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Accurate control of a quantum system is complicated to achieve partly due to the system be-

ing coupled to its surrounding environment. The coupling induces dissipation and decoherence 
not only destroying the coherent quantum state but making the application of control unpre-
dictable. When the control results from manipulation of external fields, it is usually referred to 
as driving and its joint effect with decoherence constitutes an active field of study in reduced-
density-operator theory. Recently, this field has been pushed forward by its necessity in simu-
lating Cooper pair pumping where the geometric nature of quantum evolution allows for con-
trolled transport of charge carriers in superconducting circuits. Such circuits themselves are 
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in the presence of flux noise is presented leading to detectable dissipative currents and the typ-
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coupled quantum LC resonators. Tunability allowing for both efficient initialization and pro-
tected evolution is theoretically demonstrated. Finally, a general framework for quantum driv-
ing is constructed without the typical assumption of a classical driving force leading to peculiar 
results. 
   This dissertation presents original research on both modeling the control of open quantum 
systems as well as the realization of such control. The work simulates physical phenomena in 
superconducting circuits and makes predictions for future experiments. In addition, it intro-
duces novel theoretical tools and approaches that advance the state of the art. 
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1. Introduction

When the quantum theory was conjured into existence to account for the

wisping of electrons around atoms back in the 1920’s [1–3], the idea of

accurately controlling systems governed by the obscure and unintuitive

laws probably seemed like an insurmountable task. In the course of the

following decades, the theory claimed its position as the definite means of

describing the dynamics of nanoscale systems [4,5] and spawned some of

the basic building blocks of the modern society such as the complex infor-

mation processing devices based on semiconductor physics [6] that we now

depend on. However, there is a difference between exploiting quantum

phenomena and truly controlling a quantum system. In a broad sense,

control at the quantum level is something one applies to the corehent

quantum state rather than to the ensemble properties stemming from

quantum behavior. As a result, the biggest enemy of control in quantum

systems is decoherence, the destruction of coherence due to the ubiquitous

coupling to the surrounding environment [7, 8]. Such quantum systems

are usually referred to as open.

The concept of driving a quantum system refers to the direct control

of its evolution due to the introduction of external time-dependent fields.

Such control requires extreme accuracy of the externally applied action

and a profound understanding of how the intrigate quantum degrees of

freedom are subsequently affected. In recent years, superconducting cir-

cuits [9,10] have emerged as the prime testbed for driven dynamics facil-

itating complex designs and rapid advance in quantum information pro-

cessing [11, 12]. They are fundamentally based on the development of

the theory of superconductivity [13] and the discovery of the Josephson

effect [14,15] which enable the construction of macroscopic solid-state de-

vices acting as artificial atoms. The devices can be manipulated by ex-

ternally tuning the characteristic energy scales of the circuit elements
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yielding direct access to the quantum state. In addition, superconduct-

ing circuits are at the heart of circuit quantum electrodynamics [16, 17]

where the coupling between the quantum mechanical cavity modes and

other circuit elements introduces additional means of control.

Cooper-pair pumping—the controlled transport of the charge carriers in

superconducting devices—has been under extensive review after its con-

nection to the Berry phase accumulated during adiabatic evolution was

discovered [18]. A similar connection can be drawn between supercon-

ducting circuits and geometric quantum computing [19] in general im-

plying that such circuits can potentially be used for this inherently ro-

bust computing scheme. The resulting interest in simulating Cooper-pair

pumping has advanced the theory of driven dissipative dynamics start-

ing from the breakthrough findings in Ref. [20] where a novel approach

was shown to correctly yield important properties in quantum evolution

visible in the pumped charge. Moreover, fluctuation relations for injected

work in driven quantum systems [21] have been proposed to be analyzed

using superconducting devices, for example, in Refs. [22, 23]. However,

such fluctuation relations as well as the current description of driven

quantum systems in general implicitly assume an external classical driv-

ing force. This potentially limits their range of validity.

This overview has the following structure. Chapter 2 introduces driven

quantum systems and discusses the resulting dissipative dynamics. It es-

pecially elaborates on the nearly adiabatic driving and discusses the im-

portance of a proper basis selection when formulating a master equation

for the reduced-system dynamics. This leads to a study of the combined ef-

fect of driving and dissipation as well as motivates a general conservation

law of operator current in open quantum systems. Chapter 3 is devoted

to applying the derived master equations to superconducting nanocircuits

and, more spesifically, to Cooper-pair pumping. The general character-

istics of dissipative pumping are explored along with a few important

extensions of the theory. In Chapter 4, the methods of circuit quantum

electrodynamics are used to engineer a tunable coupling to an artificial

environment introducing an additional level of control. Chapter 5 gener-

alizes the previously used concept of driving a quantum system based on

external classical fields to a fully quantum description, and investigates

the resulting definition of injected work. Chapters 2–5 each begin with a

brief introduction to motivate the respective topic and include discussion

of the obtained results. Finally, Chapter 6 summarizes the main results

2
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of the dissertation and elaborates on how they contribute to scientific un-

derstanding. It introduces further research motivated by the results and

proposes future areas of study.
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2. Dissipative Dynamics of Driven
Quantum Systems

The standard approximations used in the master equation approach to

incorporating dissipation into quantum systems fail when the system is

externally driven. This chapter goes beyond such approximations and

elaborates on the proper inclusion of driving into open system dynamics.

Section 2.1 introduces the main concepts and we discuss the details in the

nearly adiabatic limit using the results of Publications I–III in Sec. 2.2.

The possibly emerging nonphysicality is discussed in Sec. 2.3 on a more

general level with the help of Publication V.

2.1 External control of open quantum systems

In this dissertation, one of our focus points is open quantum systems.

Such systems are best understood through an averaging process taking

us from a complete dynamics to a reduced one. Assume a total quantum

system whose dynamics are completely determined by a Hamiltonian Ĥ

yielding the unitary time evolution of the density operator ρ̂ through the

Schrödinger equation [4]. In principle, such total system accounts for all

possible degrees of freedom including those of the measuring device and

the thermal bath in an experimental setup. Typically we are only in-

terested in the evolution within certain degrees of freedom making up a

confined subsystem and the total evolution is beyond our grasp both theo-

retically and experimentally. This interest brings about the concept of re-

duced dynamics where we average over the undesired degrees of freedom

to obtain the reduced density operator ρ̂S = TrE{ρ̂} in which the complete

information of the system of interest is stored. The notation TrE denotes

a trace1 over the remaining degrees of freedom usually referred to as the

1The trace of an arbitrary operator x̂ is defined as TrE{x̂} =
∑

n 〈n|x̂|n〉, where
{|n〉} is a complete orthonormal set in the Hilbert space of E.
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environment E. Note that the open quantum system described by ρ̂S no

longer evolves unitarily as it accounts for both the internal dynamics of

the system as well as the interaction with the environment. There exists

a myriad of methods for accessing the dynamics of open quantum sys-

tems [24, 25] and after applying a set of approximations, usually related

to the nature of the system–environment interaction and the properties

of the environment, such dynamics can typically be described with some

accuracy.

This dissertation studies open quantum systems using the so-called mas-

ter equation (ME) approach referring to the formulation of an equation of

motion for the reduced density. Even though the exact dynamics are for-

mally obtained from the Liouville-von Neumann equation for the total

system as dρ̂S/dt = −iTrE{[Ĥ, ρ̂]}/�, the intricacies of actually approx-

imating this in a useful manner are quite challenging. We concentrate

on the challenge that arises from accounting for the external control of

the system. This control is due to external time-dependent fields gener-

ating a perturbative action on the system and manifests itself as driving

through the time-dependence of the system Hamiltonian ĤS
2. Here, ĤS is

defined as the self-Hamiltonian of the open system S corresponding to the

environment–decoupled evolution. The total Hamiltonian may generally

be taken of the form

Ĥ(t) = ĤS(t) ⊗ ÎE + ÎS ⊗ ĤE + V̂ (t), (2.1)

where we explicitly denote the parametric time-dependence due to the

drive. Here ÎS (ÎE) is the identity operator in the Hilbert space of the

system (environment) and V̂ (t) is the system–environment coupling op-

erator. Equation (2.1) enables the use of the interaction picture for the

von-Neumann equation such that the reduced density obeys

d

dt
ρ̂S,I(t) = − i

�
TrE{[V̂I(t), ρ̂I(0)]} − 1

�2

∫ t

0
dsTrE{[V̂I(t), [V̂I(s), ρ̂I(s)]]},

(2.2)

where ρ̂S,I = TrE{ρ̂I} and the subscript I denotes that the corresponding

operator is in the interaction picture [4]. Even though the presentation

in Eq. (2.2) is exact, the appearance of the total density operator on its

right-hand side does not render it immediately useful. However, it serves

2This definition strictly speaking refers to classical driving of a quantum system.
Chapter 5 and Publication IX are dedicated to formulating driving from a fully
quantum point-of-view.
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as a convenient starting point for many perturbative approaches where,

typically, the system–bath coupling is assumed weak like in the case of

the Redfield equation [26].

More to the point, it turns out that the subsequent approximative dy-

namics based on a further perturbative expansion in the coupling strength

neglects important physics when the system is driven. In Sec. 2.2, we ex-

plain how this issue is related to an appropriate basis selection and can

be alleviated by an additional coordinate transformation step prior to im-

plementing the expansion.

2.2 Nearly adiabatic driving under decoherence

For our purposes, we define adiabaticity in the traditional closed-system

sense of Refs. [27,28] related to the temporal change of the instantaneous

eigenstates and the local energy gap even though viable open-system ex-

tensions have recently appeared [29–31] and consistently applied to quan-

tum information processing [32] and geometric phase evolution [33]. The

main motivation for inserting the adiabatic assumption to the control

scheme is generally three-fold: concepts such as geometric phase accumu-

lation [34–36] and holonomic [37,38] as well as adiabatic [39–42] quantum

computing are well-formulated, the description of the system dynamics

obtains simplifications that allow for both more accuracy and accessibil-

ity [43,44], and adiabaticity typically provides a level of protection against

environmental and parametric noise [45–49].

Even though the protection against control errors [45, 46, 50, 51] seems

like the most prominent feature to strive towards with regards to quan-

tum information processing, the requirement of adiabaticity forces a re-

striction on the use of control protocols. Adiabaticity generally requires

that the evolution time is long with respect to the time scales of the open

system which potentially leads to decoherence and dissipation destroying

the quantum state. An accurate theory of driving and decoherence in the

nearly adiabatic limit is required to assess and adapt the adiabatic control

schemes.

2.2.1 Motivation

The standard method for treating time-independent systems weakly cou-

pled to the environment relies on applying the Born-Markov approxima-

7
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tion3 on Eq. (2.2) to obtain the so-called Markovian quantum master equa-

tion [25]. A subsequent application of the secular approximation [52–54]

to neglect the fast rotating terms4 in the master equation results in the

celebrated Lindblad form [55,56] guaranteeing certain critical properties

of the quantum evolution. Most notably, it guarantees complete positiv-

ity [55] and allows for efficient numerical methods such as the quantum

trajectory theory [25] to be immediately applied. However, a straight-

forward application to time-dependent control by external fields poten-

tially leads to issues with conservation of observables during the time-

evolution [57, 58] and the dissipation having a non-physical effect on the

reduced density [20]. A multitude of approaches was applied to combine

driving with dissipation [45, 47, 59–67] until a seminal paper in 2010 by

J. P. Pekola et al. [20] presented a master equation for an adiabatically

steered two-level quantum system coupled to a Markovian bath. In par-

ticular, it showed that the non-secular terms are necessary to consistently

account for the combined effect of driving and dissipation after a transfor-

mation to the adiabatic basis is performed to treat the time-dependence

of the system Hamiltonian.

2.2.2 Adiabatic basis selection

In Publication I, we generalize the time-local master equation in Ref. [20]

to allow for a generic system–environment coupling operator5. To ac-

count for the time-dependence of the system Hamiltonian, we apply the

first transformation in the adiabatic renormalization procedure [68, 69]

and study the dynamics of the transformed density in the fixed basis.

To understand the basic procedure, we briefly introduce the idea. Let

the Hamiltonian ĤS(t) be diagonalized in a time-independent basis {|m〉}
using the eigendecomposition as ˆ̃H

(1)
S (t) = D̂†

1(t)ĤS(t)D̂1(t) correspond-

ing to the eigenproblem ĤS(t) |m(1)(t)〉 = E
(1)
m (t) |m(1)(t)〉 where D̂1 |m〉 =

|m(1)(t)〉 is normalized and nondegenerate for each m. The fixed states

3The Born-Markov approximation implements a weak system–environment cou-
pling and the assumption of a memoryless environment. The latter effectively
corresponds to temporal coarse graining over times of the order of magnitude of
the environment correlation time. See Refs. [24,25] for details.
4The secular approximation essentially corresponds to neglecting terms in the
master equation that oscillate fast with respect to the interaction dynamics as
they vanish when averaged over [25].
5The master equation in Ref. [20] assumes that 〈g|Ŷ |e〉 ∈ R where Ŷ is the sys-
tem part of the system–environment coupling operator and |g〉 and |e〉 are the
instantaneous eigenstates of ĤS in the two-state representation. This assump-
tion only applies for certain types of coupling operators and is omitted in the
derivation of the master equation in Publication I.

8
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{|m〉} are typically referred to as diabatic. If we similarly transform

the total density operator ρ̂(t) in the Schrödinger picture as ˆ̃ρ(1)(t) =

D̂†
1(t)ρ̂(t)D̂1(t), the evolution of ˆ̃ρ(1)(t) is governed by the effective Hamil-

tonian presented in Publications I-III as

ˆ̃H(1)(t) = ˆ̃H
(1)
S (t) + �ŵ1(t) + ˆ̃V (1)(t) + ĤE , (2.3)

where the transformed coupling operator is ˆ̃V (1)(t) = D̂†
1(t)V̂ (t)D̂1(t) and

driving manifests explicitly in the operator ŵ1(t) = −iD̂†
1(t)

˙̂
D1(t). Starting

from Eq. (2.2) in the transformed basis, we obtain the integral form of the

master equation derived in Ref. [20] and restated in Publication II as

d ˆ̃ρ
(1)
S,I(t)

dt
= i[ ˆ̃ρ

(1)
S,I , ŵ1,I(t)] −

1

�2
TrE

{∫ t

0
dt′[[ ˆ̃ρ(1)I (t), ˆ̃V

(1)
I (t′)], ˆ̃V

(1)
I (t)]

}

+
i

�2
TrE

{∫ t

0
dt′

∫ t′

0
dt′′[[ ˆ̃ρ(1)I (t), [ŵ1,I(t

′), ˆ̃V
(1)
I (t′′)]], ˆ̃V

(1)
I (t)]

}
,

(2.4)

where an arbitrary operator in the interaction picture is defined as ÔI(t) =

eiĤEt/�Û †
S(t, 0)Ô(t)ÛS(t, 0)e−iĤEt/� and ÛS(t, 0) = T e−i/�

∫ t
0 dτ ˆ̃H

(1)
S (τ), where

T denotes time-ordering. It should be noted that the perturbative ex-

pansion has been cut so that Eq. (2.4) is accurate up to the second or-

der in the system-evironment coupling strength and to the first order in

the local adiabatic parameter α1(t) = �||ŵ1(t)||/Δ(t), where ||ŵ1(t)|| =√
TrS{ŵ1(t)†ŵ1(t)} denotes the Hilbert-Schmidt norm and Δ(t) is the in-

stantaneous minimum energy gap in the unperturbed system spectrum.

The first term after the equality is the decoupled driving term, the sec-

ond term yields the standard Bloch-Redfield dissipative contribution [25],

and the third term combines the effects of the drive and the dissipation,

usually neglected in the typical approach [53].

In Publication I, we further take a two-level system and derive a time-

local master equation for a generic system–environment coupling opera-

tor by assuming that the system is in the Markov regime, the approxima-

tion of adiabatic rates applies and the corrections due to the Lamb shift

can be neglected. These assumptions are detailed in Publication I and es-

pecially in Publication II where we explore the time-scale separation they

generate. Rather than presenting the somewhat complicated time-local

master equation for the two-level system in this overview, we refer the

interested reader to Publications I and II for details. Publication II also

9
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presents an alternative derivation of the time-local master equation by

studying a master equation for a nonsteered system and applying higher-

order transformations in the renormalization chain. This is potentially

more efficient when analytically deriving higher-order master equations

than the original method which relies on the treatment of complicated in-

tegral expressions arising from Eq. (2.4). One should keep in mind that

the master equation derived in Publications I and II is strictly valid for

nearly adiabatic evolution and weak system–environment coupling but

maintains the cross term between driving and dissipation as well as in-

cludes all the non-secular terms traditionally neglected [52]. As a result,

the master equation is not in the standard Lindblad form. We study the

implications of this inclusion in Sec. 2.2.4.

2.2.3 Further transformations and derivations

In Publication III, we go further in the adiabatic renormalization pro-

cedure [68, 69] and derive a master equation for an arbitrary number

of basis transformations. The explicit form of the corresponding time-

local two-level master equation is given in Publication III and we note

that it corresponds to that in Publications I and II in the case of a sin-

gle transformation. After n successive coordinate transformations D̂n

are performed6, the corresponding density operator takes the form ˆ̃ρ(n) =

(D̂
(n)
S )†D̂†

1ρ̂D̂1D̂
(n)
S , where D̂

(n)
S =

∏n
i=2 D̂i for n ≥ 2 and D̂

(n)
S = ÎS for n = 1,

where the operator product is defined as
∏n

i=2 D̂i = D̂2D̂3 · · · D̂n−1D̂n and

ÎS is the identity operator acting in the system space. The evolution of
ˆ̃ρ(n) is subsequently governed by an effective Hamiltonian of the form

ˆ̃H(n) = ˆ̃H
(n)
S + �ŵn + ˆ̃V (n) + ĤE , (2.5)

where ˆ̃H
(n)
S = D̂†

n[ ˆ̃H
(n−1)
S + �ŵn−1]D̂n, ˆ̃V (n) = (

∏n
i=2 D̂i)

†D̂†
1V̂ D̂1(

∏n
i=2 D̂i)

and ŵn = −iD̂†
n

˙̂
Dn. Note that each coordinate transformation defines

a set of time-dependent basis states {|m(n)〉 = D̂1D̂
(n)
S |m〉} which better

approximate the closed-system evolution in the near-adiabatic limit in

the sense that driving-induced transitions between the states are sup-

pressed. These states correspond to the eigenstates of ĤS for n = 1

typically referred to as the adiabatic states, and to the eigenstates of

D̂1D̂
(n−1)
S [ ˆ̃H

(n−1)
S +�ŵn−1](D̂1D̂

(n−1)
S )† for n ≥ 2 referred to as the (n−1)th-

6The transformations follow the standard iterative procedure [68, 69] and are
detailed in Publication III.
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order superadiabatic states.

After applying the same set of approximations as in Sec. 2.2.2, we obtain

a master equation given in Publication III up to quadratic order in the

system–environment coupling and to the first order in the nth superadia-

batic parameter αn(t) = ||ŵn(t)||/ω(n)
01 (t), where the superadiabatic energy

gap is E(n)
e −E

(n)
g = �ω

(n)
01 such that E(n)

e = 〈1| ˆ̃H(n)
S |1〉 and E

(n)
g = 〈0| ˆ̃H(n)

S |0〉.
Here n denotes the number of basis transformations in the renormaliza-

tion scheme and {|0〉 , |1〉} denotes the selected diabatic basis for the two-

level system. As the time-dependence of the transformed system Hamilto-

nian is suppressed with increasing n, αn respectively decreases7 implying

that the corresponding nth-order master equation describes the dynamics

more accurately. We will study the implications of this more precisely in

Sec. 2.2.4.

Nearly adiabatically driven systems weakly coupled to an environment

have since been studied using the same perturbative methodology by re-

placing the basis transformations defined above by those related to mod-

ified Floquet modes. Essentially this line of thinking constitutes to being

able to describe the closed-system evolution exactly with the price of ad-

ditionally asserting that the driving is cyclic, i.e., the system Hamiltonian

has a periodic time-dependence [70–72].8 This has spawned a series of

papers ultimately aiming to improve the description [77–81] by a proper

selection of the modes. Whether the secular approximation is performed

during the derivation and whether it is performed fully or partially gen-

erally determines if the Lindblad form is obtained and which properties

of the reduced system one can expect to retrieve in a physically feasible

manner. Modified superadiabatic states have also been used in Ref. [82] in

association with the full secular approximation to capture the main fea-

tures of dissipative Landau–Zener transitions [83] and the addition of the

Lamb shift has been studied in detail in Ref. [84]. Finally, we note that

the master equations derived in Publications I–III allow for an arbitrary

phase selection of the basis states. We tackle this issue in Publication

II by introducing an optimal phase selection procedure for the adiabatic

basis states which minimizes the local adiabatic parameter at all times

and leads to a simple renormalization of some matrix elements in the

7This possibly only applies to a certain n after which the following basis rotations
no longer offer further improvement [34,68]. However, this point was not reached
in any of the numerical analysis in this dissertation.
8The Floquet theory provides convenient physical insight into the effect of the
driving field and has been extensively used to study the driven dynamics of closed
systems in the past. We direct the reader to Refs. [73–76] and references therein
for recent advances in the population dynamics of driven quantum systems.
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corresponding master equation. The procedure is closely related to the

selection of basis states in Ref. [82] and can be straightforwadly adapted

to higher-order bases in the renormalization scheme.

2.2.4 Interplay between driving and dissipation

The basis selection procedure and the corresponding master equations de-

rived in Publications I–III and introduced in Secs. 2.2.2 and 2.2.3 allow for

an insight into the combined effect of driving and dissipation. More ac-

curately, they allow us to consider the best possible time-dependent basis

for describing the dissipation. Considering a zero-temperature environ-

ment offers a physical viewpoint: The norm of ŵ1 is roughly inversely

proportional to the evolution time and, consequently, usually neglected in

Eq. (2.3) for adiabatic evolution [32]. This means that the basis trans-

formation is neglected in the perturbative calculation of the dissipative

rates [20, 45] and, consequently, the relaxation is to the instantaneous

ground state while the transformation induces excitations. The resulting

state does not correspond to either the adiabatic or superadiabatic states

and, thus, is not physically justified. On the contrary, Eq. (2.3) suggests

that the relaxation is to the first superadiabatic ground state which, up

to the second order in α1, approximates the closed-system evolution. Up

to this order, the master equation is given in Eq. (2.4) and necessarily

includes the cross-term. The inclusion of the cross-term has also been

previously studied in Ref. [53].

Let us adopt the two-state notation such that ρ
(n)
gg = 〈0| ˆ̃ρ(n)S |0〉, ρ

(n)
ge =

〈0| ˆ̃ρ(n)S |1〉, and w
(n)
ge = −i 〈0|D̂†

n
˙̂
Dn|1〉. In Publication I, we derive the so-

lution of the time-local master equation in the quasistationary limit and,

especially, show that assuming a zero-temperature environment results

in ρ
(1)
gg = 1 + O(α2

1) and ρ
(1)
ge = −w

(1)
ge /ω

(1)
01 + O(α2

1) indicating that the

ground-state evolution is not affected by the zero-temperature environ-

ment. The result in the adiabatic basis translates to ρ
(2)
gg = 1 + O(α2

1)

and ρ
(2)
ge = 0 + O(α2

1) showing that in the first order in α1, the density

matrix ˆ̃ρ(2) describes the evolution of a pure state. This is a remarkable

result validating that the master equation in Publications I and II en-

sures relaxation to |g(2)〉 up to the first order in α1. Similarly, the mas-

ter equation in Publication III for ˆ̃ρ(n) ensures that the relaxation takes

the system to |g(n+1)〉 up to the first order in αn. Especially, in the limit

n → ∞, the rotational terms w
(n)
kl , k, l ∈ {g, e}, in the master equation

vanish and the basis {|g(n)〉 , |e(n)〉}|n→∞ fully describes the steering as-

12
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Figure 2.1. Population of the first superadiabatic ground state of the Cooper-pair sluice
coupled to a zero-temperature environment in the quasistationary limit using
the master equation derived in Publications I and II. (a) Time-evolution with
coupling strength g = 0.01 and driving frequency f = 10, 75 and 100 MHz
from top to bottom. (b) Time-evolution for f = 75 MHz and g = 0.01, 0.0125,
and 0.015 from bottom to top. Reprinted from Publication I with permission.

suming that the process of basis rotations converges9. This corresponds

to the physical intuition that the dissipation takes place between states

best approximating the closed-system state. Beyond the strict adiabatic

limit, the zero-temperature environment has a stabilizing effect on the

ground state evolution. This is illustrated in Fig. 2.1 using the time-local

master equation in Publication I for the so-called Cooper-pair sluice10 in

a zero-temperature environment. Note how increasing the pumping fre-

quency f , which corresponds to increasing the driving speed, decreases

the population of the first superadiabatic ground state in Fig. 2.1(a) due

to more prominent driving-induced transitions whereas increasing the en-

vironmental coupling strength g in Fig. 2.1(b) stabilizes the ground-state

evolution due to the described effect.

Crucially, we include all the nonsecular contributions to the time-local

master equations in Publications I-III. For comparison, we also imple-

ment the secular approximation in Publication I and show that the corre-

sponding master equation has a quasistationary limit solution (ρ
(1)
gg )sec =

1+O(α2
1) and (ρ

(1)
ge )sec = −2iw

(1)
ge /(2iω

(1)
01 −Γ)+O(α2

1) where Γ is a joint dis-

sipation rate presented in Publication I. The off-diagonal density matrix

element is directly affected by the coupling to the environment which con-

tradicts the physical picture discussed above and results in an artificial

loss of robustness of the ground-state evolution. Especially, neglecting the

nonsecular terms has an effect on the physical observables dependent on

ρ
(1)
ge which potentially leads to nonconservation of physical quantities. We

will cover this more generally in Sec. 2.3.

9As decribed earlier, the renormalization scheme does not necessarily offer im-
provements after a certain n. The convergence is a complex phenomenon studied
in Refs. [34,68].
10We will describe the system in detail in Sec. 3.
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As mentioned briefly in Sec. 2.2.2, the master equation derived in Pub-

lications I and II and generalized in Publication III is not of the Lindblad

form [55, 56]. This is due to the inclusion of the non-secular terms and,

indeed, the secular counterpart derived in Publication I can be shown to

be of the Lindblad form. As a result, our non-secular master equation

does not guarantee complete positivity which may lead to nonphysical re-

duced density. In Publication III, we show that this manifests as negative

eigenvalues of the reduced density operator for the Cooper-pair sluice.

However, utilizing superadiabatic bases is found to alleviate the nonphys-

icality. This is because the superadiabatic bases track the exact evolving

closed-system state more accurately causing the nonadiabatic transitions

to disturb the mixed state less. In general, including the nonsecular terms

involves a trade-off: the secular approximation yields a positive map and,

in this sense, approximates the density accurately but may neglect impor-

tant contributions related to the dynamics of physical observables [78,82].

2.3 Conservation laws in open systems

As we briefly mentioned in Sec. 2.2.4, implementing the secular approxi-

mation in the derivation of the reduced dynamics potentially leads to non-

conservation of important physical observables. This has manifested, for

example, as the non-conservation of electric charge in transport through

quantum dots [57, 58] and in Cooper-pair pumping [20]. We also directly

observe the non-conservation for the Cooper-pair sluice in Publication I

where we study the charge pumped through the two adjustable junctions

composing the sluice using both our non-secular and secular master equa-

tions in the adiabatic basis. Figure 2.2 presents the main results of such

study. The full master equation including the non-secular terms yields

a pumped charge close to the ideal result that is expected for ground-

state pumping near the adiabatic limit. However, the secular solution

yields clearly decreasing charge as a function of the environmental cou-

pling strength which contradicts the expected stabilizing behaviour. More

importantly, the pumping is periodic implying that the system returns to

the same charge state after each cycle and, as a result, the charge through

each individual junction is necessarily equal. The secular master equation

fails to capture this feature and hence yields an apparent non-physical

charge accumulation. We also present an analytical study of the noncon-

servation in relation to the system parameters in Publication I.

14
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Figure 2.2. Charge pumped through the Cooper-pair sluice, QG, obtained using both the
non-secular and secular master equations as a function of the environmental
coupling strength g. Straight blue line is the solution of the full master equa-
tion including the non-secular terms, the green line is the charge pumped
through the left junction QG

L using the secular master equation, the brown
line is the charge pumped through the right junction QG

R using the secular
master equation, and the red line is (QG

L+QG
R)/2. Reprinted from Publication

I with permission.

Motivated by the emergent lack of charge conservation and the studies

on the continuity equation for current in coarse-graining [85–87], we set

out to investigate the corresponding general phenomenon for open quan-

tum systems in Publication V. Denoting the time derivative of the expec-

tation value of an arbitrary system observable Ĝ as operator current, we

can derive it using both the complete dynamics referring to the unitary

time-evolution stemming from Eq. (2.1) and the reduced dynamics given

by a general master equation. The master equation can be written as

dρ̂S/dt = −i[ĤS , ρ̂S ]/� + D̂, where the right-hand side has been separated

into the part relating to unitary closed-system evolution and D̂ = D̂(ρ̂S , t)

representing a generalized dissipator, that is, it also accounts for any

unitary contribution stemming from the system–environment interaction.

The operator currents derived by these two means have the same terms

relating to the evolution of the closed system affected by the environment

only through ρ̂S , but differ in their representation of the dissipative cur-

rent, the current induced directly by the environment. Asserting that the

definitions of dissipative currents are the same for exact dynamics results

in

− i

�
Tr{ρ̂[Ĝ, V̂ ]} = TrS{D̂Ĝ}, (2.6)

where TrS denotes a trace over the system degrees of freedom and Tr is the
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total trace. For approximative reduced dynamics, Eq. (2.6) still provides

a measure of the reliability and accuracy of the applied approximations

even when the complete dynamics cannot be solved. As we show in Pub-

lication V, if Eq. (2.6) is not obeyed naturally by the approximate master

equation, an artificial effective Hamiltonian emerges in the complete dy-

namics.

The significance of Eq. (2.6) for the conservation of operator current can

be explained using the following simple example. In Publication V, we

investigate the decoupling of the eigenstate populations and the coher-

ences between them, such as that occurring when implementing the sec-

ular approximation. We then show that such decoupling generally leads

to dynamics yielding a temporal change of the expectation value of an

almost arbitrary Ĝ that is different from that given by the usual defini-

tion of the corresponding subsystem current operator [4]. Hence, the local

conservation of the operator current breaks down in the sense that the

current operator cannot accurately describe the temporal change of the

observable. Equation (2.6) now provides a necessary and sufficient con-

dition for the conservation of the operator current, and in Publication V

we show that the non-conservation of current in the example immediately

manifests through the condition.

In Publication V, we further explore the general properties of the dis-

sipative current and study its relation to some of the typical approxima-

tions used for open quantum systems. Most importantly, we show that

the master equations in the Lindblad form are not intrinsically protected

from nonconservation. We study nonsteered systems in the singular and

weak-coupling limits [25, 88] and find that the application of the secular

approximation generally destroyes current conservation in the case of the

vanishing dissipative current. We find the same to be true for adiabat-

ically driven systems in the weak-coupling limit using the master equa-

tion assuming cyclicity derived in Ref. [78]. As a result, the nonconser-

vation of geometric charge was correspondingly observed in Ref. [78] and

contributed to the secular approximation in accordance with Publication

V. In Publication IV, we study charge transport through the Cooper-pair

sluice subjected to both charge and flux noise consistently accounting for

the dissipative current defined earlier. For charge noise, the dissipative

current vanishes and the conservation law is only shown to hold for the

nonsecular master equation derived in Publications I and II. For flux

noise, the dissipative current is nonvanishing and can be accounted for by
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using Eq. (2.6). We provide a more detailed comparison of the two noise

environments as well as study the charge transport for the flux noise in

Sec. 3.3
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3. Cooper-Pair Pumping

In this chapter, we explore the theory of driven, dissipative quantum sys-

tems by introducing an example also interesting by its own merit: Cooper-

pair pumping. We motivate our work and introduce our model system in

Sec. 3.1 and, aided by Publications I, III, IV, and VI, explore some inter-

esting features and further advances in Secs. 3.2–3.4.

3.1 Josephson junction arrays and geometric phases

3.1.1 Motivation

The study of superconducting nanocircuits emerged from the discovery of

the Josephson effect [13–15] and they have since become a staple in the

toolbox for detecting and harnessing quantum phenomena [9,89,90]. The

basic building block adding nonlinearity in such circuits is the Joseph-

son junction based on connecting two superconducting electrodes by a

weak link [13] and enabling the construction of large circuits capable of

performing tasks in the quantum regime [9]. The circuit picture typi-

cally reduces to a study of Josephson junction arrays consisting of a col-

lection of superconducting islands for which the phase–number duality

applies: [φ̂, n̂] = i, where φ̂ is the superconducting phase operator of the

island1 and n̂ is the conjugate Cooper-pair number operator [13]. In quan-

tum information processing, superconducting qubits based on Josephson-

junction arrays form their own field of study2 usually subdivided by the

mode of operation to charge, flux, and phase qubits [9, 90]. More efficient

1Related to the superconducting phase parameter in the Ginzburg-Landau the-
ory [13,91].
2We direct the interested reader to two excellent review articles on superconduct-
ing quantum bits and quantum information processing [11, 12] and references
therein.
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designs such as the transmon [92] or the fluxonium [93] qubits are de-

veloped at an increasing rate with experimental systems approaching the

treshold for fault-tolerant quantum computing [94–96].

In the 1980’s, the interest in adiabatically steered systems brought about

the concept of geometric phase accumulation during quantum evolution

in the form of the celebrated Berry phase [34,35,97,98] generated during

the traversal of a cyclic path in the projective Hilbert space. The Berry

phase was soon generalized to non-Abelian gauge structures [36], to in-

clude analytical corrections from nearly adiabatic steering [68,99], to non-

adiabatic cylic steering [100], and to adiabatic noncylic evolution [101].

Further extensions and approaches to defining geometric phases have

since emerged3, and the Berry phase and its corrections have been an-

alyzed in a variety of systems4. One of the most prominent applications

of geometric phase evolution is based on the emergent non-Abelian struc-

tures in Ref. [36] which can be used to generate quantum gates in the

so-called geometric quantum computing formulated in Refs. [37, 38, 113]

and proposed for an abundance of physical systems [114–125] in recent

years5. Since the gate construction is geometric in nature, the comput-

ing scheme is expected to exhibit inherent robustness against control er-

rors [46, 51, 126] and even environmental noise [47, 67, 127]. Different

methods to mitigate logical errors in such a scheme have also been con-

sidered [48,59,128,129].

A few methods to directly generate and detect geometric phases in su-

perconducting circuits have been proposed and implemented [110, 130–

133], but interestingly the study of charge transport through the super-

conducting structures provides an alternative approach6. The different

contributions to the charge transported through Josephson junction ar-

rays has been studied for adiabatic evolution [134, 135] allowing it to

be immediately connected to the bare system properties through the in-

stantaneous eigenstates of the corresponding tunneling-charging Hamil-

tonian [13]. The different contributions are typically referred to as super-

current and pumped current where the latter refers to the typical naming

convention for current control at the level of single charge carriers [136].

3See for example Refs. [102–107] for studies on phase evolution with mixed
states and non-unitary maps, and Refs. [33, 53, 60] for systematic open-system
extensions.
4We direct the reader to some important examples in Refs. [50,61,108–112].
5A useful review of phase accumulation and quantum computing is given in
Ref. [19].
6An extensive review on Berry phase with relation to electronic properties is
provided by Ref. [98].

20



Cooper-Pair Pumping

The connection between the accumulated Berry phase and the pumped

current is first drawn in Ref. [18] resulting in a multitude of experimental

proposals [137–140] additionally extending the theory. In general, the dis-

covered connection states that the pumped charge is QG = 2e∂ϕθB, where

ϕ is the superconducting phase difference over the device in question and

θB is the accumulated Berry phase. Similarly, the supercurrent through

the device corresponds to a charge QS = −2e∂ϕθd where θd is the accu-

mulated dynamical phase. Hence, the total charge transported through

the superconducting device within the Josephson junction array consists

of both dynamical and geometric contributions providing an immediate

measurable observable for detecting the corresponding phases7.

Even though the pumped charge in Josephson junction arrays corre-

sponds to geometric phase evolution, it does not generally have the ideal

form QP = 2en∗, where n∗ is the desired number of charge carriers trans-

ported during a cycle. Such ideal transport is consistent with incoher-

ent Cooper-pair tunneling through the superconducting device and gener-

ally obtains a quantum correction due to coherent tunneling events [142].

We analyze dissipative pumping in Sec. 3.2 and further advances can

be found in Refs. [20, 77, 78, 80–82, 84, 143, 144]. We additionally ana-

lyze different noise environments in Sec. 3.3 and go beyond the assump-

tion of exact phase biasing for pumping in Sec. 3.4. In addition, Cooper-

pair pumping and its connection to the geometric nature of the time-

evolution has been further studied in numerous publications. For exam-

ple, Cooper-pair pumping has been used to realize Landau–Zener interfer-

ometry in Ref. [80], optimized for accuracy in Ref. [145], studied for nona-

diabatic evolution in Refs. [146,147], analyzed for topological properties in

Ref. [148], and proposed as a quantized current source for metrology [149]

in Ref. [150].

3.1.2 Model system

We introduce a flux assisted Cooper-pair pump, the so-called Cooper-pair

sluice first proposed in Ref. [138], theoretically analyzed in Ref. [151] and

initially experimentally measured in Refs. [141, 152, 153]. We use this

device to study the driven dissipative dynamics in Publications I, III,

and IV, as well as the effect of nonvanishing loop inductance in Publi-

7Reversing the pumping protocol generally reverses the pumped current while
the leakage supercurrent remains the same due to a constant phase bias. This
can be used to detect the different charge contributions [141].
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Figure 3.1. Circuit diagram of the Cooper pair sluice. The fluxes threading the left and
right SQUIDs are denoted by Φl and Φr, and Φ denotes the total flux thread-
ing the large superconducting loop. The phase differences over the SQUIDs
are marked by ϕl and ϕr and they are defined in the direction specified by
the arrows in the figure. The gate capacitance Cg is used to manipulate the
island charge with the gate voltage Vg. Reprinted from Publication III with
permission.

cation VI. It is also the system of choice for numerous other publica-

tions [20, 77, 78, 80–82, 84, 143, 144, 147] due to its well-known pumping

characteristics and relative simplicity. The circuit diagram of the Cooper-

pair sluice is given in Fig. 3.1. By manipulation of the gate voltage Vg

and the magnetic fluxes penetrating the superconducting quantum inter-

ference devices (SQUIDs) [13] Φl, Φr, charge can be carried through the

device in a controlled manner [151]. The standard parameter cycle used

for pumping is presented in Publications I, III, IV, and VI. Note that the

two SQUIDs operate as junctions with tunable Josephson energies and

the gauge-invariant phase difference over the device ϕ = ϕr + ϕl is fixed

by the total flux threading the large loop8 ϕ = 2πΦ/Φ0 where the flux

quantum is Φ0 = h/(2e).

The current operator of the kth SQUID takes the form9 Îk = (2e/�)∂ϕk
ĤS

and in the charging regime near the charge degeneracy point, the dy-

namics are accurately described using the two lowest charge states allow-

ing the two-state master equations discussed in Sec. 2.2 to be used. The

pumped charge, including the quantum correction, becomes [151]

QG = 2e(1 − 2ε cosϕ) + O(δ2) + O(ε2) (3.1)

8This assertion of the exact phase bias requires a vanishing total inductance of
the superconducting loop. We will lift this requirement in Sec. 3.4 when dis-
cussing Publication VI.
9This is the correct form for a closed system or when the corresponding dissipa-
tive current vanishes as discussed in Sec. 2.3, i.e., [n̂k, V̂ ] = 0 where n̂k is the
Cooper-pair number operator of the kth SQUID.
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where ε is proportional to the leakage of the pump, that is, the resid-

ual Josephson energy from incomplete operation of the SQUIDs and δ

is small in the charging regime. Correspondingly, the Berry phase is

θB = ϕ−2ε sinϕ+O(δ2)+O(ε2). The phase dependence of the pumped cur-

rent has been experimentally demonstrated in Ref. [141]. Finally, Cooper-

pair pumps can be used to implement non-Abelian phases [154,155] and,

correspondingly, structures similar to the Cooper-pair sluice have been

proposed to implement geometric quantum computing [119–121].

3.2 Dissipative pumping

3.2.1 Pumped charge

In Publication I, we study dissipative Cooper-pair pumping using the

master equation in the adiabatic basis introduced in Sec. 2.2. We use

the Cooper-pair sluice introduced in Sec. 3.1 and study how the general

properties emergent in our treatment of driven dissipative dynamics man-

ifest in the pumped charge in the quasi-stationary state. We assume exact

phase-biasing for the main superconducting loop and charging regime op-

eration near the degeneracy point, apply the standard parameter cycle for

transport [20], and assume that the noise is due to gate voltage fluctua-

tions capacitively coupled to the sluice island. By calculating the pumped

charge with respect to the total phase difference of the sluice for zero-

temperature environment, we reproduce the pumped charge in Eq. (3.1)

in the adiabatic limit. For increased driving speed, the phase dependence

is modified as the pumped charge decreases but is restored when the en-

vironmental coupling strength is increased. This is a direct consequence

of ground-state stabilization described in Sec. 2.2.4: any driving-induced

transitions would decrease the pumped charge as the excited state corre-

sponds to pumping in the opposite direction and, hence, the ground-state

stabilization yielded by our master equation restores the ideal adiabatic

pumping.

In Publications I and III, we set the total superconducting phase dif-

ference to ϕ = π/2 and show that our dissipative master equation re-

produces QG = 2e in the adiabatic limit for any environmental coupling

strength. As evident in Fig. 3.2(a) for n = 1 and the zero-temperature

limit, increasing the driving frequency f causes the pumped charge in the
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Figure 3.2. Charge pumped through the Cooper-pair sluice during a cycle assuming a
zero-temperature environment and a fixed phase bias ϕ = π/2 as a func-
tion of the environmental coupling strength. Results are given for multiple
pumping frequencies f and numbers of basis rotations n in the derivation
of the corresponding master equation. Reprinted from Publication III with
permission.

quasi-stationary limit10 to behave differently depending on the environ-

mental coupling strength g.11 For small g, the nonadiabatic transitions

dominate decreasing the pumped charge and, for large g, relaxation dom-

inates yielding the stabilization to ground-state pumping. In the inter-

mediate region, our master equation in the adiabatic basis unphysically

overestimates the pumped charge QG > 1 which results from the lack of

positivity of the reduced density. As explained in Sec. 2.2.4, the use of

the superadiabatic bases alleviates this issue and, similarly, the overesti-

mation is signifigantly reduced for n > 1 in Fig. 3.2(a). In Fig. 3.2(b), we

highlight that beyond the strict adiabatic limit the ideal adiabatic pump-

ing is only obtained as a result of the relaxation to the ground state for

the master equation in the adiabatic basis, i.e., n = 1. The higher-order

master equations ensure relaxation to higher-order superadiabatic bases

that generally carry less pumped charge. We additionally derive finite-

temperature pumping results in Publication I and show that the main

features are similar to the zero-temperature limit. Furthermore, we pro-

pose a way of modifying the gate voltage noise spectrum by introducing a

tunable environment in Publication I.
10The pumped charge is recorded in the quasi-stationary state, that is, after
sufficiently many cycles such that the evolution of consecutive cycles is identical.
11We remind the reader that the parameter n corresponds to the number of ba-
sis rotations in the renormalization scheme leading to the master equation as
detailed in Sec. 2.2 and, consequently, n = 1 corresponds to the two-state master
equation in Publications I and II.

24



Cooper-Pair Pumping

3.2.2 Breakdown of adiabaticity

In Publication III, we use our master equations to study the breakdown

of adiabaticity indicated by the pumped current IG. Our two-state master

equation does not allow us to simulate changes in the pumping amplitude

similar to the experimental results in Ref. [141], but we can still simu-

late the breakdown by changing the pumping frequency. We find that

the effect of the basis selection for the master equation increases with

increasing pumping frequency, as one would expect, and that the break-

down point becomes more robust against changes in the environment with

an increasing number of basis rotations. In addition, there appears an

optimal coupling strength with which the ideal ground-state pumping is

conserved up to the highest frequency12.

Finally, we model the breakdown characteristics of the experimentally

pumped current of Ref. [141] by establishing an equality between the ex-

perimental pumping speed and the pumping speed in our simulation13. In

Publication III, we are able to simulate the breakdown frequency with fea-

sible system parameters, especially with strong dephasing, but find weak

predictability of the exact breakdown characteristics due to strong oscil-

latory behavior. To explain the behavior, we perform a detailed analysis

of the phase accumulation during the driving protocol using the general

nth effective Hamiltonian in Eq. (2.5). We calculate the difference in the

total phase accumulated by the nth eigenstates between two successive

driving-induced excitations ΔΘ
(n)
T (ti, ti+1) at times ti and ti+1 and derive

a condition for the maximum constructive interference between such ex-

citations as ΔΘ
(n)
T (ti, ti+1) ≈ 2π(N + 1/2), where N is an integer number

and we assume large n.14 Figure 3.3 shows that the downwards resonance

peaks in the simulated pumped current match the condition with excel-

lent accuracy. The same idea of quantum interference between driving-

induced excitations generated at different times was proposed to be used

for geometric Landau-Zener-Stückelberg interferometry [44] in Ref. [143]

and experimentally realized in Ref. [158].

12This could potentially be exploited with an environment tuning setup such as
that presented in Publication I.
13This is a crude approximation as the experimental pumping speed is modified
by adjusting the pumping amplitude whereas the pumping speed in the simula-
tion is changed by altering the pumping frequency. Nevertheless, this allows us
to study the breakdown point beyond which our approach is no longer valid.
14The total accumulated phase difference includes both dynamic and noncyclic
geometric [103] contributions, and the condition accounts for the impulsive
phase shift at the Landau–Zener transitions [156] using the adiabatic impulse
model [44,157].
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Figure 3.3. Comparison between the accumulated phase difference and the resonance

peaks observed in the pumped current. The solid lines depict ΔΘ
(n)
T (ti, ti+1)

for n = 1 and n = 3 from bottom to top. The dashed vertical lines are the res-
onance peak positions determined from the simulation for n = 3. Reprinted
from Publication III with permission.

3.3 Resistively and inductively coupled environments

In Publications I and III, we assume that the environment is resistively

coupled to the Cooper-pair sluice inducing gate voltage noise. We extend

the dissipative analysis to account for an inductive coupling yielding noise

in the magnetic flux Φ penetrating the total superconducting loop in Pub-

lication IV. This immediately translates to noise in the total phase across

the sluice ϕ, i.e., noise in the biasing phase. The flux noise has an interest-

ing connection to the analysis in Sec. 2.3: unlike for the gate voltage noise,

for the flux noise it applies that [n̂k, V̂ ] 
= 0 implying that the dissipative

current through the kth SQUID is nonvanishing and must be accounted

for. As mentioned in Sec. 2.3, we show that the vanishing dissipative

current for gate voltage noise is properly accounted for by our nonsec-

ular master equation and yields current nonconservation if the secular

approximation is additionally applied.

In Publication IV, we calculate the dissipative current through the kth

SQUID for the flux noise using Eq. (2.6) as 〈Îdissk 〉 = −2eTrS{D̂n̂k}, where

D̂ corresponds to the dissipator in our two-state master equation. From

this expression, the dynamical and geometric current contributions can

be separated similarly to the closed-system current. Since the master

equation is defined in the weak-coupling limit, we expect the resulting

dissipative current to be small but possibly detectable if the standard

closed-system contributions are reduced by an appropriate selection of the
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Figure 3.4. Dynamic dissipative current ID,diss (solid line) and geometric dissipative cur-
rent IG,diss (dashed line) normalized to the maximum geometric current IGmax
during the pumping cycle of time Tad assuming a zero-temperature flux noise
environment. Reprinted from Publication IV with permission.

system parameters. We present the average dissipative currents Idiss =

(Idissl + Idissr )/2 in Fig. 3.4 for the Cooper-pair sluice using the first-order

master equation at the quasi-stationary state. The dissipative currents

are approximately 3 orders of magnitude smaller than the total geometric

current and obtain a complicated time-dependence corresponding to the

interplay between driving and relaxation.

In Publication IV, we also introduce a scheme for tuning the phase bias

noise environment similar to that presented for the gate voltage noise in

Publication I. It is based on coupling the sluice to an artificial environ-

ment circuit through mutual inductance and we show that the resulting

phase bias noise spectrum can be carefully modified by adjusting the flux

through a control SQUID in the circuit. The modifications are seen to

directly affect the pumped charge and we analyze the details related to

changing the control flux.

3.4 Beyond exact phase bias

Above, all the results presented for the Cooper-pair sluice have assumed

an exact phase bias. This is equivalent to assuming that the inductance

of the superconducting loop is small enough for the total phase difference

over the sluice ϕ to be exactly fixed by the penetrating magnetic flux Φ.

In fact, this simplifying assumption is made for the sluice in all the refer-

ences presented in Sec. 3.1 and typically exact phase biasing is assumed

in some form for any system implementing Cooper-pair pumping. Even
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Figure 3.5. (a) Pumped charges and (b) charge differences as a function of the scaled
external magnetic flux bias ϕ0 = 2πΦext

Φ0
. The parameter points in (a) are

EL = 102EC and Eϕ = EC (base point), EL = EC and Eϕ = 10−2EC (point
2), and EL = EC and Eϕ = 4EC (point 3), where EC is the island charging
energy scale. The dashed line depicts the analytical solution Eq. (3.1) and the
dashed rectangle indicates the area of the inset. In (b), we give the geometric
charge differences between the base point and point 2, and between the base
point and point 3 (from bottom to top at ϕ0 = π). Reprinted from Publication
VI with permission.

though the measurements of the sluice [141, 147] are in agreement with

the standard model using exact phase biasing, they are lacking in high-

precision and the inclusion of a finite realistic loop inductance should be

analyzed. We tackle this problem in Publication VI where we introduce

a theoretical model for the sluice which allows for a nonvanishing loop

inductance15.

The Hamiltonian corresponding to the model is constructed from first

principles and accounts for the emerging quantum degree of freedom ev-

ident in the total phase difference now being described by an operator

ϕ̂. The total phase difference operator is canonically conjugate to the so-

called feed Cooper-pair number operator formulated to correspond to the

average charge imbalance between the superconducting islands that con-

stitute the left and right leads. The Hamiltonian reduces to the one in the

exact phase bias model when we go to the limit of vanishing loop induc-

tance.

We derive the current operators for different parts of the system with-

out resorting to operator derivatives and analyze adiabatic closed-system

ground-state pumping using the same premises as the previous works.

We perform a detailed perturbative analysis and show that there is no

first-order correction in g0 = [Eϕ/(32EL)]1/4, where Eϕ is the charging en-

ergy energy scale for the feed and EL is the inductive energy scale due

15The self-inductance of the large loop is assumed dominant over the self-
inductances of the SQUIDs in the transported charge. In addition, the derivation
accounts for both geometric and kinetic [159] inductances. See Publication VI for
details.
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to finite loop inductance16, to the geometric and dynamic currents across

the island. We further select feasible physical parameters and numeri-

cally calculate the pumped charge with respect to the external magnetic

flux bias Φext in Fig. 3.5(a). We establish a base point roughly correspond-

ing to the energy scales used in the experiments [141] and find that the

result from the exact phase bias model is reproduced within the accuracy

of the simulation.

Moving in the (Eϕ, EL) space while retaining an experimentally feasible

parameter range yields weak changes in the pumped charge of ΔQG/e ∼
10−3. Note that these changes are still orders of magnitude larger than

the metrological accuracy. Furthermore, the behaviour of the charge dif-

ference between the base point and the two other points in Fig. 3.5(b) can-

not be accurately captured by treating the inductance classically within

the exact phase bias model. We also analyze the instantaneous eigen-

structure of our model and show that it depends signifigantly on the pa-

rameters emerging from the inclusion of the nonvanishing loop induc-

tance.

16The inductive energy scale is defined as EL = (1/L)(Φ0

2π )2 where L is the total
loop inductance and, hence, g0 vanishes for vanishing L.
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4. Tunable Environment for Quantum
Bits

This chapter introduces the idea of benefitting from a strong but tunable

coupling between a qubit and an artificial environment. Such coupling

allows for control over the effective qubit temperature as well as enables

swithing between efficient ground-state initialization and protected evo-

lution. The idea is realized using a coplanar-waveguide cavity in Sec. 4.1

and LC resonators in Sec. 4.2 corresponding to Publications VII and VIII,

respectively.

4.1 Cavity-embedded setup

In this section, we move away from developing the theoretical means of

studying open quantum systems and formulate a way of actually benefit-

ting from the openness of the system. To showcase our idea, we use the

architecture and methods of circuit quantum electrodynamics (cQED) [10,

16,160–163] where quantum mechanical cavity modes are realized using

superconducting circuit elements, typically in the so-called superconduct-

ing coplanar waveguide (CPW) cavity structures. The modes couple to

other circuit elements, such as superconducting qubits [92, 93, 164–166],

providing a promising platform for quantum computing [17,167–171]. In

Publication VII, we use this coupling to construct a setup which provides

an alternative and complementary method to accurate qubit initializa-

tion1 and protection, as well as allows us to signifigantly lower the effec-

tive qubit temperature.

Our setup in Publication VII is based on inserting a superconducting

qubit2 and a resistor into a high-quality-factor coplanar waveguide cav-

1Accurate state preparation is one of the prerequisities of quantum comput-
ing [90, 172], and recently several advanced methods in superconducting qubits
have been proposed [173–179] for its implementation.
2The general setup works, in principle, for a variety of qubit designs but we study
a Cooper-pair box operated in the transmon regime [92].
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Figure 4.1. Schematic representation of the cavity setup consisting of a center conduc-
tor located between two gound planes. The cavity is divided by a capacitor
of capacitance Cc, resistor of resistance R is placed left of the capacitor, and
CQ (ωQ) gives the coupling capacitance (transition frequency) of the qubit in-
serted right of the dividing capacitor. The inductance LJ(φ) describes one or
more SQUIDs placed evenly into the left region and controlled by a penetrat-
ing magnetic flux φ. Reprinted from Publication VII with permission.

ity which is then divided into two coupled cavities by the insertion of a

capacitor into the central conducting strip3. A schematic representation

of our system is shown in Fig. 4.1. We carefully derive the Hamiltonian

for the complete cavity–qubit–resistor system by applying the distributed

element model [168,184,185] in a manner that accounts for the modifica-

tion of the cavity modes by the dividing capacitor. We additionally account

for the insertion of evenly distributed SQUIDs into the left cavity region

to realize a tuning of the effective inductance, �L, of the center conductor

in that region. We show that by tuning the flux through the SQUIDs we

can a priori modify the spatial profile of the modified cavity modes which

allows us to change the effective coupling between the resistive artificial

environment and the qubit.

In Publication VII, we derive the modified voltage and current operators

for the different modes which allows us to account for the cavity-qubit

and cavity-resistor couplings. We then identify qubit-like and photon-

like eigenstates and calculate their decay rates to the ground state. The

qubit-like decay rate is presented in Fig. 4.2. We immediately see that the

cavity setup intermediates the interaction between the resistive environ-

ment and the qubit in a manner that allows the decay rate to be changed

by several orders of magnitude by changing the qubit, ωQ, and/or bare left

cavity, ωB
L , frequencies.4 Note that the bare left cavity frequency scales

3Coupled-cavity systems have been previously used with good results, see for
example Refs. [180–183].
4The bare left cavity frequency corresponds to considering the cavity region left
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Figure 4.2. Contour plot of the qubit-like decay rate ΓQ to the ground state from the
excited state. Given as a function of the qubit, ωQ, and bare left cavity, ωB

L ,
frequencies. Reprinted from Publication VII with permission.

as ωB
L ∼ 1/

√
�L implying that the qubit-like decay rate can be modified

by simply changing the magnetic flux through the SQUIDs. This tun-

ability means that we can either move the system to the left-cavity–qubit

resonance point ωB
L = ωQ and quickly initialize the qubit, or detune the

qubit from the left cavity protecting its state5. We show similar tuning

characteristics for the photonic state of the right cavity and, most notably,

predict qubit lifetimes of only a few nanoseconds around full resonance

ωQ = ωB
L = ωB

R . The system parameters are selected so that the tunability

should be experimentally achievable with current technology [186].

Finally, our setup can be straightforwardly adapted to use SIN tunnel

junction thermometry [187, 188] to accurately control the resistor tem-

perature. We show that if the qubit is far-detuned from the left cavity,

changing the resistor temperature has little effect on the effective qubit

temperature [8] due to the effective decoupling from the artificial resistive

environment. On the other hand, near the left-cavity–qubit resonance the

effective coupling is strong and the effective qubit temperature can be de-

creased signifigantly by lowering the resistor temperature. Note that in

this case the artificial environment is strongly coupled to the qubit and

acts as the dominant noise source governing the efficient cooling of the

qubit6.

of the dividing capacitor as an isolated cavity. Similarly, we denote the bare right
cavity frequency as ωB

R .
5This allows the qubit state to evolve unhindered during possible gate opera-
tions.
6This facilitates more efficient initialization and adds to nanoscale temperature
control [173–176,187–189].
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Figure 4.3. Effective circuit diagram of the quantum-LC-resonator system. The left and
right LC resonators are coupled by a capacitor Cc. A resistor of resistance
R is capacitively coupled to the left resonator via a capacitance CE and acts
as a noise source. The right resonator is coupled via capacitance Cq to a
Cooper pair box whose Josephson capacitance is CJ and Josephson energy
EJ . Reprinted from Publication VIII with permission.

4.2 Coupled quantum LC resonators

In publication Publication VIII, we propose an alternative setup for con-

trolling the environmental coupling of a qubit. Instead of using a cQED

architecture to intermediate the environment–qubit interaction like in

Publication VII, we replace the CPW cavities with a pair of coupled quan-

tum LC resonator. The corresponding circuit diagram is presented in

Fig. 4.3. Here, the inductive tuning of the center conductor is replaced

by a tunable inductor of inductance LL. The system is composed of well-

known circuit elements in superconducting nanoelectronics [190] and, spe-

cifically, implements the resistor coupling capacitively rather then galvan-

ically as in Publication VII. As a result, it lacks some of the adjustability

of the setup in Publication VII but is potentially easier to experimentally

implement. In addition, we show in Publication VIII that the system still

retains the main characteristics of tuning the environmental coupling.

Publication VIII presents a derivation of the total Hamiltonian of the

system7 and studies the decay rates due to the coupling to the resistive

environment. The transition rates are more conveniently accessible than

those of the CPW system and we derive analytical results for several ex-

perimentally important cases that can be exploited in the design of the

device. Most notably, we find that if all the system couplings are weak and

all the device components are far-detuned, the excited qubit state is dou-

bly protected from the environmental noise: firstly by the weak resonator–

7We neglect terms of the second-order in the resistor voltage fluctuations and
assume that the internal coupling capacitances are much smaller than other
system capacitances. The assumptions and the derivation are explained in detail
in Publication VIII.
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qubit coupling and secondly by the weak resonator–resonator coupling. In

addition, we numerically study the decay rates of the qubit and the right

resonator and show that externally tuning LL allows the decay rates to be

varied over many orders of magnitude. The tuning principle is identical

to that presented in Sec. 4.1 for the CPW system and makes it possible to

both rapidly initilize the qubit to the ground state and to protect it from

dissipation depending on the matching of the frequencies between the dif-

ferent circuit elements. We additionally expect similar control over the

effective qubit temperature.

Finally, Publication VIII studies the mapping between the LC resonator

system and the CPW system used in Publication VII. The former is de-

scribed using the so-called lumped element model [185] where each res-

onator is comprised of a lumped inductor and a lumped capacitor. We ap-

plied the distributed element model in Publication VII because the lumped

element model cannot immediately account for the positioning of the re-

sistor and the qubit in the divided cavity and, consequently, there is gen-

erally no exact mapping to the LC resonator system. To establish a mean-

ingful mapping that would allow the simplistic lumped element model

along with results of Publication VIII to be used for the CPW system,

we propose a modified cavity system with a capacitive bath coupling. We

subsequently execute a bare mode mapping scheme for frequencies and

voltage operators, and show that the spectra of the two models exactly

match when the qubit is placed at the end of the cavity. In addition, the

CPW system is well-approximated in the vicinity of the exact matching

point by defining an effective resonator–qubit coupling capacitance.
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5. Quantum Description of Driving and
Work

This chapter goes beyond the assumption of external classical fields gener-

ating the driven quantum dynamics and treats driving as a true quantum

effect arising from interaction with a separate quantum system. To this

end, this chapter studies the related work injection and fluctuation rela-

tions. Section 5.1 establishes the general framework for quantum driving

and studies the resulting work injection whereas Sec. 5.2 elaborates on

the implications to non-equilibrium work relations.

5.1 Quantum driving and work injection

Chapter 2 explored the issues related to incorporating external control

in the form of driving to dissipative dynamics and provided the ground

work for the Cooper-pair pumping studies in Chap. 3. It was built upon

the basis of a time-dependent system Hamiltonian ĤS appearing as a

result of an action being imposed by an external driving force. The ac-

tion exactly defines the closed-system driving protocol and, as a result,

quantifies any ideal temporal change related to the corresponding path

traversed in the projective Hilbert space [21, 191]. However, this typical

description of driving is approximative in nature as it entails the under-

lying assumption that the time-dependent control is brought about by a

classical entity whereas in reality, the driving protocol is due to an ac-

tual interaction with a separate quantum system. As a result, this typ-

ical approach cannot account for quantum-mechanical backaction result-

ing from the interaction or include all dissipative channels. Considering

the emerging experimental accuracy in, for example, quantum informa-

tion processing [94, 96, 192, 193] or fluctuation relations in steered evolu-

tion [21, 194, 195], a more fundamental theoretical description of driving

is potentially required.
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SE

D

S

E

SD

DE

Figure 5.1. Schematic representation of the total composite system implementing quan-
tum driving. S denotes the subsystem of interest, D denotes the drive sub-
system, and E denotes the environment. Furthermore, SD, SE, and DE
denote the interactions between the subsystems. Reprinted from Publication
IX with permission.

In Publication IX, we introduce a general framework for driving a quan-

tum system by dividing the total system into its constituent parts in accor-

dance with Fig. 5.1. In this composite framework, the driving protocol is

assigned to a specific subsystem D and quantum backaction is naturally

allowed. The total Hamiltonian is

Ĥ =ÎD ⊗ ĤS ⊗ ÎE + ĤD ⊗ ÎS ⊗ ÎE + ÎD ⊗ ÎS

⊗ ĤE + ĤSD ⊗ ÎE + ÎD ⊗ ĤSE + ĤDE ,
(5.1)

where Îi is the identity operator in the Hilbert space of the ith subsystem,

Ĥi is the corresponding Hamiltonian and Ĥij is the interaction Hamilto-

nian between the ith and the jth subsystems. There is no explicit time-

dependence for any of the subsystem Hamiltonians but the full informa-

tion of the driving protocol on S is encoded in the internal interactions of

the composite and the initial state of D. This bypasses the basis selec-

tion problem detailed in Secs. 2.1 and 2.2, and turns it into a search for

drive interactions that allow for the desired complexity in driving proto-

cols. Publication IX shows how this framework reduces to classical driv-

ing of a quantum system when the drive acts as a classical entity, that

is, its state is unaffected by the internal interactions of the composite.

As a result, the explicit time-dependence of the system Hamiltonian is

introduced by the time-evolution of the uncorrelated drive subsystem ap-
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pearing in the effective system-drive interaction Hamiltonian1.

Using our general framework, we tackle the issue of defining the work

injected into a quantum system during a driving protocol and, correspond-

ingly, calculating possible energy flow to a coupled environment. Even

though this issue has been resolved for classical thermodynamics [199,

200], it is under constant debate for quantum systems as work relates to

a process rather than a quantum observable even in the typical approach

to driving [201–212]. In Publication IX, we propose a natural definition

for the average work WQ injected into the system during the driving pro-

tocol as the change in the internal energy of the system and its interaction

energy with the drive combined with the energy dissipated directly from

the system to the environment2. We obtain the corresponding instanta-

neous injected power as

d

dt
WQ = − i

�
TrS+D{ρ̂SD[ĤSD, ĤD ⊗ ÎS ]}, (5.2)

where ρ̂SD = TrE{ρ̂}, ρ̂ is the total density operator, TrE is the trace

over the environment, and TrS+D is the combined trace over the system

and the drive. Furthermore, we derive the average powers dissipated

directly from the system and the drive using both the complete and re-

duced dynamics. Importantly, the drive does not have to be rapidly self-

equilibrating and quantum backaction is allowed in our analysis. Taking

the system to the classical driving limit reduces the injected power in

Eq. (5.2) to the recently derived result for classical injection into a quan-

tum system [212] corresponding to the power operator in analogy to the

fully classical case [215].

Finally, Publication IX studies the resonant single-mode Jaynes–Cum-

mings model [216] as an example and takes the driving of the two-level

system to be induced by the photonic bath. We additionally include a

coupling to a reservoir inducing Markovian decay [25] and examine the

behaviour of different energy flows as any initial excitation in the system–

drive composite is absorbed into the environment. In particular, the in-

jected work assumes a nonzero asymptotic value due to direct heat trans-

fer from the drive to the environment. Such heat transfer is always ne-

1Our definition of a classical drive is related to the bipartite considerations in
Refs. [196, 197], and a good example of the quantum to classical cross-over is
studied for a spin- 12 system in Ref. [198]. See Publication IX for further details.
2This corresponds to the inclusive work in the typical notation [21, 191], and
extends the notion of the dynamical work agent [213], corresponding to the idea
of the work source in the inclusive classical Hamiltonian approach [214], to a
fully consistent quantum description.
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glected in the classical driving limit.

5.2 Non-equilibrium quantum work relations

Defining the work performed on a quantum system during a driving pro-

tocol is closely related to the so-called quantum fluctuation relations [21,

191] which extend the ideas of classical stochastic thermodynamics [217]

to quantum systems. They essentially allow one to connect individual

stochastic trajectories determined by the dynamics to equilibrium prop-

erties of the system. When work is defined as the relevant stochastic

variable, the corresponding relations are generally referred to as non-

equilibrium quantum work relations3. Recent measurements of fluctua-

tion relations in classical systems [194,195,224–227] as well as proposals

for experiments in classically driven quantum systems [22, 23, 228–232]4

indicate that the experimental setups are approaching the limit of ex-

treme accuracy and, hence, the full description of quantum driving might

be necessary.

To study how fluctuation relations emerge from our general framework,

we study the Bochkov–Kuzovlev identity [21, 234] concerning the exclu-

sive work Wexcl performed on the system during the driving. Such work

specifically excludes the temporal change in the system–drive interac-

tion energy [21]. In Publication IX, we apply the well-established two-

measurement approach (TMA) [218, 219] for a non-degenerate discrete

system and assume that the system–drive composite is decoupled from

the environment during the driving protocol5. Applying the usual as-

3The quantum extensions of non-equilibrium work relations are extensively
studied in literature. Extensive reviews are provided by Refs. [21,191] and we di-
rect the interested reader to, for example, Refs. [203–206,208,209,211,218,219]
for quantum extensions of the closed-system relations and Refs. [201, 202, 207,
210,213,220–223] for recent extensions to dissipative dynamics.
4In addition, there exists a very recent experimental study on fluctuation rela-
tions in classically driven quantum systems [233].
5The TMA is the established method for defining trajectory-dependent work
required to generalize fluctuation relations to classically driven quantum sys-
tems [21, 191]. However, there are other recent methods for obtaining work dis-
tributions such as non-demolition measurements [235], wave function ensem-
bles [236], and quantum jumps [237, 238]. The connection between fluctuation
relations and generalized measurements has also been considered in literature,
see Ref. [239] and references therein.
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sumption of initialization to a Gibbs state, we obtain

〈e−βWexcl〉 =
∑
k

e−βεk

ZS

∑
n

Pk,n

=
∑
k

e−βεk

ZS
TrD{〈kS |Û(T, 0)ρ̂D(0) ⊗ ÎSÛ

†(T, 0)|kS〉},
(5.3)

where 〈. . .〉 denotes the ensemble average over the distribution of exclu-

sive work6, ZS = TrS{e−βĤS} is the partition function of the bare sys-

tem [21, 191, 217], β is the inverse temperature of the initial stabilizing

environment, T is the duration of the driving protocol corresponding to

the time elapsed between the two measurements in the TMA, and Pk,n is

the probability of obtaining εk from the second projective measurement

of ĤS assuming that the first measurement has yielded εn. The eigenen-

ergies εk and εn correspond to the system eigenstates |kS〉 and |nS〉, re-

spectively. In addition, ρ̂D(0) is the initial drive state and Û(t, 0) is the

time-evolution operator for the composite. We show that in the classical

driving limit, this expression reduces to the traditional Bochkoz-Kuzovlev

identity 〈e−βWexcl〉 = 1, but is generally not unity because of the correla-

tions accumulated during the protocol due to quantum backaction.

Finally, Eq. (5.3) can be interpreted in terms of a partition function cor-

responding to the temporal evolution of the drive-averaged canonical state

of the system. The resulting effective partition function defines the drive-

averaged thermodynamic quantities in a self-consistent manner. For the

Jaynes–Cummings model, we define n̄ as the average photon number of

the assumed initial coherent state for the drive, and find that the correc-

tion to the traditional Bochkov–Kuzovlev identity scales as 1/n̄ when the

system approaches the classical driving limit.

6The two-measurement approach defines the exclusive work as a stochastic vari-
able with each of its possible realizations corresponding to a quantum trajec-
tory [21, 191] and, consequently, the exclusive work has a distinct probability
distribution. See Publication IX for further details.
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6. Summary and Conclusions

In the research presented in this dissertation, the primary objective was

to explore the control of quantum systems. Such control is always hin-

dered by the presence of an environment introducing dissipation and deco-

herence which disturb the quantum state making its exploitation a taunt-

ing task. To facilitate control, one requires a comprehensive description

of the combined effect of dissipation and the desired driving of the quan-

tum state. In some sense, such description is always required as an iso-

lated driven system is a logical paradox. The research in this dissertation

delved into this issue using reduced-density-operator theory, discovered

improvements to previous works, and used them to study Cooper-pair

pumping. It additionally improved on the underlying theory of the devices

used for pumping by accounting for phenomena previously omitted. Fur-

thermore, a method to realize built-in control by means of tunable envi-

ronments using a coplanar-waveguide cavity as well as coupled quantum

LC resonators was proposed. Finally, the idea of control was generalized

beyond the typical classical driving assumption so that quantum backac-

tion can be included, and the resulting implications for injected work were

studied.

In Publications I–III, a consistent scheme for deriving and improving

time-local master equations for driven systems was constructed. The pre-

sented research was based on the careful basis selection procedure first in-

troduced in Ref. [20] but signifigantly generalized and extended the ideas

and results. The master equations accurately display the interplay be-

tween driving and dissipation making them a valuable tool especially in

cases where small changes in coherence determine the dynamics of an

observable. Due to the intuitive design and physical predictivity of the

master equations, Publications I–III have enticed research into further

advancements in driven dissipative dynamics [64,77,78,80,82,84,240] as
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well as added to the understanding of the general construction of master

equations in the nearly adiabatic limit [241–244]. Even though the theo-

retical understanding of driving an open quantum system constantly de-

velops to alleviate requirements such as slow driving, Markovianity, and

non-degeneracy, the current picture is by no means perfect and invites

future improvements.

The role played by different approximations with respect to the con-

servation of operator current was studied in Publication V drawing a

direct link to the application of the secular approximation in Publica-

tions I–III. The derived conservation law acts both as a means of ex-

plaining the previously obtained nonconservation as well as a tool to test

future approximative dynamics. On top of having direct use for specific

systems, such as those in superconducting nanoelectronics [245], it has

attracted some interest for its applicability in general open-system the-

ory [82, 243, 244, 246, 247]. Studying whether the conservation law itself

can be used as a starting point to build up the dynamics could potentially

be beneficial and bring about an interesting field of study.

Cooper-pair pumping provides a test bed for the derived reduced dynam-

ics and was used to study related phenomena in Publications I–III. The

results in these publications illustrate the predicted robustness of ground-

state pumping in the nearly adiabatic limit along with the changes in

pumping provided by the superadiabatic bases. Later theoretical work

has partially built upon the obtained pumping results [77, 78, 81, 82, 84],

and further explored the applications in interferometry [143], geometric

phase evolution [248, 249], and in the general theory of pumping [250].

Even though the experimental breakdown of adiabaticity [150] was sim-

ulated in Publication III, the results are only suggestive as the adiabatic

two-state theory is not suited for changes in the pumping amplitude or

fast pumping. With complementary experimental results now available

beyond the adiabatic limit [147], an extended theory could be straightfor-

wardly tested.

The general robustness of pumping has prompted new proposals for su-

perconducting devices [144, 146] and is likely to do so in the future. Con-

sidering that extreme accuracy is desired in their operation, the accuracy

of the exact phase biasing assumption should potentially be investigated

in their design and the resulting error either mitigated or exploited. Even

if the device at hand is not the Cooper-pair sluice, the methodology in

Publication VI can be straightforwardly adapted to study and design more
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sophisticated systems. This is especially important for the closely related

proposals for geometric quantum computing [120, 121] which assume ex-

act phase biasing. Similarly, the effect of the non-vanishing loop induc-

tance is likely more significant when flux noise is dominant or reveals

prominent features such as the dissipative currents as in Publication IV.

Using the flux noise engineering scheme formulated in the publication,

the dissipative currents could immediately be experimentally probed.

In Publications VII and VIII, the idea of obtaining control by externally

tuning the coupling to the environment was introduced. In Publication

VII, the tuning was implemented by a coplanar waveguide cavity inter-

mediating the qubit–environment interaction. Moreover, it was shown

that such tuning realizes both efficient ground-state initialization and

protected operation when experimentally feasible parameters [186] are

used. Implementing SIN tunnel junction thermometry adds the device to

the toolbox of qubit temperature control [188]. Note that the proposal in

Publication VII draws on Refs. [251, 252] in the sense that it provides a

useful and efficient way to incorporate normal-metal components into the

framework of circuit quantum electrodynamics and, as such, is likely to

produce further theoretical and experimental activity. The device in Pub-

lication VIII uses the same principle of tunability but replaces the cavity

by a pair of coupled quantum LC resonators. It is potentially easier to

experimentally implement while still retaining the tunability of the qubit

decay rate over several orders of magnitude.

The concept of control by driving was re-examined in Publication IX.

Instead of having ideal classical driving of a quantum system, a gen-

eral framework that takes into account both dissipation and system–drive

backaction was constructed. This not only provides a more fundamental

understanding of the driven quantum dynamics and hence opens a new

way of treating and designing driven systems, but is also likely necessary

for the operation of future high-precision quantum devices. In Publication

IX, a definition for the work injected during the driving protocol was addi-

tionally proposed, and it was shown that one of most well-known fluctua-

tion relations, the Bochkov-Kuzovlev identity, is modified by the quantum

backaction allowed by the framework. As the explicit time dependence of

the system Hamiltonian is removed in the framework formulated in Pub-

lication IX, driven dissipative dynamics avoids the earlier basis selection

issue but must now obtain the desired driving protocol through engineer-

ing the system–drive interactions. Finally, future theoretical work should
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attempt to uncover corresponding modifications to other fluctuation rela-

tions, investigate the details of the basis selection issue using the general

framework, and explore the quantum to classical cross-over possibly ex-

ploiting the recent experimental ideas [22,23,230–232].
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