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In this thesis we study functions of bounded variation, abbreviated as BV functions, on metric 

measure spaces. We always assume the space to be equipped with a doubling measure, and 
mostly we also assume it to support a Poincaré inequality. 
 
A central topic in the thesis are the various characterizations of BV functions. We show that 
BV functions can be characterized by a pointwise inequality involving the maximal function of 
a finite measure. Furthermore, we study the Federer-type characterization of sets of finite  
perimeter, according to which a set is of finite perimeter if and only if the codimension one 
Hausdorff measure of the set's measure theoretic boundary is finite. Through the study of so-
called strong relative isoperimetric inequalities, we establish a slightly weakened version of 
this characterization. 
 
Moreover, we prove the Federer-type characterization on spaces that support a geometric 
Semmes family of curves. On such spaces, between every pair of points there is a curve family 
with certain uniformity properties that resemble the behavior of parallel lines on a Euclidean 
space. Our proof relies on first proving a characterization of BV functions in terms of curves. 
 
We also study functionals of linear growth, which give a generalization of BV functions. We 
consider an integral representation for such functionals by means of the variation measure, but 
contrary to the Euclidean case, the functional and the integral representation are only 
comparable instead of being equal. As a by-product of our analysis, we are able to characterize 
those BV functions that are in fact Newton-Sobolev functions. 

  
As an application of the integral representation, we consider a minimization problem for the 

functionals of linear growth, and show that the boundary values of such a problem can be 
expressed as a penalty term in which we integrate over the boundary of the domain. For this, 
we need to study boundary traces and extensions of BV functions. Our analysis of traces also 
produces novel pointwise results on the behavior of BV functions in their jump sets. 
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Tässä väitöskirjassa tutkitaan rajoitetusti heilahtelevia funktioita, lyhennettynä BV-

funktioita, metrisissä mitta-avaruuksissa. Avaruuden oletetaan aina olevan varustettu 
tuplaavalla mitalla, ja enimmäkseen oletetaan myös, että Poincarén epäyhtälö pätee. 
 
Keskeinen aihe väitöskirjassa ovat BV-funktioiden erilaiset karakterisaatiot. Työssä 
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1. Introduction

The purpose of this thesis is to study functions of bounded variation, ab-
breviated as BV functions, on metric measure spaces. In the classical Eu-
clidean setting, BV functions are defined as integrable functions whose
weak partial derivatives are signed measures of finite mass. Thus they
form amore general class of functions than Sobolev functions, whose weak
partial derivatives are integrable functions. When studying p-integrable
functions in the “geometric” case p = 1, and in the study of the calculus of
variations, BV functions are often a natural class to work with.

On the real line, BV functions can be defined in a natural way, by essen-
tially demanding the oscillation of a function to be finite. A central prob-
lem in the history of the field has been to find a suitable generalization
of this definition for several variables, see [7, Section 3.12]. This problem
was eventually solved by De Giorgi and others, and several equivalent
definitions of BV functions on Euclidean spaces are now available. One of
them is formulated by means of weak partial derivatives as above, while
another one, more suitable for generalization to metric measure spaces,
involves approximation of a function by Lipschitz functions.

Accordingly, on a metric measure space (X, d, μ) equipped with a met-
ric d and a Radon measure μ, we define BV functions through a relax-
ation procedure as follows. First we define upper gradients, which are a
generalization of the Euclidean gradient, or more precisely its modulus.
Following Miranda [60], we then define the total variation ‖Du‖(X) for
an integrable function u ∈ L1(X) by

‖Du‖(X) := inf

{
lim inf
i→∞

∫
X
gi dμ : ui ∈ Liploc(X), ui → u in L1loc(X)

}
,

where each gi is an upper gradient of ui. Now u ∈ BV(X) if ‖Du‖(X) <∞.
One of the main purposes of this thesis is to study other characteriza-

tions of BV functions. To begin with, we note that since BV functions are
defined by a relaxation procedure by means of Newton-Sobolev, or New-
tonian functions N1,1(X), which are integrable functions with integrable
upper gradients, it is expected that the various characterizations of these
two classes are often quite analogous. Characterizations of Newtonian
functions are presently quite well understood, but characterizations of
BV functions as well as the relationship between the two classes less so.
Toward a better understanding of this relationship, in this thesis we char-
acterize those BV functions that are in fact Newtonian functions.
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In the general metric setting, it is previously known that BV functions
can be characterized by a Poincaré-type inequality involving a Radon
measure of finite mass, as shown by Miranda [60]. From this, other char-
acterizations can be derived. In particular, we prove a pointwise char-
acterization of BV functions, involving the maximal function of a Radon
measure of finite mass. This type of characterization is previously known
for Newtonian functions, but for BV functions it is new also in the Eu-
clidean setting.

While the metric measure space (X, d, μ) we work with is far more gen-
eral than the classical Euclidean space R

n, we do make certain assump-
tions on the space. First, we assume that the measure μ is doubling,
meaning that doubling the radius of a ball increases its measure at most
by a given factor. Second, in most of the thesis we assume that the space
supports a Poincaré inequality, which gives control over the oscillation of
a function by means of its upper gradient. These two assumptions are
standard in recent literature on analysis on metric measure spaces.

An important special case of BV functions are sets of finite perime-
ter, which are sets E ⊂ X whose characteristic functions are in the class
BV(X). For such sets, the most important classical characterization, first
proved by Federer [23], is that a set is of finite perimeter if and only if the
codimension one Hausdorff measure of the set’s measure theoretic bound-
ary is finite. In the general metric setting, one direction of this equiv-
alence has been established by Ambrosio [4]. In this thesis, we prove a
partial result in the other direction by means of so-called relative isoperi-
metric inequalities.

Moreover, we also take another approach to proving the Federer-type
characterization, by first noting that the classical proof strongly depends
on the properties of parallel lines on a Euclidean space. We show that
the proof can be extended to the more general metric setting by assuming
the existence of a suitable curve family, known as a Semmes family of
curves, between every pair of points in the space. Crucially, the relevant
uniformity properties of parallel Euclidean lines can be distilled into a few
conditions that can be expressed for curves in the general metric setting.

In this thesis we also consider a generalization of BV functions that
has previously been studied in the Euclidean setting, given by functionals
of linear growth. This type of functionals are similar to the total variation
functional, with the difference that in their definition the upper gradient
gi is replaced by f(gi), where f is a real-valued function satisfying certain
conditions. We study an integral representation for functionals of linear
growth by means of the variation measure, but contrary to the Euclidean
case, the functional and the integral representation are only comparable
instead of being equal.

By applying the integral representation to a minimization problem re-
lated to the functional of linear growth, we are led to the study of various
fine properties of BV functions. Since the minimization problem involves
boundary values, the concept of boundary traces of BV functions becomes
relevant. These are well understood in Euclidean spaces, but appear not
to have been studied in the general metric setting. We present two ap-
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proaches to constructing boundary traces. Both also involve the concept
of extensions of BV functions from a domain to the whole space, motivat-
ing us to establish certain sufficient conditions for the existence of such
extensions. Finally, our analysis of traces produces some novel pointwise
results on the behavior of a BV function in its jump set.

This thesis is organized as follows. In Sections 2 to 8 we first introduce
the relevant definitions, previously known results, and some historical
background, and proceed to present the main results of our study, as well
as various unifying ideas and techniques behind them. The last part of
the thesis contains the five original articles.

11
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2. Analysis on metric measure spaces
and BV functions

In the past two decades, Sobolev functions, functions of bounded varia-
tion, various types of minimization problems etc. have been defined and
studied in the setting of general metric measure spaces. While these top-
ics have been more thoroughly studied in the more specific contexts of
Euclidean spaces, Riemannian manifolds, Carnot-Carathéodory spaces,
etc., it has turned out that many of the relevant concepts and results can
be established with rather few assumptions on the space. By a metric
measure space (X, d, μ) we mean a complete, separable metric space X

equipped with a metric d and a Radon measure μ — even the complete-
ness is superfluous for many results. Later we will often refer to this type
of space as the “general metric setting”, or simply as a “metric space”, usu-
ally with the additional assumptions of a doubling measure and a Poin-
caré inequality, which will be defined in this section. On the other hand,
by a “Euclidean space” or the “Euclidean setting” we mean, unless oth-
erwise specified, the standard space R

n with the Euclidean distance and
(unweighted) Lebesgue measure. Sometimes we use the word “classical”
when referring to Euclidean results.

One of the central problems when introducing analysis onmetric spaces
is finding suitable definitions for Sobolev functions and “first order calcu-
lus”. As in most of the relevant literature, in this thesis we assume all
functions to be (extended) real-valued. One possible extension of Sobolev
functions to metric spaces was presented by Hajłasz in [29]. For 1 ≤ p ≤
∞, a function u ∈ Lp(X) belongs to the Hajłasz-Sobolev space M1,p(X) if
there is a function g ∈ Lp(X), called the Hajłasz gradient, such that

|u(x)− u(y)| ≤ d(x, y)
(
g(x) + g(y)

)
for μ-almost every x, y ∈ X, that is, for all x, y outside a set of μ-measure
zero. For 1 < p ≤ ∞, this type of pointwise inequality is satisfied by
the classical Sobolev functions u ∈ W 1,p(Rn), and in fact the inequality
gives a characterization as long as u ∈ Lp(Rn). A counterexample in the
case p = 1 is given in [28, Example 3]; unfortunately, this is precisely the
relevant case in the study of BV functions.

Another property, and in a sense drawback, of Hajłasz-Sobolev func-
tions is that the Hajłasz gradient is determined by the global behavior of
the function, while usually any generalization of a derivative is expected
to be a local concept. Moreover, Hajłasz-Sobolev functions automatically

13
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satisfy a Poincaré inequality regardless of the structure of the underlying
metric space, demonstrating how restricted the class is. Another possible
extension of Sobolev functions to metric spaces was given by Heinonen
and Koskela in [41], where so-called upper gradients (originally termed
very weak gradients) were introduced. A nonnegative Borel function g is
an upper gradient of an extended real-valued function u if for every curve
γ with end points x and y — we always assume a curve to be rectifiable
and parametrized by arc-length — we have

|u(x)− u(y)| ≤
∫
γ
g ds. (2.1)

Now we are ready to define the class of Newton-Sobolev, or Newtonian
functions, as given by Shanmugalingam in [65]. For 1 ≤ p <∞, the New-
tonian space N1,p(X) consists of functions u ∈ Lp(X) that have an upper
gradient g ∈ Lp(X). On the Euclidean space R

n, we have W 1,p(Rn) =

N1,p(Rn) for all 1 ≤ p < ∞, with suitable choice of representatives. As
the case p = 1 is included here, Newtonian functions can be considered a
natural extension of Sobolev functions to metric spaces, and the class is
employed in this thesis as well as in plenty of recent literature.

One disadvantage of upper gradients is that they are not preserved
under Lp-convergence. This is one motivation for the introduction of p-
weak upper gradients, first defined in [52]. For the definition, we first
need the concept of p-modulus of a curve family, as given in [25] or in [61],
and later defined in the metric setting in [65]. If Γ is a subset of all curves
on the space, we define the p-modulus of Γ as

Modp(Γ) := inf

∫
X
ρp dμ,

where the infimum is taken over all nonnegative Borel functions ρ on X

that satisfy
∫
γ ρ ds ≥ 1 for every γ ∈ Γ. If a property holds for all curves

apart from a family Γ with Modp(Γ) = 0, we say that the property holds
for p-almost every curve. Now we can give the following definition: a
nonnegative μ-measurable function g is a p-weak upper gradient of an
extended real-valued function u if (2.1) holds for p-almost every curve γ

on the space. It can be shown that p-weak upper gradients are preserved
under Lp-convergence [13, Proposition 2.2]. Moreover, from the definition
of p-modulus it follows quite easily that every p-weak upper gradient can
be approximated in the Lp-norm by upper gradients. Another advantage
of p-weak upper gradients is that for every u ∈ N1,p(X), there is a minimal
p-weak upper gradient, denoted by gu ∈ Lp(X), that satisfies gu(x) ≤ g(x)

for μ-almost every x ∈ X, for any other p-weak upper gradient g ∈ Lp(X)

[30, Theorem 7.16].
Based on the definition of p-modulus, it is straightforward to show that

a Newtonian function u ∈ N1,p(X) is absolutely continuous on p-almost
every curve. This is analogous with the fact that Sobolev functions on
Euclidean spaces are absolutely continuous on almost every line parallel
to a coordinate axis, see e.g. [22, p. 164].

Yet another definition of Sobolev functions on metric spaces is given
by a relaxation procedure in [20]. In this definition, one considers func-
tions u ∈ Lp(X) for which there is a sequence ui → u in Lp(X) such that

14
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a sequence of upper gradients gi of ui is bounded in Lp(X). This defini-
tion turns out to be equivalent with the definition of Newtonian functions
when 1 < p < ∞, but in the case p = 1 the definition gives functions of
bounded variation instead. More precisely, given a function u ∈ L1loc(X),
we define the total variation of u as

‖Du‖(X) := inf

{
lim inf
i→∞

∫
X
gi dμ : ui ∈ Liploc(X), ui → u in L1loc(X)

}
,

(2.2)
where each gi is an upper gradient — or 1-weak upper gradient — of ui.
We say that a function u ∈ L1(X) is a function of bounded variation, u ∈
BV(X), if ‖Du‖(X) < ∞. When u = χE , we say that the set E is of finite
perimeter. Often we also use the more convenient notation P (E,X) :=

‖DχE‖(X). The total variation can also be defined in any open set Ω,
instead of the whole space X. The quantity ‖Du‖(A) can then be defined
for any set A by approximation:

‖Du‖(A) := inf{‖Du‖(Ω) : Ω open, A ⊂ Ω}.
Miranda has shown that by this definition, ‖Du‖ is a Radon measure,
called the variation measure [60, Theorem 3.4]. On the other hand, in
this thesis we use the fact that Newtonian functions can be defined in any
μ-measurable set A ⊂ X by considering it as a metric space in its own
right. Of course, we could define BV(A) as well, but we prefer to use the
above procedure of approximating general sets by open sets in order to
achieve the measure property for ‖Du‖.

For the possible definitions of BV functions on Euclidean spaces, we
refer to the beginning of Section 5. Classical treatments of BV functions
can be found in [23], [7], [22], [27], [67], [11], and more recently [56].

As indicated above, the space BV(X) is in some ways a natural limit of
the Newtonian spaces as p → 1+. Of course, Newtonian spaces N1,p(X)

are also defined for p = 1, but the space N1,1(X) lacks some of the good
properties of the space BV(X), such as a compactness result, see [60,
Theorem 3.7]. Newtonian functions and BV functions are also otherwise
closely connected — for example, the theory of BV functions is useful in
the study of Newtonian functions, especially in the case p = 1, when the
Lp-boundedness of the Hardy-Littlewood maximal operator is not avail-
able. See for example the study of Lebesgue points in [49].

A standing assumption on the space which we maintain throughout the
thesis, and which is also standard in recent literature, is that the measure
μ is doubling. This means that for some constant cd ≥ 1, known as the
doubling constant of the measure, and every ball B = B(x, r) := {y ∈ X :

d(y, x) < r}, we have

0 < μ(B(x, 2r)) ≤ cdμ(B(x, r)) <∞.

Note that we will often write λB for B(x, λr). On a metric space, a ball B
does not necessarily have a unique center point and radius, but we assume
every ball to come with a prescribed center and radius. By iterating the
doubling condition, we easily get

μ(B(y, r))

μ(B(x,R))
≥ C

( r

R

)Q
(2.3)
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for every 0 < r ≤ R and y ∈ B(x,R), and some Q > 1 and C > 0 that only
depend on cd. In this thesis we follow the standard practice of denoting by
C a positive constant whose value and dependence on other constants we
do not always specify.

The doubling condition ensures that the Vitali covering theorem holds,
allowing to establish various classical results, such as the Radon-Nikodym
differentiation theorem, on the metric space — see e.g. [42]. It is also a
useful fact that a complete metric space equipped with a doubling mea-
sure is proper, that is, closed and bounded sets are compact. Note that
the Lebesgue measure on a Euclidean space is obviously doubling, and for
other examples of spaces carrying doubling measures, see e.g. [9] or [66].

As mentioned, in this thesis we always assume the measure μ to be
doubling, but it is still important for us to note that many results hold
without this assumption. This is because the measure μ might not be
doubling when we consider a set D ⊂ X as a metric space in its own
right, and restrict the measure μ to D. For example, in Theorem 4.6 of
Publication IV we show that a particular function defined on the whole
space is in the class N1,1(D) for a given set D ⊂ X. Despite the fact that
the measure μ is not necessarily doubling in D, in our proof we are still
able to apply certain results on Newtonian functions to the class N1,1(D).

Another standard assumption in analysis on metric spaces is the Poin-
caré inequality. It is obvious that upper gradients do not give much control
of a function unless there are plenty of curves (assumed to be rectifiable)
on the space. For 1 ≤ q, p < ∞, we say that the space X supports a (q, p)-
Poincaré inequality if for all locally integrable functions u on X and all
p-weak upper gradients g of u, all balls B = B(x, r), and some constants
cP > 0, λ ≥ 1, we have(∫

B
|u− uB|q dμ

)1/q
≤ cP r

(∫
λB

gp dμ

)1/p
,

where
uB :=

∫
B
u dμ :=

1

μ(B)

∫
B
u dμ.

Essentially the Poincaré inequality enables us to control the oscillation of
a function u by means of its upper gradient g. With BV functions, we are
mostly interested in the case p = 1 and q = 1; however, it is sometimes a
useful fact that by the Sobolev embedding theorem, the number q can be
increased to the valueQ/(Q−1), whereQwas defined in (2.3). By applying
the (q, 1)-Poincaré inequality to a sequence of approximating functions in
the definition of the total variation, we get a BV version of the inequality:(∫

B
|u− uB|q dμ

)1/q
≤ cP r

‖Du‖(λB)
μ(λB)

.

For a list of spaces that support a Poincaré inequality, see e.g. Chapter
12 of [30]. Examples include Euclidean spaces, compact Riemannian man-
ifolds, complete Riemannian manifolds with nonnegative Ricci curvature
(see [63, Section 3.3.5]), Carnot-Carathéodory spaces, and certain topo-
logical manifolds (see [64] as well as Section 6 of this thesis). In general,
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support of a Poincaré inequality on a space can be analyzed through vari-
ous necessary and sufficient conditions, many of which we consider in this
thesis. The Poincaré inequality as well as the Newtonian spaces N1,p(X)

and the doubling property of the measure extend in a natural way from X

to its completion [2, Proposition 7.1]. This means that assuming X to be
complete in the first place, as we do in this thesis, is not very restrictive.

In nearly all of this thesis, the Poincaré inequality is a standing as-
sumption. On a few occasions it is used explicitly, for example when we
construct discrete convolutions of BV functions, see Section 4. On several
occasions we use a well-known consequence of the Poincaré inequality,
namely quasiconvexity of the space, see e.g. [31, Proposition 4.4]. Qua-
siconvexity means that there is a constant L ≥ 1 such that every pair
of points x, y ∈ X can be connected by a curve whose length is at most
Ld(x, y). This implies that there is a bi-Lipschitz change of the metric that
results in a geodesic space, where the distance between any two points is
precisely the length of the shortest curve connecting them.

Bi-Lipschitz transformations of the metric are highly convenient since
many interesting properties such as the doubling property of the measure
and any Poincaré inequality are preserved in such transformations, even
though the constants may change. For example, in Publication I we wish
to prove a Poincaré-type inequality starting from a pointwise inequality.
However, we need an auxiliary geometric lemma which we are only able
to prove in the case of a geodesic space. Thus we employ a bi-Lipschitz
change of the metric resulting in a geodesic space, and at the end of the
proof we switch back to the original space. In Publication II we need the
continuity of the measure μ(B(x, r)) both as a function of the point x and
of the radius r. This type of continuity holds on a geodesic space due to the
so-called annular decay property shown by Buckley [18, Corollary 2.2], so
again we perform a change of the metric.

Note that in some of the literature on BV functions on metric spaces,
and also in Publications I and II of this thesis, the upper gradient gi in
the definition of the total variation (2.2) is replaced by the local Lipschitz
constant lipui, which is defined as

lipu(x) := lim inf
r→0

sup
y∈B(x,r)

|u(y)− u(x)|
d(y, x)

.

The local Lipschitz constant is known to be an upper gradient of a locally
Lipschitz function, see e.g. [20, Proposition 1.11]. Conversely, if 1 ≤ p <

∞ and the space supports a (1, p)-Poincaré inequality, we have for any
u ∈ Liploc(X) that lipu(x) ≤ Cgu(x) for μ-almost every x ∈ X, where gu
is the minimal p-weak upper gradient of u [20, Theorem 4.26]. Here the
constant C depends only on the doubling constant and the constants in the
Poincaré inequality. This implies that the two definitions give comparable
values of the total variation, and thus produce the same space BV(X), as
long as the space X supports a (1, 1)-Poincaré inequality. For 1 < p < ∞,
we have in fact lipu(x) = gu(x) for μ-almost every x ∈ X [20, Theorem
6.1].

A (1, p)-Poincaré inequality also implies that Lipschitz functions are
dense in N1,p(X) for any 1 ≤ p < ∞ [13, Theorem 5.47]. Thus on spaces
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that support a (1, 1)-Poincaré inequality, we have by the definition of the
total variation that N1,1(X) ⊂ BV(X), an inclusion that holds on Eu-
clidean spaces almost by definition, see Section 5. On the other hand, in
Publication II we do not always assume the space to support a Poincaré
inequality, and then it seems more natural to use the local Lipschitz con-
stant in the definition of the total variation, because on some spaces with
few curves, the zero function is an upper gradient of every function. How-
ever, it has been recently shown in [6, Theorem 1.1] that the definitions
are equivalent and give the same value of the total variation even with-
out the assumptions of a Poincaré inequality or a doubling measure, and
likewise we still have N1,1(X) ⊂ BV(X).
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3. Coarea formulas and relative
isoperimetric inequalities

In classical measure theory, a central result is the so-called coarea for-
mula in which an n-dimensional integral is presented as a double inte-
gral of dimensions n−k and k, generalizing Fubini’s theorem, see e.g. [23,
Section 3.2] or [7, Theorem 2.93]. See also [57] for some generalizations to
the general metric setting. For BV functions on metric spaces, there ex-
ists a coarea formula that is likewise of central importance, and it reads
as follows: given a locally integrable function u on an open set Ω, we have

‖Du‖(Ω) =
∫ ∞

−∞
P ({u > t},Ω) dt, (3.1)

where we use the abbreviation {u > t} := {x ∈ X : u(x) > t}. This
was proved in [60, Proposition 4.2], following the Euclidean version of the
proof given in [22, p. 185]. The coarea formula states that we can present
the total variation of u as an integral of the perimeters of the super-level
sets. These sets are necessarily of finite perimeter for almost every t ∈ R,
provided that ‖Du‖(Ω) < ∞. The coarea formula plays a major role in
the proofs of several key results in BV theory. This is natural, since sets
of finite perimeter are a special case of BV functions and allow for sev-
eral strong results concerning for example representation of the perimeter
measure, see [4, Theorem 5.3]. The coarea formula can then be applied to
extend these results to general BV functions — see e.g. the decomposition
of the variation measure presented in [9, Theorem 5.3].

Another important tool in analysis of BV functions on metric spaces
is the relative isoperimetric inequality. This is simply the BV version of
the Poincaré inequality, in the special case where u is the characteristic
function of a μ-measurable set E:

min{μ(B ∩ E), μ(B \ E)} ≤ cIr‖DχE‖(λB)

for any ball B = B(x, r), some constant cI > 0, and the same dilation
factor λ ≥ 1 as in the Poincaré inequality. Note that the left-hand side is
comparable to

∫
B |χE − (χE)B| dμ.

The relative isoperimetric inequality is, in fact, equivalent with the
(1, 1)-Poincaré inequality. As noted above, the Poincaré inequality im-
plies the relative isoperimetric inequality, so let us consider the converse.
According to the characterizations of Poincaré inequalities given in [44,
Theorem 2], it is enough to consider a Lipschitz function u with compact

19



Coarea formulas and relative isoperimetric inequalities

support on X. Denote the super-level sets of u by Et := {u > t}, t ∈ R, and
let B = B(x, r) be a ball. Then we estimate, using the coarea formula for
BV functions,

r

∫
λB

gu dμ ≥ r‖Du‖(λB) = r

∫ ∞

−∞
‖DχEt‖(λB) dt

≥ c−1I

∫ ∞

−∞
min{μ(B ∩ Et), μ(B \ Et)} dt

≥ 2−1c−1I

∫ ∞

−∞

∫
B
|χEt − (χEt)B| dμ dt.

Applying simple computations on the last line, we are able to recover the
quantity |u − uB| by integrating the characteristic functions χEt with re-
spect to t. In these computations, the assumption that u is a Lipschitz
function is helpful. Thus we obtain the (1, 1)-Poincaré inequality.

In Publication II, we examine equivalence between the Poincaré in-
equality, the relative isoperimetric inequality, and various strong relative
isoperimetric inequalities. The latter are similar to the relative isoperi-
metric inequality, but on the right-hand side the perimeter is replaced by
the codimension one Minkowski content or Hausdorff measure of either
the topological boundary or the measure theoretic boundary of the set E.
For example, the inequality can read

min{μ(B ∩ E), μ(B \ E)} ≤ cSrμ
+(λB ∩ ∂E) (3.2)

or
min{μ(B ∩ E), μ(B \ E)} ≤ cSrH(λB ∩ ∂E), (3.3)

for any μ-measurable set E, any ball B = B(x, r), and constants cS > 0

and λ ≥ 1. Here the codimension one Minkowski content μ+ is defined as

μ+(A) := lim inf
h→0

μ
(⋃

x∈AB(x, h)
)

2h
for A ⊂ X,

whereas the codimension one Hausdorff measure is given by the limit

H(A) := lim
R→0

HR(A),

where the restricted Hausdorff content HR is defined as

HR(A) := inf

{ ∞∑
i=1

μ(B(xi, ri))

ri
: A ⊂

∞⋃
i=1

B(xi, ri), ri ≤ R

}
.

Strong relative isoperimetric inequalities have been previously defined
in the metric setting in [17] and [48]. In particular, in [48] a suitable
strong relative isoperimetric inequality was assumed to hold, and the in-
equality was then used to prove sufficient conditions for finite perimeter
and finite variation. Motivated by this, we wish to examine whether such
an inequality can be derived from a (q, p)-Poincaré inequality.

The above understood, we choose to limit ourselves to the case p = 1,
which is the relevant case in the study of BV functions, and in which ge-
ometric quantities such as Hausdorff measures and Minkowski contents
naturally arise. The case p > 1 has been studied in [59] and [46], where
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equivalence between the (1, p)-Poincaré inequality and various isocapac-
itary inequalities was investigated, by use of coarea formulas and other
methods similar to ours. On the other hand, in Publication II the param-
eter q of the (q, p)-Poincaré inequality is allowed to take any value in the
interval [1,∞), but here we restrict our presentation to the case q = 1 for
simplicity.

In the Euclidean setting, the equivalence between isoperimetric in-
equalities and Poincaré or Sobolev inequalities has been studied in e.g.
[58] and [59] by Maz’ya, whereas certain aspects of the general metric
case have been studied in [17]. Usually the same basic components are
included in the proof establishing the implication between any of these
inequalities. If we want to prove a Poincaré inequality starting from a
strong relative isoperimetric inequality, we can use the strategy described
earlier in this section. However, the type of coarea formula required de-
pends on the type of strong relative isoperimetric inequality at our dis-
posal. For example, in Publication II we prove and make use of a coarea
inequality of the form∫

B
Lipu dμ ≥

∫ ∞

−∞
μ+(B ∩ ∂{u > t}) dt,

where u ∈ Lip(X) and Lipu is a local Lipschitz constant. This type of
inequality is originally from [17, Lemma 3.1], and it is tailor-made for use
with the strong relative isoperimetric inequality (3.2).

In Publication II we prove the somewhat unexpected result that in-
equalities (3.2) and (3.3) as well as the (1, 1)-Poincaré inequality are quan-
titatively equivalent, even though it is well-known that the codimension
one Minkowski content μ+ and Hausdorff measure H are not, in general,
comparable. Since the Poincaré inequality is a standard assumption in
analysis on metric spaces, the most interesting question here is how to
get from a Poincaré inequality to a strong relative isoperimetric inequal-
ity. In particular, we are interested in the following inequality that is
stronger than (3.2) and (3.3), and originally presented in [48]:

min{μ(B ∩ E), μ(B \ E)} ≤ cSrH(λB ∩ ∂∗E)

for any ball B = B(x, r), and constants cS > 0 and λ ≥ 1. Crucially, on the
right-hand side we now have, instead of the topological boundary ∂E, the
measure theoretic boundary ∂∗E. This is defined as follows:

∂∗E :=

{
x ∈ X : lim sup

r→0

μ(B(x, r) ∩ E)

μ(B(x, r))
> 0, lim sup

r→0

μ(B(x, r) \ E)
μ(B(x, r))

> 0

}
.

In [17, Theorem 1.1] it was shown that a Poincaré inequality implies a
strong relative isoperimetric inequality, but the latter was essentially the
weaker inequality (3.2). In this case the proof consisted of approximat-
ing the characteristic function χE with Lipschitz functions to which the
Poincaré inequality could be applied.

When proving an inequality with the Hausdorff measure on the right-
hand side, we can use the same type of approach, but the details are quite
different, since we need to approximate the function χE with Newtonian
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functions instead of Lipschitz functions. We use a method first presented
in [14], where a function with a prescribed upper gradient is constructed.
Fix a μ-measurable set E and a ball B = B(x, r), and let λ be the dilation
factor from the (1, 1)-Poincaré inequality that we assume to hold. Assum-
ing that H(λB ∩ ∂E) <∞, for δ > 0 we pick a cover of λB ∩ ∂E with balls
{Bi}∞i=1 such that ri < δ and

∞∑
i=1

μ(Bi)

ri
< H(λB ∩ ∂E) + δ.

Define the Borel function

g :=

∞∑
i=1

χ2Bi

ri
+∞χ

X\λB.

Then define
u(x) := min

{
1, inf

γ

∫
γ
g ds

}
,

where the infimum is taken over curves connecting x to (B \E) \⋃∞i=1 2Bi.
Now g is, essentially by definition, an upper gradient of u, and its L1-norm
in the ball λB is at most cd(H(λB∩∂E)+ δ). It is straightforward to check
that the function u converges to χE in L1(B) as δ → 0. By applying the
(1, 1)-Poincaré inequality to the functions u and g, we get the result.

The remaining problem is that we have worked with the whole bound-
ary ∂E instead of the measure theoretic boundary ∂∗E. By a little fur-
ther analysis, as presented in Publication II, we can conclude that we
could carry out the above proof with the measure theoretic boundary, if
we could show that 1-almost every curve that travels from the measure
theoretic interior I of the set E to the measure theoretic exterior O must
intersect the measure theoretic boundary. The sets I and O are defined as

I :=

{
x ∈ X : lim

r→0

μ(B(x, r) \ E)
μ(B(x, r))

= 0

}
and

O :=

{
x ∈ X : lim

r→0

μ(B(x, r) ∩ E)

μ(B(x, r))
= 0

}
.

In the Euclidean setting, when proving the Federer-type characterization
of sets of finite perimeter, establishing this type of result for curves is the
crux of the proof, see [23, Section 4.5] or [22, p. 222]. However, in the
Euclidean case it is enough to consider lines parallel to coordinate axes.
In the general metric setting, the good uniformity properties of parallel
lines are not available. To compensate for this, in Publication II we define
an extended measure theoretic boundary as follows:

∂∗1E :=

{
x ∈ X : lim sup

r→0

μ(B(x, r) ∩ E)

μ(B(x, r))r
> 0, lim sup

r→0

μ(B(x, r) \ E)
μ(B(x, r))r

> 0

}
.

Due to the additional factor r in the denominator, this is clearly a bigger
set than the (ordinary) measure theoretic boundary. Now we are able
to show that 1-almost every curve travelling from the measure theoretic
interior of E to the measure theoretic exterior intersects the extended
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measure theoretic boundary. By this and the above discussion, we are
able to establish a slightly weakened version of the desired strong relative
isoperimetric inequality, as follows:

min{μ(B ∩ E), μ(B \ E)} ≤ cSrH(λB ∩ ∂∗1E).

In the following two sections, we discuss how this and the other relative
isoperimetric inequalities can be used to analyze BV functions.
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4. Discrete convolutions

In analysis on metric spaces, an essential tool that is also used in proving
many of the results of this thesis is the discrete convolution. In classical
analysis on Euclidean spaces, one can approximate a function by a convo-
lution, which for two functions u and φ is given by

φ ∗ u(x) :=
∫
Rn

φ(y)u(x− y) dy, x ∈ R
n.

Similarly, one can compute the convolution of a measure ν and a function
φ. Often the function φ is taken to be a mollifier φδ. This means that
φδ, with δ > 0, is a smooth function with compact support in B(0, δ), and
‖φδ‖L1(Rn) = 1. The convolutions φδ ∗u of a function u ∈ BV(Rn) have very
nice properties: they are smooth functions that converge in L1(Rn) to u

as δ → 0, and their gradients can be computed simply by mollifying the
variation measure, i.e. ∇(φδ ∗ u) = φδ ∗ Du. Note that in the Euclidean
setting, the variation measure is vector-valued — see also Section 5.

In the general metric setting we do not have such results. However,
a good substitute for convolutions are so-called discrete convolutions. To
define them, we first need suitable coverings of the space, or of an open set.
For the whole space, we can take balls with uniform radii, but for an open
set, we need to construct a Whitney covering. Such coverings were already
employed in [21] and [55], but for recent, careful constructions, see [15,
Theorem 3.1] or [13, Theorem 3.22]. Before describing the covering, let us
point out that Whitney coverings can be used to prove several important
results in analysis on metric spaces, for example Gehring’s lemma [54]
and various extension results, see Section 8. Extension of functions by
means of Whitney coverings is also used in proving a very important self-
improving property of the Poincaré inequality, see [45].

Given an open set Ω ⊂ X and numbers i ∈ N and τ ≥ 1, one can
construct a Whitney covering {Bi

j = B(xij , r
i
j)}∞j=1 with the following prop-

erties. The balls Bi
j , j = 1, 2, . . . cover Ω, the radii satisfy rij ≤ 1/i, and

the dilated balls τBi
j are contained in Ω. Moreover, if τBi

j meets τBi
k, then

rij ≤ 2rik, and each dilated ball τBi
k meets at most C balls τBi

j , where the
constant C only depends on the doubling constant and τ . Typically one
takes τ to be a multiple of the dilation factor λ of the Poincaré inequality,
say τ = 5λ, and we assume this in the following.

Next, we construct a partition of unity subordinate to the Whitney cov-
ering. As shown in e.g. [15, Theorem 3.4], for every i ∈ N we can build
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C/rij-Lipschitz functions ϕi
j , j = 1, 2, . . . , such that each of these is sup-

ported in 2Bi
j , and

∞∑
j=1

ϕi
j = 1 on Ω.

The discrete convolutions of a locally integrable function u are then de-
fined as

ui :=
∞∑
j=1

uBi
j
ϕi
j , i ∈ N.

The discrete convolutions of a function u ∈ BV(Ω) have many good prop-
erties similar to the classical Euclidean case: they are locally Lipschitz
functions that converge to u in L1(Ω) as i → ∞. Moreover, if the space
supports a (1, 1)-Poincaré inequality, every ui has an upper gradient

gi := C
∞∑
j=1

χBi
j

‖Du‖(5λBi
j)

μ(Bi
j)

, (4.1)

where the constant C only depends on the doubling constant and the con-
stants in the Poincaré inequality [39, Lemma 5.3]. By the properties of
Whitney coverings, for every i ∈ N we now have∫

Ω
gi dμ ≤ C‖Du‖(Ω).

In some ways the properties of discrete convolutions are, compara-
tively, even unexpectedly good: in [1] and [38] it is noted that maximal
functions on metric spaces have better regularity properties when de-
fined by means of discrete convolutions than by the usual definition of
the Hardy-Littlewood maximal function.

On the other hand, for BV functions there is also another method of
approximation by Lipschitz functions, presented in [19, Lemma 6.2.1].
Based on the definition of the total variation, this method gives a sequence
of functions ui ∈ Liploc(Ω) with ui → u in L1loc(Ω), gui dμ

∗
⇀ d‖Du‖ in Ω

(weak* convergence of measures), and∫
Ω
gui dμ→ ‖Du‖(Ω), (4.2)

as i→∞. Due to the last property, we refer to this method as approxima-
tion by a minimizing sequence. Indeed, the advantage of this method is
that the sequence “yields” the precise value of the total variation ‖Du‖(Ω),
with no constant C > 1 involved. Nevertheless, the abundant use of dis-
crete convolutions in the study of BV functions in recent literature attests
to the many advantages of the method compared to the minimizing se-
quence method. Let us discuss these.

First, discrete convolutions can be used to show that BV functions can
be characterized by a Poincaré-type inequality of the form∫

B
|u− uB| dμ ≤ crν(τB) (4.3)

for any ball B = B(x, r), where ν is a Radon measure of finite mass
and c > 0, τ ≥ 1 are constants. Moreover, we get ‖Du‖ ≤ Cν, with
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C = C(c, τ, cd). This was first proved in [60, Theorem 3.8] by Miranda,
and the idea is to approximate a function u ∈ L1(X) with discrete con-
volutions, estimate the upper gradients as in (4.1), and then use a lower
semicontinuity property — or simply the definition — of the total varia-
tion. Since the relative isoperimetric inequalities discussed in the previ-
ous section are inequalities of the type (4.3), with u = χE , the finiteness
of e.g. the quantity H(∂E) implies that E is of finite perimeter. This type
of reasoning was employed in [48, Theorem 4.6].

In Publication III, discrete convolutions are used in establishing an
inequality involving a sequence of locally Lipschitz functions ui approxi-
mating a BV function u in the L1-norm. More precisely, the inequality is
of the following form:

lim sup
i→∞

∫
B
Rx,y gi dμ ≤ C

∫
2B

Rx,y d‖Du‖,

where C > 0, each gi is an upper gradient of ui, Rx,y is the sum of two
Riesz kernels centered at points x and y, and B is a ball containing x

and y. A possible method of proving this inequality would be to take a
minimizing sequence ui as described above, since then we would have
the weak* convergence gi dμ

∗
⇀ d ‖Du‖. However, it is not clear how to

use this weak* convergence in connection with the discontinuous function
Rx,y. By contrast, it turns out that when approximating u by discrete
convolutions, the singularities of the Riesz kernels do not cause trouble,
and we get the above inequality for μ-almost every x, y. As is usual with
discrete convolutions, a constant C appears on the right-hand side.

In Publication IV we find that discrete convolutions have another use-
ful property. When u ∈ BV(Ω) and the variation measure is absolutely
continuous with respect to the measure μ, i.e. d‖Du‖ = a dμ with a ∈
L1(Ω), it turns out that the sequence of upper gradients gi of the discrete
convolutions ui is equiintegrable. The equiintegrability of a sequence of
functions gi ∈ L1(Ω) is defined by two conditions. First, for any ε > 0

there is a μ-measurable set A ⊂ Ω with μ(A) <∞ such that∫
Ω\A

gi dμ < ε for all i ∈ N.

Second, for any ε > 0 there is δ > 0 such that if Ã ⊂ Ω is μ-measurable
with μ(Ã) < δ, then ∫

˜A
gi dμ < ε for all i ∈ N.

By the Dunford-Pettis theorem, see e.g. [7, Theorem 1.38], from any se-
quence of functions gi ∈ L1(Ω) that is equiintegrable, one can pick a subse-
quence that converges weakly in L1(Ω). Then by Mazur’s lemma (see e.g.
[62, Theorem 3.12] or [42]), one can pick convex combinations of gi that
converge strongly in L1(Ω). This type of reasoning has been previously
applied in [24] to prove a certain self-improving property of Poincaré in-
equalities. In Publication IV we generalize the method somewhat: instead
of assuming that ‖Du‖ is absolutely continuous in the entire open set Ω,
we show that in the set where it is absolutely continuous, the upper gra-
dients of suitably constructed discrete convolutions are equiintegrable. In
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Sections 5 and 7 we will describe how this equiintegrability property is
used in this thesis.

In [50, Proposition 4.1] it is also shown that one can estimate the point-
wise convergence of a sequence of discrete convolutions of a BV function
outside a set of H-measure zero instead of just a set of μ-measure zero.
In proving a Leibniz rule for BV functions, both approximation methods
are used in [50, Proposition 4.2]: one for each function in the product. Yet
even here, the minimizing sequence approximation does not seem to have
any real advantage, since discrete convolutions have, up to a constant C,
also both the minimizing property (4.2) and the weak* convergence prop-
erty, and the result in [50, Proposition 4.2] is also an inequality involving
a constant.

Nevertheless, it is interesting to note that the two methods cannot be
merged into one. Namely, the construction presented in Example 4.8 of
Publication IV shows that on a metric space it is, in general, impossible to
obtain equiintegrability for the upper gradients of a minimizing approxi-
mating sequence of a BV function with an absolutely continuous variation
measure. This implies, by the Dunford-Pettis theorem, that while the
sequence of measures gi dμ weakly* converges to the variation measure
a dμ, no subsequence of the upper gradients gi converges weakly in L1.
Notably, the space in our example is just an interval of the real line with
the Euclidean distance and a Lebesgue measure weighted by a function
that takes values between 1 and 2. By contrast, in the classical Euclidean
setting, all the good approximating properties that have been discussed
are possible to achieve simultaneously, since the gradients of convolu-
tions even converge in L1 to the weak gradient of u, when the latter is
absolutely continuous.
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5. Characterizations of BV functions

A central theme in this thesis are the various characterizations of BV
functions on metric spaces. In the Euclidean setting there are two stan-
dard ways to define BV functions. Let Ω be an open set. According to
the first definition, a function u ∈ L1(Ω) is in the class BV(Ω) if the total
variation

‖Du‖(Ω) := sup

{∫
Ω
u div φ dx : φ ∈ C1

c (Ω;R
n), |φ| ≤ 1

}
is finite. An equivalent definition states that a function u ∈ L1(Ω) is in the
class BV(Ω) if there exist signed Radon measures of finite mass ν1, . . . , νn,
such that∫

Ω
u
∂φ

∂xi
dx = −

∫
Ω
φ dνi for all φ ∈ C1

c (Ω), i = 1, . . . , n,

that is, the weak gradient Du = ν of u is an R
n-valued measure with

finite mass ‖Du‖(Ω). It is then usually proved as a theorem that u can
be approximated by smooth functions, see e.g. [7, Theorem 3.9]. This fact
is essentially taken as the definition of BV functions on metric spaces,
where directional derivatives are not available — see the definition given
in Section 2.

A very important characterization of BV functions on metric spaces,
from which several other characterizations can be derived, is that a Poin-
caré-type inequality of the form (4.3) characterizes the class BV. Note that
in order to ensure that BV functions satisfy such as inequality, we need
to assume that the space supports a (1, 1)-Poincaré inequality. In [39]
the authors present a more general formulation of this characterization,
defining spaces of functions u ∈ L1loc(Ω) for which

‖u‖
A1,p

τ,0(Ω)
:= lim

r→0
sup
B∈Bτ,r

∥∥∥∥∑
B∈B

(
r−1B

∫
B
|u− uB| dμ

)
χB

∥∥∥∥
Lp(Ω)

is finite for some τ ≥ 1; here Bτ,r consists of all collections of balls B with
radius rB ≤ r such that the balls τB are disjoint and contained in Ω. The
authors show that for a function u ∈ L1(Ω), the condition ‖u‖

A1,1
τ,0(Ω)

< ∞
implies u ∈ BV(Ω), whereas when p > 1 and u ∈ Lp(Ω), ‖u‖

A1,p
τ,0(Ω)

< ∞
implies that u ∈ N1,p(Ω). This is another demonstration of the fact that
the class BV is sometimes a natural limit of the spaces N1,p(Ω) as p →
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1+. In Publication IV we show that if the space supports a (1, 1)-Poincaré
inequality, then the classN1,1(Ω) is, in turn, characterized by the Poincaré
inequality ∫

B
|u− uB| dμ ≤ Cr

∫
λB

a dμ

for every ball B = B(x, r) ⊂ λB ⊂ Ω and a given a ∈ L1(Ω). This can
again be proved by using discrete convolutions and equiintegrability of
the upper gradients. On the other hand, BV functions whose variation
measures are absolutely continuous are precisely functions that satisfy a
Poincaré inequality of the above type. Thus we can identify this class with
N1,1(Ω), and in fact we prove in Publication IV the following, somewhat
stronger result. Given u ∈ BV(Ω) and any μ-measurable set F ⊂ Ω where
‖Du‖ is absolutely continuous with respect to μ, we have u|F ∈ N1,1(F )

for some μ-representative of u.
All in all, there are very close connections between BV functions and

Newtonian functions, and sometimes BV functions can even be utilized in
the study of Newtonian functions. In the main result of [48], the goal is to
show that a particular function is in the space N1,p(X), and the strategy
is to first show that the function is in the space BV(X), and then to check
that the singular part of the variation measure is zero.

On the other hand, Hajłasz has demonstrated in [28] and [30, Theo-
rem 8.7] how to get from pointwise inequalities of the type |u(x)− u(y)| ≤
d(x, y)(g(x) + g(y)) to Poincaré-type inequalities. For example, the point-
wise inequality

|u(x)− u(y)| ≤ Cd(x, y)
(
(Mσd(x,y)g

p(x))1/p + (Mσd(x,y)g
p(y))1/p

)
for μ-almost every x, y ∈ X, with σ > 0, implies a (1, p)-Poincaré inequality
for the pair u, g, for any 1 ≤ p < ∞, see [30, Theorem 9.5]. HereMσd(x,y)

denotes the restricted Hardy-Littlewood maximal function. In Publication
I we show that BV functions can be characterized by a similar inequality

|u(x)− u(y)| ≤ Cd(x, y)
(Mσd(x,y)ν(x) +Mσd(x,y)ν(y)

)
,

where ν is a Radon measure of finite mass. In the proof, we show that
the above inequality implies a Poincaré-type inequality for the pair u,
ν, and then apply the characterization of BV functions by Poincaré-type
inequalities. Moreover, in Publication III we present a slightly different
formulation and proof of this pointwise characterization of BV, relying
more directly on the results of Hajłasz. Conversely, if the space supports
a Poincaré inequality, pointwise inequalities of the above types can easily
be proved for BV and Newtonian functions by a telescoping argument.

Thus far we have discussed characterizations of general BV functions.
On the other hand, for sets of finite perimeter one has, at least in the Eu-
clidean case, the very important Federer-type characterization that states
that a set E is of finite perimeter if and only ifH(∂∗E) <∞. This was first
proved by Federer in [23, Section 4.5], and a simplified version of the proof
can be found in [22, p. 222]. The Federer-type characterization is quite
surprising in the sense that it brings together, on the one hand the concept
of the perimeter measure, which is a variational concept defined through
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a relaxation procedure and readily useful in the calculus of variations,
and on the other hand the codimension one Hausdorff measure which is
a purely measure theoretic object. In fact, the perimeter measure and the
codimension one Hausdorff measure restricted to the measure theoretic
boundary are equal in the Euclidean case, and in the general metric set-
ting, Ambrosio et al. have shown them to be comparable if the set is of
finite perimeter, see [4, Theorem 5.3] and [9, Theorem 4.6].

To prove the other direction of the Federer-type characterization in
the metric setting, namely that H(∂∗E) < ∞ implies that E is of finite
perimeter, we could again use Miranda’s characterization of BV functions
by means of Poincaré-type inequalities. This is due to the fact that the
relative isoperimetric inequalities discussed in Section 3 are Poincaré-
type inequalities written for the characteristic functions of sets. Precisely
speaking, we would need the strong relative isoperimetric inequality with
the quantity H(λB ∩ ∂∗E) on the right-hand side.

As explained in Section 3, we attempt to derive this type of inequality
from the (1, 1)-Poincaré inequality in Publication II — however, we are
only able to establish the weaker inequality with the measure theoretic
boundary ∂∗E replaced by the extended measure theoretic boundary ∂∗1E.
Nevertheless, this does give the following sufficient condition: ifH(∂∗1E) <
∞, then E is of finite perimeter. The BV coarea formula then provides a
simple sufficient condition for general BV functions: u ∈ L1(X) is a BV

function if ∫ ∞

−∞
H(∂∗1{u > t}) dt <∞.
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6. Semmes family of curves

Since the Poincaré inequality enables any locally integrable function to
be controlled by its upper gradient, and upper gradients are defined by
means of curves, any space that supports a Poincaré inequality must in
some sense contain an abundance of curves. Precise expressions of this
fact can be found e.g. in [51, Lemma 3.2], [44, Theorem 2], and [41, Theo-
rem 5.7]. In [44, Theorem 2] a converse is also established — if the space
contains “enough curves”, it supports a Poincaré inequality.

In Publication III we make the somewhat stronger assumption that
there is a geometric Semmes family of curves between any pair of points
in the space. Curve families of this type were first defined and constructed
by Semmes in [64] with the motivation of proving a Poincaré inequality on
certain topological manifolds. At first, we define the (ordinary) Semmes
family of curves as follows: for any x, y ∈ X there is a family of curves Γx,y

joining x and y and a probability measure αx,y such that for any Borel set
A ⊂ X, ∫

Γx,y

�(γ ∩A) dαx,y(γ) ≤ cS

∫
A∩Bxy

Rx,y(z) dμ(z),

with cS > 0. Here �(γ ∩ A) is the length of the curve γ in the set A.
Moreover, Rx,y is the sum of two Riesz kernels, centered at x and y, and
Bxy := B(x, τd(x, y)), with τ > 1. The above condition implies, at mini-
mum, that there must be many curves in the family Γx,y — for if there
were, say, just a finite number of curves in Γx,y and the set A was taken to
be the union of their images, then the right-hand side would in most cases
be zero, but the left-hand side would not. We also note in Publication III
that the above condition implies that the space supports a (1, 1)-Poincaré
inequality. In defining the geometric Semmes family of curves, we then
assume some additional uniformity properties of the curves in Γx,y.

The main result of Publication III is that if a metric space supports
a geometric Semmes family of curves, then the Federer-type characteri-
zation for sets of finite perimeter, which was discussed at the end of the
previous section, holds. The proof combines many of the ideas and charac-
terizations of BV functions introduced so far, as explained in the following.

First we consider one more characterization of BV functions, expressed
by means of curves on the space. The idea is to investigate, for a function
u ∈ L1(X), whether the functions u ◦ γ are in the class BV((0, �γ)) for
curves γ. Here �γ is the length of γ — recall that we assume all curves
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to be parametrized by arc-length. We prove that a bounded function u ∈
L1(X) is in BV(X) if and only if∫

Γx,y

‖D(u ◦ γ)‖((0, �γ)) dαx,y(γ) ≤ C0

∫
B(x,κd(x,y))

Rx,y dν (6.1)

for some constants C0, κ > 0, a Radon measure of finite mass ν, and μ-
almost every x, y ∈ X. In particular, u ◦ γ ∈ BV((0, �γ)) for αx,y-almost ev-
ery curve γ ∈ Γx,y. The proof of the sufficiency of this so-called Reshetnyak-
type characterization is based on two facts: first, we can establish the fol-
lowing weak continuity at the end points: |u(x)−u(y)| ≤ ‖D(u◦γ)‖((0, �γ))
for almost every curve γ ∈ Γx,y. Second, the integral of the Riesz kernel
Rx,y on the right-hand side of (6.1) can easily be estimated by the maxi-
mal function of the measure ν, as noted already in [37]. Then we can use
the pointwise characterization of BV functions that was discussed earlier
— recall that this was, in turn, based on Miranda’s characterization by
Poincaré-type inequalities. A characterization of BV functions in terms
of curves is well-known in the Euclidean case — where it is usually for-
mulated for lines — and it is an analogue of the ACL or ACC property
(absolute continuity on almost every line or curve) of Sobolev or Newto-
nian functions.

Now, to obtain the Federer-type characterization, let us briefly discuss
how to establish (6.1) for u = χE and ν = H|∂∗E , withH(∂∗E) finite. Using
geometric arguments and the properties of the Semmes family of curves,
we can first show that for μ-almost every x, y ∈ X, we have∫

Γx,y

#(γ ∩ ∂∗E) dαx,y(γ) ≤ C

∫
3Bxy

Rx,y dHh|∂∗E .

Thus we see that in order to get (6.1), we simply need to show that

‖D(χE ◦ γ)‖((0, �γ)) ≤ #(γ ∩ ∂∗E)

for almost every curve γ ∈ Γx,y. Since we can pick any μ-representative
of E, we can assume that E = I, that is, the measure theoretic interior
of E. In one dimension, the total variation of a function can of course
be controlled by its pointwise variation, so again we encounter the prob-
lem of showing that almost every curve or subcurve that travels from the
measure theoretic interior of E to the measure theoretic exterior must
pass through the measure theoretic boundary. This is proved by using the
good uniformity properties of the geometric Semmes family of curves. In
fact, curves in this family behave much like parallel lines on a Euclidean
space: the curve bundle is “equally thick” everywhere, and the curves
travel in the “same direction” and at a uniform “speed”. This enables us
to mimic the proof presented in [22], as explained in the following.

The idea is to define subfamilies of Γx,y in which curves “jump” from the
measure theoretic interior to the measure theoretic exterior, or vice versa,
avoiding the measure theoretic boundary. In order to show that these
curve families have αx,y-measure zero, we first show that the measure
αx,y is locally doubling with respect to a suitable metric on the space of
curves Γx,y. This ensures that the Lebesgue differentiation theorem holds
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on the space Γx,y. On the other hand, using the fact that the curves behave
much like Euclidean lines, we are able to show that the density of the
curves that “jump” is everywhere strictly less than one. By the Lebesgue
differentiation theorem, the αx,y-measure of these curve families must
then be zero.

The obvious example of a space supporting a geometric Semmes family
of curves is a Euclidean space. As a more interesting example, we discuss
Fred Gehring’s bow-tie, which is defined as X = X+ ∪X−, with

X+ : = {z ∈ R
n : 0 ≤ zn ≤ 1, |zj | ≤ zn, j = 1, . . . , n− 1},

X− : = {z ∈ R
n : −1 ≤ zn ≤ 0, |zj | ≤ |zn|, j = 1, . . . , n− 1}.

We equip this space with the metric inherited from R
n and a Lebesgue

measure weighted by ω(z) := |z|α, with α > −n. It turns out that this
space supports a geometric Semmes family of curves precisely when α =

1 − n. It is interesting to note that the space supports a (1, 1)-Poincaré
inequality precisely when α ≤ 1 − n [13, Example A.24], demonstrating
again the connection between the two concepts. In Publication III we
also construct a geometric Semmes family in the first Heisenberg group,
and note that by numerical calculations, all the conditions appear to be
satisfied.

It can also be mentioned that a characterization of BV functions by
means of curves, more precisely all curves on the space, was recently pre-
sented in [6]. Far fewer assumptions on the space were made in this paper,
but as a drawback it is unclear how to proceed from the characterization
given in this paper to the Federer-type characterization.

35



Semmes family of curves

36



7. Functionals of linear growth

In Publication IV we consider functionals of linear growth, which are a
generalization of the total variation functional that is used to define BV
functions. First we let f : R+ → R+ be a nondecreasing convex function
that satisfies the linear growth condition

mt ≤ f(t) ≤M(1 + t)

for all t ≥ 0, with some constants 0 < m ≤M <∞. This also implies that
f is Lipschitz with constant L > 0. Furthermore, we define

f∞ := sup
t>0

f(t)− f(0)

t
= lim

t→∞
f(t)− f(0)

t
= lim

t→∞
f(t)

t
,

where the second equality follows from the convexity of f .
A model case that is good to keep in mind is the function f(t) =

√
1 + t2,

which appears in the definition of the classical surface area functional

C1(Ω) � u �→
∫
Ω

√
1 + |∇u|2 dx.

Now we give the definition of the functional of linear growth. For an
open set Ω and u ∈ N1,1(Ω), one possibility would be to define it as u �→∫
Ω f(gu) dμ, where gu is the minimal 1-weak upper gradient of u. However,
we wish to define the functional for BV functions as well, so we need to use
a relaxation procedure. For u ∈ L1loc(Ω), the functional of linear growth is
defined by

F(u,Ω) := inf

{
lim inf
i→∞

∫
Ω
f(gui) dμ : ui ∈ Liploc(Ω), ui → u in L1loc(Ω)

}
,

where gui is the minimal 1-weak upper gradient of ui. In the case f(t) = t,
the functional F(u, ·) is just the total variation ‖Du‖(·). Due to the linear
growth conditions on f , we always have

m‖Du‖(Ω) ≤ F(u,Ω) ≤M(μ(Ω) + ‖Du‖(Ω)).

Functionals of the type described above were introduced in the Eu-
clidean setting in [5] — see also the discussion therein on results related
to an earlier definition of F without the use of relaxation, which is suit-
able for Sobolev functions but not BV functions. A more thorough classical
treatment of these functionals is given in [7], and other sources include
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[26] and [11]. We point out that in the Euclidean case, gradients as well as
the variation measure Du are vector-valued, and in the first two sources
mentioned above, the function u under consideration is also taken to be
vector-valued. Moreover, in the Euclidean case the function f is assumed
to be quasiconvex instead of convex, but this property reduces to convexity
in the scalar case, see [7, Proposition 5.41].

By contrast, in Publication IV, where we work in the general metric
setting, we assume u ∈ BV(Ω) to be scalar-valued, as is done in most
recent theory of BV functions on metric spaces. Then the variation mea-
sure is merely the scalar measure ‖Du‖. Despite these simplifications,
working in the general metric setting produces significant complications
compared to the Euclidean case, and these appear already in the weighted
Euclidean setting. We will discuss these issues shortly.

The functional F(u, ·) has been previously studied in the metric set-
ting in [34] and [35], where existence and regularity of minimizers of the
functional are considered. In Publication IV we focus on the fundamental
properties of the functional itself. First we define F(u,A) for arbitrary
sets A by approximation from outside with open sets. Then we show that
F(u, ·) is a Radon measure. This can be done in a similar fashion as in
the Euclidean setting, see e.g. [7, Chapter 5.5], or in the case of the total
variation ‖Du‖(·) on metric spaces, see [60].

The main goal of Publication IV is the same as was in [5] in the Eu-
clidean context: to produce an integral representation for F(u, ·). The mo-
tivation for this is that the rather indirect definition of F(u, ·) by means
of relaxation makes the functional difficult to work with. Let us assume
that F(u,Ω) <∞, implying also ‖Du‖(Ω) <∞. Denote the decomposition
of the variation measure ‖Du‖ into the absolutely continuous and singu-
lar parts with respect to the measure μ by d‖Du‖ = a dμ + d‖Du‖s, and
similarly write F(u, ·) = Fa(u, ·) + Fs(u, ·). Our result states that

Fs(u,Ω) = f∞‖Du‖s(Ω)

and ∫
Ω
f(a) dμ ≤ Fa(u,Ω) ≤

∫
Ω
f(Ca) dμ,

where the constant C depends only on the doubling constant and the con-
stants in the Poincaré inequality. Proving the result for the singular part
is fairly straightforward. The idea is simply that in the set where u varies
“singularly”, the weak upper gradients gui of an approximating sequence
ui must be very large, and then f(gui) ≈ f∞gui .

For the absolutely continuous part Fa(u, ·), we can restrict our analysis
to an open set G ⊂ Ω where the singular parts ‖Du‖s and Fs(u, ·) are
arbitrarily small. The estimate from below can be proved by taking an
approximating sequence of locally Lipschitz functions ui that converges to
u in L1loc(G), such that

∫
G f(gui) dμ converges to the value of the functional

F(u,G). By a standard compactness result, a subsequence of the sequence
of measures gui dμ converges weakly* to a Radonmeasure with finite mass
ν, and furthermore we can show that this measure majorizes the variation
measure ‖Du‖. Then we can use an argument which states that by the
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convexity of f , the functional

L1(G) � a �→
∫
G
f(a) dμ (7.1)

is lower semicontinuous with respect to the weak* convergence of abso-
lutely continuous measures. This gives us the result, but it is worth mak-
ing a certain observation on this procedure. Namely, we only needed the
weak* convergence of absolutely continuous measures, instead of weak or
strong convergence in L1(G). On the other hand, the setting is asymmet-
ric: f is convex but not necessary concave (and thus linear), and hence the
functional (7.1) is lower but not upper semicontinuous.

Due to this asymmetry, we cannot use the same methods for the esti-
mate from above for the absolutely continuous part Fa(u, ·). Ultimately
we obtain an unexpected result: the estimate holds only up to a constant
C that depends on the doubling constant and the constants in the Poin-
caré inequality. By contrast, in the Euclidean case it was possible to gain
equality. Furthermore, Example 4.8 in Publication IV shows that the con-
stant C cannot be discarded. In fact, the same example shows that for
u ∈ N1,1(Ω) and its minimal 1-weak upper gradient gu, it is possible to
have

‖Du‖(Ω) <
∫
Ω
gu dμ;

however, these are also comparable by a constant C. In a sense, this
shows that the definition of the total variation — and of the functionals of
linear growth — through relaxation on metric spaces is slightly less self-
consistent than one might hope for. A question about this consistency was
raised in [60] and later in [9]. It is notable that in our counterexample, u is
even Lipschitz and the space is geodesic and Ahlfors-regular. In fact, the
space is just an interval on the real line, with the Euclidean distance and
a weighted Lebesgue measure where the weight takes values between 1

and 2.
Let us discuss the reason for the above complication. In the Euclidean

case, the estimate from above for the absolutely continuous part can be
proved simply by approximating u by mollifications φδ ∗ u. As discussed
in Section 4, the gradient of φδ ∗ u is just φδ ∗ Du, and for the density of
the absolutely continuous part of Du, denoted by ∇u, we get the (strong)
L1-convergence φδ ∗∇u→ ∇u. In the metric case we would similarly need
this type of L1-convergence for the upper gradients of an approximating
sequence of u, because the functional (7.1) was only lower semicontinuous
with respect to weak* convergence of measures.

However, from Example 4.8 in Publication IV we know that for a func-
tion with an absolutely continuous variation measure ‖Du‖, there may
not be any approximating sequence of locally Lipschitz functions ui whose
upper gradients converge in L1 to the density of the variation measure.
Essentially the best solution available is to approximate u by discrete
convolutions — these have equiintegrable upper gradients, so for a sub-
sequence we get weak convergence in L1, and for convex combinations we
get strong convergence in L1 by Mazur’s lemma. The drawback is that as
always with discrete convolutions, a constant C appears in the result.
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In closing, let us mention that it is natural to ask how far the known
theory of BV functions and the variation measure could be developed for
the more general functionals of linear growth. It turns out that many
results hold, at best, up to a constant in this more general case, and the
easiest proofs are obtained by combining the corresponding results for the
variation measure with the integral representation described above. For
example, a coarea formula of the form (3.1) does not hold for the functional
F(u, ·), because if f(0) �= 0, the right-hand side is infinity as soon as μ(Ω) >
0. If we assume that f(0) = 0, and use the integral representation for
F(u, ·) as well as the coarea formula for the variation measure, we can
show that ∫ ∞

−∞
F(χ{u>t},Ω) dt = f∞‖Du‖(Ω).

If the right-hand side is always equal to F(u,Ω), the functional F is just a
multiple of the total variation, and f is then necessarily a linear function.
Thus the coarea formula holds only in this special case. Nonetheless,
when f(0) = 0, it is easy to see that F(u, ·) is always comparable to the
variation measure, with the constants of comparison depending on the
constants m and M determining the linear growth of f . Thus we do get
the coarea formula and various other results up to a constant.
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8. Traces and extensions of BV
functions

In Publication IV we also consider a minimization problem related to the
functionals of linear growth. For this, we need the concept of boundary
values of BV functions. Let Ω and Ω∗ be bounded open subsets of X such
that Ω � Ω∗, and assume that h ∈ BV(Ω∗). We define BVh(Ω) as the space
of functions u ∈ BV(Ω∗) such that u = h μ-almost everywhere in Ω∗ \ Ω.

Then we can define the minimization problem. A function u ∈ BVh(Ω)

is a minimizer of the functional of linear growth with the boundary values
h ∈ BV(Ω∗), if

F(u,Ω∗) = inf F(v,Ω∗),
where the infimum is taken over all v ∈ BVh(Ω). In [34, Theorem 3.6]
it was proved that the minimization problem always has a solution. The
proof was based on a compactness result for BV functions, demonstrating
why it was beneficial to define the functionals of linear growth for this
wider class, instead of just N1,1(X).

With the help of the integral representation of the functional of linear
growth presented in the previous section, we can prove the second major
result of Publication IV. Namely, we establish, under certain assumptions
on the space and the set Ω, equivalence between the above minimization
problem and minimization of the functional

F(u,Ω) + f∞
∫
∂Ω
|TΩu− TX\Ωh|θΩ dH (8.1)

over all u ∈ BV(Ω). Here TΩu and TX\Ωh are boundary traces, and θΩ is
positive function that we will define later. While obeying the boundary
values h, a function u ∈ BVh(Ω) may well “jump” across the boundary ∂Ω,
but the cost of this is a penalty term where we integrate the magnitude
of the “jump” over the boundary ∂Ω. In the above formulation, the class
of functions over which we minimize is simply BV(Ω), with no reference
to the larger set Ω∗. This type of formulation is previously known in the
Euclidean case [26, p. 584].

The concept of boundary traces of BV functions is also well-known in
the Euclidean case, see e.g. [7, Theorem 3.87] or [27, Section 2], but seems
not to have been studied in the general metric setting. In this thesis, we
present two approaches to constructing boundary traces. In Publication
IV, we set out by considering the concept of BV extension domains. We
say that an open set Ω ⊂ X is a strong BV extension domain if there is
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a constant cΩ > 0 such that for every u ∈ BV(Ω), there is an extension
Eu ∈ BV(X) for which

Eu|Ω = u, ‖Eu‖BV(X) ≤ cΩ‖u‖BV(Ω), and ‖D(Eu)‖(∂Ω) = 0.

Without the last condition, we call Ω merely a BV extension domain. The
BV norm is simply

‖u‖BV(Ω) := ‖u‖L1(Ω) + ‖Du‖(Ω).

Another concept that we will need is defined as follows: a μ-measurable
set Ω satisfies the weak measure density condition if for H-almost every
x ∈ ∂Ω,

lim inf
r→0

μ(B(x, r) ∩ Ω)
μ(B(x, r))

> 0.

At this point, let us list some key concepts and facts of BV theory on
metric spaces. Ambrosio has shown in [4, Theorem 5.4] that if E is a set
of finite perimeter, for H-almost every x ∈ ∂∗E we have

γ ≤ lim inf
r→0

μ(B(x, r) ∩ E)

μ(B(x, r))
≤ lim sup

r→0

μ(B(x, r) ∩ E)

μ(B(x, r))
≤ 1− γ, (8.2)

where γ ∈ (0, 1/2] only depends on the doubling constant cd and the con-
stants in the Poincaré inequality cP , λ. For a set of finite perimeter E ⊂ X

and an open set Ω ⊂ X, we know that

‖DχE‖(Ω) =
∫
Ω∩∂∗E

θE dH,

where θE : X �→ [α, cd] with α = α(cd, cP , λ) > 0, see [4, Theorem 5.3], [9,
Theorem 4.6]. This means that the perimeter measure and the codimen-
sion one Hausdorff measure restricted to the measure theoretic boundary
are comparable.

The lower and upper approximate limits of a μ-measurable function u

are defined as

u∧(x) := sup

{
t ∈ R : lim

r→0

μ(B(x, r) ∩ {u < t})
μ(B(x, r))

= 0

}
and

u∨(x) := inf

{
t ∈ R : lim

r→0

μ(B(x, r) ∩ {u > t})
μ(B(x, r))

= 0

}
.

The jump set of u is defined as

Su := {x ∈ X : u∧(x) < u∨(x)}.

Outside the jump set, i.e. in X \ Su, H-almost every point is a Lebesgue
point of a function u ∈ BV(X), as shown by Kinnunen et al. in [50, Theo-
rem 3.5].

According to [9, Theorem 5.3], the variation measure of a function u ∈
BV(X) can be decomposed as

d‖Du‖ = a dμ+ d|Dcu|+ θu dHh|Su ,
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where a ∈ L1(X), |Dcu| is the so-called Cantor part and

θu(x) :=

∫ u∨(x)

u∧(x)
θ{u>t}(x) dt.

Crucially, neither the absolutely continuous part a dμ nor the Cantor part
“sees” sets of finite H-measure.

Now, if Ω is a strong BV extension domain and u ∈ BV(Ω), the de-
composition of the variation measure and the fact that ‖D(Eu)‖(∂Ω) = 0

imply that H(∂Ω ∩ SEu) = 0. In other words, there is negligible intersec-
tion between the boundary of Ω and the “jump set” of Eu. This means
that H-almost every point of the boundary ∂Ω is a Lebesgue point of Eu

[50, Theorem 3.5]. If Ω furthermore satisfies the weak measure density
condition, it is straightforward to conclude that there is a boundary trace
TΩu(x) for H-almost every x ∈ ∂Ω, satisfying

lim
r→0

∫
B(x,r)∩Ω

|u− TΩu(x)| dμ = 0.

Let us introduce one more definition. Based on [9, Definition 6.1], we
say thatX satisfies the locality condition if for any sets of finite perimeter
E1 and E2, we have θE1(x) = θE2(x) for H-almost every x ∈ ∂∗E1 ∩ ∂∗E2.
Later we give examples of spaces that satisfy this condition. By using the
locality condition and by establishing a few results on boundary traces,
we are able to obtain formulation (8.1) when Ω is a strong BV extension
domain and additionally satisfies a few geometric assumptions.

Which domains, then, are (strong) BV extension domains on metric
spaces? In the Euclidean case it is a standard result that every bounded
domain with a Lipschitz boundary is an extension domain for BV and
Sobolev functions, see e.g. [7, Proposition 3.21]. For Sobolev functions,
this result was extended in [43] to all so-called (ε, δ)-domains, and in [53]
a result is given on BV extension domains in R

2. By contrast, in the
general metric setting the best known result seems to be one found in
[12], where it is shown that, roughly speaking, if sets of finite perimeter
can be extended from a domain, so can general BV functions. However, a
simple geometric characterization or sufficient condition for BV extension
domains seems to be missing.

On the other hand, results on the extension of Hajłasz-Sobolev and
Newtonian functions on metric spaces have been given in [32] and [16].
On a metric space the concept of a domain with a Lipschitz boundary does
not make sense, but a natural generalization is a uniform domain. For
A ≥ 1, a domain Ω is A-uniform if for every x, y ∈ Ω there is a curve γ

connecting x and y in Ω such that �γ ≤ Ad(x, y) and

dist(γ(t), X \ Ω) ≥ A−1min{t, �γ − t}

for every t ∈ [0, �γ ], where �γ is the length of the curve — recall that we
assume all curves to be parametrized by arc-length. Based on results con-
cerning the extension of Newtonian functions, given by Björn and Shan-
mugalingam in [16], we show in Publication V that any bounded uniform
domain is a strong BV extension domain.
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It may be mentioned here that Whitney coverings and discrete convo-
lutions, which were discussed in Section 4, are a central tool in the exten-
sion of various types of functions u from a set Ω (not always open) to the
whole space. One example is the classical Whitney’s extension theorem
for smooth functions, see e.g. [22, p. 245]. Typically the idea is to take
a Whitney covering {B(xj , rj)}∞j=1 of the open set X \ Ω, and the corre-
sponding partition of unity {ϕj}∞j=1. For each xj we pick a point yj ∈ Ω

satisfying d(xj , yj) = dist(xj ,Ω), and then define

Eu(x) :=
∞∑
j=1

u(yj)ϕj(x), x ∈ X \ Ω.

Depending on the set Ω and the class of functions that we wish to extend,
the number u(yj) may not be well defined, and then we may replace it
with an integral average of u over B(yj , rj) ∩ Ω. In this way, we obtain
a “discrete convolution” of u in X \ Ω, but not in the usual sense, since
the function u is not defined in this set. Instead, the coefficients for the
functions ϕj are obtained by “reflecting” values of u from Ω. In [16] this
method is used to extend Newtonian functions, and in [15] it is used to
extend characteristic and Hölder continuous functions. Of course, in the
Euclidean case, extensions can be defined by actually reflecting (in the
ordinary sense) a function across the boundary of a domain with respect
to some coordinate axis, but this would not make sense on a metric space.

The approach to constructing boundary traces of BV functions which
is used in Publication IV and which we have discussed so far is based on
the fairly strong assumption that Ω is a strong BV extension domain. In
Publication V we consider a different approach, in which more is assumed
of the space X but less of the domain Ω. We say that a space X satisfies
the strong locality condition if for any sets of finite perimeter E1 ⊂ E2 ⊂ X

and H-almost every x ∈ ∂∗E1 ∩ ∂∗E2, we have

lim
r→0

μ(B(x, r) ∩ E2 \ E1)

μ(B(x, r))
= 0. (8.3)

As the name implies, this condition implies the (ordinary) locality con-
dition discussed earlier in this section, by Lemma 4.5 in Publication V
and [9, Proposition 6.2]. The strong locality condition is satisfied e.g. in
Euclidean spaces, and also in any weighted Euclidean space where the
weight is locally bounded and locally bounded away from zero, see Exam-
ple 4.6 and Example 4.7 in Publication V. In Euclidean spaces, any set
of finite perimeter converges, under blow-up, to a half-space at H-almost
every point of the set’s measure theoretic boundary. In particular, sets of
finite perimeter have density half in these points, guaranteeing the strong
locality condition.

In a metric space, the concept of half-spaces does not make sense, but
the strong locality condition seems to summarize the crucial information
required for results on traces. Moreover, we are able to use condition (8.3)
for some sets of finite perimeter even without assuming that the space
satisfies the strong locality condition. Indeed, assume that A ⊂ X consists
of points x ∈ ∂∗E1 ∩ ∂∗E2 for which (8.3) fails, i.e. the limit superior is
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positive. Then we have x ∈ ∂∗(E2 \ E1) for every x ∈ A, and we know that
E2 \ E1 is also a set of finite perimeter. By (8.2) we then have

lim inf
r→0

μ(B(x, r) ∩ E2 \ E1)

μ(B(x, r))
≥ γ > 0

for H-almost every x ∈ A. From this it follows that if we have a se-
quence of sets of finite perimeter E1 ⊂ E2 ⊂ . . . ⊂ X, and in a set
A ⊂ ∂∗E1 ∩ ∂∗E2 ∩ . . ., with H(A) > 0, the condition (8.3) fails for all
pairs Ei+1, Ei, i = 1, 2, . . ., then the number of these sets is at most a con-
stant depending only on the number γ. On the other hand, we know that
for any point x ∈ Su in the jump set of a BV function, x ∈ ∂∗{u > t} for
all t ∈ (u∧(x), u∨(x)). This follows from the definitions of the lower and
upper approximate limits u∧(x) and u∨(x). In Publication V we use this
type of deductions to conclude that at H-almost every point x ∈ Su, there
is a number t2 ∈ (u∧(x), u∨(x)) such that

lim
r→0

μ(B(x, r) ∩ {u > t2} \ {u > t})
μ(B(x, r))

= 0

for all t < u∨(x). Then, by using reasoning similar to that presented in
[22, p. 214], we are able to conclude that at H-almost every x ∈ Su,

lim
r→0

∫
B(x,r)∩{u>t2}

|u− u∨(x)|Q/(Q−1) dμ = 0; (8.4)

recall that the number Q > 1 was defined in (2.3). An analogous result
holds for u∧(x), with the set {u > t2} replaced by {u ≤ t1}, for some
t1 ∈ (u∧(x), u∨(x)). These results describe the behavior of a BV function
in its jump set, strengthening [50, Theorem 1.1], where the limit of uB(x,r)
as r → 0 is studied at points x ∈ Su.

In Publication V we also show that if we then assume that the space
satisfies the strong locality condition, we can choose t1 = t2 = t in the
above results, and in fact t1 and t2 can be chosen freely from the interval
(u∧(x), u∨(x)). This strongly resembles the Euclidean result, according to
which the sets {u ≤ t} and {u > t} can be replaced by complementary
half-spaces, see e.g. [22, p. 213]. Again, the concept of a half-space does
not make sense in the metric setting, where the sets {u ≤ t} and {u > t}
may not even have density 1/2 at x, but these level sets are nonetheless
complementary sets, and their lower and upper densities are controlled
by (8.2).

Returning to the concept of traces, in Publication V we use the strong
locality condition to show the existence of interior traces on the measure
theoretic boundary of any set of finite perimeter. More precisely, let Ω ⊂ X

be a set of finite perimeter, and let u ∈ BV(X). Then for H-almost every
x ∈ ∂∗Ω there exist interior traces {TΩu(x), TX\Ωu(x)} = {u∧(x), u∨(x)},
which satisfy

lim
r→0

∫
B(x,r)∩Ω

|u− TΩu(x)|Q/(Q−1) dμ = 0

and
lim
r→0

∫
B(x,r)\Ω

|u− TX\Ωu(x)|Q/(Q−1) dμ = 0.
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The idea of the proof is the following. If a point x ∈ ∂∗Ω is not in the
jump set Su, then it is, excluding aH-negligible set, a Lebesgue point of u.
Then we can define both interior traces simply as the Lebesgue limit of u
at x. On the other hand, assume that x ∈ Su. Now the function u makes a
“jump” at x from u∧(x) to u∨(x). By the strong locality condition, we know
that the level sets {u > t}, for t ∈ (u∧(x), u∨(x)), look locally either like
the set Ω or its complement. Thus, near the point x, the function u is close
to u∨(x) in Ω and close to u∧(x) in X \ Ω, or vice versa, and by these facts
we are eventually able to prove the trace results presented above.

Once we have interior traces, we can prove the existence of boundary
traces on the measure theoretic boundary of certain sets of finite perime-
ter Ω. However, here we again need the additional assumption that Ω is
a BV extension domain. With this assumption, we can simply extend any
u ∈ BV(Ω) to Eu ∈ BV(X), and then use the interior trace theorem for the
function Eu. In this way we can again ultimately obtain the representa-
tion (8.1) for the functional F .

In conclusion, the significant advantage of assuming the strong locality
condition is that interior traces can be defined on the measure theoretic
boundary of any set of finite perimeter. This is sometimes useful; for ex-
ample, when proving the desired formulation (8.1) in Publication IV, we
need the existence of the trace TX\Ωh, where (in essence) h ∈ BV(X). One
approach to ensuring that this trace exists is to assume that X \Ω is also
a strong BV extension domain. However, if the space supports the strong
locality condition, it is enough to assume that Ω is a set of finite perimeter
with H(∂Ω \ ∂∗Ω) = 0. Moreover, the elegant description of the behavior
of a BV function in its jump set, as given in (8.4), is essentially also an
interior trace result.
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