of PAs, i.e., PA

operating classes and power backoff, are reviewed. Section 2.2 discusses

the linearity measures of PAs. The nonlinear distortion caused by broad-

band PAs and the impact on the communications signals are outlined in

Section 2.3. Memory effects are discussed separately in Section 2.4. Fi-

nally, OFDM and its high PAPR signal are discussed in Section 2.5.

11



Effects of nonlinear PA and High PAPR of OFDM signal

2.1 Power efficiency

Power efficiency is a measure of a PA’s ability to convert DC power Pdc

provided by a DC supply to RF power Po delivered to the load,

η =
Po

Pdc
. (2.1)

Another common figure of merit for measuring PA power efficiency is the

power added efficiency (PAE) given by

ηPAE =
Po − Pi

Pdc
. (2.2)

The PAE equation has the RF input power subtracted from the RF output

power. Thus, it gives a better indication of the PA efficiency in terms of

RF power gain compared to the general power efficiency η. Direct current

(DC) power that is not converted to useful RF output power is dissipated

as heat.

Without adopting external efficiency enhancement or linearization tech-

niques, the main factors that determines the power efficiency range of a

PA are its operating class and power backoff of the PA.

2.1.1 PA operating classes

The power class of a PA is determined by the quiescent bias point of a

PA, which defines the conduction angle of the PA (the portion of RF cycle

that the transistor conducts). A lower bias level renders higher power

efficiency, at the expense of the PA linearity, as illustrated in Figure 2.1.

The relationship of conduction angle γ and the maximum efficiency of a

PA is given by [1]

η =
2γ − sin 2γ

4 (sin γ − γ cos γ)
. (2.3)

A class-A PA is biased such that its conduction angle is 360 ◦, i.e., the

transistor conducts for the full cycle of the input signal. This makes a

class-A PA highly linear as it reproduces an output signal that closely re-

sembles the input signal. However, the maximum power efficiency of the

class-A PA is only 50%. A class-B PA is significantly more efficient than a

class-A PA, at the expense of linearity. The maximum power efficiency of

class-B PAs is 78.5%. This is due to its lower bias level, having a conduc-

tion angle of only 180 ◦, i.e., conducting only half of the time, either during

the positive cycle or the negative cycle. A push-pull configuration is nor-

mally employed so that the entire input signal can be reproduced at the
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Figure 2.1. Conduction angle vs. Efficiency [1]

output. In this configuration one transistor conducts during the positive

half cycle of the input signal and the second transistor conducts during

the negative half cycle.

As a compromise between class-A and class-B PAs, a class-AB amplifier

operates at bias level that gives the transistor a conduction angle between

180 ◦ and 360 ◦. Class-AB PAs produce more nonlinear distortion, generat-

ing odd order intermodulation distortion (IMD) as compared to only even

order IMD caused by class-A PAs. The power efficiency of class-AB PAs

is between 50% and 78.5%. A significant improvement in power efficiency

can be achieved when a PA is biased towards class-C operation, with a

conduction angle of less than 180 ◦. The maximum power efficiency of a

class-C PA is 85%, but its linearity is poor.

There are other PA classes such as D, E, F, G, H and S which efficiency

approaching 100% but are highly nonlinear in their responses. Interested

readers are referred to [1,2] for further reading.

2.1.2 Power backoff

Power backoff imposed on a PA is a method employed to avoid driving

the PA to its nonlinear region, thus maintaining the linear operation. It

is commonly measured by input backoff (IBO) or output backoff (OBO),

defined in Equations (2.4) and (2.5), respectively.

IBO = 10 log10
(Pi,sat

Pi,avg

)
, (2.4)
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Figure 2.2. PA linearity figures of merit : 1 dB compression point and third order inter-
cept point (IP3)

where Pi,sat is the input saturation power and Pi,avg is the mean power of

the input signal.

OBO = 10 log10
(Po,sat

Po,avg

)
, (2.5)

where Po,sat is the output saturation power and Po,avg is the mean power

of the output signal.

2.2 Linearity measures of PAs

An ideal PA is one that amplifies the input signal with a constant gain

for all input signal level, i.e., exhibiting a linear behaviour. In practice,

a PA amplifies linearly for a range of low signal level (linear region) and

then the gain reduces as the signal level increases (nonlinear region) and

finally saturates (saturation region). This behaviour is illustrated in Fig-

ure 2.2.

Besides gain compression, PA nonlinear distortion also causes the gen-

eration of frequency components which are not present in the input sig-

nal. The amount of new frequency components introduced depends on

the degree of nonlinearity and is typically analyzed using a two-tone sig-

nal fed to a polynomial model PA, see e.g., [1,37,38]. Figure 2.3 shows the

frequency components in the output signal of a two-tone test on a third or-

der polynomial system (dc and envelope tones not shown). The quadratic

nonlinearity produces the second harmonic components and the dc and

envelop terms. The cubic nonlinearity generates not only harmonic terms
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Figure 2.3. Spectral regrowth generated by a PA with third order nonlinearity

but also intermodulation distortion (IMD) terms 2f1 − f2 and 2f2 − f1. All

odd order nonlinearities produce IMD, thus are considered more harmful

than even order nonlinearities. The frequency components that appear

at the second and third harmonic zones can be easily filtered out. The

IMD products that fall in the first harmonic zone appear too close to the

fundamental tones, making them difficult to be filtered out.

The classical figures of merit used as measures of linearity of a PA are

the 1 dB compression point, and the third order intercept point (IP3) as

illustrated in Figure 2.2. These figures indicates the amount of nonlinea-

rity caused by the PA.

1-dB compression point

The 1 dB compression point of a nonlinear PA is defined as the output

level at which the gain of the PA output is 1 dB below the expected linear

output. This figure indicates the effects of the PA nonlinearity on the

fundamental-tone signal.

Third order intercept point

Among the IMD products, the third order IMD is normally the strongest.

The IP3 is the power level at the interception between the linear gain of

the fundamental component and the linear gain of the third order compo-

nent. It is used for measuring distortion of the fundamental signal caused

by the third order IMD.
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2.3 Distortions caused by nonlinear PAs

Depending on the signal bandwidth, the characteristics of a PA can be

categorized into static nonlinear system or nonlinear system with me-

mory. A memoryless RF PA have memory duration close to the period

of the RF carrier and the input signal is a narrowband signal [39]. The

envelope characteristics of the PA are constant over the band of interest.

Thus, a strictly memoryless system responds to an excitation instanta-

neously without any delay. Strictly memoryless nonlinear PA exhibits

only AM/AM distortion. However, in practice, this kind of systems do not

exist. A large class of narrowband systems fall into the quasi-static cat-

egory. In a quasi-memoryless nonlinear PA, the memory time constant

is in the order of the RF carrier period, thus exhibits short-term memory

effects. Quasi-memoryless PAs are characterized by both the AM/AM and

AM/PM conversions. When the signal bandwidth is comparable to the

carrier frequency of the system [1], nonlinear PAs exhibit memory effects

which are manifested as frequency-dependent or bandwidth-dependent

nonlinear responses.

This section discusses the effects of distortion caused by nonlinear PAs

on communications signals transmitted through them. Memory effects

are discussed in more details in the following section.

2.3.1 Amplitude and phase conversions

Typically the gain of a PA decreases as the input level increases, giving

a compressive AM/AM response. In a similar way, the phase conversion

at the output is not a constant as the input amplitude changes. As an

example, Figure 2.4 shows the AM/AM and AM/PM responses obtained

from simulated Wiener model PA with an FIR filter followed by a Saleh

model [40] nonlinear block. The red plots are the PA responses to a single-

tone signal with ramping power level.

2.3.2 Distortion in digital symbols

In modern 3G, LTE and WiMAX systems, linear modulations schemes are

employed in order to gain throughput of information bits. The larger the

constellation size of the modulation scheme, the more sensitive it is to

the nonlinearity of the PA. Figure 2.5 shows the distortion of the 16-QAM

digital symbols transmitted through a nonlinear PA. The blue dots and

16



Effects of nonlinear PA and High PAPR of OFDM signal

�������	�
����

�
��

��
���

	
�


���
�

(a) AM/AM characteristics

�������	�
����

�
��

��
���

��
�

���
���

���
��

��
��

(b) AM/PM characteristics

Figure 2.4. AM/AM and AM/PM conversions of a PA : Red plots indicate memoryless PA
and blue plots indicate PA with memory

the red dots represent the original transmitted symbols and the symbols

transmitted through the PA, respectively. Due to the nonlinear ampli-

tude conversion, the transmitted symbols are typically scattered around

their respective original symbol constellation point and the symbols at

the edges of the constellation appear to be pushed inward, resulting in

what is known as constellation warping, as shown in Figure 2.5(a). Fig-

ure 2.5(b) shows the constellation rotation caused by AM/PM conversion.

These effects, severe enough, can cause the received symbols to be shifted

into adjacent detection regions, causing detection error and therefore in-

creased bit-error rates.

In the following, the metrics commonly used to measure degradation/losses

due to distortion caused by PAs are introduced.

Error vector magnitude

The error vector magnitude (EVM) is used to measure the error between

the demodulated digital symbol (e.g., QPSK, 4-QAM, 16-QAM) and the

reference symbol. The root mean square (rms) EVM for constellation point

error is given by

EVMconst = 10 log10

{√∑N
n=1 |Ẑn −Dn|2∑N

n=1 |Dn|2

}
, (2.6)

where Dn is the n-th reference symbol and Ẑn is the n-th demodulated

symbol.

Bit error rate

The bit error rate (BER) is a performance metric that measures the qual-

ity of the communication link. It is also used to measure the degradation
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Figure 2.5. Digital symbols constellation distortion

in the transmitted signal due to the nonlinear distortion caused by the

PA. The BER is calculated as

BER = log10

(Ne

N

)
, (2.7)

where Ne and Nb are the total number of erroneous bits and total number

of transmitted bits, respectively.

Total degradation

The total degradation (TD) is a metric that measures the power loss due to

the nonlinear distortion and the PA efficiency loss in order to meet a BER

target. In other words, TD indicates the extra transmit power needed to

overcome the nonlinear distortion for achieving a given BER target. The

TD as a function of the output backoff (OBO) is given by [41]

TD =
(Eb

N0

)
NL
−
(Eb

N0

)
Lin

+OBO, (2.8)

where
(

Eb
N0

)
NL

and
(

Eb
N0

)
Lin

are the bit-energy-to-noise ratio required to

achieve a targeted BER in the nonlinear and linear AWGN channel, re-

spectively. Note that all values in the equation are measured in dB.

2.3.3 Spectral spreading

In the frequency domain, the response to nonlinear distortion is the intro-

duction of frequency components that are not present in the input signal.

This effect is known as spectral regrowth. Figure 2.6 shows an example
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Figure 2.6. Spectral regrowth generated by a nonlinear PA

of typical power spectra density (PSD) of the signals measured at the in-

put and output of a nonlinear PA. The output PSD of the signal without

any linearization applied (red plot) shows significant amount of spectral

regrowth. If left uncontrolled, spectral regrowth can cause distortion to

the transmitted signal as well as interference to the adjacent channels. A

linearizer such as a PD can be employed for reducing the spectral spilling

into the adjacent channel (blue and cyan plots).

Adjacent channel power ratio

The adjacent channel power ratio (ACPR) or adjacent channel leakage

ratio (ACLR) is used to measure the amount of spectral spilling into an

adjacent channel. It is defined as the ratio between the power contained

within a defined bandwidth B2 at a defined offset fo from the channel

center frequency fc, and the power contained within a defined bandwidth

B1 around fc (refer to Figure 2.6). The bandwidth B1 and B2 need not be

the same.

2.4 Memory effects in PAs

Memory effects in PAs are caused by the intrinsic electrical and thermal

properties of the PAs [37,38,42,43]. PA memory can be divided into linear

memory and nonlinear memory. Linear memory contributes to short-term

memory effects [39]. It is attributed to the bandpass characteristics of the

input and output matching networks in the PA system and the low-pass
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characteristics of the transistor.

Nonlinear memory describes the dynamic processes that take place in

the presence of some nonlinear processes [39]. These processes contribute

to long-term memory effects and can be viewed as some complicated dy-

namic interaction between two or more nonlinearities within a dynamic

network. These effects are attributed to the low-frequency dispersion

of the active device, the interactions between the active device and the

PA bias circuitry and electrothermal effects (including the device self-

heating) [15,39].

2.4.1 Observation of PA memory effects

Memory effects can be observed in the AM/AM and AM/PM character-

istics when broadband signal is fed to a PA. The AM/AM and AM/PM

conversions generated with a multitone signal (broadband signal) are no

longer continuous lines (red plots) as obtained using a single-tone signal

(narrowband signal), as shown in Figure 2.4. Instead the responses are

scattered (blue plots) around the static nonlinear curves. Alternatively,

the frequency-dependent behaviour can also be observed by measuring

the AM/AM and AM/PM responses with single-tone signals at different

carrier frequencies, as shown in Figure 2.7. The response curves mea-

sured at different carrier frequencies may have almost the same shape

but appear vertically or horizontally displaced from each other.

Another common observation of memory effects is the asymmetrical

IMD sidebands at the output of RF PA. Bandwidth dependency of memory

effects is analysed using two-tone input signal with varying tone spacing

in [42]. It is shown that by varying the tone spacing of a two-tone signal

fed to a PA, the phase of the IM3 deviates from that of a polynomial model

at low and high tone spacing, as shown in Figure 2.8. Another analysis

on asymmetrical IMD sidebands in [37] concluded that the effect is due to

the time lag between the AM/AM and AM/PM responses, which is caused

by a phase shift in the AM/PM response.

2.4.2 Impact on PD performance

Although memory effect normally does not cause huge changes in the PA

nonlinearity, e.g., the level of IMD components, it affects the performance

of linearizers [38]. The performance of a simple linearizer that do not take

into account memory effects, e.g., an RF PD implemented using diodes,
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(a) Frequency-dependent AM/AM conversion

(b) Frequency-dependent AM/PM conversion

Figure 2.7. Measured swept-tone AM/AM and AM/PM conversions of the Minicircuit
ZVE-8G PA [44].
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Figure 2.8. Phase of the IM3 component. Solid line indicates system with memory ef-
fects; Dotted line indicates system without memory effects [42].

can be greatly deteriorated in broadband systems. As discussed above,

the amplitude and phase of the PA IMD components vary as a function

of modulation frequency (tone spacing of the two-tone signal). A PD that

fails to detect and adjust to the non-constant phase of the IMD may cause

more spectral spilling and distortion to the signal. An effective PD is

required to include memory structure in its model so that it can generate

IMD components of the equal amplitudes but with opposite phase shifts

as those generated by the PA.

2.5 High Peak-to-Average Power Ratio of OFDM signal

Orthogonal Frequency Division Multiplexing (OFDM) is known to be a

robust transmission scheme in dispersive radio environment. It divides

a broadband frequency-selective channel into many flat-fading narrow-

band subchannels. Each subchannel can then be compensated with a

simple equalization scheme. It can also be described as a transmission

scheme that divides a high-bit-rate data stream into many parallel lower

bit-rate streams that are transmitted simultaneously over multiple sub-

carriers, each spanning a fraction of the entire bandwidth. This way, the

symbol duration of the lower rate data streams increases and therefore

decreasing the relative amount of dispersion in time caused by the chan-

nel delay spread. By adding a sufficient guard time to the OFDM symbol

such that the symbol duration is larger than the delay spread, intersym-

bol interference (ISI) can be eliminated almost completely. In contrast

with conventional frequency division multiplexing (FDM), which employs
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Figure 2.9. Carrier spacing of conventional FDM and OFDM.

a guard-band between subcarriers to avoid intercarrier interference (ICI),

OFDM divides a bandlimited channel into overlapping orthogonal subcar-

riers. As illustrated in Figure 2.9, OFDM is spectrally more efficient than

the FDM scheme. With all the advantages OFDM offers, it also brings t

a few drawbacks, including its receiver sensitivity to frequency offset and

phase noise, and its high peak-to-average power ratio (PAPR) signal.

The following subsections first give an overview on OFDM signal gen-

eration and reception and its implementation using inverse fast Fourier

transform (IFFT). Then, the PAPR of OFDM signal is defined and the

cause of high PAPR in OFDM signal is discussed.

2.5.1 OFDM signal generation and demodulation

An OFDM symbol is constructed by summing up Ns overlapping subcarri-

ers, each independently modulated by a complex-valued digital symbol di,

e.g., phase shift keying (PSK) or M -ary quadrature amplitude modulation

(M-QAM) symbol.
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The baseband representation of an OFDM symbol is given by [45]

s(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ns
2
−1∑

i=−Ns
2

di+Ns
2
exp

{
j2π

(
i
T

)(
t− ts

)}
, ts ≤ t ≤ ts + T

0, otherwise

, (2.9)

where T is the OFDM symbol duration and ts is the starting time of the

symbol. The carrier orthogonality, which makes it possible for the subcar-

riers to overlap without causing ICI, is a result of a specific mathematical

relationship between the subcarriers. This mathematical relationship is

attained by choosing the carrier frequency of each subcarrier such that it

is an integer multiple of the lowest subcarrier frequency. For example, the

frequency of the k-th subcarrier fk = kf1, where f1 is the lowest subcarrier

frequency.

At the OFDM receiver, which consists of a bank of demodulators, the

demodulation of the k-th subcarrier is performed by multiplying the re-

ceived OFDM symbol with a carrier exp
(−j2π k

T (t − ts)
)

and integrating

over an interval of T , given by

ts+T∫
ts

exp

(
−j2π k

T
(t− ts)

) Ns
2
−1∑

i=−Ns
2

di+Ns
2
exp

(
j2π

i

T
(t− ts)

)
dt

=

Ns
2
−1∑

i=−Ns
2

di+Ns
2

ts+T∫
ts

exp

(
j2π

i− k

T
(t− ts)

)
dt.

(2.10)

From the RHS of (2.10), when i �= k, the carrier exp
(
j2π i−k

T (t−ts)

)
has an

integer number of cycles within the integration interval T , resulting in a

zero contribution. However, when i = k, the integration process recovers

the digital symbol dk+Ns
2

. This illustrates the orthogonality property of

the OFDM subcarriers.

In the frequency domain, the spectrum of an OFDM symbol is a con-

volution of a group of Dirac pulses at the subcarrier frequencies and the

spectrum of a unit square pulse of T seconds period. A square pulse with

a period of T in time domain translates to the function sinc(πfkT ) in fre-

quency domain. Figure 2.10 shows the spectrum of an OFDM symbol. The

function sinc(πfkT ) returns a zero for all fk that is not integer multiple of
1
T . Therefore, at the maximum of each subcarrier spectrum, the spectra

of all other subcarriers are zero. This illustrates the carrier orthogonality

in the frequency domain.
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Figure 2.10. Spectrum of an OFDM.

The natural appearance of discrete Fourier transform (DFT) for base-

band modulation and demodulation [46] and the advance in digital signal

processor (DSP) technologies have made the implementation of OFDM

transceiver more feasible. By rewriting (2.9) in discrete-time equivalent

form, where time t is replaced by the sample number n, we get

s[n] =

Ns−1∑
i=0

di exp
(
j2π

in

Ns

)
. (2.11)

Equation (2.11) is the inverse DFT (IDFT) of the Ns digital symbols {di}Ns−1
0 .

This eliminates the banks of analog modulators in the OFDM transceiver,

significantly reducing the implementation complexity of OFDM transceiver.

In practice, the transform is implemented with inverse fast Fourier trans-

form (IFFT) which is computationally more efficient compared to IDFT.

2.5.2 Peak-to-Average Power Ratio

The high PAPR of OFDM signal poses a stringent requirement for PA lin-

earity and thus affects the efficiency of the PA. The time domain OFDM

signal in (2.9) is a superposition of Ns complex exponential functions. The

amplitude and phase of these carriers are determined by the modulat-

ing complex-valued digital symbols di. Assuming random data symbols,

then the N parallel modulated subcarriers are independently and iden-

tically distributed. Based on the central limit theorem, for large Ns, the

probability density function (pdf) of s(t) approaches the complex Gaussian

distribution with zero mean and variance σ2 = 1
2(|� {s(t)} |2+ |� {s(t)} |2).
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Thus, the amplitude of the OFDM signal |s(t)| follows the Rayleigh dis-

tribution, which has a long tail. This relates to the high PAPR of OFDM

signal, understandably, the PAPR increases as Ns gets larger.

The PAPR of the baseband OFDM symbol is defined as

PAPR =
max0≤t≤T |s(t)|2

E

(
|s(t)|2

) . (2.12)

For discrete-time expression, the PAPR of the k-th OFDM symbol can be

expressed as

PAPR = 10 log10

(
1

N

‖uk‖2∞
E
[‖uk‖22

]). (2.13)

where N is the number of discrete samples in one OFDM symbol, E[·]
is the expectation operator, and ‖ · ‖2∞ and ‖ · ‖22 are infinity-norm and

2-norm, respectively. The signal PAPR of practical systems that employ

OFDM scheme such as WiMAX and 4G LTE downlink, is approximately

10 - 12 dB. This dynamic range requires a large power backoff from the

PA peak power in order to avoid clipping of signal peaks which occurs in-

frequently. Power backoff reduces the power efficiency of the PA tremen-

dously. On the other hand, left unattended, signal peak clipping causes

inband distortion, spectral regrowth and destroys the orthogonality of the

subcarriers.

2.5.3 PAPR reduction techniques

Many PAPR reduction techniques for OFDM system have been proposed

in the literature. An obvious way to reduce the peak power of a signal is

by signal peak clipping follow by filtering [47,48]. However, this technique

causes distortion to the signal leading to BER degradation and increased

out-of-band radiation. In order to reduce the amount of resultant out-of-

band radiation, peak windowing techniques [49, 50] have been proposed.

In these methods, the signal peaks are multiplied with a certain non-

rectangular window function in order to avoid hard clipping. Examples

of good spectral characteristics window functions are such as Gaussian,

Hamming and Kaiser functions [50].

Methods which manipulate the phases of the OFDM subcarriers in or-

der to obtain low signal PAPR such as multiple signal representation

and tone reservation do not cause distortion to the transmitted signal.

Multiple signal representation approaches such as partial transmit se-

quence (PTS) [51, 52] and selected mapping (SLM) [53–56] are known to
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achieve good PAPR reduction performance. In PTS, the input digital sym-

bol stream is divided into several blocks. Each block is multiplied with a

phase sequence which has been optimized for minimum PAPR after the

IDFT operation. In SLM scheme, each input digital data stream is di-

rectly multiplied with several random phase sequences before IDFT oper-

ation. The signal with the least PAPR is then selected for transmission.

A drawback of these methods is the need for side information transmis-

sion, i.e., the phase sequence that produces the lowest PAPR signal. Com-

putational complexity is also increased as IDFT operations are required.

Another phase optimization scheme know as tone reservation [57] does

not require transmission of side information to the receiver. A number of

subcarriers are reserved for phase optimization to produce a signal that

cancels the high peaks of the composite signal of the data-bearing sub-

carriers. The computational cost of this method are mainly attributed to

the algorithm for finding an effective peak-cancelling signal using a few

reserved tones.

Another distortionless approach for PAPR reduction is coding methods

where the transmitted bit stream is encoded to obtain low PAPR signal.

Some researchers focused on finding codes that produce low PAPR signal,

e.g., the Golay complementary sequence [58] and Reed-Muller code [58,

59]. However, the error correction performance of these codes are poor.

Turbo codes and low density parity check (LDPC) code which have strong

error correction performance are have been proposed in [60] and [61], re-

spectively, for generating low PAPR candidate codewords. The codeword

with the lowest PAPR is selected for transmission. Unlike SLM/PTS, no

side information is needed at the receiver as the transmitted codewords

are valid codewords. The drawback of coding methods are the increased

in computational complexity for searching the lowest PAPR candidate and

reduced data rate due to encoding.

Constellation extension/modification is a PAPR reduction method that

do not reduce data rate. Tone injection and active constellation extension

(ACE) are examples of constellation extension methods. In tone injection,

the original constellation set is repeated cyclically around the original

constellation set. Each original symbol can then be mapped to the origi-

nal and several equivalent points in the extended constellation. This way,

alternative constellation point can be chosen for constructing low PAPR

signal. The problem of searching the optimal constellation points for pro-

ducing the lowest PAPR signal is an integer-programming problem [57],
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which is computationally heavy to solve. For practical applications, re-

searchers proposed faster and reduced complexity algorithms, e.g., an it-

erative quantized-gradient method and a linear programming algorithm

are proposed in [62] and [63], respectively. ACE [64,65] is similar to tone

injection, but only exterior constellation points are extended. The ACE

optimization is formulated as a minimax problem in [64], which is again,

tedious to solve. An approximate gradient-project method is developed

in [64] which find a sub-optimal solution that gives good performance in a

efficient way. In [65], first the authors define a unique constellation exten-

sion pattern for the exterior constellation points. Each exterior constella-

tion point can either be represented by the original point or an extended

point. Then, an efficient de-randomization algorithm based on the method

of conditional probability is developed to solve for a sub-optimal ACE so-

lution. Due to the extended constellation of these schemes, the average

transmit power is slightly increased in these system.



3. Modeling PA and PD using the
SCPWL function

An essential step in predistorter (PD) design is the characterization of

the PA to be linearized, either explicitly, or implicitly in the process of

PD identification. The characteristics of a PA can be captured as physi-

cal model or behavioural model. Physical models are built based on the

electronic elements that constitute the PA. They are also known as the

circuit-level models and are employed for example in circuit-level simula-

tions during PA design. A circuit-level model captures the full RF circuit

bandpass properties and information. On the other hand, the knowledge

of the circuit level components of the device is not required in behavioural

models. A behavioural model captures the input-output relationship of a

system by observing a set of input-output measurement data. Therefore,

it is also known as the system-level model. In this work, the behavioural

model is employed for modeling the PA and PD.

In order to obtain an effective PD, the functions employed for charac-

terizing the PA and PD must have sufficient structure for capturing the

essential characteristics of the devices. For instance, the degree of non-

linearity and the type of memory effects exihbit by the nonlinear devices.

A variety of nonlinear models have been proposed in the literature for

modeling baseband PAs and PDs characteristics. This chapter reviews

the most commonly employed behavioural models for PAs and PDs. Then,

the proposed complex-valued baseband SCPWL model with memory is in-

troduced. The properties of the SCPWL function and the application of

the proposed SCPWL model in PD design are discussed.

The discrete-time complex baseband signal model used throughout this

work is first outlined in Section 3.1. In Section 3.2, a review of static

and dynamic nonlinear behavioural models commonly employed for PA

modeling and PD identification is provided. In Section 3.3, the proposed

complex-valued SCPWL model with memory suitable for modeling base-
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band PA and PD is introduced. The properties of the SCPWL function

studied in this thesis are reviewed in Section 3.4. Finally, a summary

of contribution concerning modeling broadband PAs and PDs using the

proposed SCPWL model is presented in Sec 3.5.

3.1 Baseband representation of passband signal

In this work, the baseband equivalent of passband characteristics of the

PA and PD are modeled. Thus, discrete-time equivalent baseband signals

which represent the complex-envelope of the RF input-output signals are

first obtained.

Given a generic RF signal with carrier frequency ωc, expressed as [66]

z̃(t) = �
{
|z(t)|ej

(
ωct+ϑz̃(t)

)}
,

= �
{
|z(t)|ejϑz̃(t)ejωct

}
,

(3.1)

the complex-envelope can be written as

z(t) = |z(t)|ejϑz(t). (3.2)

where |z(t)| and ϑz(t) are the time-varying amplitude and phase of the

complex baseband signal, respectively. Then, the discrete-time equivalent

of the complex baseband signal can be obtained by sampling the baseband

signal. In linear systems, in order to avoid aliasing effects, the minimum

sampling frequency is at least twice the highest frequency component of

the signal, i.e., the Nyquist rate [67, Chap. 3]. However, due to the nonlin-

ear behaviour of the PD, the bandwidth of the PD output signal is larger

than the original input signal. In order to capture and counter the IMD

effects of the PA, the sampling rate for PA and PD signals have to be sev-

eral times higher than the Nyquist rate of the original input signal. In

this work, a sampling rate of eight times the input signal bandwidth is

employed.

Finally, the discrete-time equivalent baseband signal can be obtained by

replacing the time variable t in (3.2) with the sample number n,

z[n] = |z[n]|ejϑz [n], (3.3)

where n = t
Ts

and Ts = 1
fs

is the sampling period. The representation

in (3.2) and (3.3) are used throughout this work, which are used to obtain

the behavioural models of the PA and PD.
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3.2 A review of nonlinear models for PAs and PDs

Nonlinear models can be divided into memoryless nonlinear models and

nonlinear models with memory. Memoryless nonlinear models are good

approximation for narrowband PAs, in which the AM/AM and AM/PM

functions are independent of frequency. A strictly memoryless PA exhibits

only AM/AM distortion. A quasi-memoryless PA has a memory time con-

stant in the order of the RF carrier period. Thus, it exhibits short term

memory effects and is described by both AM/AM and AM/PM distortions.

In broadband system, the AM/AM and AM/PM characteristics vary over

the bandwidth of the PA. The frequency-dependent gains and phase shifts

in these PAs are known as memory effects [38]. Nonlinear models with

memory are divided into models with linear memory and with nonlinear

memory. Models with linear memory assume that the system dynamics

are separable from the nonlinear processes. Linear memory effects con-

tribute to short-term memory effects which are attributed to the charac-

teristics of the matching networks [39]. They are typically modeled using

cascade of a static nonlinearity and linear filters at the input and output

of a static nonlinearity. On the other hand, nonlinear PA with nonlinear

memory exhibits also dynamic effects that occur only in the presence of

nonlinear processes [39]. Thus, these PAs require nonlinear models with

structures that can model the interactions between the nonlinearities and

the system dynamics.

The nonlinear behavioural models with and without memory that are

most often employed in the literature are reviewed in the following.

3.2.1 Memoryless and quasi-memoryless nonlinear models

The output of a static nonlinear PA y[n] is commonly written in two differ-

ent baseband equivalent forms in the literature. The first one represents

AM/AM fA
(|x[n]|) and AM/PM fp

(|x[n]|) functions separately and the out-

put is written in polar form as

y[n] = fA
(|x[n]|)ej(ϑx[n]+fp

(
|x[n]|

))
, (3.4)

where x[n] is the PA input signal. With this representation, parametric

models with real-valued coefficients are used to model the AM/AM and

AM/PM functions.

The second representation of the baseband output is written as

y[n] = f
(|x[n]|)ej(ϑx[n]

)
. (3.5)
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The function f
(|x[n]|) has complex-valued coefficients when quasi-memoryless

nonlinearity (AM/AM and AM/PM) is modeled. When strictly memoryless

nonlinearity (AM/AM only) is considered, the function coefficients become

real-valued.

A memoryless PA model can be extracted from the AM/AM and AM/PM

response measured by exciting the PA using a single-tone input signal,

typically at the centre frequency of the RF PA, with ramping input level.

Then, memoryless PA models in the form of (3.4) or (3.5), presented in the

following, can be used to fit the AM/AM and AM/PM curves.

3.2.1.1 Polynomial model

Polynomial model is most extensively employed for modeling PAs and

PDs. An advantage of the polynomial model is that it lends a hand for

easy analysis of spectral regrowth as each model coefficient is directly re-

lated to an IMD of a given order. Its model output is linear with respect

to its coefficients, making it possible to extract the model coefficients us-

ing well-established linear system identification algorithms such as least

squares (LS) method or least mean square (LMS) adaptive algorithm [33].

The AM/AM and AM/PM characteristics can be modeled using separate

polynomials with real-valued coefficients when the baseband model in

(3.4) is employed. Alternatively, when the representation in (3.5) is con-

sidered, a polynomial with complex coefficients can be used to describe a

baseband P -th order nonlinearity as [68]

y[n] =
P∑

p=0

a2p+1

(
x[n]

)p+1(
x∗[n]

)p
,

= x[n]
P∑

p=0

a2p+1

∣∣x[n]∣∣2p,
(3.6)

where (·)∗ stands for conjugation. Here, we note that the conjugation

is important to ensure correct representation of the baseband signal as

discussed in [68]. Equation (3.6) includes only odd order terms as the DC

and even-order terms are filtered out by the low-pass filter [69].

However, it is shown in [70] that by including the even order terms in the

baseband polynomial model, modeling error can be significantly reduced.

It should be emphasized that the even order terms merely improve the

quality of the model (thus the linearization performance of the PD), but

by no means indicate that the model includes the even order terms from

the passband. By writing x[n] = |x[n]|ejϑx[n], (3.6) can be rearranged to
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include the even order terms as

y[n] = ejϑx[n]

( P∑
p=1

ap|x[n]|p
)
. (3.7)

The expression in the bracket is a function of the input signal ampli-

tude only, and it is equivalent to f
(|x[n]|) in (3.5). The coefficients an

are complex-valued when quasi-memoryless nonlinearity is modeled and

reduce to real-valued when strictly memoryless PA is considered.

3.2.1.2 Orthogonal polynomials

A drawback of employing polynomial model is the limitation of model-

ing only weakly nonlinear PAs, which are dominated by the third-order

nonlinearity. For PA that exhibits strong nonlinearities, higher order

polynomials are required, which leads to increase in computational com-

plexity and the well-known numerical instability problem associated with

parameter estimation. Orthogonal polynomials are known to possess bet-

ter numerical properties. Examples of orthogonal polynomials are Her-

mite polynomials, Chebyshev polynomials of the first and second kind,

Laguerre polynomials and Legendre polynomials. In [19], the authors de-

rived an orthogonal polynomial basis function for the purpose of modeling

baseband PA and PD nonlinearities. The p-th order basis function given

by [19]

Ψp

(
x[n]

)
=

p∑
�=1

(−1)�+p (p+ �)!

(�− 1)!(�+ 1)!(p− �)!
x�−1[n]x[n], (3.8)

is derived using complex-valued baseband input signal with amplitude

|x[n]| uniformly distributed in [0, 1]. Their results show the numerical

property of the orthogonal polynomial is greatly improved in terms of

the autocorrelation matrix condition number as compared to conventional

polynomials [71].

3.2.1.3 Saleh model

Another widely employed memoryless nonlinear PA model in the litera-

ture is the Saleh model. The Saleh model was proposed in [40] to approx-

imate the AM/AM and AM/PM characteristics of the TWTA using two

formulas. The polar representation of the Saleh model is given by

A(|x[n]|) = αa|x[n]|
1 + ξa|x[n]|2 ,

Φ(|x[n]|) = αθ|x[n]|2
1 + ξθ|x[n]|2 ,

(3.9)

where A(|x[n]|) is the AM/AM function, Φ(|x[n]|) is the AM/PM function,

αa and αθ are amplitude and phase gain factors, respectively, and ξa and ξθ
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are amplitude and phase compression factors, respectively. The model co-

efficients are real-valued. For strictly static nonlinearity PA, the AM/AM

function alone is used for representing the PA behaviour. Whereas, for

quasi-static nonlinear PA, both the AM/AM and AM/PM functions must

be employed.

The corresponding quadrature form of the Saleh model is given by

I(|x[n]|) = αI |x[n]|
1 + ξI |x[n]|2 ,

Q(|x[n]|) = αQ|x[n]|3
[1 + ξQ|x[n]|2]2 ,

(3.10)

where I(|x[n]|) represents the in-phase component of the nonlinear con-

version and Q(|x[n]|) is the quadrature component of the nonlinear con-

version.

The Saleh model has been widely employed for modeling quasi-static

nonlinear PAs such as class A and class AB TWTAs. The accuracy of

the model deteriorates when highly nonlinear PA such as class C is mod-

eled [1]. This model has often been used as a reference PA in the literature

for the study of PA nonlinearities and its compensation [72–74].

3.2.2 Nonlinear models with memory

The Volterra series is well-known as a general expression for nonlinear

system with memory [75, 76]. However, due to the number of coefficients

required, the classical Volterra series is limited for modeling weak non-

linearities with short memory. Thus, extensive research effort has been

made to simplify the structure of Volterra series in order to reduce com-

putational complexity. In the following, some of the most commonly em-

ployed variants of simplified Volterra systems and their ability to describe

memory effects are discussed.

3.2.2.1 Volterra series

The Volterra series provides a general expression for any nonlinear sys-

tem with memory [75, 76]. The series is formulated as a combination of

linear convolution and nonlinear power series. The input-output relation-

ship of an n-order causal Volterra series with memory length L is given
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as

y[n] = h0 +

L∑
�1=0

h1(�1)x[n− �1]

+
L∑

�1=0

L∑
�2=0

h2(�1, �2)x[n− �1]x
∗[n− �2] + · · ·

+

L∑
�1=0

· · ·
L∑

�k=0

hk(�1, · · · , �k)x[n− �1]x[n− �2] · · ·x∗[n− �k],

(3.11)

where hk(�1, �2, · · · , �k) is the k-order Volterra kernel and (·)∗ stands for

conjugate transpose. The kernels can completely describe all orders of dis-

tortion caused by the system and allow comparisons of different distortion

components. Thus, the Volterra series provides convenience for nonlinear

system analysis, see e.g., in [77, 78]. Another advantage of the Volterra

series is that it has a linear-in-the-parameter expression. The model coef-

ficients can be extracted directly using well-establish linear system iden-

tification methods such as LS method.

However, a drawback of Volterra series is the huge number of coeffi-

cients involved in a complete series. Furthermore, it is also difficult to

compute the higher-order kernels from measurement data. Due to the

high computational complexity of the series, it is unattractive for practical

implementation. Several approaches have been proposed for simplifying

the Volterra series and are discussed in the rest of this section.

3.2.2.2 Memory polynomial

For practical implementation, many methods have been proposed to trun-

cate/prune the Volterra series [76] in order to reduce the complexity of

the classical Volterra series. In practice, all PAs are affected by different

degree of nonlinearities and memory effects. For a real PA, a significant

amount of the Volterra coefficients are very small and can be pruned in

order to simplify the model.

A straightforward way is to prune the off-diagonal kernels of the series,

resulting in the memory polynomial given by [5]

y[n] =
K∑
k=0

Q∑
q=0

akqx[n− q]|x[n− q]|k, (3.12)

where K and Q are the highest order of nonlinearity and memory length,

respectively. It can be implemented as an FIR filter where the gain taps

are polynomial functions of the delayed input signal instead of constants.

For further reduction of the number of coefficients, sparse delay taps were

employed in [79].
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Broadband signal can be directly applied for model extraction. Thus,

nonlinear memory effects can be captured. The model also has a linear-

in-the-parameter expression, making it practical for PA modeling and PD

implementation.

3.2.2.3 Modified/Dynamic Volterra series

For some systems, the off-diagonal coefficients of the Volterra series may

have significant contribution to the model accuracy. In order to improve

model accuracy, some authors include some off-diagonal terms, typically

those close to the main diagonal [80].

The modified Volterra series [81–83] and the dynamic Volterra series [84],

provide a systematic way to prune off insignificant dynamic terms of the

series. In these series, a dynamic deviation function e[n, i] = x[n− i]−x[n]

is utilized in order to reformulate the Volterra series into a purely static

term and a dynamic part, y[n] = ys[n] + yd[n], given by the first term and

second term of (3.13), respectively.

y[n] =
P∑

p=1

apx
p[n] +

P∑
p=1

p∑
r=1

x(p−r)[n]
L∑
�1

· · ·
L∑
�r

wp,r(�1, · · · , �r)
r∏

j=1

e(n, �j),

(3.13)

where ap is the pth-order coefficient of the static polynomial function and

wp,r represents the rth-order dynamic kernel of the pth-order nonlinea-

rity. Then, the dynamic order of the model can be controlled using r, thus

reducing the series complexity while maintaining a high modeling accu-

racy.

However, separate measurements, which involved complicated proce-

dures, are required for extracting the two parts of the model, see [83,84].

In addition, these series are no longer linear-in-the-parameter, hindering

the use of linear system parameter estimation methods.

3.2.2.4 Dynamic deviation reduction-based (DDR) Volterra series

In [85], the modified Volterra series is rearranged in order to retain the

linear-in-the-parameter property. By substituting the dynamic deviation

function e[n, i] = x[n− i]− x[n] into (3.13) and regrouping the coefficients

ap and wp,r, the authors arrived at the new representation known as the
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dynamic deviation reduction-based Volterra series,

y[n] =
P∑

p=1

hp,0(0, · · · , 0)xp[n]+

P∑
p=1

{ p∑
r=1

[
x(p−r)[n]

L∑
�1=1

· · ·
L∑

�r=�r−1

hp,r(0, · · · , 0, �1, · · · , �r)
r∏

j=1

x(n− �j)
]}

.

(3.14)

In this series, the coefficients hp,r(0, · · · , 0, �1, · · · , �r) are the same as the

pth-order Volterra kernel, but with p−r first indices equal to zero. Similar

to the modified/dynamic Volterra series, by adjusting r, the number of

dynamic terms of the pth order kernel can be reduced. In other words,

diagonal and off-diagonal terms up to the rth dynamic order are retained,

leading to improved modeling accuracy compared to memory polynomial.

3.2.2.5 Generalized memory polynomial

In an independent development [86], a series which has similar structure

as the dynamic deviation reduction-based Volterra series was formulated.

The author started by changing the “diagonal” index variables in the clas-

sical Volterra series and rearranging the coefficients according to their

dynamic orders. An expression [86, Eq. 4] similar to the pth-order term

in (3.14) (term between the curly bracket) is obtained, except without the

dynamic deviation variable r. Then, by manually choosing the time shift

between the signal and its exponential envelope, including both negative

and positive time-shift, the generalized memory polynomial is obtained as

yGMP[n] =

Ka−1∑
k=0

La−1∑
�=0

ak�x[n− �]
∣∣∣x[k − �]

∣∣∣k+
Kb∑
k=0

Lb−1∑
�=0

Mb∑
m=1

bk�mx[n− �]
∣∣∣x[k − �−m]

∣∣∣k+
Kc∑
k=0

Lc−1∑
�=0

Mc∑
m=1

ck�mx[n− �]
∣∣∣x[k − �+m]

∣∣∣k,
(3.15)

where Ka, La are the number of coefficients for the diagonal terms, Kb,

Lb, Mb and Kc, Lc, Mc determine the number of cross-terms with lagging

envelope signal and with leading envelope signal, respectively.

3.2.2.6 Wiener and Hammerstein models

The Wiener and Hammerstein models depicted in Fig. 3.1 and Fig. 3.2, re-

spectively, are special cases of the general Volterra series. The former con-

sists of a linear dynamic system followed by a static nonlinear system and

the latter has the sub-systems cascaded in reverse order. By separating
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Linear
dynamic

block

Static
nonlinear

block

x(t)u(t) y(t)

Figure 3.1. Wiener Model

Static
nonlinear

block

Linear
dynamic

block

x(t)u(t) y(t)

Figure 3.2. Hammerstein Model

the linear dynamics and static nonlinearities into two sub-systems, fewer

parameters are needed to describe the nonlinear system with memory. In

comparison with the Volterra series, these models are more suitable for

practical application.

However, these models assume that the nonlinearity and the linear dy-

namics of the system are separable. The linear dynamic block is typically

modeled using an finite impulse response (FIR) filter or infinite impulse

response (IIR) filter and the nonlinear block is characterized by a static

nonlinearity, see e.g., [13, 14, 16, 17]. The coefficients of the static non-

linear block are normally extracted using single-tone measurement. The

shape of the nonlinearity of these systems is fixed. The linear filter at

the input or output of the static nonlinear block is only shifting the fixed-

shape static nonlinearity. The linear filter is normally identified using

small-signal measurement, which leads to the possibility of ignoring me-

mory effects that occur in the nonlinear region. Thus, these system can

only capture linear memory effects.

The Wiener model does not have a linear-in-the-parameter expression.

Thus, more tedious model parameter extraction procedure is required.

Another drawback of block-oriented models in general, is associated with

parameter identification. For example, the intermediate signal of the

Wiener model is not measurable. A unique solution for the parameters

of the sub-systems can only be found if the inverse of the static nonlinea-

rity exists and the linear filter h is minimum phase [34,87,88]. The static

gain of these models, which can be arbitrary distributed between the two

subsystems, has to be fixed in either block to ease parameter identifica-

tion.
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Figure 3.3. Wiener-Hammestein model

3.2.2.7 Wiener-Hammerstein model

The Wiener-Hammerstein model is a cascade of linear filter-static non-

linearity-linear filter, as show in Figure 3.3. Comparing to the two-box

models, its additional linear filter offers an additional degree of freedom

for characterizing the PA. The Poza-Sarkozy-Berger (PSB) model [89] is

an example of using the Wiener-Hammerstein structure for modeling PA

with memory. The static nonlinearity is obtained from single-tone mea-

surement at the center frequency of the PA. Then the linear filters are

identified using swept-tone measurement across the bandwidth of the PA.

Similar to the two-box models, the nonlinearity of the Wiener-Hammerstein

model is fixed. The input and output filters only cause a displacement of

the static nonlinear curve (shifted vertically or horizontally), thus model-

ing only linear memory effects.

The Wiener-Hammerstein model poses similar disadvantages of block

models discussed above.

3.2.2.8 Parallel Wiener model

���� �����

�����
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��������

�����

�	���

Figure 3.4. Parallel Wiener model

A limitation of the two-box and three-box models discussed above is

their inability to capture nonlinear memory effects. Nonlinear PA with

nonlinear memory cannot be characterised using swept-tone measure-

ment. In this type of system, the shape of the nonlinearities are changing

according to the frequency and bandwidth of the input signal level. In
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order to capture the nonlinear memory effects, broadband input signal or

two-tone input signal with varying tone spacing has to be employed for

extracting the model coefficients.

The parallel Wiener model is proposed in [15] to overcome the limitation

of the two-box and three-box models. The first branch is identified as a

memoryless AM/AM and AM/PM model using single-tone measurements.

The authors derived the AM/AM and AM/PM complex-envelope function

that is expressed in terms of IMD products. Then, using two-tone mea-

surement data obtained by sweeping the envelope frequency and power

level, the AM/AM and AM/PM curves are extracted for each envelope

frequency by measuring IMD products. Finally, the difference between

the output of the first branch and the two-tone measurements is modeled

by adding Wiener systems in parallel. This model topology provides the

structure to support the dynamic interactions between different nonlinear

processes. Thus, it is capable of modeling nonlinear memory and provides

means for quantifying memory effects in a PA. Due to its structure, the

model output may not be linear-in-the-parameter which makes model pa-

rameter extraction more tedious.

3.3 Modeling PA and PD using The SCPWL function

A piecewise linear (PWL) function is a function that divides the input

space into a finite number of segments, each described by a linear affine

function. Conventional PWL functions are expressed region by region and

thus require a huge amount of coefficients. A compact form known as the

canonical PWL function was first introduced in [90]. It is expressed as

a global function with much less coefficients than the conventional PWL

function. Later, the concept of simplicial partition is used in [32] to de-

velop PWL functions in an even more compact form. This class of PWL

functions known as the simplicial canonical piecewise linear (SCPWL)

function. PWL functions have been used for modeling and analysis of

nonlinear circuits [91,92]. In this work, the SCPWL function is employed

for modeling PA and PD nonlinearities.

3.3.1 The simplicial canonical piecewise linear function

The SCPWL function in R1 uses σ breakpoints, {βi}σi=1, where (β1 ≤ β2 ≤
· · · ≤ βσ), to divide the input domain into (σ − 1) linear affine segments.
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The SCPWL function with real-valued input x can be expressed as

f(x) = c0 +
σ−1∑
i=1

ciλi(x), (3.16)

where λi(x) is the i-th basis function and {ci}σ−1i=0 are the real-valued coef-

ficients of the SCPWL function. The basis function is given by

λi(x) =

⎧⎨
⎩

1
2

(
x− βi + |x− βi|

)
, x ≤ βσ

1
2

(
βσ − βi + |βσ − βi|

)
, x > βσ

. (3.17)

From the second line of (3.17), when the input value x exceeds the value

of the last breakpoint βσ, the basis function returns a fixed value for each

1 < i < σ − 1. This results in the SCPWL function imposing a saturation

when the input level exceeds the last breakpoint. When x falls within the

defined input space, the first line of (3.17) is valid. The i-th basis is then

equal the distance between the input value x and the i-th breakpoint βi

when x > βi, and returns a null when x ≤ βi, for 1 < i < σ− 1. Then these

bases multiplied with the SCPWL coefficients as in (3.16) equal the total

gain imposed on the input by each linear affine segment. For convenience,

(3.16) can be expressed in matrix-vector form as

f(x) = λT (x)c, (3.18)

where λ(x) =
[
1 λ1(x) · · · λσ−1(x)

]T and c =
[
c0 c1 · · · cσ−1

]T .

This function can be directly used for characterizing the AM/AM and

AM/PM functions in (3.4), where x is now the input signal amplitude.

3.3.2 The proposed baseband SCPWL model with memory

In this work, a complex-valued SCPWL model suitable for modeling base-

band nonlinearities is proposed. The original SCPWL function in (3.16)

is modified to include phase information and complex-valued coefficients.

Furthermore, the proposed model is formulated to include memory effects.

The resulting complex-valued memory-SCPWL model, mapping C→ C, is

formed by summing the output signals described by a baseband mapping

C→ C at the current and L− 1 past time instants given by

f
[
r(n)] =

L−1∑
�=0

{
c∗�0 +

σ�−1∑
i=1

c∗�iλi

(|r(n− �)|)× exp
(
jr(n− �)

)}

=
L−1∑
�=0

cH
� λ[r(n− �)],

(3.19)

where r(n) = [r(n) r(n−1) · · · r(n−L+1)]T is the vector of input samples,

|r(n)| and r(n) are the respective amplitude and phase of the baseband
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signal r(n) ∈ C, and vectors c� ∈ Cσ×1 and λ[r(n)] ∈ Cσ×1 are given by

c� =
[
c�0 c�1 · · · c�(σ�−1)

]T
, � = 0, . . . , L− 1,

λ[r(n)] =
[
1 λ1[|r(n)|] exp

(
jr(n)

)
· · · λσ−1[|r(n)|] exp

(
jr(n)

)]T
.

(3.20)

The term in the curly bracket in (3.19) has a similar expression as the

baseband equivalent of passband quasi-memoryless model (AM/AM and

AM/PM conversion) discussed in [68, Sec. IV]. Equation (3.19) reduces

to a memoryless (quasi-static) mapping when L = 1, and can be used to

model f
(|x[n]|) in (3.5). When L > 1, the memory-SCPWL model can be

used for modeling nonlinear PAs and PDs with memory.

The memory-SCPWL model has a similar form as the memory polyno-

mial [5]. Both the functions have similar Volterra kernels pruning ap-

proach and have linear-in-the-parameter expression. The functions in-

clude only the equivalent of diagonal Volterra kernels. For instance, in

both Equations (3.12) and (3.19), the nonlinearity in each memory branch

is generated without any cross-term combinations, such as r(n− �1)r(n−
�2), of the input signal. The linear-in-the-parameter expression makes

the model parameter estimation straightforward by using LS or LMS al-

gorithms. The distinction between the memory-SCPWL function and me-

mory polynomial is their different nonlinear functions, i.e., SCPWL func-

tion and polynomial, respectively, in each memory branch.

By using broadband excitation signal to obtain measurement data, non-

linear memory effect can be captured by the memory-SCPWL model.

3.4 Properties of the SCPWL function

The properties of the SCPWL function have been studied and exploited

in this work for development of efficient PD identification and adaptation

algorithms. The following summarizes the properties that are exploited

to provide conveniences for PD implementation.

3.4.1 Saturation level

The SCPWL function imposes a saturation level after a given input level

by using the second line of (3.17). It returns a fixed maximum value when

the input level exceeds the last breakpoint and results in a saturation

level. This feature makes the SCPWL suitable for modeling PA and PD
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type nonlinearity. For instance, by placing the last breakpoint of the PD

βσ at the input saturation level of the PA, the maximum output level of the

PD can be limited. This limitation provides control to avoid over-driving

the PA and cause significant signal compression at the PA output when

the input signal amplitude is large.

3.4.2 Linear affine segments and user-defined breakpoints
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Figure 3.5. Piecewise linear representation of a static nonlinear behaviour

A piecewise linear function is composed of a set of non-overlapping lin-

ear functions, each defined within a segment as illustrated in Figure 3.5.

Each segment is defined by two breakpoints. This linear affine structure

of the SCPWL function has facilitated the development of the SCPWL PD

identification and adaptive algorithms.

• As the breakpoints are defined by the user, the number of break-

points and their distribution can be optimized to better fit the shape

of the nonlinearity to be modeled. Simulation examples in [III] and

[VII] shows that the performance of the SCPWL PDs improved as

the number of breakpoints increases. In [VI], it is shown that the

error in modeling the spectrum of a SCPWL nonlinearity decreases

as the number of PWL segments is increased. A saturation in im-

provement is also observed.

• A static nonlinearity of a PA and its inverse nonlinearity resemble

mirror images of each other. This indicates that the static nonlinear

characteristic of the PD can be obtained by an appropriate projec-
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tion of the PA characteristic. By exploiting this fact and the linear

affine segments of the SCPWL function, two efficient vector projec-

tion based methods are developed for identifying static SCPWL PDs,

i.e., the orthogonal image projection method and the inverse coordi-

nate mapping (ICM) method, proposed in publications [I] and [III],

respectively.

• Due to the linear affine property, the SCPWL function (3.16) can be

fully defined by evaluating the function at all its breakpoints. This

means that it is sufficient to collect the input-output data at the

user-defined breakpoints in order to characterize a static nonlinea-

rity using the SCPWL function. Furthermore, in [I], it is shown

that the matrix inversion invoked in LS parameter extraction can

be avoided. Instead, by exploiting the linear affine property and the

known user-defined breakpoints, the inverse basis function matrix

is constructed using the known breakpoints values as

Λ−1(β) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0

− 1
s1

1
s1

0 0 0 · · · 0

1
s1

−∑2
1

1
si

− 1
s2

0 0 · · · 0

0 1
s2

−∑3
2

1
si

1
s3

0 · · · 0

0 0 1
s3

. . . . . . · · · 0
...

...
...

... . . . . . . ...

0 0 · · · 0 1
sσ−2

−∑σ−1
σ−2

1
si

1
sσ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.21)

where si = βi+1 − βi is the length of ith segment. In [I]–[V], (3.21) is

used for solving the static SCPWL model coefficients. The numerical

instability problem associated with inversion of an ill-condition ma-

trix can be totally avoided. Furthermore, only the elements of the

main diagonal and two lower subdiagonals, i.e., 3(σ − 1) elements

need to be computed.
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3.4.3 SCPWL coefficients and the gradients of the linear affine
segments

By evaluating the SCPWL function (3.16) at all the breakpoints β, we get

f(β1) = c0,

f(β2) = c0 + c1λ1(β2),

f(β3) = c0 + c1λ1(β3) + c2λ2(β3),

...

f(βσ) = c0 + c1λ1(βσ) + · · ·+ cσ−1λσ−1(βσ).

(3.22)

Then, by substituting f(β1) = 0 (this is the case for PA type nonlinea-

rity) and rearranging the equations in (3.22), it can be shown that the

SCPWL coefficients {ci}σ−1i=0 are related to the gradients of its linear affine

segments {mi}σ−1i=1 as

c1 = m1,

ci = mi −mi−1, ∀ 1 < i < σ
(3.23)

Alternatively, the gradient of segment j is given by

mj =

j∑
i=1

ci, (3.24)

for j = 1, · · ·σ − 1. This relationship is used in [VII] to estimate the value

of the G (k) = dN(v(k))
dv(k) in the direct-learning PD adaptation algorithm.1

3.4.4 Spectrum of the SCPWL model

It is well understood that the intermodulation distortion (IMD) compo-

nents generated by a polynomial model is determined by the orders of the

polynomial basis, e.g., x5 produces the third and fifth order IMDs. For a

PWL function such as the SCPWL model, the relationship between the

basis functions and the order of IMD is not easily deducible. In [VI], an

analysis is performed on how the SCPWL basis function introduces IMD.

The results of the analysis found the following.

• The output spectrum of the SCPWL basis is given by

λn(f) = R(f)⊗Πn(f)− βnΓ(f)⊗Πn(f), (3.25)

1The relationship in (3.24) is used for simplifying the direct learning algorithms
in [VII]. This is presented here as it is not explained in [VII] due to space limita-
tion.
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where ⊗ denotes convolution, λn(f) and R(f) are the Fourier trans-

form of λn[r(t)] and the input signal r(t), respectively. It is shown in

[VI] that Πn(f) and Γ(f) are sinc-like functions. Thus, the SCPWL

basis operation causes spreading of the input signal spectrum, in-

troducing frequency components that are not present in the input

signal. The number of IMD components produced by the each ba-

sis function is theoretically infinite. Thus, IMD order of the SCPWL

model is not determined by the highest order basis. The SCPWL

function output spectrum given by

Ŝ(f) =
N−1∑
n=1

cnλn(f), (3.26)

is a sum of scaled spectra of the basis functions. It can be deduced

that the number of linear affine segments determines how accu-

rately the function can model the IMD components.

• Simulation experiments are setup in [VI] to examine the influence

of the number of breakpoints on modeling accuracy of the SCPWL

function. The error in modeling the output spectral density (PSD) of

a nonlinearity is used to gauge the modeling accuracy. It is shown

that as the number of breakpoints increases, the modeling accuracy

improves. The modeling capability saturates when the number of

breakpoints increase above a certain number. In contrast, increas-

ing the order of a polynomial above a certain order results in degra-

dation of modeling capability.

3.5 Summary of contributions

The major contribution of this research concerning modeling of broadband

PAs and PDs are as follows.

• A complex-valued memory-SCPWL model suitable for modeling base-

band PAs and PDs with memory has been proposed. The model is

linear-in-the-parameter. Thus, it can be conveniently identified us-

ing well-establish linear system identification methods such LMS

algorithm. As compared to the polynomial model, it is more suitable

for modeling strong nonlinearities.

• The properties of the SCPWL function have been studied in order to

identified structures that can be exploited for development of simpli-

fied PD identification and adaptive algorithms. It is found that the
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saturation behaviour of the function makes it suitable for modeling

PA and PD type of nonlinearities. The linear affine structure (or

piecewise linear structure) and the known user-defined breakpoints

of the function are used for simplifying the implementation of the

PD identification algorithms.

• An analysis on how the SCPWL function introduces IMD and the

relationship between the basis function order and the order of IMD

was carried out. A formula for predicting the output spectrum of

the SCPWL function when excited by multi-tone signal is obtained.

The analysis also show that each SCPWL basis function spreads the

input signal spectrum to infinite order of IMD. Thus, the SCPWL

function which consists of a superposition of scaled basis function

output is capable of modeling infinite order of IMD. The accuracy of

the model depends on the number of segments the function employs.
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4. Predistorter identification algorithms

A PD identification algorithm typically consists of a training architecture

designed for the PD function to learn the inverse characteristics of the

PA, and a model parameter extraction algorithm derived based on an ap-

propriate error objective function. The performance of a PD identification

algorithm is commonly associated with the effectiveness of the identified

PD and the efficiency of the algorithm. In other words, a good PD iden-

tification algorithm must be computationally efficient, able to extract the

parameters of an effective PD and converges reasonably quickly. Another

important aspect of PD identification algorithms is adaptivity, especially

for linearizing PAs in modern communication systems such as LTE sys-

tem. The PA characteristics in these systems may vary due to changes

in the operating conditions such as carrier frequency, signal bandwidth,

modulation format and operating temperature. With a varying PA be-

haviour, an adaptive PD algorithm is essential for ensuring satisfying lin-

earization performance. In order to meet these objectives, a variety of PD

identification algorithms have been proposed.

A straightforward method is one that identifies the PD in two steps. The

PA model is first extracted by exciting the PA with a training signal. Then,

the PD model is estimated by finding the inverse of the obtained PA model.

An example of this 2-step PD identification approach can be found in [93],

where the parameters of the memoryless polynomial PA is first extracted

using the LS method. Then, the PA model parameters are used to derived

the inverse memoryless polynomial function as the PD. When nonlinear

PA with memory is involved, finding the inverse PA model becomes more

challenging as the PA response is no longer a monotonic function. For

instance, the Volterra series has been used by many authors for modeling

nonlinear PA with memory. In order to find the inverse of a Volterra PA

model, the p-th order inverse method [76, 94] can be employed. However,

the p-th order inverse is computationally heavy, rendering it unsuitable

for practical implementation. Thus, the above mentioned two-step PD
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identification method is more suitable for identification of narrowband

PD. In addition, to incorporate adaptivity in this method requires periodic

training of the PD, which involves a two-step modeling procedure.

In the literature, the more popular solutions are algorithms that identify

the PD parameters in one step, bypassing the explicit PA identification

step. These more efficient PD identification algorithms employ learning

architectures that allow the PD filter to directly learn the inverse char-

acteristic of the PA. The two learning architectures that dominate the

digital PD literature are the indirect learning [5, 10, 13, 95] and direct

learning architectures [16, 22, 23]. In conjunction with these learning ar-

chitectures, parameter extraction methods such as LS methods, LMS and

RLS algorithms are proposed for tuning the PD filter parameters. Adap-

tivity is easy to incorporate into these methods as they identify the PD

by learning the inverse of the PA in one step. The indirect learning and

direct learning PDs found in the literature are reviewed in the later sec-

tion of this chapter. More discussions on the advantages and drawbacks

of these methods and techniques proposed in the literature to improve

performance and efficiency of these algorithms are provided there.

In this work, the two-step method is developed for static SCPWL PD

identification. For the SCPWL PDs with memory, indirect learning and

direct learning algorithms are proposed. In [I] and [III], the two-step PD

identification based on vector projection methods are proposed for static

SCPWL PD. In these methods, the static nonlinearity of the PA is first

modeled as the real-valued SCPWL function in (3.16). Then, a projection

matrix is used to map the static nonlinear characteristics of the PA to its

inverse to obtain the static SCPWL PD. The coefficients are extracted us-

ing LS method. Then, memory effects compensation is done by an adap-

tive linear filter cascaded after the static nonlinear block of the PD. In

[VII], adaptive filtering methods adopting the indirect and direct learning

architectures are proposed. The SCPWL PDs with memory, namely, the

memory-SCPWL PD and Hammerstein-SCPWL PD, modeled using the

proposed complex-valued SCPWL function in (3.19), are implemented as

adaptive filters. Least mean square (LMS) algorithm is derived for adapt-

ing the coefficients of the PDs. In these PD identification algorithms,

methods are developed for reducing the complexity of the identification

algorithms.

Section 4.1, reviews the most referenced indirect learning and direct

learning PDs found in the literature. The the advantages and drawbacks
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of these algorithms, difference in implementation and methods proposed

for improving effectiveness and efficiency of the algorithms are also dis-

cussed. Then, the SCPWL PD identification algorithms proposed in this

thesis are presented in Section 4.2. The vector projection methods from [I]

and [III] are first presented, followed by the adaptive filtering approach

using both the indirect learning and direct learning architectures from

[VII]. The modified Wiener model estimator employed to circumvent the

non-convex cost function problem of Wiener/Hammerstein models identi-

fication is also discussed. In Section 4.3, analysis of measurement noise

effects on the indirect learning SCPWL filter carried out in [VII] is sum-

marized. Section 4.5 concludes the chapter by outlining the contribution

of this work in the area of PD identification algorithms.

4.1 Review of indirect and direct learning PDs

The indirect learning and direct learning methods are the most adopted

methods for PD identification in literature of the past two decades, see,

e.g., [5,10,13,16,22,23,95–97]. These methods are more efficient and eas-

ier to implement as compared to the two-step approach discussed above.

With these learning architectures, adaptivity is easier to incorporate into

the PD identification algorithm as these methods employ a learning loop

around the PA and identify the PD in one step. The major difference

between the two learning architectures is in the way the learning loop

around the PA is arranged. The indirect learning arrangement results

in identification of the post-inverse model of the PA, which is then used

as the PD. The direct learning method identifies the pre-inverse model

as the PD. There are advantages and drawbacks associated with these

learning architectures due to their learning loop arrangement. Besides

the learning architecture, the method adopted for parameter extraction

also affect the efficiency of the PD identification algorithm. In the more

recent literature, efforts are focused on proposing techniques for improv-

ing efficiency and to overcome drawbacks associated with these methods.

This section provides a review of the most referenced indirect learning

and direct learning PDs in the literature.
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Figure 4.1. Indirect-learning architecture.

4.1.1 Indirect learning PDs

Figure 4.1 illustrates the indirect learning architecture employed for iden-

tifying a PD. A learning loop is formed around the PA where the PA output

signal is fed back to the learning filter. The error signal is generated by

comparing the output of the learning filter and the input signal to the PA.

The error signal can then be used to form an appropriate objective func-

tion for the adapting the filter parameters. In the literature, the most

common filter adaptation algorithms employed in conjunction with the in-

direct learning filter are LS, LMS and RLS. The indirect learning method

identifies the post-inverse model of the PA. After the learning filter have

converged to an optimum, they are directly copied to the PD filter.

The indirect learning architecture was first employed for PD identifi-

cation in [10]. A truncated Volterra series is employed as the PD func-

tion. The indirect learning architecture is adopted and the recursive least

squares (RLS) algorithm is formulated for extracting the Volterra PD pa-

rameters. As compared to the two-step method which employs the the p-th

order inverse method [75] to identify a Volterra model PD [98], a signifi-

cant reduction is complexity is seen. In [96], the authors proposed using

V-vector algebra to expedite convergence and further reduce complexity of

the indirect learning RLS algorithm for Volterra PD identification. In [5],

memory polynomial, which is a special case of Volterra series, is used to

characterize the PD function. The reduced number of coefficients and the

linear-in-the-parameter input-output expression of the function ease the

parameter extraction problem. The indirect learning memory polynomial

PD coefficients are identified using LS method. In [95], the LS/Newton

method is proposed for identifying indirect learning memory polynomial

PD with envelope memory terms. The LS/Newton method provides im-

provement in convergence speed. The indirect learning architecture is
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also employed for identifying a Hammerstein model PD in [13]. First, the

the Narendra-Gallman method [99] is employed to iteratively identify the

linear and nonlinear systems of the Hammerstein PD. Due to the non-

convex cost function of the Hammerstein model, the Nadrendra-Gallman

is prone to convergence problem. The authors proposed a two-step Least-

Squares/Singular Value Decomposition (LS/SVD) method in order to avoid

converging to a local minimum.

A drawback of the indirect learning architecture is due to noise at feed-

back path to the indirect learning filter. As shown in Figure 4.1, the in-

put to the indirect learning filter is a feedback signal from the PA out-

put. Thus, noise due to the imperfect transmission line, signal down-

conversion and ADC is present at the filter input. It is shown in [25]

that when polynomial function is employed as the indirect learning filter,

input noise causes biased estimates of the PD coefficients, which compro-

mises the performance of the PD. Instead of compensating the nonlinear

effects, additional spectral regrowth at the PA output is observed, as re-

ported in [23, 25, 86]. The negative impact of the noisy estimates of the

PD coefficients is also known as the coefficient bias effects. It is shown

in [95] that the in-band error and out-of-band noise caused by the bias es-

timates of the memory polynomial PD rise linearly with the level of noise

at the feedback path of the indirect learning architecture. Two methods

were proposed for reducing the noise effect in [25], namely, inverse mod-

eling with block averaging of periodic training signal, and forward mod-

eling followed by noiseless inverse modeling. These techniques increase

the computational complexity of the PD algorithm considerably. More

recently, a computationally more efficient modified LS method for param-

eter extraction is proposed in [27]. In this method, the feedback path is

represented by a complex gain. A technique is proposed for measuring the

gain and the information is incorporated in the input matrix for solving

the LS equation, resulting in reduced bias in the estimates.

There is another concern for the indirect learning method of PD iden-

tification, which is the main reason researchers resort to direct learning

method. As the post-inverse of the PA is employed as the PD in the in-

direct learning method, the concern is whether the post-inverse and the

pre-inverse of the PA are commutable. However, a theory is established

in [75] that if the p-th order post-inverse of a general Volterra system is

obtained, then the p-th order pre-inverse is identical.
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Figure 4.2. Direct-learning architecture.

4.1.2 Direct Learning PDs

The direct learning architecture is illustrated in Figure 4.2. Differing

from the indirect learning architecture, the direct learning filter identifies

the pre-inverse of the PA. The learning filter is the PD filter itself. The

learning loop is closed around the PD-PA chain. The error signal that

is used for deriving the PD parameter extraction algorithm is formed by

comparing the output of the PA and the desired linearized PA output. As

the PA appears at the output of the learning filter, i.e, the PD, the error

function inevitably includes the PA function. Thus, the characteristics of

the PA is required in the direct learning algorithms.

The direct learning method is employed in [16,22,23,97]. In [22], the di-

rect learning architecture is employed for identifying a Volterra PD. The

authors derived the LMS algorithm for updating the Volterra PD filter

coefficients. The PA function appears as a nonlinear filter for the ref-

erence input signal in the update equation. Thus, the direct learning

LMS algorithm is also known as nonlinear filtered-x LMS (NFxLMS) al-

gorithm [22,28,29]. The authors characterized the PA as a Volterra filter.

Instead of estimating the PA model in each iteration, the authors assumed

that its parameters are known in order to simplify the implementation.

The NFxLMS algorithm is also employed in [16] for adapting a Hammer-

stein model PD. The PA is modeled as a Wiener system and is estimated

offline.

Besides the increased complexity due to the need to acquire the PA

model and filtering of the reference input signal, another drawback of

the NFxLMS algorithm is its extremely slow convergence speed. Nonlin-

ear filtered-x Recursive Least-Squares (NFxRLS) algorithm is commonly

employed in order to increase the convergence speed of direct learning

PDs [23, 97], at a price of added computational complexity. In [97], the
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static nonlinear block of the Wiener PA is modeled by PWL functions in

order to simplify the direct learning Hammerstein model PD algorithm.

4.2 Identification algorithms for SCPWL PDs

This section summarizes the SCPWL PD identification algorithms pro-

posed in this work, namely, the vector projection based methods and the

adaptive filtering methods. The vector projection based methods are de-

veloped for identification of static SCPWL PD. The adaptive filtering meth-

ods adopt the indirect learning and direct learning architectures and the

filters are adapted by the LMS algorithm. Issues associated with these al-

gorithms and methods proposed to circumvent the issues and to simplify

the algorithms are also discussed.

4.2.1 Vector projection methods

Two vector projection based methods are developed in this thesis, i.e., the

image projection method [I] and the ICM method [III]. In these methods,

the static nonlinearity of the PA is modeled as the static SCPWL func-

tion in (3.16) which composes of linear affine segments as shown in Fig-

ure 3.5. Each segment can be completely defined by the two coordinates

bk = [βk, yk]
T and bk+1 = [βk+1, yk+1]

T at the edges of the segment. The

SCPWL nonlinearity of the PA can be written in vector-matrix form as

y = f(β) = Λ(β)c. (4.1)

Knowing that the static PD response is the inverse of the PA, the static

SCPWL characteristics of the PD can be obtained by projecting the coordi-

nates (b1, · · · , bσ−1) using a suitable vector projection matrix [100]. Let

the projection matrix be denoted by Q. Then, the coordinates that define

the SCPWL PD is b′ = Qb, where b′k = [β′k, y′k]. Now, the SCPWL PD

function can be written as

y′ = g(β′) = Λ′(β′)c′. (4.2)

The PD coefficients can then be extracted by solving the c′ =
[
Λ′(β′)

]−1
g(β′).

Matrix inversion is computationally costly operation. Instead of com-

puting
[
Λ′(β′)

]−1 directly, the inverse basis function matrix expressed in

(3.21) is used, where Λ′I(β
′) can be constructed using the obtained PD

breakpoints β′. Then the static SCPWL coefficients of the PD is

c′ = Λ′I(β
′)g(β′). (4.3)
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Figure 4.3. PD static nonlinear response resembles the mirror image of the PA static
nonlinear response.

In this work, two projection matrices are derived, i.e., the image projec-

tion matrix and the ICM matrix.

4.2.1.1 Image projection matrix

The image projection method proposed in [I] is based on the idea that

the normalized AM/AM response of the PD is the mirror image of the PA

AM/AM response, as illustrated in Figure 4.3. The linearized gain of the

PD-PA output is 1. Thus, the PA and PD characteristics are mirror images

of each other. By modifying an orthogonal projection [100], the resulting

image projection matrix derived in [I] is given by

Q =

⎡
⎣0 1

1 0

⎤
⎦ . (4.4)

However, the image projection method is limited to normalized PA and

PD responses. In the following, the ICM method which allows mapping of

PD that gives any arbitrary linearized gain is presented.

4.2.1.2 Inverse coordinate mapping matrix

In practice, the desired linearized gain of the PD-PA system is rarely

unity. Instead, it is more likely to be the small signal gain of the PA

or a gain that allows a maximum spanning of the PA input range up to

the PA saturation point. When the desired linear gain G �= 1, the static
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Figure 4.4. The inverse coordinate mapping method

nonlinear function of the PD is not an exact mirror image of the PA’s, as

illustrated in Fig. 4.4. In [III], the ICM method is developed, where a

new projection matrix which allows mappings that give any arbitrary lin-

earized gain G �= 1 at the PD-PA output is derived. The ICM matrix is

derived based on the following conditions.

C1 The output of the PD-PA cascade is a linear amplified version of the

input signal with an arbitrary linearized gain G.

C2 The output space of the PD must coincide with the input space of the

PA.

The ICM matrix that fulfils these conditions is given by

Q =

⎡
⎣0 1

G

1 0

⎤
⎦ . (4.5)

When G = 1, the ICM matrix reduces to the image projection matrix.

4.2.2 Adaptive filtering methods

In [VII], a Hammerstein-SCPWL PD and a memory-SCPWL PD are pro-

posed for linearizing nonlinear PAs with memory. Both indirect and direct

learning architectures are employed for identifying the SCPWL PDs with

57



Predistorter identification algorithms

memory. The LMS algorithm is derived for adapting the coefficients of the

PDs.

The memory-SCPWL function is particularly suitable for adaptive fil-

ter implementation. Its adaptive algorithms are straightforward to de-

rive due to its linear-in-the-parameter expression. The LMS algorithms

for the Hammerstein-SCPWL PD are more tedious due to the non-convex

cost function problem associated with block models [34–36]. A modified

Wiener model estimator is employed in order to overcome the non-convex

cost function problem.

In the following, the modified Wiener model estimator which is em-

ployed in the Hammerstein-SCPWL PD identification algorithms is first

outlined. Then, the indirect learning and direct learning algorithms for

the Hammerstein-SCPWL PD identification are summarized. Finally, the

indirect learning and direct learning memory-SCPWL PD algorithms are

presented.

4.2.2.1 Modified Wiener model estimator

In this thesis, the Hammerstein-SCPWL PD algorithms are designed by

assuming that the PA can be modeled as a Wiener system. In the indirect

learning algorithm, the linear subsystem of the Wiener model PA has to

be estimated. In the direct learning algorithm, the Wiener PA model is re-

quired in the update equation. In order to avoid the non-convex cost func-

tion problem in block models identification, the modified Wiener model

estimator shown in Figure 4.5 is employed. As a result, both the indirect

learning and direct learning algorithms for the Hammerstein-SCPWL PD

identification are simplified.

PA

             
- +

  

+

+

e0(n)

Ĥ P̂

y(n)

η(n)

u(n)

v̂(n) ṽ(n)

H N

v(n)

Figure 4.5. Modified Wiener model estimator.

Following from Figure 4.5, the estimator generates the error signal e0(n)

by comparing the estimated intermediate signals of the Wiener system

from the feed-forward and fed-back filters. The ambiguity of the total

58



Predistorter identification algorithms

static gain distribution in the two filters is resolved by anchoring ĥ0(n) to

a fixed value ĥ0, see [87]. The estimator configuration renders a linear-in-

the-parameter error equation, leading to a convex cost function [101]. By

minimizing the instantaneous squared error objective function |e0(n)|2,
the LMS update equation for the modified Wiener model estimator is

given by

θ(n+ 1) = θ(n)− μ0φ(n)e
∗
0(n), (4.6)

where μ0 is the adaptation step size that controls the convergence speed

and final error. The vectors, θ(n) ∈ C(σ+N−1)×1 and φ(n) ∈ C(σ+N−1)×1 are

the parameter vector and regression vector, respectively, given by

θ(n) =
[
ĉ0(n) · · · ĉσ−1(n), ĥ1(n) · · · ĥN−1(n)

]T (4.7)

φ(n) =
[
λT[y(n)], −u(n− 1) · · · − u(n−N + 1)

]T
. (4.8)

To ensure convergence for the algorithm in (4.6), the range of μ0 is [102]

0 < μ0 <
1

�max
, (4.9)

where �max is the maximum eigenvalue of E
[
φ(n)φH(n)

]
. As shown in

[VII], the upper bound for �max can be written as

�max ≤ 1 +
σ−1∑
i=1

(βσ − βi)
2 + (N − 1)σ2

u, (4.10)

where σ2
u is the variance of the signal u(n). Equation (4.10) indicates

that the convergence speed of (4.6) is affected by the partition sizes of

the static SCPWL function P̂(·), the linear filter length N and the input

signal power. For example, for a given N and a fixed set of β, increasing

the input signal power renders a smaller upper bound for μ0, leading to

slower convergence.

The estimator yields the estimates of the PD static SCPWL nonlinearity

P̂ and the linear filter of the PA Ĥ. The modified Wiener model estimator

is employed in both the indirect and direct learning algorithms for the

Hammerstein-SCPWL PD.

4.2.2.2 Indirect learning Hammerstein-SCPWL PD

Figure 4.6 illustrates the indirect learning Hammerstein-SCPWL PD. The

indirect learning algorithm for the Hammerstein-SCPWL PD consists of

two identification loops running simultaneously.

The first loop consists of the modified Wiener model estimator, which

estimates the linear block Ĥ(·) and the inverse of the static nonlinear
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Figure 4.6. Indirect learning Hammerstein-SCPWL PD.

block P̂(·) of the Wiener model PA. The estimate P̂(·) is directly copied to

the nonlinear block of the PD, and Ĥ(·) is fed to the second learning loop

for adapting the PD linear filter Q(·), see Figure 4.6.

The second loop uses the estimates of Ĥ obtained from the modified

Wiener model estimator to adapt the PD linear filter Q, as illustrated

in Figure 4.6. The LMS algorithm derived in [VII] for updating the PD

filter Q(·) is the given by

q(n+ 1) ≈ q(n)− μ1e
∗
1(n)

N−1∑
i=1

ĥ∗i (n)w(n− i) (4.11)

where w(n) = [w(n) · · · w(n −M + 1)]T and q(n) =
[
q0(n) · · · qM−1(n)

]T.

The approximation in (4.11) is valid for sufficiently small value of μ1 so

that q(n) ≈ q(n− i) for i = 1, · · · , N − 1.

Note that (4.11) is a filtered-x LMS algorithm. Thus, the stability of the

recursion in (4.11) depends on the quality of the estimates {ĥ(n)}N−1i=0 . To

ensure stability, the phase response error between the estimate and the

actual PA dynamics must be within the range −π
2 and π

2 [103,104].

4.2.2.3 Direct learning Hammerstein-SCPWL PD

PD
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e3(n)

Ĥ and N̂

Figure 4.7. Direct learning Hammerstein model PD.

Figure 4.7 illustrates the direct learning Hammerstein-SCPWL PD pro-

posed in [VII]. It is well-known that the estimate of the PA model is re-

quired in the direct learning algorithm, as the error signal is generated
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at the output of the PA instead of the output of the PD filter. The modi-

fied Wiener model estimator is used for extracting the Wiener PA model,

where the estimates Ĥ(·) and P̂(·) are obtained. The estimates are fed to

the direct learning algorithm.

The direct learning LMS algorithm for the Hammerstein-SCPWL PD is

derived in [VII]. The update equation for the linear and nonlinear filters

parameter vectors, q(n) and c(n), are given by

q(n+ 1) ≈ q(n) + μ3e
∗
3(n)G (n)

N−1∑
i=0

ĥ∗i (n)w(n− i), (4.12)

and

c(n+ 1) ≈ c(n) + μ4e
∗
3(n)G (n)×

M+N−1∑
i=0

s∗i (n)λ[r(n− i)], (4.13)

respectively. The signal s(n) = {si(n)}N+M−1
i=0 in (4.13) is the result of

ĥ(n)⊗q(n), where ⊗ stands for convolution. The approximations in (4.12)

and (4.13) are valid for sufficiently small step sizes such that q(n) ≈ q(n−
i) for i = 1, · · · , N − 1 and c(n) ≈ c(n − i) for i = 1, · · · ,M + N − 1,

respectively. Equations (4.12) and (4.13) resemble the nonlinear filtered-x

algorithms as in [105] and constitute the direct learning algorithm for the

Hammerstein-SCPWL PD.

Notice that the signal G (n) =
∂N̂
(
v̂(n)

)
∂v̂(n) appears in both (4.12) and (4.13).

The expression is the derivative of the PA static nonlinearity w.r.t. its

input signal. The computation of G (n) requires the estimate N̂(·).
As the modified Wiener model estimator is employed for PA model es-

timation the estimate of N̂(·) is not explicitly available. Instead, the es-

timator provides its inverse P̂(·). To avoid identifying N̂(·) explicitly, a

solution for estimating G (n) is proposed in [VII]. We recognize that P̂(·)
approximates the inverse of N̂(·). Then, using the fact that the derivative

of inverse functions are reciprocals of each other, the derivative of N̂(·),
denoted by G (n), can be estimated using the parameters of P̂(·) as (see

Appendix in [VII] for details),

Ĝ (n) =

⎧⎪⎨
⎪⎩

[
v̂(n)
y(n) +

∑Ns
i=1 c

∗
i (n)

]−1
,
∣∣y(n)∣∣ ≤ βσ

y(n)
v̂(n) ,

∣∣y(n)∣∣ > βσ

. (4.14)

In (4.14), Ns specifies the PWL segment number that |v̂(n)| falls into and

ci are the parameters of the PD static nonlinearity P(·).
To further reduce computational complexity, the complex-valued gain

G (n) can be dropped at the expense of a decrease in convergence speed [105].
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Figure 4.8. Indirect learning memory SCPWL PD

4.2.2.4 Indirect learning Memory-SCPWL PD

In [VII], the proposed memory-SCPWL (3.19) is also employed for PD de-

signed. The SCPWL function with memory has a linear-in-the-parameter

input-output expression. This property lends a hand to simplifying identi-

fication algorithms for PD with memory. Figure 4.8 illustrates the indirect

learning memory-SCPWL PD algorithm. The indirect learning filter P̂ at

the feedback path is characterized by a memory-SCPWL model, with me-

mory length L > 1. Due to its linear-in-the-parameter expression, the for-

mulation of the PD adaptation algorithm is greatly simplified compared

to that of the Hammerstein model PD.

By minimizing the instantaneous squared error |e2(n)|2 with respect to

ĉ�(n), the LMS algorithm for adapting the filter coefficients is given by

ĉ�(n+ 1) = ĉ�(n) + μ2e
∗
2(n)λ[y(n− �)], (4.15)

where � = 0, . . . , L − 1. The memory-SCPWL PD P(·) is updated by di-

rectly copying the adaptive filter coefficients, i.e., c�(n) = ĉ�(n − 1) for

� = 0, . . . , L− 1.

4.2.2.5 Direct learning Memory-SCPWL PD

PD ADAPTIVE
ALGORITHM

r
+

+

PA

+ -

+
+-

u(n) y(n)

η(n)

N̂

N̂

e4(n)

ε0(n)

ŷ(n)

P

Figure 4.9. Direct learning memory SCPWL PD

Figure 4.9 illustrates the direct learning memory-SCPWL PD. Since the
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PA model is required for formulating the direct learning algorithm, two

learning loops are formed. One for estimating the PA model and another

for updating the PD coefficients. The PA learning filter N̂ is modeled using

a memory-SCPWL model with memory length L1 with coefficient vectors

in each memory branch denoted by {a�1}L1−1
�1=0 . Then, by minimizing the

instantaneous squared error |ε0|2, the LMS algorithm for updating the

coefficients of N̂ is given by

a�1(n+ 1) = a�1(n) + μ5ε
∗
0(n)λ

[
u(n− �1)

]
, (4.16)

The PA model estimates a�1(n) are then fed to the direct learning algo-

rithm for adapting the PD coefficients.

Let the memory length of the memory-SCPWL PD be L2, and PD co-

efficients vector of each memory branch be denoted as {c�2}L2−1
�2=0 . Then,

by minimizing the instantaneous squared error |e4(n)|2 with respect to

c�2(n), the LMS algorithm for the memory-SCPWL PD filter is given by

ĉ�2(n+ 1) = ĉ�2(n) + μ6e
∗
4(n)

L1−1∑
�1=0

G�1(n)λ[r(n− �1 − �2)], (4.17)

where G�1(n) is the derivative of the PA model. Equation (4.17) is valid

for sufficiently small μ6 such that c�2(n) ≈ c�2(n − �1 − �2) for (�1 + �2) =

0, · · · , (L1 + L2 − 1).

In order to estimate G�1(n), the estimates of the PA coefficients {a�1}L1−1
�1=0

and Equation (36) in the Appendix of [VII] are needed. The estimate of

G�1(n) is expressed as

Ĝ�1(n) =

⎧⎪⎪⎨
⎪⎪⎩

aH
�1
(n)λ[u(n−�1)]
u(n−�1) +

∑N�1
p=1 a

∗
�1,p

(n),
∣∣u(n− �1)

∣∣ ≤ βσ

aH
�1
(n)λ[u(n−�1)]
u(n−�1) ,

∣∣u(n− �1)
∣∣ > βσ

, (4.18)

where N�1 is the segment number that |u(n− �1)| falls into.

Remark: Unlike the case of a static nonlinearity, {G�1(n)}L1−1
�1=0 cannot be

omitted from (4.17). It contains the coefficients filtering λ[r(n − �1 − �2)]

as well as the phase response information of the PA which is crucial for

the algorithm stability.

4.3 Measurement noise effects on indirect learning filters

Measurement noise at the feedback path of the indirect learning filter,

which constitutes for example the perturbations due to down-conversion
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and ADC, is known to cause coefficient bias effect [25] on polynomial or

Volterra PDs. The bias estimates are shown to have an impact on the

performance of the PD in terms of NMSE of the PA output spectrum esti-

mates and the ACPR of the linearized output [25,26].

In [VII], analysis of measurement noise effects on the indirect learning

SCPWL filter is performed. In order to examine the impact of noise on

the identified coefficients, the error in the mean amplitude of each noise

corrupted basis of a static SCPWL function is derived. In the context of

predistortion, the derivation is done with the following assumptions:

• The algorithm has converged

• The step size for the algorithm is assumed sufficiently small so that

effects due to parameter copying (associated with indirect learning)

can be neglected

• The input signal is backed off sufficiently so that no signal is clipped

by the PD nor PA.

Then, y(n) is Gaussian distributed with zero mean and variance σ2
y . Its

amplitude |y(n)|, denoted by x(n) follows the Rayleigh distribution with

parameter σx =

√
σ2
y

2 .

Impact of noise on estimates of SCPWL coefficients The mean amplitude

of the ith SCPWL basis derived in the Appendix of [VII] is given by

E
[
λi[a(n)]

]
= σy

√
π ×

{
Pr
(
βi < x(n) < βσ

)}
. (4.19)

The expression between the curly bracket is the probability that the sig-

nal amplitude a(n) falls between βi and βσ. For sufficiently high SNR,1

Pr(βi < x̃(n) < βσ) ≈ Pr(βi < x(n) < βσ). Using (4.19), and assuming

that the SNR is sufficiently high, i.e., γ  1, the error in the SCPWL basis

caused by input noise is derived and is given by

E
[
λi[x̃(n)]

]
− E

[
λi[x(n)]

]
=

1

2γ
E
[
λi[x(n)]

]
. (4.20)

From (4.20), it follows that the noise-induced bias is proportional to the

unperturbed basis λi[x(n)], but not the basis number i. In effect, each

SCPWL basis is scaled by the factor (1 + 1
2γ ), which also leads to uniform

scaling of the coefficients when a stochastic gradient algorithm as in (4.15)

is employed. Thus, the spectral profile of the identified SCPWL PD is not

affected by the measurement noise.

1Simulations verify that γ ≥ 20 dB is sufficient.
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Impact of noise on estimates of polynomial coefficients For comparison,

the error in the expected amplitude of a polynomial basis is also derived

in [VII].

The mean amplitude of the kth polynomial basis ψk[x(n)] = xk(n) given

in [19] is

E
[
ψk[x(n)]

]
=

⎧⎪⎨
⎪⎩

k
2 !
(
σx

)k
, k is even(√

π
2k+1

)
k!!
(
σx

)k
, k is odd

, (4.21)

where k!! = (1 ·3 · · · · ·k). Then, denoting the noisy input signal amplitude

as x̃(n) = |y(n) + η(n)|, where η(n) is a zero-mean Gaussian noise process

with variance σ2
η, the error caused by noise in the mean amplitude of the

k-th polynomial basis is derived and is given by

E
[
ψk[x̃(n)]

]
− E

[
ψk[x(n)]

]
=
(k − 1)

2γ
E
[
ψk[x(n)]

]
, (4.22)

where γ =
σ2
y

σ2
η

denotes signal-to-noise-ratio (SNR). Equation (4.22) shows

that the effect of noise on the polynomial basis is a bias that is propor-

tional to the mean of the unperturbed basis and increases with the order

of the basis k. Consequently, the identified polynomial coefficients are bi-

ased by different factors, with larger bias for higher order coefficients. In

effect, this alters the spectral shape of the PD, which may cause increased

out-of-band power at the PA output.

4.4 Convergence of direct learning filters

Although the direct learning method circumvents the problem of mea-

surement noise at the PA output, a major concern for the NFxLMS algo-

rithm is its slow convergence [23]. The convergence speed of the NFxLMS

algorithm for the memory polynomial PD reduces drastically as the me-

mory length is increased. The convergence speed of the direct learning

memory-SCPWL PD and memory polynomial PDs are compared by sim-

ulations. The memory-SCPWL PD algorithm is shown to converge signif-

icantly faster than that of the memory polynomial PDs. More details of

the simulation results are presented in the next chapter.

4.5 Summary of contributions

The contributions of this work in terms of SCPWL PD parameter identi-

fication algorithms are as follows.
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• Development of the vector projection based methods, namely the

image projection and ICM methods for static SCPWL PD identifi-

cation. The simplicity of the methods is due to the linear affine

structure and the known user-defined breakpoints of the SCPWL

function. The extraction of the coefficients is simplified by using the

inverse basis function matrix which can be constructed using the

user-defined breakpoints as in (3.21).

• Derivation of the indirect and direct learning adaptive algorithms

for the memory-SCPWL PD and Hammerstein-SCPWL PD.

• In the adaptive Hammerstein-SCPWL PD algorithms, a modified

Wiener model estimator is employed in order to avoid the non-convex

cost function problem.

• The derivative of the SCPWL PA models w.r.t. to their respective

input, G (n) =
∂N̂
(
v̂(n)

)
∂v̂(n) , is required in the direct learning algorithms

in order to gain convergence speed and ensure stability. In order

to avoid estimation of N̂(·), an expression is derived to approximate

G (n), thus reducing the complexity of the algorithm.

• Analysis of the effects of measurement noise on the indirect learn-

ing SCPWL filter. It is found that due to its linear basis functions,

the SCPWL filter coefficients are not affected by noise-induced coef-

ficient bias effect which affects polynomial filters
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5. Performance evaluation of the
SCPWL PDs

This chapter summarizes the results of performance evaluation and com-

parison of the proposed SCPWL PDs with well-referenced polynomial PDs

obtained by simulations and measurements.

Simulations were performed in MATLAB� environment [I, III, IV, VII]

and MATLAB-Agilent Advanced Design System (ADS)-Ptolemy co-sim-

ulator environment [VII]. In the MATLAB simulations, baseband system

level models of the PA and PD are simulated, in which, various PA models

were simulated. In the MATLAB-ADS-Ptolemy co-simulations, a circuit

level simulator is used to design a WiMAX base station PA. The PA model

is based on the Freescale MRF6S23100H LDMOS device model provided

in the ADS component library [106]. The PD model is extratced and im-

plemented as a baseband system level model in MATLAB�. Signal pre-

distortion is also performed in MATLAB�. A memoryless SCPWL PD is

also evaluated by measurement on a real PA in a testbed [II, V]. The PA

under test is the MC-ZVE8G PA from Minicircuits. The testbed consists of

an RF transceiver, a digital signal processing (DSP) part and MATLAB�

environment. Input-output measurement data are converted to discrete

baseband signal samples and fed back to MATLAB�. The SCPWL PD

model extraction and signal predistortion are performed in MATLAB�.

The simulation and measurement experiments in this thesis study the

following topics, see Figure 5.4 for summary. Firstly, it is well-known that

polynomial model poses numerical problems when high order model are

used to model strong nonlinearity. Increasing the order of the polyno-

mial PD to a certain extend will lead to performance degradation. Thus,

the effect of increasing the model order (number of breakpoints) of the

SCPWL function on the PD performance is studied. The performance of

the SCPWL PD and polynomial PD are also compared for linearizing a

PA driven closer to its saturation point (strong nonlinearity). When im-
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plementing adaptive PD algorithm using the indirect learning and direct

learning architectures, the former is faced with the issues of measure-

ment noise at the feedback path and the latter is often observed to have

slow convergence rate. Investigation on these issues are performed on

the proposed adaptive SCPWL PDs and comparison are made with poly-

nomial PDs. In terms of linearization performance, the adaptive SCPWL

PDs are evaluated on various broadband PA models in OFDM system by

simulations. In addition, the SCPWL PD is also evaluated on a WiMAX

base station PA based on a circuit-level model. The results are grouped

into linearization of different PA models and different PD adaptation ap-

proaches. In addition to linearization performance, simulations are also

carried out to gauge the efficiency gain by combining PD and PAPR reduc-

tion schemes.

The chapter is organized as follows. The detailed setup of the simula-

tion environments and measurement testbed are presented in Section 5.1.

Section 5.2 summarizes the performance evaluation and comparison re-

sults of the SCPWL PDs with well-referenced polynomial PDs. The sum-

mary are organized into topics outlined in the previous paragraph. The

chapter ends with a discussion on the overall results of the performance

evaluation and comparison in Section 5.3

5.1 Setup of simulation environments and measurment testbed

5.1.1 System level simulations in MATLAB�

In [I – III] and [V], the excitation signals used for the PD identification

and performance evaluation include power-swept single-tone signal and

random-phase multi-sine signal expressed in (5.1). The former is used

for extracting the memoryless AM/AM and AM/PM characteristics of the

PA. The latter is employed as excitation for extracting the memory part of

the PA or PD models. It also emulates a broadband multicarrier signal in

performance evaluation experiments.

In [IV] and [VII], a generic baseband OFDM system is considered. Var-

ious broadband PA models are considered, including Wiener model PA

and Wiener-Hammerstein PA. Figure 5.1 illustrates the baseband OFDM

system model used in the system level simulations. The transmitted bi-

nary digits bi, are generated and fed to a QAM modulator. The M -QAM
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Figure 5.1. System model used in the MATLAB� system level simulations

symbols An(k) are then serial-to-parallel converted and fed to the IFFT

block for generation of OFDM symbols. The index variables are defined

as i = [1, 2, · · · , N log2M ], n = [1, 2, · · · , N ] and N is the number of sub-

carriers in an OFDM symbol. Then, the OFDM symbol samples un(k) is

pulse-shaped using a root-raised cosine filter g(t) with a roll-off factor of

0.22 and an oversampling factor R = 8. The PAPR of the pulse-shaped

OFDM signal u(t) is approximately 12 dB. Thus, an IBO of 12 dB is ap-

plied and the signal samples u(t) are fed to the PD-PA chain.

The output of the PD-PA chain is then transmitted through an additive

white Gaussian noise (AWGN) channel. For PD parameter identification,

the PD input signal u(t) and the PA output signal y(t), which is corrupted

by noise, are fed to PD identification algorithm. In the case where the PA

model needs to be identified explicitly (e.g., in direct learning method), the

signals v(t) and y(t) are fed to the PA identification algorithm.

At the output of the PA, the power spectral density (PSD) of y(t) is cal-

culated. The linearization performance of the PD measured by the ACPR

is then observed from the PSD. At the receiver, the received baseband sig-

nal is filtered and down-sampled using a root-raised cosine filter gr(t) that

matches the transmitter baseband filter g(t). The discrete-time OFDM

symbol samples sn(k) are then serial-to-parallel converted and demodu-

lated using the FFT operation to obtain the M-QAM digital symbols Ân(k).

Finally, Ân(k) is fed to the M-QAM detector and received bit sequence b̂i(k)

is obtained. The received symbols and bit sequence are used for calculat-

ing the EVM and BER, respectively.

5.1.2 MATLAB and ADS-Ptolemy co-simulation setup

The circuit level simulations in this work are run on MATLAB� and

ADS-Ptolemy co-simulation environment. The performance of the indi-

rect learning memory-SCPWL PD is evaluated on a PA in a the WiMAX

802.16d downlink transmitter by circuit level simulations. The Freescale
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MRF6S23100H LDMOS device model provided in the ADS component li-

brary for a WiMAX base station is used for designing the PA [106]. The

resultant circuit level simulated PA exhibits short term memory effect

and includes up to the seventh order harmonic of the fundamental fre-

quency. The PA is biased at class-AB. The final circuit level PA design has

been prototyped and validated in a laboratory by IMD test [106].

In the ADS-Ptolemy simulator, the WiMAX system operates at carrier

frequency 2.4 GHz and channel bandwidth of 14 MHz. The OFDM sig-

nal is generated with 256 subcarriers. Each symbol is composed of 192

data subcarriers, 1 zero DC subcarrier, 8 pilot subcarriers and 55 guard

carriers. A cyclic prefix ratio of 1/4 is used. The OFDM subcarriers are

modulated with 64-QAM symbols encoded with code rate 3/4. The base-

band OFDM signal is oversampled by 8 times and filtered using a raised

cosine filter with roll-off factor 0.2. In the simulations, the SNR at the PA

output is 40 dB, unless otherwise indicated.

A block of the downconverted PA input-output (IO) baseband signal (384

639 samples) from the ADS-Ptolemy simulator is then exported to MAT-

LAB for PD identification and signal predistortion. After each adaptation,

the PD coefficients obtained are used to predistort the next block of signal

and then parsed to the PA in the ADS-Ptolemy simulator. Then, the IO

data obtained with the predistorted input is fed to PD identification algo-

rithm for the next iteration. The loop repeats until the PD has converged.

The signal feed between MATLAB and ADS-Ptolemy simulators during

the PD adaptation is summarized in Figure 5.2.

5.1.3 Measurement testbed setup

The setup of the measurement testbed is illustrated in Figure 5.3. The

system consists of a digital baseband processing part and an RF process-

ing part. The device under test (DUT) is a broadband power amplifier

from Minicircuits, type ZVE-8G. In the digital baseband processing part,

a random phase multitone excitation signal u[n], covering a bandwidth of

5 MHz is generated using MATLAB as

u[n] =
K−1∑
k=0

Ak[n] cos
(
2πΔfkn+ φk

)
, (5.1)

where k is the tone number, K is the total number of tones used to gener-

ating the signal and Δf is the tone spacing. The tone amplitude, Ak[n] = 1

is used for all k and all n. The signal is then transferred to the me-

mory of the digital-to-analog converter (DAC) module SMT 370 from Sun-
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Figure 5.2. Signal feed between MATLAB and ADS-Ptolemy simulators during the PD
adaptation phase
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Figure 5.3. Measurement system setup
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dance [107], carried by a PCI board (SMT 310Q) in the host PC. This

excitation signal is digitally modulated (fIF = 70 MHz) and converted to

analog signal before being fed to the RF part. The up-converter mixes the

signal to a center frequency fc = 2.45 GHz and filters the signal. A pre-

amplifier (Minicircuits ZJL-4HG) and an adjustable attenuator are used

to boost the signal before the DUT and to control the input backoff (IBO)

of the DUT, respectively. Then the output signal of the DUT is attenu-

ated, down-converted to fIF = 70 MHz and filtered. The filters of both the

up- and down-converter are bandlimited to 20 MHz. A common local os-

cillator is used for the up-conversion and down-conversion to avoid phase

imbalance. The analog-to-digital converter (ADC) samples the IF signal

at a rate of fs = 100MHz and a resolution of 14 bit. The output signal is

then stored in a memory module (SMT 351G) and is accessible for model

identification.

The measurement system poses a few limitations, such as the limited

dynamic range of the ADC, noise introduced by pre-amplification and

bandwidth limitation of the up- and down-converters. The details of these

limitations are discussed in detail in [V].

5.2 Simulation and measurement results

This section summarizes the performance evaluation and comparison re-

sults of the proposed SCPWL PDs obtained by computer simulations, cir-

cuit level simulations and by measurement on a microwave PA. As dis-

cussed in the beginning of the chapter, the simulation and measurement

experiments in this thesis are setup for studying various topics concern-

ing performance of a PD. The evaluation topics and their corresponding

experiment setup are summarized in Figure 5.4. The first topic is evalu-

ated in the measurement testbed and the following five topics are evalu-

ated by simulations. The simulation environment in which each topic is

evaluated is indicated by the lines connecting the boxes in Figure 5.4. The

results of each study are summarized in the following subsections.

5.2.1 Linearization of PA driven to nonlinear region

In [II] and [V], the performance of the static SCPWL PD is evaluated on

the Mini Circuit (MC) ZVE-8G PA in the measurement testbed described

in Section 5.1.3. The PA is first excited by a random phase multitone

72



Performance evaluation of the SCPWL PDs

Measurements on RF PA in
testbed

1. Effectiveness of linearizing highly nonlinear PA
The performances of the static SCPWL PD and memoryless polynomial

PD in linearizing the MC-ZVE-8G RF PA when driven to weak and strong

nonlinear regions are compared. The results are reported in [II, V], and

are summarized in Sec. 5.2.1

Matlab�

System level simulations

Matlab� & ADS-Ptolemy
system and circuit level

co-simulations

2. Effect of SCPWL model order on PD performance
In various Matlab simulations, the number of segments of the SCPWL PD

is increased over the optimum number to examine whether degradation is

observed in PD performance, as in the case of high order polynomial PDs.

The results are reported in [I, III, VII] and summarized in Sec. 5.2.2

3. Comparison of adaptive SCPWL and polynomial PDs
In [VII], Hammerstein-SCPWL & memory-SCPWL PDs are compared

with Hammerstein-polynomial & memory polynomial PDs, respectively.

Various broadband PAs are considered. Indirect and direct learning algo-

rithms are developed for adapting the PDs. The following comparisons are

carried out.
• Hammerstein-SCPWL PD vs. Hammerstein polynomial PD

– Indirect learning PDs for Wiener PA (MATLAB)
– Direct learning PDs for Wiener PA (MATLAB)

• Memory-SCPWL PD vs. memory polynomial & GMP PDs

– indirect learning PDs for Wiener-Hammerstein PA (MATLAB)
– Indirect learning PDs for a LDMOS WiMAX PA

(Matlab�-ADS-Ptolemy)
– direct learning PDs for Wiener PA (Matlab�)

The results are summarized in Sec. 5.2.3

4. Impact of noise on indirect learning PD
Noise at the feedback path of the indirect learning filter is known to cause

coefficient bias effects which degrade the performance of polynomial PDs.

In [VII], the influence of noise on the performance of indirect learning

SCPWL PDs is investigated. The results are summarized in Sec. 5.2.4.

5. Convergence speed of direct learning PDs
The direct learning method is known to be hindered by slow convergence

rate when LMS algorithm is employed. In [VII], the convergence rate of

direct learning SCPWL PDs and polynomial PDs are compared. The re-

sults are summarized in Sec. 5.2.5.

6. Combining PD and PAPR reduction scheme
In [IV], the improvement in linearity and power efficiency of nonlinear PA

is studied when PD and PAPR reduction schemes are combined or applied

alone. The results are summarized in Sec. 5.2.6.

Figure 5.4. Summary of measurement and simulation experiments
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signal, spanning a bandwidth of 5 MHz, in order to obtain a set of input-

output (IO) data. The IO data is subsequently used to identify the static

SCPWL PD (AM/AM characteristic) using the ICM method in MATLAB�.

The identified PD is used to predistort the multi-tone signal and then

send back out to the measurement testbed. A spectrum analyser is used

for measuring the signal spectrum at the PA output. The performance of

the SCPWL PD is compared with that of a static polynomial PD identified

using the secant method.

Figure 5.5 shows the results of linearizing the MC ZVE-8G PA driven

to a weakly nonlinear region. The spectrum is measured after the down-

converter at 70 MHz center frequency. For comparison, an appropriate

IBO was imposed on the uncompensated PA so that the inband power of

the signal is leveled to that of the compensated output. Both the SCPWL

PD and the polynomial PD were able to reduce the adjacent channel power

by approximately 12 dB to 15 dB.

60 62 64 66 68 70 72 74 76 78 80
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−45
−40
−35
−30
−25
−20
−15
−10

 RBW=100kHz,VBW=10kHz, ATT=10dB
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P/
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m

IBO

DPD−Sec.

DPD−SCPWL

Figure 5.5. Measured power spectra of a PA driven into a weakly nonlinear region –
comparison of a PA with IBO, secant Volterra PD and SCPWL PD

Then the performance of the PDs are measured again with the MC ZVE-

8G PA driven a bit further into its nonlinear region. In this case, the

spectrum analyzer is placed before the down-converter in order to observe

a larger dynamic range (see [V] for more details). The results are shown

in Fig. 5.6. The polynomial PD performs approximately 2 dB worse than

in the case of the weakly nonlinear PA case. Whereas, the SCPWL PD

outperforms the polynomial PD by approximately 5 dB at the best case,

resulting in an ACPR reduction of 15 dB.

The results showed that the SCPWL PD is more effective in linearizing
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Figure 5.6. Measured power spectra of a PA driven into stronger nonlinear region – com-
parison of a PA with IBO, polynomial PD and SCPWL PD

strongly nonlinear PA.

5.2.2 Effect of model order on SCPWL PD performance

In [I], [III] and [VII], the performances of the SCPWL PDs are examined

as the model order (number of PWL segments) increases. The ACPR per-

formance of the PDs are shown to improve as the number of PWL segment

increases, see e.g., Figure 5.13. It is also found in our experiments that the

performance improvement of the PDs saturates after a given number of

segments. Increasing the number of breakpoints further does not provide

performance improvement nor degradation. In contrast, it is well-known

that increasing the order of polynomial PDs above an optimum number

causes performance degradation.

In [III], the modeling error of identifying a Hammerstein-SCPWL PD,

in terms of MSE, is examined with increasing number of breakpoints em-

ployed by the SCPWL block. A Hammerstein-SCPWL PD with its nonlin-

ear block modeled with two parallel static SCPWL functions (AM/AM and

AM/PM conversions) is identified for a Wiener model PA. The linear and

nonlinear blocks of the PA are first estimated, and the ICM method is used

to identify the quasi-static SCPWL nonlinear block of the PD. Then, the

linear filter of the PD is adaptively identified using the indirect learning

architecture employing LMS algorithm (see Figure 5 in [III]). Figure 5.7

shows the output MSE of the adaptive linear filter. The MSE decreases

as the number of breakpoints increases. Once again, it is found that in-

75



Performance evaluation of the SCPWL PDs

6 8 10 12 14 16 18
2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10−4

The number of SCPWL partiton points σ

N
M

S
E

Figure 5.7. Influence of model order (number of segments) on model accuracy .

creasing the number of breakpoints beyond a given number, no significant

improvement is observed in the MSE, nor does it degrade.

This illustrates the robust modeling capability of the SCPWL function,

especially when strong nonlinearities are characterized.

5.2.3 Comparison of SCPWL PDs with polynomial PDs

In the literature, the most well-referenced digital PDs are dominantly

polynomial or simplified Volterra model based PDs. For instance, the me-

mory polynomial [5], generalized memory polynomial (GMP) [86] and dy-

namic deviation reduction (DDR) Volterra [85] PDs exemplify the state-

of-the-art digital PDs with memory. Hammerstein model PDs with poly-

nomial nonlinearity [13,14,16,17] are also popular solution for linearizing

nonlinear PAs with memory. Adaptive algorithm employing the indirect

and direct learning architectures are most widely adopted for identifica-

tion of the PD parameters.

The linearization performance of the Hammerstein-SCPWL PD and me-

mory-SCPWL PD proposed in this thesis are compared with polynomial

PDs with similar model structure in [VII]. The results are summarized in

the following.

5.2.3.1 Hammerstein-SCPWL PD

The performance of the Hammerstein-SCPWL PDs is compared with that

of polynomial PDs with Hammerstein model structure by system level
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simulations. The indirect learning PDs are evaluated on a Wiener-Hammerstein

(W-H) PA given by Equation (32) in [VII], and the direct learning PDs are

evaluated on a Wiener model PA described in Equation (31) in [VII].

Indirect learning The indirect learning Hammerstein-SCPWL PD is iden-

tified using the algorithm described in Section 4.2.2. The Hammerstein-

polynomial PD is identified using the Narrendra-Gallman (NG) method [13,

108], employing blocks of data with 5 OFDM symbols in each iteration for

15 iteration.

The SCPWL PD with σ = 11 breakpoints for the nonlinear block and

linear filter of length M = 7 is compared with a Hammerstein polyno-

mial PD with a fifth order polynomial and a linear filter of length M =

7. Polynomials of odd-order terms only and of odd-and-even-order terms

are employed. Figure 5.8 shows the ACPR performances of the indirect

learning PDs. The Hammerstein-SCPWL PD is shown to outperforming

the odd-order Hammerstein-polynomial PD of 5th order by approximately

10 dB. The results show that including even order terms in the polynomial

model does not show significant improvement in the polynomial PD per-

formance.

As shown in Table 5.1, the Hammerstein-SCPWL PD was able to re-

duce the inband distortion, in terms of EVM, by approximately 16.8 dB,

outperforming the Hammerstein-polynomial PD by approximately 4 dB.
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Figure 5.8. ACPR performance of the indirect learning Hammerstein-SCPWL PD and
various polynomial based PDs in linearizing a Wiener-Hammerstein PA.
(a) Hammerstein-polynomial PD, K = 5, odd orders only, M = 7. (b)
Hammerstein-polynomial PD, K = 5, even and odd orders, M = 7. (c) The
proposed Hammerstein-SCPWL PD, σ = 11, N = 5, M = 7.

77



Performance evaluation of the SCPWL PDs

Direct learning The direct learning Hammerstein-SCPWL PD is adap-

tively identified using the algorithm summarized in 4.2.2, where the PA

model is identified simultaneously with the PD algorithm. The Hammerstein-

polynomial PD is identified using the NFxLMS algorithm as in [23], which

assumes the Wiener PA model is known. Thus, for fair comparison, the

direct learning PDs are evaluated on a Wiener model PA described in

Equation (31) in [VII].

The Hammerstein-SCPWL PD employs a linear filter of length M = 5

and σ = 11 breakpoints for the nonlinear block is compared with Hammerstein-

polynomial PDs of a fifth order (with odd-order terms and odd-and-even-

order terms) and memory length M = 5. Figure 5.9 shows the ACPR
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Figure 5.9. Comparison of the direct learning Hammerstein-SCPWL PD with the
Hammerstein-polynomial PDs for a Wiener model PA. (a) Hammerstein-
polynomial PD, K = 5, odd orders only, M = 5. (b) Hammerstein-polynomial
PD, K = 5, even and odd orders, M = 5. (c) The proposed Hammerstein-
SCPWL PD, σ = 11, N = 3, M = 5.

performances of the Hammerstein model PDs. The Hammerstein-SCPWL

PD attains an ACPR of approximately 63 dB. The odd-order-only Hammerstein-

polynomial PD attained an ACPR of approximately 55 dB, 8 dB worse

than that of the Hammerstein-SCPWL PD. By including the even order

terms, the ACPR performance of the Hammerstein-polynomial PD is lev-

eled close to that of the Hammerstein-SCPWL PD.

Both the Hammerstein-SCPWL PD and Hammerstein-polynomial PD

show similar EVM performance of approximately 24 dB, see Table 5.1.
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5.2.3.2 Memory-SCPWL PD

The indirect learning memory-SCPWL PD is first evaluated on the Wiener-

Hammerstein PA by system level simulations. Its performance is com-

pared with that of the memory polynomial PD [5] and the generalized me-

mory polynomial (GMP) PD [86]. The indirect learning memory-SCPWL

PD is also evaluated on an LDMOS PA in a WiMAX downlink transmit-

ter and compared with an indirect learning memory polynomial PD [5] by

circuit level simulations in MATLAB-ADS-Ptolemy co-simulator environ-

ment described in Section 5.1.2.

The direct learning memory-SCPWL PD is evaluated on the Wiener

model PA as described above by system level simulations in MATLAB�.

Its performance is compared with that of a polynomial PDs of similar

model structure which are identified using the NFxLMS algorithm, as-

suming the PA model is known [23].

Indirect learning The indirect learning memory-SCPWL PD employs σ =

11 breakpoints and memory lengths are L = 3 and is adapted using (4.15).

The memory polynomial PD employs nonlinear term of order K = 5 and

memory length L = 4. The GMP PD employs 5th order aligned terms,

i.e., Ka = [0 1 2 3 4] and memory length 4, i.e., La = [0 1 2 3]. The

cross-terms parameters Kb = [2 4], Lb = [0 1 2 3] and Mb = [1 2 3] are

employed.1 The polynomial PDs are identified using the indirect learning

architecture and the “damped” Newton algorithm is used for extracting

the PD parameters.

The ACPR performance of the PDs are shown in Figure 5.10. The memory-

SCPWL PD attained an ACPR of 60 dB, outperforming both the polyno-

mial PDs when the SNR at the feedback path is 40 dB. As discussed in

the previous chapter, the polynomial PDs are prone to coefficient bias ef-

fect [25] caused by measurement noise at the feedback path of the in-

direct learning filter. When the measurement noise is reduced, at SNR

60 dB, the GMP PD is able to attain a similar performance as the memory-

SCPWL PD. Whereas, the memory polynomial PD performance is only im-

proved by 5 dB, lacking behind by 5 dB compared to the memory-SCPWL

PD.

In terms of inband distortion compensation, the EVM of the linearized

received signal is tabulated in Table 5.1. The improvement in EVM pro-

vided by the memory-SCPWL PD with 11 breakpoints and memory length

3 is approximately 12 dB. The polynomial PDs with the above mentioned

1Please refer to [86] for detailed description of Ka, La, Kb, Lb and Mb.
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Figure 5.10. ACPR performance of the indirect learning memory-SCPWL PD and var-
ious memory polynomial based PDs in linearizing a Wiener-Hammerstein
PA. (a) Memory polynomial PD, K = 5, odd orders only, L = 4. (b) Memory
polynomial PD K = 5, even and odd orders, L = 4. (c) Memory polynomial
PD K = 5, even and odd orders, SNR = 60 dB. (d) GMP PD, Ka = [0 : 4],
La = [0 : 3], Kb = [2 4], Lb = [0 : 3], Mb = [1 : 3]. (e) GMP PD at SNR
= 60 dB (dashed plot). (f) The proposed indirect learning memory-SCPWL
PD, σ = 11, L = 3.

model parameters give slightly better EVM values, i.e., slightly over 1 dB

better than the memory-SCPWL PD. Through simulations, the EVM per-

formance of the memory-SCPWL PD is improved by 2 dB when the me-

mory length of the PD is increased to 4 (not shown in the table).

Figure 5.11 shows the ACPR performances of the PDs in linearizing

a LDMOS PA in a WiMAX system. The results are obtained by circuit

level simulations in MATLAB ADS-Ptolemy co-simulator. The SCPWL

PD with memory length 2 and 10 segments is able to keep the PA output

under the spectrum mask defined for WiMAX downlink signal (the mask

is indicated by the dotted-line plot), as shown in Figure 5.11. Increasing

the number of segments to 14 further improves the ACPR performance

of the memory-SCPWL PD by approximately 6 dB, reducing the adjacent

channel power (ACP) by more than 25 dB. The 5th order polynomial PD

with memory length 3 is required to keep the PA output spectrum under

the mask. The memory-SCPWL PD with 10 segments outperforms the

5th order memory polynomial PD by approximately 3 dB. The 7th order

memory polynomial PD gives slightly better performance than the 5th

order PD. However, the 14-segment memory-SCPWL PD outperforms the

7th order memory polynomial PD by 5 dB. The performance of the memory
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Figure 5.11. Linearization of the Freescale MRF6S23100HPA by the indirect learning
PDs. (a) Memory polynomial PD, K = 5 , odd and even orders, L = 3 (b)
Memory polynomial PD, K = 7, odd and even orders, L = 3 (c) Memory-
SCPWL PD, σ = 11, L = 2 (d) Memory-SCPWL PD, σ = 15, L = 2. (e)
Memory polynomial PD, K = 5, L = 3, noiseless (f) Memory polynomial PD,
K = 7, L = 3, noiseless.

polynomial PDs are affected by noise at the feedback path. This can be

seen from plots (e) and (f), showing the performances of the 5th and 7th

order memory polynomial PDs, respectively, when there is no noise at the

feedback path.

Direct learning The direct learning memory-SCPWL PD employs σ = 11

breakpoints and memory length L2 = 3. Its online PA model estimator

identifies the PA as a memory-SCPWL model with σ = 11 and L1 = 3. The

NFxLMS algorithm [23] that adapts the memory polynomial PD is shown

to have slow convergence rate. The convergence rate decreases greatly

when the number of coefficients is increased as shown in Figure 5.17.

Thus, in the simulations, the memory polynomial PDs are limited to non-

linearity of third and fifth order and memory length of 4 and 5.

Figure 5.12 shows the ACPR performance of the direct learning memory-

SCPWL PD and memory polynomial PDs. The memory-SCPWL PD at-

tained an ACPR of 65 dB, i.e., reducing the ACP by approximately 30 dB.

The 5th order memory polynomial PD with memory length 5 is also able

to attained an ACPR of 65 dB. However this performance is only achieved

after adapting the NFXLMS algorithm with 100 000 OFDM symbols, as

compared to only a few thousand symbols required by the SCPWL PD.

The memory-SCPWL PD outperforms the polynomial PDs with lower or-

der and shorter memory length.
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Figure 5.12. Comparison of the ACPR performance of the direct learning memory-
SCPWL PD with memory polynomial PDs for a Wiener model PA. (a) Me-
mory polynomial PD, K = 3, L2 = 5. (b) Memory polynomial PD K = 5,
L2 = 4. (c) Memory polynomial PD K = 5, L2 = 5. (d) The proposed direct
learning memory-SCPWL PD, σ = 11, L1 = L2 = 3.

As tabulated in Table 5.1, the memory-SCPWL PD with memory length

3 and the memory-polynomial PDs with memory length 5 attained similar

EVM performance of approximately -24 dB. Whereas, when the memory

length of the 5th order memory polynomial PD is decreased to 4, the EVM

performance dropped by 2 dB.

5.2.4 Impact of noise on indirect learning PDs

Simulations were performed in [VII] to verify the indication of the results

in (4.20) and (4.22). Figure 5.13 shows that the indirect learning memory-

SCPWL PDs (each with different number of segments) perform equally

well when the SNR at the feedback path is set to 40 dB and 50 dB. On

the other hand, the ACPR performance of the memory-polynomial PDs

degrades as the SNR decreases from 50 dB to 40 dB, as shown in Fig-

ure 5.14.

Figure 5.15 summarizes the comparison of noise effects on the perfor-

mance of polynomial and SCPWL PDs. The normalized adjacent channel

power (ACP) at the output of the SCPWL PDs remains almost the same

as the SNR decreases. Whereas, a significant increase in normalized ACP

is observed at the output of the polynomial PD. (The adjacent channels

are indicated in Figure 5.13 by the double arrows)
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Table 5.1. Linearized output EVM.

Indirect learning PDs for W-H PA

Without PD -5.93 dB

M-SCPWL PD, σ = 11, L = 3 -18.31 dB

GMP PD, 5th order -19.21 dB

M-Poly. PD, K = 5 odd, L = 4 -19.94 dB

M-Poly. PD, K = 5, even & odd orders, L = 4 -20.06 dB

Hammerstein-SCPWL PD, σ = 11, N = 5, M = 7 -22.76 dB

Hammerstein-poly. PD, K = 5 odd, M = 7 -18.55 dB

Hammerstein-poly. PD, K = 5 odd & even, M = 7 -18.50 dB

Direct learning PDs for Wiener PA

Without PD -10.64 dB

M-SCPWL PD σ = 11, L1 = L2 = 3 -24.01 dB

M-Poly. PD, K = 3, L2 = 5 -23.70 dB

M-Poly. PD, K = 5, L2 = 4 -21.81 dB

M-Poly. PD, K = 5, L2 = 5 -23.81 dB

Hammerstein-SCPWL PD -24.02 dB

Hammerstein-poly. PD, 5th odd order -23.66 dB

Hammerstein-poly. PD, 5th odd & even orders -24.18 dB
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Figure 5.13. ACPR performance of the indirect learning memory-SCPWL PDs with σ =

7, 9, 11. The solid plots indicate SNR = 40 dB and dotted plots indicate SNR
= 50 dB. As the number of breakpoints increases, the performance of the PD
improves. The effect of measurement noise is insignificant on the memory-
SCPWL PD.
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Figure 5.14. ACPR performance of the indirect learning memory polynomial PDs of order
5 and 7. The solid plots indicate SNR = 40 dB and dotted plots indicate
SNR = 50 dB. The noise effects are more pronounced on the higher order
memory-polynomial PD, as can be seen in the performance degradation of
the 7th order PD at SNR 40 dB.
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Figure 5.15. Normalized ACP of linearized PA output vs. SNR at the PA output. Solid
lines and dashed lines represent the performance of the memory-SCPWL
PD and memory polynomial PD, respectively.
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Figure 5.16. MSE after convergence with different step sizes for the direct learning me-
mory polynomial PDs. Lines with ’*’ markers indicate third order polyno-
mial and ’o’ markers indicate fifth order polynomial. Dashed line indicates
memory length L2 = 3, dash-dotted line indicates L2 = 4 and solid line
indicates L2 = 5.

5.2.5 Convergence speed of direct learning PDs

In [VII], the adaptation of the direct learning memory polynomial PD us-

ing the NFxLMS algorithm is found to be hindered by slow convergence,

especially when the memory length is increased. Figure 5.16 shows the

mean-squared error (MSE) achieved after convergence for the third and

fifth order PDs with different memory lengths, adapted using different

step sizes. The curves indicate the best step sizes for adapting the polyno-

mial PDs of different orders and memory length. The memory polynomial

PD with memory length L2 < 5, both the third and fifth order polynomial

PDs could not converge to the SNR level of the PA output. With L2 = 4,

the NFxLMS memory polynomial PDs can only attain an MSE of approx-

imately 38.5 dB, after 2000 OFDM symbols. For L2 = 5, a minimum MSE

close to noise floor, i.e., SNR = 40 dB can be attained. However, the algo-

rithm converged approximately after 80000 OFDM symbols.

On the other hand, only to few hundred symbols is needed for the direct

learning memory-SCPWL PD to converge, as seen in Figure 5.17.
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Figure 5.17. Learning curves of the direct learning memory-SCPWL PD (σ = 11, L1 =

L2 = 3) and the memory-polynomial PDs (3rd and 5th order, L2 = 3, 4, 5,
known Wiener PA model).

5.2.6 Combining PD and PAPR reduction schemes

Power efficiency and linearity are two well-known contradicting require-

ments for the PAs is modern communication systems. In [IV], the result of

combining PD and PAPR reduction schemes is compared with the results

of the two schemes applied separately. A static nonlinear PA described by

the TWTA model [40] which imposes only AM/AM distortion, given by

N
(
ρ(t)

)
=

2ρ(t)

1 + ρ2(t)
, (5.2)

is simulated in the MATLAB environment. The transmitted OFDM sig-

nal is generated as described in Section 5.1.1, except that the root-raised

cosine filter has a rolloff factor of 0.5. A static SCPWL PD with 12 break-

points identified using the ICM method is used as the linearizer. For

PAPR reduction, the selective mapping (SLM) method [53] using six phase

sequences is employed. The PAPR of the OFDM signal, calculated using

(2.13), is reduced by approximately 3 dB when the SLM method is applied.

Figure 5.18 shows the normalized PSD of the PA-PD output signal. By

reducing the PAPR of the signal alone shows no significant improvement

in the ACPR performance. On the other hand, the PD scheme gives an

improvement of approximately 20 dB at 8 dB input backoff (IBO). This

indicates that the compressive gain distortion is causing more spectral

spreading than signal clipping distortion. However, by combining the

two schemes, a significant 40 dB improvement is achieved, i.e., twice the
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ACPR improvement obtained by the PD scheme alone.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
x 107

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency Hz

N
o
rm
a
li
ze
d
P
S
D
d
B

PA OFDM

PA SLM−OFDM PD−PA OFDM

PD PA SLM−OFDM

Input signal

Figure 5.18. ACPR improvement when combining PD and PAPR reduction

The gain in power efficiency by combining the two schemes is measured

using the TD defined in (2.8). Figure 5.19 shows the TD at targeted BER

of 10−4 for the PA with and without any linearization or PAPR reduction

schemes, and when the two schemes are combined. It is shown that the

minimum TD improves by 1 dB and 2 dB when the PAPR reduction or PD

is applied, respectively. When the PAPR reduction and PD are combined,

a significant reduction of 3 dB in minimum TD is observed. Notice also

that the minimum TD is achieved at a lower OBO when compensation

schemes are applied. When the two schemes are combined, the OBO re-

quired to achieve the minimum TD is reduced by 5 dB, which is 2.5 dB

better than the uncompensated system and more than 1 dB than either

of the schemes applied alone. By combining PAPR reduction with PD lin-

earizer effectively reduces the power loss due to the nonlinear distortion,

and thus improves the power efficiency of the transmitter.

These results show that combining PAPR reduction with PD is an effec-

tive mean to improve ACPR and power efficiency performances.

5.3 Summary of results

The SCPWL PDs proposed in this thesis have been compared with well-

referenced polynomial based PDs. The linearization performance of the

SCPWL PDs are shown to be in par with and, in some cases, out per-

formed the state-of-the-art polynomial PDs.
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Figure 5.19. Total degradation of the system at targeted BER of 10−4

The results show that the SCPWL PD is more robust for PA driven to

nonlinear region compared to a polynomial PD. The SCPWL PD perfor-

mance can be improved by increasing the number of breakpoints that de-

fine the SCPWL function. Its performance does not degrade but saturates

when the model order increases beyond an optimal number.

The indirect learning memory-SCPWL PD is shown to have immunity to

the effects of noise at the feedback path. Due to the linear basis function

of the SCPWL model, it is not affected by the noise induced coefficient bias

effects experienced by polynomial PDs. In contrast, memory polynomial

and GMP PDs show performance degradation when the SNR at the feed-

back is low, especially when higher order model parameters (nonlinearity

and dynamics) are included.

Comparing the convergence rate of direct learning adaptation, our re-

sults show that the direct learning memory-SCPWL PD employing the

LMS algorithm converges at a significantly higher rate than the direct

learning memory polynomial PD.

It is also shown that in system with high PAPR signal such as OFDM

signal, combining PD linearizer with PAPR reduction scheme gives sig-

nificant gain in power efficiency. By applying PD alone in these systems,

the PA has to be backed off to a level where most of the clipping distortion

is avoided. By combining PAPR reduction scheme, the PA can be driven

further into its nonlinear region which imposes mainly compressive gain

distortion. The compressive gain can then be linearized by a PD, thus

avoiding the efficiency loss due to the large power backoff.



6. Conclusions

This thesis focuses on digital PD design for broadband PAs in OFDM sys-

tem, using the SCPWL function. The SCPWL function imposes a sat-

uration level after a maximum input level, which is defined by the last

breakpoint, makes the function suitable for modelling PA and PD type of

nonlinearities. The original real-valued SCPWL function was employed

for modeling the static nonlinearities, i.e., the AM/AM and AM/PM char-

acteristics of the proposed PDs. An analysis on the spectral property of

the SCPWL function shows that its basis functions introduce nonlinearity

by spreading the spectrum of the input signal to infinite IMD components.

Thus, it is suitable for modeling strong nonlinearity, theoretically PA with

infinite IMD order. The modeling capability of the function can be im-

proved by increasing the number of segments/breakpoints of the function.

It is shown that the model accuracy saturates after a maximum number

of breakpoints. Whereas, increasing the order of a polynomial to a high

level may significantly degrade the model accuracy.

Given the static nonlinearities of the PA, the image projection method

and inverse coordinate mapping method were developed for identifying

the corresponding static nonlinear characteristics of the PD. The simplic-

ity of these methods is facilitated by the linear affine structure and the

known user-defined breakpoints of the SCPWL function.

A novel complex-valued SCPWL function with memory, suitable for mod-

elling baseband PAs and PDs with memory was proposed. When, the me-

mory length parameter of the model is set to zero, the function reduces

to a quasi-static model. The model has a linear-in-the-parameter struc-

ture. Thus, well-established linear system identification methods such

as least squares (LS) method and the least mean square (LMS) algorithm

can be employed for extracting the model coefficients. The function is used

for implementing the memory-SCPWL PD and Hammerstein-SCPWL PD.
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Conclusions

Indirect and direct learning architectures were employed for training the

proposed SCPWL PDs and LMS-based algorithms are derived for updat-

ing the coefficients of the proposed PDs. For the identification of the

Hammerstein-SCPWL PDs, the non-convex cost function problem is cir-

cumvented by employing a modified Wiener model estimator. In the direct

learning PD algorithms, computational complexity is mainly attributed to

the requirement for PA model estimation, filtering of the input signal with

the PA function and computing the derivative of the PA model. Methods

are proposed where the properties of the SCPWL function are exploited in

order to reduce the complexity of the direct learning algorithms. An anal-

ysis on measurement noise effects on the indirect learning SCPWL filter

is performed. Results shows that the SCPWL model is not affected by

noise-induced coefficient bias effects, which is known to affect polynomial

PDs when the indirect learning architecture is employed.

The performance of the proposed SCPWL PDs are evaluated and com-

pared against polynomial PDs. The performance of the static SCPWL

PD is evaluated on the MC-ZVE8G PA in a measurement test bed. The

SCPWL PD is shown to outperform a polynomial PD when the PA is

driven to its nonlinear region. A simulation in MATLAB is also carried

out to examine the gain in linearization performance and power efficiency

of a PA in OFDM system when combining PAPR reduction method and

PD. The ACPR performance of the combined scheme is twice as good as

only employing a PD. The total degradation improved by 1 dB compared

to either of the schemes applied alone. The indirect and direct learning

memory-SCPWL PD and Hammerstein-SCPWL PD are evaluated by sim-

ulations in MATLAB. The indirect learning memory-SCPWL PD is found

to outperform the memory polynomial PD and generalized memory poly-

nomial PD when measurement noise is present at the feedback path of

the indirect learning filter. The direct learning SCPWL PDs are shown

to converge significantly faster and perform better than the direct learn-

ing polynomial PDs. The indirect learning memory-SCPWL PD was also

evaluated on the Freescale MRF6S23100 PA for WiMAX base station by

circuit level simulations. The memory-SCPWL PD is found to outperform

the memory polynomial PD when measurement noise is present at the

feedback path.
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100



Errata

• In [I], Figure 1 should have the dotted arrow (vector b′) at the posi-

tion of the solid arrow (vector b) and vice-versa.

• In [I], Figure 3 should have the dotted curve (inverse nonlinearity)

below the linear line and the solid curve (nonlinearity) above the

linear line.
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