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1. Introduction 
 
The modern life style is based on ample use of energy which is obtained mainly 

through the fossil fuels. These fossil fuels reserves are expected to provide 80% 

of the world energy demand by 2040 1. However, the adverse environmental 

effects from these traditional energy sources, notably the carbon emissions 

which contribute to the climate change, calls up to investigate alternative clean 

energy that could fulfill the energy needs of the mankind. This type of clean and 

abundant energy can be potentially obtained by utilizing photovoltaics (PV) 

technology at large scale. The solar resource is immense exceeding the global 

energy demand by a factor of several thousands. Photovoltaics technology (PV), 

which converts the sunlight to electricity without any moving parts, is a highly 

promising approach to harness the solar energy resource. In 2012, 31 GW of PV 

installations were reported worldwide which could be approaching nearly to 84 

GW per year by 2017 2. The PV module cost has rapidly decreased during the 

last five years and the projected prices are expected to decrease further 3. Ensur-

ing future cutbacks in the PV prices will necessitate the development of cost 

efficient materials and technology in upcoming years. The Silicon (Si) based PV 

systems including 1st and 2nd generation solar cells have a 90% market share of 

all PV and 4. Though the prices of Si based PV systems have dropped during the 

last years, to reach a level typical for a common commodity will require less 

expensive fabrication processes 4.  

 

Nevertheless, the third generation organic solar cells and more specifically the 

dye sensitized solar cell technology (DSC) offers a possibility to lower the over-

all manufacturing cost due to their unique design, structure and having abun-

dantly available cost efficient materials. Although the traditional geometry was 

engineered on transparent conducting glass, however, the same fabrication 

model can be transferred to flexible inexpensive polymer or metallic sheets 5. 

This is an advantage over the Si solar cell in terms of variety of applications 

perceived. However, this transfer of technology from rigid glass substrates to 

flexible substrates requires solutions of key challenges associated with flexible 

substrates based DSC. For instance, the traditional glass based DSC utilizes such 

materials that can be deposited through a well-established screen printing pro-

cess and followed by the high temperature sintering which is a key requirement 
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to remove the unwanted binders (that are added during the materials synthesis to 

make it in the form of a paste) as well as to improve the surface adhesion with 

the substrate. Despite of the rigidity of the glass substrate, it can handle higher 

temperatures (around 800 °C) without affecting its transparency.  

 

The usage of PET polymer substrates restricts the temperature to 150 ºC as the 

polymer sheets starts to deform after that. Hence the post-sintering process on 

these low temperature polymer sheets cannot be applied. Therefore one of the 

key challenges is to develop low temperature based highly efficient materials 

that could give similar performance like deposited on glass.    
 
 

 

1.1 Objectives of this study 
 

 

The main motivation of this thesis was to find alternative material approaches to 

DSC with a potential for lower costs and higher module flexibility. The main 

focus of this study was therefore on different low cost alternative catalyst layers 

such as PEDOT-TsO or carbon composites on polymer substrates. The aim was 

to study the characteristics and their viability of low cost catalysts in the dye 

sensitized solar cell. Also, efforts were made to replace the expensive and scarce 

indium doped tin oxide (ITO) layer used in DSC with single walled carbon nano-

tubes. 
 

1.2 Outline of this thesis 
 

The thesis work started with gathering information and knowledge on material 

and manufacturing options for flexible DSC cells, which was reported in the 

form of an extensive literature review as a review article (Publication 1). After 

that, systematic studies on low temperature catalyst layers were performed by 

implementing commercially available and in-house made low temperature inks 

and pastes of these catalysts (Publications 2-6). 
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The thesis consists of 5 individual chapters. Chapter 1 outlines the justification, 

scope, aims and contents of the thesis. Chapter 2 discusses the basic principles 

of operation of a dye sensitized solar cell. Additionally the Chapter 3 explains 

the cell fabrication, measurement procedures and characterization techniques 

used during the experimental studies in this Thesis. The results from all the ex-

periments are discussed in Chapter 4. Finally, the key findings along with the 

idea of future work are concluded in Chapter 5.  
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2.  Basics of dye sensitized solar cells (DSC)  
2.1 Operating principle and device structure  
Dye sensitized solar cells often called dye solar cell (DSC) is a photovoltaic de-

vice which consists of a photoelectrode (PE), a counter electrode (CE) and an 

electrolyte solution (Figure 1). The photoelectrode is comprised of a thick layer 

(10-20 µm) of semiconducting oxide (normally TiO2) which is coated with a 

monolayer of light absorbing material (typically an organo metallic ruthenium 

sensitizer called ‘dye’) through sensitization of dye molecules. The dye molecule 

excites from highest occupied molecule orbital (HOMO) to lowest unoccupied 

molecule orbital (LUMO) upon receiving solar radiations (photons) and injects 

an electron into the conduction band of TiO2 where it percolates/diffuses into the 

thick nanostructured TiO2 medium and fetches by the external circuit through 

transparent conducting  oxide (TCO) layer.  

 
Figure 1. Structure of the dye solar cell: (1) conducting substrates, (2) TiO2, (3) 
dye monolayer, (4) electrolyte, and (5) catalyst layer. (Reprinted from Publica-
tion 1with permission from Elsevier). 
 

The iodide/tri-iodide (I−/I3
−) redox based liquid electrolyte solution regener-

ates/reduces the dye molecule by transferring an electron to the excited dye 

through the iodide ion (I−) which oxidizes to tri-iodide ion (I3
−) and moves to-

wards the counter electrode. This oxidized I3
− ion reduces back to I− ion by re-

ceiving the electron from external circuit through a catalyst layer, typically plat-

inum (Pt) and completes the process. The details of the overall electrochemical 

reactions is as follows 

     S + hυ        S* (Photo excitation)   (1) 

                             S*           S + + eˉ (TiO2 injection)    (2) 

   2S+ + 3I ˉ            2S + I3
ˉ (Dye regeneration)  (3) 

   S+ + eˉ            S (Recombination)    (4) 

   I3
ˉ + 2eˉ            3I ˉ (Reaction at the CE)   (5) 
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Figure 2 illustrates the typical energy diagram of a DSC in which the difference 

between the Fermi level of semiconducting oxide (TiO2) and redox potential de-

termines the cell voltage whereas maximum absorption wavelength for photo-

excitation is defined by the energy gap of HOMO and LUMO level of the dye 

(sensitizer) molecule. 

 
Figure 2. Energy level diagram of DSC. 

 

Traditional fabrication and geometry of DSC was designed on rigid glass sub-

strates loaded with a TCO layer. The highest efficiencies till date are recorded 

with glass based DSC both on lab sized (12.3%) 6 as well as on the module level 

(9.9%) 7. The use of glass offers plenty of advantages, for instance, resistance 

against penetration of moisture and oxygen. Moreover, the glass based embodi-

ments can also be integrated in building facades 8 and roof tops 8 due to these 

characteristics. Nevertheless, the glass sheet substrates have been realized as the 

most expensive among the cell components 9. Also, glass sheets cannot be cho-

sen for high volume roll-to-roll (R2R) production. Fortunately, it is possible to 

adopt modern printed electronics technology for fabrication of DSC by using 

light weight and flexible sheets of polymers and metals 10. Metallic sheets have 

an edge over plastics in many distinguished features such as low cost, high con-
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ductivity and moisture resistance in comparison with polymer sheets. Addition-

ally metallic sheets are compatible with high temperature sintering processes 

which are the key requirements to get high quality and adhesive films of the 

desired materials. The highest efficiency (8.6%) till date for flexible DSC was 

reported in reverse illumination manner with an opaque metal PE and semitrans-

parent chemically platinized CE 5.  However, one of the major issue related to 

these metallic sheets is the corrosion in the iodide/triiodide (I ̄ / I3
ˉ) redox medium 

present in the liquid electrolyte of the cell 11.  

 

On the other hand, a critical challenge for plastic substrates is to produce durable 

films of the desired materials at lower temperature since the maximum temper-

ature these plastics can endure is around 150 °C. Despite of the initial perfor-

mances, the mechanical stabilities of low temperature based inks and pastes are 

rarely reported in the literature 12-14. Without ensuring good adhesion on polymer 

substrates, the fabrication of robust DSC cannot be realized. These vital issues 

are key hurdles for the industrial production of DSC and require careful optimi-

zations of not only the materials but also the processes that should be simple and 

rapid. Furthermore, the long-term operation of the flexible DSC is still question-

able. There are very few reports that indicate the long term stability of flexible 

DSCs 15, 16. 
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3. Measurement procedures and methods 
 

In the following, the central measurement and characterization methods used in 

this thesis are presented. 
 

3.1 Photovoltaic parameters and IV measurements 
 

IV measurements constitute the basic solar cell characterization method, im-

portant to determine the key performance parameters. The short circuit current 

density (JSC), open circuit voltage (VOC), fill factor (FF) and the cell efficiency 

(η) are the fundamental characterization parameters which can be obtained 

through current–voltage (IV) curve of the solar cell (Figure 3). The IV curves are 

normally recorded with a solar simulator in an artificial light intensity of 1000 

W/m2 which is equivalent to 1 Sun light intensity. The overall cell efficiency of 

the cell can be expressed by the following formula: 

 

            (6) 
 

Where Pmax is the product of IMPP and VMPP. The IMPP and VMPP are the maximum 

current and voltage that can be drawn at maximum power point (MPP) of the 

cell as shown in Figure 3. Additionally the FF can be expressed as 

 

                    (7) 
 

 
Figure 3. Typical IV curve of DSC. 
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3.2 Electrochemical impedance spectroscopy  
 

The electrochemical impedance spectroscopy is an established tool for DSC that 

is used to measure impedances of the individual cell constituent and their inter-

faces with other components of the cell. The motivation of using this technique 

is the estimate of losses at different current and voltage values which cannot be 

identified through simple IV curve. These interfaces build RC circuits which ex-

hibit different impedance responses due to the different time constants. The elec-

trical modelling (Fig. 4) of the physical device (DSC) allows the fitting of the 

response of these physical components and interfaces which results upon the 

scanning of a range of frequencies (typically from 100 mHz to 100 kHz).  

 
Figure 4. Electrical model of physical device (DSC) Copyright Wiley-VCH 
Verlag GmbH & Co. KGaA. Reproduced from reference [17] with permission.  
 

The fundamental parameters of the models (Fig. 4) are defined as follows:  

rT = Resistivity of electron transport in the photo electrode film, consisting typi-

cally of interconnected TiO2 nanoparticles. The total transport resistance of the 

film is RT = rTd where d is the film thickness. 

rREC = Charge transfer (recombination) resistance at theTiO2/dye/electrolyte in-

terface per unit volume of the electrode. The total recombination resistance of 

the film is RREC = rRECd-1. 

RS = Ohmic series resistance of the cell. The total RS is the sum of contributions 

from the sheet resistance of the substrates, resistivity of the electrolyte and elec-

trical contacts and wiring of the cell. 

RCE and CCE = Charge transfer resistance and double layer capacitance at the 

counter electrode electrolyte interface. 

ZD = Mass transport impedance at the counter electrode.  

RCO and CCO = Contact resistance and capacitance at the interface between the 

conducting substrate and the TiO2 photo electrode film. 
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RSU and CSU = Charge transfer resistance and double layer capacitance at the 

substrate/electrolyte interface. 
 
Among the above mentioned circuit parameters, Rs, RCO, rT, ZD, and RCE directly 

affect the FF in the IV curve of DSC and consequently the efficiency. Addition-

ally the RREC affects the open circuit voltage (VOC) whereas the RSU should be 

high enough to block the current leakage from photo electrode to the electrolyte.  

 

The electrochemical impedance response can be represented through so-called 

Nyquist plots and their corresponding frequency peak positions can be identified 

through imaginary impedance (-Z’’) vs frequency plot as shown in Figure 5 a-b 

respectively.  

 

In the Nyquist plot, the distance from the origin to the first semicircle represents 

the series resistance (RS) whereas the first semicircle corresponds to the charge 

transfer resistance (mostly denoted by RCT) at the counter electrode/electrolyte 

interface. The second semicircle in the Nyquist plot represents the resistance of 

photoelectrode or ‘recombination resistance (RPE)’. The third very small semi-

circle of the complete response represents the electrolyte diffusion resistance 

(RD). The typical values for RS mainly depends upon the sheet resistance (RSH) 

and for DSC, it ranges from 5 Ω/Square to 60 Ω/Sq 18. On the other hand the 

good RCT values are considered to be less than 10 Ωcm2.  

 

Moreover, the traditional thermally platinized counter electrode (TPCE) based 

DSC exhibits three frequency peaks in the frequency range between 100 mHz to 

100 kHz. The first semicircle for TPCE is associated with the charge transfer 

resistance (RCT) which appears in very high frequency (> 1 kHz) range 19. Addi-

tionally the second adjacent semicircle corresponds to the recombination re-

sistance of the photo electrode (RPE) and its characteristic frequency appeared 

around 20-30 Hz 19. The third small semicircle that appeared at very low fre-

quency (~ 1 Hz) is associated with the diffusion resistance (RD) of the cell 19.  
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Figure 5. Typical EIS response of the DSCs measured at VOC under illumination 
represented as a) Nyquist plot, b) imaginary impedance Z’’ as a function of fre-
quency f. All solid lines correspond to the fitted data whereas the points represent 
the measured (real) data.  
 

3.3 Incident photon-to-collected electron efficiency (IPCE)  
 

The incident photon-to-collected electron efficiency (IPCE) is a measure of the 

current production as a function of the wavelength. This technique is used to 

observe the spectral response of the solar cell which describes how many elec-

trons the external circuit receives against the number of photons having a certain 

wavelength (λ). The partial quantum efficiencies, i.e. light harvesting (ηLH), elec-

tron injection (ηINJ), charge collection (ηCOL) and regeneration (ηREG) efficiency, 

define the total incident photon to collected electron efficiency (ηIPCE) as 

 

            ηIPCE (λ) = JSC (λ)/qφ(λ) = ηLH(λ).ηINJ(λ).ηCOL(λ).ηREG(λ)                (8) 

 

in which φ(λ) is the photon flux at a given wavelength λ and q is the elementary 

charge. Figure 6 represents typical IPCE data of the cell when illuminated from 

the PE side of the cell. The charge collection losses can be determined from the 

CE side illumination of the cell that cause a so-called ‘red shift’ in the peak IPCE 

spectrum.  
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Figure 6. Typical IPCE spectrum of DSC. 

 

3.4 Mechanical adhesion tests  
 

One of the key challenges in case of formulation of low temperature pastes is the 

adhesion of deposited materials since they do not experience the high tempera-

ture sintering step which is critical in case of glass or metal substrates. The high 

temperature sintering step does not only promote the interparticle connection 

within the material but it also gives strong adhesion with the surface of the sub-

strate. These adhesive and mechanical properties significantly affect the overall 

performance of the device (DSC). However, the case for plastics is different 

where the temperature restriction remains under 150 °C. It is therefore very im-

portant to check the mechanical strength of low temperature inks over the sub-

strates. We adopted two recognized mechanical test procedures for Publication 

3 and 4 for the determination of mechanical stability of the material. The first 

one is called bending test while the other one is called tape adhesion test 20. For 

Publication 3, only qualitative analysis of mechanical stability was made 

whereas it was demonstrated in more detail for Publication 4. For Publication 4, 

the deposited carbon nanotube (CNT) ink was bended over different bending 

radius and the resistance (R) was regularly measured. The value of resistance 

was then used to measure the sheet resistance (RSH) of the CNT loaded substrate 

with the help of following formula i.e. 

                                 RSH = (R*W)/L      (9) 
 

Where W and L are the width and length of the film respectively between the 

electrical contacts. Moreover, the same resistance was measured in case of a tape 
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test where the deposited CNT film was rolled with a heavy roller under the pres-

sure sensitive test and the tape was pulled at 90° angle and the resistance was 

regularly measured.  
 

3.5 Scanning electron microscopy 
 

The surface morphologies of the deposited layers in the publications were rec-

orded with JEOL JSM-7500FA and Zeiss Ultra 55 FEG-SEM Scanning electron 

microscopes. Additionally in Publication 4, the Bruker AXS energy dispersive 

analyzer (EDS) was also used to identify different particles of the carbon com-

posites.  
 

3.6 Cell fabrication 
 
 

In each experimental study, the photo electrodes were prepared on FTO glass 

(TEC-15, Sheet Resistance = 15 Ω/Sq, Pilkington) by utilizing screen printing 

of commercially available TiO2 pastes (Dyesol). The reference Pt counter elec-

trodes (CE) were prepared on FTO glass (TEC 15, Sheet Resistance = 15 Ω/Sq, 

Pilkington) by thermal platinization of 5mM solution H2Pt6Cl4 precursor in 2-

Propanol. The details of unique low temperature catalyst layers are mentioned 

in the included publicatons. In short, the conducting polymer (PEDOT-TsO) cat-

alyst layers were deposited both on ITO-PET (Publication 2) and on SWCNT 

coated PVC substrate (Publication 5) by spin coating whereas the low tempera-

ture Pt catalyst layers (Publications 2 and 6) were deposited on ITO-PET and 

ITO-PEN polymer sheets by chemical platinization and electrochemical platini-

zation methods described in the relevant publications. The sandwich type cell 

assemblies were fabricated by separating the PE and CE with either Surlyn or 

Bynel frame foils which also determines the cell channel. High stability electro-

lyte coded as HSE (which contains 1-propyl-3-methylimidazoliumiodide 

(PMII), iodine (I2), guanidinumthiocyanate and benzimidazole) from Dyesol 

was injected in most of the studies. Then the cells were sealed with the Surlyn 

or Bynel polymer and a thin glass cover with a hot press. The contacts of the 

solar cells were fabricated with a copper tape and quickly drying silver ink.  
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4. Results and discussions 
The experimental study is comprised of 6 individual publications and the main 

area of research was low temperature catalyst layers as alternative counter elec-

trodes for DSC. The motivation was to find out the possibilities/ways to replace 

some expensive components of the DSC for instance expensive FTO Glass with 

cheap polymers, Pt catalyst layer or expensive and scarce ITO layer with alter-

native materials.  
 

4.1 Fabrication options of dye sensitized solar cells on flexible sub-
strates (Publication 1) 
 

The thesis research was started with a review article about the state of the art 

regarding the commercialization and up-scaling options of dye sensitized solar 

cells fabricated mainly on alternative (flexible substrates). Also the aim was to 

present a general cost analysis about the materials that are presently available for 

this technology and the realization of an ideal fabrication step model of dye sen-

sitized solar cell for continuous roll-to-roll processing.  
 

4.1.1 Cost overview for dye sensitized solar cells 
 

The cost of volume production of dye solar cells technology mainly depends on 

the materials cost and the fabrication techniques. For DSC, there are plenty of 

options for inexpensive materials, for instance, titanium dioxide (TiO2) or carbon 

(C) with abundant availability to be tested along with quick and easy fabrication 

methods which cannot only lower the cost but can also potentially speed up the 

manufacturing processes.  Also, the conventional expensive and rigid glass sub-

strates which have been used for batch processes can be replaced with cheap and 

flexible substrates such as inexpensive polymers, metals or even paper 21. More-

over, the usage of flexible substrates can extend the integration of DSCs in var-

ious applications such as in clothes, school bags and other commercial products. 

Nevertheless the main challenge for these low cost substrates is the low temper-

ature fabrication processing of the materials on them along with high durability 

and strong mechanical stability. Long-term and stable operation of fully flexible 

DSC is vital for the competitiveness against the conventional Silicon based solar 

cells which is offering 20 years of warranty at present. 
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The rigid glass substrate is the most expensive component in a DSC:  its share is 

around 80% of the cost among all the active components of the cell such as TiO2 

nanoparticles, platinum (Pt) or carbon catalyst materials, dye or electrolyte 9. 

The overall cost can be significantly decreased (35%) if these expensive sub-

strates could be replaced with polymer substrates 9. Additional reduction in the 

cost (99%) is possible if the polymers could be replaced with commonly availa-

ble aluminum (Al) foil (Table 1).  

 
Table 1: Approximated costs of different materials of DSC. The costs presented 
for substrates are based upon single substrate cost. (Reprinted from Publication 
1with permission from Elsevier). 

         Components          Cost ($/m2)            References 

 
Single substrate 
1) TCO Glass                           
2) ITO-PET 
3) Titanium (Ti) mesh 
4) Ti foil 
5) Stainless steel (StS) 
6) Aluminum (Al) foil 
Other active materials 
TiO2 particles 
TiO2 paste 
Electrical connections 
(Dye, electrolyte, catalyst) 
Inactive materials 
Sealants, laminating 
Materials, encapsulants, 
Additional wiring for exter-
nal connections and laminat-
ing materials. 

 
                         
                12.5-25 
                  8 – 72 a 

                  15-20 
                    90 
                     4 
                  0.055 
 
                   0.04 
                     29 
                    2.9 
                   10.3 
 
 
                    29 

 
                          
                [9] 
                 [9, 22] 
                   [23] 
                   [24]  
                   [25] 
                   [26] 
 
                    [9] 
                  [27] 
                    [9] 
                    [9] 
 
 
                 [27, 9] 
                                                 
 
 
 
                   

 

The need to make the pastes or inks from raw materials by utilizing low cost 

synthesis techniques is also vital as the cost of screen printable TiO2 paste was 

estimated 1000 times higher ($29/m2) than the cost of TiO2 nanoparticles 

($0.04/m2) (Table 1). Another advantage of flexible DSCs is avoiding the cost 

for inactive materials such as metallic frames, strut and bolds and additional 

glass encapsulations used in the installations of silicon solar cells. Zweibel re-

ported $5/m2 for these inactive components 25. The potential for further cost re-

ductions is also possible by replacing other costly materials such as Pt 28 or ITO 
29 layer with much cheaper catalyst and conductive materials such as carbon 

nano-particles 30. 
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 Another favorable aspect for the DSC is the cost of its manufacturing tools and 

equipment. For a 10 MW/year manufacturing capacity, the production costs for 

glass based DSC has been estimated in between $7.25/m2 - $11.60/m2 9 com-

pared to $32/m2 production cost for thin film solar cells 25. Hence by fabricating 

DSCs on light weight flexible substrates and implementing roll-to-roll pro-

cessing, large cost reductions could be expected and could even be halved com-

pared to glass-based batch process DSC technology. Presently, silicon photovol-

taic modules are sold at a cost less than $1/WP which has been achieved through 

scale of economics and increasing competition. In case of DSC, which is still in 

a laboratory phase, scaling up to mass production should most likely bring down 

the cost further through different learning and scale effects in production. The 

easy and non-vacuum based fabrication equipment for DSC may potentially fur-

ther reduce the overall cost down to $ 0.4/WP in production cost with 100 MW 

yearly production capacity 31.    

 

4.1.2 Realization of flexible dye solar cells 
 

As mentioned earlier, the DSC fabrication process can be switched from tradi-

tional glass substrates to either flexible polymer or metallic sheets and can be 

fabricated in different combinations as shown in Figure 7 a-c. There are key 

challenges associated with each type of configuration. For example, the whole 

cell assembly can be fabricated on transparent conducting oxide coated flexible 

polymer sheet (Figure 7 a) like the typical glass based DSC if the materials could 

be deposited or coated using low temperature pastes and inks. On the other hand, 

the metals can be configured either as PE 5 or CE 32 (Figure 7 b-c). However, the 

optics in case of utilizing metals as a PE requires careful optimizations to achieve 

maximum output power since the cell is illuminated from the CE side and the 

light is absorbed by the TCO, the semi-transparent catalyst layer as well as the 

electrolyte. In case of a metal as a CE will require a high performance low tem-

perature TiO2 ink/paste coated PE on TCO plastic 33 which is a crucial challenge 

in the realization of flexible DSCs.  

 

Long term stability is vital for the success of flexible dye solar cells. These cells 

need to stand high humidity and extreme temperatures. The UV sensitivity of 

plastics can also be a severe problem for flexible DSC compared with glass 34. 
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In this regard the integration of flexible DSC needs to be reviewed according to 

its application in different operating conditions. The good news about the DSC 

is its higher relative performance in low light conditions compared to Silicon 

based solar cells 35. This can broaden the utilization of flexible DSC e.g. for 

battery charging of mobile phones, school bags and clothes where both bright 

light and extreme weather conditions are not necessarily required for the opti-

mum operation of DSC. Some low light working demonstration of DSC has al-

ready been shown from G24i 10 and Sony 36.   

 
Figure 7. Different configurations of flexible dye sensitized solar cells. TCO = 
Transparent conducting oxide, PE = Photoelectrode, CE = Counter electrode.  
 

4.1.3 Flexible photo electrodes 
 

Flexible photoelectrodes can be fabricated by utilizing fast roll-to-roll fabrica-

tion devices. The metal based photoelectrode offers an advantage for high tem-

perature sintering processes which is a key requirement for a high quality TiO2 

nano particles film. These high temperature TiO2 nanoparticle films have been 

employed in the reverse illumination type DSC 5 (as discussed in section 4.1.2) 

and has achieved an efficiency of 8.6% 5. On the other hand, the high temperature 

sintering process cannot be applied on plastic substrates such as ITO-PET or 

ITO-PEN because they start to deform after 150 °C. Transferring the high tem-

perature TiO2 sintered film has been demonstrated through a so-called ‘lift off’ 

process 37.  The key issue related to low temperature inks is the weak inter-par-

ticle bonding between individual TiO2 particles which is typically obtained 

through the high temperature (~ 500 °C) sintering process. Hence the movement 

of electrons within the film experiences high resistance and causes lower cur-

rents compared to high temperature TiO2 film. Several groups demonstrated dif-

ferent low temperature methods such as chemical sintering 38, TiO2 film pressing 
33, 39 and ball milling 38, 39, hydrothermal treatments 40, as well as different UV, 

microwave or laser sintering methods 41, 42. Utilizing aforementioned methods, 

efficiency levels of 6-8% has been obtained with plastic DSCs which is still 
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lower than the glass based DSCs. Table 2 summarizes the range of efficiencies 

obtained through different techniques. 

 

Table 2: List of efficiencies obtained by implementing flexible photo elec-
trodes in DSC. (Reprinted from Publication 1with permission from Elsevier). 

Substrate Paste Deposition Post 
treatment 

η 
(%) 

Ref  
(Pub) 

StS TiO2, Alpha-ter-
pinol and ethyl 

cellulose 

Doctor blading Sintering 
600 °C 

8.6 5 

ITO-PEN 
 

TiO2-water paste Doctor blading Mechanical 
pressing 

8.1 33 

Ti TiO2 paste Screen printing Sintering 7.2 43 

ITO-PEN (1) TiO2 F-5 
Showa titanium t-
butanol and water 
(1:2), (2) aqueous 

collide TiO2 
(brookite) 21 

wt.%, 25% HCL 
with pH4 and 

75% ethanol, (3) 
mixture of (1) and 

(2) 

Doctor blading 
or screen print-

ing 

Heating at 
110 – 125 

°C 

5.8 44 

Glass Stock solution of 
Ti4+ Titanium(iv) 
isopropoxide, tri-
ethanolamine and 

DI 

Thermal hy-
drolysis 

Mechanical 
compression 

5.8 40 

ITO-PET TiO2 F-5 Showa 
titanium tert-butyl 
alcohol and ace-
tonitrile (95:5) 

mixture 

Electrophoretic 
deposition 

CVD/UV 
254 nm 

3.8 41  

ITO-PET TiO2 P25 De-
gussa, water, ni-
tric acid, Triton, 

ethanol and meth-
anol 

Spray deposi-
tion or pulsed 

laser 

UV 248 nm 
pulse width 

20 ns 

3.3 42 

ITO-PET TiO2 P25 De-
gussa [Ti(IV)-

tetraisopropoxide] 

Hydrothermal 
crystallization 

Autoclaving 
100 ◦C 12 h 

2.5 40 

IT-PET TiO2 P25 De-
gussa, 20 wt.% 

ethanol 

Doctor blading Mechanical 
pressing 

2.3 45 

 
4.1.4 Flexible counter electrodes 
 

Like the photoelectrodes, the characteristics of the counter electrodes, e.g. the 

charge transfer resistance (RCT), reasonable transparency in case of reverse illu-

mination as well as a good adhesion of the catalyst material affect the overall 
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performance of the DSC (mainly the FF of the IV curve). Different catalyst lay-

ers e.g. Platinum (Pt) 18, carbon composites 19, conducting polymers (i.e. PE-

DOT:PSS or PEDOT:TsO) 46 or carbon nanotubes 47 have been tested in differ-

ent experiments. Among them the conventional Pt can be deposited through var-

ious available low temperature techniques such as chemical platinization 5, elec-

trochemical platinization 18, or sputtering 48, 49. The advantage in case of electro-

chemical platinization and sputtering is the realization of semitransparent layers 

that can be obtained through the optimization of deposited parameters and can 

be implemented in a reverse illuminated DSC. The cost will be an issue in these 

cases. Also semi-transparent carbon nanotubes as a catalyst substitute are depos-

ited via a dry transfer process 47 but this did unexpectedly not exhibited good 

catalytic activities and requires an additional catalyst layer 47. On the other hand, 

opaque films of carbon composites can be used by the conventional doctor blad-

ing method 19. A problem with carbon materials as catalysts is the adhesion with 

the substrates and the mechanical stability of these which is rarely reported in 

the literature. Conducting polymers such as p-toulenesulfonate-doped poly (3, 

4-ethylenedioxythiophene) (PEDOT-TsO) or polystyrenesulphonate (PSS) have 

also been tested as an alternative catalyst material via spin coating or screen 

printing on polymer foils 50, 51. The best efficiency (7.93%) for these polymers is 

reported through electrochemical polymerization 52 among all reported methods 

such as spin coating or screen printing. 
 

4.2 Stability issues of flexible DSCs 
 

The DSCs manufactured on glass substrates have exhibited high efficiencies 

along with excellent stabilities under 60 °C and 80 °C accelerated aging tests and 

also in outdoor natural environmental conditions 53-56. This is mainly due to the 

excellent resistance of glass against the moisture intrusion as well as the temper-

ature. The case for flexible substrates such as polymer and metallic sheets is 

entirely different. The plastic sheets are permeable and thus allow the intrusion 

of water/moisture within the cell 15. In this case the selection and suitability of 

materials that could resist the moisture is important. For example the traditional 

N719 is known to be hydrophilic which means it is capable of absorbing water 
11. The mechanical stability of the materials is also a key factor for the high per-

formance. The scientific reports for low temperature inks and materials based 

DSC rarely state mechanical stability data or tests. The plastic substrates are also 
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sensitive to UV light as well as harsh volatile solvents such as acetonitrile. Flex-

ible metallic sheets such as stainless steel are mainly affected by corrosion 

through the redox couple 11. Currently the G24i is producing flexible DSC on 

Titanium (Ti) metal which is also considered as the expensive metal (i.e. $ 

90/m2) 24. 
 

4.3 Ideal process flow for the module production of flexible DSCs  
 

We suggest an advanced R2R fabrication model for the flexible DSC by selecting 

all low temperature fabrication processes as shown in Figure 8. The best choice 

could be a plastic based photo electrode loaded with a binder free TiO2 paste in 

order to minimize the optical losses. In addition to that, the method for dye stain-

ing is critical and requires more research to develop rapid staining techniques as 

it takes several hours to adsorb over the mesoporous layers of TiO2 which is 

inappropriate to be integrated in the R2R manufacturing. Also the dye could be 

deposited either by inkjet printing or by screen printing. We consider the elec-

trolyte injection in the cell channels and its composition as the most challenging 

part. Ideally a screen printable non-corrosive solid state electrolyte layer is rec-

ommended. The non-corrosiveness would be a key factor for using cheap metal 

substrates, e.g., Al or abundant Ag inks for preparation of fine metal grid over 

carbon nanotubes coated plastic substrate could omit protective layers and could 

reduce the inactive space.  

 

Counter electrode materials can also be deposited either by low temperature 

inkjet printing or screen printing of either carbon composite or carbon nanotubes 

based inks. Usage of highly conductive carbon nanotubes can potentially reduce 

the overall cost due to removal of expensive ITO layer on the substrate if a plastic 

substrate is also used on the counter electrode. The complete module can then 

be assembled by applying adhesive on one of the electrodes and compressing 

both the flexible substrates together. Printable sealant material is recommended 

in process line via screen printing step followed by pressing 57. Lastly, a barrier 

foil which is required to prevent moisture penetration could be laminated with 

an adhesive.  
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Figure 8. Process steps for the fabrication of flexible dye sensitized solar cells. 
(Reprinted from Publication 1with permission from Elsevier). 
 

4.4 Characteristics of flexible counter electrodes  
 

After the technology review, the main topic of research was alternative catalyst 

based counter electrodes where the characteristics/comparisons of several coun-

ter electrodes were studied in terms of photovoltaic performance, scanning elec-

tron microscopy (SEM) imaging, electrochemical impedance spectroscopy 

(EIS), incident photon-to-collected electron efficiency (IPCE). Moreover the 

studies on composites of carbon as an alternative catalyst layer and replacement 

of expensive ITO layer with carbon nanotubes was targeted due to their high 

conductivities and strong mechanical properties on polymers. The successful re-

placement of ITO is shown on a commonly available polyvinyl chloride (PVC) 

sheet with single walled carbon nanotubes. 
 

4.4.1 Comparison of flexible counter electrodes (Publication 2) 
 

During the literature review, several low temperature counter electrodes prepar-

atory methods were identified but their performances being separately investi-

gated in individual studies 19, 46. Also the PE geometries in these individual stud-

ies were unique. Therefore, the counter electrodes cannot be compared with each 

other based upon their overall individual efficiencies. The main motivation was 

to identify the best polymer based counter electrodes for their utilization in both 

the direct and reverse illumination configuration for TCO coated flexible poly-
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mer and metal photoelectrode respectively. The different low temperature sem-

itransparent catalyst layers were obtained through chemical or electrochemical 

platinization and spin coating of PEDOT as well as a completely opaque carbon 

gel catalyst layer were also tested by keeping the same PE geometry. The optical 

characteristics along with the morphology and electrical performance were also 

investigated and compared with the reference glass based thermally platinized 

counter electrodes. The morphologies of the deposited layers are shown in Fig-

ure 9. From these images, the carbon based catalyst layers revealed highly po-

rous structures thus offering high surface area in comparison with the platinized 

counter electrodes. On the other hand, a relatively non-uniform PEDOT layer 

(that was deposited via spin coating) was obtained over the ITO PET with certain 

uncovered areas which formed gaps ranging from 1 to 4 µm.  

 
Figure 9. SEM image of a) Bare FTO Glass substrate and FTO glass substrate 
with b) thermal platinum, c) electrochemical Pt, d) chemical Pt, e) PEDOT-TsO 
(close up), f) PEDOT-TsO, g) HT carbon paste, and h) plastic carbon gel. (Re-
printed from Publication 3 with permission of ECS). 
 
The performance comparison showed the highest short circuit current densities 

(JSC = 8 mA/cm2) with chemical platinized counter electrodes values upon re-

verse illumination. The reason for the relatively higher JSC values was explained 

with the optical properties of the counter electrodes e.g. the difference in the 

transmittances determined the differences in the in JSC values for each type of 

counter electrode. The photocurrents in case of the opaque carbon catalyst layers 

with CE illumination are very small and such catalyst layer are practically suit-

able only for the PE side illumination.  Additionally the same chemical platinized 

counter electrodes based DSC exhibited the highest efficiency with both the PE 
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(4.3%) and CE (3.1%) among all types. Surprisingly the PEDOT-TsO counter 

electrode based DSC exhibited 20% lower current densities which also affected 

its overall efficiency (3.3% from PE side and 2.2% from CE side).  

 

The lower currents in the PEDOT counter electrode based DSC have already 

been reported in other studies 47. For PEDOT base counter electrodes, it was 

initially assumed that some other factors such as electron injection, regeneration 

or collection efficiencies may limit the JSC. Some of the above mentioned factors 

were investigated through incident photon-to-collected electron efficiency 

(IPCE) measurements which were conducted from both the PE and CE sides. It 

is well known that if there are collection losses, this directly produce the so-

called ‘red shift’ of the peak position when IPCE is measured from the CE side. 

This peak shift was not found in all other types of cells, whereas for PEDOT the 

estimation of peak position was difficult. The difference between the PEDOT-

TsO and the other cells was further investigated by calculating the IPCE ratio of 

the PEDOT-TsO and electrochemically platinized cell which revealed a signifi-

cantly lower IPCE ratio (i.e. ηIPCE,CE divided by ηIPCE,PE) for PEDOT-TsO cells 

compared with the electrochemical platinized counter electrode. Since each type 

of cell has the same photoelectrode, substrate and electrolyte composition, it is 

presumed that the PEDOT-TsO cells had lower ηCOL or, in other words shorter 

electron diffusion lengths. One hypothesis for the reason for this could be that 

residues of PEDOT polymer had detached or dissolved in the electrolyte, dif-

fused to the PE and adsorbed on the TiO2 film, catalyzing the electron recombi-

nation reaction there. 

   

The resistances for each type of counter electrode were determined with EIS 

measurements of the complete DSC. The carbon based electrodes exhibited 

lower series resistance (RS) compared to other types of flexible counter elec-

trodes whereas the highest catalytic activity, i.e. the lowest charge transfer re-

sistance (RCT), was recorded with PEDOT-TsO (2.8 Ωcm2) and chemical plati-

nized (3.7 Ωcm2) counter electrodes which are comparable with the reference 

thermally platinized counter electrodes (2.6 Ωcm2). Also, the low temperature 

carbon gelatinized catalyst layer had lower (~ 11 Ωcm2) resistance than the high 

temperature carbon counter electrode on glass (17 Ωcm2). It could be seen from 

the SEM images that the carbon gel catalyst layers exhibited larger surface area 
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compared to the high temperature carbon paste which was actually a film of 

graphite flakes. This caused the superior performance of carbon gelatinized cat-

alyst layer compared to the high temperature carbon catalyst. 

 

In conclusion we may say that a low temperature carbon gel catalyst layer can 

be a good option to be integrated with the best performing plastic photoelectrode, 

but its charge transfer resistance needs to be improved which may be potentially 

reduced by milling the composite that might increase not only the surface area 

but may also break down unwanted gel particles. On the other hand, the chemical 

platinized catalyst layer was found suitable in case of reverse illumination, but 

the cost can be an issue.  
 

 

4.4.2 Characteristics of carbon composites catalysts in DSC (Publi-
cation 3 and 4) 
 

The carbon composites offer an alternative solution to replace the expensive Pt 

catalyst layer in the DSC. Four different types of low temperature pastes of com-

posites of carbon were formulated to test their viability in DSC. A systematic 

comparison was made in terms of mechanical stability, photovoltaic and electro-

chemical properties. In these experiments we first developed a carbon composite 

paste that was gelatinized with a polymer (polyvinylidenefluoride-co-hex-

afluoropropylene, PVDF-HFP). The flaking of low temperature carbon nanopar-

ticles over plastic substrate is a well-known problem in DSC. Keeping that in 

mind the gel was added to the carbon composite for keeping the particles to-

gether as well as to promote the adhesion with the substrate (ITO-PEN).  

 
 

In Publication 4, three different types of carbon composites namely binder free 

carbon composite (BFCC), TiO2 nanoparticles as binder enriched carbon com-

posite (BCC) and PEDOT polymer enriched carbon composite (PCC) were 

tested. The mechanical stability tests were done in a systematic way (see sup-

porting information for Publication 4). First the bending tests with the carbon gel 

catalyst was performed which showed high elasticity of doctor bladed carbon 

layer and no flaking was seen. A higher charge transfer resistance (23 Ωcm2) 

compared to the reference thermally platinized counter electrode (12 Ωcm2) was 

obtained because of the gelator which cannot be removed due to the temperature 
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restriction of plastics (150 °C). This was taken as a compromise in between the 

elasticity and the catalytic activity.  

Table 3: Adhesion characteristics of carbon composites deposited on FTO 
Glass, ITO-PEN and ITO-PET Sheets. (Reproduced from Publication 4 with per-
mission from PCCP Owner Societies). 

Substrate / Catalyst* 

Dominant way of detachment of the film from the substrate 

Particles from 
film 

Parts of the film  

( 10-30%) 

Most of the film 

(> 90%) 

FTO Glass-BFCC   X 

FTO Glass-PCC X   

FTO Glass-BCC  X  

ITO PEN-BFCC  X  

ITO PEN- PCC  X  

ITO PEN-BCC   X 

ITO PET-BFCC  X  

ITO PET-PCC  X  

ITO PET-BCC X   

*FTO=Fluorine doped tin oxide, ITO=Indium doped tin oxide, PEN= Polyeth-
ylenenaphtalate, PET=Polyethyleneterephtalate, CE=Counter electrode, 
PE=Photoelectrode, BCC=Binder carbon composite, PCC=PEDOT carbon 
composite, BFCC=Binder free carbon composite. 

 

The bending and tape adhesion tests were also performed over the BFCC, BCC 

and PCC catalyst layers on three (FTO glass, ITO-PEN and ITO PET) substrates 

in Table 3. Among them the PEDOT enriched carbon catalyst layers exhibited 

better adhesion than the other two types over each substrate. The TiO2 binder 

enriched carbon composite showed relatively good adhesion on ITO-PET, but 

on ITO-PEN its adhesion was poor.  

 

In terms of photovoltaic performance, the carbon gel catalyst layer achieved an 

overall efficiency of 4.2% compared to 4.8% reference platinum counter based 

DSC (see Publication 3). The highest efficiency DSC engineered with BCC 



 

32 
 

reached 85% of the solar energy conversion efficiency (5.9%) of the reference 

DSC with platinum counter electrode (7%, see Publication 4). 
 

 

Figure 10. Typical EIS response of a complete DSC of reference thermally plat-
inized counter electrode (red) and carbon composite based counter electrode 
(black). (Reprinted from Publication 3 with permission from Elsevier).  

 

Figure 10 (a-b) represents typical EIS spectra of complete DSC fabricated with 

carbon composite counter electrodes on ITO-PEN (black) and the reference ther-

mally platinized counter electrode (red). Figure 10a is the ‘Nyquist plot’ whereas 

Figure 10b is the imaginary impedance versus frequency range. All the EIS 

measurements reported in Publication 3 and 4 were performed in an artificial 

solar simulator under 1000 W/m2 equivalent to 1 Sun light intensity and open 

circuit voltage conditions. The EIS frequency range was from 100 mHz to 100 

kHz. The impedance arcs for each type of DSC can be identified in the Nyquist 

plot (Figure 10a and 11a) according to their unique peak positions shown in Fig-

ure 10b and 11b. For instance the reference thermally platinized counter elec-

trode based DSC reveals three impedance arcs within 100 mHz to 100 kHz (Fig-

ure 11 a-b). The arc which appears at very high frequency range (> 1 kHz to 10 

kHz) translates the charge transfer resistance (RCT) at the counter electrode. On 

the other hand, two low frequency arcs which appear around 1-10 Hz and 20-30 

Hz can be interpreted as the diffusion resistance (RD) and resistance of photo 

electrode or ‘recombination resistance’ (RREC) respectively (Figure 11 a-b).  



33 
 

 

 
Figure 11. Typical EIS spectra of complete DSCs with PEDOT–carbon compo-
site (PCC) catalyst layer counter electrodes on glass, ITO-PET, ITO-PEN and a 
reference thermally platinized counter electrode on glass. (a) Nyquist plots, (b) 
imaginary impedance Z’’ vs. frequency. * These impedance positions are also 
valid for FTO glass PCC and ITO-PEN PCC. (Reproduced from publication 4 
with permission from PCCP Owner Societies). 

 
Figure 12. EIS spectra of CE–CE configurations (a) Nyquist plots, (b) imaginary 
impedance Z’’ as a function of frequency. The values presented here are calcu-
lated for one counter electrode. BFCC = binder free carbon composite, PCC = 
PEDOT–carbon composite, BCC = binder carbon composite (Reproduced from 
publication 4 with permission from PCCP Owner Societies). 
 

The EIS response for any type of carbon composite for instance e.g. PEDOT 

carbon composite (PCC) based DSC is slightly different compared to platinum 

counter electrode based DSC where typically a large semicircle appears (for in-

stance in Publication 4 the PCC CE on each substrate i.e. glass = 3.8 Ωcm2, ITO-

PET = 4.5 Ωcm2 and ITO-PEN = 4.1 Ωcm2) due to the overlapping of RCT and 

RREC response at lower frequency range (~10-20 Hz Fig.11 a-b). Hence it is dif-

ficult to estimate the exact value of RCT from Fig. 11 (a) in case of a porous 

carbon based CE. The same response of carbon gel catalyst layer can be seen in 
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Figure 10 a-b. One way to estimate RCT is to subtract RREC from the value since 

the PE geometry in each type of DSC was the same (0.4 cm2).  

One very small semicircle, which is adjacent to the large semi-circle can also be 

identified in each EIS spectrum of carbon composite (Figure 10 and 11 a i.e. 

Figure 11 a: Glass-PCC = 1.3 Ωcm2, ITOPET-PCC = 2.0 Ωcm2, ITOPEN-PCC 

= 1.5 Ωcm2) which appears at very high frequency ~ 10 kHz) and is associated 

with a second Nernst diffusion impedance resulted from diffusion through the 

pores of carbon composite 58. The values of these extra semicircles were added 

to the charge transfer resistance to get the total charge transfer resistance (RCE-

total).   

 

The argument was verified by making CE-CE cell of each type of carbon com-

posite reported in Publication 4. The advantage of making a symmetrical cell is 

that it eliminates all the possible responses from the PEs. In Figure 12b, all car-

bon composites exhibited 2 peaks which were already expected; one in the lower 

(10–100 Hz) and the other in the higher frequency range (100 kHz). These are 

associated with the charge transfer resistance and the in-pore diffusion resistance 

respectively (Figure 12 b). This also certifies our earlier observation about the 

overlapping PE and CE semicircles in the DSCs, meaning that the peak must be 

associated with the porous carbon CE as here we have no PE. The thermally 

platinized glass CE–CE cell exhibited two frequency peaks at similar positions 

than in the complete DSC corresponding to recombination resistance (RREC) and 

diffusion resistance (RD). 

 

It should be noted that the tested composites in Publication 4 exhibited lower or 

comparable charge transfer values than the carbon gel catalyst layer. The only 

difference between the carbon gel catalyst and other composites was the ball 

milling step (each composite was milled for two hours) that was performed dur-

ing the preparation of BFCC, BCC and PEDOT carbon composites. The ball 

milling step is well-known in the formulation of screen printable pastes for this 

technology. We assumed here that this ball milling step increased the surface 

area of the carbon composites nanoparticles, i.e. more catalytic sites were avail-

able for the tri-iodide reduction as compared with carbon gel catalyst layer.  
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Figure 13. SEM images of different carbon composites: (a-b) BFCC, (c and d) 
PCC, (e and f) BCC, (g) bare FTO-glass, (h) thermally platinized CE. BCC = 
binder carbon composite, PCC = PEDOT–carbon composite, BFCC = binder 
free carbon composite. X stands for magnification. (Reproduced from publica-
tion 4 with permission from PCCP Owner Societies).  
 
The SEM images in this study confirms the perception about the ball milling by 

revealing highly porous structures in case of each composite compared with plat-

inum nano particles (Figure 13 a-h). With this ball mill step, the PEDOT based 

carbon composite outperformed the catalytic activity of reference thermal plati-

num counter electrode in the complete device and showed very low RCT values 

both on ITO-PEN (1.8 Ωcm2) and ITO-PET (2.7 Ωcm2) compared to RCT value 

(4.9 Ωcm2) of thermally platinized counter electrodes (See Table 3 of Publica-

tion 4). Also in the CE-CE configurations, all types of composites exhibited very 
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low RCT values (3-3.9 Ωcm2) which was lower/equal the RCT value of platinum 

CE-CE cell.  

 

Hence we successfully tested all these composites of carbon as an alternative 

catalyst layers to expensive Pt catalyst in the DSC. Some of the composites such 

as the carbon gel or PEDOT carbon composite showed good mechanical stabil-

ities over plastics, but they still require a highly conductive under layer which 

was ITO (Indium doped tin oxide) over plastics and FTO (Fluorine doped tin 

oxide) on glass. These materials are realized as scarce and expensive compo-

nents in the DSC. If these carbon composites could be engineered with other 

abundantly available conducting materials such as carbon, this could also be a 

viable solution to address the cost issues.  
 

4.4.3 A novel SWCNT coated flexible PVC counter electrode for DSC 
(Publication 5) 
 

As discussed in the earlier sections, the flexible polymer substrates for DSC uti-

lize transparent conducting oxide (TCO) and more precisely indium doped tin 

oxide (ITO) layer that has been realized as a scarce and one of the most expen-

sive components of DSC. Additionally the sheet resistance of the ITO layers 

varies from 5 to 60 Ω/Square i.e. Ω/Sq which is sufficient for the DSC applica-

tion. Although inexpensive metallic substrates provide an alternative solution, 

the corrosion of the metallic sheets in the electrolyte solution makes it impracti-

cal to properly address the problem. One probable possibility is a combination 

of a nonmetallic conductor such as carbon nanotubes over a polymer substrate 

that can potentially give the same alternatives to non-transparent metals by elim-

inating the chances of corrosion. Based on our experience from our studies, the 

major challenge associated with carbon materials is robust adhesion like with 

ITO over plastics that does not come out easily. Also the critical ‘sintering’ step 

cannot be applied over plastics due to their temperature limitations (max. 150 

°C). The challenge was to develop an ink formulation of carbon nanotubes that 

could produce high conductivity with the low temperature treatments required 

for DSC. In our earlier studies we presented metal free counter electrodes that 

were constructed by depositing the carbon nanotubes via dry transfer process 47. 

This process is slow and it takes hours to collect the nanotubes on filter. Secondly 
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the collected nanotubes on filter were stamped on PET polymer mechanically 

which does not give sufficient adhesion on the substrates.  
 

Keeping these problems in mind, an aqueous single walled carbon nanotubes 

(SWCNT) ink was prepared that was spread on commonly available PVC poly-

mer through a pipette and was then placed on a preheated hotplate at 100-120 

°C. Upon the drying of the solvent (water) over hotplate (within 5 minutes), 

highly conductive CNT pattern were obtained as shown in Figure 14 (a-c) and 

the nonconductive PVC polymer sheet was transformed into a highly conductive 

substrate. The mechanical adhesion of the obtained CNT patterns was tested with 

60 times bending test over different radii as well as with tape adhesion test. The 

results are summarized in Figure 15 (a-d) and Figure 16 (a-b).  In short the CNT 

over PVC substrate exhibited remarkable adhesion and the sheet resistance (RSH) 

was hardly changed upon each stress as shown in Figures 15 and 16. Due to this 

high conductivity and good mechanical stability, this SWCNT loaded PVC sub-

strate was used as a counter electrode in dye sensitized solar cells by spin coating 

a catalyst layer (PEDOT-TsO), as we already knew from our past experiments 

that CNTs alone were not catalytic enough.  
 

The photovoltaic and electrochemical performance of the fabricated cells were 

recorded under 1000 W/m2 light intensity of an artificial solar simulator equiva-

lent to 1 Sun light intensity. In these measurements the cells fabricated with 

PVC/SWCNT/PEDOT counter electrodes exhibited 5% efficiency compared to 

5.2% percent reference platinum counter electrode cells. The reason for slightly 

lower performance was a low fill factor due to higher series resistance (RS). The 

higher series resistance of PVC counter electrodes is understandable because of 

the surfactant that was added in the ink solution and cannot be removed due to 

restrictions of the temperature. However, this factor can easily be optimized by 

adjusting the surfactant concentrations. Moreover the PVC counter electrodes 

exhibited very low charge transfer resistance (RCT = 1.4 ± 0.7 Ωcm2) compared 

to 2.2 ± 0.5 Ωcm2 of the reference platinum counter electrode based DSCs. This 

successful demonstration of PVC/SWCNT/PEDOT counter electrode offers an 

alternative solution for metals in the DSC. Although the experiment was per-

formed on PVC polymer it can also be potentially performed on PET polymer 

foil.  
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 Figure (14 a-c): Demonstration of ink deposition a) patterning of the substrate, b) ap-
plication of ink and evaporation of solvent at 120 °C in 5 minutes c) SWCNT patterns 
(Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced from Publication 5 
with permission). 

 
Figure 15 (a-d): Bending test of deposited SWCNT ink over PVC substrate with dif-
ferent bending radius. The first blue square in each figure represents the initial sheet 
resistance before bending. (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Repro-
duced from Publication 5 with permission). 
 

 
Figure 16 (a-b): Tape adhesion test results of deposited single walled carbon nanotube 
ink on PVC sheet. a) Pressure sensitive tape pulling at 90°, b) Sheet resistance versus 
number of times tape applied (Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Re-
produced from Publication 5 with permission). 
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4.4.4 Spatial variations in large area dye solar cells and their optimi-
zation via electrolyte filling process (Publication 6) 
 
 

 

The purpose of this study was to optimize/minimize the spatial variations that 

appears in a large area cell by optimizing the electrolyte filling process. The spa-

tial variations in large area DSC is well-known and has also been reported in our 

previous studies 59-61. It was found that the conventional electrolyte filling pro-

cess exhibits non-uniform distributions of its components that affects the overall 

performance precisely in the large area DSC. To study these variations, we de-

signed a segmented cell that was consisted of 8 individual cells (segments) elec-

trically isolated from each other via scribing the TCO layer but were sharing the 

same electrolyte as shown in Figure 17. First the conventional one-way electro-

lyte filling step was performed by injecting the electrolyte from holes A to B and 

the IV measurements were recorded. After that all the electrolyte was sucked 

through a suction pump and new electrolyte was once again injected from holes 

B to A and the IV measurements were recorded. We called this process two-way 

filling. The trends of photovoltaic parameters are shown in Figure 18 (a-d). 

 

For the one-way filling, a slight decrease in JSC values from segment 1 to 8 as 

well as a continuous decrease in the VOC was observed which resulted in a 20% 

loss in the efficiency throughout 8 segments (Figure 18 a-b). These observations 

were in complete agreement to our previous reported studies which confirms the 

hypotheses about the electrolyte distribution since the only variable was the elec-

trolytes and its components. The fact here is that the mesoporous TiO2 layer acts 

here as a molecular filter and caused the uneven distribution of the electrolyte 

components [60]. The NMBI in our previous reports among the other electrolyte 

components was identified as the non-uniformly distributed component as its 

higher concentration was found near the filling holes during this traditional one- 

way filling [60].  

 

In order to compensate this spatial distribution effect, a new two-way filling was 

introduced which helped in balancing the performance of the cell channel from 

both ends. The two-way filling confirmed the hypothesis and JSC was improved 

by 19-38% and a major enhancement (4-10%) in VOC was obtained (Figure 18 

a-b). As a result, the efficiencies improved by 24-55% throughout the segments 



 

40 
 

(Figure 18 d). These improvements were obtained due to reduction of spatial 

distributions of the electrolyte components throughout the segmented channel. 

Additionally the combined photovoltaic response of all parallel connected 8 cells 

was also recorded with both types of filling methods. With the one way filling 

an efficiency of 3.4% was obtained whereas the two-way filling resulted in an 

overall efficiency of 4.8% which is 42% higher than obtained with the one-way 

filling method.  

 
Figure 17: A segmented cell with eight segments (counted as 1-8 from holes A 
to B) (Reprinted from Publication 6 with the permission of EU PVSEC Proceed-
ings). 
 

 
Figure 18. Trends of one way and two ways electrolyte filling of the segmented 
cells (a) JSC (b) VOC (c) FF and (d) Efficiency. (Reprinted from Publication 6 
with the permission of EU PVSEC Proceedings). 
 

From these results three different types of large area stripes cells were fabricated: 

as reference a completely rigid cell (Glass based PE and Glass based Platinum 
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counter electrodes), semi flexible (Titanium foil based PE and Glass based Plat-

inum counter electrodes) and completely flexible (Titanium foil based PE and 

Chemically platinized CE on ITO PEN). The completely rigid reference cell ex-

hibited an overall efficiency of 4.1% whereas the reverse illuminated semi flex-

ible cell showed 3.9% efficiency. The efficiency was dropped down to 3.4% with 

fully flexible (TiPE-PENCE) which was slightly (20%) lower compared to the ref-

erence cell.  

 

To conclude, the traditional electrolyte flow filling method resulting the non-

homogeneous distribution of its components which consequently exhibit spatial 

variations in the overall performance of large area DSC. Although we are able 

to reduce the effect of this non-homogeneous distribution with the new two ways 

filling method, however, some other alternative procedure needs to be explored. 

A probable solution could be the printing of electrolyte formulation as proposed 

in Publication 1 which may introduce more homogeneous distribution of the 

electrolyte components and might be able to resolve the problem.  
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5. Conclusion and summary 
 

This thesis provides a technical overview regarding the critical steps of dye sen-

sitized solar cells on alternative substrates (mainly on plastic substrates) to pave 

the way towards low-cost DSCs The unique thing about the DSC is that it offers 

numerous material combinations of which some were tested in  this research 

work. 

 

Another aim was to develop low temperature inks/paste that could also be real-

ized for high volume manufacturing processes. The thesis also provides some 

details regarding the mechanical stability of the materials that were deposited 

through a low-temperature route that is rarely reported in the literature.  

 

We systematically reviewed the state of the art of DSC technology and then con-

structed a systematic comparison of different types of important counter elec-

trode material which were identified during the review. This study was per-

formed by keeping the same PE geometry which gave more precise results/con-

clusions about their characteristics. Despite of higher costs, the chemically de-

posited platinum catalyst still looks best among the tested semitransparent cata-

lyst layers and exhibited the best performance in terms of efficiency (3.1%) when 

realized for the reverse illuminated type of flexible DSC combinations in com-

parison with electrochemical Pt (2.6%) and PEDOT-TsO (2.2%). Also the cata-

lytic activity of chemically platinized layer remained superior (RCT = 3.7 Ωcm2) 

among all the tested low temperature catalysts (RCT = 12 Ωcm2 for electrochem-

ical platinization, RCT = 5.8 Ωcm2 for PEDOT-TsO and RCT = 11 Ωcm2 for Car-

bon gel catalyst layer). The carbon gel catalyst layer showed comparable perfor-

mance with commercially available high temperature carbon paste, but its charge 

transfer resistance needs to be decreased. The adhesion of the PEDOT-TsO cat-

alyst was found problematic requiring special treatment such as a separator layer 

to avoid the problem.  

 

We systematically studied different low temperature carbon composites as alter-

native catalyst materials for DSC. Mechanical stability tests to verify their adhe-

sive properties were also performed which is very important in order to develop 

low-temperature inks/pastes based flexible DSC modules. The key findings were 
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improved RCT values (3-3.9 Ωcm2) compared to reference Pt counter electrode 

(4 Ωcm2). One of these composites (BCC=binder enriched carbon composite) 

achieved 6% overall efficiency compared to 7% of the reference Pt counter elec-

trode based DSC. Good mechanical testing stability was achieved on all sub-

strates (FTO Glass, ITO-PEN and ITO-PET) with PEDOT-carbon composite 

catalyst layers.  

 

To avoid an expensive and scarce conducting ITO layer, we developed an aque-

ous ink of single walled carbon nanotubes (SWCNT) and implemented it suc-

cessfully on a non-metallic PVC polymer sheet. The highly conductive patterns 

of SWCNT showed remarkable elastic and adhesion capability and exhibited 

fractional changes in the sheet resistance of ~ 8% and 3% when subjected to 

harsh bending and tape tests respectively. The photovoltaic and electrochemical 

performances of the CNT coated PVC counter electrode was similar (5% and 

RCT = 2.7 Ωcm2) as in the reference DSC (5.2% and RCT = 2.2 Ωcm2). These key 

findings can also be realized as an alternative solution to the corrosion-sensitive 

metallic flexible sheets.  

 

Finally we also highlighted the spatial distribution losses in a large area DSC 

and presented a solution via a two-way filling method to minimize the effect of 

unevenly distributed electrolyte components. The overall performance (cell ef-

ficiency) of the segmented cell was improved up to 42% when the spatial losses 

were suppressed with the two-ways filling method. We also recommend the elec-

trolyte printing as more practical solution to address the spatial losses where ho-

mogeneous distribution of the electrolyte components may be expected than the 

conventional electrolyte filling method. Also the careful optimization of electro-

lyte composition is also recommended.  

 

This thesis highlights the critical issues in the realization of fabricating the flex-

ible DSCs and presents the characteristics and potential of the different low cost 

materials in several ways. At the moment the prices of some materials such as 

single walled carbon nanotubes are still high, but the learning curves of matured 

technologies implies that a fall in prices of these materials is expected.  In short 

the key issues in fabrication of flexible DSC require precise solutions to speed 

up the industrialization of DSC. Also the stability of flexible DSC which was 
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not the topic for this thesis is an important question. Especially, the usage of non-

volatile liquid solvent such as 3-Methoxypropionitrile is one of the critical re-

quirements for durable flexible DSC. The flexible polymer based PE is still a 

challenge for the front side illumination due to difficulties in realizing high effi-

ciency photoelectrodes with low temperature processing. As well as penetration 

of moisture and oxygen in flexible dye solar modules/cells has been reported in 

several publications. All these problem raise questions for the development of 

robust materials that could be able to resist harsh conditions.  

 

The focus of the future research could be the development of a highly conductive 

PET polymer foil by utilizing the SWCNT ink that could be used as a counter 

electrode which is a more practical solution for the fabrication of flexible DSC 

as compare to PVC polymer based counter electrode. Such flexible conductive 

PET foil could then be equipped with the low-temperature TiO2 flexible PE to 

get a fully flexible DSC. 
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