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1. Introduction

This dissertation belongs to the interdisciplinary fields of computational

and cognitive linguistics. The main topic of it is language: an amazing

and complex system we humans learn to use effortlessly. In this work,

language is explored from different angles, using insight from interre-

lated research fields, from Linguistics, Semiotics and Cognitive Science to

Information and Computer Science, sometimes bordering Philosophy.

The most important aspect of language is meaning, the underlying mes-

sage conveyed with words, as “meaning is what language is all about”

(Langacker, 1987, p. 12). In Linguistics, the field dedicated to studying

meaning is called Semantics, and the majority of this dissertation is dedi-

cated to this topic: how to model and represent meaning? Here, the focus

is on computational methodologies, which allow us to build models and

gain understanding of languages using large data sets and advanced ma-

chine learning methods. The purpose of this work is to give an introduc-

tion to the problem of computational modeling of language and meaning,

along with a set of theoretical and empirical alternatives to approach this

problem including considerations on their applicability.

1.1 Computational modeling of language and meaning

A way to try to understand language is to model it. Modeling, let alone

computational modeling of meaning is a difficult task. Being humans, we

use words to convey meanings effortlessly, and children learn to use them

at an early age. At the same time, trying to describe what meaning exactly

is, or build a model to describe it is difficult. Still, our computational

models for linguistic behavior would be incomplete without an account of

meaning (Sahlgren, 2006).

The core methodology chosen in this thesis for computational modeling
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of language and meaning is (statistical) machine learning from large text

corpora. Machine learning refers to techniques that enable computers to

learn to solve specific tasks. With the powerful computing systems that

start to be a norm, statistical machine learning methodologies allow us to

process and analyze large data sets and find relevant structure from data,

including textual data.

The amount of text available in electronic form has grown exponentially

over the last years. There are billions of web pages in the World Wide

Web, and at the time of writing, over four million articles in Wikipedia,

the free Encyclopedia1. These type of resources offer us a great sample of

natural language to analyze and create models from. In this dissertation,

the majority of the methods fall into the category of unsupervised learn-

ing: methods that find regularities from a set of observations without a

predefined set of labels or classes to classify the observations into.

The computational models of meaning used in this thesis employ the

concept of the context. Andrews et al. (2009) define two major types of

statistical data from which semantic representations can be learned: dis-

tributional and experiential. Distributional data describes the distribu-

tion of words across spoken and written language, whereas the experien-

tial data refers to data that is derived through experience of the physical

world. The distributional models represent the similarity of meaning of

words using the context of co-occurring words in spoken or written lan-

guage. The vector space models used in this thesis are an example of a

method based on distributional data. The context can also be the sensory

information obtained from the environment. This approach is used to rep-

resent meaning in the multi-agent simulation experiments, in which the

context is the perceived environment of the simulated agent.

This dissertation employs the notion of similarity in a (metric) space, at

different levels of language. This approach can be contrasted to analyzing

similarity in structured representations, such as graphs. The similar-

ity measures are used in comparing the complexity of different natural

languages; in measuring the similarity in meaning using distributional

vector space models; and when using a geometrical model to represent

meaning in the conceptual memory of a simulated agent.

1http://en.wikipedia.org/wiki/Main_page, accessed December 5, 2013
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1.2 The scope and contributions of the thesis

This thesis addresses a multidisciplinary topic of modeling language and

meaning, using largely unsupervised machine learning methods, concen-

trating on written language. The contributions of this work are in three

related areas. At the broadest level, this dissertation analyzes language

as a system, comparing different natural languages. We pose the follow-

ing question: Can unsupervised methods be used in analyzing the differ-

ences and similarities of complexity of different languages?

The majority of this dissertation is dedicated to the use of natural lan-

guage data as a resource to build distributional, corpus-based semantic

representations. At this point, we narrow the analysis down into one nat-

ural language or a pair of languages. This work will concentrate on lexical

meaning, that is, the meaning of individual words. In this part, answers

to several research questions are searched for. How to build and evaluate

different corpus-based semantic representations? Can we find semanti-

cally similar word groups or categories that match human semantic simi-

larity judgments? What can be said of the quality of the categories of the

evaluation sets?

In the final part, the analysis narrows down even further, to the level

of individuals and small communities, and the object of study is language

emergence and meaning negotiation. More specifically, we ask the ques-

tion: can a shared vocabulary develop in a population of learners, each

with their own subjective semantic memory? For this purpose, an agent

simulation model is developed, and the meaning of individual words is

represented through simple observations from environment. In this part

of the thesis, the focus is not on an existing human language, but instead,

on the adaptive processes that are used when the agents create a vocabu-

lary of their own, shared language. In the following, each of these domains

are discussed in more detail.

1.2.1 Language as a system: Complexity at the level of
languages

In this dissertation, the complexity of natural languages is discussed at

different levels of analysis: general similarity, and complexity of the mor-

phological and syntactic representation. Languages encode meaning at

different levels of structure. Some languages have complex morphology

with a more flexible word order, whereas in other languages, the word
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order carries the information of the constituents of the sentence. Solv-

ing this problem benefits, for example, machine translation, where these

differences can cause problems.

In this work, three different unsupervised methods are used to ana-

lyze the similarity and differences of 21 European languages. Two of

these methods are based on approximating Kolmogorov complexity (Kol-

mogorov, 1998; Li and Vitanyi, 1997) with compression (Juola et al., 1998;

Juola, 2005, 2008; Li et al., 2004). The third method used is an unsu-

pervised method of morphology induction called Morfessor (Creutz and

Lagus, 2002, 2007), based on Minimum Description Length (MDL) (Ris-

sanen, 1978), which is also a special case of Kolmogorov complexity.

1.2.2 Language as a resource: Distributional modeling of word
meaning

In the second part, the focus moves to the level of individual words in a

single language or a pair of languages. The majority of this dissertation

concentrates on providing a computational representation for the mean-

ing of words. For this purpose, the large amounts of text in electronic form

are used as data, using the insight that words that are somehow similar,

occur in similar company (Firth, 1957). This similarity of context can be

turned into a vector space model, in which semantically related words are

close, and unrelated words are distant (Schütze, 1993).

The vector space models are built based on large text corpora, and they

are further compared to and analyzed with human similarity judgment

data both in a single language (English) case, and in a simple bilingual

(English-Finnish) setting. The latter setting is also useful contribution for

machine translation, as it demonstrates howmultilingual semantic repre-

sentations can be generated. In this dissertation, different dimensionality

reduction and visualization methods are used, such as Singular Value De-

composition (SVD), Principal Component Analysis (PCA) (Pearson, 1901;

Hotelling, 1933), Independent Component Analysis (ICA) (Comon, 1994;

Hyvärinen et al., 2001), Neighbor Retrieval Visualizer (NeRV) (Venna and

Kaski, 2007; Venna et al., 2010), and the Self-Organizing Map (SOM) (Ko-

honen, 2001).

Most importantly, ICA applied to a word vector space model is shown

to be able to find meaningful semantic components that correspond to

human category judgments. Further, the performance of ICA is compared

to a probabilistic method, Latent Dirichlet Allocation (LDA) (Blei et al.,
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2003). Furthermore, the overlap of human category judgments and the

word sets found with unsupervised methods is analyzed in detail: What

kind of categories are found and why? What kind of categories are not

found? And what kind of information do the unsupervised methods find

beyond the evaluation labels?

1.2.3 Language of an individual and the community: Modeling
the emergence of a shared vocabulary in a community

The origins of human languages are hidden in prehistory. The hypothe-

ses of the different conditions that affect the language emergence can be

tested through simulation (Cangelosi and Parisi, 2002). In the last part of

this dissertation, a multi-agent simulation model for shared vocabulary

emergence is introduced. In contrast to earlier parts of this dissertation,

the language in the simulation is an artificial one and emerges in the

course of simulation through agent interactions.

Another significant difference is at the representational level. In the

distributional models, the meaning of a word is grounded only through its

links to other words, whereas the words in the vocabularies of the agents

are grounded through a mediating conceptual level to experiences in the

simulated world, which satisfies the physical symbol grounding problem

(Vogt, 2002).

The simulation model consists of two separate parts. First, it contains

a formal model and a computational realization for an individual. The

SOM is used as a model for the semantic memory, allowing concepts that

are fuzzy and continuous. It is important to note that the conceptual rep-

resentations of each agent are private and subjective, contrary to many

models, where the agents share the common concepts. Second, a formal

model for interaction between the individuals is defined. It is realized

using the language game approach using naming games and two differ-

ent alternative decision rules. As a result of the simulations, a shared

vocabulary emerges in the population, despite the private conceptual rep-

resentations of the agents.

1.3 Summary of publications and author’s contributions

Publication I introduces a method for analyzing the complexity of the syn-

tactic and morphological characteristic of multiple languages, which is
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useful, for example, in machine translation. The methods use Kolmogorov

complexity, which is approximated by compression. In addition, the mor-

phological level of the languages was analyzed with an unsupervised mor-

phology induction method, Morfessor. This was the first time Morfessor

was applied to many of these languages. The present author took part

in defining the problem setting, performed morphology induction analy-

sis with Morfessor and took part in writing the article. In addition, some

further evaluation was carried out for this dissertation by the present au-

thor. Further, while reviewing the article for this dissertation, the present

author discovered an error in one of the experiments of Publication I, and

carried out new experiments to replace the erroneous results. The new

results are reported in this dissertation.

Publication II describes an approach, in which ICA is used in a bi-lingual

setting using aligned sentences in English and Finnish. The authors

jointly defined the problem. The present author evaluated the results

and wrote the article together with the other author of the article.

In Publication III, visualization of adjectives using PCA, NeRV, and

SOM are compared in a case of an under-studied part of speech, the adjec-

tives. Antonym pairs were used in evaluation. The present author defined

the problem setting jointly with the other authors, carried out most of the

experiments and evaluation, and wrote a large part of the article.

In Publication IV, it is shown that ICA is able to find meaningful struc-

ture from the data that corresponds to category judgments given by hu-

man subjects. In addition, the article presents feature selection experi-

ments for analyzing which features best separate a given category from

other categories. The present author defined the problem setting jointly

with the other authors, designed the evaluation experiments, and carried

out the evaluation and analysis for the syntactic and semantic tasks, as

well as wrote large parts of the article.

Publication V continues the semantic analysis in an ICA task with a test

set that contains different relations within the categories. Furthermore,

an analysis of different types of categories and relations between the cate-

gories of the test set were also conducted. In addition, the use of the SOM

is demonstrated in a data exploration and visualization task. The authors

defined the problem setting jointly, and the present author carried out the

evaluation procedure and the experiments, as well as wrote most of the

article.

Publication VI continues the semantic vector space analysis with ICA,

6



Introduction

and compares the ICA results to results obtained with a probabilistic

method, LDA. The analyses are carried out rigorously for two separate

semantic category test sets. In addition, an analysis of the differences

between categories in the test set is carried out, both visualizing the ICA

and LDA results in an illustrative way, and using the SOM in visualiza-

tion. In addition, a method for finding frequent sets of words from the ICA

and LDA analyses is introduced, and a preliminary qualitative analysis

of the coverage of the pre-existing labels is carried out. The authors de-

fined the problem setting jointly. The present author defined the details

of the evaluation and analyses, carried out the experiments and wrote the

majority of the article.

Publication VII introduces a multi-agent simulation framework to model

the emergence of communication in a population of agents. The SOM is

used as a model of the agents’ conceptual memory. The present author

defined the problem setting with the other authors of the article and built

the multi-agent simulation framework, carried out the experiments and

evaluation, and wrote most of the article.

Publication VIII introduces a Bayesian-type selection process for learn-

ing in the language game setup. The present author was responsible for

building the model jointly with the other authors, doing the experimental

work, and most of the evaluation. The article was jointly written by the

authors.

Publication IX proposes a theoretical framework for modeling communi-

cation between agents with separate conceptual models of their context.

The present author took part in defining the problem setting and the the-

oretical framework, and in writing parts of the article related to language

game research.

1.4 Structure of the thesis

This book covers a large number of different topics related to computa-

tional modeling of language and meaning. Due to the multidisciplinary

nature of this work, the literature review is divided into three chapters

ranging from linguistics and cognitive sciences to modeling and compu-

tational methodology used in this thesis. Chapter 2 provides the reader

insight on language, meaning and theories on concept representation. In

Chapter 3, issues related to modeling are discussed, focusing on modeling

language and meaning. Chapter 4 contains the methodological building
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blocks used in this dissertation.

Chapters 5 through 7 present the contributions of this dissertation. First,

unsupervised approaches for analyzing complexity of languages are intro-

duced in Chapter 5. The distributional models of word meaning are the

topic of Chapter 6, and a multi-agent simulation model of shared vocabu-

lary emergence is presented in Chapter 7. Finally, Chapter 8 summarizes

the work.
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2. Languages, words and meaning

This chapter provides an introduction to the characteristics of languages

and a brief introduction to the levels of linguistic analysis. Further on, the

meaning of words is discussed in relevant detail - from what meaning is,

to the relation between referents in the world, the concepts or categories,

and the words. Then, the discussion continues to introduce some theories

of meaning representation, based on what is known of human category

and concept processing.

2.1 Language

It is often said that the effortless use of language for communication sets

us humans apart from other species. This ability is often considered to be

the hallmark of intelligence (Pfeifer and Scheier, 1999). To communicate

is not the only purpose of the language, though. Language serves seven

main functions (Finch, 2003). These are i) to release nervous/physical

energy, ii) for purposes of sociability, iii) to provide a record, iv) to identify

and classify things, v) to be an instrument of thought, vi) to communicate

and vii) to give delight. In this thesis, we concentrate on the purposes of

identification, classification and communication.

A language can be viewed as a complex symbol system, structured in

different levels. Languages exist in written, spoken and signed form. The

symbols in a language carry meaning, agreed upon in a community of the

users of the language. Languages can be divided along two distinctions.

They can be either natural or artificial; and emerged or designed, see Ta-

ble 2.1 for examples. Artificial languages include programming languages

that are designed, but an artificial language could also emerge in a com-

munity of artificial agents.

Languages are made up of symbols, or words. A word is a linguistic unit,
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Table 2.1. Types of languages

Emerged Designed
Natural French,

Finnish
Esperanto

Artificial Emerged
agent
language

Perl, C, . . .

which is a sound or a combination of sounds or the equivalent letters in

writing, which communicates a meaning. Thus, no combination of sounds

or letters is a word as such, unless it is connected to a sense. In the follow-

ing, when a concept or a word meaning is referred, it is written in italics:

dog. When the sequence of letters is referred, the term form is used, and

it is written in single quotes: ’dog’. Most of this thesis concentrates on the

relation between individual words and their meaning. In corpus work,

two terms, type and token are often used. Type refers to the unique word

forms such as ’cat’ and ’hat’ in the corpus. Tokens are instances of the

type in the corpus, that is, word forms occurring in the running text.

2.1.1 Statistical properties of languages

In most natural languages, the distribution of the occurrence of the sym-

bols follows an exponential distribution, also called Zipf ’s law: the fre-

quency of a word is inversely proportional to its rank (Zipf, 1949; Man-

ning and Schütze, 1999). This means that the most frequent word will oc-

cur approximately twice as often as the second most frequent word, three

times as often as the third most frequent word etc. The implication is

that while the most common words are very frequent, there is also a large

number of words that are rare. As an example, let us consider the Grimm

fairy tales1. The corpus consists of a total of 200 000 tokens. By count-

ing how many times each unique word occurs, a vocabulary of 8 500 types

is obtained, including punctuation marks. The most common type in the

vocabulary is ’the’ which appears almost 17 800 times. In contrast, there

are also over 3 000 types that appear only once.

2.1.2 Language families

Natural languages spoken by people all over the world are numerous.

While many languages have become extinct, there are over 7 000 lan-

1Available online at http://www.gutenberg.org/files/2591/2591-_h/2591-_h.
htm Accessed September 23, 2013.
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Table 2.2. The language families of the EU languages in 2006 (Katzner, 2002)

Family Sub-family language
Indo-European Germanic (ge) Danish (da)

Dutch (nl)
English (en)
German (de)
Swedish (sv)

Romance (ro) French (fr)
Italian (it)
Portuguese (pt)
Spanish (es)

Slavic (sl) Czech (cs)
Polish (po)
Slovak (sk)
Slovene (sl)

Baltic (ba) Latvian (lv)
Lithuanian (lt)

Hellenic (ie) Greek (el)
Celtic (ke) Irish (ga)

Uralic Finno-Ugric (fu) Estonian (et)
Finnish (fi)
Hungarian(hu)

Semitic (se) Maltese (mt)

guages still spoken in the world (Lewis et al., 2013). Languages evolve,

and sometimes new languages are born. Linguists have found it useful

to categorize languages into families to ease their description. In compu-

tational modeling, it also often makes sense to be aware of the language

family structure. A model of a language that has been tested only on one

language family, might not be applicable to other language types.

Publication I concentrates on the official languages of European Union

(EU) in 2006. At the time of the publication, the 21 official EU languages

were Czech, Danish, Dutch, English, Estonian, Finnish, French, German,

Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish,

Portuguese, Slovak, Slovenian, Spanish and Swedish. Most of them be-

long to the Indo-European family of languages, as shown in Table 2.2. In

Publication I, these categorizations into language families are compared

to findings obtained with unsupervised methods.

2.1.3 Levels of linguistic analysis

Language is a complex system with some internal structure. To make

sense in the analysis, linguistic analysis often focuses on a perceived level

in that structure. In the following, the levels of linguistic structure are

covered briefly.
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Phonology

Phonology is the level of the structure of the sounds organized into words

(Clark and Yallop, 1990). The phoneme is the basic unit to build words,

usually defined as the smallest unit in language that can cause a change

in meaning, for example, [I] and [ae] in English words ’hit’ and ’hat’. A

phoneme is an abstraction that can consist of different produced sounds,

or allophones. Phonology is not further discussed as this work concen-

trates on written language.

Morphology

Morphology is the study of the structure of words and their variation. The

words are built of morphemes, which are the smallest meaning-carrying

units in a language (Matthews, 1991). A linguistic morph is the surface

form of a morpheme, a phonetic realization of a morpheme. The complex-

ity of the morphological structure varies in different languages. Meaning

can be encoded either as separate words or added as a prefix or a suffix;

or as a pattern in languages such as Arabic or Hebrew. In morphologi-

cally complex languages, words may consist of several morphemes, each

with their own meaning. Finnish is an example of such an agglutinative

language, where parts of words are ’glued’ together. An often used ex-

ample is the Finnish complex compound noun ’kahvinjuojallekin’ which

separates into six morphemes ’kahvi+n+juo+ja+lle+kin’ (’also for the cof-

fee drinker’) (Creutz and Lagus, 2002). Vietnamese is an example of an

isolating language, with little morphology.

The complexity of the morphological level of 21 European languages is

studied in Publication I. In addition to expert studies of morphology, it

is possible to extract morphological structure from data in an unsuper-

vised way. A particular method, Morfessor (Creutz and Lagus, 2002), is

discussed in more detail in Chapter 4.

Syntax

Syntax is the level of organization of words into larger constructs: phrases

or sentences, and the study of the rules governing that structure. Again,

the syntactic structure varies from language to language. Some languages

employ a strict word order, which is needed to mark the function of the

constituents of a phrase, whereas other languages are more flexible in

this regard. A general rule is that in languages in which the words con-

tain grammatical information in the form of inflection, the word order is

more flexible, even though there is usually a preferred word order (Com-

12
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rie, 1993). The languages are often characterized by the order in which

the Subject (S), Verb (V) and Object (O) appear in a sentence. All or-

derings are possible, but SOV, SVO and VSO are most frequent in that

order (Greenberg, 1975). The remaining three orderings are rare but not

impossible. It is hypothesized that SOV is the original word order (Gell-

Mann and Ruhlen, 2011) from which other word orders have developed.

The differences in word order in different EU languages are studied in

Publication I, in which the similarity and complexity of different levels of

language are analyzed.

The words can be classified into categories based on whether the words

behave in a syntactically similar way. These categories are called the

grammatical or syntactic categories, or Parts of Speech (POS). Most typi-

cal grammatical categories are noun, verb and adjective. Typically, nouns

denote people, animals, concepts and things, verbs describe action, and

adjectives are used to describe properties. These classes are open: new

words can come into these classes (Manning and Schütze, 1999). Other

categories, like pronouns, determiners and prepositions are closed: they

do not get any new members. In Natural Language Processing (NLP) ap-

plications, the categories are sometimes further divided into more specific

categories, for example, making distinction between singular and plural

nouns or proper nouns, or different cases of verbs. The oldest and proba-

bly most used resource is the Brown corpus (Francis and Kucera, 1964),

which has 81 different grammatical category labels.

Semantics and pragmatics

In linguistic study, semantics is the study of the meaning in language.

The elements may carry meaning at different levels: at the level of mor-

phemes, individual words, phrases, or sentences. Traditionally, semantics

has concentrated on the senses of the words that are seen as shared be-

tween the speakers of the language. Pragmatics is the study of the context

which affects the interpretation of the words. Cognitive semantics differ-

entiates from traditional semantics in a sense that it questions the exis-

tence of strict linguistic levels introduced above (Croft and Cruse, 2004).

It takes into account the embodied self: the meaning must be grounded

in bodily experiences. Thus, it does not fit into the classic division, but it

also extends to the field of pragmatics, as the context needs to be taken

into account as well.
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2.1.4 Meaning and sense

In semantics, a distinction between conceptual and associative sense is

sometimes made (Finch, 2003). Conceptual sense is assumed to be shared

between the users of language: the ’objective’ meaning, whereas the asso-

ciative sense is based on our individual experiences. The associative sense

is thus more subjective.

The meaning of word sense is almost synonymous to the meaning of

meaning. In this dissertation, it is used to mean the different senses of

a single word, whereas the word meaning is reserved for more general

use. Sense can be defined as a general level of meaning, which is some-

thing the speakers of the language more or less share (Finch, 2003). This

can be further defined as conceptual sense, for example, what a man and

a woman mean. Further, words do get associations on top of the gen-

eral meaning from social and cultural context, and these associations are

called connotations.

One can note that words are polysemous by nature. Often a word form

has different meanings, which are somewhat related, but mean different

things in different contexts. As new words are invented constantly, we

could have different words for each of these meanings, but it seems that

it is more efficient for communication to have a smaller set of shared,

ambiguous labels than a large set of unambiguous labels (Zipf, 1949).

2.2 The relationship between the world, meaning and words

As defined earlier, words communicate a meaning, and the string of let-

ters does not mean anything without that link to the meaning. Words

can be used to refer to, for example, objects, instances, and abstractions:

something that lies outside the language system. The thing that is being

referred to, whether it is an object, an instance, or an abstraction in the

world, is called the referent. The following sections will discuss this rela-

tionship between words, their meanings, and their referents. Researchers

in philosophy, psychology, cognitive science, and linguistics have differing

viewpoints on whether an abstract level of representation is needed, what

kind of representations there are, and how should the computational rep-

resentations be realized. The summary of the viewpoints given here will

not be in depth, but rather highlight the points relevant for this disserta-

tion.
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Figure 2.1. The dyadic sign of Saussure according to (Finch, 2003)

In semiotics, a sign is something that we humans assign a meaning to,

which stands for ’more than itself ’ (Chandler, 2000). In the following, two

models of signs to represent the relationship between words, meanings

and referents will be introduced.

2.2.1 The Saussurean sign

The Saussurean model of a sign (Saussure, 1966) is divided into two parts:

the signifier and the signified, with a process of signification between

these two, illustrated in Figure 2.1. Saussure’s viewpoint was a struc-

turalist one, and it concentrates on the system of language itself, without

reference to the world, and the theories consider the relations between

the signs. Saussure’s ideas were highly influential in the field of linguis-

tics in general (Finch, 2003). He introduced the notion of syntagmatic and

paradigmatic relations between words. Words are in syntagmatic rela-

tion, if they occur together in a phrase. In a paradigmatic relation, words

can replace each other (Saussure, 1966). For example, the words in a

phrase ’fox ran’, the words ’fox’ and ’ran’ are in a syntagmatic relation,

because they co-occur. However, the words ’fox’ and ’cat’ do not co-occur,

but ’cat’ can replace ’fox’ in the ’fox ran’ construction, thus ’cat’ and ’fox’

are in a paradigmatic relation.
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Figure 2.2. The semiotic triangle with the terminology used by Ogden and Richards
(1972), Peirce (1931), and Steels and Kaplan (1999) and Vogt (2002)

2.2.2 The semiotic triangle

Another way to describe the relationship is the semiotic triangle. This

model will also be used in this dissertation. Peirce (1931) defines a sign

as “anything which determines something else (its interpretant) to refer

to an object to which itself refers (its object) in the same way, the inter-

pretant becoming in turn a sign”.

In contrast to the Saussurean sign, the semiotic triangle has three parts

as the referent is taken into account as well. The three corners of the tri-

angle are the referent which is the instance or object or abstraction ’in the

world’, the representation of the referent and the symbol used to denote

it. It is important to note that there is no direct link between the referent

and the symbol, but all linking must go through the representation level.

There are several versions of this triangle in the literature. The ones

most often quoted are probably Ogden and Richards (1972) and Peirce

(1931) who used slightly different terminology. Peirce used the terms ’rep-

resentamen’, ’interpretant’ and ’object’, whereas Ogden and Richards use

’symbol’, ’thought’ or’ reference’, and ’referent’. In their work, Steels and

Kaplan (1999) and Vogt (2002) use the terms ’form’,’ meaning’ and ’refer-

ent’.
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There is a field of research dedicated to study of the signs, semiotics. An

in depth treatment of the signs is beyond the scope of this thesis. In this

dissertation, the semiotic triangle is used as a practical model outlining

the problem field.

2.3 Concepts and categories

The word concept will be used to describe the representational level be-

tween the referent and the form. This section will discuss the notion of

concepts and categories and theories that have been built to represent

them. Later on, the philosophical and psychological models presented

here will be discussed in the context of computational models.

In general, concepts are seen as mental particulars in the field of lin-

guistics and cognitive science. However, this is not agreed by all. For

example, it is usual to think of concepts as abstract entities in the field of

philosophy (Laurence and Margolis, 1999). Very often theories of concepts

concentrate on the notion of lexical concepts, that is, concepts that corre-

spond to lexical items in natural language. In this work, the word concept

is taken as a means for specifying a relationship between the world and

the language.

Another concept often used in this context is category. Category is a

class or division of items which are regarded as having particular shared

characteristics. The members of the category are usually considered equal

in some sense. The division can be general or comprehensive (Rosch,

1978). In this dissertation, category names are written with ALL CAPI-

TALS, for example, ANIMAL. In a certain way, categories and concepts are

two sides of the same coin (Gärdenfors, 2000).

For an individual, it is useful in many ways to be able to distinguish

between perceived items. This sorting to categories is often called catego-

rization. It has a major role in perception, thinking and language, and it

is probably significant in motor performance as well (Harnad, 1987).

Rosch (1978) presents two principles according to which the category

systems function. These principles are 1) cognitive economy and 2) per-

ceived world structure. The function of the category systems is to provide

maximum information regarding the world with the least cognitive effort.

In other words, categorization helps us to reduce and make sense of the

information flow we constantly receive through our senses.

Categorical perception is a phenomenon that helps us to sort our sen-
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sory input to invariant categories: differences within a category are per-

ceived smaller, and differences between categories are magnified. This

phenomenon has been demonstrated, e.g., for speech (Harnad, 1987). Cat-

egorical perception consists also of, for example, mapping different views

of a face into a common identity, or mapping distinct speech tokens into

a same phonetic percept. Categorical perception might be viewed as a

proof for the existence of some kind of an abstract level of representation

(Rosch, 1978).

2.4 Theories of concept representation

There are many theories about the structure of the representations and

their computational realizations. These models tend to address different

kinds of phenomena related to the concepts. In the following, some of

them are covered in a general level. This section relies heavily on Mur-

phy (2004). What is common to these theories is that none of them is

all-encompassing, but they cover and explain a part of the phenomenon.

In fact, some suggest that humans have separate concepts of the three

kinds: prototypes, exemplars and theories (Machery, 2009). The models

are presented here as an underlying theoretical foundation on which the

models discussed in the later chapters are based. They will be revisited

in later chapters where computational models are discussed.

2.4.1 The Classical View

The classical view was to see the concept as a set of definitions (Laurence

and Margolis, 1999) necessary and sufficient for something to be of that

concept. According to this view, for example, a concept for ’bird’ could

include the following definitions: ’has wings’, ’can fly’, ’lays eggs’, etc. and

filling these conditions would be necessary and sufficient for something to

be a bird. This kind of notion on concepts has a long history in philosophy

(e.g., Locke, 1690/1975).

The classical view was challenged, when it was noticed that many con-

cepts exhibit typicality effects (Laurence andMargolis, 1999). The typical-

ity effects mean that humans tend to judge some members of the category

more typical than others. A sparrow is judged to be a more typical exam-

ple of the category BIRD than a penguin (Rosch, 1978). In addition, the

borders of the concepts may be fuzzy. The classical view cannot account
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for these effects. According to the classical view, any concept that satisfies

the necessary and sufficient conditions is an equally good member of that

category. Other phenomena, such as family resemblance (Wittgenstein,

1963), do not fit into the classical view either. Currently the classical the-

ory is not considered valid by most researchers (Murphy, 2004).

2.4.2 Prototypes

Typicality effects led researchers to hypothesize that most lexical con-

cepts are represented as prototypes, which encode a statistical analysis

of those properties the members of a given category tend to have (Lau-

rence and Margolis, 1999). This view is also controversial, and it has been

argued that the existence of prototypes tells us nothing about concepts,

since well defined concepts also exhibit typicality effects. It also seems

that there are some concepts for which people fail to represent any cen-

tral tendencies at all (Laurence and Margolis, 1999). Rosch (1978) writes

that empirical findings of prototypicality effects have been confused with

theories of processing: they seem only to constrain, but not specify the

representation and process models. Prototypical members tend not to be

those that are frequent, but those which have many prototypical features

or qualities associated to the members of a given category (Murphy, 2004).

2.4.3 Exemplars

An alternative to a representation that encompasses an entire concept as

some kind of a summary representation is that the concepts are stored

as exemplars of encountered concepts (Medin and Schaffer, 1978). This

would mean that a concept dog would consist of all those dogs the per-

son remembers, either consciously or unconsciously more or less clearly—

some exemplars would be fuzzy due to forgetting (Murphy, 2004). The

similarity of a new item would be then compared to remembered category

items, and typical items would be categorized faster as they are similar to

a large number of category members. Exemplar theory can explain many

phenomena related to concept learning. For example, when encountering

a new concept for the very few first times, the concept consists of the en-

countered example. It is then a matter of debate whether an aggregate

concept from exemplars is formed or not.
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2.4.4 The knowledge-based approach

Another theory concentrates on the relations between concepts. This the-

ory has many names: knowledge or explanation based theory or theory

theory. The basic idea of this theory is that concepts are an integral part

of our knowledge about our world, and cannot be considered in isolation

(Murphy, 2004). Humans also possess mental theories about the world,

from early on, although the theories can and often are inaccurate. This

theory cannot cover the entirety of the concept learning, as many concepts

cannot be based on previous knowledge only, and thus the theory needs a

separate or integrated model of concept learning through experiences.
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3. Computational modeling of language
and concepts

A variety of computational models are used in this thesis. The models

are based on human cognitive abilities on meaning representation and

linguistic skills. This chapter first provides a general discussion of the

philosophy of computational modeling and simulation and introduces the

concept of emergence, which is then followed by a general introduction of

the models used in this dissertation. The methodological details used to

build those models are then explained in the following chapters.

3.1 The purpose of modeling

This thesis concentrates on computational models used to represent mean-

ing. Thus, it is important to discuss the concept of modeling and its pur-

pose. In general, models provide a coherent framework for interpreting

data, highlight basic concepts, uncover new phenomena, or identify com-

ponents of a system. They can link levels of detail and known phenomena

to that still unknown, and inform experimental design. They also expand

the range of questions that can be meaningfully asked and can be used

to screen out unpromising hypotheses (National Research Council (US),

2005).

In the context of cognitive science, Pfeifer and Scheier (1999) give two

different purposes for a model. From one perspective, the purpose of a

model is to better understand a certain phenomenon. From another per-

spective, also called the engineering perspective, the purpose of modeling

is to build systems that simply work and serve practical purposes. Seen

this way, the intent behind modeling affects the selection choices—if the

purpose is to build a system that works, it does not need to mimic the

underlying components very faithfully. On the other hand, if we want to

understand the phenomenon, this is very important. In cognitive science,
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models are usually used for three different purposes (Morse and Ziemke,

2008): First, modeling can be used for testing whether a particular model

is sufficient: i.e. whether a model is able to produce data that matches

the data from a real phenomenon. Second, as a sort of Occam’s Razor,

questioning the necessity of a given theory. If a simpler model can pro-

duce certain results, it may sometimes be concluded that a more complex

model is not needed. Third, modeling is used increasingly as an explo-

rative tool for the interactive potential of a situation. McClelland (2009)

also discusses the role of modeling in cognitive science and sees the mod-

els as ”explorations of ideas about the nature of cognitive processes,” in

which simplification is essential to see the ideas more clearly. In addition

to explorative models in cognition, there is a whole field of explorative

data analysis. The results of the exploration can be then compared and

contrasted to models and evaluation sets built on expert knowledge. This

topic is discussed more in Chapter 4 in the context of vector space models.

Pfeifer and Scheier (1999) distinguish between analytic and synthetic

approach for modeling. In an analytic approach, the experiments are

done on an existing system and a model is built to predict the outcome

of the future experiments. To solve a research question by the synthetic

approach means that an artificial system that reproduces certain charac-

teristics of a natural system is created. The focus is on trying to reproduce

the internal mechanisms that have led to the particular results. In this

dissertation, both approaches are used. The analytical approach is used

when meaning representations are created from language data. A syn-

thetic modeling approach is then used when language learning is modeled

in a community of simulated agents.

3.1.1 Simulation

Simulation is imitation of a real process or a system over time, usually by

means of computer programming. We can further distinguish agent simu-

lation, where the modeled programs are agents: autonomous, functioning

’individuals’ able to interact within the (simulated) world. Simulation

models can be used in cognitive science in the three different ways as ex-

plained earlier: to test sufficiency or necessity, and in exploration, which

is defined as investigation of agent and environment embedding (Morse

and Ziemke, 2008).

Synthetic modeling can be realized in either robots or in a simulation.

In robotic experiments, the physical world can be used, whether it is mod-
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eling dynamics, sensors or motor control. In simulations, realistic physi-

cal modeling is computationally expensive and difficult. Simulations suit

better in population modeling, as copies of agents can be reproduced in-

finitely. In addition, simulations can also be run in parallel, tweaking

parameters is easier in simulations, and they rarely need constant super-

vision from the experimenter. Currently evolution can only be simulated.

In the case of robots, only the controller programs can be evolved. In

short, simulation is “fast, cheap and flexible” (Pfeifer and Scheier, 1999).

Simulation models are used in Publications VII and VIII of this thesis.

In this thesis, the focus is on simulations of agents, which are able to

perform some tasks in a given simulated environment which can change

due to the actions of the agent. More specifically, the model is a multi-

agent simulation model, where different sizes of populations of agents are

used. Yet another interaction is introduced into the model: the interaction

between the agents. This means that in a multi-agent simulation, we need

at least a) the environment in which the agents are situated; b) the model

of the agent and its attributes; c) the model of agents’ interactions with

the world; and d) the model(s) of interaction between agents.

3.1.2 The levels of abstraction

In any model, abstractions must be made. One purpose of the model is

to simplify the phenomenon it attempts to describe, describing only the

important components. A core problem in modeling is to decide which

variables to include in the model, and which to exclude (Marechal and

Thomas, 2007), that is, the level of abstraction. For example, when mod-

eling navigation behavior of ants, one can assume that wheels instead of

legs might not affect the behavior (Pfeifer and Scheier, 1999).

Marr and Poggio (1977) identify three levels of representation: a) phys-

ical realization, b) the algorithm and c) the overall computation. At the

algorithmic level, there are several different ways to implement an algo-

rithm, which in turn may constrain the physical realization. At the top

level is the description of the actual computation: the description of the

problem we want to solve. These ideas apply to modeling in cognitive sci-

ence as well (Morse and Ziemke, 2008). For example, there will always

be multiple possible algorithms that produce the same data. Top-down

analysis cannot produce an accurate account of mechanisms genuinely in

use, but a bottom-up approach could be possible, if it is accompanied in

part by the empirical data it accounts for.
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3.1.3 Emergence

Emergence is a term often used in philosophy, and in the fields of com-

plex systems, artificial intelligence and unsupervised learning. The term

is also used to describe different phenomena. Goldstein (1999) gives a

general definition of emergence:

“Emergence, [...] refers to the arising of novel and coherent structures, pat-

terns, and properties during the process of self-organization in complex sys-

tems. Emergent phenomena are conceptualized as occurring on the macro

level, in contrast to the micro-level components and processes out of which

they arise.”

Chalmers (2006) points out that the term is actually used to describe

two different phenomena: strong and weak emergence. A strongly emer-

gent phenomenon is not deducible even in principle from the truths in

the low-level domain - and it is the notion of emergence most common in

philosophical discussions. A weakly emergent phenomenon, on the other

hand, arises from the low-level domain, but the higher-level behavior is

unexpected. Pfeifer and Scheier (1999) note that in engineering, emer-

gence is often used to describe a) behaviors that are surprising or not fully

understood; b) property of a system not contained in any of its parts or

c) behavior resulting from agent-environment interaction that is not pre-

programmed.

In this thesis, we will not concentrate on philosophical definitions but

rather discuss results in the fields of artificial intelligence and language

modeling, where the term is often used, and unless otherwise stated, weak

emergence is meant by the term emergence.

In the domain of language, language learning as emergent phenomenon

is contrasted to the nativist approach which presupposes genetically-wired

language acquisition devices (Croft and Cruse, 2004). For example, neu-

ral network models have been used to show that it is possible to model

language learning (MacWhinney, 1998).

The evolution and emergence of a simple language using computer sim-

ulation has been studied extensively. See, for example, Steels (1996) and

Cangelosi and Parisi (1998) for early works. In this setting, agents com-

municate with signals and play communication games. The signals are

selected according to some criteria, and it is possible to study in this set-
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ting the emergence of shared vocabularies. The language game simula-

tions will be further discussed later in this chapter in Section 3.4.1, and

in Chapter 7.

In the context of unsupervised learning, emergence has been also used

to describe ’emergent features’, that is, latent features or descriptions

which emerge from the data when an unsupervised method, such as In-

dependent Component Analysis is used (Honkela et al., 2010). This topic

is further discussed in Chapters 4 and 6.

3.2 Similarity and distributional models of word meaning

The notion of similarity is very central in this dissertation, and all the

computational models used here translate the similarity of items as prox-

imity in some spatial representation. Sahlgren (2006) notes that this is

very intuitive to humans, as similarity is proximity is one of the very basic

metaphors humans use (as identified by Lakoff and Johnson, 1999).

Similarity as proximity is used in Publication I of this thesis, where

different properties of languages are studied, and languages are classi-

fied similar or dissimilar based on how they are represented in different

levels of linguistic analysis. This notion is of course more simple, when

the representation of a whole language is reduced to one or two dimen-

sions. The word vector space model, on the other hand is a complex, high-

dimensional representation. Further, in Publications II–V, the same no-

tion of similarity is used in the vector space models, see Sections 3.2.2 and

4.4 and Chapter 6; and in Publications VII and VIII for the geometric rep-

resentation for a simulated agent’s semantic memory, where occurrences

that are mapped close to each other in the semantic memory are also se-

mantically similar. See Section 3.3.4 and Chapter 7.

3.2.1 Similarity of word meanings

Earlier in this dissertation, words were defined as symbols associated

with a meaning. This means that when discussing word similarity, we

mean the similarity of the underlying meanings. Similarity of words can-

not thus be measured by the similarity of surface forms. For example,

edit distance between text strings can be measured as the number of

deletions, insertions or substitutions needed to arrive from one word to

another, which for ’at’ and ’hat’ would be 1, but this does not tell us any-
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thing about the similarity of the meaning of these words. For that, we

need to represent the meaning in another way. We will discuss a solution,

namely the vector space models in later parts of this dissertation.

What is word similarity, then? Budanitsky and Hirst (2006) differ-

entiate between semantic similarity and relatedness, of which the lat-

ter is more general term: words that are dissimilar can also be related.

Meronymy and antonymy are examples of such relations. They also make

a distinction between the word similarity of the underlying concepts and

computational approaches such as Dagan et al. (1999) in which the term

’word similarity’ is used to describe the similarity of the distributional

properties of the words.

Several test sets based on human similarity judgments have been built

by simply asking test subjects which words they find similar or related.

The basic practice in evaluating the computational models is to compare

the results to these similarity judgments. This kind of evaluation sets are

described in detail in Chapter 6.

3.2.2 The vector space model of words

In this section, the purpose and background assumptions of a word vector

space model are discussed in a fairly general level. The technical details of

building such a model and the experiments carried out in the publications

that contain the major contributions of this dissertation are discussed in

Chapters 4 and 6.

The distributional models are all based on a general hypothesis that sta-

tistical patterns of human word usage can be used to find out what peo-

ple mean (Turney and Pantel, 2010). Originally, the Vector Space Model

(VSM) was developed to represent documents as vectors for Information

Retrieval (IR), that is, finding relevant documents for a given query from

a collection of documents (Salton and Buckley, 1988). Vector space models

of words, the focus in this thesis, carry many features of the document

models, beginning from the idea that words, like documents, can be rep-

resented by other words that occur in a certain context around them. The

distributional hypothesis means that words that occur in similar contexts,

that is, words that are distributionally similar, are also more similar in

meaning. When reviewing the history of such models, Harris (1954) and

Firth (1957) are often quoted. Sahlgren (2008) gives an analysis of the his-

tory of the distributional models, of which the gist can be compressed into

a following quotation from Rubenstein and Goodenough (1965): “words
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which are similar in meaning occur in similar contexts”. Sahlgren (2006)

also ties the vector space models of words into the structuralist linguistic

tradition.

Erk (2012) notes that the terms ’distributional model’ and ’vector space

model’ are sometimes used synonymously. She makes a distinction be-

tween the two: The former are built explicitly from distributional infor-

mation of contexts, whereas the latter are any high-dimensional vector

representations, regardless of the origin of the features. In the models

used in this thesis, both definitions apply.

Context can be defined in several different ways. The technical aspects

of context selection will be discussed later along with many other practical

choices that need to be made. When words are represented as vectors of

features, we obtain a spatial representation of word meaning (Sahlgren,

2006). In a space such as this, the similarity is measurable as a distance

in the space using general distance measures.

Thus, we can build co-occurrence count representations for words by

looking at the words in large text corpora, which are more and more avail-

able in electronic form. For such amodel to be built, enough language data

is needed to produce vectors that are statistically reliable representations.

Word vector space models are also called word space models (Schütze,

1993), or semantic spaces (Baroni and Lenci, 2011). The last term is also

used in psychology (Finch, 2003), where the notion of semantic space is

used as a metaphor without specifying the computational model.

In distributional models, the complex meaning of a word is substituted

by the co-occurrence count representation. This is a large simplifica-

tion, which leaves out all extralinguistic information, as meaning is only

grounded through word use. Comparing to the discussion in Section 2.2,

we see that this method is thus a structuralist one, corresponding to the

Saussurean sign, or two out of three corners of the semiotic triangle. Yet,

even with this simplification, the model works reasonably well.

Word vector space models have been criticized for a too broad notion

of semantic similarity, which limits the applicability of the models, as

the different types of similarity (antonyms, synonyms, hyponyms, etc...)

cannot be distinguished (Pado and Lapata, 2003). Sahlgren (2008) notes

though that the corpus-based distributional model is descriptive, and a

broad notion of semantic similarity works well as humans make judg-

ments about semantic similarity easily.

Vector space models, based only on language data and thus ungrounded,
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are certainly not alone sufficient models for all of the human language

processing capabilities. However, Landauer and Dumais (1997) suggest

that humans learn a large part of their vocabulary from text, and vector

space methods that use co-occurrence data replicate this phenomenon and

acquire a knowledge of the vocabulary of English in a same level as school

children. Bullinaria and Levy (2007) propose that statistical representa-

tions could form a foundation for learning of the semantic representations.

They suggest that while a statistical approach to language learning is not

sufficient alone, humans do take advantage of such methods.

3.2.3 Structured models for lexical semantics

There is naturally more to representing meaning of words than simply

representing individual words with vector space models. These models

are left outside the scope of this thesis, but a brief account is given on

those models as well. Quite a few of the models concentrate on describing

the structure of domain knowledge representation of a complex concept,

or its relation with other concepts, resembling knowledge-based concept

representations.

The vector space models introduced here concentrate on single words,

but there is a growing research effort on building compositional models

to represent, for example, word pairs. See, Turney and Pantel (2010) and

Clark (forthcoming) for review.

Structured approaches, such as ontologies are useful when we want to

describe relations. They are usually built by experts and for each lan-

guage separately, and as such, building them is costly. A large resource of

this type is the lexical databaseWordNet (Miller, 1995), available in many

languages. Wordnets are large linked thesaurus-type networks, where

links can represent different relation types. Similarly, frames (Minsky,

1975) are knowledge (or data) structures intended to describe typical sit-

uations extended to frame semantics (Fillmore, 1976) relating linguistic

semantics to general knowledge needed to understand that word. A com-

putational resource of such a type is the FrameNet (Baker et al., 1998).

Bayesian models of cognition combine statistical methods and structured

knowledge resources (Tenenbaum, 1999; Tenenbaum and Griffiths, 2001),

for examples on decision making.
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3.3 Modeling linguistic cognition

The second large part of this dissertation consists of agent simulation

models of language emergence. This part contains models for concept ac-

quisition and representation and a simulation model of communication,

which leads to the emergence of a shared vocabulary in a population.

The simulation model developed leans heavily on the research on com-

putational cognitive science and Artificial Intelligence (AI), for which a

brief historical account is given.

3.3.1 Traditional symbolic AI

The early AI research concentrated on attempts to replicate the human

level of intelligence on a machine (Brooks, 1991). Obviously, this failed.

Research has since then concentrated on demonstrating isolated aspects

related to cognition and intelligence. The early approach concentrated on

problem solving, and saw that as a hallmark of intelligence.

Traditional AI was symbolic in nature. At that point a cognitive agent

was viewed as a kind of logic machine, which operated on symbols that

form the concepts (Lakoff, 1987). The symbols were seen as the neces-

sary and sufficient basis for general intelligent action (Newell and Simon,

1976). The intelligent behavior consisted of manipulating these symbols

according to some rules. The core of intelligence was seen as problem solv-

ing: A physical symbol systemwould show its intelligence in problem solv-

ing by search - that is, by generating and progressively modifying symbol

structures until it produces a solution structure. Such a symbol system

was then thought to be realizable with a universal machine (Newell and

Simon, 1976).

3.3.2 The symbol grounding problem and embodied cognitive
science

The early symbolic systems had problems: they could not function in a

changing environment or learn. In addition, it was questioned where the

mental symbols get their meaning. This question is the symbol grounding

problem (Harnad, 1990, p. 335):

“How can the semantic interpretation of a formal symbol system be made in-

trinsic to the system, rather than just parasitic on the meanings in our heads?
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How can the meanings of the meaningless symbol tokens, manipulated solely

on the basis of their (arbitrary) shapes, be grounded in anything but other

meaningless symbols?”

Harnad’s solution to the symbol grounding problem was to ground sym-

bolic representations bottom-up from two kinds of non-symbolic represen-

tations: 1) iconic representations that are analogs of proximal sensory

projections and 2) categorical representations that are learned by innate

feature detectors picking up the invariant features of object and event cat-

egories from the sensory projections. The elementary symbols would then

be names for these categories and higher-order symbolic representations

would be grounded in the elementary symbols.

Steels and Vogt (1997) offer the semiotic triangle (refer back to Sec-

tion 2.2) and its application in an agent simulation or a robotic experiment

as a solution of solving the symbol grounding problem. This notion for the

triangular structure of a sign—or the relationship between the world, the

meaning representations and the symbols to denote them—is important

throughout this thesis. The research questions address different aspects

surrounding the semiotic triangle and new fields emerged to tackle these

questions using different methods.

The viewpoint of the embodied cognitive science is that embodied cog-

nitive models structure thought and they are used in forming categories

and in reasoning. The cognitive models characterize the concepts, which

are used via the embodiment of the models. A further note on the em-

bodiment is that most cognitive models are embodied with respect to use.

Abstract conceptual structures are indirectly meaningful: they are un-

derstood because of their systematic relationship to directly meaningful

structures (Lakoff, 1987).

Of course, the embodiment approach as such does not provide help in

finding out how one gets from the continuous sensory signals to the sym-

bolic level of words, but it provides a link between the meaning creation

and word acquisition.

3.3.3 Learning: Neural network based approaches

Learning was another important aspect neglected by the early AI mod-

els. Connectionist or neural network models brought learning and de-

velopment of cognitive properties more into focus, and the models have
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been able to give accounts for a range of different developmental phe-

nomena, such as infant category development and language acquisition

and reasoning in children (Thomas and McClelland, 2008). The models

were based on the principle that the information processing properties of

neural systems, such as parallel processing, should be taken into account

when designing the models (Thomas and McClelland, 2008). The level

of explanation is different in the neural network models: there the em-

phasis was on developing Parallel Distributed Processing (PDP) models

(Rumelhart et al., 1986; Haykin, 1999).

Artificial neural networks are massively parallel distributed systems,

made of simple interconnected processing units (or neurons), which send

each other excitatory and inhibitory signals. The system is adaptive: the

network acquires knowledge from the environment through a learning

process and as such it is a bottom-up process contrary to a symbolic top-

down approach. The knowledge is stored in the connection weights be-

tween the interconnected units. As nonlinear models, they are suitable

for modeling inherently nonlinear phenomena (Haykin, 1999). In neural

network models, multiple sources of information can be considered simul-

taneously, representations are spread across multiple processing units in

parallel, the representations are graded, context sensitive and emergent,

and computation is similarity-based, but can produce rule-following be-

havior (Thomas and McClelland, 2008).

Over the years many different variations of neural networks for differ-

ent purposes have been developed. As a text book account, Haykin (1999)

can, for example, be used. The only (artificial) neural network model used

in this thesis is the Self-Organizing Map (Kohonen, 2001), which is intro-

duced in Chapter 4. As an account of the contribution of neural network

(or connectionist) models for cognition, one can, for example, use Thomas

and McClelland (2008).

3.3.4 Conceptual spaces

Conceptual spaces theory (Gärdenfors, 2000) is a theory of geometric mean-

ing representation, used in Publications VII and VIII and IX. The main

idea of the theory is that concepts are modeled as geometrical areas in

a multidimensional conceptual space rather than as symbols or activa-

tions between neurons. The conceptual spaces theory proposes a mediat-

ing level between sensory and symbolic levels. It provides a medium to get

from the continuous space of sensory information to a higher conceptual
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level, where regions in it could then be associated to discrete symbols.

A conceptual space is built upon geometrical structures based on a num-

ber of quality dimensions, which represent various qualities of objects.

A conceptual space C consists of a class D1, D2, . . . , Dn of quality dimen-

sions. A point in the space is represented by a vector v = [d1, d2, . . . , dn].

Concepts are not independent of each other but can be structured into do-

mains. For example, concepts for colors are in one domain, and spatial

concepts are in another domain. The concepts are convex regions in the

conceptual space spanned by the quality dimensions, and learned from a

limited number of examples and by generalizing from them. Temperature,

weight, brightness, and the spatial dimensions height, width and depth

are examples of such quality dimensions, but the metrics in the dimen-

sions need not to be absolute but can depend on the perceiver. The theory

also suggests that despite the variations, scientific representations could

be used in construction of an artificial system, where the input on differ-

ent sensors is described in terms of scientifically modeled dimensions.

Conceptual spaces theory also incorporates the concept of similarity is

proximity discussed in Section 3.2, which makes it computationally prac-

tical. The similarity of two objects can be defined as a distance between

their representation points. This distance measure can then be used, for

example, in categorization: A perceived item is mapped to the conceptual

space, and it belongs to the category for which the prototype is closest to

its representation in the conceptual space.

Gärdenfors (2000) proposes that certain neural network or statistical

methods, such as Multi-Dimensional Scaling (MDS) and SOM could be

used as a basis for a domain in a conceptual space. The SOM reduces

the dimensionality of the data in a systematic and meaningful way, which

can be seen as moving from sub-conceptual to conceptual level. This is

the basis of the agent simulation experiments described in Chapter 7 and

Publications VII and VIII.

3.4 Simulating vocabulary acquisition in a community

This section presents models related to language acquisition and commu-

nication relevant for this dissertation. Rather than assuming that a natu-

ral language is an innate biological system of humans, in this dissertation

it is assumed that human languages are learned through a cultural pro-

cess (Tomasello, 1999), bearing in mind that there are underlying biologi-
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cal components that make language acquisition possible. For a discussion

of biological adaptations required for cultural transmission of language to

be possible, see Hurford (2003). For the purposes of modeling language

emergence, it is assumed that language is a complex adaptive dynamical

system (Steels, 1996).

Computer simulations provide a useful tool for studying questions re-

lated to language origins and evolution, a question which is sometimes

dubbed as the hardest question in science (Christiansen and Kirby, 2002).

As the beginning of human language use is hidden in prehistory and can-

not be repeated, simulation models allow the testing of different theories

concerning the mechanisms of language evolution.

The questions related to different issues in language emergence and evo-

lution are numerous. They range from the question of why language has

evolved, to how we are able to use symbols at all, and further to how a

shared signaling using symbols in a population can emerge. Further, dif-

ferent properties of languages such as the compositionality of language or

emergence of syntax are studied. Currently, there are several collections

that cover the current research on the simulation on language evolution

and emergence. See, for example, Lyon et al. (2007) for a review on the re-

search on emergence of language; Kirby (2002) for a review on emergence

of syntactic structures; and Cangelosi and Parisi (2002) for simulating

language evolution.

Agent simulation systems usually contain a multi-agent system that

can learn, an environment of some sort, and a communication system

that allows the agents in the system to communicate about a set of prede-

fined meanings. These meanings can be seen as ungrounded in the sym-

bol grounding sense (Vogt, 2006). Vogt (2002, 2006) further argues that

the symbol grounding problem can be transferred into a physical symbol

grounding problem, where the construction of the relation between ref-

erent, meaning and form is very relevant, and that the symbols that the

agents use must arise from the interaction between the agent and its en-

vironment. This is the point of view also adopted in this dissertation.

The models used in this dissertation are not ecological in a sense that

they do not take into account the function of a language beyond nam-

ing observations. The ’mushroom world’ experiments (e.g., Cangelosi and

Parisi, 1998; Grim et al., 1999, 2004) often contain a simple simulated

world, where the principal task of the agents is to survive. The agents

might need to distinguish between edible and poisonous foods—often vi-
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sualized as mushrooms, hence the name—or avoid being caught by preda-

tors. In these environments, the evaluation measure is the survival of the

population, and language used is very simple. For example, in Cangelosi

and Parisi (1998), only two signals are used. The hypothesis is that the

language (signaling) skills help the agent population to spread the infor-

mation, such as distinguishing predators, recognizing edible mushrooms,

etc., faster, and thus enhance the rate of the survival in the population.

In the work presented in this dissertation, the focus is on modeling

shared vocabulary emergence in a group of learners or agents, using lan-

guage game model for communication.

3.4.1 Language games

In the context of this thesis, vocabulary acquisition has been modeled us-

ing language games. In this context, language games refer to a model

setting in which there is a dialogue between a hearer and a speaker in a

particular context to communicate about (Steels, 1996). The particulars

of the game vary. These are, for example, what is in the context, whether

the topic of the communication is explicitly defined, and whether feedback

about the success of the communication is given, and in which form. In

the computational language game models, the communicating agents are

either simulated or robot agents. The shared context is an object or a

group of objects in their presence. The purpose of the games is to learn a

shared vocabulary.

The term language game was introduced by Wittgenstein (1963), who

saw every occasion of the language use as a game: the meaning of words

comes through their use. Vogt (2005) notes that it is realistic to assume

that words and their meanings have co-developed in an embodied inter-

action of individuals with the real world.

In associative learning, words are associated with the meaning of ref-

erents that are simultaneously presented (Tomasello, 1999). In the lan-

guage game formalism, this corresponds to an observational or naming

game. There are many versions of the naming games, such as analogical

naming games (Kaplan, 1998), multiple word naming games (Van Loov-

eren, 1999), advertising games (Avesani and Agostini, 2003) and query-

answering games (Agostini and Avesani, 2004). Naming games are used

in conjunction with the Self-Organizing Map in Publications VII and VIII.

More complex types do exist as well. In a guessing game, the speaker

and hearer are in the context of several objects the speaker can refer
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Figure 3.1. The standard model or the noisy channel model of communication

to. As the name suggests, the speaker does not inform the hearer of the

topic of the game, but the hearer needs to guess which one the speaker

refers to. After the game, the hearer receives corrective feedback, which

makes learning in this game resemble reinforcement learning (Vogt and

Coumans, 2003). (See also Section 4.3.) In real world, children sometimes

receive corrective feedback on their language use.

Yet another type of a language game is based on the probability of co-

occurrence of a word and a referent. It was first called the selfish game

(Vogt, 2000), and later cross-situational game (Vogt, 2012). In such a

game, words are observed in a context of many objects, and no direct as-

sociation, nor corrective feedback is given. An agent learns to associate

a given word to a given reference based on the probability of the occur-

rence of the word and the reference. These types of games only consider

vocabulary acquisition in a community. In a more general, game theo-

retic setting, the pragmatics can also be considered, but those go beyond

the scope of this work. For example, Benz et al. (2006) can be used as a

starting point for that domain.

3.4.2 The standard model for communication

The standard model of communication (Shannon, 1948) is shown in Fig-

ure 3.1. The model of a noisy channel contains several parts. A sender

sends a message using a coder via a channel, where noise may be added

to the message. The receiver receives the message via a decoder. This

model of communication is used in engineering as a standard model of in-

formation theory, but also in social sciences as a more general framework

for describing communication between individuals or groups. This model

does not take into account the receiver, or the semantic contents of the

model, which are outlined in the problem of three levels of communica-

tion, or the Shannon-Weaver model (Weaver, 1949):
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Level A: How accurately can the symbols of communication be transmitted?

(The technical problem.)

Level B: How precisely do the transmitted symbols convey the desired mean-

ing? (The semantic problem.)

Level C: How effectively does the received meaning affect conduct in the de-

sired way? (The effectiveness problem.)

The semantic problems are concerned with the identity or satisfactorily

close approximation in the interpretation of the meaning by the receiver,

as compared to the intended meaning of the sender.
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4. Methods

The two previous chapters discussed the linguistic, cognitive science and

modeling perspectives of the topic at a theoretical level. This chapter in-

troduces a collection of computational tools with the intent of providing

some methodological background and mathematical notation to under-

stand the experiments in the following chapters. First, the basic prin-

ciples of random variables, probability distributions, information theory,

and machine learning are introduced to the extent they are relevant for

this dissertation. Vector space models are a central tool used to repre-

sent the meaning of words using textual data. In the previous chapter, we

briefly discussed them from the modeling point of view. In this chapter,

their construction is discussed in detail. Most machine learning methods

used in this dissertation are unsupervised, and they are introduced at the

end of this chapter.

4.1 Random variables and distributions

Statistical methods are at the core of statistical natural language pro-

cessing, in which word frequencies and distributions are used. In this

section, a variety of concepts from probability theory will be covered. For

a more thorough account, the reader is referred to any standard textbook

on probability theory, such as Papoulis (1991).

The value of a random variable, X changes due to chance. The observa-

tion of a random variable X is denoted with x. The probability or density

function of a random variable is written as p(X = x), usually written in

the shortened form p(x).

Distributions can be defined for a single variable (univariate) or multi-

ple variables (multivariate) case. A random vector, is a vector [X1, . . . , Xk]

where theXk are random variables. Vector representations are marked in
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boldface throughout this thesis. Numerical data are seen as drawn from

some assumed probability distribution, where the shape and type of the

distribution depends on the generating process. The distributions of ran-

dom variables can be divided into discrete and continuous, depending on

the types of values the random variable can have. The distributions are

often defined by the probability mass function of the distribution in the

discrete case, or the probability density function in the case of continuous

distributions. For discrete distributions,
∑

p(x) = 1 and for continuous

distributions
∫
p(x)dx = 1.

4.1.1 Discrete distributions

The Bernoulli distribution is the distribution of a single random variable

with two values, X ∈ {0, 1}, with p(X = 1) = π.

Categorical distribution is an extension of the Bernoulli distribution, de-

scribing the outcome of a random event that can take on one of k possible

outcomes specifying the probability of each outcome separately:

p(X = xi) = πi, (4.1)

where π = [π1, . . . πk],
∑

i πi = 1 is the vector of parameters.

The binomial distribution shows the distribution of a series of indepen-

dent Bernoulli trials. The probability of having the event X = 1 occurring

in k of the n trials is given by

p(k|n, π) =
(
n

k

)
πk(1− π)n−k. (4.2)

For example in text data, sentences are not actually independent of each

other, but after a while the dependence effect disappears, and hence the

binomial distribution can be used to model, for example, finding examples

of a certain word in sentences (Manning and Schütze, 1999).

Multinomial distribution is a generalization of the binomial distribution

with n trials for a case in which Xi is the number of occurrences of the

event i.

p(X1 = x1, X2 = x2, . . . , Xk = xk|π, n) =
(

n

x1x2 . . . xi

) k∏
i=1

πxi
i . (4.3)

In NLP applications, the bag of words model of a document, which loses

the order information, can be modeled with a multinomial distribution.
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4.1.2 Continuous distributions

The normal or Gaussian distributionN (μ, σ2) is defined by its mean μ and

variance σ2. Its probability density function is given as

N (X = x|μ, σ2) =
1√
2πσ2

e

(
− (x−μ)2

2σ2

)
. (4.4)

Gaussian distribution has several important properties. First, Gaus-

sian distributions can be fully described by only the first and second order

statistics, that is, the mean and variance. Second, linear transformations

of variates with Gaussian distribution are also Gaussian. The central

limit theorem is also relevant when discussing Gaussian distributions:

the sum of a set of random variables has a distribution that becomes in-

creasingly Gaussian when the number of terms in the sum increases.

Dirichlet distribution is a multivariate distribution with k variables

with parameters α = [α1, . . . , αk] in the exponential family. Assuming the

probabilities of Eq. (4.1), the probability density function of the Dirichlet

distribution is

p(π1, . . . , πk|α) = Γ(
∑k

i=1 αi)

Γ(α1) · · ·Γ(αk)

k∏
i=1

παi−1
i , (4.5)

where Γ(x) =
∫∞
0 ux−1e−udu is the Gamma function. Dirichlet distribution

is conjugate (see Section 4.1.5) to the parameters of multinomial distribu-

tion. This makes it very useful as a prior distribution, as many properties

of natural languages can be modeled with the multinomial distribution.

4.1.3 Moments

The moments that describe the ’shape’ of a probability distribution can be

defined as follows. The jth moment αj of X is defined by the expectation

(Hyvärinen et al., 2001)

αj = E{Xj} =
∫ ∞

−∞
xjp(x)dx, j = 1, 2, . . . (4.6)

and jth central moment is

μj = E{(X − α1)
j} =

∫ ∞

−∞
(x− α1)

jp(x)dx, j = 1, 2, . . . . (4.7)

Thus the mean of X equals the first moment, α1. The second central

moment, μ2, is the variance.
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Nongaussianity of a distribution

In Independent Component Analysis that will be described later, nongaus-

sianity is an important concept, as Independent Component Analysis can

only be defined for nongaussian sources—or more specifically, only one

source can be Gaussian.

The third central moment, skewness, is a useful measure of the asym-

metry of the probability density function.

μ3 = E{(X − α1)
3}. (4.8)

It is zero for symmetric densities such as Gaussian. Kurtosis for a zero-

mean case can be defined as (Hyvärinen et al., 2001):

kurt(X) = E{X4} − 3[E{X2}]2 = α4 − 3α2
2. (4.9)

and it is zero for Gaussian, but nonzero for most nongaussian random

variables. Random variables with positive kurtosis are called subgaus-

sian and have a higher peak and fatter tails of the distribution, whereas

random variables with negative kurtosis are called subgaussian and char-

acterized by a rounder peak and thinner tails.

4.1.4 Joint distributions, uncorrelatedness and independence

Two random variables, X and Y , can have a joint distribution p(X,Y ).

This can be calculated as the product of the probability of one variable

and the conditional probability of the other given the first:

p(X,Y ) = p(X)p(Y |X) = p(Y )p(X|Y ). (4.10)

Two random variables X and Y are uncorrelated, if their covariance cXY

is zero

cXY = E{(X − μX)(Y − μY )} = 0, (4.11)

where μX = E{X} and μY = E{Y }.
Independence is a stronger property than uncorrelatedness. Two ran-

dom variables, X and Y are statistically independent if and only if their

joint density p(X,Y ) is the product of their marginal densities p(X) and

p(Y ):

p(X,Y ) = p(X)p(Y ). (4.12)

In other words, the value of a random variable X does not give any infor-
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mation of a random variable Y and vice versa, if they are independent.

4.1.5 Bayes’ theorem

There is a relationship between conditional probabilities of X and Y .

From Equation 4.10, it holds that

p(X|Y ) = p(X)p(Y |X)

p(Y )
. (4.13)

Here p(X) is the prior and p(X|Y ) the posterior probability after observing

Y . Bayesian statistics sees the probabilities as a measure of uncertainty.

Bayes’ rule can then be used to update the probability estimate for a hy-

pothesis in the light of new evidence. The Bayesian statistics have many

applications in Natural Language Processing, among others finding topics

(Griffiths et al., 2007), or part of speech tagging (Goldwater and Griffiths,

2007).

A posterior distribution and a prior distribution are called conjugate dis-

tributions if they come from the same distribution family and thus have

the same functional form (Bishop, 2006). The prior is called the conju-

gate prior of a likelihood function. This means that when updating the

estimation based on observations, the posterior distribution can be solved

analytically if the prior is chosen wisely. Gaussian distributions are self-

conjugate: if the likelihood function is Gaussian, selecting a Gaussian

prior also ensures a Gaussian posterior. The likelihood and the prior do

not need to be from the same family. For example, a Dirichlet prior is a

conjugate of a multinomial likelihood. This pair is used in probabilistic

topic modeling in Section 4.6.6.

4.2 Concepts in information theory

Information theory was developed to find a theoretical maximum amount

of information that can be transmitted over a noisy communication chan-

nel, and to find a code that is suitable for a data set with certain statistical

properties (Shannon, 1948; Hyvärinen et al., 2001).

Entropy is the average uncertainty of a single random variable. The

more random or unpredictable the variable is, the larger its entropy. En-
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tropy is usually measured in bits, i.e. with the logarithm of base 2.

H(X) = −
∑
x

p(x) log2 p(x). (4.14)

Mutual information measures the information that the members of a

set of random variables have on other random variables in the set, or the

dependence between variables in that set.

I(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi)−H(X1, . . . , Xn), (4.15)

where H(X) is the entropy of X.

4.2.1 Kolmogorov complexity

Kolmogorov complexity (Kolmogorov, 1998; Li and Vitanyi, 1997) of a se-

quence is the length (in bits) of the shortest computer program that prints

the sequence and then halts. For predictable sequences the algorithm

is shorter than for random ones, and thus the Kolmogorov complexity

is lower. Compared to (Shannon’s) information theory, Kolmogorov com-

plexity considers the information of individual objects. Kolmogorov com-

plexity is incomputable, but approximations exist (Grünwald and Vitanyi,

2003).

4.2.2 Data compression

The purpose of data compression is to encode the information in given

data using a shorter form than originally, by exploiting regularities in

the data. A good data compression system can be used to approximate

Kolmogorov complexity (Juola, 2008). Different compression algorithms

have been devised. They can be divided to lossless and lossy algorithms.

In lossless compression, the original data can be returned, whereas in

lossy compression, some of the data is irretrievably lost. Lossless com-

pression algorithms are, for example, Huffman coding (Huffman, 1952),

Lempel-Ziv-Welch algorithms (Ziv and Lempel, 1978; Welch, 1984), and

the Burrows-Wheeler algorithm (Burrows and Wheeler, 1994). In this

thesis, the bzip2 compression based on Burrows-Wheeler algorithm is

used. As a detailed account on compression algorithms, for example, Mof-

fat and Turpin (2002) can be used.
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4.2.3 Minimum description length

Minimum Description Length (MDL) (Rissanen, 1978) is a general prin-

ciple for doing inductive inference (Grünwald, 2005). It uses the insight

that ’learning may be viewed as data compression’. In an ideal case, MDL

would be equivalent to Kolmogorov complexity. In practice, the princi-

ple tells us that for hypotheses H and data set D we should find the

hypothesis or a combination of hypotheses in H that compresses D the

most. If L(H) is the length of the hypothesis in bits, and L(D|H) is the

length of the description of the data when encoded with the hypothesis,

the ’crude’ MDL searches to minimize the sum L(H) + L(D|H). The Mor-

fessor method that will be introduced in Section 4.6.1 uses the MDL prin-

ciple.

4.3 Machine learning

The basic idea behind machine learning is that we expect that there is a

process that explains the observed data (Alpaydin, 2004). We do not know

the details of the process, but we know or hope that it is not completely

random: there are regularities we can hope to find.

Machine learning paradigms differ in their use of corrective feedback.

By definition, in a supervised learning, a system, for example, a classifier

or a neural network model, learns a mapping ŷ = f(x) from x to y given

a training set of pairs (xi, yi). In other words, the system aims to learn

to map an input to a correct output, after which the system can predict

the output y for a new input x. An example of an NLP application is a

system which learns to classify email into valid email and spam based on

examples of each class, where the emails are represented as some kind of

feature vectors. Providing the pre-classified data is often expensive and

time consuming, which limits the applicability of supervised learning.

In unsupervised learning, correct labels are not used in learning. In-

stead, the task is to find interesting properties from a set of observations

X. The unsupervised learning task may be seen as density estimation of

the underlying probability density that produces X or, in weaker form,

clustering. For a thorough review on unsupervised learning approaches,

see Oja (2002). In this dissertation, the methods based on unsupervised

learning are largely used, but vocabulary learning in the agent simulation

experiments contains a supervised component.
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In semi-supervised learning (Chapelle and Zien, 2006; Zhu, 2008), only

part of the labels is used in training. The use of unlabeled data can im-

prove the classifier if the unlabeled samples allow the classifier to model

the input distributions better. Often there is also a lack of labeled data,

and then even a small amount of labeled data can make the system per-

form better than when only using unlabeled data in unsupervised way.

An example of such a system is a semi-supervised version of morphology

analyzer, where only a small number of linguistic gold standard labels are

available (Kohonen et al., 2010).

Reinforcement learning (Sutton and Barto, 1998) approach is quite dif-

ferent. In it, the whole problem of interaction with environment is con-

sidered. The learner functions in an environment that can change, and

the learner has a goal to reach. The feedback available for the learner is

a reward signal, and the learner must learn to choose those actions that

maximize the total reward. Thus, learning must proceed with trial and

error, and the learner must balance between using the actions it already

knows and exploring for possible better choices.

4.4 Distributional similarity: word vector space models

The modeling principles of the word space models were introduced in Sec-

tion 3.2.2. They are based on the general hypothesis that statistical pat-

terns of human word usage can be used to find out what is meant by a

word. In the following, the components needed to build such a model are

described in more detail.

Schütze (1993) introduced a way to obtain lexical co-occurrence statis-

tics using large-scale linear regression. He used letter-fourgrams and

showed that words that are semantically similar tend to be close together

in the vector space, whereas unrelated words are distant. In a related

work, Ritter and Kohonen (1989) used simple English sentences to show

that similar parts of speech organize close to each other in a SOM based

on context information only. In current works, words are often used, with

more or less preprocessing. For example, lowercasing all words, or stem-

ming or lemmatisation can be performed.

The model construction has several steps. First, the text data is pre-

processed and potentially a feature selection can be applied. The con-

text word frequencies are calculated, and raw frequency counts are trans-

formed by weighting. A dimensionality reduction can be applied to smooth
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the space. Finally, the similarities between word vectors are calculated

(Turney and Pantel, 2010).

The phases can also be defined mathematically. Lowe (2001) defines the

word vector space model as a quadruple 〈A,B, S,M〉, where B is the set of

features used to represent the words. B is usually the context word vocab-

ulary. S is the similarity measure calculated between pairs of word vec-

tors and A is the weighting function used to change the raw co-occurrence

counts into association weights. M is then a transformation of the whole

vector space, for example, by using dimension reduction. In the following,

each of these steps are considered in more detail.

4.4.1 Data and pre-processing

Symbolic data needs to be transformed into numerical form. In the case

of vectorial representations, the properties used to describe the instances

are called features. A vector is a collection of these features. A data matrix

can then be obtained by combining the vectors as the rows of a matrix.

The first vector space models utilized document-term or document-word

matrices. The rows of the matrix represented the documents D in the col-

lection. Document representations are often used in information retrieval

tasks. Each document dj is represented by the values of the column fea-

tures fi, which are the counts of the terms that appear in the document.

The feature value is simply the number of times the i-th term wi appears

in document dj . This kind of representation is called the bag-of-words

model (Salton et al., 1975), as the order of the words is discarded. The

order of words and encoding in a sentence or document carries of course

information, but the model works surprisingly well. Similarly, words can

be represented as vectors: A word in a document context can be repre-

sented by either transposing the document-term matrix and represent-

ing the words by the information of which documents they appear in, or

by building separately a word-word matrix, in which word co-occurrence

counts are calculated.

The word frequencies need to be high enough to obtain reliable repre-

sentations. Thanks to the rise of the availability of textual documents

in electronic form, large corpora are more easily accessible. In this dis-

sertation, two different corpora have been used. The Europarl corpus

(Koehn, 2005), which contains the Proceedings of the European Parlia-

ment sentence-aligned in many European languages, has been used for

the bilingual setting in Publication II and a corpus collected from the En-
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Table 4.1. Construction of a co-occurrence count matrix

(a) Illustration of the sliding window of size 3 over a sample sentence ’a quick
brown fox jumped over a lazy dog’.

1 a quick brown
2 quick brown fox
3 brown fox jumped
4 fox jumped over
5 jumped over a
6 over a lazy
7 a lazy dog

(b) The co-occurrence matrix from the sample sentence.

a brown dog fox jumped lazy over quick
a 0 0 0 0 0 1 1 0

brown 0 0 0 1 0 0 0 1
dog 0 0 0 0 0 0 0 0
fox 0 1 0 0 1 0 0 0

jumped 0 0 0 1 1 0 0 0
lazy 1 0 1 0 0 0 0 0
over 1 0 0 0 1 0 0 0
quick 1 1 0 0 0 0 0 0

glish Wikipedia has been used in Publications III–V.

Some simple pre-processing steps are also needed. The text data is usu-

ally split into tokens. Often tokenization is carried out by cutting the text

stream at white spaces or at non-alphanumeric characters for Western

languages, where word boundaries are more clearly marked. The text can

also be lemmatized, i.e. returned to base form, or stemmed. In the Pub-

lications of this dissertation, a simple tokenization based on white spaces

between words and punctuation marks has been used.

4.4.2 Context

The choice of a context is central when building a word vector space model.

The context is defined as the surrounding words that are taken into ac-

count when calculating the co-occurrence counts for a target word. Typi-

cal choices for context are whole documents, sentences, or short windows

around the target word. Different contexts give different representations

with different information contained in them. Clark (forthcoming) points

out that when the context is as large as a sentence, topical similarity,

for example, relating car and gasoline, is found. Sahlgren (2006) points

out that small contexts seem to give rise to more paradigmatic relations

between words, whereas large contexts create representations with more

syntagmatic relations (Section 2.2.1).
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The co-occurrence counts are often constructed using the windowmethod.

In this method, a sliding window of fixed size is used. The process of con-

structing a co-occurrence count matrix for a sample sentence is shown in

Table 4.1. Table 4.1a shows the progress of the sliding window of three

words used for a sample sentence ’a quick brown fox jumped over a lazy

dog’. A symmetrical window of size three means that the occurrences of

one word to the left and one to the right around a target word will be

counted including only full windows. In literature, this window size is

often referred as 1 + 1 (e.g., Bullinaria and Levy, 2007). The resulting

co-occurrence count matrix is shown in Table 4.1b.

The representation can also contain multiple languages. Publication II

is an example, where the authors used a sentence context in a bilingual

(Finnish-English) case. In that case, target words in each language were

simply represented by a sentence context in the two languages.

More sophisticated methods besides a fixed window can also be used.

Sahlgren (2006) and Bullinaria and Levy (2007) also experiment with

weighted window, where words further away from the target words have

less effect. Bullinaria and Levy (2007) conclude that the effect of the

weighting is very small compared to an unweighted window of a smaller

size. One can also specify the positions of words in the window, for ex-

ample, treating left and right contexts separately (Bullinaria and Levy,

2007). A windowless approach has also been introduced (Washtell, 2009;

Washtell and Markert, 2009). Turney and Pantel (2010) give a good re-

view on different uses of context for term-document, term-term and pair-

pattern matrices.

4.4.3 Feature selection and weighting

The purpose of both feature selection and weighting is to provide statis-

tically reliable representations. In a vector representation, the most fre-

quent words appear in almost any context, which reduces their usefulness

in a semantic representation. Based on information theoretic principles

of a surprising element carrying more information (Shannon, 1948), we

want to be able to give more weight to surprising elements than unsur-

prising elements (Turney and Pantel, 2010). Moreover, words that are

not frequent enough are not trustworthy features and add noise to the

representation.

If the data is labeled, supervised feature selection can be carried out.

The purpose is to retain those features that are most informative. Two
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Table 4.2. Local and global weighting schemes for word wi in document dj , with j ∈
(1, . . . , Nd), i ∈ (1, . . . , Nw). The total number of word occurrences in different
contexts is

∑Nw
i=1

∑Nd
j=1 fj(wi) = M

Local weighting
term frequency, tf fj(wi)
logarithmic tf, log-tf log(1 + fj(wi))

Global weighting
collection frequency, cf(wi)

∑Nd
j=1 fj(wi)

document frequency, df(wi)
∑

I(fj(wi) > 0)

inverse document frequency, idf Nd
df

logarithmic idf log(Nd
df )

entropy
∑Nd

j=1
pij log(pij)
log(Nd)

, where pij =
fj(wi)
cf(wi)

pointwise mutual information, PMI log
(

p(wi,dj)
p(wi)p(dj)

)
positive PMI, PPMI

{
pmiij , if pmiij > 0

0 otherwise
Combined
tf.idf log(1 + fj(wi) log

(
Nd
df

)

approaches, either forward or backward can be used. In forward selec-

tion, features are added one by one, by always adding a feature based on

a certain selection criterion. Similarly, in backward selection the features

are removed one by one, removing the features based on a selection cri-

terion (Alpaydin, 2004). Different criteria, such as correlation, mutual

information or class separability exist for that purpose (Guyon and Elis-

seeff, 2003).

When building vector space models, unsupervised feature selection heuris-

tics are often used. The most frequent words, which are often function

words such as ’a’, ’an’, or ’that’ and co-occur with most of the words, are

often directly culled out of the representation by using so called stop-word

lists, as the purpose is to obtain a representation of meaning of words. To

eliminate the noise caused by the low frequency words, a cutoff threshold

is often specified, and words with a frequency below that threshold are cut

off. This also has the effect of reducing the dimensionality of the represen-

tation, as the number of low frequency words is high, according to Zipf ’s

law. Features can be also selected on more distinct criteria: for example,

using a certain syntactical relation or part of speech (Clark, forthcoming)

Instead of or in addition to such lists, different weighting schemes are

often used to dampen the effect of the most frequent words. Local weight-

ing schemes are calculated within a document or context, whereas global

weighting schemes are calculated over the whole collection. Typical weight-

ing schemes used for vector space models are listed in Table 4.2.
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Let us define the frequency or the number of occurrences of a word wi

in a document dj as fj(wi). This is the term frequency (tf ). The doc-

ument frequency df(wi) =
∑

I(fj(wi) > 0) is a global weight, and it is

calculated as the number of documents in the collection the word wi oc-

curs in. The number of different word types in the vocabulary is Nw, and

the total number of word occurrences in the co-occurrence count matrix

is M . Inverse document frequency is the total number of documents Nd,

divided by the document frequency: Nd
df . Collection frequency cf(wi) is the

total number of occurrences of the word wi appearing in the whole collec-

tion. Term frequency and inverse document frequency are often combined

as a joint weight that works both in local and global scale, taking into

account the frequency of a term in one document and in the whole col-

lection. Term Frequency - Inverse Document Frequency (tf.idf) is a com-

monly used weighting scheme for term-document matrices (Jones, 1972;

Salton and Buckley, 1988). It combines the local weighting with a global

weighting scheme which smooths the effect of frequent words in the cor-

pus. Manning and Schütze (1999) remark that tf is often dampened with

a logarithm. Similarly, inverse document frequency can be either linear,

or logarithmic.

Entropy weighting takes into account the distribution of the occurrences

of the terms. It assigns a minimum weight to terms which are evenly

distributed in the documents and a maximum weight to those terms that

are concentrated on few documents.

Pointwise Mutual Information (PMI) (Church and Hanks, 1989; Tur-

ney, 2001) can be also used as a weighting scheme. It has been demon-

strated to work well for both term-document (Pantel and Lin, 2002a) and

word-context matrices (Pantel and Lin, 2002b). In the pointwise mutual

information definition, p(wi, dj) is the probability that word wi occurs in

context or document dj . p(wi) is the estimated probability of the word

wi, p(dj) is the estimated probability of the context or document dj . If

the word wi and the context dj are independent, p(wi, dj) = p(wi)p(dj). If

p(wi, dj) >> p(wi)p(dj), (or p(wi, dj) << p(wi)p(dj)), there is some (seman-

tic) relation between the word wi and the context dj (Turney and Pan-

tel, 2010). If word wi and context dj are completely unrelated, PMI may

give negative values. The Positive Pointwise Mutual Information (PPMI)

weighting solves this problem by only retaining the non-negative values

of PMI (Niwa and Nitta, 1994). It also performs better with word-context

matrices compared to many different weighting schemes in the semantic
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evaluation tests (Bullinaria and Levy, 2007). Bullinaria and Levy (2012)

concluded that removal of stop words or the most frequent words does

not improve the evaluation results. This might be due to the fact that

the weighting schemes often used already lower the weight of the most

frequent words which are often in the stop word list. As a consequence,

removing these words does not improve results any further.

4.4.4 Feature extraction and dimensionality reduction

Word vector space models often have a very high dimensionality. This is

why several feature extraction or dimensionality reduction methods have

been proposed. The two main approaches to reduce the high dimension-

ality are feature selection described in the previous section and feature

extraction, which refers finding a new set of features that are combina-

tions of original dimensions (Alpaydin, 2004).

The most common of them is the Latent Semantic Analysis (LSA) (Lan-

dauer and Dumais, 1997) also known as Latent Semantic Indexing (LSI),

based on Singular Value Decomposition (SVD). This method will be de-

scribed in more detail in the following sections of this chapter. It was first

used for document-term-matrices, in which it finds the second-order rela-

tions between words: i.e. relation on not only which words occur together

but which words share similar contexts, similarly to what is achieved

when compiling a word-word co-occurrence count matrix. For word-word

matrices, LSA can also be used for reducing dimensionality of the repre-

sentation. The SVD, Principal Component Analysis (PCA), Independent

Component Analysis (ICA) and the probabilistic Latent Dirichlet Alloca-

tion (LDA) will be introduced in the following sections of this work.

Recently, neural network models trained with context information have

been introduced. In a sense, they also produce a low-dimensional rep-

resentation from high-dimensional data, even though the process is non-

linear. In that field, the resulting low-dimensional vector representations

are called ’embeddings’. The results in different NLP tasks have been very

good, but the models suffer from a long training time (Collobert, 2011;

Collobert et al., 2011).

4.4.5 Measuring similarity

The similarity of the word vectors is measured by calculating the distance

between them. Some commonly used measures are given in Table 4.3. The
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Table 4.3. Some common distance measures for vector space models

Non-probabilistic
Cosine d(x,y) = 1−

∑
xiyi√∑

x2
i

√∑
y2i

Euclidean d(x,y) =
√∑

(xi − yi)2

City-block d(x,y) =
∑ |xi − yi|

Probabilistic
Kullback-Leibler d(x,y) =

∑
p(xi)log(

p(xi)
p(yi)

)

most commonly used in VSM models is the Cosine (Turney and Pantel,

2010), which measures the angle between the vectors. It has the benefit

of normalizing the length of the vectors as well. In VSM applications, the

values of cosine will be limited to positive range between [0, 1], defining

cosine distance as 1− cos(x,y).

Geometric distances, such as the Euclidean distance or the City-block

distance can also be used. The use of Euclidean distance may be problem-

atic if the vector lengths of the two vectors are very different. For normal-

ized vectors such that
∑

x2i =
∑

y2i = 1, Euclidean distance and Cosine

distance give obviously the same ranking, because then
√∑

(xi − yi)2 =√∑
x2i +

∑
y2i − 2

∑
xiyi =

√
2(1−∑

xiyi) =
√
2(1− cos(x,y)). City-block

distance or the L1 normmeasures the absolute difference of the coordinate

values, and is also sometimes used with vector space models. For binary

vectors, also Dice and Jaccard coefficients can be calculated (Manning and

Schütze, 1999). Word vectors are made of counts and can be interpreted

as multinomial probabilities, and probabilistic metrics such as Kullback-

Leibler divergence can also be used. Bullinaria and Levy (2007) compared

several of these methods in different tasks, and found out that the cosine

distance paired with a positive pointwise mutual information weighting

gave the best overall results. Turney and Pantel (2010) suggest that de-

termining the most appropriate measure is dependent on the task, the

sparsity of the statistics, the frequency distribution of the elements, and

the feature extraction method used.

4.5 Evaluation

To know how a computational model performs, it must be evaluated. In

NLP applications, the performance is usually compared to some linguistic

resources. The evaluation can be direct (intrinsic), or indirect (extrinsic)

(Sahlgren, 2006; Suominen et al., 2008). In direct evaluation, the perfor-
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Class positive Class negative
Test positive true positive (tp) false positive (fp)
Test negative false negative (fn) true negative (tn)

Table 4.4. The confusion matrix

mance is compared to a test set directly. In indirect evaluation, the per-

formance of the component is evaluated in an application, for example, if

no direct test sets are available.

In classification tasks, two core concepts, Precision (Pr) and Recall (Re)

are defined. There are four categories of outcomes in a classification task.

A true positive (tp) and true negative (tn) are the correct classification

outcomes, whereas false positive (fp) and false negative (fn) are the clas-

sification errors, see Table 4.4. Thus, Precision is defined as the number

of true positives divided by all instances labeled positive.

Pr =
tp

tp+ fp
(4.16)

Recall is the number of true positives divided by true positives and false

negatives, i.e. all the instances that have a positive label.

Re =
tp

tp+ fn
(4.17)

Precision and Recall can be combined into an F-score, which is the har-

monic mean of the two.

F = 2 · Pr ·Re
Pr+Re

(4.18)

The same concepts are used in information retrieval, and defined slightly

differently. LetR be the set of retrieved documents we have obtained, with

|R| = tp+ fp, and Q be the set of documents that are deemed relevant for

that given query, with |Q| = tp + fn. Then Precision is the number of

documents that are both relevant and retrieved divided by the number of

retrieved documents.

Pr =
|R ∩Q|
|R| (4.19)

Recall is the number of relevant and retrieved documents divided by the

number of relevant documents.

Re =
|R ∩Q|
|Q| (4.20)
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4.6 Unsupervised learning methods used in this thesis

4.6.1 The Morfessor method

The Morfessor is a method for unsupervised induction of simple morphol-

ogy from corpora. It is a data-driven method that produces a segmen-

tation of corpus into smaller elements. These elements often resemble

linguistic morphs (Lagus et al., 2005), and are therefore called morphs in

this context as well. The Morfessor exists in different variations. The one

used in Publication I is the Morfessor Baseline. The method is inspired

by the MDL principle described in Section 4.2.3, and it uses Maximum a

Posteriori (MAP) framework (Creutz and Lagus, 2007).

Maximum a posteriori estimation

MAP models try to find the best model jointly considering model accuracy

and model complexity (Creutz and Lagus, 2007). The MAP estimate for

the model to maximize is

argmaxM P (M|data) = argmaxM P (data|M) · P (M), (4.21)

where P (M) is the probability of the model. In the case of the Morfessor

Baseline, P (M) = P (lexicon, grammar) is the probability for the model of

language, which is a joint probability of the induced lexicon and grammar.

Virpioja (2012, Section 6.4) offers a thorough introduction to the mathe-

matical formulation behind the Morfessor method family.

In the Baseline model, only the morph frequency is taken into account,

and there is only one morph category, as opposed to advanced methods,

where types of morphs are defined as stem, prefix and suffix. In the Base-

line, the words are split into frequently occurring strings (Creutz and La-

gus, 2005). The model first considers each word as a whole and adds it to

the morph lexicon. Every possible split into two sub-strings is evaluated,

and the split that has the highest probability is selected. The case of no

split is also possible. In the case of a split, the splitting of the two parts

continues recursively until no more gains are obtained. The words in the

corpus are reprocessed until the overall probability converges. Creutz and

Lagus (2007) note that as many of the word stems occur in isolation, the

algorithm finds suffixes and prefixes by splitting of known stems from

longer words, and the newly discovered morphs can then be used to split

other words. Therefore, the overall task is a complex search problem.
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4.6.2 Singular Value Decomposition and Latent Semantic
Analysis

Singular value decomposition (SVD) is a matrix decomposition method

for any rectangular matrix. In the context of vector space models for doc-

uments, Latent Semantic Analysis (LSA) uses the SVD technique (Lan-

dauer and Dumais, 1997) on term-document matrices, but SVD can be

also performed on term-term matrices.

The singular value decomposition is defined as

X = UDVT , (4.22)

where D is a diagonal matrix of the singular values, which are real and

non-negative, andU andV are orthonormal columnmatrices, i.e.,UTU =

VTV = I.

In practice, only d first singular values are calculated, i.e. a truncated

SVD is used. Truncated SVD approximates the matrix XC×N

XC×N = UC×dDd×dVT
N×d, (4.23)

Thus, Dd×d is a diagonal matrix of the d largest eigenvalues of XTX (or

XXT ), andUC×d has the d corresponding eigenvectors ofXXT , andVN×d
has the d corresponding eigenvectors of XTX.

In the reduced space, theVN×d gives a d-dimensional representation for

the target words. This representation is said to be latent, as it represents

the words (or documents) in a new space of latent features.

4.6.3 Principal Component Analysis

Principal Component Analysis (PCA) is a feature extraction method orig-

inally proposed by Pearson (1901) and Hotelling (1933), and widely used

for dimensionality reduction, data compression, feature extraction and

data visualization (Bishop, 2006). It does not select the best features of

the original dimensions like feature selection. Instead, it is a projection

method that searches for a mapping from the original dimensions to a

new space of smaller dimensionality with a minimum loss of information.

Principal Component Analysis uses the criterion of maximizing the vari-

ance. Thus, the projection of the data along the first principal component

w1 has the largest variance (Alpaydin, 2004). The second principal compo-

nent should also maximize variance, and be orthogonal tow1, because the
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projections along w1 and w2 should be uncorrelated. PCA is calculated by

first normalizing it with regards to the first order statistics, i.e. centered

by subtracting its mean. PCA is not often applied to co-occurrence data

due to the centering. The co-occurrence matrices are usually sparse, but

centering loses this property, making it computationally complex.

4.6.4 Independent Component Analysis

Independent Component Analysis is an unsupervised learning method

used in this thesis. It is applied to a blind source separation task, where

one tries to find the independent sources from mixed observed signals

(Comon, 1994; Hyvärinen et al., 2001).

The basic ICA equation

x = As (4.24)

represents each observed random variable x = (x1, x2, . . . , xn)
T as a weigh-

ted sum of independent random variables s = (s1, . . . , sk, . . . , sn)
T . A is

the mixing matrix that contains the weights. In ICA, both the s and A

are estimated, which means that there are ambiguities which cannot be

resolved: 1) the variance of the independent component, 2) the sign of the

component and 3) the order of the components. The variance of each inde-

pendent component is usually set to unit variance. The model has some

further requirements: 1) The independent components are assumed to be

statistically independent. The requirement for independence is stronger

than in PCA, where only uncorrelatedness is expected. 2) The problem is

well-defined if and only if at most one of the components of s is Gaussian

(Hyvärinen et al., 2001).

ICA can be estimated with different approaches. It can be estimated by

using a heuristic to maximize the nongaussianity: finding independent

components one by one with each local maximum giving one independent

component. Here a method of estimation using negentropy is described.

A Gaussian variable has the largest entropy among all random variables

of equal variance. Negentropy can thus be defined to be the difference

between the entropy of a Gaussian random variable ygauss with the same

correlation and covariance as y:

J(y) = H(ygauss)−H(y), (4.25)

where H(y) = − ∫
p(y) log p(y) dy. The negentropy estimation is computa-

tionally difficult as an estimate for the probability density function would
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be needed, but negentropy can be approximated by

J(y) ∝ [E{G(y)} − E{G(ν)}]2, (4.26)

where G is a non-quadratic function such as tanh and ν is a Gaussian

variable of zero mean and unit variance and y is assumed to have zero

mean and unit variance as well.

ICA can be also defined more rigorously through information theoretic

principles, without making many assumptions about the data itself. Mu-

tual information measures the dependence between random variables and

as such, it can be used as a criterion for finding the ICA representation

(Hyvärinen et al., 2001).

Practical considerations

Independent Component Analysis is not a dimensionality reductionmethod,

and usually the data dimensionality is reduced in a pre-processing step

with PCA.

ICA problem is simpler if the observedmixture vectors are first whitened.

A zero-mean random vector z is white, if its elements are uncorrelated and

have unit variances (Hyvärinen et al., 2001). In other words, the covari-

ance matrix of z is the identity matrix:

E{zzT } = I. (4.27)

In practice, a vector x can be whitened with a whitening matrix V,

z = Vx = D−1/2ET , (4.28)

where the columns of E = (e1 . . . en) are the unit-norm eigenvectors of the

covariance matrix Cx = E{xxT }, and D = diag(d1, . . . , dn) is its diagonal

matrix of the eigenvalues of Cx.

The ICA can be computed in many ways, (see Hyvärinen et al., 2001,

for further references). FastICA (Hyvärinen and Oja, 1997) is a fast fixed

point algorithm, which is used in the publications of this thesis. The Fas-

tICA algorithm estimates the model in two stages. The first step reduces

dimensionality and whitens the data. The second step finds a rotation

that maximizes the statistical independence of the components. The di-

mensionality reduction and decorrelation step can be computed, for in-

stance, with principal component analysis or singular value decomposi-

tion.
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Figure 4.1. Neighborhood topologies of the Self-Organizing Map: a) hexagonal and b)
rectangular.

Text data and ICA

It is assumed that the independent components are nongaussian. In ear-

lier ICA research for text data, it is noted that while natural signals based

on sensory data are typically nongaussian, text data is not natural in a

similar sense, as it is based on an encoding process (Honkela et al., 2010).

Nevertheless, word contexts seem to be nongaussian, because the data is

sparse with a large probability mass for values close to zero, but with a

heavy tail, in other words it is Zipfian (Section 2.1.1).

4.6.5 Self-Organizing Map

The Self-Organizing Map is an unsupervised artificial neural network

model (Kohonen, 2001). It is useful for visualization of high-dimensional

data, as it produces a topological ordering onto a low-dimensional grid of

prototype vectors.

The map consists of a number of map units, or prototype vectors, that

are of the same dimensionality as the input data. The map units are or-

ganized on a grid. The organization of the grid is either rectangular or

hexagonal. In a rectangular organization, each map unit except for those

at the edge of the map have four neighbors, and in hexagonal ordering,

each non-edge map unit has six neighbors, see Fig. 4.1. The map organi-

zation can either be a sheet with edges, or a toroid with no edges.

The SOM is trained according to the competitive learning principle. For

each input vector, a prototype vector that best matches the input is se-

lected. The Best Matching Unit (BMU) is the prototype vector with the

smallest distance to the input vector in some metric, usually Euclidean

distance. In case of only partial information, BMU is searched by the ex-
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isting part. The BMU and its neighboring prototype vectors in the topo-

logical ordering are adapted toward the input. The adaptation rule is

typically expressed as:

mi(t+ 1) =mi(t) + hci(t)[x(t)−mi(t)], (4.29)

in which the c is the index of the BMU. hci(t) is the neighborhood function

defining how large the neighborhood is, mi is the i-th prototype vector,

x(t) the input vector, and t is a discrete time coordinate. Most commonly

used is the Gaussian neighborhood function:

hci(t) = α(t) · exp
( ||rc − ri||2

2σ2(t)

)
, (4.30)

where 0 < α(t) < 1 is the learning-rate factor monotonically decreasing

in the course of the learning and σ2(t) corresponds to the neighborhood

radius, also decreasing monotonically in the course of the learning. The

rc and ri are vectorial locations prototypes mc and mi on the grid. An-

other commonly used neighborhood function is a ’bubble’ which is con-

stant in the whole neighborhood and zero elsewhere. In the beginning

of the learning process, the neighborhood size and α are relatively large

to obtain first a rough, global ordering. The value decreases during the

process to achieve a more local ordering. In practice, typical value for α

is close to (but smaller than) 1 and the neighborhood size may be half the

size of the diameter of the map for the Gaussian function in the beginning

of learning (Kohonen, 2001).

The initialization of the prototype vectors can be random, taken from

the available input samples, or sampled from the two largest principal

component eigenvectors of the data. The latter case is the recommended

one. The SOM can be trained either in sequential or in batch mode. In

sequential training the prototype vectors are adapted after each input

to the SOM, as described earlier. Batch training is a faster alternative

(Kohonen, 2001). In batch training, the whole data set is presented to the

map before the map prototype vectors are adapted at all. In each training

step, the data is then partitioned according to the Voronoi regions of the

map weight vectors. Next, the new prototype vectors are calculated as

mi(t+ 1) =

∑n
j=1 hci(t)xj∑n
j=1 hci(t)

, (4.31)

where c = argmink{‖ xj −mk ‖} is the index of the BMU of the data sam-
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Figure 4.2. A plate diagram illustrating the LDA model

ple xj . The new prototype vector is a weighed average of the data samples,

and the weight for each data sample is the neighborhood function value

hci(t) at its BMU c. In information visualization, the SOM is trustworthy,

and it is comparable to the best methods for precision, but not in terms of

recall (Nybo et al., 2007).

4.6.6 Topic models and Latent Dirichlet Allocation

Generative topic models are based on the idea that documents are a mix-

ture of topics and that they are generated from latent random variables.

Documents are then fitted to find the best set of latent variables that can

explain the observed data (Steyvers and Griffiths, 2007). The probabilistic

topic modeling was introduced as Probabilistic Latent Semantic Indexing

(pLSI) (Hofmann, 1999), and further extended as Latent Dirichlet Alloca-

tion (Blei et al., 2003). The account describing the relationship of these

models to PCA and ICA is given by Buntine and Jakulin (2006). These

models have been explicitly developed to model count data, and they make

assumptions about the distributions in different levels. See, for example,

Newman et al. (2011) and Du et al. (2012) for recent advanced applica-

tions. Topic modeling has mostly concentrated on document representa-

tions, but some research has also been carried out with a short context

around the target word (Brody and Lapata, 2009; Chrupała, 2011).

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a generative proba-

bilistic model for discrete data, such as text corpora. It is based on an idea

that documents are represented as random mixtures over latent (hidden)

topics. Each topic then has a distribution over words. It is a three-layer
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model, where the topics are sampled from a topic distribution, and then

single words are sampled from the chosen topic. A plate diagram of the

LDA model is shown in Figure 4.2. Only the words are observed, all the

other parameters are hidden.

More specifically, a generative process for each word w in a corpus D of

M documents is assumed. For each document d, that is, a sequence of

words d = (w1, . . . , wN ), the length of the document N is drawn from a

Poisson distribution N ∼ Poisson(ξ). Let us denote the topics with a fixed

dimensionality T of the Dirichlet distribution and the dimensionality of

the topic variable z. The probability to sample the jth topic for the ith

word wi is p(zi = j), and φj = p(w|zi = j) is the multinomial distribution

over words for topic j (Griffiths et al., 2007). For each word wi in the

document, the topic zi is drawn from p(zi|θ), where θ is in turn drawn from
a Dirichlet distribution with a parameter α = (α1, . . . , αt), θ ∼ Dir(α).

αj can be interpreted as the prior observation count for the number of

times topic j is sampled in each document, before having observed any

actual words from that document. In addition, it is convenient to use a

symmetric Dirichlet distribution with a single parameter α = α1 = . . . =

αT (Griffiths et al., 2007). Finally, a word wi is chosen, on the condition of

the chosen topic zi, from p(wi|zi, β). It is also possible to use a symmetric

β prior on φ, which is used, for example, in Griffiths and Steyvers (2004).

Griffiths et al. (2007) suggest values α = 50/T and β = 0.01, which are

reported to work reasonably well.

The model makes a number of simplifying assumptions, especially, the

dimensionality T of the Dirichlet distribution is assumed to be known and

fixed, and N is independent of the other data generating variables z and

θ and the Poisson assumption of the document length is not critical.

The central problem is to obtain the posterior distribution p(θ, z|w,α,β),

where w is the set of N words (w1, . . . , wN ), z is the set of topics or hid-

den variables, and θ gives their probabilities, but the problem is not com-

putable in general (Blei et al., 2003).

Gibbs sampling

The distributions cannot be calculated as such but they need to be es-

timated with, for example, Variational EM (Blei et al., 2003) or Gibbs

Sampling (Griffiths and Steyvers, 2004). The Gibbs sampling algorithm

is an algorithm in the form of Markov chain Monte Carlo, which is a fam-

ily of methods designed for sampling values from complex distributions
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(Griffiths et al., 2007). The Gibbs sampling applied to topic modeling car-

ries out the actual topic extraction by directly estimating the posterior

distribution over z given the observed words d, marginalizing out φ and θ

(Griffiths and Steyvers, 2004).

P (zi = j|z−i, wi, di, ·) ∝
CWT
wij

+ β∑W
w=1C

WT
wj +Wβ

CDT
dij

+ α∑T
t=1C

DT
dit

+ Tα
(4.32)

CWT
wj contains the number of times word w is assigned to topic j, and CDT

dj

contains the number of times topic j is assigned to some word token in

document d excluding the current instance i in both cases. In reality, the

equation is further divided for topic k by the sum over all topics.

The sampling algorithm starts by assigning each word token to a ran-

dom topic zj with j = 1 . . . T . For each word token, an entry that corre-

sponds to the current topic assignment is taken out of the count matrices.

Then a new topic is sampled from the distribution in Eq. (4.32) and count

matrices are incremented with the new topic assignment. Each Gibbs

sample thus consists of the set of topic assignments to all N word tokens

in the corpus. In the beginning, the Gibbs samples are a poor estimate of

the posterior, but after many iterations, the approximation improves.

LDA for short context

LDA-related approach can be also used in a short context around the tar-

get word. Brody and Lapata (2009) use a method related to LDA in a

sense induction task. The model operates on what they call a local con-

text, a small context around the target word, instead of a global topic

around a document. P (s) is used as a distribution over senses of an am-

biguous target word in a context window, and P (w|s) for the probability

distribution over context words w given a sense s. The model generates

each word wi in the context window by first sampling a sense from the

sense distribution, and then choosing a word from the sense-context dis-

tribution. All the other variables except for the word itself are hidden.

The model specifies a distribution over words within a context window:

P (wi) =
S∑

j=1

P (wi|si = j)P (si = j), (4.33)

where S is the number of senses. It is assumed that each target word has

C contexts and each context c consists of Nc word tokens.
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Table 4.5. The correspondence of the LDA model and the Chrupała model of the word
classes

LDA Chrupała model
Topics Word classes
Documents Word types
Words Context features

In another related work, Chrupała (2011) uses a similar model with a

small context of a single word to the left and a single word to the right

around the target word. The model is tested in several statistical NLP

tasks: named entity recognition, morphological analysis and classification

of semantic relations. In this model, a word in the vocabulary corresponds

to a document in the LDA model, a word corresponds to a context feature,

and a topic corresponds to a word class, see Table 4.5. In the generative

model, the number of topics T from the LDA model corresponds to the

number of latent classes, D is the vocabulary size, Nd the number of left

and right contexts in which word type d appears, znd
is the class of the

word type d in the ndth context and fnd
is the ndth context feature of

word type d. The model provides two types of word representations once

trained: Each θd gives the latent class probability distribution given a

word type and each φk gives a featured distribution given a latent class

(Chrupała, 2011).

4.6.7 Neighbor Retrieval Visualizer

The Neighbor Retrieval Visualizer (NeRV) used in Publication III is an

unsupervised dimensionality reduction and visualization method (Venna

and Kaski, 2007; Venna et al., 2010). The method approaches the visual-

ization problem as an information retrieval problem. The input space P

is the high-dimensional original space, where neighbors for a sample xi

can be defined in Pi. The neighbors can be, for example, defined through

a fixed neighborhood radius or be a fixed number of nearest neighbors.

Then output space Q is examined, and the number of original neighbors

of xi that are retained in the neighborhood Qi are checked. In addition,

the amount of error in the form of false positives and false negatives

is checked using information retrieval concepts of Precision and Recall

(Eqs. 4.16 and 4.17). The method defines a cost function to the classifica-

tion errors introduced in the dimension reduction: E = NfpCfp +NfnCfn,

with an associated cost for both types of errors.

The model is further extended from binary neighborhood to probabilistic
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neighborhood, where both the input and output neighborhoods are prob-

abilistic. In addition, the binary Precision and Recall are replaced by

probabilistic measures.

In the output space, the probabilistic model of retrieval is defined as

qj|i =
exp

(
−‖yi−yj‖2

σ2
i

)
∑

k �=i exp
(
−‖yi−yk‖2

σ2
i

) , (4.34)

where ‖yi−yj‖ is the Euclidean distance and 1/σi is a constant that allows
the function to grow at an individual rate for each point i studied. The

Euclidean distance ‖yi−yj‖2 can be replaced with any suitable difference

measure in the original data. The probabilistic model of relevance, pj|i is

defined analogously.

The Kullback-Leibler divergenceD(pi, qi) is the generalization of Recall,

and D(qi, pi) is the generalization of the Precision and

D(pi, qi) =
∑
j �=i

pj|i log
pj|i
qj|i

. (4.35)

The NeRV optimizes directly a cost function which incorporates Precision

and Recall:

ENeRV = λE{D(pi, qi)}+ (1− λ)E{D(qi, pi)}
∝ λ

∑
i

∑
j �=i

pj|i log
pj|i
qj|i

+ (1− λ)
∑
i

∑
j �=i

qj|i log
qj|i
pj|i

. (4.36)

The choice of λ defines whether minimizing false positives or false nega-

tives is more important in a given case and it is left to the user. Then the

cost function is optimized to minimize the total cost. Taking the example

from (Venna et al., 2010), if λ = 0.1, the error in Precision is nine times as

expensive as an error in Recall.
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5. Analysis of the similarities of
languages using unsupervised
methods

This chapter starts the discussion of similarity at the highest level of

analysis: the complexity of natural languages, which is the theme of Pub-

lication I. It is generally assumed that languages are equally expres-

sive (Sapir, 1924), that is, they can convey the same meaning. Another

standard assumption related to the previous one is that the human lan-

guages are equally complex, even though the languages can differ in the

distribution of their complexity: A simple morphology could be evened

out by more complex syntactic distinctions or lexical differences (Bane,

2008). This assumption is without definite proof, though. See, for exam-

ple, Shosted (2006) for discussion. Whether the higher complexity on one

level is compensated by lower complexity on another level or not, differ-

ent languages use different structures to convey meaning. For example,

Miestamo et al. (2008) consider various linguistic points of view related

to complexity. This complexity of different levels of representation repre-

sents challenges, for example, in machine translation.

In this chapter, the focus is on analyzing the complexity of 21 Euro-

pean languages using data-driven methodologies: conducting separate

analyzes on morphological, and syntactic level, which are further com-

pared to linguistic analyzes of the syntactic complexity. Kolmogorov com-

plexity, and its approximation using compression were introduced in Sec-

tion 4.2.1, and the compression-based methodologies are the basis of the

experiments of this chapter. In addition to the compression experiments,

morphological complexity was also analyzed using an unsupervised mor-

phology analysis method, Morfessor (Creutz and Lagus, 2002), introduced

in Chapter 4.

Publication I uses three different methods to analyze the similarities

and differences of languages. The first method (Juola, 1998, 2008) utilizes

compression in a single language at a time, comparing the difference in
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the size of the original compressed document and the size of a document

after a transformation is applied to the document. Each transformation

destroys the information at a certain linguistic level, and the effect of the

transformation can be analyzed.

The second approach also uses compression in analysis, now measur-

ing the pairwise similarities of languages. The methodology compares

the sum of the lengths of two separately compressed documents to the

length of a compressed document which is a concatenation of the two doc-

uments. This approach does not concentrate on any single linguistic level

of language, but rather attempts to measure the overall similarity of the

languages.

The third approach concentrates on the morphological level of language.

It differs from the two previous approaches by the choice of methodology:

an unsupervised morphology analysis method Morfessor is used to obtain

features used in the similarity comparison.

5.1 Text as data

To analyze the similarities of different languages, the text data used in the

analysis should be aligned or at least a translation of the same text. For

this purpose, Juola (1998) uses the Bible which exists in a large number of

languages in electronic form, whereas Cilibrasi and Vitányi (2005) use the

texts of the Universal Declaration of Human Rights in 35 languages and

Benedetto et al. (2002) texts retrieved from the European Union archives.

In Publication I, we have used the texts of the European constitution,

available in the 21 official languages of the European Union at the time

of writing (2005), see Table 2.2 for the list of languages and their families.

All of the texts except Greek are written with the Latin alphabet or its

local extensions (i.e. including letters such as ä or ø), and the files were

encoded with the UTF-8 encoding.

Another possibility could have been the Europarl corpus (Koehn, 2005),

which currently contains texts in 21 languages (excluding Irish and Mal-

tese but including Bulgarian and Romanian). None of these resources rep-

resent common everyday language. The texts in the Bible are somewhat

archaic, and the rest of the resources are of legal genre, which may not

be considered the most characteristic of a given language. However, these

are examples of these natural languages and retain syntactic and mor-

phological characteristics of these languages, despite their limitations.
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5.2 Analysis of morphological and syntactic level through
compression

Juola (1998) proposed using Kolmogorov complexity and its approxima-

tion with compression to study the complexity of language. He showed

that the variation of length in uncompressed text was longer than in the

compressed text. He also suggested distortion as a measure of the effect of

the morphological level (Juola, 2005, 2008). The transformation method

will be discussed in more detail in the following.

5.2.1 Transformation method

The basic idea is that transformation at a certain linguistic level distorts

the information at that level, and the effect of the transformation in com-

pression can be used as an indicator of the complexity of the linguistic

level the distortion was applied to (Juola, 2005). For example, the morpho-

logical information can be used in compression: The program tries to find

units that can be reused, for example, parts of words. This means that

words surf, surfs, surfer, and surfing can be encoded with the root surf,

and a variable ending, which reduces the coding length. We expect that

permutation of linguistic units at the morphological level should change

the coding length and the amount of change can be then measured when

compared to the original length. In Publication I, Kolmogorov complexity

is approximated by compression with a block compression method bzip2

based on the Burrows-Wheeler algorithm (Burrows and Wheeler, 1994).

To analyze the complexity at the morphological level, the morphological

information was hidden by replacing each word type in each document by

a random number in the range [10 000 . . . 30 000]. This method was pro-

posed by Juola (1998). In that article, the transformation was carried

out by using numbers within the range of [1 . . . 31 000]. In Publication I,

we opted at using the numbers of same length, instead of varying length

at the transformation. This transformation hid any information between

related word types.

The value for each language was obtained by

Cmorph(li) =
Vorig(li)

Vmorph(li)
, (5.1)

where Vorig(li) is the size of the compressed original document in bytes

and Vmorph(li) the size of the altered document in bytes for each language
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li.

A compression program can also use word order information, i.e. finding

words that occur in the similar order multiple times. Randomizing the

word order in a sentence breaks this information, and allows an analysis

of the complexity of the syntactic level. Again, the complexity values Csynt

were obtained by dividing the size of the original compressed Vorig by the

size of the altered compressed document Vsynt.

Csynt(li) =
Vorig(li)

Vsynt(li)
, (5.2)

Finally, in Publication I the morpho-syntactic complexity measure is cal-

culated by summing the file sizes for the morphologically and syntacti-

cally altered files and using the sum to divide the size of the original file.

Cms(li) =
Vorig(li)

Vmorph(li) + Vsynt(li)
. (5.3)

Juola (2005) suggested the randomization of the word order to measure

syntactic complexity. In a follow up (Juola, 2008), published around the

same time as Publication I, another method is used instead with the Bible

verses as data: random deletion of ten percent of letters for morphological

complexity analysis; random deletion of ten percent of words for syntactic

level analysis; and random deletion of ten percent of verses for pragmatic

analysis.

5.2.2 Results

The results for the morphological, syntactic and morpho-syntactic analy-

sis are shown in Fig. 5.1. On x-axis, the languages are ordered by their

complexity score, with the values of C(li) on y-axis. The languages with

the lowest complexity score were the same in each case, even though the

order differed slightly. These were the Romance languages Italian (it),

Spanish (es), French (fr), and Portuguese (pt); Celtic language Irish (ga);

and the Slavic language Slovene (sl).

In the high complexity end of this measure, there was more variation.

Finnish (fi) was among the top three in each case, German (de) had top-

two scores in morphological and morpho-syntactic scores, and had a fairly

high score in syntactic complexity. The authors suggested in Publication

I that the legalese type of language augments the score in German due

to compounding. Polish (pl) also gets fairly high complexity scores. The

68



Analysis of the similarities of languages using unsupervised methods

scores for Estonian (et) are also high for morpho-syntactic and syntactic

complexity, but lower for morphological complexity.

Figure 5.2 visualizes the languages using word-order information Vsynt

on x-axis and morphological complexity Vmorph on y-axis, aggregating the

results of of Figs. 5.1a and 5.1b. It shows that based on this measure, the

Romance languages have both a low syntactic and morphological complex-

ity score, whereas Finnish is complex at both levels.

5.2.3 Comparison to linguistic classification

As an evaluation, the results obtained using the compression method were

compared to a linguistic analysis. One natural approach is to compare the

results to the language families, shown in Table 2.2. Another resource is

the collection of syntactic flexibility values defined by Bakker (1998). The

values describe the flexibility of the word order of a language based on ten

factors, such as the order of the verb and objective, order of the adjective

and its head noun or order of the genitive and its head noun. Based on

these factors, a single value in the range of CBakker = [0, 0.1, 0.2, . . . , 1] has

been defined for each language. Small values indicate an inflexible word

order, and large values a more flexible word order.

The results obtained with the compression method were compared to

Bakker’s values, shown in Table 5.1. For this dissertation, the Spearman

rank correlation (Spearman, 1904) between them was calculated. It was

found that there is a significant dependence between these values. The

Spearman’s rank correlation coefficient is ρ = 0.65, with p = 0.0026, which

is significant as it is over the critical value of ρ > 0.584 for 19 samples at

the two-tailed p-level of p < 0.01.

5.3 Pairwise similarity of languages by compression

Cilibrasi and Vitányi (2005) propose another compression-based approach

where the the similarity of languages is calculated using pairwise compar-

isons. They define a distance metric, Normalised Compression Distance

(NCD), which is used to obtain a pairwise distance matrix. This distance

matrix can be then clustered into a language tree. They obtain results

which are in line with the current linguistic knowledge about language

families. This approach measures overall similarity, and does not consider

any differences in different levels of analysis. Benedetto et al. (2002) also
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Table 5.1. Bakker’s flexibility values (Bakker, 1998) vs. compression results. Czech and
Hungarian were not included in Bakker’s study, and thus left out of this table.
Adapted from Publication I.

Bakker Compression
rank language flexibility rank language syntactic

complexity
1 fr 0.10 1 fr 0.66
2 ga 0.20 2 es 0.68
3 es 0.30 3 pt 0.68
4 pt 0.30 4 ga 0.69
5 it 0.30 5 it 0.69
6 da 0.30 6 en 0.69
7 mt 0.30 7 sl 0.71
8 lt 0.30 8 nl 0.71
9 en 0.40 9 mt 0.72
10 nl 0.40 10 da 0.72
11 de 0.40 11 el 0.73
12 sv 0.40 12 sv 0.75
13 et 0.40 13 lv 0.75
14 sl 0.50 14 de 0.75
15 lv 0.50 15 pl 0.76
16 sk 0.50 16 lt 0.76
17 el 0.60 17 sk 0.77
18 pl 0.60 18 et 0.78
19 fi 0.60 19 fi 0.79

suggest the use of data compression in a similar fashion to build language

trees.

In Publication I, an experiment was carried out following Cilibrasi and

Vitányi (2005). A size of the compressed text file was again used as a

measure of the Kolmogorov complexity as earlier. The basic principle be-

hind the pairwise analysis is this: The compression program learns the

characteristics of a language while processing it. If the language changes,

the program needs to unlearn the old characteristics and learn the new

language characteristics. If languages are similar, perhaps only small

modifications to the old coding are needed.

Li et al. (2004) propose the use of such a compression distance as a nor-

malized similarity metric applicable in different domains. In Publication

I, the similarity score used in Publication I was

C(li, lj) =
V (li, lj)− V (li)

V (lj)
, (5.4)

where V (li) is the size of the compressed file in language li, V (lj) the size

of the compressed file in language lj , and V (li, lj) is the length of the com-

pressed file of the concatenated texts in li and lj . Li et al. (2004) recom-

mend a symmetric similarity score instead, replacing V (li) in the numer-
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ator bymin(V (li), V (lj)) and V (lj) in the denominator bymax(V (li), V (lj)).

We hypothesized that in a pairwise comparison of languages, the relation

might be asymmetric and language li might be better explained by lan-

guage lj , while this relation might not hold in the opposite direction. Cili-

brasi and Vitányi (2005) produce a clustering from the matrix of pairwise

similarities and build a dendrogram.

In Publication I, a Self-Organizing Map based visualization of the dis-

tance matrix was created (Fig. 6 in Publication I). The overall results

were poor, even though there were some language pairs close to each other

that also belong to same language family. Using a symmetric distance

measure did not change this result, either. A recent review revealed that

an error was made during the experiment, not known at the time the

original experiments were run. Cebrián et al. (2005) point out that when

using block or window based compressors such as bzip2, the concatenated

file should fit into a single block, as the model begins anew at the begin-

ning of each new block. When using the bzip2 compressor, the maximum

block size is thus 900 kilobytes. In the experiment of Publication I, most

of the text files used in the experiments exceeded the block size slightly,

making the length of the concatenation over double the block size, thus

rendering the results worthless.

In this dissertation, the experiment was repeated with smaller text frag-

ments that fit into this constraint introduced by bzip2. The analysis was

thus limited to Parts I and II of the constitution text in each of the lan-

guages. The pre-processing steps were otherwise the same as in Publi-

cation I. The resulting pairwise similarity matrix is visualized using the

two first components of the SVD, shown in Figure 5.3. Now the results

look more convincing. The Romance (ro) languages form a group in the

lower right, and there are some pairwise similarities, such as the Slavic

(sl) languages Czech and Slovak and the Germanic (ge) languages Danish

and Swedish. In the middle left in the figure there is a cluster of lan-

guages which seem fairly similar with this measure. The cluster contains

most Germanic languages (except English), the Baltic languages Latvian

and Lithuanian, and the Fennic languages Estonian and Finnish. This

visualization shows Greek as an outlier in the top right corner. This re-

sult is also natural, as Greek has its own alphabet, which makes it most

dissimilar from the rest of the languages at the surface level. This fea-

ture presents a further complication in analyzing the pairwise similarity

of languages written with a different alphabet. There are several words
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that have been borrowed from Greek to other languages, but the use of

the alphabet (and subsequent encoding) hides efficiently this relation be-

tween languages. It could only be taken into account, if a translation to a

shared alphabet (phonetic, for example) was used.

5.4 Analysis based on unsupervised morphological analysis

In Publication I, Morfessor (see Chapter 4.6.1) analysis was also carried

out for the 21 European languages.The analysis was carried out for each

of the 21 languages with a hypothesis that a high(er) number of retrieved

morphs indicates a rich morphology. Many of the languages had not been

processed with Morfessor before. The fairly short length of the documents

limits the quality of the morph segmentation.

The work included calculating seven different variables from each lan-

guage sample: i) number of types in the sample, ii) number of tokens in

the sample, iii) average number of morphs per word, iv) the mean, v) vari-

ance, vi) skewness and vii) kurtosis of the morph length distribution. Vec-

tors containing these variables were normalized based on the variance,

and the results were visualized with the Self-Organizing Map, shown in

Figure 5.4. The Romance languages and English at the top of the map

separate again fairly well from the rest. At the bottom, Hungarian and

Estonian are close together, with Finnish further down. In addition, for

example, Czech and Slovak are very close to each other, as are German,

Danish and Swedish. In addition to the general u-matrix visualization,

the effect of each variable to the organization of the map can be eval-

uated, see Fig. 5.5. The values of average skewness and kurtosis of the

morph length distribution separate Dutch from other languages. Analysis

of the morph length distribution does not show large differences between

related languages such as German and English (Figure 5.6) besides the

fact that in Dutch, there are a larger number of morphs of lengths |m| = 2

and |m| = 3 in comparison to most languages except English.

In Publication I, it was remarked that the ranking of the languages

based on the average number of morphs per language resembles the rank-

ing obtained by the compression of the morphological level, (see Section

5.2). In this dissertation, the association between the two is further con-

firmed using the Spearman’s rank correlation coefficient. For these rank-

ings, ρ = 0.61 with a p = 0.0033 is obtained, which is significant and over

the critical value of ρ = 0.556 for 21 samples at the two-tailed analysis
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with a p-level of p < 0.01. The results are not surprising, as rich morphol-

ogy in a language also manifests itself as a large number of morphs in a

language.

Table 5.2. Compression of morphological complexity vs. average number of morphs per
word

Compression Morfessor
rank language morph

complexity
rank language avg.

morph
length

1 de 1.17 1 et 1.16
2 fi 1.16 2 fi 1.15
3 el 1.15 3 hu 1.15
4 hu 1.14 4 sk 1.15
5 pl 1.14 5 cs 1.14
6 da 1.13 6 el 1.12
7 sv 1.13 7 pl 1.11
8 nl 1.12 8 lt 1.10
9 sk 1.11 9 sl 1.10
10 mt 1.11 10 de 1.09
11 et 1.10 11 mt 1.09
12 cs 1.09 12 lv 1.09
13 lt 1.08 13 sv 1.09
14 lv 1.08 14 da 1.08
15 pt 1.07 15 ga 1.06
16 es 1.06 16 nl 1.05
17 fr 1.06 17 pt 1.05
18 ga 1.06 18 es 1.04
19 sl 1.06 19 it 1.04
20 en 1.05 20 fr 1.04
21 it 1.05 21 en 1.03
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(a) Morphological complexity

(b) Syntactic complexity

(c) Morphosyntactic complexity

Figure 5.1. The European languages ordered based on the compression results at differ-
ent levels of analysis. a) morphological complexity b) morphosyntactic com-
plexity and c) syntactic complexity, from Publication I
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Figure 5.6. Comparison of the morph length distributions for Dutch, German and En-
glish
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6. Sense in vector space models:
similarity, interpretable components
and exploration

In this chapter, the focus changes from the analysis of the similarity of dif-

ferent natural languages into representing similarity of different words in

one language. The method choice is the word vector space model (VSM),

for which the basics were introduced in Chapter 4. The choice of method-

ology is focused on unsupervised methods without strong linguistic as-

sumptions instead of supervised learning (classification).

This chapter first introduces semantic evaluation data sets and meth-

ods based on the work in Publication III and Publication IV. A bilingual

VSM representation using Independent Component Analysis (ICA) is also

introduced based on Publication II. Then the focus moves to the use of the

ICA for finding semantic information from word space models.

The first contribution of this chapter is the use of unsupervised meth-

ods to find sets of semantically related words. The word sets found with

two methods, ICA and Latent Dirichlet Allocation (LDA) are compared

to category labels of two fairly large semantic dictionaries. The second

contribution is a further analysis of the categories: it was shown that the

categories of the evaluation sets have differences and some categories are

more difficult to represent with the word vector space models than others.

The third contribution in this part is the demonstration on how to use

the visualization methods as a tool for exploration in analysis of the cat-

egories and the relations between categories. In addition, a methodology

was presented to find frequent sets of related words using ICA or LDA

including a qualitative analysis of the type of the word sets found.

6.1 Evaluation of word vector space models

In order to compare the different methodological alternatives, the qual-

ity of the vector space models must be evaluated. The evaluation meth-
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ods can be divided into direct (intrinsic) and indirect (extrinsic) methods

(Sahlgren, 2006; Suominen et al., 2008). In indirect evaluation, the mod-

els are evaluated through their performance in some NLP or text mining

task. Such a task can be, for example, information retrieval for docu-

ment models or word sense disambiguation for word space models. For

a summary of evaluation measures in text mining tasks, see for example

Suominen et al. (2008). An observation of the fitness of a model is made

indirectly. The problem of such an approach is that the fitness might not

generalize for other tasks (Virpioja et al., 2012). In direct evaluation, the

fitness of the vector space model is evaluated through separate test sets

directly. Based on research in psychology and cognitive science, data sets

that list words that are judged similar have been created for direct se-

mantic evaluation purposes.

6.1.1 Semantic relatedness

Similarity judgment is considered to be one of the most central functions

in human cognition (Goldstone, 1994). It is used to store and retrieve in-

formation, and to compare new situations to similar experiences in the

past. Category learning and concept formation also rely on similarity

judgments (Schwering, 2008).

Semantic relatedness is a wider term encompassing different relation

types between words (Budanitsky and Hirst, 2006). The concept of seman-

tic similarity is often used to mean semantic relatedness. Different types

of semantic relatedness can be defined, such as synonymy (automobile–

car), antonymy (good–bad), hypernymy (vehicle–car) and meronymy (car–

wheel). A special case is a category (VEHICLE–car, bicycle,...), in which the

members of the category are perceived to share similar characteristics.

6.1.2 Measuring similarity

According to Schütze (1993), “in a vector space, related words are close

to each other, unrelated are distant”. Different evaluation schemes have

also been devised to measure the relatedness. Often, Precision (Pr) (Eq.

4.19) is used as the measure of the quality of the vector space model. We

can also define Error (Err) as

Err = 1− Pr. (6.1)
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The similarity of the vector representations is carried out by calculating

their difference based on some distance or similarity metric. The most

commonly used distance and similarity metrics have been listed in Table

4.3. Using cosine distance in the similarity calculation captures the idea

that the angle between the vectors is more important than the length of

the vectors and it is the most commonly used in VSM research (Turney

and Pantel, 2010). It is also used in most of the Publications of this dis-

sertation. The only exception is Publication III where Euclidean distance

is used in the calculation when the SOM and NeRV are used.

Different methodologies for conducting semantic similarity evaluation

have been proposed. In this section, the different methodologies are sum-

marized, and in the following section, different evaluation test sets are

introduced. First, the neighborhood can be analyzed directly by checking

whether the local neighbors of a given target word are similar, that is be-

longing to a same class or category (Sahlgren, 2006). Calculating pairwise

similarities for a large number of word vectors in a vector space model is a

computationally demanding task, which is why the evaluation is usually

carried out for the specific evaluation sets. In this case, Precision is the

fraction of words out of N closest neighbors of cue word wi that belong to

the same class with the cue word, averaged over all cue words. If only the

closest neighbor is examined for each cue word, the Precision is defined

as the fraction of cases where the closest word has the same class label.

Second, comparisons between a semantically similar word pair and un-

related distractor words can be made. The distance between the cue word

and its pair should be smaller than between the cue word and the dis-

tractor words: i.e. the system should be able to find the ’correct’ answer

among multiple ’choices’. In this case, Precision is defined as the fraction

of times the system picks the correct answer.

Third, a category-based method of word clusters can be used (Bullinaria

and Levy, 2007). In this method, the words in the vocabulary are grouped

into different categories. For each category, a category centroid is calcu-

lated as a mean of the word vectors that belong to the category. For each

word in the vocabulary, the distance to all the category centroids1 is calcu-

lated, and the task is to check whether each word is closest to the category

centroid it is labeled with. In this case, Precision is defined as the frac-

tion of times the cue word is closest to the category centroid the word is

1The category centroid for the category the current target word belongs to is
recalculated to exclude the target word.
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classified to.

In each case, Precision is used as the measure of the performance: In

how many cases did the system find the correct answer, or how many of

the neighbors belong to the same class, or in how many cases was the cue

word closest to the category centroid. In the following sections, different

types of semantic evaluation sets used in VSM research are introduced in

more detail.

6.1.3 Syntactic and semantic categories

The discussion of the evaluation sets will begin from sets that form cate-

gories, i.e. words that are judged similar in some sense. Syntactic cate-

gories are covered first, followed by semantic categories.

Syntactic categories

Syntactic category information can be used if the syntactic categories of

the words are known. In Publication IV, two different syntactic category

test alternatives are used. Patel et al. (1997) and Bullinaria and Levy

(2007) use ten narrow syntactic categories using a category cluster based

evaluation, whereas Sahlgren (2006) uses eight broad categories and an-

alyzes the nearest neighbors for each word, checking whether they belong

to the same syntactic category as the word. Honkela et al. (2010) do an

analysis of the syntactic categories with the ICA components. They col-

lected the word tags from the Brown corpus (Francis and Kucera, 1964),

assigning a word category vector for each word with all the tags the word

was labeled with.

In Publication IV, two similar sets to those used by Patel et al. (1997)

and Sahlgren (2006) were created by tagging the 3 000 most frequent

words with the part of speech tags of the Penn tree bank tag set (Marcus

et al., 1993). Two different syntactic category test sets were used: Syn-

cat 1 contained 10 narrow POS categories: Singular or mass noun (NN),

Plural noun (NNS), Singular proper noun (NNP), Adjective in base form

(JJ), Adverbial in base form (RB), Verb in base form (VB), Verb in past

participle (VBN), Verb in -ing form (VBG) and Cardinal number (CD),

with 50 words in each category. Syncat 2 contains seven broad POS cat-

egories: NOUN, VERB, ADJECTIVE, ADVERB, PREPOSITION, DETERMINER

and CONJUNCTION with 20 words in each category. In both cases, the cat-

egory cluster distance evaluation (Bullinaria and Levy, 2007) was used.
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Table 6.1. The categories of the Battig set

Precious stone Furniture Sport Vegetable

Unit of time Fruit Dance
Type of
footgear

Relative Weapon
Article of
clothing Insect

Unit of
distance Elective office

Part of a
building

Girl’s first
name

Metal
Human
dwelling

Chemical
element

Male’s first
name

Reading
material Toy Science Flower
Military title Country Kind of money Disease
City Crime Type of music Tree

Kind of cloth
Carpenter’s
tool Bird Ship

Color Type of fuel
Kitchen
utensil Fish

Nonalcoholic
beverage

Substance for
flavoring food

Weather
phenomenon Part of speech

Building for
religious
services

Member of the
clergy

Musical
instrument

Four-footed
animal

Occupation or
profession

Alcoholic
beverage

Part of human
body

Natural earth
formation Vehicle

Battig

The Battig set2 (Bullinaria and Levy, 2007) contains 53 categories with 10

words in each category, based on the 56 categories collected by Battig and

Montague (1969). Two categories STATE and UNIVERSITY were left out

as they contain too many compound words, and SNAKE category seems to

contain many too polysemous words, such as garden, black, garter. The

categories are listed in Table 6.1. The test set contains the words in each

category in the order they are listed in Battig and Montague (1969). Only

two words appear in two categories: orange in FRUIT and in COLOR, and

bicycle in TOY, and in VEHICLE. The Battig set is used in Publications IV,

and VI. In Publication IV, this set was called the Semcat set.

Other category-based evaluation sets not used in this dissertation in-

clude the ESSLLI 2008 set (Baroni et al., 2008), which contains 44 con-

crete nouns that belong to six classes, and 45 verbs that belong to nine

semantic classes, Baroni’s category list of 83 concepts in 10 categories

(Baroni et al., 2010) based on an updated version of the Battig-Montague

2The word list is available on line from http://www.cs.bham.ac.uk/~jxb/
corpus.html, accessed March 8, 2012
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Table 6.2. The broad categories in the BLESS set with sample word from each set

Category sample word
AMPHIBIAN_REPTILE alligator
APPLIANCE dishwasher
BIRD crow
BUILDING castle
CLOTHING blouse
CONTAINER bag
FRUIT apricot
FURNITURE bed
GROUND_MAMMAL bear
INSECT ant
MUSICAL_INSTRUMENT cello
TOOL axe
TREE acacia
VEGETABLE beet
VEHICLE ambulance
WATER_ANIMAL carp
WEAPON sword

Figure 6.1. An example of the BLESS relations for a sample word belonging to the cate-
gory AMPHIBIAN_REPTILE. From Publication VI.

list (Van Overschelde et al., 2004) and the Almuhareb list (Almuhareb,

2006), which contains 402 concepts.

BLESS

The Baroni-Lenci Evaluation of Semantic Spaces (BLESS) test set (Baroni

and Lenci, 2011) is based on a body of earlier work on human similarity

judgments. The data set contains 200 concepts in 17 broader classes or

categories with 5–21 words per class. The classes are shown in Table 6.2

with an example word from each class. Each concept is linked with fur-

ther words that are in one of the five different relation types with the

concept: Attributive (ATTR) words describe a property of the concept. Co-

ordinating concepts (COORD) belong to the same category. Event relations

( EVENT) are verbs related to that concept. Hypernymous (HYPER) words
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are in a super-ordinate relation, and meronymous (MERO) in a part-whole

relation with a word. For example, see Figure 6.1, in which the concept

alligator is in a COORD relation with crocodile, ATTR with carnivorous,

EVENT with attack, HYPER with animal, and MERO with tooth. The set

contains 14 400 word-relation pairs and 1698 unique words in these re-

lation pairs. In addition, each concept is linked with unrelated words

for distance calculation purposes. The BLESS set without the unrelated

words is used in Publications V and VI.

6.1.4 Measuring distance between related word pairs

Semantic relatedness can also be directly measured instead of analyz-

ing groups of words that form categories. A widely used test for measur-

ing synonymy in the VSMs is the Test of English as a Foreign Language

(TOEFL) (Landauer and Dumais, 1997). The test contains target words

and multiple choices, where there is a correct answer among distractor

words. Both in the human version and the VSM evaluation version, the

task is to find the synonym, which in the VSM case should be closest to the

target word vector in the vector space. The set can be criticized, though.

Some of the words used are very rare, and hence the word vector repre-

sentations for those words might be unreliable. Baroni and Lenci (2011)

criticize the TOEFL test for concentrating on synonymy, which is a fairly

rare semantic relation and one of the hardest to define. They also point

out that it is not known how the distractor words are chosen, and the

choices seem erratic: sometimes the distractors are semantically related

to the target word, and sometimes not.

Other similar test sets such as English as a Second Language (ESL)

and SAT college entrance exam (Turney, 2001, 2005), are also available.

In addition, one can easily construct similar multiple-choice tests based

on, for example, thesauri and random alternatives. For example, Moby

thesaurus was used in Väyrynen et al. (2007).

Patel et al. (1997) introduced a test set containing semantically related

word pairs such as thunder-lightning, black-white, brother-sister. In total,

there are 400 words in the set. The distance from the target word to the

related word is then compared to randomly picked words with a similar

frequency in the corpus3. In Publication IV, this set was called the Dis-

tance set and the evaluation procedure was the following: The Precision

3Available online at http://www.cs.bham.ac.uk/\~jxb/corpus.html, accessed
March 8, 2012
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of the obtained words was calculated by checking how often the target

word and the correct answer were closest, with a comparison to eight ran-

domly picked words for each target word. As the comparison words are

selected randomly, the comparison was repeated for 50 separate selections

of random words and by averaging the precision over them.

Antonyms are words opposite in meaning to one another. In vector space

models, antonyms tend to be found close to each other in the space, as they

are used in a similar fashion. Deese antonym pairs (Deese, 1954), have

also been used for VSM evaluation (Grefenstette, 1992), and included in

the evaluation sets used in Publication IV. In Publication III, a similar

list of 72 adjectives built by the authors was used.

As an additional resource not used in this dissertation, the Finkelstein

word set can also be mentioned. It contains 535 pairs of words and their

similarity scores perceived by human subjects (Finkelstein et al., 2002).

In this set, the word pairs cover a varying degree of similarity from very

similar to very dissimilar.

6.2 Corpus data

The size of the corpus matters when building distributional models. The

larger the corpus, the better the results generally are, even if the quality

of the corpus is inferior (Bullinaria and Levy, 2012).

The corpus used in the Publications III, IV, V and VI is built from all

the documents in the English Wikipedia4 that were over a size threshold

of 2kB. The threshold was set in place to reduce the effect of empty or

very short documents that contain little sentence structure or content. In

pre-processing, all non-text markup was removed, the words were lower-

cased and punctuation was removed except for word-internal hyphens and

apostrophes.

The representations used in VSM research are often very high dimen-

sional. See, for example, Bullinaria and Levy (2012) for discussion. In

Publication III, the 24 868 words that occur at least 100 times in the cor-

pus were included as features. In Publications IV, V and VI, a consid-

erably smaller feature space was used to reduce computational load: the

5 000 most frequent words. The co-occurrence count representations are

calculated for the vocabulary of the 200 000 most frequent words, yielding

4The October 2008 edition no longer available at the Wikipedia dump download
site http://dumps.wikimedia.org/enwiki/, accessed December 11, 2008.
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Table 6.3. The error Err = 1 − Pr for different vector space evaluation data. Recall
Re = 1 unless otherwise specified. Without dimensionality reduction, with
ICA, SVD and the SENNA embeddings. From Publication IV.

5 000 feat ICA50 SVD50 SENNA
Battig
(Semcat)

0.22 0.31/0.19 0.32/0.19 0.25
(Re=0.98)

Syncat1 0.17 0.25 0.25 0.10
Syncat2 0.26 0.38 0.37 0.21
TOEFL 0.22

(Re=0.95)
0.38
(Re=0.95)

0.38
(Re=0.95)

0.34
(Re=0.91)

Distance 0.11 0.19 0.19 0.11
Deese 0.07 0.12 0.13 0.04

a co-occurrence matrix X200000×5000. In different experiments, a subset

of the full vector space was often used that corresponds to the test set

vocabulary unless otherwise specified.

In Publication II, the Finnish-English part of the sentence-aligned Eu-

roparl corpus (Koehn, 2005) was used. In this corpus, there were 602 153

aligned regions, with 25 tokens per region for English and 20 tokens per

region for Finnish on average. The 10 000 most frequent types in each

language were selected for analysis in the context of 1 000 most frequent

types in each language. After removal of duplicate items, a co-occurrence

matrix of X19758×1983 was created.

6.3 Evaluation: categories and word pairs

After introducing the evaluation sets and analysis, the discussion will now

move onto summarizing the evaluation results of the Publications in this

dissertation.

6.3.1 Validation of the Wikipedia VSM model using evaluation
test sets

In Publication IV, the quality of the word vector space model used in Pub-

lications IV, V and VI was evaluated with seven different evaluation sets.

The model was built as described in Section 6.2, and the PPMI weighting

(Table 4.2) was used to smooth the co-occurrence counts. Two syntac-

tic, and four of the semantic sets described earlier were used in analysis.

These were the Battig set (called Semcat in Publication IV), the TOEFL

set, the semantic word pair set by Patel et al. (1997) (called as Distance

set Publication IV) and the Deese antonym set. The results, shown in

Table 6.3, are in line with results with the same number of features in
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Bullinaria and Levy (2012), verifying that the vector space model based

on Wikipedia performs at a reasonable level. The Recall measure indi-

cates the portion of the words in the test set that were part of the vo-

cabulary of the Wikipedia experiment. The Recall is Re = 1, unless oth-

erwise specified. Dimensionality reduction into T = 50 dimensions was

performed both with SVD and ICA, where the dimensionality reduction

is performed with PCA. For ICA and SVD, two different Error values are

given. The larger error values Err = 0.31 for ICA and Err = 0.32 for SVD

are obtained when ICA and SVD are performed for the whole vocabulary

of 200 000 words. When calculated only for the 530 word vectors in the

Battig set, the error decreases considerably. These results show that such

a drastic dimensionality reduction lowers the performance in the evalua-

tion tests, but the results are still reasonable. In this task, there is very

little difference between the performance of ICA and SVD, which is ex-

pected due to the relation between SVD and PCA. To obtain results that

would be at the same level as the results in the original dimensionality ap-

proximately 500 ICA or SVD component dimensions should be used. The

results were also compared to the SENNA embeddings obtained with a

neural language model (Collobert et al., 2011), for which the performance

is at the state of the art level in various NLP tasks, such as Named En-

tity Recognition and Part of Speech tagging, but which had not, to our

knowledge, been evaluated with the VSM evaluation sets before.

6.3.2 Analysis of adjectives

Publication III presents a study of adjective mappings. For the analy-

sis, the authors created a set of 72 adjectives that form antonym pairs,

similar to the Deese antonym set. The central motivation of this study

was related to the fact that in earlier research, adjectives have been ex-

plored much less than nouns or verbs. The task was to check whether

the antonym of the target word was found within its N nearest neighbors,

with N = [1, 2, . . . , 10].

The results are visualized in Fig. 6.2 for the original dimensionality

of 24 868 context words, a reduced dimensionality of 500 most frequent

words as features, and further reduced into two dimensions with PCA,

SOM and NeRV. Precision in the high-dimensional space exceeds 50 per-

cent when two or more nearest neighbors are considered. The dimen-

sionality reduction to 500 features reduces the performance by around

10 percentage points. Out of the three methods for reducing the dimen-
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Figure 6.2. The antonym evaluation set results for Wikipedia data with different dimen-
sionality reduction methods. On x-axis, number of nearest neighbors evalu-
ated, on y-axis, the obtained precision: Was the antonym pair found within
the nearest neighbors of the target word. Adapted from Publication III. The
Recall Re = 1.

sionality to two which is useful for visualisation, NeRV performs slightly

better than SOM, and the performance of SOM and PCA is comparable.

The analysis of word similarities using visualization is useful when the

number of words to analyze is high, but the downside of such a drastic

dimensionality reduction is that information is lost.

6.4 Bilingual representations

The English language is presumably the most used in NLP research with

a wealth of resources in the form of corpora and evaluation materials in

electronic form. Most of the tools and methods used in this dissertation

are unsupervised, and they can be used for other languages as well: one of

the main reasons for using unsupervised methods is that languages with

fewer resources can also be studied.

However, some caveats remain. When methods are developed for a par-

ticular language, such as English, different pre-processing steps might

be needed to incorporate languages that convey information at a differ-

ent level, for example, through a rich morphology. In addition, statistical

computational methods cannot be used if there are not sufficiently large

corpora in electronic form. Evaluation materials are also needed. While

unsupervised methods do not require labeled material to train the model,
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Table 6.4. An example of the bilingual sentence context after pre-processing and tok-
enization used in Publication II.

Finnish English
eurooppalainen yhteistyö
on tehotonta jos yhdenkin
valtion väestö hallitus ja
eduskunta pakotetaan har-
joittamaan sellaista ulko ja
turvallisuuspolitiikkaa jota
ne eivät kannata

european cooperation would
be ineffective if a country s
population government and
parliament were forced to
conduct a foreign and secu-
rity policy they did not want

some material is still needed for evaluation purposes; or in the case of ex-

ploration, an expert of the language to confirm the relevance of the find-

ings.

ICA in a bilingual context

Publication II uses a bilingual parallel corpus, the Europarl (Koehn, 2005),

to build a bilingual vector space model using a bilingual sentence context,

see Table 6.4. The word co-occurrences were calculated for the words that

appear in the sentence context in either of the languages. 1 000 most fre-

quent word types were used as the features in both languages. The word

vectors were built for 10 000 most frequent words in each language. Some

word forms appeared in both languages, thus final co-occurrence count

matrix obtained was X19758×1983. The co-occurrence count matrix was fur-

ther smoothed with a log(tf) weighting, see Table 4.2 for details. The ICA

was applied to the word-context matrix built this way. The word similar-

ity was calculated in the ICA component space s = (s1, s2, · · · , sn) using
T = 100 independent components. Similarity was measured between the

query word vector wc and any other word vector using the cosine similar-

ity, cf. Table 4.3.

The nearest neighbors were calculated for the 30 most frequent nouns

both in English and Finnish, and translations of the words were searched

among N = 1, 2, 3, 4 nearest neighbors. The translations were checked

manually using a dictionary. The results are summarized in Table 6.5.

On the last row of the table, the precision is reported for partial matches,

i.e. when a word in Finnish would be translated into two words in English

such as jäsenvaltiot: member states. It can be noted that the Precision

is higher when Finnish query words are used, possibly because English

query words can match several different inflected versions of the Finnish

counterpart. Further experiments, in which stemming or lemmatization

were used, might clarify this matter further.
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Table 6.5. The results of the bilingual analysis of closest words of nouns. Adapted from
Publication II. * Indicates precision when a part of a compound word would
match. Recall is Re = 1.

Query word language
Finnish English

Neighbors Precision Precision
1 0.67 0.53
2 0.77 0.70
3 0.83 0.73
4 0.83 0.77
4* 0.96 0.83

Table 6.6. Most prominent words for sample components in the bilingual setting of Pub-
lication II. For Finnish words, translation into English is included in the basic
form in angle brackets, inflection has not been marked.

saksan
[Germany]

values eroja [difference]

ranskan [France] rauhan [peace] different
germany demokratian

[democracy]
difference

france vapauden [freedom] välillä
[in between]

french democracy erilaista [different]
german ihmisoikeuksien

[human rights]
differences

sweden arvoja [values] erot [difference]
netherlands solidarity toisiaan

[each other]
ranska [France] peace disparities
belgian [Belgium] arvojen [values] eri [different]
ruotsin [Sweden] kunnioittaminen

[respect]
erilaiset
[different]

saksa[Germany] oikeusvaltion
[constitutional state]

differ

italian principles differing
kingdom continent eroavat [to differ]

6.5 Finding category information

It has been shown that Independent Component Analysis can produce

cognitively meaningful components (Hansen et al., 2005) that correspond

to for instance noun concepts (Chagnaa et al., 2007), phonological cate-

gories (Calderone, 2009), personal traits (Chung and Pennebaker, 2008)

and syntactic categories (Honkela et al., 2010). In Publication II, we iden-

tified components that contained semantically related words in a bilingual

setting. Examples are shown in Table 6.6, with English translation for the

Finnish words. In that work, it was shown that ICA finds semantically re-

lated word sets, but no further evaluation was carried out. Publication IV

begins a series of experiments to find out what kind of semantic repre-

sentations and category information can be obtained with unsupervised

methodology such as ICA. The research direction is continued in Publi-
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cation V with a second evaluation set and Publication VI where ICA is

compared to a method based on Latent Dirichlet Allocation.

In vector space related research, several different terms have been used

to describe semantically related words or semantic categories, such as

’emergent category’ (Honkela, 1998), ’latent class’ (Hofmann, 1999), ’prob-

abilistic word class’ (Chrupała, 2011), ’topic’ (Blei et al., 2003; Steyvers

and Griffiths, 2007) and ’sense’ (Brody and Lapata, 2009). Out of these,

the four first ones are often used synonymously, whereas the term ’sense’

is often used when multiple meanings of words are considered. Essen-

tially, the phenomenon is still the same: what kind of semantic distinc-

tions are made?

The task of finding category information is related to the task of sense

induction. See, for example, Brody and Lapata (2009). In finding category

information, we try to group words into meaningful clusters, whereas in

sense induction the task is to automatically identify different word senses

from the corpora. This in turn differs from the traditional task of word

sense disambiguation, where the senses are assumed to be known and

fixed. The LDA based methods for word sense induction have been re-

cently developed (Brody and Lapata, 2009; Dinu and Lapata, 2010; Chru-

pała, 2011), but Independent Component Analysis has also been used for

this task (Rapp, 2004).

6.5.1 Comparison to evaluation sets

In Publication IV, a method to analyze the category information possibly

represented in the components was devised, first for the Battig data set.

For this purpose, the maximum activation of the components or topics

was studied. In the case of ICA, the components are usually skewed in

one direction, and the analysis was done in the direction of maximum

skewness. For each component or topic, the words were sorted in the

order of the value of the activation, and N words with the highest value

were chosen for analysis. In the experiments, N = 10 was used which

corresponds to the number of words in each category in the Battig set. The

limit is somewhat arbitrary, and could be also set based on, for example,

a certain activation threshold.

Two different Precision thresholds, strict and lax were defined following

Sahlgren (2006). In the strict case, a minimum of Prstrict =
9
10 words

belong to the same category and in the lax case, a minimum of Prlax =
6
10

words belong to the same category. The analysis is used in three studies,
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Table 6.7. The fraction of Battig categories found with strict and lax condition analyzing
the component information for ICA and SVD and the SENNA embeddings,
from Publication IV

Strict Lax
subset+ICA 17/53 37/53
ICA+subset 1/53 12/53
subset+SVD 2/53 19/53
SVD+subset 3/53 8/53
SENNA 0/52 4/52
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cat+rel
cat
rel

Figure 6.3. The results for the BLESS categories and relations for ICA for different
thresholds. On x-axis, the different analysis thresholds used and on y-axis,
the number of categories or relations found. From Publication V

with different comparison methodology and test sets.

Comparison of ICA and SVD with Battig set

In Publication IV, the performance of ICA and SVD was compared us-

ing the Battig set of 53 categories described earlier using a reduced di-

mensionality of T = 50 components. The selection of the subset of word

vectors can be carried out either before or after the dimensionality reduc-

tion. It is obvious that if the method is applied after the subset selection

(subset+ICA/SVD), the components are a better representation of only

those words in the subset, than if the subset selection is carried out af-

ter a dimension reduction for the complete matrix of 200 000 word vectors

(ICA/SVD+subset). The results in Table 6.7 indicate that ICA performs

better than SVD in the task of extracting interpretable components, that

is, finding groups of words that correspond to a semantic category.
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ICA experiments with the BLESS set

The words in the Battig data set are all nouns. In Publication V, the

BLESS data set introduced in Section 6.1.3 with a larger vocabulary and

richer labels was used. Out of the unique words in the BLESS set, 1673

words were found in the vocabulary of 200 000 words of the Wikipedia

data used. The analysis was carried out separately for the 17 categories,

5 relation classes, and 85 joint category-relation combinations (e.g, WA-

TER_ANIMAL-MERO, VEHICLE-COORD). Multiple labels for each word were

also allowed. For example, the word tooth from Fig. 6.1 has four cate-

gory labels as it appears in relation to a word in four different categories:

AMPHIBIAN_REPTILE, GROUND_MAMMAL, TOOL and WATER_ANIMAL. It

appears in all of these categories in a meronymous relation, thus the only

relation label is MERO. It also has four joint category-relation classes

(WATER_ANIMAL-MERO, etc. . . ) created by combining the category and

the relation label for more fine grained analysis.

The experiments were run on the subset of the BLESS words using

T = 50 independent components, again analyzing the 10 words with high-

est activation for each component. The evaluations were carried out on

additional thresholds of Pr = 7
10 and Pr = 8

10 . The results are given in

Figure 6.3. This study confirmed that the words with maximal value for

a given component often belong to the same category or relation defined

by the BLESS labels, although the components do not correspond to the

fine grained cat-rel labels very often: only 23 out of 85 cat-rel groups are

covered with the lax condition. On the other hand, 12 out of 17 cate-

gories are covered at the lax threshold using 33/50 components, and 41/50

components cover the five relation types well. The different category and

relation types are analyzed in more detail in the following.

Comparison of ICA and LDA using both Battig and BLESS sets

Probabilistic topic modeling, for example, using Latent Dirichlet Alloca-

tion (LDA), is a prominent approach created especially for text data. The

performance of the ICA and LDA-based method was compared in Publi-

cation VI, with different model sizes or number of topics or independent

components T , using both the Battig and BLESS data sets and 10 itera-

tion runs for each model size. The ICA model is trained with the Battig or

BLESS vocabulary using the PPMI weighting (Table 4.2). In LDA exper-

iments, weighting is not usually used (Wilson and Chew, 2010), but, for

example, Dinu and Lapata (2010) use a simple scaling of counts by a factor
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Table 6.8. Number of Battig categories found: results for strict (S) and lax (L) criterion
for different model sizes for ICA, LDA 1 (ppmi-ceil), LDA 2 (ppmi-ceil long)
and LDA 3 (noweight). The highest value for each model size and condition is
marked in boldface. From Publication VI.

Model size
Model type 10 20 30 40 50 60 80 100 150 200

L

ICA 7.8 14.1 23.0 34.0 39.3 36.3 37.4 39.7 39.1 34.2
LDA 1 4.8 12.0 22.7 28.9 36.2 38.1 41.3 43.1 49.0 52.3
LDA 2 4.1 11.9 21.5 29.6 36.4 39.7 42.9 43.0 49.0 53.1
LDA 3 4.1 12.3 21.8 30.9 36.0 38.9 41.8 43.1 51.4 54.1

S

ICA 1.0 8.1 11.0 16.3 17.0 16.2 17.2 15.1 14.8 9.0
LDA 1 0.0 1.2 3.9 10.3 14.8 16.3 18.4 16.2 13.8 10.7
LDA 2 0.0 1.2 3.6 10.8 14.8 17.8 19.9 16.8 12.8 8.9
LDA 3 0.0 1.4 3.7 9.7 14.0 18.7 18.8 16.5 11.8 10.4

of 70. In Publication VI, the LDA-based model was tested with two differ-

ent weighting alternatives. The first alternative was a PPMI-weighting

based heuristic, where all the PPMI-weights of the matrix were rounded

up to nearest integer. It was tested with a shorter training length of 500

iteration steps (LDA 1) and a longer training of 2 000 iteration steps (LDA

2). The second alternative was no weighting at all, computed with 500 it-

eration steps (LDA 3). The long training was not implemented in the case

of no weighting as the calculation times grew very long. See Publication

VI for further details and comparisons.

The results for the analysis for the Battig set are given in Table 6.8, av-

eraged over 10 iteration runs. With a smaller model size, ICA finds more

categories than the LDA model variants but as the model size approaches

the number of the categories in the Battig set, the performance difference

evens out. When the model size is approximately the same as the number

of categories in the Battig set, T = 50, the ICA model is able to find 39 cat-

egories with the lax condition and 17 categories with the strict condition.

The results of the LDA variants are slightly worse. The models find ap-

proximately 36 categories with the lax condition, and 14 categories with

the strict condition.

When the model size grows larger than the number of the Battig cate-

gories, performance of ICA declines as the categories are split into several

components. The LDA does not suffer from this behavior but continues to

use several topics to describe each category, as the current model does not

penalize for using several topics or independent components to represent

a single category. The results with the BLESS set were similar, see Pub-

lication VI for details. Thus it can be concluded that both models are able

to find a considerable number of semantic categories in an unsupervised

manner.
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Figure 6.4. The unsupervised methods for text analysis as an explorative tool. From
Publication VI.

6.6 Exploration

Corpus-based approaches can provide a way to take into account cogni-

tive processes that limit the actual applicability of a certain linguistic

rule. See, for example, Karlsson (2007). In similar vein, an explorative ap-

proach may be useful when considering lexical semantics. Human linguis-

tic intuition and theories provide dictionaries with semantic labels, that

are used to evaluate the results obtained with the unsupervised meth-

ods. The theories, and especially the similarity judgments, are in reality

subjective and depend on the context. In addition, the coverage of the se-

mantic labelings is often limited. Publications V and VI discuss the use of

the unsupervised learning methods as an explorative tool. The schematic

description of the process is shown in Fig. 6.4. The purpose of the work

was both to check how well the representations generated in a data-driven

manner coincide with the manually constructed semantic categories; and

to analyze the qualities of the manually constructed semantic categories

using statistical machine learning and visualization.
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Figure 6.5. Comparison of the ICA (left) and LDA 2 (right) results for the Battig cat-
egories using the strict criterion. The model size is on the x axis, and the
categories on y axis. The categories found best are at the bottom, those not
found at top. From Publication VI.

6.6.1 Good and bad categories: an analysis of the evaluation
sets

Publication IV reports on an experiment in which forward feature selec-

tion based on entropy was used as a means to separate one of the Bat-

tig categories from all of the others, see Figure 4 in Publication IV. The

performance in feature selection was further compared to a separation of

randomly generated categories. It was found out that while the average

separation of the Battig categories was clearly better than random, there

were some categories that were not separated well.

In Publication VI, a visualization method was devised to show how well

the categories are found for different model sizes. Figure 6.5 shows the

results for the strict condition using the ICA and the LDA 2 model and

10 iteration runs. The darker the rectangle on the visualization, the more

often it was found on different iteration runs, and a white rectangle indi-

cates that the category was not found. The resulting visualization of the

LDA-based model contains lighter shades of gray, probably due to the ran-

dom initialization. On the other hand, in ICA, the Principal Component

Analysis step is always the same, and variation between the iteration

steps is smaller. It can be seen that some categories are found early on

with the strict condition, such as COLOR, MALE NAME, VEHICLE, SCIENCE

and NATURAL EARTH FORMATION. The LDA model finds more categories

with the strict condition, but the categories are not necessarily found on
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Figure 6.6. Comparison of ICA (left) and LDA 2 (right) results for the Battig categories
with the lax criterion. From Publication VI.

every iteration. The effect of model size is also evident: When the model

size grows larger than the number of categories in the set, words of the

category are split into different topics or components, and the category is

’lost’ again.

Figure 6.6 shows the results for the Battig data for the lax condition.

A majority of the categories is found with this condition. Interestingly,

some categories, such as KIND OF CLOTH, KITCHEN UTENSIL, FURNI-

TURE, CARPENTER’S TOOL, and TOY are rarely found with the LDAmodel,

and the ICA model does not find them at all. In Publication VI, similar

analysis was also made for the BLESS categories and relations with simi-

lar results on the BLESS categories (see Figures 5, 6, and 7 in Publication

VI).

These results suggest that while it is easy for a human to make cate-

gory judgments of almost anything, there are quality differences between

the categories in these sets which makes some of them more difficult to

be represented with a vector space model. This phenomenon is further

studied in the following section.

6.6.2 Visualizing words and category relations

Visualization of the words in a map that preserves maximally the neigh-

borhood structure can also be a useful tool to analyze the relations be-

tween the words. There is a long history of visualizing word maps, often

with the SOM (Kohonen, 1982, 2001), starting from Ritter and Kohonen
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Figure 6.7. The antonym pairs from Publication III visualized with NeRV. The antonyms
which have their pair in the close neighborhood are shown in boldface.

(1989) and Honkela et al. (1995), which concentrated more on syntactic

categories. The SOM is also useful when visualizing document collections

(Kaski et al., 1998; Back et al., 2001). In this dissertation, adjectives were

visualized with NeRV in Publication III and the BLESS and Battig cate-

gories were visualized with the SOM in Publications V and VI.

6.6.3 Visualization of adjectives with NeRV

Figure 6.7 shows a visualization from Publication III, where the antonym

pairs are projected into a 2-dimensional space using NeRV. The antonyms

that have their pair in the close neighborhood are shown in boldface. This

visualization shows that some similar words are close to each other, such

as the time-related adjectives at the top left corner. Such a visualization

can be used as a tool to inspect relations of words. In the case of the

adjectives, there are some word pairs and semantically related words that

are close by, but no clear division.

6.6.4 Visualization with SOM hit histograms

After training a SOM with the word vectors, the words can be visualized

on the Self-Organizing Map by adding labels to map units that best match

the word vectors. This approach is suitable, if the number of labels is lim-

ited. Too many labels make the visualization illegible. Categories can be

also visualized with hit histograms. The data points are projected to the

map to the corresponding best-matching units, and the size of the dot in
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(a) Attribute (b) Coordinating
concept

(c) Event (d) Hypernym (e) Meronym

Figure 6.8. The different relation classes of the BLESS set visualized with the Self-
Organizing Map. A good separation has been obtained for classes that do
not overlap with other categories, such as the event (c). From Publication V.

each map unit indicates the number of hits. In the following visualiza-

tions, a completely filled map unit contains five or more hits. In Publica-

tion V, the SOM was trained with the word vectors that correspond to the

BLESS vocabulary, and in Publication VI a joint vocabulary that contains

both BLESS and Battig vocabularies was used. The label information is

only used in visualization, and it does not affect the training of the map.

Visualization of BLESS relation classes with SOM

In Publication V, the BLESS relation classes were visualized on a Self-

Organizing Map, shown in Fig. 6.8. The words in the ATTR category are

all adjectives, the words in the EVENT category are verbs, and the words

in the COORD, MERO and HYPER categories are nouns. It can be seen that

the EVENT category Fig. 6.8c separates well from the others. The ATTR

class (Fig. 6.8a) separates into several disjoint regions, and the HYPER

class is similarly spread into several disjoint regions, some overlapping

the ATTR and MERO classes. The two other noun categories, MERO and

COORD, are fairly separate.

Visualization of Battig categories with SOM

In Publications V and VI, the categories that were not found with ICA

or LDA were analyzed in more detail using the SOM hit histogram visu-

alizations. In Figure 6.9, ten categories from the Battig set are visual-

ized. Figs. 6.9a–6.9e show the five categories that were found best with

LDA and ICA using the strict condition and Figs. 6.9f–6.9j the five most

difficult categories that were not found with LDA or ICA using the lax

condition.

The visualizations show that the ’easy’ categories form a concise clus-

ter of one or few neighboring map units, whereas the difficult categories

are often spread all over the map without forming a concise cluster. The

only ’easy’ category with an outlier in these visualizations is the category
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(a) Male’s
first name

(b) Science (c) Color (d) Sport (e) City

(f) Kind of cloth (g) Kitchen utensil(h) Furniture (i) Human
dwelling

(j) Carpenter’s tool

Figure 6.9. The best (a–e) and worst (f–j) Battig categories visualized with the SOM.
Adapted from Publication VI.

COLOR in Fig. 6.9c. The outlier in the lower left corner is the word brown,

which is mapped to a node where the other instances belong to human

categories, indicating the polysemous nature of the word. This is often

the case with the words in the ’difficult categories’. The words in them

seem to be more often common and polysemous, whereas in some cases,

such as KIND OF CLOTH in Fig. 6.9f, there is also overlap with another

other, more prominent category, ARTICLE OF CLOTHING.

These results make us pose a question: What kind of features would

be needed to represent these ’difficult’ categories? Would a representation

that distinguished between different context types, proposed, for example,

by Erk and Padó (2008) be sufficient? The BLESS category visualizations

with similar results can be found in Figure 5 of Publication V.

Related categories

The relations between categories can be examined using a SOM visual-

ization. In Publication VI, the words in the seven Battig categories that

belong to a higher-level category HUMAN were visualized using a hit his-

togram and adding labels to denote the hits in each map unit. The results

are shown in Fig. 6.10. The categories overlap partly and most of the

words are mapped together in the lower left corner of the map except for

two outliers. These correspond to the words private and major from the

MILITARY TITLE category and they are close to attribute words (see Fig.
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Human category words

’mary’
’sue’
’anne’
’jane’
’judy’
’carol’
’barbara’
’cathy’
’linda’
’joan’

    ’john’
    ’bob’
    ’bill’
    ’jim’

    ’tom’
    ’joe’

    ’dick’
    ’mike’

    ’george’
    ’jack’

 ’salesman’

’priest’
    ’rabbi’
    ’pope’

’preacher’
  ’teacher’

’private’
    ’major’

’uncle’
’father’
’brother’
’cousin’
’grandfather’
’nephew’
’bishop’
’pastor’
’cardinal’
’reverend’
’lawyer’
’engineer’
’professor’
’psychologist’

 ’aunt’
    ’mother’

    ’sister’
    ’grandmother’

    ’nun’
    ’doctor’
    ’dentist’
    ’nurse’

    ’lieutenant’
    ’general’

    ’sergeant’
    ’captain’
    ’colonel’

    ’corporal’
    ’admiral’

    ’commander’
    ’president’

    ’vice−president’
    ’senator’
    ’mayor’

    ’treasurer’
    ’secretary’
    ’governor’

    ’representative’
    ’congressman’

    ’chairman’
    ’minister’

  ’carpenter’

Figure 6.10. All the words of the categories in the Battig set that are part of a higher
level category HUMAN. These categories are MALE NAME, GIRL’S NAME,
MEMBER OF THE CLERGY,ELECTIVE OFFICE , RELATIVE, OCCUPATION OR
PROFESSION and MILITARY POSITION. From Publication VI

.

9a in Publication VI), which indicates that the sense induced from the

distributional data is not the one they were labeled with.

A split between the genders can be also noted: While the map unit at the

lower left corner is the most populated one containing all words from the

ELECTIVE OFFICE category, and most words from the MILITARY TITLE, it

also contains the male words from RELATIVE. The member of the clergy

category seems to be divided into two main parts. Bishop, pastor, cardi-

nal and reverend are also in this map unit, whereas words such as priest,

rabbi, preacher and pope are in another map unit along with teacher. This

might indicate similarity in the meaning of words preacher and teacher,

but no obvious reason that would cover all of the words mapped in this

unit can be given. In a separate map unit, there are words indicating

female gender, including the female words from RELATIVE and words in-

dicating female occupation such as nun and nurse. In addition, the words

doctor and dentist are mapped onto this node. The proper nouns are all

mapped into a separate map unit regardless of the gender. This kind of

an analysis can benefit exploration by making the relations between cat-
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Table 6.9. Words with highest activation for a sample of ICA components using 50 inde-
pendent components. The characterizations on the first row are given by the
researchers. From Publication V.

’moving’ ’material’ ’music’ ’attribute’ ’fruit’ ’color’ ’cultural’ ’animal’ ’tree’
dive steel rock male strawberry red christian insect pine
jump wooden pop healthy pineapple blue medieval mammal cedar
crawl ceramic music young banana yellow indian vertebrate oak
swim plastic dance solitary citrus white ancient invertebrate cypress
kick metal acoustic female mango purple modern aquatic poplar
glide concrete hop intelligent grape black american carnivorous willow
walk glass jam timid peach pink religious reptile evergreen
climb cardboard metal shy apricot green asian amphibian birch
fly copper mix faithful watermelon grey african bird elm
float iron swing peaceful lemon golden roman animal acacia

Table 6.10. The number of frequent sets per each set size analyzed for strict (S) and lax
(L) condition. ICA is able to find more stable frequent sets than LDA. From
Publication VI.

Set size
Model size Condition Method 10 9 8 7 Total

60

S
ICA 8 10 12 9 39
LDA 1 0 3 7 2 12
LDA 2 0 3 3 7 13

L
ICA 13 27 23 18 82
LDA 1 1 12 16 12 41
LDA 2 3 14 15 18 50

200

S
ICA 9 20 22 23 74
LDA 1 0 2 5 4 11
LDA 2 0 2 7 12 21

L
ICA 32 36 38 43 149
LDA 1 1 12 25 31 69
LDA 2 2 15 29 52 98

egories visible, show possible subcategories (such as gender), and polyse-

mous words which are not clustered according to their ’indicated’ category

label.

6.6.5 Qualitative analysis of frequent related word sets

Independent Component Analysis can be used to find interesting word

sets in an explorative manner. In Publication V, several sets were shown

to be of interest, listed in Table 6.9. They range from verbs describ-

ing movement to music-related words, materials, fruits and cultural at-

tributes.

Publication VI introduces a method to find sets of semantically related

words that occur frequently in separate iteration runs using a simple

search algorithm. Ten iterations were run in each case of the analysis.

First, the word sets of size N = 10 that correspond to the maximum ac-

tivation for each component or topic are selected. As it was noticed that

there is sometimes slight variation of one or two words between iteration
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Table 6.11. Types of qualitative classes the word sets found were classified into

Type Description of the qualitative class
A Words are related in some way and the

majority label given is as descriptive as
possible of the words in the set.

B Words are related in some way and the
majority label is somewhat descriptive,
but a more descriptive account can be eas-
ily given.

C Words are related in some way, but there is
no majority label that describes the words

D There is no majority label, nor is there any
perceived relation between the words in
the set.

runs, the subsets of the original sets are taken into analysis, defining the

size of set as 10 ≥ Nset ≥ 7. From all possible word sets found, the sets

that occurred in different iteration runs more frequently than a thresh-

old M were retained for analysis. The strict and lax limits were again

defined: In the strict condition, the word set had to be found on nine out

of ten iteration runs, Mstrict =≥ 9
10 , and in the lax condition, it had to be

found in a majority of the iteration runs, Mlax ≥ 6
10 . Note that earlier

Prstrict and Prlax were defined as the number of words in a set that be-

long to a certain evaluation category. In the current experiment, there is

no evaluation set: the Mstrict and Mlax refer the times the same word set

is found over separate iteration runs.

Results were reported for model sizes T = [60, 200] for both strict (S) and

lax (L) condition, with models trained on the word vectors of the BLESS

vocabulary. Table 6.10 details the number of sets found for each model

type, size and condition. The ICA method is able to find a considerably

larger number of frequent sets with both conditions than the LDAmethod.

The training length of the LDAmethod affects also the number of frequent

sets. With longer training (LDA 2), there are more stable frequent sets

that are found in different iterations. This phenomenon is especially clear

with the large model size (200).

Further, an analysis on the quality of the sets found was carried out in

Publication VI. In exploration, there might not be labeling available for

all semantic groupings, and human evaluators must be used instead. To

obtain insight on the quality of the retrieved word set, a simple evalua-

tion criteria was devised. Each word set exceeding the criteria described

above was checked against all existing BLESS labels, and majority labels

for category, relation and category-relation were calculated for each word
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Table 6.12. Examples of the word sets of different qualitative types taken from an anal-
ysis of ICA with 200 components and the strict condition. From Publication
VI.

A B C D
cannon aeroplane dance circuit
cartridge aircraft electronic floor
firearm airplane garage fret
grenade bomber hop pick
gun fighter jam place

musket glider metal round
pistol helicopter music season

revolver jet pop seed
rifle pilot rock spot

shotgun plane swing ward

set Four different qualitative classes or types were then defined. These

types characterize the quality of the set: Are the words semantically re-

lated, is there a majority BLESS label, and does it describe the group

well? The types are listed in Table 6.11. These types are A, a descrip-

tive majority label; B, a somewhat descriptive majority label but more

specific description is easily found; C, no descriptive majority label exists,

but words are clearly related; and D, no descriptive majority label, nor

any clear semantic relation between words is easily given.

Each word set was classified into one of the four types based on how well

the well the majority category or relation labels described the word set.

These classifications are given below. Examples of the different categories

are given in Table 6.12. In the example of type A, all words are correctly

labeled with WEAPON. In the second example, of type B, all words are

labeled with VEHICLE. This as such is correct, but in addition, all words

except pilot are vehicles that fly. The methods are able to represent land

vehicles and water vehicles with different components. In the third ex-

ample (type C), there is no category label to describe the majority of the

words, but an evaluator can easily see that the words are all related to

music. Finally, in the fourth example (type D), there was no easily per-

ceived semantic sense for the group by the researchers.

The word sets were then analyzed by the researchers. The number of

types found with each model type and size are shown on Table 6.13. The

existing BLESS labels (type A) coverage varies between 0 and 40 percent,

whereas the case B coverage is between 20 percent and 80 percent. This

is mostly due to the word sets labeled with a simple relation label divided

into more distinguished sets. The fraction of the meaningful sets with no

label (type C) is not negligible, either. The coverage ranges from seven to
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Table 6.13. The qualitative analysis of the found frequent sets in the BLESS set. From
Publication VI.

Model size Condition Method A B C D total

60

S
ICA 8 22 6 3 39
LDA 1 5 3 1 3 12
LDA 2 5 4 2 2 13

L
ICA 16 50 8 7 81
LDA 1 13 16 8 4 41
LDA 2 12 33 3 2 50

200

S
ICA 7 49 9 9 74
LDA 1 0 9 1 1 11
LDA 2 0 17 2 2 22

L
ICA 23 101 11 14 149
LDA 1 8 48 5 7 68
LDA 2 13 60 17 8 98

20 percent of the sets found, depending on the number of topics and the

condition.

In Publication VI, the analysis is carried out only by the researchers.

Thus it is subject to the same subjectivity as any labeling, and the results

give only a rough estimate about the quality of the word sets discovered.

It can be noted that for majority of cases, the existing labels give some

kind of a description of the words, and partial labels, which, for example,

describe the words as attributes, are more prominent. The number of

word sets found without a descriptive label was relevant, as well, and the

number of nonsense word sets was fairly low.

Examples of semantically meaningful word sets found with ICA (with

T = 200 components) are shown in Table 6.14, with a characterizing

description given on the first row. Very different attribute groups from

cultural attributes, to colors, and attributes related to sensing were dis-

covered. Characterizing noun categories is easier than characterizing

attribute or adjective classes, but these results demonstrate that such

groupings can be found from corpus data with distributional analysis and

unsupervised methods.
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Table 6.14. Different word sets labeled with the attribute relation from the ICA-200
set with strict condition. The characterizations have been given by the re-
searchers. From Publication VI.

’cultural’ ’time/period’
’positive/
negative’ ’dangerous’ ’short’

african ancient accurate aggressive bad
american antique bad armed cute
ancient baroque excellent bitter dirty
antarctic gothic fresh ferocious funny
asian medieval good fierce nice
christian modern impressive heavy pretty
indian old magnificent sharp scary
national roman solid strong stupid
rim romanesque strong stubborn ugly
roman ruined

’color’ ’shape’ ’taste’ ’dangerous’
’animal
characteristics’

black circular crunchy addictive aquatic
blue curved delicious dangerous arboreal
green cylindrical juicy deadly carnivorous
grey flat oily destructive endangered
pink narrow sour explosive herbivorous
purple oval spicy lethal nocturnal
red rectangular sweet nuclear solitary
white rounded tart poisonous venomous
yellow spiral tasty
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7. A simulation model of concept and
lexicon emergence

This chapter details a multi-agent simulation approach for modeling vo-

cabulary emergence presented in Publications VII, VIII and IX. In this

chapter, the focus is on the process of an emerging language, categoriza-

tion and naming. The model introduced in this chapter is a complete

model in a sense that the language used is grounded, and the three cor-

ners of the semiotic triangle introduced in Section 2.2 are included. This,

according to Vogt (2002), suffices to solve the symbol grounding problem.

In this approach, the model is borrowed from Peirce, but does not go deep

into Semiotics. (See, for example, Gomes et al. (2007) for discussion on

computer simulation of Peircean signs in a strict sense.) This approach

can be contrasted to the distributional model presented in the previous

chapter, where the meaning of words is grounded only through use. Com-

pared to the natural language discussed in the previous chapters, the lan-

guage used in the simulations is artificial, but emergent similarly to nat-

ural languages. Refer to Table 2.1 in Chapter 2, in which different types

of languages were defined.

The goal of the work presented in this chapter is to study how a shared

vocabulary emerges in the interaction in a population of individuals. For

this purpose, modeling choices for both a) the model for an individual and

b) for modeling the communication between individuals are discussed. Ta-

ble 7.1 lists minimal abilities the agent needs for the communication pur-

poses. The perception ability allows the agent to receive information from

the outside world. To perceive, the agent needs senses to receive the in-

put through the senses. The conceptual representation ability requires a

conceptual memory in which to store the concepts, and a method by which

to produce the concepts from the perceptions. The theoretical discussion

of the concept of concept was presented in Chapter 2. The ability to com-

municate using symbols assumes several other skills: The agent must, at
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Table 7.1. The semiotic triangle and the abilities of the agent required

Semiotic triangle Abilities of the agent Computational real-
ization

Referent Has senses to receive
sensory information

Can perceive objects
described by a three
dimensional (color)
vector

Concept Can produce concep-
tual representations
from perceptions and
store and access and
recognize them

A conceptual memory
realized by a SOM
with a possibility to
map perceived objects
and words into the
map

Symbol

Ability to produce
words

Creates words from a
given ’language’

Ability to perceive the
words signaled by an-
other agent

Can ’perceive’ words
uttered

Ability to associate the
symbols to the con-
cepts

Can associate words
to the best-matching
unit of the viewed ob-
ject
Ability to select best
word for a given utter-
ance based on selec-
tion criteria

least, be able to perceive and to produce symbols, and associate the sym-

bols to the concepts; have a learning mechanism to be able to decide which

symbol to use; be able to establish joint attention; and be able to engage

in a communication act.

Figure 7.1 illustrates the two modeling processes at the level of the com-

munity. Each agent is an individual with its own conceptual model and

subjective experiences that train the conceptual memory. The agents en-

gage in communication acts, and through these interactions a shared vo-

cabulary emergence can be studied. By a shared vocabulary, it is meant

that statistically speaking, two agents use the same symbol to describe

the same referent. See Section 7.2 for details. This chapter details the

computational realization choices for such a model, the experiments and

the evaluation of the results.

7.1 From perceptions to concepts

In the following, the modeling assumptions and choices are discussed in

more detail.
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Figure 7.1. The two processes in the simulation model: Learning the individual concept
space for each agent separately, and convergence to a shared vocabulary us-
ing communication instances between two agents in a population.

Subjective experiences

We assume that the observations of the agents are subjective, while the

underlying machinery to treat them is the same. This corresponds to the

case where the biological capabilities of the humans are approximately

the same, but the experiences during learning affect the representation

level: the formation of the concepts.

The sensory information

In Publications VII and VIII, the agents perceptions consist of colors rep-

resented in the Red-Green-Blue (RGB) color space C, which is a three-

dimensional continuous space with ci ∈ [0, 1]. The data source are arti-

ficial color pictures, see Fig. 7.2 for an example. The data has 8 peaks

or prototypical colors ρ = {000, 001, 010, 011, 100, 101, 110, 111} correspond-
ing to the eight corners of the 3-dimensional cube that makes up the RGB

color space, and noise at the level of 20 percent is added to make the peaks

wider. Thus, the perceptions of the agents are continuous, and not only

limited to the eight discrete prototypical colors. The amount of each color

in each picture varies. Any other color representation could have been

used in the place of the RGB color space.

Separate training data sets for training the semantic memories of each

agent were used in the experiments. This mimics the situation where
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Figure 7.2. An example of the color picture used to train the semantic memory of an
agent. Each agent is trained with a slightly different picture containing the
same prototypical colors and noise at the level of 20 percent.

the experiences of the agents differ. For the communication phase, an

additional data set was constructed in a similar fashion to serve as the

topics of the language games that the agents play. The topic for each

communication instance was then selected randomly from this set.

7.1.1 The process of concept learning

In the model, concept learning is divided into two phases. First, the indi-

vidual concept maps are trained with the color data prior to the language

acquisition. After the initial training, the map is not changed. This cor-

responds to a situation, in which a child would initialize its feature rep-

resentation based on natural visual data, prior to any vocabulary learn-

ing. This approach is a simplification, and in a realistic setting the con-

cept space and vocabulary co-develop at least partly. In the first phase,

the agent learns the regularities in the data. There are no fixed bound-

aries between concepts, but the concept representations are more or less

continuous. See, for example, Zadeh (1965) and Honkela and Vepsäläi-

nen (1991) for further discussion. This differs from the approach by Vogt

(2005), for example, in which a separate discrimination game was used.

In that game, the agent explicitly partitioned the space in such a way that

each item in the visual view of the agent was in a separate partition in

the space that formed a concept.
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In the second phase, when the agents start playing the communication

games, words are associated with the concepts in the concept space. This

is realized by mapping the observation to the closest match in the seman-

tic memory, and attaching the name as a label to that map unit.

The agents create new words if there are no words they can use. Each

map unit may be associated with multiple labels, and labels can be asso-

ciated with multiple map units, hence the mapping is many-to-many. As

there are no explicit boundaries, proximity is used as a measure of simi-

larity, and names can be shared with items mapped to nearby units in the

semantic memory.

It is clear that the two-phase model does not fully correspond to human

word learning, where the association between words and the referents

is an ongoing process and parallel rather than serial. In human children,

also language comprehension precedes language production, which allows

humans to transfer the existing language to the young. Such a model

would be easy to realize as a generational model, such as the Iterated

Learning Model (ILM) (Kirby, 2001), in which only the older, adult agents

can be speakers, and children are always the hearers.

An agent model also includes word production and word perception. In

the current model both are very simple. Words are perceived as transmit-

ted, and possibility of error in the communication channel is not consid-

ered. Word production is also assumed error free. This is in contrast with

the noisy channel model (Section 3.4.2), where the focus is in the effect of

the noise of the channel. In our case, we are more interested in the ’noise’

that stems from the subjective semantic representations.

In the beginning of the simulation, there are no words in the vocabulary

of any agent. When there is no word to express a given concept, the agents

create words in a language that has the alphabet Σ consisting of nine let-

ters: Six consonants Σc = (b, c, d, f, g, h) and three vowels Σv = a, e, i. Each

word in the language consists of two or three repetitions of the pattern

CV : a consonant followed by a vowel: Lpatt = (CV CV,CV CV CV ). These

choices are arbitrary, and any other language production rules could be

specified. The number of words in the possible vocabulary is thus fixed,

but relatively large.

7.1.2 A formal model of agent’s concept space

The key concept of the communication model from Publication IX is the

agent’s internal view of its concepts based on learning, that is, the con-
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cept space, which is based on the Conceptual spaces theory introduced

in Section 3.3.4. By Gärdenfors’ terminology, the quality dimension Di is

represented by the feature fi, see Chapter 3 and Gärdenfors (2000). The

dimensionalities of the concept spaces can be different for each agent. The

features used by agent a1 are f1
i , i = 1 . . .M and features used by agent

a2 are f2
j , j = 1 . . . N .1 The concept spaces of the two agents are thusM -

dimensional metric space C1 for agent a1, andN -dimensional metric space

C2 for agent a2. In addition, there exist two distance measures, dω and dλ,

which give distances between two points inside the concept space of one

agent, and between the concept spaces of the two agents, respectively.

dω : Ci × Ci → R for i = [1, 2] (7.1)

dλ : Ci × Cj → R where i �= j (7.2)

While it is possible to measure dω in a metric space, distance measures dλ
are not easily defined.

Each agent has its own vocabulary in a form of a symbol space: S1 and

S2 for agent a1 and agent a2 respectively. The symbols are mapped to the

concept space of the agent through a mapping function ξi which maps the

symbol si ∈ S to Ci.
When communicating, agent ai expresses a symbol si ∈ Si as a signal d

in the signal space D, which is multidimensional, continuous and shared

between the agents. Each agent has an individual mapping function φi

from its vocabulary to the signal space, i.e., φi : Si → D and an inverse

mapping φ−i from signal space to the symbol space. See also Figure 7.3

for a schematic overview.

7.1.3 Building a conceptual memory

In Publications VII and VIII, the Self-Organizing Map is used to imple-

ment the conceptual memory of an agent, following the suggestion of Gär-

denfors (2000). Earlier, agent simulation applications have used, for ex-

ample, feedforward multilayer networks for this purpose (Cangelosi and

Parisi, 1998; Grim et al., 1999). Schyns (1991) uses a modular approach

similar to the one presented here, in which the Self-Organizing Map is

used for categorization of the input, coupled with a supervised system for

naming. Vogt (2005) uses the space spanned by n axes of the continuous-

1Publication VIII uses i as the index for both agents. Here, j is used for the sake
of clarity.
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Figure 7.3. The agent communication model. From Publication IX.

valued features that are used to represent the perceived objects, in their

case the color dimensions RGB and an additional shape dimension S.

The Self-Organizing Map obtains a low-dimensionality representation

of the data and preserves the topological ordering (Kohonen, 2001). As

a methodological alternative to the Self-Organizing Map, the Generative

Topographic Map (GTM) (Bishop and Williams, 1998) could, for example,

be used. Before the actual simulation process, the conceptual maps were

trained separately. Figure 7.4 shows an example organization of the con-

ceptual memories of two agents. The colors shown are the RGB values of

the map vectors. The maps are well organized and transformations from

one color to another are smooth. The eight prototypical colors are more
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(a) Agent 1 (b) Agent 2

Figure 7.4. Conceptual maps of the agents from a two-agent simulation. Adapted from
Publication VIII.

prominent as they are more frequent in the data than the intermediate

colors that have resulted from added noise.

When an agent perceives an object, that is, the color vector, it is mapped

to the Best Matching Unit (BMU) on its conceptual memory, based on the

minimum distance dω between the perceived object vector and the map

unit vectors. In the experiments of Publications VII and VIII with the

SOM implementation, the Euclidean distance (cf. Table 4.3) is used as

the distance measure dω (Eq. 7.1). If a word is observed at the same time,

the word is associated to the best-matching unit the perceived vector was

mapped to. Each word map-unit mapping also has an associated usage

count or weight σi. The different schemes to define the weights are defined

later in Section 7.2.3 of this chapter. A map unit can have several words

associated to it and a word may be associated with several map units.

In the beginning of a simulation, no map unit has any words associated

with it. Through a series of language games, words become associated

with the map units. Association can be many-to-many: the same word

can be associated with several map units, and the same map unit can be

associated with several words.

The neighborhood Ri is defined as the neighboring units of a map unit

mi. If the size of the neighborhood |R| = 0, only mi is considered. If

|R| = 1, all the neighbors adjacent tomi are included, and with |R| = 2 all

adjacent neighbors of the map units belonging to the 1-neighborhood are

included, see Fig. 7.5. The meaning of a word is thus defined as the map
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Figure 7.5. The different sizes of the neighborhood of the map unit s (black)

unit or a group of map units in the Self-Organizing Map. The word is not

directly associated with the referent in the world, but to a representation,

which is the best-matching unit on the map.

7.2 Modeling shared vocabulary emergence in a population

In addition to modeling individual agents, a model for communication in

a population is needed.

7.2.1 The language game model revisited

To communicate, the agents engage in language games. The modeling

ideas behind the language games were covered in Section 3.4.1. In Publi-

cations VII and VIII, the basic naming game algorithm based on associa-

tive learning is used:

1. Two agents are chosen randomly from a population of agents and

arbitrarily given the roles of speaker and hearer.

2. The topic of the language game is randomly chosen from the set of

topics.

3. Both the speaker and the hearer search for a map unit on their con-

ceptual map that best matches the topic, i.e., find a BMU on their

conceptual map.

4. The speaker searches a word that could match the topic from the R-

neighborhood around the BMU, and selects a word that is best, given
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a selection criterion. If no word is found, a new word is invented and

associated with the BMU. Once found, this word is conveyed to the

hearer.

5. The hearer then searches for a set of possible words that could de-

note the topic. If the word the speaker has uttered belongs to this

set, the game is considered a success, else it fails. The association

weights σ of both agents are updated accordingly, see Section 7.2.3

for details.

7.2.2 The two-agent communication model

A formalized version of the language game process for two agents was

presented in Publication IX. As before, C1 and C2 are the conceptual

space representations for agents a1 and a2 respectively. s∗ is the symbol

the Agent 1 communicates, and f1 are the features of the context agent

a1observes. For a single agent,

s∗ = argmins∈S1 dω(f
1, ξ1(s)) (7.3)

The agent then selects the symbol that best corresponds to current ob-

servations by the means of some distance measure dω. In Publications

VII and VIII, Euclidean distance is used. After symbol selection process,

agent a1 communicates the symbol s∗ to agent a2 expressing the symbol

s∗ in the signal space D.
d = φ1(s∗) (7.4)

When agent a2 observes d, it maps it to some s2 ∈ S2 by using the func-

tion φ−2. It then maps the symbol to some point in its conceptual space

by using ξ2. If this point is very near to its own observation f2 we can say

that the communication process has succeeded. That is

‖ξ2(φ−2(d)− f2)‖ ≤ ε, (7.5)

where ε is a small constant and ‖ · ‖ is some suitable norm in C2.
In a two-agent model, we expect that the speaker has some estimate of

the receiver’s conceptual space available. This model can be learned from

communication samples or it can be known a priori. The symbol selection

process is formally given in Eq. 7.6, where ξ̃2 is the model of the hearer

or the receiver. The vocabulary of the hearer can also be unknown and
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should be estimated by S̃2.

s∗ = argmins∈S̃2 dλ(f
1, ξ̃2(s)) (7.6)

This model differs considerably from the Shannon communicationmodel,

where the meaning of the messages is assumed to be known and shared.

7.2.3 Learning in language games

In the publications of this dissertation, two different algorithms were used

in the learning process for the competing words for each concept.

In Publication VII, association weights σwj ,mi are defined for each as-

sociation between word wj and map unit mi for each agent k. They are

updated according to the outcome of the game: increased by one when the

game was successful, and decreased by one when a game failed, within

upper and lower limits: σwj ,mi ∈ [0, 20]. When a new association between

a word and a map unit is instantiated, the weight is initialized with value

σwj ,mi = 1. The counter value approach is similar to Steels (1996), with

the additional upper limit. In Vogt and Coumans (2003), the method used

for naming game and guessing game is similar, but instead of decreas-

ing the count by one the count is multiplied by a constant learning rate

η = 0.9. In Vogt and Coumans (2003), lateral inhibition of competing

word meaning pairs was also used. The lateral inhibition was excluded

from the experiments of Publications VII and VIII, as the meanings are

more fuzzy due to the neighborhood approach instead of being discrete or

crisp regions.

In Publication VIII, another version of the learning function is used

based on likelihood. There word-BMU association score σwj ,mi is increased

only after a successful game, and the agent selects a term to use for a

given topic based on the estimated maximum likelihood. It is estimated

as the number of successful uses of the term for that BMU, proportional

to all of the successful uses of all the terms in that map unit.

p(wj) =
σwj ,mi∑n

j=1(σwj ,mi)
. (7.7)

The likelihood is estimated for all the terms associated with the BMU and

for those map units within the neighborhood R to it. The term with the

highest likelihood is selected and uttered.
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7.3 Evaluation of the communication

Each of the model components can be evaluated based on the plausibility

of such a component. As the purpose of the model is to find whether a

shared vocabulary emerges, a number of evaluation measures are used to

verify this.

Communication success

The communication or communicative success (CS) measures the outcome

of the game, that is, whether the agents engaging in the language game

are able to agree on the symbol use. As such, it is often incorporated as

a measure in language game simulations (Vogt, 2000; De Jong, 2000). In

this dissertation, it is defined as the fraction of successful games in the

previous 100 games, or if fewer games are played, the fraction of success-

ful games out of all played games.

The communication success alone is not a good measure of the quality of

the emerged lexicon. It might well be that the agents just use one word to

denote everything. This is why two additional measures, specificity and

coherence (De Jong, 2000), have also been used.

Specificity

The specificity measure indicates the degree of the polysemy of the words

in the lexicon. It decreases, if the agent uses the same word to denote

different meanings. The specificity based on the preferred word is used,

i.e. it is not calculated for all the words an agent could use but rather for

the word that the agent would select. Specificity can be defined for each

agent ai, where i = 1 . . . Na,

Specificity(ai) =
(Nρ)

2 −∑Nρ

k=1 fk
N2

ρ −Nρ
, (7.8)

where fk is the frequency of the kth word in the agent’s lexicon, that is

how many referents the word is associated to and Nρ is the number of the

stereotypical references. The specificity of the vocabulary of the popula-

tion is defined as the mean specificity of the specificity of each individual

agent.

Specificity =

∑na
i=1 Specificity(Ai)

Na
(7.9)
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Coherence

The coherence measure indicates the extent the agents in a population

use the same word for a particular referent. Coherence thus measures the

degree of synonymy in a language. For each referent ρj ∈ Rρ, the stereo-

typical eight colors used, the words preferred by each agent are checked

and the number of occurrences of the most frequent word fmax is divided

by the number of the agents Na (Eq. 7.10). The vocabulary coherence is

a population measure obtained by averaging over all the referents (Eq.

7.11).

Coherence(ρj) =
fmax,ρj

Na
(7.10)

Coherence =

∑Nρ

j=1Coherence(ρj)

Nρ
(7.11)

The specificity and coherence measures expect a static and fixed set of

referents. As the current model has variation around prototypes, the pro-

totypes have been used in calculation of these measures.

Lexicon size

The lexicon size is also measured. It defines the number of individual

words in the shared lexicon. The mean lexicon size is calculated over the

individual agent lexicon sizes. The lexicons of the agents also contain

words that were created but never successfully used. Lexicon sizes are

reported both before and after the removal of the unused words.

7.4 Experiments and results

This section presents the simulation results from Publications VII and

VIII. The results are averaged over 10 simulation runs in both cases, ex-

perimenting with different neighborhood sizes. In Publication VII, the

length of one simulation was 5 000 language games. In Publication VIII

which employed the likelihood-based learning method, the convergence

was slower, and simulations were run for 10 000 games. Different popu-

lation sizes were tested: Na = [2, 4, 6, 8, 10] in Publication VII, and Na =

[2, 4, 10] in Publication VIII.

The results show that using both learning schemes for individual agent

word selection, a shared lexicon emerges after a number of iterations,

as indicated by the communication success scores. Figure 7.6 shows the

results for an experiment with the association weight scheme from Pub-

lication VII, with a map size M = 16 × 12, and neighborhood is |R| = 2.
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Figure 7.6. Simulation results for varying population sizes, with R = 2, map size Smap =
16× 12. From Publication VII.

The communication success score reaches the level of CS = 0.9 fairly fast,

even when using the largest population size.

The communication success score converges slower when the popula-

tion size grows. When games are played in a pairwise setting, more com-

peting words emerge and it takes longer for the shared words to spread

through a larger population, as agents have access to the same word only

through subsequent games on same topic. This behavior is also illustrated

in Fig. 7.6d, in which the number of unused words in the lexicon is very

high for large population sizes. In the experiment of Figure 7.6, also the

coherence (Fig. 7.6b) and specificity (Fig. 7.6c) scores are high, indicating

a shared vocabulary with little polysemy.

In Publication VIII, a smaller map of M = 8 × 12 units was used along

with the maximum likelihood in the selection process. Comparing the

communication success scores of the two methods, one can notice that

the learning algorithm used in Publication VII converges faster and to a

higher score than the likelihood-based algorithm of Publication VIII. Fig-

ure 7.8 shows the sample maps of Figure 7.4 labeled after 10 000 language

games have been played. Only the most probable label for each map unit

is shown. It can be seen that there are only one or two words for most pro-

totypical colors that are preferred: ’deci’ for black or dark colors, ’hihi’ for

blue, ’fehe’ for green, ’hebe’ for cyan, ’defebe’ and ’gahefa’ for red, ’cede’ for
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Figure 7.7. The CS scores for the likelihood-based learning algorithm. From Publication
VIII.

magenta, and ’babi’ and ’dabide’ for yellow. For white, the most frequently

used word is ’gedi’, but there are also competing labels for tinted shades

of white, as white covers a larger area in the space.

How does the neighborhood size affect the evaluation measures? It

turns out that the CS and Coherence scores are unchanged, but there

is a big difference in the Specificity scores, see Figure 7.9. With a neigh-

borhood size |R| = 1, the Specificity score rises fast to Specificity = 0.95

after 500 games. With a neighborhood size of |R| = 2, the score rises fast,

and then slightly drops. With |R| = 4, the effect is dramatic: the score

only rises to Specificity = 0.4 and then drops to the level of Specificity = 0.3

as simulation advances. This indicates that only a few words are used to

denote all the topics in the game.

Example maps from the same simulations are shown in Fig. 7.10, with

all labels attached to the map nodes. In these visualizations, the U-

matrices of the Self-Organizing Maps are shown. The shading of nodes

indicates the difference between the map nodes: the darker the shade,

the further apart the neighboring map units are.

In Fig. 7.10a, where |R| = 1, we can see that different prototypical col-

ors are separated by the darker shades that indicate a larger distance

between map nodes. All separate areas have a different label covering

that area (with the exception of the area in top left, where there are sev-

eral candidate labels). In Fig. 7.10b where |R| = 4, there is a single word,

121



A simulation model of concept and lexicon emergence

(a) Agent 1 (b) Agent 2

Figure 7.8. The conceptual memories of the agents shown in Figure 7.4 after labeled with
the emerged words after 10 000 language games have been played. Only the
most probable label in each map node is shown. Adapted from Publication
VIII.

’bihi’, which covers almost all of the map. There are instances of different

words present in the map, but these have not gained popularity. Thus, one

can conclude that the neighborhood radius used to find candidate words

depends on the map size. If the neighborhood radius is too large, single

words gain popularity, and the lexicon is not specific enough. This would

be alleviated if a constraint to alleviate polysemy would be in place. One

such constraint could be a need to discriminate between different topics,

for example, in a form of a guessing game where the agent needs to dis-

tinguish the topic of the game in a context of several objects.

The agent simulation experiments demonstrate that despite the indi-

vidual subjective semantic representations, a shared vocabulary emerges

in the agent population. The quality of the shared vocabulary depends

largely on the size of the neighborhood size |R|. This approach was de-

vised to enable a smooth transition between concepts, but one can ques-

tion, whether such a fixed radius is plausible. To mimic categorization,

the semantic map could be divided into separate categories by, for exam-

ple, clustering the SOM in some fashion. One can also point out that

while the representations are indeed grounded in (simulated) experience,

the representations are simplistic, and concentrate only on naming, not

considering any other functions of language. Building a simulation model

which would mimic even a fraction of the richness of the human experi-

ence associated with natural language would be a very demanding task.
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Figure 7.9. The differences in the Specificity score for different neighborhood radii in a
population of six agents, using the map size Smap = 16 × 12. The shades
of gray denote distances in the original space: the larger the distance, the
darker the color. Both maps have been organized to present the eight proto-
typical colors used in the input. From Publication VII.

(a) |R| = 1 (b) |R| = 4

Figure 7.10. Sample maps with different neighborhood size |R|. From Publication VII.
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8. Summary and conclusions

This dissertation has contributed to several different topics related to

computational modeling of language and meaning. It has provided an

introduction of language modeling and presented several methodological

choices for this purpose. It has contributed to different fields of study:

analysing the similarity of languages, corpus-based lexical semantics, and

modeling the emergence of language. Themethodologies used were mostly

based on information theory and machine learning, but the underlying

conceptual discussion is largely independent of the methodological choices.

8.1 Analysis of the complexity of language

In this work, unsupervised methods were introduced to evaluate the simi-

larity and differences of European languages at different linguistic levels,

which contributes to the field of machine translation. Two different com-

pression based approaches were used. In general, it can be concluded that

the compression based approaches are a valid unsupervised tool in ana-

lyzing the differences of languages, when used carefully. In the first task,

the analysis was carried out on both morphological and syntactic level

separately. The resulting language ordering is coarse, but offers insight

about the complexity at different levels. The compression results at the

syntactic level correspond fairly well to the available linguistic analysis

on syntactic flexibility and show that the compression methodology can

be used for this purpose.

An error was discovered in the second compression experiment in the

original publication, and new results were provided in this dissertation.

The new results also show that languages in the same family are grouped

close to each other. An overall similarity measure of a language may take

into account very different aspects of language, but this is very dependent
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of the representation: The non-Latin alphabet of Greek differs already at

the level of encoding, and the languages thus differ fundamentally at that

level. Thus the different alphabet hides the fact that several words and

concepts in many Western languages are actually of Greek origin.

The Morfessor analysis was also carried out for several languages for

the first time, and the results coincide with the compression results at the

morphological level. Morfessor is based on the MDL principle of trying

to find the minimal description for the language, and as such, it is also a

certain kind of compression.

All of the languages analyzed in this dissertation were European lan-

guages, and as such, not a representative sample of the languages of the

world. The availability of the text data in electronic form limits the analy-

sis of those languages where no such electronic resources exists. Similarly,

the lack of linguistic analyzes for evaluation is a problem.

8.2 Distributional modeling of word meaning

The distributional model for representing word meaning was introduced

along with different semantic evaluation sets. This dissertation contains

a considerable amount of work on vector space models, and their evalua-

tion. In it, we demonstrated how multi-lingual semantic representations

can be built, which would also benefit machine translation. In addition,

vector representations for adjectives, a previously understudied syntactic

category, were created.

A large contribution in this dissertation is demonstrating the usefulness

of Independent Component Analysis in deriving corpus-based representa-

tions. It was shown that the independent components of the Independent

Component Analysis method represent semantic information better than

the latent features of the Latent Semantic Analysis. Furthermore, the

performance of Independent Component Analysis and Latent Dirichlet

Allocation was compared. It can be concluded that both of these methods

are able to find groups of words that are semantically similar and corre-

spond to human category judgments. Such methodologies could be used,

for example, in sense induction, or representing the senses of polysemous

words.

In addition to evaluating the performance of the unsupervised methods,

the research also provided information about the concept of the category:

some categories are easily represented with these methods, whereas oth-
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ers are more difficult. In addition, it was shown that the unsupervised

methods find structure beyond the provided class labels. This is an im-

portant aspect of such an analysis. We do not only want to confirm the

performance of the computational methods, but also to find out where the

linguistic analysis might be lacking. The use of the Self-Organizing Map

as an explorative tool was demonstrated again: showing how different cat-

egories can be visualized, and relations between them analyzed through

visualizations. Thus, this part of the study also gives insight on optimal

approaches for generation and visualization of semantic representations.

As the method was not able to represent all the categories, it is nat-

ural to ask what kind of representations would be needed to represent

the categories the method could not find easily. These categories seem to

contain more polysemous or frequent words, and the vector space model

was not able to distinguish between the different senses very well. In

the work presented in this dissertation, a simple bag-of-words model was

used, which does not take any syntactic information into account. A model

where the different contexts of a word are explicitly defined such as pro-

posed by Erk and Padó (2008) might be a suitable tool to model the dif-

ferent senses of the words in the ’difficult’ categories. The contexts can

be formed, for instance, using methods for segmenting text based on their

topic distributions (Ginter et al., 2008).

Independent Component Analysis and Latent Dirichlet Allocation were

both applied to the word set that contains known categories. Applying the

methods on an unrestricted vocabulary yields coarser results. Thus, the

data selection for unsupervised learning can be described as certain kind

of supervision. Still, the experiments have shown that the methods also

learn subcategories and sometimes other categorization beyond the labels

of the evaluation set. Further analysis on the trade-off between using

a large, unlabeled or partially labeled data, or smaller, labeled data sets

could be performed. This dissertation concentrated on single lexemes, and

there is more work to be done on representing multi-word constructs or

more complex representations.

8.3 Modeling vocabulary emergence

This thesis discussed the modeling choices related to using simulation to

build hypotheses of how language could originate. In the simulations,

a shared vocabulary to describe the perceived objects in the world was
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developed in a population of learners. This approach is experiential, i.e.

the meaning of the words was directly related to experiences, and as such,

the symbols the agents use are grounded. The model of an agent was

built using a geometrical representation of concepts—utilizing the Self-

Organizing Map as the model for conceptual memory.

Further, a language game model was formalized and used as a model

for communication. Within this thesis, only a single language game, the

naming game was used. Introducing the more complex games, such as

the guessing game with several items in the context could well be imple-

mented.

The agent simulation experiments show that despite the individual sub-

jective semantic representations, a shared vocabulary can emerge in the

population. In the current experiments, the quality of the shared vocab-

ulary depends largely on the size of the neighborhood radius, with rela-

tion to the size of the semantic map. This kind of an approach enables a

smooth transition between concepts, although a fixed search radius is an

oversimplification. Introducing a game setting in which there would be a

pressure to distinguish between several observations would be a natural

future step.

Contrary to the distributional representations, the representations in

the agent simulations are grounded in (simulated) experience. The rep-

resentations in these simulations are based on simple experiences, and

concentrate only on one function of language: naming. While some mod-

els of compositional language emergence exist, building a realistic simu-

lation model with the richness of human experience associated with natu-

ral language would be very demanding. Yet, even with these limitations,

the simulation model presented here highlights important aspects related

to computational modeling of meaning: addressing subjective conceptual

representations, learning, and symbol grounding.
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