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Abstract 
The work in this thesis falls under two themes. First, we have experimented with a number 

of novel tools to lower the barrier to start practicing programming skills. Specifically, we 
present experiences on using Python novice environments that reduce the complexity of 
getting started with practicing programming in the following two ways. First, only a limited set 
of key functionality is provided in an integrated exercise environment. Second, only web 
technologies are used to improve portability and ease of access. Additionally, we present 
experiences on using a special type of program construction exercises, as well as, 
improvements to the automated feedback provided in these exercises. Finally, we present an 
application for practicing Python programming on mobile touch devices that is based on these 
exercises. 

As for the second theme, we have carried out automated recording of students' exercise 
sessions and explored what can be learned from such data. Particularly, we show how to 
visualize program construction exercise sessions as a graph in order to reveal common patterns 
and anomalies. We identified two overall patterns of constructing programs: line-by-line and 
control structures first. We also identified behavior that seems to be indicative of difficulties:  
backtracking, going in circles, and excessive, trial-and-error use of feedback. 

Additionally, we use this type of data to evaluate the effect of different types of feedback in 
program construction exercises. Students who received execution-based feedback needed on 
average more steps and took longer to solve an exercise than those who got line-based feedback. 
On the other hand, execution-based feedback was requested less frequently and the respective 
code was more commonly executable. 

Finally, we make use of automatically recorded data on programming sessions to identify and 
quantify how students use an interactive Python console, as well as, to study how frequently 
and which kinds of execution errors they encounter. Students made use of the console both for 
testing their code and for exploring language features. A variety of error types were observed 
while only a minority of those accounted for the majority of occurrences. 

As the key results of this thesis, many of the studied approaches to supporting the acquisition 
of programming skills have been successfully used on programming courses together with 
automated recording of exercise sessions that, in turn, has been made use of to identify and 
quantify common patterns and difficulties for the benefit of teaching and education research. 
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Preface

All the way back in May 2006, Ari Korhonen hired me to work as a research

assistant at the Helsinki University of Technology. I joined the Software

Visualization Group led by Ari and was tasked with a programming job

dealing with Jussi Nikander’s doctoral research. I had no idea what I was

getting into. I ended up co-authoring several publications about this work

with Jussi and Ari. This was my introduction to scientific research and

eventually led me down the path of doing a doctoral thesis of my own.

Thank you, Jussi and Ari, for showing me the ropes.

In 2008, I began with my own research as I started working on my

master’s thesis under the supervision of Professor Lauri Malmi. This

work eventually led to the first publication included in this doctoral thesis.

After completing my master’s thesis, Lauri continued to supervise my

doctoral studies which I began in 2009. Thank you, Lauri, for providing

me with this great opportunity and for your patience to see it through.

Later on, Petri Ihantola and Ville Karavirta took on the responsibilities of

being my thesis advisors. Above all, I thank you, Lauri, Petri, and Ville,

for your continuous guidance and support during this process. You have

been instrumental in keeping me on track and I would like to express my

deepest gratitude to you for helping me to find the inspiration, to acquire

the skills, and to build up the knowledge base required to finally reach this

goal.

Overall, several people have contributed to the research reported in

this thesis, both directly and indirectly. I thank my co-authors, Lauri,

Petri, Ville, and Satu Alaoutinen, for the fruitful collaboration. I also

thank Petri, Ville, Satu, and Kerttu Pollari-Malmi for letting me experi-

ment with new educational technologies on their programming courses.

I also thank my colleagues, all the current and former members of the

Learning+Technology research group, for the many stimulating discus-
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sions about programming, education, and research. Special thanks go to

long-time members Otto Seppälä and Juha Sorva for their many insights

about programming education. I also extend my thanks to Lasse Hakuli-

nen and Tapio Auvinen, my fellow travellers on the journey to a doctoral

degree. It has been a privilege to have you as my cubicle mates and I hope

to see you make it to the finish line soon too.

Furthermore, I thank the pre-examiners, Professor Mordechai Ben-Ari

and Associate Professor Mike Joy, for taking the time to read my thesis and

for their valuable comments and suggestions on how to improve this work.

I am also honored to have Professor Peter Brusilovsky as my opponent.

Finally, I thank my family for their tireless support and constant encour-

agement over all these years and throughout my life, and my friends for

keeping me sane all the way through this long and arduous process.

Espoo, May 8, 2014,

Juha Helminen
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1. Introduction

1.1 Demand for Programmers

Considering our growing reliance on information technologies both as a

society and as individuals we can tell that the demand for expertise in

the art of computer science is anything but going down. Consequently,

computer science education plays a key role in building and sustaining

the infrastructure of our information society and we must strive to design

and utilize best possible methods and tools in the learning and teaching of

computer science in order to train true professionals for the needs of the

future.

Computer science degree programs invariably begin with courses on

introductory programming. That is, after all, the cornerstone of comput-

ing – by definition, a computer is a programmable device. On the other

hand, due to the pervasiveness of information technologies, competency

in computing has become highly relevant in many other fields, as well,

and, today, the basics of programming are being taught to a wide array

of engineering students enrolled in a variety of different majors. This, in

part, has resulted in a notable increase in the number of students learn-

ing to program and, at many universities, such as ours [72], introductory

programming courses have hundreds of students. Outside of engineering

disciplines, knowledge of programming may still benefit individuals as

simply a different mode of thought and as preparation for interacting with

technology in everyday life, as suggested by Kelleher and Pausch [70].

11



Introduction

1.2 Learning to Program Is Hard

Unfortunately, many find learning to program very challenging. Simon has

reviewed a number of studies that have investigated the abilities of first-

year programming students and provide evidence of this [126]. Often cited

are the findings of the 2001 ITiCSE working group led by McCracken. A

sample of 216 students from 4 universities were assessed after taking their

first CS courses. They were given a time-restricted lab-based programming

task where on average they managed to score a disappointing 22.89 points

out of 110 according to the evaluation criteria [92].

Furthermore, anecdotally, programming courses have very high dropout

rates [117]. Bennedsen and Caspersen carried out an international1 survey

to verify and quantify this phenomenon and found that, among the 63

institutions that answered, on average 72 % of students passed the first

programming course, commonly referred to as CS1, while there was a huge

variation in the pass rates among the different institutions [16]. They also

noted that it seemed small classes did better on average in this regard.

1.3 Challenges in Learning and Teaching Programming

What makes learning to program particularly challenging is the multitude

of knowledge and skills one must acquire simultaneously. You need to

grasp many abstract concepts and constructs, such as variables, functions,

objects, algorithms, and data structures; familiarize yourself with several

tools, such as design tools, compilers, and debuggers; and learn systematic

approaches to, and strategies and processes for using these skills and

knowledge in analyzing a problem, in some perhaps entirely different do-

main, in order to develop and implement an appropriate software solution.

Du Boulay lists five areas of difficulty in learning to program: (1) general

orientation, what programs are and what to do with them; (2) the notional

machine, a model of the computer as defined by the execution environ-

ment; (3) notation, the syntax and semantics of programming languages;

(4) structures, programming patterns, commonly referred to as plans or

schemas; and (5) pragmatics, as in, actually planning, implementing, test-

ing, and debugging programs using appropriate methods and tools. He

goes on to state that “none of these issues are entirely separable from the

others, and much of the shock . . . of the first few encounters between the

1Two thirds of answers originated from the US.
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learner and the system are compounded by the student’s attempt to deal

with all these different kinds of difficulty at once.” [39]

Large classes with insufficient resources for adequate individual guid-

ance then only exacerbate the problems. Further source of difficulties is

the heterogeneity of the course participants that makes it challenging to

design teaching in such a way that it addresses everyone’s needs. Indeed,

many students have previous experience and thus some established no-

tions of programming, be they correct or not, and if there are students

from different majors, the motivations and goals of the students will vary

greatly, as well. For example, Lahtinen et al. carried out an international

survey to map out the difficulties experienced and perceived by students

and teachers of introductory programming classes. In total, 559 students

from 6 different universities filled out the survey. More than half of the

students had previous experience in programming prior to their university

studies [82].

As learning to program is typically the first hurdle to cross in a com-

puter science degree, it carries special meaning there. On the one hand,

poor understanding of basic concepts and processes will surely make more

advanced studies troublesome. On the other hand, if the introductory pro-

gramming courses are generally regarded as overly difficult with a higher

than usual failure rate, this is sure to discourage students from entering

the discipline. This is especially worrisome due to the pervasiveness of

software, and computing in general. Because software is so ubiquitous,

there is a certain need for having all kinds of people involved in designing

and implementing computing solutions. In discussing the importance of

lowering the barriers to programming for all people, Kelleher and Pausch

note the same idea that if the population of people creating software more

closely matches the population using software, the software designed will

probably better match users’ needs [70]. Furthermore, from a practical

point of view it is a huge waste of resources, on both parts – for both the

students and the teachers – to have students take up a course and then

fail or drop out in the middle.

1.4 Scope of this Thesis

The work in this thesis is situated in the field of computing education

research and, more specifically, the learning and teaching of programming.

This area of study lies in the general context of cognitive psychology and
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has ties to such topics as, for example, problem solving and knowledge rep-

resentation. In this thesis, we are particularly interested in how to study

and support learning in the context of large courses where there is a lack of

resources or opportunities for face-to-face individual guidance and there is

also an emphasis on enabling distance learning. Within this context, there

are still various ways to support the process of learning to program, such

as, for example, aiming to facilitate learning from peers. However, in this

work, we have studied supporting acquisition of programming skills with

software tools that, in particular, aim to facilitate independent practice.

Furthermore, we have focused on adult learners with an immediate need

of learning to program for future professional careers. Thus, as opposed

to studies of how to introduce programming concepts to children, in our

context, it is essential to aim for a level of proficiency that also goes beyond

abstraction and into practice. Accordingly, the empirical data collected in

this thesis comes from university-level students.

Specifically, the first overall research theme in this thesis is the goal

of minimizing the barrier to start practicing programming. We have ap-

proached this in a number of ways that are discussed in more detail in

the next section. To summarize, we have designed, implemented, and

experimented with environments for practicing programming that com-

bine and develop ideas from several fields of programming education tools

research: program visualization, automated assessment and feedback, and

programming environments for novices. The tools have been developed to

support teaching Python at our university. Consequently, our work relates

better to studies with this same focus than those dealing with some other

programming language.

The second overall research theme in this work is the recording and

analysis of learners’ exercise sessions. We have used some of the tools

developed to collect data on how learners work and explored the use of

this data in investigating their actions and behavior in order to inform

teaching and computing education research. This area of study will also

be discussed further in the next section.

Overall, the work in this thesis has a significant constructive compo-

nent that draws upon advances in software technology. In particular, we

have studied the design and implementation of web-based programming

environments for novices, automated feedback in program construction

exercises, exercises for programming on mobile touch devices, and the au-

tomated recording of exercise sessions. This technical perspective means
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that the details of how learning occurs and of how the tools impact learning

are mostly out of scope. Having said that, the basic theoretical foundations

of learning to program will be discussed in the next chapter. All in all,

we have taken an empirical approach to gaining knowledge. We have ex-

perimented with different learning technologies on programming courses

and collected data via questionnaires and more importantly by recording

exercise sessions. We have then analyzed this data both qualitatively and

quantitatively mostly by making use of various means of visualization and

statistical methods.

1.5 Research Questions

The work in this thesis falls under two distinct themes which are discussed

below separately.

1.5.1 Environments for Practicing Programming

Right from the outset, novice programmers must simultaneously get to

grips with many different aspects of programming, such as tools, concepts,

and syntax. This can be overwhelming and may easily lead to confusion

and frustration early on. The complexity of turning even seemingly simple

ideas into working programs can be truly discouraging. This has led to

extensive research on how to ease the first stages in learning to program.

Programming environments designed specially for novices are commonly

used to reduce this complexity in the initial stages. These provide a

simplified user experience with extra support features for novices. Instead

of trying to come to terms with everything at once, novices can then build

their knowledge and skills gradually as they have less things to deal

with at a time. As with skills of any kind, practice is fundamental in

learning to program. By letting learners exercise programming skills

in this simpler context, a novice-oriented environment also facilitates

achieving an immediate sense of accomplishment in programming. This

will allow learners to build confidence before moving on to deal with the

full complexity of programming languages and tools. The first high-level

research question in this thesis deals with the design of programming

environments for novices.

RQ1 How to minimize the barrier to start practicing programming?
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This question is essentially about how to enable getting immediately into

exercising core programming skills and ideas without a steep initial learn-

ing curve. There are two sides to this. On the one hand, we can try to

initially eliminate the use of professional programming tools or in some

way facilitate their use and, on the other hand, we can try to facilitate

the process of understanding the execution of programs or the process of

composing programs. The first aspect deals with tailor-made novice envi-

ronments or novice perspectives in professional tools that limit available

functionality and, overall, aim to minimize any overhead from installing

and learning to use development tools. The second aspect is about such

approaches as providing educational visualizations of program execution,

or simplifying the mechanics for describing programs in order to initially

focus more on some specific aspect like the logic of programs instead of

the fine details of syntax. There is, though, one more aspect to productive

practice and that is prompt feedback. To make good progress in learning

to program we need feedback on our work. However, it is not possible to

provide a lot of individual human guidance on large courses. We must rely

on technology to fill in and, consequently, automated feedback in program-

ming exercises has long been an active area of research in programming

education.

In this thesis, we have studied three particular approaches to lowering

the barrier to start practicing programming. First, we have studied the

use of web technologies in implementing programming environments for

novices in order to make these more easily accessible. Second, we have

studied the use of program construction exercises in teaching programming.

In these exercises, programs are not written from scratch but the process

is initially simplified by letting learners construct programs from a smaller

set of appropriately chosen code fragments. In particular, we have worked

on how to improve automated feedback in program construction exercises.

Third, we have studied the use of touch devices for practicing programming

in order to support mobile and ubiquitous learning. Specifically, we have

worked on how to adapt program construction exercises to mobile touch

devices. From a technology point of view, the underlying theme for all of

these approaches is the design and implementation of environments for

practicing programming.
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Web-Based Programming Exercises

There is a variety of reasons why we see the web as a possible enabling tech-

nology for an improved learning experience when it comes to programming.

To start with, unlike traditional native applications, web applications are

not tied to a single computing environment. At its best, no installation is

required besides having a browser which you generally have on any plat-

form anyway. You can also use any computer, such as one at your school or

the one at your parents’ place, and the user experience should be more or

less identical across platforms and computers. Furthermore, you do not

need to deal with different versions of the application or updates. That is

all managed in a centralized fashion by someone else. When the tool is

available online, you can access it anywhere where there is an internet

connection. It can automatically store your progress remotely and you

could then continue anywhere on a different computer without having to

worry about storing and transferring your work. Due to reasons like these,

there is an ongoing general trend towards web-based cloud computing. As

a logical culmination of this, the Google Chrome OS2 operating system does

not even have almost any other native applications besides the browser

and web applications are used to provide most functionality.

Another issue to consider is the overall organization of learning content

and tools. The use of books and other printed material is becoming less and

less common and electronic learning materials are taking over. Instructors

distribute their materials and assignments through web-based learning

environments and learners search online for documentation and additional

information. As for programming specifically, learners regularly make use

of web-based systems to get automated feedback on their programming

assignments. One approach is also the use of interactive web-based tuto-

rials where theory, examples, and exercises are intermixed. All in all, a

programming environment built with web technologies could presumably

be seamlessly integrated into the online learning environment, with the

automated feedback system, and within web-based learning content itself.

Similarly, programming exercises built on top of such a web-based environ-

ment have the potential of requiring less effort to share and disseminate.

In the scenario where different learning materials and tools were to be

brought together in a technology sense, there would also be an additional

opportunity to keep track of and study the links between those. As a data

source for learning analytics this could significantly benefit our under-

2http://www.google.com/chromeos
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standing of the learning process. Such data could potentially also be used

in automatically adapting the learning experience, such as by recommend-

ing learning topics based on the individual progress in terms of all the

different types of content. More detailed knowledge of learners’ progress

could also possibly be used by instructors to initiate early interventions

when problems arise.

Massive Open Online Courses, or MOOCs as they are generally called,

provide another perspective to this discussion of web-based learning con-

tent. MOOCs are essentially distance learning courses open to anyone with

no limit to the number of participants who also often are geographically

dispersed3. In such a learning context, web technologies have become

the backbone for organizing learning activities. In fact, it is exactly the

advances in web technologies and web-based learning technologies that

have mostly given rise to the recent emergence of MOOCs. Similarly, a

programming environment built with web technologies would be ideal for

a MOOC on programming. Learners would be guaranteed to have access

to a common working environment with only minimal requirements from

their own computing environments and the instructor would for the most

part only need to deal with this single configuration of tools in the teaching

materials.

As a conclusion to this discussion, the research question is as follows.

RQ1.1 Can we, using web technologies, lower the barrier to start

practicing programming?

In particular, we have studied the use web technologies in implementing

and integrating supporting technologies, such as program visualization

and automated feedback, into a single web-based programming environ-

ment. Previous work on program visualization, automated feedback, and

programming environments for novices will be discussed in Sections 2.2,

2.3, and 2.4. In Section 3.1, we summarize Publication I and Publication V

that deal with this question.

Automated Feedback in Program Construction Exercises

Program construction exercises scaffold the learning experience by letting

learners construct programs from short fragments of code instead of writing

code from scratch. Typically, such a code fragment is a single line of code

or a few lines of code, that is, a small block of code. The terminology is

ours and stems from the perception that, in these exercises, programs

3For example, Coursera offers MOOCs at https://www.coursera.org/.
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are constructed – pieced together from the given set of building blocks

instead of being conceived “out of nothing”. Exercises that fall under

this definition have been called by many names in the literature, such

as Parsons puzzles [105], code sorting4, and code scrambles [114]. In the

papers included in this thesis, we have mostly referred to these exercises

as Parsons problems but in this text we adopt the much more descriptive

term “program construction exercise” to refer to the assignments where

learners are to perform program construction tasks of this kind. Where the

distinction is needed, we refer to to the conventional types of programming

tasks where learners write code “character-by-character” as code writing

exercises.

In the simplest form, the learner is given a minimal set of code lines

needed to implement some described functionality. In this case, the task

may reduce to that of ordering those lines correctly. This in a way shifts

emphasis from the details of syntax to the general logic and flow of the

program because proper syntax has already been followed within each line.

An apt use case for these exercises that have the single unique solution

is using them to complement example programs in self-study materials.

Example programs often follow after new concepts or constructs have been

introduced in instructional texts on programming. However, once the basic

theory has been introduced, a program construction exercise could, as well,

be used to engage the learner into applying what they have just learned in

actually putting together a program. There would be no actual choice in

the implementation but the learner would still presumably have to think

about the structure of the program more thoroughly than when glancing

over an example program given to them in full working form. In the same

manner, program construction exercises might be used to illustrate some

clever or intuitive solutions to specific programming problems as opposed

to just handing these out or expecting learners to be able to come up

with everything from scratch. The eureka moment of getting the pieces

together and grasping how the program works, if that happens, might just

be enough to make a more permanent imprint on their memory.

Additional code fragments may also be given that make several alterna-

tive solutions possible. To make the task more demanding, the additional

fragments may also be unnecessary for completing the exercise and be

there just to distract the learner. A reason for doing this would be to

make learners confront their missing or misconceived knowledge. For

4In the ViLLE learning environment, http://ville.cs.utu.fi/.
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example, similar lines of code with correct and incorrect syntax may be

provided [105]. Alternatively, we could provide extra code that may be

used to solve the exercise in a manner that is consistent with some known

misconception about the concepts or constructs involved.

Small variations can also be useful at the exercise level. Exercises using

the same construct in various programs and contexts may help learners

to more thoroughly familiarize themselves with its function. The key idea

here is that seeing different cases ought to reduce the likelihood of ending

up with a flawed understanding of the behavior just because that perceived

model of behavior made sense in one instance. Program construction

exercises are, of course, not required for this. The exercises could just be

regular programming tasks but this kind of repetition would arguably be

far less tedious with the build-from-blocks approach.

In this work, we have studied the use of program construction exercises

where the code fragments given are Python code lines. In Python, the

block structure of programs is defined using indentation instead of more

conventional cues like braces or keywords signifying the beginning and

end of a block. Taking advantage of this, in the exercises we have used,

learners must place code lines in their proper place both in terms of the

order and the indentation. This arguably is a more demanding variant of

construction exercises. In experimenting with these exercises in teaching,

we have found a number of issues with the automated feedback provided

in previously existing implementations. From our experiences emerged

the following general research question.

RQ1.2 How to improve automated feedback in program construction

exercises?

Previous work on related approaches to and systems for simplifying the

mechanics of describing programs will be discussed in Section 2.4.1. In Sec-

tion 3.2.1, we discuss specific issues with automated feedback in program

construction exercises and refine the research question as we summarize

Publication III and Publication IV that deal with this question.

Program Construction Exercises on Touch Devices

There is one more approach we have studied in our quest for minimizing

the barrier to start practicing programming. In search of making practice

possible anywhere and anytime, it is illuminative to realize that, today,

it is actually very common for people to carry with them a “computer”

everywhere they go. Indeed, small mobile devices like phones and tablets
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are used to consume all kinds of interactive material on-the-go. As such,

they present an attractive platform for mobile and ubiquitous learning, as

well. However, the new generations of mobile phones and tablets all rely

on touch screen -based input and this interaction method is very different

compared with the traditional mouse and keyboard combination of personal

computers. Other challenges include the hardware limitations of screen

size, performance, and battery life, but also the constraints imposed by the

typical use contexts which mean that the tasks must generally be quite

brief and self-contained or easily resumable to permit sporadic learning

sessions. The question boils down to how to effectively create or adapt

content to meet the requirements and overcome the limitations of this

quite a different learning space. The research question is as follows.

RQ1.3 How to practice programming on mobile touch devices?

A key challenge for practicing programming is the lack of a physical key-

board on touch devices. Additionally, the research question specifically

deals with mobile touch devices meaning that our focus is on small de-

vices, such as phones. The approaches presented are however generally

applicable to tablet-sized devices, as well. Anyway, it turns out, program

construction exercises are well-suited to this scenario. Previous work on

other approaches to and systems for practicing programming on touch de-

vices will be discussed in Section 2.4.3. In Section 3.2.2, we further refine

the research question as we summarize Publication III and Publication VI

that deal with this question.

1.5.2 Recording and Analysis of Exercise Sessions

The process of how novice programmers solve programming assignments is

generally invisible to teachers and educational researchers alike. Typically

we only see the end result and maybe a few snapshots along the way. An

improved understanding of the working habits and of the steps taken and

difficulties encountered could be of great benefit. Face-to-face observation

where the programmer narrates his or her actions during the exercise

session provides the most complete data. Recording the computer screen is

easier to setup and far less intrusive. Neither approach, however, scales

well because of the effort required for data collection and, especially, for the

analysis of audio and video that follows. The second high-level research

question deals with this issue.

RQ2 How to, automatically and unobtrusively, record programming
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exercise sessions and what can we learn from such data?

The method we have studied is to instrument the exercise environment to

automatically record what is being done within it. This approach has the

additional benefit of potentially making it possible to analyze progress in

real-time in order to give immediate guidance when appropriate. From a

technology point of view, the underlying theme is the design and imple-

mentation of the recording and analysis of exercise sessions. We will use

the words interaction trace or simply trace to refer to the sequence of data

recorded about the actions performed in an exercise environment. We have

examined traces of both program construction and programming (code

writing) exercise sessions which have been collected using the systems

under study as we have been addressing the first high-level research ques-

tion. This is where the two research themes link together. Automatically

recorded traces are also a method to learn about the use of these tools. Pre-

vious work related to this question is discussed in Section 2.5. In Chapter

4, we further refine the research question as we summarize Publication II,

Publication IV, and Publication V that deal with this question.

1.6 Structure of this Thesis

In the next chapter, we discuss previous work related to this thesis. In

Chapters 3 and 4 we summarize the articles this thesis consists of. These

two chapters deal with the two high-level research questions RQ1 and RQ2

separately. Chapter 3 summarizes our work on lowering the barrier to

start practicing programming and Chapter 4 summarizes our work on the

recording and analysis of program construction and programming exercise

sessions. Finally, Chapter 5 concludes the thesis with a discussion of key

results in relation to previous work and ideas for future research.
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2.1 Learning and Teaching Programming

There are several approaches to the teaching of programming. Typically

though, the assessment artifacts and desired outcomes of the learning

process are simple programs or software systems that the student creates

with the support of group teaching sessions and written learning materials.

Lahtinen et al. list five typical learning situations: lectures, exercise ses-

sions in small groups, practical sessions, studying alone, and working alone

on programming coursework; and six learning material types: program-

ming course book, lecture notes/copies of lecture slides, exercise questions

and answers, still pictures of programming structures, and interactive

visualizations [82]. Lahtinen et al. carried out an international survey of

over 500 students from 6 different universities. Students perceived practi-

cal learning situations more useful than lectures in learning to program.

As for learning materials, they considered example programs to be the

most useful.

In summarizing the literature related to the capabilities and difficulties

of novice programmers, Robins et al. discuss that while the literature

has identified such language features as, for example, loops and recursion,

as especially problematic, several authors have suggested that the most

important deficits relate to underlying issues in problem solving, design,

and expressing a solution/design as an actual program [117]. Consistent

with students’ perceptions in the survey above, they go on to note the im-

portance of practical work by stating that frequent practical programming

exercises are central in addressing this issue.
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2.1.1 Theoretical Foundations of Learning to Program

Fundamentally, programming is a complex mental process where we form a

mental image of an algorithmic solution and formulate that into a program

by following the syntax and semantics of a programming language. At

heart, programming is about program comprehension [142] – understand-

ing programs and software in general. Be it reading or writing programs,

the programmer must build a mental model, an internal representation

of the program’s intent, its data and execution, through some cognitive

processes. Indeed, programming is, primarily, a cognitive skill. Schulte et

al. give a good critical review of the different theoretical models of program

comprehension [123].

In his articles Ben-Ari [12, 13] applies constructivism to computer science

education (CSE), and concludes that “Given the central place of construc-

tivist learning theory and its influence on pedagogy, computer science

educators should . . . analyze their educational proposals in terms of con-

structivism”. Constructivist learning theory can, indeed, shed some light

on the learning process. The basic tenet of the theory is that knowledge

is constructed based on observations on top of what is known beforehand.

In other words, learners build their understanding by combining what

they observe with their pre-existing models of knowledge. This is to say,

that learners do not simply absorb fully structured knowledge presented

to them but that they try to merge it into their current understanding. In

essence, the theory claims that “all learning involves the interpretation

of phenomena, situations, and events, including classroom instruction,

through the perspective of the learner’s existing knowledge” [130]. If

the models resulting from the learner’s interpretation prove “adequate in

the contexts in which they were created” [149] those models are viable.

That is, they allow the learner to accurately and consistently explain the

phenomenon under study. On the other hand, this constructivist view

then suggests that, as learners each construct their own understanding,

they may frequently end up with a misconception, with a model that is

not viable but instead fails to explain some aspect of the phenomenon.

Moreover, because learners build knowledge on top of models that they

believe reflect a phenomenon accurately (enough) we cannot simply shove

a different model in place of the existing understanding but instead “the

goal of instruction should be not to exchange misconceptions for expert

concepts but to provide the experiential basis for complex and gradual

24



Related Work

processes of conceptual change” [130]. Confronted by a situation where

the learner’s existing model fails to explain a phenomenon, this cognitive

conflict may then lead to revision of that model to a viable one. Ben-Ari

expresses the same constructivist idea: “Teaching how to do a task can be

successful initially, but eventually this knowledge will not be sufficient.

. . . The teacher must guide the student in the construction of a viable model

so that new situations can be interpreted in terms of the model and correct

responses formulated.” [13]

Getting back to programming, what this implies is that in order to

learn to program you must experience it in a way that leaves no room for

misconceptions. A way to do this is repeated practice that “covers all the

angles” – practice that adequately illustrates the underlying computational

model in order to construct a model of knowledge that is able to make

accurate predictions on the behavior of programs. On the other hand, while

programmers can arm themselves with an array of pattern approaches

that can be applied in many situations, ultimately, each problem will have

a unique solution consisting of many such building blocks. Rote learning of

bits of knowledge that can be pieced together is possible only to a limited

extent. However, experts develop and view programs as being made up of

instantiations of abstract programming plans, schemas, such as iterating

through a container and counting items [117].

Essentially, the model that programming builds on is that implied by

the programming language’s constructs, the notional machine [40]. It

is a conceptual understanding of the computer’s execution model in the

context of a particular programming language – how different constructs

in the language affect control and data flow. Comprehension of programs

is fundamentally built on this mental model, and aside from aspects like

dealing with programming tools and following a systematic process, teach-

ing programming is about facilitating the construction of a viable model of

the notional machine by various means some of which have been studied

in this work.

Sorva provides an in-depth review and summary of the literature on

programming misconceptions, the cognitive theory of mental models, con-

structivist theory of knowledge and learning, and other more recent theo-

ries related to learning programming [133]. He concludes that as a whole

“the literature points to notional machines as a major challenge in intro-

ductory programming” and argues that “instructors should acknowledge

the notional machine as an explicit learning objective and address it in

25



Related Work

teaching”.

The work in this thesis deals with a few means of facilitating this learn-

ing process. The goal of program visualization is to give an illustration

of the notional machine so that learners may compare and revise their

own mental models. Program visualization will be discussed in Section 2.2.

Automated feedback aids learners to make progress when practicing pro-

gramming on their own. Automated feedback will be discussed in Section

2.3. On the other hand, novice environments for programming make use

of several different approaches. For example, they may initially simplify

some aspects of programming, such as the use of programming tools or the

syntax of the language, in order to reduce the cumulative cognitive load

imposed by the many aspects of programming. Novice environments are

discussed in Section 2.4. Finally, apart from the cognitive skill of making

sense of programs, the process aspects of programming are discussed in

Section 2.5.

2.1.2 Computer Science Education Research

Computer science education research is the field of research where the

work in this thesis is situated. Essentially, it is the study of theories,

methods, and tools for teaching and learning computer science. Fincher

and Petre have identified ten broad topic areas: student understanding, an-

imation/visualization/simulation systems, teaching methods, assessment,

educational technology, the transfer of professional practice into the class-

room, the incorporation of new development and new technologies into

the classroom, transferring to remote teaching (“e-learning”), recruitment

and retention of students, and the construction of the discipline itself ([45],

pages 3–7). As a key subject in computer science, the study of learning

and teaching programming is an active area of this field of research. In a

review of this sub-field, Robins et al. list some common topics: program

comprehension and generation, mental models, and the knowledge and

skills required to program [117]. Whereas the literature survey of intro-

ductory programming by Pears et al. groups research into four categories:

curricula, pedagogy, language choice, and tools for teaching [109]. Cur-

riculum deals with what is taught, pedagogy with the manner in which

teaching and learning are carried out, and language choice with the al-

ternative programming languages. Finally, the fourth category, tools, is

where most of the work in this thesis falls into, and the general research

topic is supporting the acquisition of programming skills.
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2.1.3 Software for Learning and Teaching Programming

Programming tools are generally developed to meet the needs of profes-

sionals and novice programmers are very different from experts. Extensive

sets of features and lack of scaffolding that would allow novices to try and

grasp the complex process of developing software in smaller progressive

steps make these tools less suitable to beginning programmers. The lit-

erature survey of introductory programming by Pears et al. groups tools

into four categories: visualization, automated assessment, programming

environments, and other tools [109]. The last category includes, for ex-

ample, plagiarism detection and intelligent tutoring systems. This thesis

relates to research in the first three categories and each of them will be

discussed in their own section. The other aspect of this work, collecting

and analyzing data on the process of solving programming assignments,

will be discussed in the last section of this chapter.

2.2 Program Visualization

Software is inherently invisible and the concepts in programming are

abstract. As with any abstract constructs, illustrations can be used to try

to convey information about them. Indeed, software is commonly visualized

in an attempt to facilitate program comprehension and support software

engineering activities.

Software visualization (SV) is “the visualization of artifacts related to

software and its development process” [38], and is used in the presenta-

tion, navigation and analysis of software systems. This wide definition

includes, but is not restricted to, the visualization of program code and

data, requirements and design documentation, source code changes, bug

reports, software quality and other metrics, and testing results. Specific

areas of SV that have been widely applied to programming education, and

are therefore most relevant to our discussion, are the areas of program

and algorithm visualization. Program visualization (PV) refers to the

visualization of the source code1 and data of a program [113]. Algorithm

visualization (AV), on the other hand, is understood to mean the visual-

ization of algorithms and programs on a higher level of abstraction, that

1“Source code is any static, textual, human readable, fully executable description
of a computer program that can be compiled automatically into an executable
form.” [19]
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is, on a more conceptual level [113]. Karavirta et al. provide a taxonomy

and review of algorithm animation [67]. The work in this thesis does not,

however, deal with algorithm animations.

As for program visualization, state of the art visualization systems

present a step by step visualization of the execution at the level of ex-

pression evaluations (e.g. Jeliot 3 [14, 99], UUhistle [136]) and possibly

more abstract visualizations of data structures (e.g. jGRASP [28], Online

Python Tutor [55]). Some recent systems have joined the trend of web-

based applications and are using HTML5 and JavaScript to implement

the visualizations (e.g. Online Python Tutor [55], JavaScript library for

visualizing program execution [128]). For a comprehensive recent review

of program visualization systems intended for teaching beginners about

the run-time behavior of computer programs see [134].

Role of Engagement in Educational Visualization

While intuitively program and algorithm visualizations seem like powerful

teaching methods this is not necessarily true. Their effectiveness has

been suggested to depend on the chosen level of abstraction and how clean

the visual presentation is [120]. Other research on educational AV also

indicates that the degree of user interaction with the visualizations, i.e., the

learner engagement, is a major factor as far as actual learning is concerned.

In an extensive study on existing research on algorithm visualization,

Hundhausen et al. [58] concluded that the most beneficial uses of AV are

those that activate the student, for example, with questions or exercises,

as opposed to plain viewing. They suggest that AV is most effective when

used in a supporting role of some engaging activity. Naps et al. [101] go

as far as to say that educational SV is of little value if it does not engage

the students in an active learning activity. This result has encouraged

researchers to create systems that integrate software visualization and

automated assessment: students are given tasks related to a visualization

and their answers are automatically evaluated for correctness to give them

immediate feedback. This way, the systems are able to engage students

more effectively. For example, recent work has explored visual program

simulation as a task that combines visualizations of execution and an

engaging activity [132, 135, 136, 137]. Learners are given programs whose

execution they are to simulate using a graphical representation of the

computational model of Python.
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Discussion

This thesis draws upon research in program visualization and presents

Jype, a new program visualization and programming exercise tool for

Python. Compared to the current state of the art systems, such as Jeliot 3,

UUhistle, and jGRASP, the visualization features are not quite as advanced.

The tool provides only a line-by-line visualization of execution instead of

being able to step through each step in the evaluation of expressions like

in Jeliot 3 and UUhistle. The data structure visualizations in jGRASP

are more sophisticated as well. Nevertheless, at the time the tool was

developed, there were no comparable tools for visualizing Python execution.

Today, UUhistle and Online Python Tutor are excellent alternatives for

visualizing Python execution.

Furthermore, there are two overall themes in this thesis, first of which

deals with lowering the barrier to start practicing programming. Visualiza-

tions of execution should help in this but also, in view of this, a key goal in

this visualization tool was to make it as easily accessible as possible. This

was approached by creating an integrated web-based environment for pro-

gramming exercises coupled with automated assessment and the program

visualization features instead of having separate tools for each task. As

discussed in this section, educational visualizations may be more effective

when learners are not merely viewing them but actively engaged with

them. Along these lines, program visualizations might be more beneficial

when closely combined with the programming tasks. Certainly, while there

are some merits to the visualization features provided in Jype, in regard

to related work, the primary contributions of this work lie in the unique

combination of features it provides in an integrated web-based tool. The

work in this thesis dealing with this tool will be summarized in Section

3.1.1.

2.3 Automated Assessment and Feedback

Typical tasks for a beginning programmer include writing, extending, or

modifying a simple program or a piece of code. Going through and grading

these students’ submissions is a time-consuming and mostly monotonous

endeavor which quickly becomes a major burden on the teaching staff with

their often strict resource constraints. Of course, one could simply provide

optional exercises that are voluntary to complete and are not checked

by the course staff. However, the applicability of this approach is very
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limited. In their discussion of assessing programming assignments on

large courses, Ala-Mutka and Järvinen note the tendency of students to

try to minimize their workload [4], which renders optional activities in

the learning process ineffective. Woit and Mason carried out a five year

study comparing different assignment strategies, where two experiments

contained optional assignments [152]. Along the same lines, they reported

that their students mostly ignored optional tasks, which was also directly

reflected in poor midterm exam results. In other words, the programming

exercises must be mandatory to really make a difference, in which case

we also need a way of, at least on some level, checking that the result is

acceptable.

In computer assisted assessment (CAA), the evaluation process is sup-

ported with software tools that fully or partially automate the tasks in-

volved in order to reduce effort and speed up the process. Examples vary

from facilitating rapid and consistent grading with feedback authoring

tools (e.g. [3]) to intelligent tutoring systems (e.g. [10, 98, 143]) that simul-

taneously monitor and model the progress of and guide and give intelligent

feedback on the student’s learning. For a quite recent review of automated

assessment tools for programming exercises see [60].

An alternative approach to practicing programming concepts is to focus

on analyzing and tracing programs instead of program synthesis, that is,

instead of writing programs. For example, in TRAKLA2, using a drag-and-

drop interface, learners manipulate visualizations of data to simulate how

an algorithm works [89]. In UUhistle, learners manipulate visualizations

of Python’s notional machine to simulate program execution [136]. In

ViLLE, learners answer questions about the execution of programs while

it is being visualized [116]. Then again, Problets is a whole family of

pioneering learning tools where learners must analyze and trace programs

and then solve a variety of types of problems to test and demonstrate their

understanding2.

Problets is essentially a suite of tutor applications each of which provides

exercises for a single topic, such as, for example, pointers or for loops.

Additionally, instead of simply providing a platform and a set of exercises

for practicing the concepts, each tutor tries to adapt to the needs of the

learner by presenting new problems based on the learner’s previous per-

formance until the learner is considered to have mastered the topic [77].

Tutors have been created for a variety of mostly CS1 topics: selection

2http://www.problets.org/
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statements [127], scope concepts [76], C++ pointers [78], parameter pass-

ing mechanisms [125], loops [29], classes [44], expression evaluation [79],

arrays, and functions. Most of these tutors are currently available for the

Java, C++, and C# languages3. A few are also available for Visual Basic.

Each tutor has its own types of exercises and user interfaces for solving

them but the tasks are generally about predicting the behavior of given

code – specifying output or bugs. The tutors grade the learner’s answers

automatically and most of them provide as feedback a step-by-step written

explanation of program execution [80]. As a somewhat unique feature, the

problems presented to the learners are not a fixed set but each problem is

an instance of a parameterized template generated by assigning random

values to specified parts of the template [80]. Thus, there is a seemingly

endless supply of different problems. The tutors are delivered via the web

as separate Java applets.

Discussion

All the publications in this thesis directly or indirectly deal with automated

assessment of programming exercises. We present tools for practicing

programming that support automated assessment and analyze data from

such tools. In these tools, the tasks are about program synthesis – on

composing programs that meet some given requirements. We have studied

two specific types of exercises: code writing and program construction.

With regard to code writing exercises, the focus is not on advances in

automated assessment but in order to try and minimize the barrier to

start practicing programming, the work in this thesis deals with web-

based systems that integrate editing code and automated assessment.

Several related tools will be discussed further in Section 2.4.2. The work

in this thesis dealing with this theme will be summarized in Section 3.1.

As for program construction, this thesis work presents improvements

to the automated assessment in these exercises. In section 2.4.1, we

will discuss related work on program construction exercises and their

automated assessment. The work in this thesis dealing with this theme

will be summarized in Section 3.2.
3http://www.problets.org/about/topics/index.html
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2.4 Programming Environments for Novices

Programming is a complex task that builds on several layers of abstractions

of hardware and software. To facilitate software development, program-

mers utilize a chain of various tools. At the very least, the programming

environment must provide the capability to edit, build, and execute pro-

grams. Integrated development environments (IDEs) are applications that

integrate these functions and typically also provide additional features,

such as organizing work and resources into projects, a visual debugger,

testing and refactoring tools, syntax highlighting, code completion, integra-

tion to version control, and so on. However, when learning to program, the

advantages of a general-purpose, professional IDE may well be outweighed

by its complexity and the resulting steep learning curve. For this reason,

many kinds of programming environments aimed at novices have been

developed.

The literature survey on the teaching of introductory programming by

Pears et al. groups education-oriented programming environments into two

broad categories: programming support tools and microworlds [109]. Pro-

gramming support tools typically limit the set of features available while

also streamlining their use (e.g. [5]). They may also provide additional

visualizations of code or execution (e.g. [66]) or interactive incremental

execution (e.g. [5]). Editing programs and following proper syntax may,

as well, be supported. BlueJ [74] is a popular education-oriented IDE for

Java. Its primary features are visualization of the class structure as a

static UML diagram and the ability to create objects and call methods on

them via a simple GUI in order to examine their behavior. Another type of

tool is the tiered language tool in which novices can use more sophisticated

versions of a language as they learn more (e.g. ProfessorJ4 [52]).

Microworld environments present programming in terms of a physical

metaphor – the microworld – such as a robot moving about in an envi-

ronment based on the given set of commands – the program. The world

can be virtual, i.e. a graphical representation on the computer screen

(e.g. Jeroo [122], JKarelRobot [21], PigWorld [84], GreenFoot [73]), or a

real physical environment (see e.g. [91]). Objects in the environment then

reflect the state of computation.

As another characterization of this category of tools, Kelleher and Pausch

have devised a taxonomy of novice programming environments and lan-

4http://www.professorj.org/
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guages [70]. At the top level, the systems are classified into two types by

their primary goal: empowering systems and teaching systems. Empow-

ering systems support programming to facilitate accomplishing tasks to

meet some need of the user, i.e. they enable end-user programming, or

exploring something in an entirely different domain, like e.g. cognitive

modeling in a psychology class (e.g. [26]). The ability to program is simply

a tool – not the end goal. Most importantly, the designers of these systems

are not concerned with whether the users can transfer this practice to a

broader programming context. Thus, they may invent a special-purpose

language that has a very different vocabulary and grammar compared

with any widely used general-purpose languages or forget code altogether

and let programming be performed e.g. by demonstrating rules and ac-

tions with a graphical interface. Teaching systems, on the other hand,

provide exposure to some of the fundamental aspects of the programming

process in an attempt to facilitate learning generalizable programming

knowledge and skills – to teach programming for its own sake. The goal

all along is that eventually, as their skills improve, users move on to a

general-purpose, professional environment. An important point made by

Kelleher and Pausch is that these systems must strike a balance between

two conflicting goals: making it easier for beginners to get started in pro-

gramming, and still building the background that eventually allows them

to successfully transition from the teaching system to the professional tools.

This thesis deals solely with teaching systems and empowering systems

are outside the scope of this work.

Kelleher and Pausch further divide teaching systems into two categories:

mechanics of programming and learning support [70]. The latter category

deals with systems that try to improve learning in other ways, such as by

providing a motivating context or facilitating learning in groups and from

peers. For example, games have been used in trying to provide a more

engaging context for programming (e.g. [85]). The work in this thesis falls

in the first category and the latter will not be discussed any further. The

systems in the first category focus on simplifying the process of writing

programs and of understanding the execution of programs. While this

is not discussed in the taxonomy, any programming environments with

support for visualizing program execution fall into this category. This topic

was discussed in Section 2.2. Additionally, Kelleher and Pausch group

microworlds, that were discussed above, here.

To sum it up, in terms of the first categorization, the work in this thesis
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deals with programming support tools, and regarding the taxonomy, we

have specifically explored lowering the barrier to start practicing program-

ming by simplifying the mechanics of programming. We have approached

this in three different ways. First, we have experimented with exercises

where the mechanics of describing programs are simplified. Related work

in this area is discussed in the next section. Second, we have experimented

with simplifying the programming environment via the use of web tech-

nologies and integration of limited key functionality, such as assignment

delivery, editing and executing code, and automated feedback. Related

work in this area will be discussed in the section following the next one.

Finally, aside from the categorizations, we have explored a novel approach

of enabling the use of mobile touch devices, such as phones and tablets, in

learning to program. In the last section, we discuss related work in the

emerging field of practicing programming on mobile devices.

2.4.1 Simplifying the Mechanics of Programming

Typically, programs are created by typing textual instructions. Novices

often have difficulties in following the structure and syntax of a program-

ming language in formulating their intentions into computer instructions.

There are two steps that can be made easier for novices: the language

can be simplified or the input method can be made simpler. Programming

language design involves various different competing constraints in ad-

dition to readability and intuitiveness, such as versatility and the ease

and performance of implementations. This is why professional languages

may be unnecessarily complex for learning the basics of programming.

Approaches to simplifying the language range from inventing an entirely

new language to hiding functionality that is then revealed progressively.

As for typing code, there is a variety of alternative methods.

In ProPAT, learners complete C programming exercises with the help

of a library of programming patterns they can select to add to their pro-

grams [31]. As additional guidance, the tool will only allow patterns to be

inserted in a way that the C syntax rules are followed. The patterns are

textbook solutions to common problems, such as a counting loop, described

in a way to ease reuse. The theory behind is that experienced program-

mers similarly apply knowledge of previous similar solutions to solve the

problem at hand but novices lack such experiential basis. The system is

implemented as an Eclipse plug-in.
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PatternCoder5 is another tool that supports writing code with a library

of patterns [106]. However, these are higher-level design patterns and

the aim is to aid learners in understanding class associations and in

transitioning to a class-level design of code. The wizard-based interface

allows learners to select appropriate design patterns for their problem

and generate the respective Java code that they can then explore and

use as starting point. The system is implemented as an extension to

BlueJ6. Patterns+UML is a very similar wizard-like standalone tool aimed

at helping novice programmers learning object-oriented programming to

implement design patterns in Java [32].

Green7 is another tool aimed at novices that can be used to generate

code from UML class diagrams [7]. It is a UML editor that allows both

generation of code from a diagram and creating a diagram out of code.

It is implemented as a plug-in to Eclipse. The tool has been used in

introductory programming classes to support an instructional approach

where strong focus is put on object-orientation, UML design, and design

patterns [8]. Previously, the authors had also developed a similar tool called

QuickUML for their needs [9]. There are, of course, many professional tools

for generating code from UML diagrams, such as, for example, eUML28.

BACCII and BACCII++ represent early examples of another family of

programming tools where programs are created using an iconic program-

ming language [22, 23, 24]. Programming constructs, such as loops and

conditional branching, and data are represented using graphical icons

that are connected to each other to describe the control flow. The user

can then generate the actual corresponding code for several program-

ming languages. The tool was implemented for Windows. The authors

report using BACCII/BACCII++ on introductory PASCAL/C++ program-

ming courses where students performed better when the tool was available

for them [22, 24]. More recent similar systems are, for example, SFC [150]

and RAPTOR [25].

In Alice 39, programs are built by drag-and-dropping graphic tiles whose

instructions are similar to those found in programming languages10 [30].

5http://www.patterncoder.org/
6http://www.bluej.org/
7http://green.sourceforge.net/
8http://www.soyatec.com/euml2/
9http://www.alice.org/
10Originally the language was built on top of Python but this was changed in
later versions.
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Programs are used to create 3D animations and games. Learners can then

reflect on their program in terms of the visual objects. Alice programs

can be exported to Java code. There are, as well, several similar novice

environments based on a jigsaw metaphor where programs are built from

blocks that have different appearances based on their type and can be

connected together in limited ways as illustrated by their forms which

fit together only in certain ways. Typically, the blocks, additionally, have

within them editable parts like, for example, a number that can be incre-

mented or decremented. BLOX [50] is an early example and Scratch11 [90],

Snap!12 (formerly BYOB, Build Your Own Blocks), Blockly13, App Inven-

tor14, StarLogo TNG15, and Turtle/PictureBlocks [147] are some more

recent systems. The environments are designed for exploring program-

ming and computational thinking by making interactive visual content

like games, animations, and simulations. Typically, they are also primarily

geared towards children and pre-CS1, CS0-level studies. These types of

systems fall into a category of tools called visual programming environ-

ments. Some of the rules and formalism of the programming language that

must conventionally be followed in the textual notation are replaced with

graphical representations like how the jigsaw metaphor only allows blocks

to be combined in certain ways. Consequently, it is generally impossible to

make syntax errors – the environment will only allow executable programs

to be built.

Karel Universe is another system where you can actually “write” Java

code by drag-and-dropping16 [17]. This is an editor integrated to the

Karel J Robot [18] microworld environment. The editor lets programs be

built from code fragments and they can then be executed in the Karel

J Robot environment. The system also only allows syntactically correct

modifications.

JPie falls somewhere between these approaches [51]. The actual struc-

ture of Java programming language is used but it is manipulated using

manipulation of graphical representations of the programming abstrac-

tions. The jigsaw metaphor is also used.

11http://scratch.mit.edu/
12http://snap.berkeley.edu/
13https://code.google.com/p/blockly/
14http://appinventor.mit.edu/
15http://education.mit.edu/projects/starlogo-tng
16http://www.csis.pace.edu/~bergin/KarelJava2ed/kareluniverse/index.
html
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Program Construction

In Section 1.5 we defined what we mean by program construction exercises

and also discussed what they are for. Essentially, learners construct

programs from blocks of code instead of writing from scratch. In this

section, we discuss work on assignments that fall into this category.

Originally, Parsons and Haden conceived, or at least published the con-

cept of programming tasks where you are given a list of code fragments

that must be reordered to build a program [105]. They then became called

Parson’s programming puzzles. The code fragments were a single or a few

lines of code. The exercises presented a sequence of randomly ordered code

blocks that could be drag-and-dropped to a another sequence of slots to

build the program. There could be more alternative code fragments than

how many slots there were, that is, there could be extra code. The number

of slots also revealed how many blocks a correct solution contains. The

implementation was based on a generic web framework for multiple choice

questions called HotPotatoes and the answer was deemed correct if each

slot then contained the expected code. A particular weakness in using such

a framework is that the interface for reordering code fragments is quite

clumsy as you cannot just drop code in between but have to move other

fragments one by one to different slots first. The original idea with Parsons

puzzles was to support computer-assisted rote learning of syntax.

CORT, COde Restructuring tool, is a standalone windows application that

is used to provide tasks similar to Parson’s puzzles [47]. However, in these

tasks there is a focus on providing a fixed context around the area where

the learner adds code. In other words, there is some “static” surrounding

code. The author calls this the part-complete solution method and it is

meant to reduce cognitive load compared to a full-fledged programming

task. Lines of code can then be added to the assigned area from a given

set of options where there can be extra code like in the original Parsons

puzzles. Using CORT a learner gets feedback by copy-and-pasting their

solution to an interpreter to see what happens.

In more recent work, web-based ViLLE (the visual learning tool, [81,

116]) learning system for programming has in later versions added support

for similar code sorting exercises17. However, in these exercises the task

really is to sort a set of code lines “in-place” and there can be no extra code.

These exercises are implemented in JavaScript and provide an easy-to-

17The online version of ViLLE includes code sorting exercise while they are
unpublished: http://ville.cs.utu.fi/.

37



Related Work

use drag-and-drop interface. Furthermore, learners can get automated

feedback on their attempts to solve an exercise. Feedback is a score which

we assume is based on running the code remotely and comparing its output

to the expected output. Code that fails to execute is given a zero score.

As a unique feature, if the program can be executed, learners may also

visualize its execution line-by-line in order to debug their solution.

In other very recent work, similar sorting exercises that are being

called code scrambles have been included in an open web site for learning

Python [114]. As in ViLLE, the interface is implemented in JavaScript and

code lines are only sorted – there can be no extra lines. The learner may

also request automated feedback and this is based on giving the results

of executing tests on the program on a remote server. As possible future

work, the authors speculate that these code scramble exercises might also

work well or even better on a touch screen -based device.

Finally, js-parsons is a quite recent open source18 library and web-based

environment for similar Python exercises [61]. This was also implemented

in JavaScript and provides an easy-to-use drag-and-drop interface. In

Python, indentation is significant and is used to define blocks. Making use

of this, a unique feature in js-parsons is that the learner must arrange the

code fragments in terms of two dimensions: the order and the indentation.

This makes the task more complex compared to the other systems. The

system also supports extra lines and can provide automated feedback. In

the original implementation, feedback was based on comparing the frag-

ments first to an expected ordering and then to the expected indentation of

those fragments. In other words, the constructed program was examined

line-by-line starting from the top and the first line that was found to be

incorrectly placed became highlighted, and if this check passed the proper

indentation was checked in the same manner starting from the top line-by-

line. Additionally, js-parsons can be used to log how the exercise is solved

and store this to a remote server for later analysis.

Apart from all these software tools, similar assignments have also been

used in pen-and-paper exams [34, 86].

Discussion

In this section, we have discussed several different approaches to sim-

plifying the mechanics of programming: tools based on giving a library

of patterns to use in building programs, tools built around UML, and

18https://github.com/vkaravir/js-parsons
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many different types of tools that give program code an iconic or a dia-

grammatic visual form in addition or instead of using text. Finally, we

discussed program construction exercises. While especially many of the

environments based on the jigsaw metaphor bear a resemblance to the

program construction exercises and have had influence on those, a specific

difference to many of the other systems is that, as we see it, these are not

visual programming environments. Programs are still just textual code

even though they are built from fragments of those. There is no actual

visual rule of syntax. What you learn about how to create programs is

still, in theory, directly transferable to actual writing of code despite the

scaffolding.

Overall, with regard to the different environments, js-parsons stands out

as the most versatile tool for program construction exercises. It is open

source, can be easily integrated into web-based learning environments

because it is a web-based self-contained client-side widget, supports extra

lines, provides automated feedback, and a clean user interface. Most im-

portantly, however, it supports a unique type of exercises where Python

code fragments must additionally be properly indented and this makes

one think about the design of the program in a different way than if one

was to only select and sort code. In the work in this thesis, we have ex-

perimented with the use of exercises based on js-parsons on programming

courses. We have also developed the tool further in several ways that will

be summarized in Section 3.2.

2.4.2 Web-Based Programming Environments

An ongoing trend in application development all over has been a transition

from desktop applications to web-based rich internet applications. Some

applications have already, for the most part, moved to “the cloud”, such

as email and instant messaging. The web-based approach has several

possible advantages when it comes to programming environments, as well.

Compared with the “traditional” approach a web-based programming envi-

ronment would presumably provide everyone with a centralized, identical

environment with no setup and instant updates, nor would it be tied to

a single computer or location. The potentially lower barrier to beginning

programming could be especially beneficial for a novice. On the other

hand, learning environments and automated assessment systems today

all have web interfaces. A web-based movice programming environment

could be seamlessly integrated in terms of the user experience but also
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with regard to recording and analyzing learning efforts in order to provide

better feedback or adapt learning content based on knowledge modeling.

Consequently, various types of web-based environments that provide some

support of editing solutions online and typically also integrate with au-

tomated assessment have been designed. In most of these, the aim has

been to create a practice environment that allows getting a quick start and

immediate sense of progress through lots of practice without first dealing

with the hassle of installing and learning to use professional tools.

Javala was19 an open web environment for learning Java programming

[83] whose unique feature is its game-like scoring of users. It provides

tutorials with embedded “fill in method body” -type programming exercises

where the code can be written directly in the browser in a simple text box.

Learners’ code is assessed on a remote server by comparing its output to

the expected behavior. The learner receives Javala points for each correct

solution. There is a global top 100 scores list of all the users of the system

and the learners are also assigned a rank, such as “Java Tourist” or “Java

King”, based on their performance. The author reports that the users

spent very long continuous periods in the system and attributes this to

the addictive nature of the game-like features. Additionally, the author

discusses the submissions to a few exercises and presents visualizations

of a few learners’ submission activities in the system. He notes that some

students seemed to get stuck and submit a seemingly simple exercise

many times, and suggests that in these cases the system should give some

hints on how to solve the exercise instead of simply showing the error. He

also suggests that a further thorough analysis and categorization of the

learners’ habits could help in improving the environment.

CodingBat20 (previously named JavaBat) is a web site that provides a

large set of small programming problems for Java and Python on common

CS1 topics, such as loops, branching, strings, and so on. The idea is to

have very little context but focus on simply practicing the mechanics of

programming [104]. In each exercise, the learner is required to write

a function that implements some described functionality. Solutions can

be written in a simple text box directly in the browser and may then be

submitted for evaluation. The code is tested on a remote server by calling

the function with different values and comparing the return values to the

19The author could not find the system online anymore. The system was only
available in Finnish.
20http://codingbat.com/
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expected behavior. Results of the tests are then shown on the web page.

CodingBat also implements a gamification feature where you earn a so

called badge for solving many problems21.

The ViLLE environment mentioned earlier for having code sorting exer-

cises, is primarily a program visualization tool whose main features are

programming language independency and the ability to create animations

that include multiple choice questions at specific steps of the animation.

However, there are also some code writing tasks that are assessed by

running tests on a remote server.

CodeWrite [36] is another web-based environment for practicing Java

programming. The exercises are similar to Javala and CodingBat in that

learners are to complete the body for a single method. The unique feature

of CodeWrite is that the learners themselves author the exercises and

test cases (input/output pairs) that will be used in providing automated

feedback. Additionally, learners must provide a working solution that

satisfies the tests they have defined. Learners can then choose exercises

that others have designed, edit code directly in the browser in a simple

text box, and submit when they are ready to receive feedback. Their

code is tested on a remote server, and feedback is shown on the web page.

Furthermore, after completing an exercise, other successful submissions

are shown to the learner thus enabling them to compare different styles

of solutions. Learners can, as well, comment on or rate the quality of

an exercise or endorse solutions. The authors report successfully using

the system on a CS1 course where they found that the student-generated

exercises and solutions exhibited good coverage of the language features

on the course. CodeWrite has also been used successfully in a cross-

institutional setting where students from different universities designed

exercises for each other [33].

Another recent web-based environment for learning to program is Com-

puter Science Circles22 [114]. Similar to Javala it has tutorials with

embedded exercises but the language taught is Python. The aim has been

to create a complete interactive introductory programming course using

web technologies. Similar to CloudCoder discussed below, for programming

exercises CS Circles provides a more capable editor23, instead of simple

text box. Additionally, CS Circles uses Online Python Tutor24 [55] for

21http://codingbat.com/doc/practice/code-badges.html
22http://cscircles.cemc.uwaterloo.ca/
23CodeMirror, http://codemirror.net/
24http://www.pythontutor.com/
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letting learners visualize the execution of their programs. Code submitted

in programming exercises is executed on a remote server and graded based

on generated output, values of variables, or the return values of function

calls. Learners can additionally open code in a separate console window for

trying out arbitrary code instead of only running the tests of the current

exercise. However, the console does not support interactive execution with

input and output. Finally, a rather unique feature in the environment

is its help functionality. Next to the code editor is a help button which

the learners can use to ask for help if they get stuck. The help request

will include the current code and also provide a link for accessing the

complete submission history, the progress summary of the learner, and

a list of messages about the same exercise that allows the instructor to

copy and paste frequent guidance. A teacher can register as a guru for

his or her students to get the help requests from them. The authors have

found this an efficient system for providing personal feedback when the

automated feedback does not cut it for the learner. At the time of publica-

tion, the authors report almost a thousand daily visits and 7000 daily code

submissions.

Runestone Interactive25 is a similar project aimed at developing interac-

tive web-based learning material [97]. Two “books” have been produced:

How to Think Like a Computer Scientist Learning with Python: Inter-

active Edition 2.0 and Welcome to Problem Solving with Algorithms and

Data Structures. Both deal with Python and in addition to text include

embedded video clips and interactive content. Like CS Circles, there are

programming exercises for which code can be edited using the CodeMirror

editor. What is different with the exercises on these sites, is that the

Python code is executed on the client-side in the browser using Skulpt26, a

JavaScript implementation of core Python. This means that it also works

offline. Feedback is in the form of passed and failed tests as typical in

comparable systems. Also, similar to CS Circles, there are visualizations

of execution built using the Online Python Tutor [55]. The authors also

report positive experiences on using the e-book for a semester in CS1.

CloudCoder27 is a very recent web-based programming exercise system

for Java, C, C++, Python, and Ruby [103]. Apart from many of the other

systems, learners write code directly in the browser using an open source

25http://runestoneinteractive.org/
26http://www.skulpt.org/
27http://cloudcoder.org/
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web-based programmer’s editor28 instead of a mere text box. This editor,

among other typical things, supports syntax highlighting. The system

is designed for small programming exercises and learners can submit

their solution to get automated feedback. Two types of exercises are

possible. In function-based exercises, where the learner is to write a single

function or method, the feedback is based on calling the function/method

with different parameter values and comparing the return values to the

expected results in much the same way as in CodingBat. In whole-program

exercises where the learner writes a complete program, the task is built

around receiving input and printing some output. Feedback is then based

on comparing this to the expected output using regular expressions. The

system is implemented using two servers: one for the web application and a

database, and one for executing learners’ submissions for feedback. Python

and Ruby are executed using their Java implementations Jython29 and

JRuby30. CloudCoder is open source and includes an open web repository

for sharing programming exercises. Additionally, CloudCoder logs all of the

students edits and submissions for use in educational research. Papancea

et al. also report having piloted the system on a few programming courses

on Java, C, or C++.

Another example is the learnpython site31 that provides interactive

tutorials about Python. Similar sites exist for Java, C, JavaScript, PHP,

shell programming, and C, as well32. The tutorials each include an exercise

where you are to write code that implements some described function.

Included is code that runs test on your code and can be used to evaluate

whether you have succeeded. You can also view the solution. Code is edited

using the CodeMirror editor like in many other similar system. Executing

code is carried out on a remote server using commercial software called the

Sphere Engine33. There is also another site that provides programming

tasks using this same software. The Sphere Online Judge34 provides

programming contest -type problems to which you can submit solutions and

their correctness will be assessed by executing your code on a remote server.

There are other sites for these types of problems that are skewed towards

28Ace, http://ace.c9.io/
29http://www.jython.org/
30http://jruby.org/
31http://www.learnpython.org/
32Links to these can be found on the site for Python.
33http://sphere-engine.com/
34http://www.spoj.com/
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more competent programmers than novices, for example, topcoder35.

There are also a number of other environments run by companies and

organizations for practicing programming on the web. CodeLab36 provides

web-based programming exercises with automated assessment. CodeA-

cademy37 provides web-based programming classes in many different

languages and awards badges and points for completing exercises that

come with automated feedback, as well. Khan Academy provides program-

ming lessons based on JavaScript38. The exercises use the ProcessingJS39

visualization library and focus on interactivity and graphics.

Furthermore, there is a constantly increasing array of MOOC providers

that have offered and probably will in future too offer courses on program-

ming topics with varying support for web-based exercises. Udacity offers

MOOC-type courses on introductory programming40 as does Coursera41.

Udacity has an automated assessment system and so does Coursera, on

some courses at least. Coursera has used the CodeSkulptor42 programming

environment on an introductory Python course. This tool is based on the

CodeMirror and Skulpt libraries for the editor and the execution, respec-

tively, similar to other work discussed. FutureLearn43, a UK-led MOOC

platform, has offered a programming course built around developing games

for mobile devices44 and will also be offering a programming-related course

labeled “creative coding” in the future45. Miriada X offers MOOCs in

spanish and portuguese and, for example, one on programming for science

and engineering46. The French government established France Univer-

site Numerique47 provides, for example, a MOOC in French on iPhone

35http://www.topcoder.com/
36http://turingscraft.com/
37http://www.codecademy.com/
38https://www.khanacademy.org/cs
39http://processingjs.org/
40https://www.udacity.com/course/cs101
41https://www.coursera.org/
42http://www.codeskulptor.org/
43https://www.futurelearn.com/
44https://www.futurelearn.com/courses/begin-programming
45https://www.futurelearn.com/courses/creative-coding
46https://www.miriadax.net/web/introduccion-programacion-ciencias-
ingenieria-2edicion
47https://www.france-universite-numerique-mooc.fr
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programming48. edX49, Iversity50, OpenLearning51, and Udemy52 offer

MOOCs on programming topics as well. Overall, MOOCs are currently a

hot topic and new services are being introduced all the time. Some of the

course offerings include proprietary solutions for automated assessment

as well. Some courses in these services are self-paced and you can start

one anytime. Others follow a schedule in a similar manner to traditional

classes. Often the latter is what is actually referred to as a “true” MOOC.

Discussion

In this section, we have discussed many web-based environments that com-

bine editing code and automated assessment. They all have their strengths

and weaknesses, and their unique features. Javala and CodingBat provide

some gamification features. CodeWrite crowdsources creating assignments

to the learners themselves and provides some peer review features. ViLLE,

CS Circles, and Runestone Interactive provide visualizations of execu-

tion. Javala, CS Circles, and Runestone Interactive integrate the exercises

tightly into the learning content within tutorials or a book. CloudCoder

can log students’ interaction in the environment for later analysis.

A common theme is that the earlier systems like Javala and CodingBat

offer only rudimentary support for editing code in the form of a simple text

box, while the more recent tools provide more capable code editors based

on modern JavaScript libraries, such as Ace and CodeMirror as mentioned

above. The programming environments in the browser are thus edging

closer towards the desktop experience.

Another important aspect to consider in these web environments is

how programs are executed. Traditionally, learners’ code is executed on

a remote server. Sandboxing the execution so that it will not interfere

with the assessment system or other learners’ submissions is a particular

challenge here. As browsers have become more capable, for example,

because of improvements in the performance of JavaScript execution,

client-side alternatives have also become feasible – Runestone Interactive

executes Python code directly in the browser environment using the Skulpt

library that implements the core of the language. Overall, two types of

assessment approaches are typical. Most systems assess correctness based

48https://www.france-universite-numerique-mooc.fr/courses/UPMC/18001/
Trimestre_2_2014/about
49https://www.edx.org/
50https://iversity.org/
51https://www.openlearning.com/
52https://www.udemy.com/
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on the values received from function calls in test runs. As the second

primary approach, CloudCoder, for example, also supports evaluating

correctness based on the output produced by the learner’s program.

In this thesis, we present two new programming environments that run

in the browser and integrate editing code and automated assessment. The

work in this thesis dealing with this theme will be summarized in Section

3.1. Their relation to previous work will be discussed in Chapter 5.

2.4.3 Programming on Touch Devices

Wide adoption of mobile devices, such as phones and tablets, has also

created an interesting opportunity for learning. Lots of tasks like reading

email and documents are already being performed on-the-go when sitting

on the train or waiting at the bus stop. Similarly, there is great potential

for supporting learning on these devices but there are, of course, many

challenges too. A recent meta-analysis of studies on mobile learning gives

a general synthesis of the research trends [153]. Mobile phones and PDAs

are most widely being used to support mobile learning, and effectiveness

and system design have most commonly been the focus of previous studies.

With regard to learning programming, early work experimented with

simply having students view videos of algorithm animations on a mobile

device (Apple iPod) [59]. In more recent work, a mobile application for

Android devices called mJeliot has been used to better engage students

in lectures [108]. During lectures the Jeliot 3 program visualization sys-

tem for Java is used to execute programs and together with mJeliot can

then also be used to ask questions about the execution. Students can be

asked to attempt predicting parameter binding and return values of meth-

ods using their own hand-held devices. The Jeliot tool then also reports

summary statistics on the correctness of students’ answers. Another tool

that supports similar questions on program execution is the commercial

Quiz&Learn Python53 application for iOS devices. The user is presented

with timed increasingly difficult multiple choice questions related to the

behavior of short programs and a score is rewarded based on how long it

took to answer. Additionally, users can view line-by-line visualizations

of the execution to inspect their behavior. Java Quiz54 is a similar quiz

application for Java on iOS. Questions deal with both program behavior

and specific constructs of the language. There also was available, for a

53https://itunes.apple.com/app/quiz-learn-python/id501410339
54https://itunes.apple.com/app/java-quiz/id464249097
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while, a Scratch [94] Viewer application for iOS but it was removed55. This

could be used to view animations built with the Scratch environment.

Beyond viewing learning content and answering simple questions, the

key challenge for actually practicing creating programs is how to edit

code on a modern mobile device that is based on a touch screen. Current

approaches range from custom soft keyboards with programming-oriented

customizations to menu-driven programming using a specially designed

language.

Aside from soft keyboards on small screen devices being cumbersome

to start with, a particular difficulty in such a typing-intensive activity as

programming are all the special characters used that are harder to access

using a general soft keyboard. For this reason, there are many applications

for a more programmer-friendly keyboard, for example, Hacker’s Keyboard

on Android56, that try to facilitate entering these. Predictive typing [88]

and auto-complete can also be used to facilitate typing.

Codea57 is a commercial iOS application for creating visual interactive

content, such as games and simulations, that provides some enhancements

for editing code on touch devices. For one, it is built around the Lua

programming language whose syntax is supposed to be easier to type.

Additionally, some actions like assigning colors or images are supported

with special editors using touch interaction. However, the tool is aimed

at tablet devices and the backbone for writing code is the soft keyboard,

which is arguably less cumbersome in this size class. There are also some

animation and microworld environments aimed at children on iOS-based

tablets where programming is performed using a drag-and-drop block

language (e.g. Hopscotch58, Daisy the Dinosaur59). Recent work has also

explored the use of touch screen -based interaction methods instead of

keyboards on tablets [56, 93, 115].

TouchDevelop, a Windows Phone application, provides a programming

environment built around a menu-driven language designed for just this

purpose [146]. More recently, TouchDevelop has also been implemented as

an HTML5 application which is now available on all the major platforms60.

55https://mobilewikiserver.com/ScratchHopedFor.html,
https://mobilewikiserver.com/Scratch.html
56https://play.google.com/store/apps/details?id=org.pocketworkstation.
pckeyboard
57http://twolivesleft.com/Codea/
58https://www.gethopscotch.com/
59https://itunes.apple.com/us/app/daisy-the-dinosaur/id490514278
60https://www.touchdevelop.com/

47



Related Work

Finally, there is one game-like application on iOS tablets that provides

exercises related to programming where you actually build programs. In

SingPath61, you have assignments where you choose lines from a given set

of code lines to build a described program. These are effectively program

construction exercises as described in Section 1.5.

Discussion

Overall, there is not a lot of previous work on how to practice programming

on modern mobile devices. There are the few systems that have ques-

tions on program behavior: mJeliot, Quiz&Learn Python, and Java Quiz.

Then there are a few programming environments aimed at tablet-sized de-

vices. Additionally, some of the web-based exercise environments discussed

earlier in this chapter do run on a mobile browser, such as Runestone

Interactive. However, having not been adapted to small screen devices

and relying on text input by typing, they are at best barely usable on

mobile devices and, in practice, not at all. Using soft keyboards on touch

devices is much less natural than typing on a real keyboard and this is

the key challenge in writing and editing code on small mobile devices.

TouchDevelop stands out with its menu-driven programming language and

environment aimed at exactly this context. In this thesis, we present an

environment for practicing Python programming on mobile touch devices.

It provides program construction exercises with automated feedback. The

implementation is built on js-parsons. The SingPath application discussed

above provides similar exercises on a tablet. However, in SingPath, the

lines used to build programs are already properly indented which makes

the task much more straightforward. The work in this thesis dealing with

this theme will be summarized in Section 3.2.2.

2.5 Programming as a Process

The art of programming is not just about the end result and there are many

steps to finally coming up with a functional solution to a programming

problem. In the description of programming by du Boulay, the pragmatics

of programming – the skills of planning, developing, testing, debugging,

and so on – is an area with a strong process aspect to it [39]. Indeed, the

goals of an introductory programming course should go beyond knowledge

about concepts, tools, and techniques – systematic processes for developing

61https://itunes.apple.com/us/app/singpath-mobile/id567470737

48



Related Work

programs should be taught as well. This has been identified early on in

the literature: “Let me make an analogy to make my point clear. Suppose

you attend a course in cabinet making. The instructor briefly shows you

a saw, a plane, a hammer, and a few other tools, letting you use each

one for a few minutes. He next shows you a beautifully-finished cabinet.

Finally, he tells you to design and build your own cabinet and bring him

the finished product in a few weeks. You would think he was crazy!” [54].

Along the same lines, drawing from mathematics teaching, in an article

from 1986, Soloway explains: “What has been taught in the past is by and

large not what an expert actually knows. For example, geometry students

typically understand each step in a proof, as the teacher puts it on the

board, line by line. However, when attempting to do a proof for homework,

students often have no idea where to begin. Why? Mathematicians do

not develop proofs in such an orderly, linear fashion. Rather, developing

a proof is a nonlinear, search process. Unfortunately, students are not

told explicitly about the nonlinear nature of proof development: They

see their teacher develop a proof line by line, and not surprisingly, they

think they should be able to do the same. Today, teaching topics such

as geometric proofs is being revised to include explicit instruction as to

the heuristics that guide proof development.” [131] Soloway was talking

about the need for explicitly teaching goals and plans, that is, stereotypical

canned solutions to common programming problems that experts possess,

and how to break down a problem statement into various such goals with

known programming plans and how to then compose a solution from

these. However, the same applies to the process aspects of programming.

To once more drive the point through, Gantenbein, in 1989, called out

for demystifying the programming process: “Anyone with a reasonable

intelligence and some grasp of basic logical and mathematical concepts can

learn to program; what is required is a way to demystify the programming

process and help students to understand it, analyse their work, and most

importantly gain the confidence in themselves that will allow them to learn

the skills they need to become proficient.” [46]

2.5.1 Learning and Teaching the Process

In their review of learning and teaching programming, Robins et al. sum-

marize that, since programming ability must rest on a foundation of pro-

gramming knowledge, typical introductory programming textbooks focus

on presenting such knowledge related to a particular programming lan-
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guage [117]. Similarly, introductory programming courses tend to be

“knowledge-driven” and the majority of the studies of programming have

likewise focused on the content and structure of programming knowledge.

Indeed, as Bennedsen and Caspersen also argue, the programming process

is generally not addressed well in programming education [15]. Tradi-

tional static teaching materials, such as textbooks and lecture notes, are

insufficient and ill-suited for the purpose of exposing dynamic processes.

Moreover, Bennedsen and Caspersen note the danger of students getting

the false impression that there is some linear and direct “royal road” from

the problem to a clean and simple solution, if they are only shown the end

product, a finished ideal solution, when, in fact, the process would have

included several incremental steps of analyzing the problem and designing,

prototyping, testing, debugging, and refining the programming solution.

Then as students are not able to develop in such a straightforward man-

ner, they get discouraged and may lose self-confidence and motivation to

continue.

Consequently, Robins et al. suggest that the aspects of programming that

are not visible in the end product should be made explicit by discussing

them as a program is being developed, e.g. live on lectures [117]. Indeed,

live programming performed by the instructor on lectures or in lab sessions

using a projector is one possible method for making the tacit aspects of the

process visible. Paxton used this technique throughout a semester to incre-

mentally develop a single larger Java project [107]. This course was aimed

at students who already knew the basics of programming but not Java.

After the course, students were surveyed about this method and Paxton

reports answers that highlight how it allowed students to see the complete

design process, debugging process, and other process aspects. Gaspar and

Langevin have also advocated the use of instructor-led live programming

as a teaching method [48]. They emphasized its usefulness in showing how

to develop a solution from scratch and in reminding students that correct

programs are rarely written in one shot. Indeed, this was done in response

to having seen students follow a process they call random programming,

where students attempt to piece together programs using code borrowed

from textbooks or online sources without properly understanding any of

the code. In a recent experiment, live programming as a teaching method

on lectures was compared to showing static code examples and it was found

to be at least as good an approach [121]. Additionally, there was a statisti-

cally significant difference of the treatment group performing better on the
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final project than the control group. This suggests that live programming

may in fact prepare students better for a larger programming endeavor as

could be expected based on this discussion of the importance of exposing

the process aspects of programming. Other work has explored the use of

mobile devices to better engage students in the process of programming

live in a lecture [108].

Class time is, of course, always limited and this may be an issue with

doing a lot of live programming. Screencasts, narrated or talk-aloud record-

ings of the computer screen while performing a task, have been used as an

alternative method. They have the advantage of being reusable, at least to

some extent, across course iterations or courses and of allowing students to

study the material at their own pace and to review (parts of) it if need be.

Bennedsen and Caspersen have used such videos, what they call process

recordings, in their teaching [15], Gaspar and Langevin used screencasts

in addition to live programming [48], and we have employed screencasts to

teach the basic use of an IDE and its debugger at our institution, as well.

In their conclusions on the review of learning and teaching programming,

Robins et al. suggest that an even more important distinction than the one

between novice and expert programmers is that of effective and ineffective

novices [117]. By this they refer to what makes some students learn with

much less effort than others. They further propose that teaching should

focus more on turning ineffective novices into effective ones. Moreover, they

suggest that while many factors, such as motivation, confidence, knowledge,

and so on, are obviously involved, the most significant differences relate

to strategies rather than knowledge. By strategies they refer to how

knowledge is accessed and applied during the development process. They

conclude that a deeper understanding of these both kinds of novices is

required.

Discussion

Programming is a dynamic process and several authors have suggested

that more attention should be paid to the learning and teaching of this

aspect. Live programming on lectures and screencasts have been used

to demostrate experts’ processes to students. However, this is just one

side of the coin. Students may still develop ineffective strategies and

we must strive to gain a better understanding of how students are cur-

rently working and of the problems they are facing. The difficulties in

the students’ processes have to be identified in order to aid learning and
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teaching effectively. Unfortunately, a student’s development process is

generally as inaccessible to the teachers as experts’ processes are to the

students. Where students should have material available allowing them to

learn about processes, teachers should have information available about

the current processes of students. Ideally, guidance could then be even

provided individually when a weakness or flaw has been recognized. This

is one of the primary motivations for the work in this thesis where we

have experimented with recording and analyzing students’ programming

sessions. Related work in this area will be discussed in the next section.

2.5.2 Studying and Guiding the Process

Akin to the live programming performed by lecturers, Gaspar and Langevin

have used what they call student-led live coding to expose and correct stu-

dents’ processes [48]. Here, instead of the instructor, students perform the

live programming in the lecture. As for research methods, one approach to

collecting data about the development process is to use protocol analysis in

conjunction with a think-aloud protocol where the programmer is advised

to verbally express their thoughts and actions while performing a task.

This can then be observed directly or recorded on video (e.g. [53]). This

approach results in a very rich set of data but is very time- and labor-

intensive both in terms of data collection and analysis. Another approach

is to only record the computer screen either using a camera or simply

a screen recording software (e.g. [57]). This data requires less effort to

collect but is more difficult to analyze without the verbal trace relating the

programmer’s actions to his or her goals and intentions. While these two

approaches provide the most in-depth data, they are highly obtrusive to

the subjects being studied, are difficult to generalize to larger samples due

to the considerable effort involved, and do not easily support automated

analysis because of the nature of the data as audio and images. Alternative

sources for data include automated assessment and submission systems

and version control systems that by their nature record a coarse-grained

history of the development process. A final method is to use development

tools and record the interaction with any software the programmer uses,

such as the compiler or the programming environment. There is a rapidly

growing body of research on this topic which has also been studied in this

thesis. Many of the studies mentioned here are also discussed in more

detail in Publication V.
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Early Work

In the seminal work by Spohrer and Soloway as far back as in the 80s,

an instrumented operating system was used to record each syntactically

correct Pascal program compiled [140, 141]. In analyzing students’ first

such compilation, they concluded that just a few types of bugs accounted for

a majority of the mistakes in students’ programs. They went on to suggest

that teaching can most effectively be improved by changing instruction to

address and eliminate the high-frequency bugs.

Java Compiler Errors

In more recent work, Jackson et al. similarly recorded compiler errors

from custom-built Java IDE [62]. The top ten types of errors represented

over half of the total number of occurrences and, interestingly, they also

differed from what faculty had believed to be the most common. A unique

feature was that any student could access a web page listing their most

common errors.

Ahmadzadeh et al. also collected Java compiler errors but using an

instrumented compiler [2]. They divided the errors into three categories:

syntax errors dealt with the grammar of the language, semantic errors

with the meaning of the code being inconsistent, and lexical errors with

unrecognized tokens. The observed distribution was 63 % semantic error,

36 % syntax errors, and 1 % lexical errors. Furthermore, only 6 of the 226

distinct semantic errors made up more than half of the error occurrences

in each unit. In another experiment, the students were given a debugging

task in the form of a faulty program. Students successful at locating

bugs were observed using print statements or a filtering approach of

commenting out certain lines. Overall, they observed that the majority

of good debuggers are good programmers while less than half of the good

programmers are good debuggers.

Java Compilation Behavior

Later work dealing with Java has gone beyond examining compilation

errors to investigating the complete edit-compile cycle of alternating be-

tween editing and compiling a program. In Jadud’s work, the BlueJ novice

programming environment was modified to, among other metadata, record

the time, the source code and, the possible compiler error62 at every compi-

lation [63]. The frequency distribution of compiler errors by type showed

62BlueJ only provides the student with a single error for a compilation even if
many exist in the code.
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that the minority of different types of compiler errors accounted for the

majority of errors. As another observation, overall, it was common to spend

very little time before recompiling after an error and instructors observed

students often recompiling their programs even without attempting to

understand the error. Some students had compiled up to almost 60 times

in a single one-hour lab session. Jadud points out that the environment

could be modified to guide students past the common errors observed but

cautions making this a crutch that students would rely on doing the work

for them instead of learning from it.

In another paper, Jadud reports similar observations from students of

several first-year programming courses [64]. Furthermore, the paper

reports a case study of the session of a single weaker student where he

ends up spending a significant amount of time dealing with syntax errors

instead of the actual program design task. Overall, Jadud notes that

the students exhibited similar behavioral patterns in struggling with the

syntax as described by Perkins et al. in solving programming problems in

general [110].

Indeed, in this early work from the 80s Perkins et al. discussed some

powerful characterizations of the ways how students approach solving

a programming problem [110]. They observed two general behavioral

patterns that they classified as stoppers and movers. When faced with

difficulties, stoppers will simply stop overwhelmed with the belief that

they cannot solve the problem on their own. Movers, on the other hand,

will consistently try one thing after another without ever really seeming to

be stuck. At the far end of this, extreme movers tend to try new fixes with

hardly any reflection or apparent convergence to a solution, and end up

abandoning promising ideas prematurely or even going in circles trying

the same thing over and over.

Going back to Jadud’s work, he has also presented an HTML-based vi-

sualization of programming sessions in terms of compilation events [64].

Jadud also describes the error quotient (EQ) that aims to quantify how

much a student struggles in a programming session based on the encoun-

tered compiler errors. Consecutive erroneous compilations add to the

quotient and repeating the same error even more so. Overall, Jadud notes

that his tools and the EQ allow a teacher to easily view how students are

doing when solving the assignments as opposed to simply looking at the

end result, and plan interventions when appropriate.

In later work Jadud and Henriksen have published a reimplementation
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of the BlueJ data collection infrastructure that extends the capabilities by

also collecting data about when methods on a class or object are invoked

via BlueJ object diagrams [65]. Using this, Tabanao et al., consistent with

earlier results, report that top ten error types accounted for 76% of all

the compiler errors [144]. Their work has also explored linking students’

performance on a programming course to EQ and other compilation data

but they have not come up with any real predictive power beyond moderate

statistically significant correlation [144, 145].

Rodrigo et al. have also collected similar BlueJ data as Tabanao et al. and

supplemented this with human-observed affective states [118]. Continuing

this work, Rodrigo and Baker have generated a linear regression model

of a student’s frustration based on the average number of consecutive

compilations with the same edit location, average number of consecutive

pairs with the same error, and the average time between compilations but

with fairly weak results in terms of predictive power [119].

Fenwick et al. have also collected similar Java compilation data in BlueJ

using their own extension called ClockIt [102]. In a survey about the value

of insights that this type of data may provide, they found that both the

large majority of CS students and faculty perceived it would be helpful for

introductory CS students to know about the types of compilation errors

encountered and how a student’s habits compare to his or her peer. A

thing of note compared with much of the other work is that students could

also view the few types of graphs visualizing their own activity through

a web interface. As for observations, the top five errors recorded were in

Jadud’s top six and make up over half of all the compiler errors [43]. Their

data also indicates that starting early leads to a better grade and that

incremental work pays off as well.

In recent work, Utting et al. describe a plan to have a similar data

collection feature built into future BlueJ versions63 in order to collect data

about students’ behavior on a large scale [148]. They plan to include code-

edits on a line-by-line basis, compilation events, and other events such as

unit test, debugger, and version control use.

Wittmann et al. have also recorded students’ compilation traces, however,

with a specific focus on computer graphics programming [151]. They

present the SCORE package that records learners’ C/C++ code changes

between compilations and provides a viewer and analyzer for investigating

63The newest versions appear to now include the data collection features since
June 2013 at http://www.bluej.org/.
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code changes. The system is implemented as an Eclipse plug-in that stores

the trace locally and students then submit this data along with their project

code. The plug-in was used on a university computer graphics course. The

authors present an analysis of a single third-year student’s trace in two

tasks. The results indicate that spatial programming aspects – relating to

coordinate changes or transformations – were more difficult for the student

than general programming aspects or OpenGL syntax and semantics.

Finally, Retina is a system that not only collects Java code snapshots at

compilations – from BlueJ, Eclipse, or a modified compiler – but also makes

suggestions to students based on this data via instant messages [100]. The

recommendations are based on rules such as suggesting the student work

in smaller increments if their rate of errors per compilation is higher than

average, or to seek help if they are spending more time on the assignment

than expected.

Web-CAT Submissions

Web-CAT is another automated grading system that has been made use

of in examining students’ progress and behavior in programming assign-

ments. In using Web-CAT students are usually allowed to submit their

work for assessment an unlimited number of times before the deadline.

Edwards et al. have examined five years of programming assignment sub-

mission data from their first three programming courses [41]. In analyzing

this data, they were able to find statistically significant results suggesting

that when students received higher scores, they had started earlier and

finished earlier than on assignments where they received lower scores.

They did not appear to spend any more time on their work. The authors

suggest a possible explanation to be that when students start earlier, they

simply have more opportunities to get help and then go on to perform

better.

In other recent work, analyzing a similar large data set from their locally

developed Web Submissions System, Falkner and Falkner investigated the

relationship of the timeliness of submissions to students’ later timeliness of

assignment submissions and their average grade from courses [42]. They

found that students who submit their first piece of work late seem more at

risk of submitting late for the rest of their career and that this behavior

also seems to correlate with the grades.
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CodeWrite Submissions

Denny and Luxton-Reilly et al. have studied submissions to the CodeWrite

web environment where in each exercise students implement a single

method [35, 37, 87]. Students write code into a text box, submit the code,

and receive immediate feedback. The system is described in more detail in

Section 2.4. They have studied the exercise submissions on an introductory

Java course with over 400 students.

In the first study, Denny et al. investigated the occurrence of syntax

errors [37]. They found that students often struggled with syntax even

with the short method implementations. Moreover, students of all levels of

ability frequently wrote code that did not compile while weaker students

were often unable to fix their syntax errors. Even students in the top

quartile of the class were unable to write syntactically correct code in

nearly half of the submissions64.

In a continuation of this study, Denny et al. investigated the types of syn-

tax errors students encounter and the time it takes them to solve those [35].

They confirmed earlier results that a small number of error types account

for the most occurrences of errors and the error types were similar to that

of previous work. They also found that a lot of time is spent resolving these

common errors and that, somewhat surprisingly, more capable students

took as long to solve the two most common types of errors as any other

students while still far less time is spent with some other types of errors.

With this in mind, the authors suggest that targeted interventions around

the causes of these errors may yield significant improvements in overall

student productivity.

In a third study, Luxton-Reilly et al. investigated the variety of students’

correct solutions [87]. They present a taxonomy for classifying solutions

with three different hierarchical levels of variation. At the top level, solu-

tions are differentiated by their control flow. Those with identical control

flow graphs may be further differentiated by the variation in blocks of code

which the authors characterize as a sequence of token classes. Finally,

identical sequences of token classes may have been written using a differ-

ent visual appearance, for example, using different names for identifiers

or using whitespace differently. These three levels are called Structure,

Syntax, and Presentation in the taxonomy. Finally, the authors present a

tool for automatically categorizing method implementations at the struc-

64The authors note that this may partly be due to them attempting to solve more
challenging exercises.
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tural level and report on considerable differences across assignments in

the variety of solutions ranging from only a few to even more than 50

different structural approaches.

Marmoset and CVS Repositories

Spacco et al. have collected data using Marmoset, an automated project

snapshot and submission system that records snapshots of a student’s code

to CVS every time the student saves his or her work. [139]. They present

the design of a relational database schema for this data.

In a very recent continuation of the Marmoset work, Spacco et al. visu-

alized the number of snapshots being produced relative to the deadline

and found that the majority of work was being done 48 hours before the

deadline [138]. They report that starting early correlates with better

scores. In other very recent work, Balzuweit and Spacco have discussed a

prototype web service for visualizing snapshot data like the one Marmoset

records [11].

As for other work regarding version control systems, Glassy studied

commit patterns to see things like whether students were making incre-

mental progress or waiting to work on the assignment until just before a

deadline [49]. Mierle et al. investigated students’ code from version control

repositories and implemented a system for storing this data in an SQL

database [96]. Furthermore, they attempted to find features that would

correlate with final course grades but were unable to find any strong pre-

dictors, whereas Poncin et al. have applied process mining techniques from

business process analysis to investigate software repositories of students’

capstone projects [112]. Their work, however, focused on the higher-level

processes of software engineering.

Data Mining and Hidden Markov Models

Taking a very different analysis approach, Allevato and Edwards have also

applied the data mining technique of frequent episode mining to try to

discover frequently occurring patterns in Web-CAT submissions [6]. They

found that weaker students had a frequent pattern of removing entire

methods from their code. They suggest this to be due to deficiencies not

only in the students’ implementations but also in their designs which can

be more difficult to resolve.

In other recent work, Piech et al. have also used data mining and machine

learning techniques to analyze programming session data [111]. They

recorded the compilation events in Eclipse. A Karel the Robot assignment
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using a Karel language based on Java was analyzed more closely. They

clustered the many states of code into more high-level milestones and using

these modeled each student’s development path using a Hidden Markov

Model. They further clustered the individual students’ HMMs to create a

graphical state machine model of the few different high-level development

paths students undertook to solve the assignment. The resulting different

paths correlated with students’ performance and more strongly than the

score achieved in the assignment. In other words, how the students solved

the assignments predicted their performance better than the mere score

they received.

Another line of research that makes use of Hidden Markov Models in

capturing the development behavior of students is the work by Kiesmüller

et al. [71]. They have studied students’ problem solving strategies in the

finite state machine -based visual microworld programming environment

Kara. Using log data from the system they have built a real-time identifier

for previously observed problem solving approaches.

Other Traces

Students’ actions and behavior have also been recorded and analyzed in

other tasks that relate to programming besides conventional code writing.

Blikstein has logged students’ actions when writing programs in the NetL-

ogo65 modeling environment [20]. In exploring sessions using Mathematica

scripts and a software tool for viewing an individual trace, he identified

the behavior of copy-pasting where the students would switch away from

the environment for long periods of time and then suddenly the code would

grow notably.

While not based on traces but on human-observation and interviews the

study of students’ programming in the visual programming environment

Scratch needs to be discussed here because of its relevance to the work in

this thesis [95]. The authors discovered two patterns of building programs

in Scratch: (a) a bottom-up process that starts with the individual Scratch

blocks, and (b) a tendency to extremely fine-grained programming. In a

bottom-up programming approach one starts with the smallest compo-

nents, which are then linked together to form a larger subsystem, until a

complete top-level system is formed. The students did not then approach

the task by thinking on the algorithmic level or the design at all. Fine-

grained programming, on the other hand, was when students carried out

65http://ccl.northwestern.edu/netlogo/

59



Related Work

decomposition until the units became extremely small, and usually lacked

logical coherency. The authors note especially disturbing that students

avoided the use of the most important structures: conditional execution

and bounded loops. They further note that these behaviors are contra-

dictory to the processes students should learn to follow: “(a) to start by

designing an algorithm to solve a problem, and (b) to use programming

constructs to cleanly structure programs”. They suggest that such an

exploratory learning environment like Scratch is may then even be detri-

mental to the study of programming when going forward as bad habits

tend to be persistent.

Dealing with the same theme Adams and Webster have examined over

300 student projects made with Alice and Scratch [1]. They found that

when creating games in these environments, students used the most vari-

ables, if statements, and loops. Projects on music videos used far fewer

variables and if statements. Story-telling projects used the fewest loops,

variables, and if statements, but made the most use of dialog. Conse-

quently, depending on the project – gaming projects being the most complex

– students may well learn very little about programming concepts if not

artificially required to make use of them.

Worth mentioning is also the innovative work on recording and analyzing

students simulation sessions in visual algorithm simulation [75] and visual

program simulation [132] exercises. In these exercises, learners simulate

the workings of an algorithm or, respectively, a program using graphical

objects. Traces recorded from the TRAKLA2 system [89] have been used

identify students’ misconceptions related to heaps [124]. This work has

been replicated and expanded using the JSAV [69] algorithm visualization

library [68]. Misconceptions related to programming concepts have been

studied using traces captured from the UUhistle system [136] for visual

program simulation [129].

Finally, in previous work on the js-parsons environment further devel-

oped in this thesis, four experts were observed when solving program con-

struction tasks dealing with algorithmic programs. The experts seemed to

follow a strategy where they started with control structures. The function

signature was first added to the solution, then loops that were reordered

if needed, and then the if-statements were added, and finally all the

remaining lines [61].
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Discussion

Various approaches to observing learners’ programming sessions in order

to study and guide the development process were discussed in this section.

Student-led live coding, and video and screen recording provide detailed

data but collecting and analyzing data like this takes a lot of effort. Devel-

opment tools, such as the programming environment, the compiler, or the

version control system, and submission systems used in teaching, can be

used to capture and analyze data about the programming sessions with

much less effort.

Most of the previous work in this area has focused on analyzing the

compiler errors students encounter when writing Java. The overall result

from these studies is that a few types of errors account for the majority of

occurrences – consistent with an early study of students’ bugs in Pascal

programs. Another observation that emerged from Jadud’s work and

CodeWrite studies is that students struggle with syntax quite a lot.

A few studies have went beyond counting errors and looked at the Java

compilation behavior. Jadud observed frequent compilations and tried

to quantify how much a student is struggling based on the compilation

behavior. Compilation behavior has also been used to try and predict

performance and frustration but there was not much predictive power.

CVS data has not yielded notable results in this either. The approach of

clustering students’ behavior into a few generic development paths which

then correlated with performance seems quite promising in this line of

research. Also with regard to performance, a study about compilation

behavior and a few on students’ submissions or code snapshots suggest

that, overall, starting work on an assignment early before the deadline

leads to a better grade.

An interesting feature in a few of the previous systems that capture and

analyze students’ programming sessions is that they let students view

information about themselves. This is something that could be studied

further – whether students make use of and benefit from this type of

functionality.

In the work in this thesis, we have recorded and analyzed students’

actions in an exercise environment as they are performing code writing

and program construction tasks. With regard to previous work, we have

collected programming session data that is richer than in any of the pre-

vious work: all the code edits and interactive console sessions. Our work

also deals with Python as opposed to previous work. As for program con-
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struction sessions, our work relates best to the work on collecting data

from the somewhat similar novice environments Scratch and Alice, and

is a continuation to the initial js-parsons study. The work in this thesis

dealing with these themes will be summarized in Chapter 4.
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3. Environments for Practicing
Programming

In Chapter 1, the following was presented as the first high-level research

question of this thesis.

RQ1 How to minimize the barrier to start practicing programming?

This was further broken up into three research questions dealing with the

specific approaches we have chosen to investigation. Next, we summarize

the research in the papers included in this thesis that deal with these

questions.

3.1 Web-Based Programming Exercises

As discussed in Chapter 1, the first approach we have studied to lower the

barrier to start practicing programming, is the use of web technologies

in implementing programming environments for novices. The research

question is as follows.

RQ1.1 Can we, using web technologies, lower the barrier to start

practicing programming?

We have explored this by designing and implementing two Python program-

ming environments for novices. They both reduce the complexity of getting

started with practicing programming in the following two ways. First,

only a limited set of key functionality is provided in an integrated exercise

environment. Second, web technologies are used to improve portability

and ease of access.

There is a variety of challenges to implementing a programming environ-

ment inside the browser. In the not so far past, it was not at all obvious

that such applications could be properly implemented as rich internet

applications, as these types of applications are commonly called. Particular

challenges include how to implement efficient drawing for a code editor
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that supports syntax highlighting and the execution environment for a

language other than JavaScript which the browser supports. In the first

tool we developed, we kind of avoided this as we relied on the Java plug-in

that used to be common in browsers. The editor and the execution envi-

ronment were built on top of Java-based libraries. Subsequently, purely

browser-based high performance editors have been developed, such as Ace1

and CodeMirror2, as well as some languages are being implemented in

JavaScript in order to be run directly in the browser. In the meantime,

Java as a web technology lost a lot of its appeal as the installation base

decreased and operating systems started treating the plug-in in a hostile

manner due to growing concerns for security. In the second tool, we adopted

the purely browser-based approach. Each tool is discussed separately in

the two sections that follow.

3.1.1 Jype – A Program Visualization and Programming
Exercise Tool for Python

From research into learning programming we derived 5 design goals for

a new Python learning tool: 1) facilitate program comprehension, 2) aid

in debugging with visualizations and reverse navigation of a program’s

execution, 3) provide programming exercises with automated feedback, 4)

ease of use, and 5) web deployment with a low barrier to entry. In view of

these goals, we implemented Jype, a web-based programming and program

visualization environment that provides automated feedback on program-

ming assignments. The environment is built with Java web technologies

and Jython3, a Python implementation in Java. The system integrates

program visualization and automated assessment into the editing and

execution environment and provides only a streamlined, limited set of

functionality in order to lower the barrier to entry into successfully writing

and debugging solutions to programming exercises. Figure 3.1 shows a

screenshot of the tool.

The intent of the system is to ease students into programming by letting

them quickly build confidence using this simplified environment to imple-

ment programs. This is meant to give students a sense of achievement

early on and better motivate them to later put the required effort into

learning programming and the use of professional tools. In contrast to

1http://ace.c9.io/
2http://codemirror.net/
3http://www.jython.org/
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Figure 3.1. A screenshot of the Jype tool as a program is being executed. On the left is
the code editor also used to visualize the progress of execution and below that
are shown a visualization of the execution stack and variable bindings. On
the right is a console for input and output and above that some basic controls.

similar tools, programs are executed client-side.

The system contributes to the research in learning programming by

drawing upon existing literature to provide a unique combination of fea-

tures aimed at supporting novice Python programmers. It was used on

an introductory Python course where students could opt to program in

it. Student feedback from this pilot study gave some anecdotal evidence

that integrating functionality and providing simple web access were found

useful. The rationale, design, and implementation of the tool is presented

in full in Publication I.

3.1.2 IPPE – In-Browser Python Programming Exercises

The work presented in the previous section was continued later on but

the changing landscape of web technologies brought on a shift in the

implementation approach. We designed a new tool, abbreviated IPPE in

this text, that similarly aimed to provide programming exercises with

automated feedback, ease of use, and ease of access via web deployment.

This new browser-based Python programming environment integrates an

editor, an execution environment, and an interactive Python console, and
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Figure 3.2. A screenshot of the IPPE tool. On the left is the code editor and on the right is
an interactive console. (image is rotated)

is used to deliver programming assignments with automated feedback.

Figure 3.2 shows a screenshot of the tool.

Compared to the earlier system, this one does not provide visualization

features but there is a console to enable interactive testing of programs.
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Also, this environment is built with HTML and JavaScript only and no

Java, thus, further reducing system requirements. Specifically, Python is

executed using a CPython Python implementation that has been translated

into JavaScript and the code editor uses the CodeMirror library mentioned

above. Similar to the earlier system, programs are executed client-side.

The environment was used on a web development course to deliver three

Python programming assignments. Students’ perceptions were gauged

using a web questionnaire. The reception was generally positive and a

great majority of respondents (79 %) agreed that the system should be used

on the course again in the future. Free text answers highlighted especially

the benefit of there being no setup. The implementation of the environment

and students’ perceptions of it are presented in full in Publication V. A

second focus in this paper was recording and analyzing students’ actions

and behavior in the environment and this will be discussed in Section 4.2.

3.2 Program Construction Exercises

The previous section mainly dealt with lowering the barrier to start prac-

ticing programming by simplifying the tools and the programming environ-

ment overall. We have additionally experimented with an approach where

the mechanics of describing programs are simplified by letting learners

create programs from a given set of building blocks instead of writing

statements and expressions from scratch.

As discussed in Section 2.4.1, Ihantola and Karavirta have previously

designed and implemented a system called js-parsons for a type of program

construction exercises they call two-dimensional Parson’s puzzles [61]. In

these exercises, learners are given a set of Python code fragments they can

use to build the kind of program required of them in the particular assign-

ment. The code fragments are complete lines of code (without indentation)

– either a single line or a few lines in a block. As already mentioned in

previous chapters, the block structure in Python code is defined by using

indentation. In js-parsons, the task then becomes how to place code lines

in their proper place both in terms of the order and the indentation in

order to put together a program with the expected functionality. Figure

3.3 shows a screenshot of the tool.

In the work in this thesis, we have implemented new features to js-

parsons. Particularly, the original version of js-parsons provided only

rudimentary automated feedback which we have improved in this work.
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Figure 3.3. A program construction exercise using js-parsons.

Making use of js-parsons, we have also studied the feasibility of using

program construction exercises to practice programming on touch devices.

The next two sections summarize the work carried out in this thesis with

regard to these two themes.

3.2.1 Automated Feedback in Program Construction Exercises

As discussed in Chapter 1, the second approach we have studied to lower

the barrier to start practicing programming, is the use of program con-

struction exercises in teaching programming. In experimenting with these

exercises, we have encountered a number of issues with the automated

feedback provided. From these experiences emerged the following general

research question.

RQ1.2 How to improve automated feedback in program construction

exercises?

The original feedback mechanism in js-parsons was based on checking the

lines in a constructed program one-by-one starting from the top. When

the first line is found that does not belong to that particular row index,

it is highlighted. In js-parsons feedback can be requested instantly with

a click of a button and by default there is no limitation to the number of

such requests. One drawback to this is that with unlimited feedback, this

mechanism can be used to build the solution by a simple process of trial-

and-error: try to place each of the remaining lines in turn to the last row

and request feedback to test if it is correct. However, more importantly, we

felt the original type of feedback was inadequate because learners would
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not get useful feedback on perfectly sensible partial solutions where they

had, for example, first placed some control structures, such as loops and

function definitions to their correct positions in relation to each others. A

better mechanism would simply point out that the partial program is fine

but some lines are still missing instead of stating that a line is incorrect

just because another line is yet to be added before it. The original type

of feedback would in a way immediately guide into thinking about the

structure of the program line-by-line in full detail starting from the top.

Even with all lines arranged into a faulty program, the original feedback

would only point out the first incorrect placement counting from the top,

thus, possibly steering the learner towards a fix where this single line is

next tried somewhere else instead of trying to figure out the program as a

whole. The specific research question is then as follows.

How to provide better feedback on partial solutions to program

construction exercises?

In response to this, we implemented a new type of feedback mechanism

based on computing longest common subsequences between the single

expected solution and the currently constructed program. This feedback

points out a minimal number of lines whose repositioning can be used to

correct the program if done right. Figure 3.4 shows a screenshot of this

type of feedback. The implementation is explained in full in Publication

III.

Figure 3.4. Feedback based on code fragment positions, that is, line-based feedback. One
way to correct the program is to reposition the fragments highlighted in red.
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Continuing with this theme, in a subsequent analysis of students’ use

of the js-parsons system with this new type of feedback, we observed

some students ending up going in circles in their flawed program design

and also using feedback excessively, in a trial-and-error manner. Indeed,

even though the new type of line-based feedback we designed is not as

directly exploitable to build the solution in the trial-and-error manner

described above when discussing the original mechanism, it does still

guide the learner towards that single solution quite effectively and is prone

to misuse. The study will be discussed in more detail in the next chapter.

These observations motivated the following two specific research questions.

How to provide guidance to learners that are going in circles?

How to discourage excessive use of feedback in a trial-and-error manner?

In response to these, first, we implemented a feature where the learner

would get a discreet notification when they wound up with a flawed pro-

gram design that they already had previously constructed. A tab could

then be opened that would show them the feedback for the current program

and for the the program they previously changed it to. Second, we imple-

mented a penalty for requesting feedback too often. Based on a few simple

heuristic rules the feedback functionality would be disabled for a while

when it was being used frequently in a way that we deemed trial-and-error

behavior. The implementations of these feedback mechanisms are also

explained in full in Publication III.

We call the overall feedback mechanism just described line-based feed-

back. A key weakness with this mechanism is that the feedback is con-

structed relative to a single correct expected solution which must be unique

for all this to work4. However, if we could build exercises that would allow

alternative solutions, a much larger variety of problems could be supported

with these exercises. From a teacher’s point of view, it would also be

much easier to design exercises without the requirement of a single unique

solution. This motivated the following two specific research questions.

Can we provide automated feedback in program construction exercises

in a way that does not require a single unique solution?

In response to this, we implemented an alternative form of feedback similar

to that traditionally used in programming assignments. The constructed

program is run against unit tests and the results of test runs are then

presented. Figure 3.5 shows a screenshot of this type of feedback.
4The same applies to the pre-existing, original feedback mechanism in js-parsons.
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Figure 3.5. Execution-based feedback for the program shown in Figure 3.4.

Contrary to what is common in similar browser-based tools, constructed

programs are executed client-side. Programs are run using Skulpt5, a

(partial) implementation of Python in JavaScript.

Following the implementation, we went on to experiment with both

types of feedback on a CS1 course in Python. Student feedback was

collected using a web questionnaire. Overall, attitude towards the exercises

was mostly positive. To mention just two questions where there was a

high level of agreement, most respondents felt that the exercises helped

them to understand other programs (71 %) and that they are worth using

on the course again in the future (77 %). Publication IV presents the

implementation of execution-based feedback and an experiment carried

out to study the effects of the different types of feedback. The experiment

is discussed in the next chapter.

3.2.2 Program Construction Exercises on Touch Devices

As discussed in Chapter 1, the third and final approach we have studied

to lower the barrier to start practicing programming, is the use of touch

devices in order to support mobile and ubiquitous learning. The general

research question is as follows.

RQ1.3 How to practice programming on mobile touch devices?

The program construction exercises discussed in this chapter are small

self-contained exercises with a rather simple user interface based on drag-

and-dropping code blocks. That is why they seemed well-suited to a mobile

context and to touch screen -based devices. This led us to the following

specific research question.

5http://www.skulpt.org/
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How to adapt program construction exercises to mobile touch devices?

The mobile application for program construction exercises was built on

top of the web-based js-parsons environment with our line-based feedback.

However, the user interface was redesigned to make it usable on smaller

screens. The interface also resizes automatically making it suitable for

both phones and tablets. Furthermore, the PhoneGap6 library was used to

package the web application into a native application that can be installed

on the device. The application was packaged for both iOS and Android

platforms. Finally, the collection of available exercises is fetched from a re-

mote repository but it is also stored locally to enable offline use. Figure 3.6

shows a screenshot of the tool. The rationale, design, and implementation

of the tool is presented in full in Publication III.

Figure 3.6. A program construction exercise on a mobile device in landscape orientation.
The assignment tab is open and shows the description of the exercise. On the
left there are gray code fragments that can be used to build the solution onto
the yellow area on the right.

In the previous section, execution-based feedback was introduced to en-

able exercises where there are several acceptable arrangements of the

given code fragments, in other words, several alternative solutions. Some-

times, the same set of fragments make a little variation possible but often

to allow actual alternative approaches there needs to be additional code

available. However, especially on devices with small screens, having a

large set of alternative code fragments becomes cumbersome. This led us

to the following specific research question.

How to allow a greater variety of different solutions in program

construction exercises on touch devices?
6http://phonegap.com/
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In examining solutions to past programming assignments, we discovered

variation in the solutions that results from small things, like, from the

details how computation is divided into branches in a branch condition. In

response to this, we designed and implemented a new type of a program

construction exercise where pre-defined parts of the given code fragments

may be slightly modified by tapping through a set of given alternative

values. For example, a relational operator in an expression could be

switched between <, >, <=, and >=. This allows a much greater variety of

different types of programs to be built while the interface still remains

extremely simple. Figure 3.7 shows a screenshot of the tool.

Figure 3.7. A program construction exercise with code fragments that have some parts
which can be modified.

An implementation of execution-based feedback on touch devices, similar

to that discussed in the previous section, is also presented along with

the new exercise type. Specifically, programs are run client-side using

the Skulpt library and, consequently, offline use of the application is still

possible. Publication VI reviews alternative approaches to practicing

programming on mobile devices and describes the rationale, design, and

implementation of this new type of an exercise on touch devices.
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4. Recording and Analysis of Exercise
Sessions

In Chapter 1, the following was presented as the second high-level research

question of this thesis.

RQ2 How to, automatically and unobtrusively, record programming

exercise sessions and what can we learn from such data?

We have studied traces of both program construction and programming

exercise sessions. Next, we summarize the research in the papers included

in this thesis that deal with this question.

4.1 Program Construction Sessions

The program construction exercises based on js-parsons discussed in Sec-

tion 3.2 provide an opportunity to study the process of creating programs

in a restricted setting where learners have a very limited vocabulary for

composing programs. Specifically, learners are given only a limited set

of code fragments that they can combine to form a program with only

few choices left for them in this process: which fragments to use, how to

order the fragments, and how to indent the fragments. The js-parsons

environment already originally provided support for recording learners’

actions as they are solving exercises [61]. In this work, we have made

several improvements to the system as discussed in the previous chapter.

Accordingly, the recording feature was developed further to account for

the new features. Any operations the learner performs on code fragments

and any requests for feedback can be recorded as a sequence of events and

stored on a remote server. This enables full playback and analysis of a

learner’s program construction session. Publication II and Publication IV

report on analyzing program construction traces collected from university

students. The key findings from these two studies are presented next in

Sections 4.1.1 and 4.1.2, respectively.

75



Recording and Analysis of Exercise Sessions

4.1.1 How Do Students Solve Program Construction Exercises?

The recording feature allows us to study how students approach program

construction and, on the other hand, in general, to evaluate how they use

the js-parsons environment. Consequently, we set off to study methods to

visualize and analyze the program construction process. Specifically, we

aimed to explore how students arrive at their solution, such as are there

common patterns, how much they vary, and how students use automated

feedback. The general research question is as follows.

Can we identify and quantify students’ difficulties and approaches to

building programs from automatically recorded traces?

Data was collected on five assignments on two different programming

courses at Aalto University: Web Software Development (WSD) and a CS2

taught with Python. The assignments included short programs of 3-7 code

fragments. A student was able to advance to the next assignment only

after solving the current one. Analysis focused on the WSD course where

around 140 students, almost all of them, solved the assignments.

This study contributes to research in learning programming by present-

ing a vocabulary and visualization for program construction sessions, as

well as identifying some general solution patterns and indicators of poorly

proceeding solutions. The key results of the study deal with observations

made using a graph-based visualization of program construction sessions.

This and other results are discussed in the next three sections. The data

collection, analyses, and results are explained in full in Publication II.

Graph Visualization – Common Patterns and Anomalies

A program construction session was conceptualized as a graph where the

nodes are different arrangements of code in the student’s current (partial)

program and the edges represent transitions from one state to another as

the result of moving a code fragment. Thus a single solution consists of a

path in the graph from the empty state (no code fragments) to a final state

(an arrangement of code that describes an expected program).

First, we examined the following specific research question.

Can we identify common patterns in students’ approaches to

building programs from this data?

We examined whether any common patterns emerge across solutions by

constructing an aggregate graph of all the solution paths for each exercise.
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We found there to be a lot of variation in the program construction paths

but, when focusing on the edges traversed by most students, two patterns

could be identified. Students would generally attempt to solve an exercise

either in a linear fashion as if trying to figure out (or having already figured

out) the program design line-by-line starting from the top or follow what

would seem more structured thinking and start with control structures as

if first aiming for a more abstract design of the general flow of the solution.

Table 4.1 illustrates how students began the construction process in one of

the exercises.

Table 4.1. The percentage of construction sessions where a particular line had been added
to the constructed program during the first four steps (S1-S4) in one of the exer-
cises. The numbers show a preference for starting with control flow statements.

Code S1 S2 S3 S4

def is_sublist(list1, list2): 99.3 100.0 100.0 100.0

if len(list2) < len(list1): 0.7 53.7 77.9 86.8

list1, list2 = list2, list1 0.0 4.4 36.0 60.3

for i in xrange(len(list2)-len(list1)): 0.0 35.3 55.1 87.5

if list2[i:i+len(list1)] == list1: 0.0 4.4 14.0 33.8

return True 0.0 1.5 1.5 6.6

return False 0.0 0.7 14.0 19.9

Second, in addition to revealing common patterns we were of course in-

terested in finding out when these patterns break as this would potentially

be a sign of difficulties. This led us to examine the following research

questions.

Can we identify any anomalies in students’ approaches to solving

the exercises from this data?

Can we identify struggling students from this data?

To answer these questions, we also went through individual solutions in

addition to aggregate graphs. This analysis revealed a relatively common

occurrence of going in circles when trying to solve an exercise. What this

means is that after repeated changes by moving the code fragments around,

the students would end up with an arrangement of code they already

had previously constructed. This often seemingly aimless exploration

of the problem space is not effective behavior and is a likely indicator

of difficulties. Figure 4.1 shows an example of a “loop” in a student’s

program construction session. Consequently, this observation spurred

us to provide additional automated feedback when this occurs as was

described in Section 3.2.1 and is fully explained in Publication III.
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Figure 4.1. Visualization of a part of a program construction session as a graph. Each
node represents a single arrangement of student’s code. The student has gone
in circles with regard to the program design as signified by the loop in the
graph (there is some backtracking also). Eventually, the student resorted to
trial-and-error. This is seen as a sequence of states where feedback has been
requested rapidly in between (the black nodes whose outgoing edges have
small numbers in their labels).

Use of Automated Feedback

Additionally, we examined the use of feedback as follows.

When and how often do students request feedback?

In general, students used feedback sparingly and rarely requested it before

having added all the code fragments into their program. However, some

students were found to have used feedback in a trial-and-error manner

where they would request it after every modification they made, with

seemingly little thought going into the process. This was evident in the

graph visualizations of individual sessions where we also showed how long

the student spent time between modifications. There were consecutive

sequences of states, where in each state, feedback was requested and there

was no pause for thought but instead the code was modified in a matter of

only few seconds. Figure 4.1 shows an example of trial-and-error behavior.

Following this observation, functionality for limiting too frequent feedback

was implemented as was described in Section 3.2.1 and is fully explained

in Publication III.

Difficulty of Exercises

Finally, we also examined the use of this data in identifying difficult

exercises and code as follows.
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Can we gauge the difficulty of particular exercises from this data?

Can we identify problematic parts of code from this data?

Quite naturally, the number of steps needed and the time elapsed when

solving an exercise gives a basic estimate on the relative difficulties of the

exercises. However, we also explored an alternative method for this. We

find that a large variety of states, where feedback has been requested and

the arrangement of code has been incorrect, indicates that the exercise

has been especially challenging and that students may even have resorted

to a bit of guessing. This was true for one of the problems assigned to

students where several permutations of the code fragments were among

the common incorrect states. Similarly, these states can be used to identify

parts of code that students often had trouble with by examining which code

fragments were placed incorrectly most commonly. For example, in one of

the exercises, object instantiation code was frequently indented inside a

wrong block.

4.1.2 Line-Based vs. Execution-Based Feedback

In Section 3.2.1, we discussed the types of automated feedback in program

construction exercises – line-based and execution-based. Following the

design and implementation of these two types of feedback we went on to

empirically examine how the type of feedback affects how students solve

an exercise. Program construction exercises with both types of feedback

were used on a CS1 Python programming course and students’ program

construction sessions were recorded in the same manner as in the previous

study described above. The students were randomly divided into two

groups where each in turn would in two assignments receive execution-

based feedback while the other group received line-based feedback. 216

and 165 students in the two groups solved assignment 3.1, the first one of

these exercises, giving a total of 381 students taking part in the experiment.

The specific research questions are as follows.

Can we identify an effect of different types of feedback on how

students solve the exercises from automatically recorded traces?

How does the type of feedback affect students?

Analyses revealed statistically significant differences between the two

groups when feedback was different while there were none in the assign-

ments where the type of feedback was the same for both groups. The
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results show that students who receive execution-based feedback need

on average more steps (a median of 16.5 against 8 steps after the first

feedback request in assignment 3.1) and in general take longer to solve an

exercise (a median of about 37 minutes against about 1 and a half minutes

of time elapsed between the first try of solving the assignment 3.1 and

eventually completing it). These observations mean that students with

line-based feedback were more often able to solve the assignment in one go,

with less steps and breaks. On the other hand, execution-based feedback

was requested less frequently (in around 38 % against 55 % of states in

assignment 3.1) and the respective code was more commonly executable

(when feedback was requested around 55 % against 67 % of states that

failed to execute). We will discuss these differences more in Chapter 5. The

experiment and its results are explained in full in Publication IV.

4.2 Programming Sessions

The work discussed in this chapter so far provides a narrow view of how

students approach programming exercises. Certainly, program construc-

tion exercises have their limitations to what we can learn from them about

how students build programs. Ultimately, most professional software de-

velopment is about writing and editing code as text. Thus, expanding on

the work above we implemented similar recording functionality in a more

conventional programming environment – in the browser-based Python

programming environment described in Section 3.1.2.

All the actions of a learner in the environment are recorded. Specifically,

this trace includes code edits, executing code from both the editor and the

console, submissions, and feedback. Similar to the program construction

sessions, we capture a timestamped sequence of events of these different

types of actions that enables full playback and analysis of individual

programming sessions. Web-based tools have also been implemented for

viewing and analyzing these traces.

Data was collected on three small assignments delivered to students of

a web software development course. The course used the Django1 library

as a server-side web framework and thus included Python programming.

The course is intended for third year students but the backgrounds of the

students varied greatly. About half were master’s and bachelor’s level

CS majors and the others were from a number of different engineering

1https://www.djangoproject.com/
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programs. The assignments dealt with functions, strings, lists, basic math,

defining a class and methods, and extending a class. An assignment could

be submitted an unlimited number of times and the student passed an

assignment when all the tests succeeded. 150, 149, and 128 students

solved the assignments 1, 2, and 3, respectively.

Most similar previous work is on analyzing activity patterns and perfor-

mance indicators, Java compilation behavior, and submissions as discussed

in Section 2.5. In this study, we focused on how students use the interactive

console and which kinds of execution errors they run into when developing

Python programs. Next, we summarize our findings. The data collection,

analyses, and results are explained in full in Publication V.

Console Use

The first specific research question that deals with console use is as follows.

Do students use and how do they use the interactive console?

We manually went through every recorded console interaction. While

students had to submit their solution for assessment using the environ-

ment, they obviously could also work on it elsewhere. About a third of the

students had not used the console at all. Those who used the console, did

so for two purposes: interactively testing their program or exploring and

experimenting with specific language features and libraries. Figure 4.2

shows an example of the latter case.

Figure 4.2. A console session showing exploration of the functionality of Python lists.

Overall, students used the console actively and productively. For example,

over 80 % of those students who used the console in assignment 2, tried all

the test runs given in the description of the assignment. About 25 % did

more thorough testing with additional test runs that were not provided.
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Individual behavior was consistent across assignments.

Another observation possibly related to the console is that students

generally used automated feedback rather sparingly. That is, despite that

there was no limit to the number of times feedback could be requested,

students would ask for feedback up to only a few times in an assignment.

On the other hand, we observed many students using the console for

testing so it stands to reason that it may have affected their behavior. The

tests were given in the form of test runs consisting of a few statements

and the value expected as the result of executing these. These tests could

then also easily be executed in the console and this might as well have

contributed to a lesser need for automated feedback. Thus, we find that it

may be beneficial to initially provide students with such tests in order to

immediately familiarize them with testing their code themselves instead

of relying on the automated feedback.

Execution Errors

The second research question that deals with execution errors is as follows.

Which kinds of errors do students encounter in Python programming

exercise sessions?

Despite Python often being praised for its simple and readable syntax,

syntax-related exceptions were common (34 % of all exceptions) in stu-

dents’ programming sessions across all the assignments. Most of these

resulted from missing colons, empty code blocks after a colon, and missing

or unmatched parentheses. Other common exceptions were NameError,

AttributeError, and TypeError. Most NameError exceptions resulted from

calling functions without importing required packages and from mistyped

variable names. Most AttributeError exceptions resulted from running

tests given in the assignments before all of the required functionality had

been implemented. Most TypeError exceptions resulted from missing a

self argument in methods and from a missing or mistyped initialization

method. Table 4.2 shows the number and distribution of the different types

of errors in each assignment.
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Table 4.2. Types of errors encountered by students.

Error Assignment 1 Assignment 2 Assignment 3

SyntaxError 394 (35%) 195 (17%) 202 (23%)

NameError 274 (24%) 484 (42%) 218 (25%)

IndentationError 173 (15%) 66 (6%) 62 (7%)

TypeError 141 (12%) 252 (22%) 223 (25%)

AttributeError 66 (6%) 135 (12%) 118 (13%)

IndexError 40 (4%) 1 (0%) 25 (3%)

UnboundLocalError 26 (2%) 1 (0%) 15 (2%)

ValueError 21 (2%) 9 (1%) 0 (0%)

ImportError 0 (0%) 15 (1%) 3 (0%)

Other 1 (0%) 7 (1%) 12 (1%)
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5. Discussion and Conclusions

In this final chapter, we go back to the research questions laid out in

Chapter 1 and review our key results from Chapters 3 and 4 in light of

the related work. Each of the research themes in this work is discussed

separately following the groupings from those chapters. Finally, we discuss

some possible directions for future work.

5.1 Environments for Practicing Programming

In this section, we discuss the first high-level research question of this

thesis.

RQ1 How to minimize the barrier to start practicing programming?

We have explored this question using three different approaches each of

which will be discussed in its own section.

5.1.1 Web-Based Programming Exercises

RQ1.1 Can we, using web technologies, lower the barrier to start

practicing programming?

We have successfully experimented with using web-based programming

environments on programming courses at our university. Specifically, we

have designed and implemented two web-based Python environments,

referred to as Jype and IPPE, that integrate key functionality needed

for practicing programming: assignment delivery, editing and executing

code, automated feedback, and program visualization or an interactive

console. The environments have been generally well-received and the stu-

dent feedback seems to support our hypothesis that learners will find this

type of simplified and eased access very beneficial. Furthermore, traces of

programming sessions showed students making good use of an interactive
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Python console that was integrated into the later IPPE environment. A

great majority of the respondents to a student questionnaire also agreed

that this tool should be used on the course again. Automated feedback in

these environments enables self-study anytime and anywhere. Moreover,

on account of the web deployment there is no tethering whatsoever to

some specific location or computer. Overall, the barrier to start practicing

programming is lowered as learners can step right into thinking about

programs instead of right from the outset having to also deal with setting

up and learning to use more complex tools. We thus conclude that web tech-

nologies can be used to implement fully functional novice environments

for practicing programming that lower the barrier to entry.

Discussion

In Section 2.4.2 we discussed several similar web-based tools for practicing

programming. One key difference of our environments to some, especially

the earlier, tools is that they do not provide a proper editor for program-

ming. Instead, a simple text box is provided that, for example, does not

support syntax highlighting (e.g. Javala, CodingBat, CodeWrite). Syntax

highlighting is a standard feature in any programming environment today

and makes it much easier to comprehend code. In Jype, we have used the

jEdit programmer’s editor and in the IPPE environment the CodeMirror

library like in many similarly recent related systems.

Furthermore, many existing tools lack any support for making sense of

execution (e.g. CodeLab, CodeSkulptor, CloudCoder). In Jype, programs

can be visualized. The IPPE tool, however, also lacks this but we are

considering using the existing Online Python Tutor to provide support for

this in the future, similar to CS Circles and Runestone Interactive that

also make use of this themselves. On the other hand, a rather unique

feature in IPPE is the integrated interactive Python console. None of the

other web-based novice programming tools have this and traces indicated

that students used it actively and productively to test their code and to

explore language features and libraries. The CS Circles site provides a

possibility to open up a “console” into a separate window where you can

try out arbitrary code but it does not actually support true interactive

execution with input and output. Moreover, the IPPE tool also stands out

as making it possible to log students’ behavior in the environment in order

to study both the use of the tool and the learning process.

An essential feature in our tools is also that they work with Python.
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The very recent CloudCoder tool that appears to have been developed

around the same time period as the IPPE tool is in many respects a very

similar system. It supports Python, logs students actions, and provides

a proper programmer’s editor using the Ace library. However, it does no

visualization (like IPPE) nor provides a console (unlike IPPE). Finally,

CloudCoder executes learners’ code on the server using Jython, which was

also used client-side in Jype, while the IPPE environment executes code

client-side.

Definitely, a key challenge in implementing an environment of this kind

is how to provide support for executing code. In this work, we have ex-

amined a client-side approach where the learners’ code is executed on

their own machine. This has several benefits over server-side execution.

First, it scales easily because a remote centralized server (or servers) is

not being used to execute everyone’s code. For example, CloudCoder re-

portedly ran into performance issues on a large course which prevented

deployment [103]. Second, there is less need for secure sandboxing of exe-

cution since only the learner’s own machine will be affected if something

goes wrong. Third, when the environment does not rely on the server for

execution, there is not really anything stopping from making it a fully

independent tool. This increased mobility allows the tool to be more easily

reused and ported from one learning environment to another. Also, the tool

could then function offline. In this work, we have not, however, explored

offline use. Assignments have been loaded into the practice environments

from a remote server and students’ submissions have been sent to one too.

Moreover, in the IPPE environment, learners’ actions were recorded and

stored on a remote server.

Client-side execution has its drawbacks as well. Specifically, performance

may be an issue. Executing Python using an implementation translated

from C to JavaScript turned out to be slow while still manageable. Simi-

larly, executing Python via a Java web plug-in and Jython is slower than

native Python. Skulpt JavaScript library that implements some of Python

runs much faster but then is only a fairly limited implementation of the

language. Additionally, in the environments we have designed, automated

assessment is also performed in the client-side execution environment.

What this means is that there is a real risk of a student tapping into

the assessment routines and falsifying their results. For this reason, you

may need to think twice about using these scores for grading. However,

in our assignments, the student would still not gain access to a solution
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(only the tests) and they would have to submit code along the results of

assessment. Therefore, the scores could also be verified at the end of the

course as a batch run on the students’ submitted code. Thus, fear of getting

caught doing this and the resulting disciplinary actions should be deterrent

enough.

Overall, one might critique against the systems presented on the basis

that, after all, everyone has to eventually deal with the real tools of the

trade so why postpone this with these temporary crutches. This is a rea-

sonable opinion and concerns a novice environment of any kind. However,

we argue that while some students may have no trouble putting in the

required effort to get up and running, and into practicing the actual skills,

others will initially simply lack the required motivation. This may be the

case for non-majors in particular. Getting the computer to perform stuff

as you instructed is satisfying and even fun, and students should get a

sense of this enjoyment early on to motivate them to persevere through

all the complexities. Moreover, we should not get hung up on this but

remember that there are lots of other potential advantages to a web-based

environment as discussed in length in Section 1.5.

5.1.2 Program Construction Exercises

The second approach we have experimented with is the use of program

construction exercises in teaching. These exercises aim to lower the barrier

to practicing programming by simplifying how programs are described.

Specifically, in the type of exercises we have explored, programs are con-

structed by drag-and-dropping fragments of Python code in a web-based

environment. The exercises were described in more detail in Section 3.2.

We have used program construction exercises on several programming

courses and they have been met with a mostly positive response. In fact,

most respondents to a student questionnaire agreed that these exercises

helped them to understand other programs and that they should be used

again on the CS1 course they were taking. We conclude that js-parsons

program construction exercises are a useful supplemental teaching method

that students, in general, seem to value.

RQ1.2 How to improve automated feedback in program construction

exercises?

In particular, in this work, we have studied the provision of automated

feedback in program construction exercises. We have argued that the origi-
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nal implementation of feedback in js-parsons did not support constructing

programs in a structured way. If used on an overall blueprint of a program

containing control flow statements, it would guide towards thinking about

the details line-by-line starting from the top. Additionally, with unlimited

feedback, this approach lent itself too easily to a trial-and-error approach.

Consequently, we implemented a new type of feedback mechanism that

points out a minimal number of lines whose repositioning can be used

to correct the program if done right. In experimenting with this type

of feedback, we found that students still quite often seemed to resort to

trial-and-error use of it if they were initially unable to solve the problem

correctly. This behavior should be discouraged and instead students should

seek to understand what the problem is. Thus, we implemented a heuristic

rule for limiting the use of feedback.

Additionally, we observed students going in circles in their design as if

totally unaware of what they were doing. To let students know about how

little they were making progress as a hint that they should stop and think,

we implemented a discreet notification to let them know when this occurs.

Both these new feedback mechanisms, especially the latter, rely on knowl-

edge of what has been done during the exercise session, that is, the recorded

interaction trace. They are somewhat novel in this sense. We have yet

to formally experiment with the use of these new mechanisms but we

conclude that this data-driven approach of improving feedback, based on

what has been seen in recorded traces, has good potential to improve the

effectiveness of these types of educational tools.

We have additionally implemented an alternative form of automated

feedback based on running tests on the constructed program. We call this

execution-based feedback and the one just discussed line-based feedback.

In our line-based approach, feedback is constructed relative to a single

unique solution. Execution-based feedback enables alternative correct

solutions. This type of feedback is discussed more below in relation to

traces recorded in order to learn how the two types of feedback affect

students.

RQ1.3 How to practice programming on mobile touch devices?

In addition to web-based environments, we have studied how to make

use of touch screen based mobile devices in practicing programming and

implemented an application for this. We have argued that program con-

struction exercises are an excellent fit to this context especially because of

their simple user interface while programs may still be constructed using a
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general-purpose language. Independent of our work, Pritchard and Vasiga

have also suggested this type of use for their similar type of an exercise

they call code scrambles: “Can a useful programming course be taught on

a touch-screen/tablet/iPad? . . . code scrambles might work even better on a

touchscreen.” [114]. The key weakness is that this type of exercise greatly

limits the freedom of expression in choosing the program design. In order

to alleviate this, we have also introduced a type of exercise that lets some

pre-assigned parts of the code be modified by tapping through alternatives.

We conclude that program construction exercises have great potential in

enabling programming to be practiced on mobile touch devices and thus in

facilitating ubiquitous learning.

Discussion

Several related systems have previously been designed that change the

mechanics of how programs are described as discussed in Section 2.4.1.

Many of these are also based on constructing a program from programming

blocks of some kind. The key difference to these is that in the program

construction exercises as we define them, the blocks are made up of actual

written code in a general-purpose language instead of replacing parts of

it with visual metaphors (e.g. JPie [51], the first version of Alice [27])

and more typically entirely with a special-purpose teaching language (e.g.

Snap!1, Alice 32 [30], Scratch3 [90]). For us, the language is part of what

students are to learn instead of simply being a vehicle for teaching the basic

concepts. Therefore, we have explored simplifying the use of the particular

programming language instead of replacing it with a different notation.

We expect this practice then to result in good transfer of knowledge when

going forward in learning to program with that language. Similarly, in

the mobile context, while TouchDevelop provides a powerful programming

environment it does so by using a menu-driven language specially designed

for this purpose.

Moreover, we have explored supporting self-study with appropriate for-

mative automated feedback. Apart from the other tools for program con-

struction exercises, similar environments support learning by experimen-

tation, tinkering, and open-ended exploration well, for example, by letting

learners program animations like in Scratch and Alice. These tools do not

provide a proper framework for assignments with automated guidance

1http://snap.berkeley.edu/
2http://www.alice.org/
3http://scratch.mit.edu/
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to complete them independently. Furthermore, as discussed in Section

2.5.2, students working in such exploratory environments have been seen

to adopt bad habits of programming [95] and to not make enough use

of or even avoid the use of important basic programming concepts like

conditional execution, thus, lessening the value of this practice [1, 95].

However, we have not attempted to measure the specific impact of pro-

gram construction exercises on learning. In fact, the main purpose for our

use of these and any kind of automated tools is to make up for a lack of

individual guidance. To really put it bluntly, in this context, we have suc-

ceeded if we have not made things worse and it appears students mostly

valued these types of exercises. However, we must note that the ques-

tionnaire used as a basis for evaluating how students perceived program

construction exercises was answered by only 163 students (37 %). There

may be bias in any direction in that sample. Drawing upon our experiences

with these exercises in a web environment we also argue that learners will

find them an attractive learning method on mobile touch devices but we

have yet to evaluate this.

In their survey of literature on the teaching of introductory program-

ming, Pears et al. discuss the issue of why so few teaching tools have

seen wide adoption [109]. They cite missing support for modifying the tool

for a different context as one reason, but more importantly the current

research process and funding that does not support advancing a tool be-

yond a research prototype unusable by anyone other than the developers

themselves. Neither is our work without blame in this regard. However,

something that speaks for the concept and the js-parsons implementation

of program construction exercises that have both been developed further

in this work, is that they have gained some wider adoption. Exercises

using js-parsons are being used as part of an interactive web-based book on

Python programming4 and, based on some email we have received, there

are others making use of them, too.

Finally, the new feedback mechanisms about excessive feedback and

going in circles have yet to be piloted on a programming course. Similarly,

as mentioned above, we have not yet conducted formal experiments on the

use of our applications for mobile touch devices.

4http://interactivepython.org/runestone/static/thinkcspy/index.html
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5.2 Recording and Analysis of Exercise Sessions

In this section, we discuss the second high-level research question of this

thesis.

RQ2 How to, automatically and unobtrusively, record programming

exercise sessions and what can we learn from such data?

We have explored recording program construction and programming ex-

ercise sessions as discussed next. Overall, the approach lets us study

patterns and difficulties in programming in a quantifiable way with little

effort required in the process of collecting data.

5.2.1 Program Construction Sessions

We have used automated recording of exercise sessions to learn about

how students solve program construction tasks. An important observation

is that the data is suitable for revealing difficulties that are not to be

seen in the end result of the task. Students are almost without fail able

to solve the exercises with the help of automated feedback but there is

great variance in the process of how this is accomplished. We presented

a graph-based visualization of program construction sessions and used it

to identify two overall approaches to program construction: line-by-line

and control structures first. We also observed behavior that was indicative

of difficulties in solving the exercise: backtracking, going in circles, and

excessive, trial-and-error use of feedback. Furthermore, we used these

types of traces to discover that the type of automated feedback has a

significant effect on how students solve the exercises. We conclude that

automatically recorded program construction sessions enable to reveal

information about the learning process that can be used plan interventions

and in improving learning content and tools.

Discussion

We found a structured pattern of constructing programs starting with

control structures to be common in the traces. Yet, students in a somewhat

related context – programming in Scratch — have been seen to exhibit

ineffective behaviors, such as bottom-up programming as discussed in

Section 2.5.2. However, our data came from more advanced students than

novices – mainly from participants of a Web Software Development course

intended for third year students. True novices could reasonably have

entirely different kinds of patterns. We have collected traces from a CS1
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course but have yet to properly analyze them in this respect.

The students who exhibited behaviors, such as going in circles and trial-

and-error use of feedback seem very similar to the extreme movers char-

acterized by Perkins [110] and discussed in Section 2.5.2. They keep on

making changes without too much reflection or any apparent convergence

to a solution. However, while we can see this type of behavior indicative

of difficulties, we have not addressed the question of what the underlying

problem is nor is it generally possible to do using this type of data alone.

Even though we can see a student making circles in their program design,

it is still difficult to make clear conclusions as to what is causing this

apparent confusion. Is there maybe a specific construct whose meaning

they are unable to grasp?

Finally, there was a significant difference in how students solved program

construction exercises with different types of feedback. The results were

presented in Section 4.1.2. It would seem that the execution-based feedback

provided less guidance and the exercise sessions were then longer both in

terms of steps and time. There was also a statistically significant difference

in the number of sessions in an exercise. With execution-based feedback

students more often abandoned the task and tried again at a later time.

This is not entirely surprising because the line-based feedback gives direct

suggestions on where the learner can start about fixing the program. This

feedback, in a way, treats the exercise as a puzzle and gives a suggestion

which pieces could be moved to complete it. With enough tries the learner

should eventually always be able to reach a solution. On the other hand,

the usefulness of execution-based feedback relies on learners’ ability to

trace the execution of their program and this way track down the cause of

incorrect behavior – and they may be unable to do this without additional

study of the programming constructs involved. In fact, instead of relying

on students’ ability to do this without support we could provide additional

feedback on the execution of tests as program visualizations similar to the

what is done in the code sorting exercises in the ViLLE environment. We

could also consider combining these two types of feedback: initially give

execution-based feedback but also in some cases in a limited way provide

line-based feedback to hint where to start searching for the problem.

5.2.2 Programming Sessions

We have, as well, demonstrated the automated collection of detailed traces

of programming sessions in a web-based programming environment. The

93



Discussion and Conclusions

recorded traces let teachers and researchers view a full playback of the

programming session in the environment. We demonstrated the use of this

data in analyzing how students use an interactive console and what kinds

of execution errors they encounter in Python programming. Students

made use of the console both for testing their code and for exploring

language features. A variety of error types were observed while, consistent

with previous studies, only a minority of those accounted for the majority

of occurrences. We conclude that automatically recorded programming

sessions enable to reveal information about the learning process that can

be used plan interventions and in improving learning content and tools.

Discussion

In Section 2.5.2 we discussed several similar endeavors to study how stu-

dents approach the solving of programming tasks. A lot of the work has

dealt with submissions to automated assessment systems (e.g. WEB-Cat,

CodeWrite) or Java and its compiler errors and learners’ compilation behav-

ior. We have explored Python. Moreover, previously, little work has been

done to record and study entire programming sessions. Very recently, other

tools have, apparently around the same time period as our work, imple-

mented support for recording such traces (BlueJ [148], CloudCoder [103]).

We have additionally gone on to capture traces from students. These gave

us the unique opportunity to study how students made use of the inter-

active console provided for them in the IPPE environment. Indeed, we

imagine a lot can be learned from these types of traces and, eventually, we

may be able to recognize patterns and difficulties during the session, thus,

providing new opportunities for automated feedback.

From one point of view, we have tried to learn about the students’ pro-

gramming processes unobtrusively, that is, without intervening. However,

any kind of system that is not a natural part of the learning process is

an intervention and the IPPE environment can be regarded as such, as

well. This should be considered when evaluating the results. For example,

students may not have used the console so much had it not been placed so

centrally next to the editor.

Furthermore, the traces collected and the questionnaire data on the use

of the IPPE environment came from students of a Web Software Develop-

ment course which is not intended for complete novices. This should be

considered when evaluating their responses. Indeed, there might be some

issues in using the system that these more advanced students did not stum-

94



Discussion and Conclusions

ble upon. On the other hand, the fact that even more advanced students

found the IPPE environment adequate enough for a few programming

exercises may be considered a praise.

Finally, with regard to the traces, we only have detailed data from the

self-selected group of students who opted to use the environment for more

than simply submitting the exercises. However, we found no correlation

between choosing to use the environment and students’ performance on

the course, so it would seem the sample did not differ from the population

of the class in this respect at least.

5.3 Future Work

There are several possible lines of future research.

The IPPE environment opens up endless possibilities to replicate studies

about students’ programming habits, as well as to learn about any diffi-

culties in a quantifiable way. Those can then be addressed in teaching

in a prioritized manner. Moreover, similar to some previous work dis-

cussed in Section 2.5 (e.g. [62] and [102]), details about the process could

be given back to the students themselves to let students evaluate their

working habits in terms of their peers and go on to improve themselves

independently.

One weakness with the IPPE tool is that contrary to the Jype tool and

typical IDEs it does not provide a visual debugger. One possibility would be

to explore providing program visualizations using the previously-existing

Online Python Tutor tool. Similarly, this tool could also be used to comple-

ment execution-based feedback in program construction exercises.

As for the mobile applications, we have explored new ways to practice

programming on touch devices but next their effectiveness must be formally

evaluated.

Finally, so far, we have only explored using program construction exer-

cises in Python but are working on implementations for other languages.
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