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Abstract

Type 1 diabetes (T1D) is an autoimmune form of diabetes where the patient’s own immune
system attacks the insulin producing islets of Langerhans in the pancreas. The long-term
complications of diabetes reduce quality of life, lead to premature deaths and place a burden on
the health care system. Diabetic kidney disease, known as diabetic nephropathy, is a major
diabetic complication affecting one third of the patients with T1D. In some cases, diabetic
nephropathy may lead to end stage renal disease (ESRD), a condition characterized by the
inability of the kidneys to function at the level needed for day-to-day life. Patients with ESRD
require regular dialysis treatment or kidney transplantation to survive.

‘While the pathogenesis of diabetic nephropathy is poorly understood, it is known that
diabetic nephropathy clusters in families, suggesting that genetic risk factors affect the
susceptibility to this complex disease. However, the genetic risk factors are not well known.
Identification of the genetic risk factors would help to understand the biological processes
causing the disease, paving the way for novel pharmacological target molecules and better
biochemical risk markers.

The aim of this dissertation was to identify genetic risk factors for diabetic nephropathy by
applying a range of computational methods to high-throughput genetic data.

This dissertation is mainly based on genome-wide data of ~550,000 single nucleotide
polymorphisms (SNPs) genotyped in 3,650 Finnish patients with T1D. Similar genetic data
were available for two other studies. Using computational methods and a European reference
population, the number of SNPs for each patient was increased to 2.4 million.

‘With this large genomic data set, we first reassessed the previously suggested genetic risk
factors for diabetic nephropathy. We then performed genome-wide association studies
(GWASS) in the three cohorts. Combining our results with other studies, the resulting analysis
included data from over 12,000 patients with T1D. In this larger cohort, we identified variants
inthe AFF3 gene and between the RGMA and MCTPZ2 genes associated with ESRD.
Additionally, we identified variants that were only associated with the risk of ESRD in women
with T1D. Furthermore, we identified risk variants for increased urinary albumin excretion, an
important marker of diabetic kidney disease. Finally, using data mining methods, we identified
the previously reported RGMA - MCTP2 locus and two novel putative genetic risk factors for
ESRD. All in all, this thesis reports the first genetic risk factors for diabetic nephropathy in T1D
with strong statistical evidence of association.
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Tiivistelma

Ykkostyypin diabetes on yleensa nuorella iélla puhkeava krooninen sairaus joka puhkeaa kun
kehon oma immuunijérjestelma tuhoaa haiman insuliinia tuottavat solut ja normaali sokeri-
aineenvaihdunta héiriintyy. Diabeteksen krooniset liitinnéissairaudet ovat merkittdva uhka
potilaiden hyvinvoinnille ja aiheuttavat huomattavia terveydenhoidon kustannuksia. Arviolta
kolmannes ykkostyypin diabeetikoista sairastuu diabeettiseen munuaistautiin, niin kutsuttuun
diabeettiseen nefropatiaan. Pahimmillaan se voi johtaa loppuvaiheen munuaissairauteen
jolloin potilaan munuaiset evit endé toimi riittdvan hyvin, vaan potilas tarvitsee selviytydkseen
sdannollista dialyysihoitoa tai munuaissiirteen.

Vaikka diabeettisen munuaistaudin syntymekanismeja ei vield tunneta tarkasti, perhe-
tutkimusten perusteella diabeettinen munuaistauti néyttdisi olevan osittain perinnéllinen.
Taudille altistavien perintotekijoiden tunnistaminen on tarkeéé taudin syiden
ymmartdmiseksi sekid uusien lddkkeiden ja parempien bio-markkereiden kehittdmiseksi.
Tamén viitoskirjan tavoitteena on etsié perimésté laskennallisin menetelmin sellaisia
muutoksia jotka lisdavit diabeettisen munuaistaudin riskia ykkostyypin diabeetikoilla.

Vaitoskirjan tutkimukset perustuvat pdaasiassa suureen suomalaiseen tutkimusaineistoon
joka koostui 3 650 ykkostyypin diabeetikosta. Tutkimukseen osallistuneiden genomi
kartoitettiin noin 5650 000 emésparin maaritykselld, ja emésparien lukumaéaré kasvatettiin
laskennallisilla menetelmilla 2,4 miljoonaan lopullisia analyyseja varten. Tutkimus siséalsi
lisdksi kaksi muuta samankaltaista genominlaajuista aineistoa.

Tutkimme ensin kohdistetusti niitd eméspareja jotka on aiemmin yhdistetty diabeettiseen
munuaistautiin. Etsimme sen jalkeen uusia geneettisi riskitekijoitd koko genomin alueelta
kolmessa genominlaajuisessa aineistossa. Kun yhdistimme tulokset yhdeksdn muun osa-
tutkimuksen kanssa, 16ysimme loppuvaiheen munuaistaudille altistavia geenimuutoksia AFF'3
geenistd sekd RGMA ja MCTPR2 geenien viliseltd alueelta. Lisdksi havaitsimme eméaspareja
joiden vaihtelu vaikuttaa loppuvaiheen munuaistaudin riskiin ainoastaan naisissa, seké geeni-
muunnoksia, jotka vaikuttavat virtsan albumiinin méiraén, joka on tirked munuaistaudin
mittari. Lopuksi sovelsimme uutta laskennallista lahestymistapaa, jonka avulla havaitsimme
jélleen loppuvaiheen munuaistaudille altistavia geenimuunnoksia RGMA — MCTPZ2 alueella
seka kaksi kokonaan uutta aluetta joiden geenimuunnokset saattavat altistaa loppuvaiheen
munuaistaudille. Kaiken kaikkiaan tdma viitoskirja esittelee ensimmaiset vahvasti
diabeettiseen munuaistautiin liittyvéat geneettiset riskitekijat ykkostyypin diabeetikoilla.
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1 Introduction

A total of 347 million people worldwide have diabetes [Danaei 2011]. Type 1 diabetes
(T1D) is an autoimmune variant of the disease affecting 40,000 patients in Finland.
In fact, Finland has had the highest incidence of the disease in the world during the
last four decades [Diabetes Epidemiology Research International Group 1988, The
DIAMOND Project Group 2006], and the annual number of new T1D patients has
more than doubled from 1980 to 2005 [Harjutsalo 2008]. After this enormous
upsurge, the incidence of T1D in Finland seems to have settled to roughly 60 new
T1D diagnoses per 100,000 persons per year [Harjutsalo 2013].

Even though diabetes is no longer the life-threatening disease it used to be a
century ago, it still remains an enormous health care problem. Although the high
blood glucose levels can be treated acutely with insulin injections, the long-term
complications cause human suffering, premature deaths, and a significant burden to
the health care system. In particular, diabetic kidney disease, also known as diabetic
nephropathy (DN), is a severe late complication that in its most severe form leads to
renal failure (end stage renal disease, ESRD) that requires kidney transplantation or
regular dialysis for survival. DN is a common complication, as one third of the
patients with T1D develop DN within 25 years of the diagnosis of diabetes in Finland
[Harjutsalo 2004]. In fact, diabetes is the major cause of ESRD in the Western world
[Finne 2010, U.S. Renal Data System 2011]. DN is also strongly associated with the
risk of cardiovascular disease [Borch-Johnsen and Kreiner 1987, Tuomilehto 1998]
and all-cause mortality [Groop 2009].

The treatment of diabetes and its complications imposes substantial demands on
the health care system. In Finland the annual health care costs for diabetes exceed
12% of Finland’s health care expenditure, and these costs are to a large extent due to
the costs generated by the complications [Kangas 2001]. In the USA, the estimated
direct medical costs of diabetes were $176 billion in 2012, of which the largest
components were hospital care (43%) and medication to treat diabetic complications
(18%). The diabetes medication and other supplies for diabetes care contributed
only to 12% of the direct costs [American Diabetes Association 2013]. The indirect
costs, i.e. the loss of productivity due to mortality and morbidity, are also high,
estimated $69 billion per year and are the consequence of the diabetic complications
[American Diabetes Association 2013].

Despite the severity and high prevalence of DN, the pathogenesis of the disease
remains poorly understood. DN is likely to have complex environmental and genetic
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Introduction

origins [Thorn 2007]. Known risk factors include high blood pressure, poor blood
glucose control, dyslipidemia, male gender and long duration of diabetes [Parving
and Smidt 1986, The DCCT Research Group 1995, Tarnow 2008, Tolonen 2009]. In
addition, sibling studies have shown that DN clusters in families. It is estimated that
genetic factors increase the risk of DN by a factor of two [Seaquist 1989, Borch-
Johnsen 1992, Quinn 1996, Harjutsalo 2004], but the actual genes involved remain
largely unknown. Genetic risk factors for DN have been sought in multiple
populations [Maeda 2007, Tarnow 2008, Pezzolesi 2009a]. Unfortunately, most of
the initial associations have not been robustly replicated [Conway and Maxwell
2009, Mooyaart 2011]. Discovery of the susceptibility genes, as well as the genetic
pathways they affect, could help understand the development and different phases
of the disease. A better understanding of the causal factors for DN and its
pathogenesis could pave the way to development of clinical applications such as new
therapeutic target molecules and better biochemical and genetic risk markers and
ultimately to new strategies to preemptively treat the disorder to attenuate
morbidity and mortality.

This doctoral thesis investigates the genetic factors that carry propensity to DN by
applying a range of computational methods to genome-wide genetic data from a
unique population-based TiD cohort in Finland, the FinnDiane Study. In
Publication I, we examined previously suggested genetic associations with DN in a
large set of 6,366 patients with TiD. In Publications II-IIT and V, we describe a
genome-wide search for novel genetic risk factors for DN and ESRD, whereas in
Publication IV we examined the genetic risk factors for urinary albumin excretion,
which is a continuous marker of incipient and established DN. Publications II-IV
follow the standard methodology for the genome-wide search of risk factors,
whereas in Publication V we applied a novel data mining algorithm in order to

explore if additional susceptibility loci could be identified with a Bayesian approach.



2 Diabetes and its complications

2.1 Diabetes

Diabetes is a group of metabolic diseases characterized by elevated blood glucose
levels, caused by the body’s partial or complete inability to transfer glucose from
blood to the cells. Type 1 diabetes (T1D) is usually diagnosed in children and young
adults when the body initiates an autoimmune attack against its own insulin
producing beta cells within the islets of Langerhans in the pancreas. Insulin is a vital
hormone that is required to transfer glucose from the blood to the muscles, liver and
fat tissue cells. The important role of insulin was first discovered in 1921 by Nicolae
Paulescu, and insulin injections became the life-saving treatment for diabetes
already in 1922 [Banting 1922]. New-onset T1D results in insulin deficiency, and if
untreated, leads to increasing blood glucose concentrations and ketoacidosis, and
finally coma. On the other hand, too much insulin results in the opposite condition
of low blood glucose — hypoglycemia — which may also lead to unconsciousness.
Therefore careful regulation of the blood glucose levels is essential for the diabetic
patients.

Type 2 diabetes (T2D) is the most common form of diabetes, accounting for more
than 90% of all diagnosed cases [Skyler and Oddo 2002]. T2D is sometimes called
adulthood onset diabetes, as it is strongly affected by aging, life-style factors and
obesity. In T2D, the body becomes increasingly resistant to the insulin action,
leading to a mounting demand for insulin production. Eventually, the pancreatic
beta cells cannot produce enough insulin, and the blood glucose levels start to rise.
In the final phase, the adverse metabolic milieu further impairs insulin production
and the beta cell function begins to decline, thus triggering a vicious cycle of diabetic
feedback. Depending on the severity of the disease, the disease may be treated with a
healthier diet and/or insulin sensitizing medication. Eventually insulin injections
may also be required.

Even though the age at diabetes onset, severity of the symptoms, treatment, and
the disease mechanisms behind T1D and T2D differ, the separation between the two
forms of diabetes is not always clear. The gold standard for the diagnosis of T1D is
based on the measurement of autoantibodies against islet cell antigens, and
additional information may be obtained by measuring autoantibodies to insulin,
glutamic acid decarboxylase, tyrosine phosphatase IA-2 and cytoplasmic islet cell
antibodies [Seissler and Scherbaum 2006]. For diagnostic purposes, the amount of
pancreatic insulin production may be assessed by the measurement of the serum C-
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Diabetes and its complications

peptide concentrations. C-peptide is a part of an insulin precursor molecule, and is
cleaved to form insulin [Steiner 1967]. As the patients with T1iD do not have any
insulin production at all, they do not have circulating C-peptide either. On the
contrary, patients with T2D initially have normal or even elevated levels of C-
peptide, even though the production of insulin and C-peptide may decline in
advanced T2D. Furthermore, the distribution of the major genetic factors for T1D, so
called human leukocyte antigen (HLA) haplotypes, differs between the patients with
T1D, and patents with latent autoimmune diabetes of adults (LADA; a slow-onset
type 1 autoimmune diabetes in adults) or with T2D. In research, T1D is often defined
based on the age at diabetes onset and commencing permanent insulin injections
within 1 year of the diagnosis [Mueller 2006, Thorn 2007, Tarnow 2008].

2.2 Diabetic nephropathy

The acute symptoms of diabetes — unconsciousness due to extremely high or low
blood glucose levels — can be avoided by careful regulation of blood glucose levels.
However, and despite the constantly improving care, one third of the patients with
T1D develop severe long term micro- and macrovascular complications affecting the
kidneys (“nephropathy”), eyes (“retinopathy”), nervous system (“neuropathy”) and
the cardiovascular system [Pambianco 2006]. Diabetic nephropathy (DN) is the
most devastating microvascular complication. DN also increases the risk of
cardiovascular disease with poor prognosis [Borch-Johnsen and Kreiner 1987,
Tuomilehto 1998] and the most severe form of DN, the end stage renal disease
(ESRD), is associated with an 18-fold risk of dying compared with the non-diabetic
individuals of the same age [Groop 2009]. Healthy kidneys filter more than one liter
of blood per minute. Their main function is to filter toxins from the blood and to
maintain the body homeostasis by regulating the level of water, electrolytes and
products of protein metabolism that must be eliminated from the body (Figure 1).
Water and small molecules are filtered from the blood into the primary urine in the
cortical part of the nephrons, in the glomeruli. The surface of the glomerular vessels
has a three-layer glomerular filtration barrier that consists of endothelial cells, the
glomerular basement membrane, and podocyte foot processes. The filtration barrier
blocks nearly all negatively charged proteins or other macromolecules from entering
the urinary space in healthy individuals. Water and important micro- and
macromolecules are then reabsorbed from the primary urine into the blood in the
tubuli [Sircar 2008].
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Figure 1: A: The structure of a kidney. The filtering takes place in the nephrons. B: A
nephron. Primary urine is filtered from the blood in the glomeruli, and reabsorbed to
the blood vessels in the tubuli. Figure is modified from [Mdakinen 2010].

DN is characterized by an increased excretion of albumin into the urine and a
relentless decline in kidney function. At the earlier stages of DN, proteins —
especially albumin as the most abundant protein in the circulation — start to leak
through the glomerular filtration barrier. Urinary albumin excretion rate (AER)
gradually increases from normal range first to microalbuminuria and then to
macroalbuminuria (Figure 2). Pathogenically, this is seen as thickening of the
glomerular basement membrane and the loss of podocytes. Kidney function,
measured as estimated glomerular filtration rate (eGFR) may first even increase, but
starts to decline as the disease leads to glomerulosclerosis i.e. scarring and overt

structural lesions of the glomeruli until the filtration rate of the kidneys is close to
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Figure 2: Schematic illustration of DN that typically starts with microalbuminuria.
A) DN classification is based on AER. B) Chronic kidney disease (CKD) is diagnosed
based on the kidneyfunction, measured withglomerular filtration rate (GFR).
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zero [Forbes and Cooper 2013]. Finally, ESRD is reached when the kidneys can no
longer filter the blood at sufficient level, but the patient requires regular dialysis
treatment or a kidney transplantation for survival.

Early studies from the 80’s reported that approximately 40% of the patients with
T1D develop DN with a peak incidence after 13-18 years of diabetes duration
[Andersen 1983, Borch-Johnsen 1985]. More recent studies have reported lower
prevalence of DN between 13-32% after 20-25 years of diabetes duration [Hovind
2003, Nordwall 2004, Pambianco 2006], and the previously evident incidence peak
has been changed to a relatively constant incidence reported between 20 and 34
years of diabetes duration [Pambianco 2006]. Nevertheless, recent studies in the
Finnish population report that 8-23% of the patients with T1D still develop ESRD
after 30-40 years of diabetes duration [Finne 2005, Harjutsalo 2011]. Therefore, it
remains unclear if the decrease in the cumulative incidence of DN and ESRD is due
to successful prevention of DN, or merely a delay of the disease onset [Marshall
2012].

In Europe, the clinical diagnosis of DN is often based on AER, which is an earlier
marker of kidney damage than the eGFR (Figure 2; [Mogensen 1985]). Because of
the relatively large daily variability of the urinary albumin excretion, the clinical
definition of diabetic nephropathy requires that two out of three consecutive
measurements surpass a given threshold. AER measured from an overnight timed
urine collection is considered the gold standard, but albuminuria can also be defined
based on a 24-hour sample or albumin-creatinine-ratio (ACR). The main variables
employed for the diagnosis are summarized in Table 1 [Viberti 1994].

Persistent hyperglycemia — reflected by a high proportion of glycosylated
hemoglobin (HbA.c) — plays a central role in the development of DN. Strict glycemic
control has been shown to decrease the occurrence of DN by 54% in the Diabetes
Control and Complications Trial (DCCT) [Reichard 1993]. Importantly, the
subsequent follow-up study (The Epidemiology of Diabetes Interventions and
Complications, EDIC) showed a persistent effect of the intensive diabetes treatment

Table 1: Diagnostic thresholds for different stages of DN [Viberti 1994]

Diagnosis 24-h AER overnight AER ACR
Normal AER, no <3omg/24h <20 pg/min ACR <2.5
kidney disease mg/mmol for

men and <3.5
mg/mmol for

women
Microalbuminuria >30 but <300 >20 but <200 2.5-25 mg/mmol
mg/24h pg/min for men and 3.5-
35 mg/mmol for
women
Macroalbuminuria >300 mg/24 h >200 pg/min >25 mg/mmol

for men and >35
mg/mmol for
women
ESRD Diagnosis based on commencing chronic dialysis
treatment and/or subsequent kidney transplantation.
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on the risk of albuminuria eight years after ending the DCCT intervention [Writing
Team for the DCCT/EDIC Research Group 2003]. However, even in the intensively
treated group the cumulative incidence of DN was 9% after 30 years of T1D [Nathan
2009], suggesting that sustained hyperglycemia is not the only risk factor for DN.

High blood pressure is another strong risk factor for DN. The strong correlation
between blood pressure and urinary AER was documented in the 1980’s [Wiseman
1984, Berglund 1987]. Randomized controlled trials in subjects with T1D indicated
that anti-hypertensive (AHT) medication lowers the level of AER and prevents
progression from incipient to overt DN [Marre 1988, Mathiesen 1991]. On the
contrary, the decline in GFR was reduced but not halted [Parving 1988]. Later
studies have suggested that the AHT medication that affect the renin — angiotensin
— aldosterone system, especially the angiotensin converting enzyme (ACE) inhibitors
[Lewis 1993] and angiotensin II receptor blockers (ARBs) [Brenner 2001], are
superior in treatment of DN compared with other groups of AHT medication, and
may have renoprotective effects beyond lowering blood pressure.

In the healthy non-diabetic subjects, the male gender is a strong risk factor for
ESRD, whereas women seem to be protected from ESRD at least until their
menopause [U.S. Renal Data System 2011]. Similarly, the male gender is a risk factor
for DN and ESRD among patients with T1D [Harjutsalo 2011]. However, among the
men and women who have diabetes diagnosed before 10 years of age, no gender
difference is seen in the incidence of ESRD [Harjutsalo 2011], suggesting that the
usual female protection from ESRD is attenuated in women with an early onset of
T1D. Some of the risk factors for DN are different for men and women [Coonrod
1993], which may indicate gender-specific mechanisms for DN or may reflect
differences in the typical metabolic or hormonal profiles. Of note, estrogen has
renoprotective effects in animal models [Silbiger and Neugarten 2008], whereas
women with T1iD have lower estradiol concentrations than non-diabetic women
[Salonia 2006]. However, the role of estrogen in the progression of DN still remains
unclear [Doublier 2011]. Overall, the loss of female protection in diabetes, seen as
the absence of gender difference, remains controversial [Maric and Sullivan 2008,
Silbiger and Neugarten 2008].

The first evidence that genes can affect the risk of DN was found in the late 80's
by Seaquist et al. when they detected that diabetic nephropathy clustered in families
[Seaquist 1989]. They studied sibling pairs where both had T1iD, and compared the
probability of the second sibling having DN when the first studied sibling
(“proband”) either had or did not have DN. In the families where the proband had
ESRD, 24 out of 26 diabetic siblings (83%) had DN. In contrast, if the proband did
not have DN, only two out of 11 diabetic siblings (17%) had DN. Borch-Johnsen
reported similar familial clustering in Danish families [Borch-Johnsen 1992]. The
difficulty of the sibling studies is reflected in the fact that out of the 619 T1D patients
that they considered for the study, they identified only 24 patients with and 34

patients without DN having diabetic siblings. Familial clustering was reported also
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for microalbuminuria in the DCCT study with 114 probands of which 13 had
microalbuminuria: microalbuminuria was more than twice as common in the
diabetic relatives if the proband had microalbuminuria (61%) versus if the proband
did not have microalbuminuria (28%) [The DCCT Research Group 1997].

Later epidemiological study of a population-based cohort of Finnish T1D patients
identified 537 T1D probands with 616 T1D siblings and showed that the presence of
DN in one sibling more than doubles the risk of DN in the other diabetic siblings
[Harjutsalo 2004]. Further epidemiological evidence of familial clustering comes
from the studies showing that parental T2D, hypertension and cardiovascular
disease are associated with increased susceptibility to DN in patients with T1iD
[Fagerudd 1999, Thorn 2007]. Even though the observed familial clustering may to
some extent be due to more similar lifestyles, eating and smoking habits, and
glycemic control among the diabetic siblings than among unrelated patients, the
researchers conclude that genetic factors are likely involved in the development of
DN.



3 Genetics

31 Human genome

The genetic material containing the instructions to build all the living organisms is
stored and passed forward in deoxyribose nucleic acid (DNA). DNA consists of two
long chains that run in opposite directions and form a double-helical structure. Each
chain is formed by alternating deoxyribose (sugar) groups and phosphate diester
groups. Attached to each deoxyribose group, there is either an adenine (A), guanine
(G), thymine (T) or cytosine (C) nucleobase group. Together, a nucleobase,
deoxyribose, and a phosphate group compose a nucleotide. The nucleobases are
located in the middle of the helical structure and they pair with the nucleobases of
the opposite chain in a special manner: adenine with thymine, and guanine with
cytosine. The order of these four nucleobases contains the genetic code [Watson and
Crick 1953].

Most of the DNA is packed into chromosomes in cell nuclei. In humans there are
22 autosomal chromosome pairs and one sex-determining pair. These 23
chromosomes contain approximately 3 billion base pairs [Bentley 2000]. Each
individual carries two copies of each chromosome, one inherited from the mother,
and one from the father.

The human genome contains 20,000 — 25,000 genes, which can be transcribed
into messenger ribonucleic acid (mRNA) that is further translated into proteins. The
genes consist of exons that encode the amino acid chains of the proteins and of
introns and other untranslated regions that are removed in the splicing process of
the mRNA. The protein coding exons compose only ~1.2% of the human genome,
whereas 24% is spanned by introns. The remaining 75% of the genome is intergenic
and its function remains poorly understood — although, at least part of it is assumed
to have a regulatory role [Venter 2001, International Human Genome Sequencing
Consortium 2004, ENCODE Project Consortium 2012].

3.1.1 Genetic variation
The vast majority of the genome is identical between any two individuals, but many
forms of genetic variation exist. The changes may be small mutations that affect only
one or a few base pairs, or they may be large structural changes in the chromosomal
structure, observable with a microscope.

While one copy of each chromosome is inherited from the father, and one form
the mother, these chromosomes are not passed from one generation to the next as
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such. The contents of the maternal and the paternal chromosome pairs are shuffled
during the meiosis (the formation of egg and sperm cells) in the so called
recombination event, when similar DNA sequences from the paired chromosomes
cross over each other. Errors in the recombination may result in large structural
changes such as deletions, duplications, inversions, substitutions and translocations
(Figure 3).

Small mutations may be introduced to the genetic code at any time when DNA is
replicated or otherwise processed. These mutations include substitution of a base
pair with another, or insertions or deletions of one or more base pairs (Figure 3).
The mutations affect the following generation only when they happen in the

germline.

A Large mutations

Deletion Duplication Inversion Substitution Translocation
20 20
| 4 i B i i i_‘ 4 20 :U 20
B Small mutations /Mutagenic event

. .GTCGAGTCTA®CGCTATCGCT .
.CAGCTCAGATCGGCTATCGCT.

/

Deletion nsertlon Substitution
.GTCGAGTCTABCGCTATCGCT . GTCGAGTCTA GCGCTATCGCT. .GTCGAGTCTAGCGCTATCGCT. ..
.CAGCTCAGAT GGCTATCGCT. CAGCTCAGATTCGGCTATCGCT CAGCTCAGAT?GGCTATCGCT. ..

Figure 3: Different types of possible large (A) and small (B) mutations. Modified
from www.genome.gov/glossary/

The most studied mutations are the single nucleotide polymorphisms (SNPs), i.e.
the substitutions of one base pair in the DNA sequence (Figure 4). The different
possible versions of the genotype on the SNP locus are called alleles. Mutations of
one nucleotide are estimated to occur at an average rate of 108 per base pair per
generation [International HapMap Consortium 2005]. The International HapMap
Consortium was designed to study the common variation, and in particular the SNPs
in the human genome. The first phase of the effort, published in 2005, identified 1.2
million SNPs found within 269 DNA samples from 90 individuals from Yoruba in
Ibadan, Nigeria (abbreviation YRI), 90 individuals from Utah, USA, from the Centre
d’Etude du Polymorphisme Humain collection (abbreviation CEU), 45 Han Chinese

individuals from Beijing, China (abbreviation CHB), and 44 Japanese individuals
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from Tokyo, Japan (abbreviation JPT). Among the 1.2 million SNPs, 880,000 SNPs
were considered common, with the minor allele frequency (MAF) > 5%
[International HapMap Consortium 2005]. Two years later, the phase II of the
HapMap project reported an improved map of the human genome, with over 3.1
million SNPs identified and genotyped in the same samples [International HapMap

Consortium 2007].

Figure 4: Single nucleotide polymorphism (SNP). An individual has otherwise two
identical copies of the chromosomal region (one from the father, one from the
mother), but the two DNA sequences differ by one base pair, indicated with the
arrows. If the green strand is the forward strand, then the SNP is said to have either
A or G allele, and each individual can carry either the AA, AG, or GG genotype for
that SNP. Modified from http://en.wikipedia.org/wiki/Single-
nucleotide_polymorphism

3.1.2 Linkage disequilibrium
When new mutations arise, they initially stay with the same surrounding DNA
sequence from one generation to another, until a recombination event happens in
the sequence region and the correlation between the variants starts to decay. The
further away the two variants are from each other, the more likely it is that there has
been a recombination event somewhere between the two loci after the introduction
of the mutation. However, the recombination events do not occur at uniform rate
across the genome, and thus, the occurrence of variants that are located close to each
other is often correlated between individuals. This statistical association between
alleles of two or more SNPs is known as linkage disequilibrium (LD). The sequence
region that is inherited in one piece without recombination events is called a
haplotype. For two variants with alleles a/A and b/B, the disequilibrium D is defined
as the departure from the expected frequency distribution assuming independence
of the two variants:
D= fap-fa X f3
where fag is the frequency of individuals carrying the alleles A and B, and fa and f
are the frequencies of those alleles.
In practice, D is not often used as a measure of LD because the maximum value of
D depends on the allele frequencies. In addition, the sign of D is arbitrary depending
on which pair of alleles is studied. The two main measures of pairwise LD are D’ and
11
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r2. D’ (“D prime”) is the absolute value of D divided by the maximum value that D
can have given the allele frequencies: [Hedrick 1987]
D" = |D|/Dmax
Do = {min{fA X fg, (1 —f1) x (1 —fp)}, whenD <0
max - (min{fy X (1 = fg), fz x (1 — fa)}, when D >0

D’ = 1 indicates complete LD, i.e. no recombination or recurrent mutation has
occurred between the SNPs. D’ = 0 indicates that the two SNPs are in complete
linkage equilibrium, e.g. they segregate independently of each other. Another
commonly used measure of LD is r2, which is the squared correlation coefficient
between two SNPs:

D2
T 1) x (A —fp)

Unlike D, both D’ and r2 can reach values near one even if one or both variants have

7,.2

low allele frequency [Reich 2001, Slatkin 2008].

Figure 5 illustrates a genealogical tree on the left and five possible haplotypes on
the right side, encompassing 13 SNPs (colored dots) that are colored according to
the ancestral branch where the mutations arose. No recombination has occurred on
the depicted region, and thus, all the SNP pairs (for example, the yellow SNP 6 and
the purple SNPs 5 and 12) have D’ = 1. 72 = 1 only when the SNPs are on the same
branch of the genealogy (of the same color in Figure 5) and undisrupted by
recombination. Apart from the SNPs on the same branch, the pairwise r2 in the
illustration ranges from 0.05 between the yellow and blue SNPs, to 0.82 between the
red and purple SNPs. Of note, 2 does not depend on the physical distance on the
short range. Using r2> 0.8 threshold for tagging SNPs, the genetic variation of the 13
illustrated SNPs can be captured with four SNPs, for example SNP1, SNP2, SNP3
and SNP6 [International HapMap Consortium 2005].

One important finding from the HapMap project was the realization how

Haplotype
frequency in
population
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00-0e (.18 S
[ii 0.20
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Figure 5: A genealogical tree on the left and the five corresponding haplotypes on the
right side. The sequence region contains 13 SNPs (colored dots), colored according to
the ancestral branch where the mutations arose. D’ = 1 between all the 13 SNPs. The
SNPs that arose on the same branch of genealogy have r2 = 1.*The purple and red
SNPs have r2 > 0.8: frequency of purple SNPs = 0.42, frequency of red SNPs =

0.42+0.05 = 0.47; 12 = (0.42-0.42x0.47)?/(0.42%(1-0.47)x0.47%(1-0.42))=0.82.
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extensive the LD is in the human genome. Based on computer simulations, the LD
was expected to extend only a few kilobases (kb, 1,000 bases) [Kruglyak 1999].
However, the recombination events are concentrated in recombination hot spots
(typically spanning 2 kb) where the recombination occurs much more often than in
the surrounding region. The LD thus remains high between the recombination
hotspots, and LD may extend hundreds of kb [Reich 2001, International HapMap
Consortium 2005].

3.2 Genetic variation of diseases

The differences between individuals are due to differences in the genetic background
or to environmental exposure. Similarly, the diseases may be caused by genetic
factors, the environment, or both. The different modes of genetic background are
illustrated in Figure 6. On the top left corner of the illustration, the monogenic
“Mendelian diseases”, named after Gregor Johann Mendel, are fully inherited. In
these rare diseases one mutation is not only required but also sufficient to cause the
disease. An example of such a monogenic disease is cystic fibrosis, with 5% of the
population in Europe and 1% in Finland carrying one of the many disease causing
mutations in the CFTR gene [Halme and Kajosaari 2006].

However, genetic variation also contributes to the risk of many common diseases,
such as diabetes (both TiD and T2D), coronary artery disease, Crohn’s disease,
rheumatoid arthritis, bipolar disorder, and many more. These complex diseases
have many common genetic susceptibility variants, each of which moderately
increase the risk of the disease in addition to the effect imposed by the
environmental factors (bottom right corner in Figure 6) [Wellcome Trust Case
Control Consortium 2007]. Thus, an unfavorable collection of inherited high-risk
variants does not alone cause a common disease, and conversely, one can develop

the disease even without the genetic risk variants.
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Figure 6: The monogenic diseases are often caused by rare genetic variants, whereas
the common diseases have multiple common SNPs that moderately increase the risk
of disease. Modified from [McCarthy 2008].
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Rare variants with only a minor effect on disease development may exist, but these
are difficult to identify as large number of samples would be required to detect such
factors. On the other hand, common variants with large effect size are highly
unlikely for any disease, as that would lead to a large proportion of the population
affected by the disease [McCarthy 2008]. Outside the disease domain, an example of
such case is the common variant (MAF=0.35 in the 1000 Genomes project [1000
Genomes Project Consortium 2012]) that causes the “0” blood group in the ABo
blood histo-group system.

3.2.1 Disease heritability

The heritability of a disease or a phenotype (i.e. the observable characteristics or
traits of an organism) refers to the proportion of the phenotype variance that is due
to the genetic variation. Formally, the phenotype (P) of interest can be partitioned to
contribution of genetic (G) and environmental (E) factors, and the variance of the
phenotype is the sum of the genetic and environmental variances:

ok =o% + o}

The genetic variance can be further divided into additive genetic effects o3,
dominance genetic effects o3 (i.e. interactions between the alleles at the same locus),
and epistatic genetic effects o7 (i.e. interactions between alleles between different
loci). The broad-sense heritability (H2) takes into consideration the total genetic
effects, whereas the more commonly used narrow-sense heritability (h2, often called
heritability) takes only the additive genetic effects into account, defined as the
proportion of additive genetic variance from the total phenotypic variance: [Visscher

2008]

2
hZZJ_A
o2

P

Heritability has been traditionally estimated by comparison of phenotypes in
families, for example with regression analysis of parental and offspring phenotypes,
or inferring the phenotype differences in monozygotic and dizygotic twin pairs.

The level of heritability can be assessed also for dichotomous disease traits
[Visscher 2008]. Sibling recurrence-risk ratio As is a commonly used epidemiological
parameter to determine the familial aggregation of a complex disease. Ag is defined
as the ratio of disease manifestation (D), given that one’s sibling is affected,
compared with disease prevalence (p) in the general population:

P(D|sib(D))
dg= ————
p
The population prevalence p is often determined as the rate of disease manifestation
given that one’s sibling is not affected.

With the current genome-wide genotyping methods, the heritability of a trait can
be inferred from a large group of individuals: Even though most genome-wide
genotyping efforts include non-related individuals (close relatives removed), the

genetic data can be used to estimate the residual relatedness between each pair of
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individuals. This relatedness structure can then be correlated with the phenotypic
variation, resulting in an estimate of the narrow-sense heritability observable with

the applied genotyping platform [Yang 2011].

3.3 Search for genetic factors behind the common diseases

The assumed mode of heritability is a key factor affecting the study design when
searching for genetic factors behind a disease. For rare Mendelian diseases and rare
monogenic forms of common diseases, the best option is to study the affected
families and narrow down the possible genetic region by searching for the regions
that co-segregate with the disease in the families. For complex diseases that have
both a genetic and an environmental background (i.e. h2<1), this is often not
feasible, since not all carriers of a specific genetic risk factor will develop the disease,
and not all subjects affected by the disease carry the same genetic risk factors.

3.3.1 Association studies of candidate genes

The first step to detect the genes that predispose to complex diseases was to perform
candidate gene association studies by genotyping SNPs and other genetic variants
(i.e. defining the genotype of a given variant from a DNA sample) in patients with
and without the disease and by comparing the genotype frequencies between the
affected and non-affected subjects. As genotyping was relatively expensive, time-
consuming and laborious, these genetic association studies were concentrated on the
genes that were assumed to participate in the biological processes and genetic
pathways affecting the disease process. A good example of a successful candidate
gene study was the identification of a common amino acid substitution in the PPARy
gene, associated with T2D and extensively replicated in other studies [Beamer
1998].

With more and more performed genetic association studies, many variants were
found associated with various common diseases. However, conclusive and repeated
replication of the candidate genes was challenging, with some of the other study
populations supporting and the others refuting the findings. The lack of replication
may have been due to a small number of patients and low effect sizes of the
associations that result in low statistical power to replicate, or discrepancies in the
studied clinical traits. However, many of the reported but non-replicated initial
findings may have been false positive findings due to poor study design or over-
estimation of the association [NCI-NHGRI Working Group on Replication in
Association Studies 2007]. Another drawback of the candidate gene approach is that
the research efforts were limited to the existing hypotheses of the biology, and thus
they restrain from finding truly new genetic pathways [Doria 2008].

3.3.2 Family-based linkage analysis
As the candidate gene studies did not explain the expected heritability of the
common diseases, the question arose whether the susceptibility genes would be
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genes with an unknown function, or genes that were not expected to affect the
disease. Genome-wide family based linkage studies were launched with the aim to
detect new, unforeseen chromosomal regions harboring genes for common diseases.
By genotyping hundreds of markers across all the chromosomes in the family-based
linkage studies, one can detect chromosomal regions that are inherited from one
generation to the next one, together with the disease. Similarly, comparison of
markers that are shared by siblings aims to identify chromosomal regions that are
co-segregated with the disease. The strength of the linkage is typically assessed with
the logarithm of odds (LOD) score for the co-segregation taking place due to true
linkage between the locus and the disease, versus due to chance. LOD score >3 is
generally considered significant [Strachan and Read 1999].

However, the family based linkage studies have not revealed much of the genetic
background of the common and complex diseases with heterogeneous genetic
effects. The linkage studies often suffer from low regional resolution as only a few
cross-over events take place within each studied family, and thus, large chunks of
genome around the causal variant are co-segregated in the families. Moreover, the
recruitment of an adequate number of families with multiple disease cases is
challenging. The linkage studies are best suited for diseases with very strong familial

segregation and rare genetic variants (Figure 6).

3.4 Genome-wide association studies (GWASs)

The association studies of unrelated individuals are better suited for the analysis of
complex diseases than the linkage studies. The GWASs are based on the assumption
that many common variants contribute to the common disease, but the effect of each
individual variant on the phenotype is moderate [Balding 2006, McCarthy 2008].
Many successful examples exist where GWASs have identified novel genetic
susceptibility variants for common diseases such as diabetes (both T1D and T2D),
coronary artery disease, Crohn’s disease, rheumatoid arthritis and bipolar disorder
[Wellcome Trust Case Control Consortium 2007]. The association tests have higher
statistical power to detect disease predisposing variants with moderate relative risk
than the family based methods [Risch and Merikangas 1996, Botstein and Risch
2003]. The drawback of the association studies is that they require a substantial
number of patients, normally several thousands, to detect the modest effect sizes.
Nevertheless, the recruitment of unrelated individuals is easier than the
identification of families with many patients. In addition, association studies allow
higher regional resolution than family based linkage studies, thanks to numerous
cross-over events in the population level that break the genetic linkage to smaller
parts [Balding 2006].

Characterization of the common variation in the human genome by the HapMap
project [Frazer 2007] and recent advances in genotyping technology made the
association studies feasible on a genome-wide scale. Whereas the price of

16



Genetics

sequencing one base pair was 20-30$ in the 1990’s [Carlson 2003] and the first
association studies included hundreds of patients [Groop 1993], currently the
genome-wide association studies (GWASs) include thousands of patients genotyped
at 300,000 to 1,000,000 genetic markers that cover the majority of the human
genome, with the price per marker less than 0.001€.

Compared with the candidate gene association testing, the GWAS allows
searching without prior knowledge of the underlying genes. One consequence of not
limiting the search space is that the vast majority of the findings are located outside
the genes, and only 5% of them are on protein coding exon regions [Schaub 2012].
In addition, the nearest — or even the underlying gene — is not necessarily the causal
gene [Smemo 2014], and regulatory regions may affect expression of genes that are
located far away [Sanyal 2012]. Furthermore, the associated LD blocks may span
hundreds of kilobases making it difficult to decide which of the associated SNPs, if
any, is the causal one [Reich 2001, International HapMap Consortium 2005]. For
convenience, the associated loci are often named according to the nearest gene.

3.4.1 Association testing

In a typical GWAS the significance of each SNP is evaluated separately by computing
a statistical association model that correlates the SNP genotypes to the observed
phenotype. Commonly used models are for example Pearson goodness-of-fit test
(often known as y2 test) or logistic regression. In the same way, GWASs can be used
to detect genetic risk factors for increasing continuous traits, typically using linear
regression [Balding 2006]. The statistical power to detect associations can be further
improved by combining the data from multiple GWASs in meta-analyses that can
include millions of SNPs analyzed in tens of thousands of individuals as for T2D
[Voight 2010]. Among the most studied continuous traits are the obesity-related
traits such as body mass index (BMI), for which 32 susceptibility loci were identified

in a meta-analysis of nearly 250,000 individuals [Speliotes 2010].

3.4.2 Multiple testing and interpretation of P-values

The analysis of millions of markers and thus millions of separate study hypotheses
creates a fundamental problem of multiple testing: The significance level a can be
interpreted as the greatest tolerated probability of type I error (false positive). In
practice, using a=5% corresponding to a P-value threshold of 0.05 would allow five
false positive associations if 100 hypotheses (SNPs in this case) were tested. In a
GWAS of 1,000,000 tested SNPs, the nominally significant P-value threshold of 0.05
can be expected to return 0.05x1,000,000 = 50,000 false positive associations.
Therefore, much stricter P-value thresholds are commonly used for the GWASs.
Bonferroni correction (Quest-wise = Qstudy-wise/Dtests) 1S often performed to account for
multiple testing, but it may be overly conservative especially when the markers are
in high LD with each other [Balding 2006]. In the GWAS setting, a P-value threshold
of 5x10® has become a commonly accepted limit for genome-wide statistical

significance, corresponding to Bonferroni adjustment for the rough estimate of 1
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million independent SNPs in European population (0.05/1,000,000 = 5x109)
[McCarthy 2008].

3.4.3 Quality control of genome-wide genotyping

Given the vast number of SNPs, the genotyping of the high-throughput data has to
be automated, and careful quality control is essential to avoid any spurious findings
due to genotyping errors or systematic bias. Any suspicious SNPs or patient samples
should be discarded. The SNPs and samples should have high genotyping success
rate and the genotype calls of each SNP should be clearly separable from each other.
Hardy-Weinberg equilibrium (HWE) refers to the state where the two alleles of a
SNP segregate independently of each other in the genotypes. In the evolution theory,
deviation from HWE indicates inbreeding, population stratification or selection, but
in the genotyping context, it is more often a sign of failed genotype clustering where
the heterozygous genotypes are miscalled as homozygous, or vice versa [Balding
2006]. Other typical filters include removal of closely related individuals and testing
for differences in genotyping that are correlated with the genotyping plates.

The population structure is an important source of bias and has to be carefully
taken into account. The allele frequencies vary between different populations. If the
cases and controls show different proportions of subjects from different populations,
any SNP with a different allele frequency between these populations would show
evidence of association. For example, variants in the lactase gene (LCT) and variants
on the HLA region have been shown to correlate with the north - south and west -
east axes of the place of origin for the European subjects [Heath 2008].
Furthermore, the first two principal components (PCs) based on GWAS genotypes
have been shown to correlate with the geographical location of the European
subjects [Novembre 2008]. Even the Finns that are commonly considered a
homogenous population show a clear East — West difference when using a similar
approach [Salmela 2008]. While the best practice is to include in the analysis only
subjects from one population and to remove any samples with different population
background, the principal components can be used to adjust the analysis for any
remaining population substructure [Price 2006].

3.4.4 Genotype imputation

Different commercial platforms for the genotyping of the GWASs typically address
300,000 to 1,000,000 SNPs. The number of the examined SNPs can be
computationally enhanced by in silico prediction of additional genotypes that are
not assayed on the original platform, based on a more densely genotyped reference
population. This process is called genotype imputation. The aim of imputation is to
boost the statistical power, to fine-map associated regions, and to facilitate meta-
analysis of GWASs that are often genotyped using different genotyping platforms
with different set of assayed SNPs [Marchini and Howie 2010]. Currently the most
commonly used reference panel is based on the HapMap II population that

identified more than three million SNPs [International HapMap Consortium 2007]
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in 120, 120 and 180 CEU, YRI, and JPT+CHB subjects, respectively. However, even
larger reference panels are now available with genotype information for more than
1,000 individuals of diverse origin [1000 Genomes Project Consortium 2012].

Most of the currently used imputation methods are based on hidden Markov
models (HMMs) that model the sequence of genotypes G; in each individual based
on the known haploid genotype sequences in the reference population, so called
phased haplotypes. In essence, given the reference haplotypes H, the genotype
probability can be given as

P(G;| H, 1, 0) = ZZP(G"'Z' W) x P(Z|H,0)

where the hidden stages Z can be thought as pairs of haplotypes from the reference
panel. P(Z | H, 6) allows switching from one haplotype to another according to the
local cross-over parameter 0, and P(G; | Z, u) allows differences from the reference
based on the mutation parameter u [Marchini and Howie 2010]. Different software
use various implementations to fit the models, for example Markov chains applied in
MaCH 1.0 [Li 2009, Li 2010] , Markov chain Monte Carlo (MCMC) approach used in
IMPUTE v2 [Howie 2009], and expectation maximization algorithm in fastPHASE
[Scheet and Stephens 2006].

The imputation accuracy is affected by multiple factors, such as the SNP allele
frequency, size of the reference panel and its similarity with the study population,
and the selection of the SNPs on the genotyping chip. The error rates for the most
likely genotypes (“best guess genotypes”) are typically 5-6% depending on the
method and data [Marchini and Howie 2010], but the direct use of the most likely
genotypes is not advised. Instead, the uncertainty of the imputation quality should
be taken into account in the analysis, either by weighting the contribution of each
possible genotype by its imputation probability, implemented for example with a
score test in the SNPTEST software [Marchini and Howie 2010], or by using the
expected genotype counts, also called posterior mean genotypes or allele dosages
[Guan and Stephens 2008].

3.4.5 Data mining methods for genome-wide studies

Owing to the vast number of SNPs in a typical GWAS, the commonly used GWAS
methods rely on single-SNP tests performed with simple statistical models.
However, some steps have been taken to apply more sophisticated statistical
techniques.

Bayesian single-SNP approaches: The common (“frequentist”) way of assessing
association for each SNP is based on calculating a P-value to obtain the observed
results under the null hypothesis H, of no association. The use of a P-value has been
criticized as the same P-value can have different implications, depending on the
factors that affect the statistical power of the test, such as the number of the studied
SNPs, the size of the study, and the MAF of the SNP: for example, a P-value of 0.001
can be considered significant in a candidate gene study including only a few SNPs,

whereas a P-value of 10 is deemed only as suggestive evidence of association in a
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GWAS due to the burden of multiple testing (See 3.4.2). On the other hand,
obtaining a significant association with P < 5x108 for a SNP with low power due to
low MAF or small number of samples is so unlikely that the result should be
regarded with caution despite the significant P-value. To overcome the limitations of
the P-value based analyses, the Bayesian statistics have been suggested for the
assessment of associations [Stephens and Balding 2009].

The Bayesian methods aim to define the posterior probability of an association
(PPA), i.e. the probability that a SNP is truly associated with the phenotype, given
the prior assumptions and the observed data. The PPA can be compared with the
posterior probability of no association (PPnA) based on the model parameters 6,
observed data y, and the posterior density p(6|y) of the model parameters, as
follows [Gelman 2004]:

PPA _p(6:1y) _ p(6)p(161)
PPnA p(6oly)  p(60)p(y16o)
In the genetic association studies, the two sets of parameters 6, and 6, correspond to

hypotheses H, (no association) and H; (association). p(6,) is the prior probability of a
SNP being associated with the phenotype, and is often interpreted as an estimate of
the proportion of SNPs that are associated with a phenotype, 7. Values from n =
1/1,000 to m = 1/100,000 have been suggested [Stephens and Balding 2009].
Finally, the Bayes factor (BF) is the ratio between the probabilities of the observed
data under H, and H,.
Using the above notation, the PPA can be calculated in two steps: first, posterior
odds (PO) as in the equation above:
PPA T
T PPnA 1-n
Then, the PPA [Stephens and Balding 2009],
PO
1+ PO
In general, the ranking of SNPs is similar based on PPAs and P-values, except for

SNPs with low MAF. The flexibility of the Bayesian models allows for simultaneous

evaluation of additive (used in typical GWASs), dominant and recessive effects. In

X BF

PPA =

addition, the PPA can be directly interpreted as a probability, irrespective of the
number of studied SNPs, statistical power, or sample size [Stephens and Balding
2009].

Multi-SNP methods for SNP discovery: The common, complex diseases are
assumed to have multiple genetic risk factors. Ideally, all the SNPs should be
analyzed simultaneously to better capture how they interact, or affect the disease
given the existence of other risk factors: even a weak effect may become more
apparent when the other risk factors are taken into account [Hoggart 2008]. Most of
the current multimarker approaches rely on penalized (logistic) regression models
[Hoggart 2008, Ayers and Cordell 2010, He and Lin 2011] or Bayesian analysis
[Sebastiani 2008, Sambo 2012, Hartley 2012].
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A machine learning method based on Naive Bayes Classifiers, called Bag of Naive
Bayes (BoNB) [Sambo 2012], is presented in more detail in the Methods section.
Naive Bayes classifiers are a simple but efficient supervised classification method,
derived from the Bayes’ theorem assuming that all the factors contribute
independently to the posterior probability. With this assumption, the posterior

probability of a class variable C given the factors F; ... F, can be formulated as

n
1
pClF, B =5 xp@x | [pl0)
i=1

where Z is a constant depending only on the factors. For example, the probability of
a subject being case or control based on three SNPs can be calculated as follows:
p(case|SNP;,SNP,,SNP;) « p(case) X p(SNP;|case) X p(SNP,|case) X p(SNP;|case)

p(ctrl| SNP,, SNP,, SNPy) o p(ctrl) X p(SNP, | ctrl) X p(SNP,|ctrl) X p(SNPs | ctrl)
The rationale behind the BoNB algorithm is i) to generate many slightly different
datasets with Bootstrap resampling of the original patient set, ii) to create a Naive
Bayes classifier for each data set, and iii) to define the SNPs that are selected by
multiple Naive Bayes classifiers as significant ones. Bootstrapping, or repeated
random sampling with replacement, divides the patients into a training set to select
the SNPs and to learn the model, and into an independent test set (“out-of-bag set”)
that can be used to test the model performance (Figure 7). The out-of-bag sets are
comparable to the use of independent replication cohorts in conventional GWAS
studies. The Bootstrap sampling is repeated multiple times (typically ~100). The
signals identified by such a procedure are robust to small changes in the patient set.

Sample with Bootstrap

replacement replicate
Patient 1 E] @ Patient 1
Patient 2 Patient 3 o b
Patient 3 Patient 4 ut-of-bag
Patient 4 D @ D Patient 5 set:
Patient 5 Patient 1 Patient 2
Patient 6 E] @ Patient 3 Patient 6

Figure 7: Illustration of sampling with replacement from a dataset of six patients
using six rolls of dice. The random Bootstrap sample includes patients in the second
list, whereas patients 2 and 6 form the out-of-bag set. Because of the “sample
replacement” during the sampling, some patients are selected multiple times to the
Bootstrap sample, see for example patients 1 and 3.

Multimarker enrichment analysis: The most commonly used multimarker
analyses for GWASs are the gene set enrichment analyses. The significance of each
SNP is evaluated with conventional single-SNP approaches. Based on the single-SNP
results, gene set enrichment analysis can be used to infer genetic pathways or other
defined gene sets that are enriched for significantly associated SNPs. This can give
additional information on the affected biological processes, which can be difficult to

detect when inspecting each SNP or gene separately. The gene set enrichment
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analyses are performed either by selecting SNPs with a P-value below a pre-defined

significance threshold, or by inferring the significance threshold based on the data.
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4 Genetics of diabetic kidney disease

41 Candidate genes for diabetic kidney disease

The candidate gene studies of DN were based on functional candidates i.e. genes
that were assumed to affect DN, or later on, positional candidates based on the
genomic regions implied in the linkage studies. Some of the much-studied candidate
genes and pathways are for example the angiotensin-converting enzyme (ACE)
[Hadjadj 2007] and the angiotensin II receptor, type 1 gene (AGTR1) [Ding 2012] in
the renin-angiotensin-aldosterone system, the aldose reductase (AKR1B1) as the
first and the rate-limiting enzyme of the polyol pathway [Neamat-Allah 2001], the
apolipoprotein E (APOE) that is part of the lipid metabolism [Araki 2000], the
erythropoietin (EPO) involved in the angiogenesis [Tong 2008] and the nitric oxide
synthase 3 (NOS3) affecting oxidative stress [McKnight 2010a].

To summarize all candidate gene association studies on DN, Mooyaart et al.
reported a meta-analysis of reproduced DN associations found by a literature search
[Mooyaart 2011]. Their meta-analysis included 132 publications describing 153
studies and resulted in 24 genetic variants in 17 distinct loci significantly associated
with DN in TiD and/or T2D. Variants in ACE, AKR1B1, APOC1, EPO, GREM1,
HSPG2, UNC13B and VEGFA were deemed significant also in patients with T1D
alone (Table 2). Literature based meta-analyses, however, may suffer from
publication bias since positive findings are easier to publish than negative reports,
and thus, may give overly positive results. Therefore the role of these variants

remains ambiguous.

4.2 Linkage studies for diabetic kidney disease

Genome-wide family based linkage studies were launched with the aim to detect
new, unforeseen chromosomal regions harboring genes for DN. These studies were
based on sibling pairs both with T1D, and either both affected with DN (“affected
sib-pairs”) or discordant for their DN status (“discordant sib-pairs”) [Osterholm
2007, Rogus 2008, Wessman 2011]. All these genome-wide linkage scans
suggestively support a linkage peak on chromosome 3q that was first reported for
DN in T1D in a candidate gene linkage analysis of the AGTR1 gene (genetic position
157¢cM on chromosome 3q; LOD score = 3.1; P=7.7x105) [Moczulski 1998].
However, the reported linkage peak locations vary between the studies from 134 to

157¢M, flanking the chromosomal region 3q21-25, and a subsequent fine-mapping
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Table 2: Candidate genes that have been associated with DN in T1D. *Significance results from a
literature mining based meta-analysis by Mooyaart et al [Mooyaart 2011]. OR: odds ratio; 95% CI:

95% confidence interval

Gene name Candidate
and variant  Significance pathway  Gene function regarding DN
ACE OR 1.13 (95% renin- The plasma levels of angiotensin converting
rs1799752 Cl1.04 - angiotensin enzyme (ACE) are associated with DN. ACE
1.23), 14 system inhibitors are a recommended treatment for DN
studies* [Lewis 1993].
AKR1B1 OR 1.58 (95% polyol AKR1B1 encodes aldose reductase which
rs759853 CI 1.01-2.46), pathway catalyses the reduction of a variety of carbonyl-
4 studies*® containing compounds, e.g. glucose to sorbitol.
Aldose reductase is a key enzyme of the polyol
pathway [Neamat-Allah 2001].
APOC1 OR 1.54 (95% Lipid APOC1 encodes an apolipoprotein Ci.
rs4420638 CI1.29-1.83), metabolism, Dyslipidemia is a risk factor for DN [McKnight
2 studies® cardio- 2009].
vascular
disease
EPO OR 0.67 (95% angiogenesis EPO encodes erythropoietin, which is a potent
rs1617640  CI 0.58-0.76) angiogenic factor expressed in both retina and
2 studies* kidney. Erythropoietin participates in the
erythropoiesis and is used to treat anemia
resulting from renal failure or chemotherapy
[Tong 2008].
GREM1 OR 1.53 (95% Cell growth GREM1 promotes the development of diabetic
rs1129456  CI1.25-1.89), and differ- nephropathy in animal models [McKnight
2 studies® entiation  2010b]
HSPG2 OR 0.64 (95% glomerular HSPG2 encodes the perlecan protein, which is
rs3767140 CI 0.49— basement involved in maintenance of glomerular
0.84)* from2 membrane basement membrane electrostatic charge
studies [Mooyaart 2011].
NCK1 P=7.07x10%, Region 3q21 NCK1 encodes Ncki, involved in actin
rs1866813 OR 1.33 (95% —-3q25 polymerization. In kidney podocytes Ncki links
Cl1.17-1.51) implicated in nephrin, a key protein in the slit diaphragm, to
from 3 studies linkage  the actin cytoskeleton [He 2009].
studies
UNCi13B OR1.23(95%  apoptosis UNC13B is activated and upregulated by
rs13293564 CI 1.11-1.35), 4 hyperglycemia in renal cells [Tregouet 2008].
studies®
VEGFA OR 0.48 (95% angiogenesis Vasular endothelial growth factor (VEGF) is
rs833061 CI 0.37-0.61), implicated in the pathogenesis of microvascular
2 studies* complications of diabetes [McKnight 2007]

association analysis of the affected region suggested the NCKz gene on chromosome

3q22 as the likely culprit behind the linkage peak (Table 2) [He 2009]. As the

reported linkage peak locations vary substantially, it is also possible that these peaks

represent different signals [Wessman 2011].

In addition, significant linkage has been reported for chromosomes 19q

(maximum likelihood score (MLS) = 3.1) [Rogus 2008] and for 22q11 (LOD=3.58)

[Wessman 2011], but no causal genetic variants affecting DN have been decisively
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identified based on these linkage analyses. Linkage studies on albuminuria as a

continuous trait have not been performed in patients with T1D.

4.3 GWAS on diabetic kidney disease

Prior to this thesis, only one GWAS had been published on DN in T1D, based on the
Genetics of Kidneys in Diabetes US (GoKinD US) study including 1,500 T1D patients
[Pezzolesi 2009a]. No locus reached genome-wide statistical significance (P<5x108)
in their analysis, but they reported multiple suggestive associations (P<107%) on
chromosomes 7p in the CHN2 gene, on 9q near the FRMD3 gene, on 11p in and near
the CARS gene and on 13q on an intergenic region near the IRS2 gene. Their
subsequent analysis using imputed GWAS data resulted in four additional
suggestively associated loci on chromosomes 10q at the SORBS1 gene, on 8p near
the TRPS1 gene and between the CDCA2 and EBF2 genes, and on 10q near the BUB3
and GPR26 genes [Pezzolesi 2010]. Among these loci, the variants near the CARS
gene and on the FRMD3 gene were suggestively replicated in further studies with
diabetic patients [Pezzolesi 2009a]. The function of these genes remain unknown,
but the FRMD3 gene is likely related to the maintenance of cellular shape and the
gene is known to be expressed in kidneys as well [Pezzolesi 2009a].

A parallel GWAS on ESRD was performed in the same GoKinD US patients using
pooled DNA for cases and controls. This analysis suggested associations in ZMIZ1
and MSC genes, and supported the association on chromosome 13q identified by
Pezzolesi et al. [Craig 2009].

Further GWASs on DN have been performed on patients with T2D and with
diverse ethnicity, although none of the loci have reached genome-wide statistical
significance. An early GWAS including 188 Japanese patients with T2D genotyped
for 80,000 SNPs suggested that rs741301 and eight other SNPs in the ELMO1 gene
were associated with DN in T2D [Shimazaki 2005]. The reported variants have not
been replicated in other studies, but later investigations in T1D patients of European
origin and in African American patients with T2D identified other variants in the
ELMO1 gene suggestively associated with DN [Leak 2009, Pezzolesi 2009b]. A
GWAS on ESRD in African American patients with T2D supported the association
on FRMD3 gene when adjusted for major ESRD risk variants for non-diabetic ESRD
in African Americans [Freedman 2011]. Further GWASs on DN in T2D have
suggested associations in the ACACB gene in Japanese patients and in or near
RPS12, LIMK2, SFI1 and other genes in African American patients [McDonough
2010].

No GWASs have been performed on the continuous variables of albuminuria or
kidney function in diabetic patients. However, these traits have been studied in non-
diabetic subjects. A missense mutation rs1801239 in the CUBN gene was identified
as a risk locus for albuminuria in non-diabetic patients, and the same variant was

associated with microalbuminuria in patients with diabetes. CUBN encodes cubilin,
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which is essential for the reuptake of albumin and other low-molecular-weight
proteins in the proximal tubules [Boger 2011]. Furthermore, multiple loci have been
identified for reduced kidney function in non-diabetic subjects, evaluated with
eGFR. These include variants in or near the UMOD, SHROOM3, GATM-SPATA5L1,
CST and STC1 genes [Kottgen 2009], LASS2, GCKR, ALMS1, TFDP2, DAB2,
SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1, UBE2Q2 and SLC7A9 genes
[Kottgen 2010], and MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80 genes
[Pattaro 2012].
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Aims of the study

The aim of this thesis is to dissect the genetic background of diabetic kidney disease

by analyzing single nucleotide polymorphisms, SNPs, across the genome.

The specific research questions are:

1.

Given the numerous candidate gene studies and other studies that have
reported putative associations between SNPs and diabetic kidney disease,
can we validate these findings with a large study with sufficient statistical
power?

Which are the genetic susceptibility loci for diabetic kidney disease in
patients with type 1 diabetes?

Given the gender difference in the risk of the most severe form of diabetic
kidney disease, the end-stage renal disease (ESRD), are there genetic risk
factors for ESRD that only affect men or women?

What is the heritability of albuminuria, the main marker and risk factor for
diabetic kidney disease? Are there genetic risk factors associated with
albuminuria in type 1 diabetes?

Can we discover additional susceptibility loci for diabetic kidney disease

using advanced data mining methods?

Each of these specific research questions are answered with a journal article, and

each journal article provides a partial solution to the research problem. These

journal articles are combined in this dissertation summary.
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6 Materials and methods

6.1 Study design

Publication I was a case — control association study to investigate earlier reported
risk SNPs for DN, whereas Publications II-V had a two stage study design consisting
of a discovery stage and a subsequent replication or stage II analysis. All
publications report SNP based search of genetic risk factors in non-related

individuals.

Publication I: The aim was to replicate previously reported significant risk
markers for DN. The selected SNPs were analyzed in the Finnish Diabetic
Nephropathy (FinnDiane) Study and the All Ireland Warren 3, Genetics of Kidneys
in Diabetes UK (UK-ROI) study. As the GoKinD US study was part of most of the
original publications, results from that study were not reported for all loci. In
addition, we subsequently reanalyzed the GoKinD US GWAS data after intensive
quality control and compared the results with the original findings.
Publication II: The discovery stage consisted of GWASs on DN and ESRD in the
FinnDiane, UK-ROI and GoKinD US studies. Based on the meta-analysis of the
three GWASs, the most significant loci were selected for phase II analysis and
genotyping in nine additional cohorts. Finally, we performed a combined meta-
analysis of all studies.
Publication ITII: We explored if gender specific risk factors exist for ESRD in the
FinnDiane GWAS. The significant SNP association in women was replicated in three
additional studies that included a substantial number of women with ESRD.
Publication IV: We studied which SNPs are associated with elevated AER in the
FinnDiane GWAS. The most significant findings were replicated in seven additional
studies. In addition, we evaluated the heritability of AER using the FinnDiane
genome-wide genotype data.
Publication V: We applied an advanced data mining method on the genome-wide
genotype data from the FinnDiane study to detect SNPs associated with various case
— control definitions of DN. The validity of the findings was tested with a
permutation procedure. The validated markers were further tested for association in
three additional studies.
Additional analyses: Many additional cross-sectional and longitudinal
association analyses, as well as in silico and in vitro functional analyses, were
performed for Publications II-V to further characterize the main findings.
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6.2 Phenotype definitions

6.2.1 Definition of T1D

T1D was defined as the age at onset of diabetes no more than 35 years in
Publications I-IIT and no more than 40 years in Publications IV and V. In addition,
permanent insulin treatment had to be initiated within one year after the diagnosis
of diabetes. Additional data, such as C-peptide concentrations, were used in some of
the studies for the diagnosis of T1D. In case of incomplete information, the diagnosis

was based on the attending physician’s own classification.

6.2.2 Definition of DN

DN stages were defined according to the diagnostic albuminuria thresholds
presented in Table 1 (page 6). Because of a relatively large day-to-day variability of
the urinary albumin excretion, two out of three consecutive measurements were
required to surpass a given threshold. In addition, patients with normal AER were
required to have duration of T1D of at least 15 years in all publications. The DN
phenotype in Publications I-II and V is defined as either macroalbuminuria or
ESRD. Subjects with known non-diabetic kidney disease were excluded from the
analyses. Divergence from these DN and T1D phenotype definitions are noted in the
study specific phenotype descriptions in Section 6.4.1.

6.3 The FinnDiane Study

The discovery stage of the Publications III-V consisted entirely of Finnish patients
with T1D, recruited by the FinnDiane Study. The FinnDiane study was also the
largest study in Publications I and II.

FinnDiane is a nationwide multicenter study with the aim to detect genetic,
environmental, clinical and biochemical risk factors for DN and diabetic
complications in general. The FinnDiane study includes patients from all five
Finnish University Central Hospitals, all 16 central hospitals, and 56 regional
hospitals and health care centers (Figure 8). The patients are recruited to the study
by their attending physician, who completes the main questionnaire and provides
the latest laboratory results for a selection of biochemical variables. Blood and urine
samples are sent to the central laboratory of the FinnDiane study, where more
biochemical variables are measured centrally at the Helsinki University Central
Hospital laboratory.

The FinnDiane Study also involves a prospective phase, in which the patients are
restudied roughly 5-7 years after the baseline visit. The clinical phenotypes are
continuously updated based on the patient records. Furthermore, information on
the major clinical events such as the onset of ESRD can be retrieved from the
Finnish Hospital Discharge Registry (HILMO).

The FinnDiane GWAS included also 554 patients recruited across Finland by the
Finnish National Institute of Health and Welfare (THL). Their clinical phenotype
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and additional biochemical and anthropometric data were defined based on the
patients’ medical records. These patients were analyzed together with the FinnDiane
patients using the same phenotype definitions and inclusion criteria.

The main baseline characteristics for the patients included in the GWAS are

shown in Table 3, according to the inclusion criteria in Publication V.

A

Rovaniemi

11]7 W

[ >50 inhabitants/km?2

[ <5 inhabitants/km?
Joensuu

10 individuals
# 20 individuals
@ 40 individuals

Turku

Figure 8: Geographical distribution of the FinnDiane patients. A: Current residence
of the FinnDiane patients (n=4,130 addresses available). B: Regional population
density in Finland (data from Statistics Finland). Figure is modified from [Mdkinen
2010].

6.4 Genome-wide genotyping and computational data preparation

In publication II, the discovery stage included three studies with GWAS data: the
FinnDiane study, the GoKinD US and the UK-ROI studies. The three GWASs were
genotyped on different genotyping platforms, but the post-genotyping quality

control and imputation procedures were unified between the three cohorts.

6.4.1 Patients in the genome-wide association studies

The FinnDiane patients were described in the previous Section. The main clinical
characteristics of the patients in the UK-ROI and GoKinD US studies are presented
in Table 4.
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Table 3: Clinical characteristics of the FinnDiane patients, measured at the screen visit (apart
from the DN status and the variables marked with *, which refer to the last known
measurement).

Micro- Macro-

Normal albuminuria  albuminuria ESRD
Parameters n=1,637 n=472 n=694 n=661
Men, n (%) 678 (41%) 270 (57%) 414 (60%) 396 (60%)
Age (years)* 43.3+11.5 41.9+12.8 45.4 + 11.2 46.6 £ 9.4
Diabetes duration
(years)* 27.7+£ 9.4 28.1+11.2 31.0 £ 9.6 33.5+ 8.5
Age at diabetes onset
(years) 15.6 £ 8.9 13.8 + 8.9 13.4 + 8.6 13.1+ 7.9
BMI (kg/m?2) 25.0 + 3.3 25.6 + 3.4 26.0 + 3.8 24.7 + 4.2
Laser treatment, n (%) 299 (21%) 207 (48%) 339 (73%) 497 (90%)
Antihypertensive o o o o
medication, n (%) 281 (19%)  292(67%)  412(90%) 512 (93%)
HbA.c (%) 8.2+1.3 86+14 89+15 89+17
HbA,c (mmol/mol) 66 + 14 70 £ 15 74 + 16 74 + 19
Systolic blood pressure
(mmHg) 131+ 16 136 £ 17 141 + 18 151 + 23
Diastolic blood pressure
(mmHg) 78 + 9 80 + 10 82 + 10 85 +12
Total cholesterol £ 08 040 ‘o i1
(mmol/L) 4.9 . 5. 9 5.3 -9 54 +1.3
LDL cholesterol 0408 1+08 108 11
(mmol/L) 3 : 3.1+£0. 3.3£0. 3.5+1

Triglycerides (mmol/L) 0.9 (0.7-1.2) 1.1(0.8-1.6) 1.4 (1.0-2.1) 1.5 (1.0—2.1)
HDL cholesterol in men

(mmol/L) 1.3+£0.3 1.2+0.3 1.1+ 0.4 1.2+ 0.4
HDL cholesterol in

women (mmol/L) 1.5+0.4 1.4+04 1.3+0.4 1.3+ 0.5
eGFR (ml/min per 1.73 91 +18 87+ 21 714 26 NA

m2)

tPercentages are expressed with respect to the number of measured values for each parameter.
Data are given as mean + SD or N (percentage) or median (interquartile range). Table is
modified from Publication V.

UK-ROI: The study includes 1,904 white individuals with T1D, diagnosed before 31
years of age, whose parents and grandparents were born in the UK or Ireland. DN
was defined as persistent proteinuria (>500 mg/24 h) developing more than 10
years after the diagnosis of diabetes, the presence of hypertension (>135/85 mmHg
and/or treatment with AHT medication), and retinopathy; or ESRD. The controls
had a duration of T1D > 15 years, persistently normal AER, no AHT medication, and
no history of treatment with ACE inhibitors [McKnight 2010b].

GoKinD US: Similar to the UK-ROI, the GoKinD US study consists of 1,792 self-
reported white patients with T1D diagnosed before 31 years of age. Individuals were
recruited at the George Washington University and the Joslin Diabetes Centre. DN
was defined as ESRD or persistent macroalbuminuria (at least two out of three tests

positive for albuminuria by dipstick >1+, or ACR >300 pg albumin/mg of urine
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creatinine). The controls were defined using the same inclusion criteria as in UK-
ROI [Pezzolesi 2009a].

Table 4: Characteristics of samples successfully analyzed in the UK-ROI and GoKinD studies
in the Publication II. Cases comprise patients with macroalbuminuria or ESRD. Controls are
patients with normal AER. Values are given as mean + standard deviation. Table is modified
from Publication II.

UK-ROI, n=1,826 GoKinD US, n=1,595
Cases Controls Cases Controls
(n=823) (n=903) (n=774) (n=821)
Gender (men/women) 478/345 395/508 402/372 342/479
Duration of T1D (years) 32.0+9.6 27.0+86 31.4+7.8 25.4 + 7.7
Age at diagnosis of T1D .
(years) 14.5 £ 7.7 14.5+ 7.8 11+ 6.6 13+7.3
HbA.c (%) 9.0 £1.9 8.7+1.6 7.5+ 1.9 7.5+ 1.2
HbA,c (mmol/mol) 75 + 21 72 + 18 58 + 21 58 +13
BMI (kg/m?2) 26.3+4.7 262+4.2 257+52 26.1+4.3
ESRD (%) 20.9 0 65.6 0

6.4.2 Genome-wide genotyping

In the FinnDiane Study, a total of 3,651 patients were genotyped at the Institute of
Molecular Medicine Finland (FIMM, Helsinki, Finland) on the Illumina's BeadArray
610 Quad array (Illumina, San Diego, CA, USA).

DNA samples for 1,830 individuals in the UK-ROI collection were genotyped
using Ilumina’s Omni1-Quad array at the Broad Institute. Illumina's BeadStudio
clustering algorithm was used to call genotypes in both the UK-ROI and the
FinnDiane.

The GoKinD US GWAS data, genotyped with the Affymetrix 500K platform
(Affymetrix, Santa Clara, CA, USA), were downloaded from the dbGAP
(phs000018.v2.p1, retrieved June 2010). The downloaded version 2 data was
amended by updated genotype calling for a previously reported problematic plate
[Pluzhnikov 2010] and additional quality control steps performed by NHLBI.

6.4.3 Quality control and population structure

An extensive genotype quality control procedure was applied for all three discovery
GWAS datasets (UK-ROI, FinnDiane, GoKinD US). SNPs were filtered for those with
high genotyping call rate, sufficient minor allele frequency (MAF > 1%), concordance
with (HWE), no difference in missingness by haplotype or by phenotype and no
evidence of plate differences. Samples were included based on high individual
genotyping rate and no extreme sample heterozygosity. From each pair of subjects
with cryptic relatedness, defined as first-degree relatives, one was removed. In the
UK-ROI and the FinnDiane, the samples were additionally excluded if there was
discordance with previous genotypes. The quality control steps (detailed in Table 5)
were performed using PLINK [Purcell 2007] and custom R scripts.
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Table 5: Number of SNPs and samples filtered during the quality control steps for the three
studies with GWAS data. Modified from Publication II.

US GoKinD UK-ROI FinnDiane
Quality control step Subjects SNPs | Subjects SNPs |Subjects SNPs
Raw GWAS Data (no QC) | 1,792 364,292 | 1,830 975,120 | 3652 599,010%
Pre-quality control steps 162 734 2 - 11 -
Unsuccessful genotyping B B B B B
(sample call rate = 0) 35
Filter on SNP call rate B o B 206 B 5 050
(>90%) 9 »25
Filter on SNP MAF (>1%) - 25 - 179,985 - 44,617
Filter on subject call rate o _ 5 _ 5 _
(>95%) 4
Filter on extreme
heterozygosity 16 B 14 B 19 B
Filter on IBD/cryptic B B B
relatedness 4 22 39
Outlier detection (PCA) 15 - 39 - - -
Filter on HWE (P<1x107) - 234 - 1,417 - 185
Missing by haplotype B _ _
(P<1x107) 2,200 1,421 2,100
Missing by phenotype B B B
(P<1x107) 0 282 237
Test for plate effects B 500 B 5 B 8
(P<1x107) 3 9
Final GWAS data 1,595 360,899 | 1,726 791,687 | 3,546 549,530

QC: quality control. IBD: Identity by descent. PCA: Principal component analysis. Last
row: final counts after all the quality control steps.
*Number of SNPs that were released by FIMM after their initial quality control.

Samples with significant evidence of admixture were identified and removed with
clustering approaches such as multidimensional scaling and principal component
analysis applied on the genome-wide genotype data, separately for each of the three
studies. Principal component analysis was performed with the EIGENSTRAT
program [Price 2006]. Genetic outliers were defined as more than six standard
deviations away from the center of distribution along any of the ten first principal
components (PCs) and they were iteratively removed until no outliers were detected.
After this filtering procedure, the remaining samples in each study were combined
with the genotype data of the three HapMap II populations [International HapMap
Consortium 2007] and the PCs were recalculated and plotted to identify additional
admixed individuals. Detailed results of each quality control step for each study are
reported in Table 5 together with the final number of samples and SNPs passing the
quality control.

After performing all the quality control steps, the final PCs were calculated for the
remaining individuals. Depending on the Publication, either the two or the ten first
PCs were employed to adjust the association analysis for any residual population

structure.
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6.4.4 Genotype imputation

After quality control, the genotype imputation was performed with the hidden
Markov model (HMM) based Markov Chain Haplotyping algorith (MaCH 1.0
software) [Li 2009, Li 2010] using the HapMap II CEU samples as the reference
panel for the haplotypes [International HapMap Consortium 2007]. Imputation was
performed in two steps. In a randomly selected subset of ~300 patients, we first
iteratively estimated (in 50 iteration rounds) the study specific model parameters
linking the study population to the reference haplotypes: a “cross-over” parameter to
estimate the probability to swithch from one reference haplotype to another between
each SNP, and an “error rate” parameter for each SNP to allow differences from the
reference panel. . The genotype imputation was then performed with the greedy
algorithm and maximum likelihood method to infer the haplotypes for each subject
and finally to fill in the missing SNPs based on the HapMap II reference haplotypes.
SNPs with an estimated squared correlation between the imputed and the true
genotypes 2 < 0.3 were removed in the post-imputation quality control. The
imputation procedure resulted in expected allele dosage data for ~2.4 million SNPs
for each cohort.

The main statistical analyses were performed with the estimated allele dosages as
the main explanatory variable. The estimated allele dosage is the expected count of
the reference allele a in a genotype, ranging from o to 2: allele dosage d(a) = 2 x
probability of the aa genotype + 1 x probability of the Aa genotype + 0 x probability
of the AA genotype. For the purpose of some additional analyses such as the
longitudinal models in Publication II, the maximal likelihood genotypes were
employed instead; the genotype posterior probability of 0.9 was required for the
genotype calling.

6.5 Statistical analysis of the GWAS data

6.5.1 Genome-wide association analysis

In Publications I — IV the genome-wide association tests were conducted with
PLINK v1.07 [Purcell 2007] with the case — control status or AER as the dependent
variable, and the estimated allele dosage data for one SNP at the time as the main
explanatory variable.

Logistic regression was employed for the case — control phenotypes, and linear
regression for the analysis of continuous variables. Logarithmic values rather than
raw values were applied for the continuous AER measurements that followed more
closely a log-normal distribution than a normal distribution (Figure 9). Models were
adjusted for sex, age or age at onset of diabetes, duration of diabetes and PCs. In
Publication II, the UK-ROI and GoKinD US data were additionally adjusted for the
study center.
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In Publication IV, subjects with or without AHT medication were analyzed
separately. Results from the two groups were combined with fixed effects meta-
analysis (See Section 6.5.3, Meta-analysis, for more details).
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Figure 9: Histograms of 24-h AER distribution in Publication IV. A: untransformed
AER value. B: log,, transformed AER.

Genome-wide quality control of the results: The results of the genome-wide
association analyses were subject to genome-wide quality control. P-values are
assumed to follow a uniform distribution under the null hypothesis of no
association. The genomic inflation factor Acc was calculated as the median observed
test statistic (i.e. ¥2 calculated from the P-values) divided by its expectation under
the 1 degree of freedom (d.f.) ¥2 distribution (0.455). If Acc indicated inflation of the
results, Agc > 1, the GWAS results were adjusted for the study specific Agc by dividing
the test statistic by Agc and recalculating the P-value based on the obtained test
statistic. Similarly, the standard errors (SE) of the effect size B coefficients were
adjusted with SEgc = SExVAgc [de Bakker 2008]. Values of Agc > 1.05 were
considered indicative of stratification or other issues in the statistical analysis.

Quantile-Quantile plots (QQ-plots) were plotted based on the —log,,(P-values).
The observed P-values were sorted and plotted on the y-axis, and the expected
values P’ on the x-axis (Figure 10). Expected values follow uniform distribution and
were obtained with

P'=i/(L+1)

where L is the number of observed P-values, and i has values from 1 to L. It is
common to use —log,,(P-values) rather than P-values in the QQ-plots of GWAS data
to help emphasize the smallest — and most interesting — P-values. High Agc is
reflected in the QQ-plots as a significant deviation from the diagonal for the majority
of the SNPs. On the other hand, significant deviation from the diagonal on the top-
right corner of the QQ-plots indicates smaller-than-expected P-values and thus

significant findings [Balding 2006].
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Figure 10: Quantile-quantile (QQ) plot of GWAS results. X-axis: expected P-values;
Y-axis: observed P-values. Gray lines show the 95% confidence interval. No
systematic inflation of results is observed, as the majority of the P-values adhere to
the diagonal. Deviation from the diagonal on the top-right corner indicates better-
than-expected P-values, and thus, evidence of significant associations.

Visualization of the GWAS results: Manhattan plots are commonly used to
visualize the GWAS results on the genome-wide scale at a glance: the strong
association signals rise from the plot like the skyscrapers in Manhattan. Manhattan
plots show the chromosomal position on the x-axis and the -log;,(P-values) on the y-
axis (Figure 11).

LocusZoom plots were used to visualize smaller chromosomal regions around the
main association signals [Pruim 2010]. Similar to the Manhattan plots, the
chromosomal position is given on the x-axis, and the -log,,(P-values) on the y-axis.
Gene locations are superimposed in the figures, as well as the recombination rate.
The SNPs are colored according to their LD (r2) with the index SNP. Depending on

8
!

-Log1o(P-value)

Chromosome

Figure 11: Manhattan plot of GWAS results indicating a strong association signal on
chromosome 2. X-axis: chromosomal position of SNPs. Y-axis: significance of the
SNPs (-Logio(P-value)). The dashed horizontal line shows a suggestive P-value
threshold of P < 105, and the solid horizontal line indicates the P-value threshold for
genome-wide statistical significance (P<5x10).
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the data availability, either the HapMapIl CEU samples or the 1000 Genomes
European samples were employed as the reference in order to calculate the LD

structure.

6.5.2 Genome-wide SNP discovery with Naive Bayes Classifiers

In Publication V, we applied a recently proposed Bag of Naive Bayes (BoNB)
algorithm [Sambo 2012] on the FinnDiane GWAS genotype data to explore genetic
variants associated with different stages of DN. The BoNB algorithm is a
multivariate data mining method to identify SNPs associated with a case — control
phenotype in genome-wide genotype data. In brief, an ensemble of Naive Bayes
classifiers is trained with 100 bootstrap replicates and the performance of each
Naive Bayes classifier is tested with the out-of-bag sets. The marginal utility of the
repeatedly selected SNPs is tested by genotype permutation (Figure 12).

The BoNB algorithm proceeds as follows:

1. 100 bootstrap replicates and out-of-bag sets are generated from the original
dataset. A typical bootstrap replicate of the 3,464 FinnDiane samples
included ~2,190 unique samples, with ~920 samples represented at least
twice. The out-of-bag sets had typically ~1,270 samples.

2. For each bootstrap replicate, the SNPs are ranked according to their ability to
classify the subjects to cases and controls. The classification is based on a
simple Naive Bayes classifier including only one SNP at the time, assuming a

general 2-d.f. genotypic model. The classification performance is measured
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Figure 12: Schematic presentation of the BoNB algorithm. Bootsrap samples BS® ...
BS® are drawn with bootstrapping from the original data. Naive Bayes classifiers
(NBCs) are trained with the Bootstrap samples, and SNPs are added to NBCs until the
test performance on the out-of-bag (OOB) samples starts to decrease. SNPs included in
>5 NBCs are tested furter with permutation: the genotypes of these SNPs are
permuted, and the marginal utility (MU) of the SNPs is calculated as the decrease in the
classification performance of the NBC. Finally, the significant SNPs are defined as those
with marginal utility significantly > o0 across the permuted NBCs. Modified from
Publication V.
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with the Matthews Correlation Coefficient (MCC) [Baldi 2000]. Then, a
multimarker Naive Bayes classifier is created for each bootstrap replicate,
initially without any SNPs. SNPs are added iteratively to the Naive Bayes
classifier, adding always the SNPs with the highest scores. Each time SNPs
are added, all the SNPs in LD with the added SNPs (defined as < 1 megabase
(Mb, 1,000,000 bases) away and LD r2>0.1) are removed from the list of
remaining SNPs. After each addition of SNPs, the classification performance
of the Naive Bayes classifier is tested on the corresponding out-of-bag set
with MCC. SNPs are added until the classification performance starts to
decrease (the Naive Bayes classifier starts to over-fit the model).

3. All the SNPs in the genetic regions (distance < 1 Mb) that are included in at
least 5 Naive Bayes classifiers are selected for a permutation procedure in the
out-of-bag sets. The genotypes of the selected SNPs are randomly permuted,
one at the time, in the out-of-bag sets of the Naive Bayes classifiers
containing the SNP. The marginal utility of the SNP (or corresponding 1 Mb
region) in a Naive Bayes classifier is computed as the relative decrease in
classification performance on the out-of-bag set due to the permutation.

4. Genetic markers are defined as those with marginal utility significantly
greater than zero across all the tested Naive Bayes classifiers (Wilcoxon

signed-rank test, P-value < 0.05).

6.5.3 Meta-analysis

Fixed effect meta-analysis was performed with the METAL software to combine the
results from multiple studies [Willer 2010]. In Publications I-IV the meta-analysis
was calculated based on the effect size estimate ’s (i.e. natural logarithm of the
odds ratio (OR) for the case — control phenotypes) and standard errors using the
inverse variance method, where the (8’s are weighted by the standard errors to obtain
an overall Z-score which can be converted to a P-value.

In Publication V, where the models were evaluated with genotypic association
models rather than with allelic association models, we performed two different
meta-analyses: first, based on the P-values and sample sizes without considering the
effect direction, and second, with the inverse variance method taking into account
the direction of effect in the best fitting bimodal mode of inheritance (additive,
recessive or dominant). The P-value based approach converts the P-value observed
in each study into a Z-score. The overall Z-score is the weighted sum of the Z-score
in each study, weighted proportional to the square-root of the sample size of the
study [Willer 2010].

6.5.4 Heritability estimates

The narrow-sense heritability of AER, defined as the phenotype variance explained
by the additive effects of the genotyped SNPs, was estimated from the GWAS data of
the unrelated FinnDiane patients (the first degree relatives were removed during the
GWAS quality control). The GCTA software utilizes the residual relatedness
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structure within the genome to assess the heritability of a trait [Yang 2011]. The
method gives a lower limit for the heritability because it can only account for the
heritability that is correlated with the SNPs in the employed genotyping platform.

6.5.5 Longitudinal analysis

Longitudinal data from the FinnDiane discovery cohort was used in Publication II to
evaluate the association between the SNPs associated with ESRD and the duration
from the onset of T1D until the diagnosis of microalbuminuria, macroalbuminuria or
ESRD. These time-to-event phenotypes are illustrated in Figure 13. Additionally, we
analyzed time from onset of macroalbuminuria to ESRD. The most recent kidney
status data were utilized for each patient. The year of onset of the complication
(microalbuminuria, macroalbuminuria, ESRD) was determined from the FinnDiane
study questionnaires. The latest data for ESRD were obtained from the Finnish
Hospital Discharge Registry (HILMO, as per December 31, 2009), and these data
were available for all participants.
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Figure 13: Illustration of the time-to-event analysis phenotypes. A: patient who
develops macroalbuminuria by the time of their second FinnDiane visit, and ESRD
before the HILMO registry look-up (30.12.2009). B: A patient who does not develop
any kidney complications by their second FinnDiane visit, and does not develop
ESRD by the time of HILMO registry look-up (December 31, 2009).

We also examined whether the SNPs were associated with mortality using data from
the Finnish Death Registry (as per September 30, 2010). As patients with
macroalbuminuria have a significantly increased risk of mortality, the time until
death was analyzed separately for participants with and without DN. For the analysis
before DN, we used time from T1D onset to death or latest record, with patients who
developed DN censored out at the time of the onset of DN. For patients with DN, we
analyzed time from onset of DN to death/latest record and time from onset of ESRD
to death/latest record. In this retrospective study setting, selection bias can arise if
the SNP is associated with the ESRD specific mortality. In order to avoid such a
selection bias, we also performed the analysis of time from ESRD onset to death in
the patients with incident ESRD.
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The time-to-event analyses were performed using Kaplan-Meier and Cox
proportional hazards regression, implemented in the ‘survival’ package in R software
(version 2.36-10, http://cran.r-project.org/web/packages/survival) with the most
likely genotypes rather than the allele dosage data.

6.5.6 Linkage disequilibrium structure

The LD (both D’ and r2) between SNPs was investigated to define “proxy” SNPs that
can be used as surrogate markers for the reported signals (Publication I), to evaluate
which SNPs represent individual signals (Publications II-V), and to discover the
causal markers that could explain the observed association on the lead SNP
(Publication IV). Pair-wise SNP correlations were estimated with PLINK [Purcell
2007]. Regional LD structure was explored more comprehensively in Publication IV
around the GLRA3 association region with the HaploView software [Barrett 2009a].

6.5.7 Pathway analyses

Publications II-IV include gene set enrichment analyses of the GWAS results
performed with the Meta-Analysis Gene-set Enrichment of variaNT Associations
(MAGENTA) software [Segre 2010]. MAGENTA software first maps SNPs into genes
based on the chromosomal position, with gene regions spanning 110 kb upstream
and 40 kb downstream of the gene's most extreme transcript boundaries. Second,
the genes are given an association score based on the P-values of the SNPs within
the gene region. The scores are adjusted for possible confounding factors such as
gene length and SNP density. Finally, the pre-defined gene sets are tested for
enrichment of highly ranked gene association scores compared with random gene
sets with a permutation procedure. We employed the g5t percentile cutoff for the
gene score rank to define enrichment of the genes as suggested in [Segre 2010]. The
enrichment analyses contained a total of 2,580 gene sets, including 186 Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways, 1,785 gene ontology terms,
217 PANTHER biological processes, 217 PANTHER molecular functions, 94
PANTHER pathways and entries, and 81 Ingenuity pathways.

In Publication IV for the GWAS on AER, we employed additionally a more
conventional pathway analysis, performed with the PANTHER database. The
analysis included all the SNPs with a P-value < 0.001 in the GWAS, and the SNPs
were assigned to genes based on the Ensembl database annotations. The
overrepresentation of genes in the PANTHER pathways was estimated with the
binomial statistics. The resulting P-values for enrichment were adjusted for multiple
testing with Bonferroni correction using the number of non-overlapping ontology

classes as the number of independent tests [Mi and Thomas 2009, Mi 2013].

6.5.8 In silico annotation of loci

Many publicly available databases exist for annotation and in silico analysis of SNPs.

Positional annotations were obtained from the dbSNP (www.ncbi.nlm.nih.gov/SNP)

or Ensembl (www.ensembl.org) databases. Functional annotation of intergenic SNPs

was performed with the RegulomeDB [Boyle 2012] (Publications III-V).
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RegulomeDB was designed for the functional annotation of SNPs located in non-
coding and intergenic regions of the human genome. The database combines
annotations from experimental data sets and in silico annotations showing evidence
of transcription factor binding (e.g. chromatin immunoprecipitation (ChIP-seq) of
transcription factors and histones, DNase I hypersensitivity assays, DNase I
footprints, transcription factor binding motifs and expression quantitative trait loci
(eQTL) data) in order to evaluate if a SNP overlaps with any experimentally detected
regulatory regions. In Publication III, potential transcription factor binding sites and
estrogen responsive elements were additionally explored with the MatInspector
from the Genomatix software suite (Genomatix Software, GmbH, Munich,
Germany), based on known transcription factor binding motifs. We also studied if
the main SNPs in Publication III affected the gene expression level of any of the
genes within a 1 Mb region up- and downstream of the signal, evaluated in the
HapMap3 lymphoblastoid cell lines [Stranger 2012] using the Genevar software
(www.sanger.ac.uk/resources/ software/genevar).

The disease specific differential gene expression was evaluated in kidney tissue
for the genes located near the main findings. In Publications III and IV, we used
data from the publicly available Nephromine database (www.nephromine.org). The
two employed data sets contain renal biopsy specimens from patients with DN and
healthy living kidney donors or patients with minimal-change kidney disease
[Schmid 2006, Woroniecka 2011]. Publication II used data from renal biopsies in
early DN (NIDDK Pima Indian Cohort) and from healthy living donor kidney
transplant biopsies as described by Berthier et al. [Berthier 2009].

6.6 Validation of the results in follow-up studies

A total of ten studies consisting of patients with T1D were included in the follow-up
studies in Publications II-V to validate the findings. In addition, patients with T2D
and different ethnic background from the Family Investigation of Nephropathy and
Diabetes (FIND) Study were analyzed in Publication III.

6.6.1 Patients in the follow-up studies

The patient inclusion criteria and the phenotype definitions were similar to the ones
presented in Section 6.2. The follow-up studies are briefly described in this section.
DCCT/EDIC: The DCCT was a multi-center randomized clinical trial to compare
the effect of intensive and conventional insulin therapy on the development and
progression of early vascular and neurological complications of T1D. The follow-up
study is called Epidemiology of Diabetes Interventions and Complications (EDIC)
[The DCCT Research Group 1986, Molitch 1993, The DCCT Research Group 1995,
Writing Team for the DCCT/EDIC Research Group 2003]. The DCCT study included
1,304 white subjects with genotype data. Renal outcomes were defined as time in
years from DCCT baseline until the event. AERs were measured annually in the
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DCCT and every other year in the EDIC. The patients were followed for 17.5 + 2.6
years (mean + SD) in the DCCT/EDIC with 12 + 2 AER measures.

Steno: The Steno TiD study aims to study the genetic risk factors for the
development of diabetic complications [Tarnow 2008]. All adult white patients with
T1D attending the outpatient clinic at Steno Diabetes Center between years 1993 and
2000 were invited to participate in the study. In total, 458 Steno patients had DN
defined as persistent albuminuria, the presence of retinopathy, and the absence of
other kidney or urinary tract disease. Controls were defined as patients with
persistent normal AER after more than 15 years of T1D in patients not treated with
ACE inhibitors or angiotensin-II receptor blockers. In total, 442 subjects were
included as controls. All urinary AER values were measured from 24-h urine
collections.

Scania Diabetes Registry: The Scania Diabetes Registry (SDR) aims to register
all individuals with diabetes in the Malmo region in Southern Sweden [Lindholm
2001]. Patients of non-Scandinavian origin were excluded from the analysis. The
diagnosis of kidney disease otherwise followed the definitions in Section 6.2.2, but
ESRD was defined as having dialysis or kidney transplant, or eGFR <15 ml/min.
After genotype quality control in Publication II, there were 290 individuals with
normoalbuminuria, 103 individuals with macroalbuminuria and 35 individuals with
ESRD. A total of 494 patients with AER values were included in Publication IV.
France-Belgium, GENEDIAB & GENESIS Cohorts: The GENEDIAB [Marre
1997] and GENESIS [Hadjadj 2004] patients were recruited in France and Belgium
in 1994-1995 and 1999-2001, respectively. The studies include more than 800
patients with long-standing T1D. The kidney status was classified based on the three
highest AER and/or albumin concentration measurements within the last 5 years.
DN cases were required to have past or present retinopathy.

Ttaly: The Italian cohort comprises of 356 unrelated, white, Italian patients with
T1D, i.e. 188 cases with established DN and 168 control patients with normal AER.
Cases with DN had concomitant diabetic retinopathy and absence of other renal or
urinary tract disease or clinical or laboratory evidence of cardiac failure. Patients
were recruited and studied at the Complications of Diabetes Unit of the San Raffaele
Scientific Institute, Milan, Italy [Del Bo 2006].

Sweden: The Swedish cohort was collected from the Department of Endocrinology
in Stockholm and the Department of Medicine in Umeé, Sweden [Mollsten 2008].
All patients with T1D were Swedish and they had diabetes diagnosed before 30 years
of age. Kidney disease classification followed the definitions in 6.2.2.

RomDiane: RomDiane is a Romanian cross-sectional study of TiD, with two
participating centers — Bucharest and Craiova. The study aims to identify risk factors
for DN and other chronic complications in patients with T1D in the Romanian
population. The data regarding diabetic complications, cardiovascular status, use of
medication, and personal and family medical history were assessed by a

standardized questionnaire completed by the investigators.
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UK Nephropathy Family Study and Oxford Regional Prospective Study
(NFS-ORPS): ORPS consists of children diagnosed with T1D before 16 years of age,
recruited between 1986 and 1996 in the geographic region of the Oxford Health
Authority [Amin 2008]. The NFS recruited adolescents aged 10—16 years with T1D
between 2000 and 2005 throughout England [Marcovecchio 2009]. Both cohorts
have been monitored with annual assessments of ACR.

FIND Study: The study was designed to investigate genetic risk factors for DN. The
GWAS effort conducted in FIND consisted of 885 unrelated samples from European
Americans, 1,460 from African Americans, 889 from American Indians, and 1,535
from Mexican Americans. Patients with any type of diabetes were eligible for the
study, but the majority of the patients had T2D. Overt proteinuria was defined as
proteinuria > 500mg/24h, or AER > 300mg/24h or protein to creatinine ratio >0.3
[Knowler 2005].

6.6.2 SNP selection criteria for the targeted genotyping

Table 6 summarizes the criteria applied in each Publication for the SNP selection for
the follow-up studies. In Publication I the selection was based on earlier reported
associations, and in Publications II-V based on the discovery GWAS or GWASs.

Table 6: SNP selection criteria for replication and phase two analysis.

Publication: Replication selection criteria Selected
phenotype SNPs
Publication I: | i. Allloci from the literature that reported genome- i1
DN wide significance (P<5x1078) ii. 8
ii. Suggestive signals from previous GWASs on DN in |iii. 679
T1D (SNPs with P<105) iv. 30

iii. Suggestive signals from previous GWASs on DN in
T2D, with regional support in T1D

iv. SNPs cited in a recent meta-analysis of candidate
loci for DN

Publication II: | Loci with P < 105 in the meta-analysis of the discovery | 42 SNPs
DN, ESRD cohorts; The lead SNP plus a proxy was selected when at 24

available. loci
Publication III: | i. Loci with P < 5x10-8 within men or women in the i1
ESRD in FinnDiane GWAS. ii. 6

women/ men | ii. In silico replication attempt of loci with P < 1x10-5
within men/women in the FinnDiane GWAS

Publication IV: | Independent SNPs with P < 1x104 in the FinnDiane 64
AER GWAS; 3 additional SNPs selected for the main locus
Publication V: SNPs included in at least five Naive Bayes classifiers 5
DN, ESRD, and significant marginal utility after genotype
macro- permutation (Wilcoxon signed-rank test, P<0.05).
albuminuria

6.6.3 Targeted genotyping

The targeted genotyping was performed either as small scale de novo genotyping, or
extracted from directly genotyped or imputed GWAS data. The applied genotyping
methods are summarized in Table 7.
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The quality control of the genotypes included filtering for low sample genotyping
rate, low SNP genotyping rate, low MAF and deviation from HWE. Additionally
SNPs with low minor allele count (MAC<10) within the corresponding case and
control groups were excluded in order to ensure the stability of the statistical
analysis. If the genotype data were obtained from a GWAS, then the data were
extracted from the quality controlled genome-wide data, according to the filters

applied in each study.

Table 7: Genotyping methods used in the studies. The discovery GWASs are high-lighted
with gray background. Other studies were used for targeted genotyping in replication
purposes.

Publication Publication V:
Publication I1I: Publication DN, ESRD,
Publication I: II: ESRD in Iv: macro-
Cohort DN DN, ESRD women/ men AER albuminuria
FinnDiane TagMan, Discovery  Discovery  Discovery Discovery
GWAS GWAS GWAS GWAS GWAS
iPLEX, . .
UK-ROI  TaqMan, “gwong? — Gwas L8 GWAS
GWAS 4
. Discovery
*
GoKinD US GWAS GWAS GWAS GWAS
Steno iPLEX OpenArray TagMan
Ttaly iPLEX iPLEX OpenArray
DCCT/EDIC GWAS
. iPLEX,
SDR iPLEX TaqMan
UK-ROI iPLEX
replication
France- iPLEX
Belgium
Sweden iPLEX OpenArray
RomDiane iPLEX
FinnDiane iPLEX GWAS
replication
iPLEX,
NFS-ORPS TaqMan
FIND (T2D) GWAS

*GoKinD US was included only when it was not part of the original publication. TagMan:
TagMan chemistry (Applied Biosystems, Foster City, CA, USA). iPLEX: Sequenom iPLEX
(Sequenom Inc., San Diego, CA, USA). OpenArray: TagMan chemistry OpenArray (Applied
Biosystems, Life Technologies, Carlsbad, CA) in a 64-SNP format.

6.6.4 Association analysis in the replication studies
Association analysis of the replication cohorts was performed similarly to the
genome-wide association studies using logistic or linear regression. For the de novo
genotyped SNPs, the models were not adjusted for PCs, as their calculation requires
genome-wide genotype data.

The study design of the DCCT/EDIC study differs considerably from the other
studies. DCCT/EDIC was used for replication in Publication II using Cox
proportional hazards analysis of discrete time-to-event outcome with additive
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genotype coding. The main outcome was severe nephropathy, corresponding to the
DN definition in Publication II. During the follow-up, 10% of the patients developed
the severe nephropathy outcome (132 events vs. 1172 censored).
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7 Results and Discussion

This section presents the main genetic results from the Publications I-V. In
Publication I, we examined previously published genetic associations with diabetic
nephropathy (DN) in a large set of 6,366 patients with type 1 diabetes (T1D). Using
the patients from the same three studies on T1D, we then performed GWASs and
meta-analyses on DN and end stage renal disease (ESRD), reported in Publication
II. In Publication III, we explored genetic variants associated with ESRD in men and
women separately. In Publication IV we investigated the genetic risk factors for
albuminuria as a continuous variable. In Publication V we applied a novel data
mining algorithm on the FinnDiane GWAS to explore if more susceptibility loci for
DN could be discovered with a Bayesian approach.

71 Replication attempt of previous DN susceptibility loci

Many studies have been carried out to identify the genetic risk factors for DN, and
these have resulted in hundreds of putative genetic susceptibility loci [Mooyaart
2011]. However, very few of the findings have been compellingly replicated. In the
GENIE consortium, we performed comprehensive association testing of the
previously reported variants using TiD patients from the UK-ROI and the
FinnDiane studies, and combined those with the re-analyzed data from the GoKinD
US Study. We examined all the genetic variants that had shown high levels of
statistical significance in previous candidate gene studies, had been successfully
replicated in independent studies, or had originated from genome-wide association
studies on DN in T1D.

7.1.1  EPO promoter polymorphism

By the time of Publication I, the only genome-wide significant association with DN
in T1iD was reported for the erythropoietin (EPO) gene promoter polymorphism
rs1617640 (P= 2.8x10™") identified in a candidate gene association study [Tong
2008]. We studied this association by de novo genotyping of the SNP in the
FinnDiane and the UK-ROI studies. As in the original report, the cases had both
ESRD and proliferative diabetic retinopathy. No significant association was
observed in either the UK-ROI (P=0.19) or the FinnDiane collections (P=0.60).
Despite little evidence of association in the GENIE consortium, the association

retained genome-wide statistical significance in the meta-analysis of the FinnDiane,
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Odds
ratio p-Value
Utah 1.44 0.002 —a—
US GoKinD 1.53  3x10-8 —M
Boston 1.38 0.021 —

Finn Diane 1.05 0.595
UK ROI 1.14 0.188
Meta 1.31  2x10-° <>

0.5 1 2

Figure 14: Meta-analysis of the previously published and new results (FinnDiane
and UK-ROI) provides evidence of association between the EPO promoter SNP
rs1617640 and the combined phenotype of ESRD and proliferative diabetic
retinopathy in T1D.

UK-ROI and the original studies, including 3,162 cases and 3,845 control subjects in
total (Figure 14).

7.1.2 Variants in ELMO1

A high-throughput genome-wide SNP genotyping study of DN in Japanese patients
with T2D suggested variants in the ELMO1 gene as genetic risk factors for DN, with
the strongest association obtained for rs741301 [Shimazaki 2005]. Subsequently,
Pezzolesi et al. studied the association between 118 variants within the ELMO1 gene
region and DN in T1D patients of European origin in the GoKinD US GWAS study.
They found no association between rs741301 and DN, but reported eight other SNPs
nominally associated (P=0.05) with DN in TiD (P=0.0017 for rs11769038)
[Pezzolesi 2009b]. However, we found only low to moderate LD between rs741301
and the eight reported SNPs (r2 ranging from 0.38 to 0.65). Thus the study by
Pezzolesi et al. cannot be considered as a confirmation of the role of ELMO1 in DN
in patients with T1D.

We first examined the association between the original ELMO1 risk marker
rs741301 and DN in UK-ROI, FinnDiane, and the meta-analysis of the two, but
found no evidence of association (P=0.40). No association was found at the SNPs
reported in the GoKinD US either.

Lack of replication may be due to false positive findings in the original
publication, poor statistical power in the replication study, distinct pathology of DN
in TiD versus T2D [Fioretto and Mauer 2010], or different LD pattern in
populations of diverse ancestries [Leak 2009]. To address the difference in the LD
structure, we expanded our analysis to all available SNPs within the ELMO1 gene
and 20 kb up and downstream of the gene. However, we did not find any significant
association in the UK-ROI or the FinnDiane cohorts individually, for these two
cohorts in the meta-analysis, or in combination with the reported risk variants from
the US GoKinD (P<4.3x10 required for significance to account for multiple testing
based on 2,199 tested SNPs with 113.7 effect-independent SNPs as evaluated with
the SNPSpD software [Nyholt 2004]).

48



Results and Discussion

7.1.3 Putative susceptibility variants from GWAS on DN in T1D

The US GoKinD GWAS reported four distinct loci with a total of 11 SNPs
suggestively associated with the risk of developing DN in T1D [Pezzolesi 2009a].
Pruning out the SNPs in high LD, we selected eight independent SNPs within the
four susceptibility loci. We re-evaluated the associations at the eight reported SNPs
using the updated GoKinD US GWAS data with an improved genotype calling and
quality control measures. The SNPs near the FRMD3 gene and on the chromosome
12q region had similar P-values and effect sizes as reported in the original
publication (P=2x107 — P=9.5x1075). In contrast, the significance of the SNPs in the
CPVL/CHN2 and CARS regions was drastically reduced from P = 6.5x107t0 0.0020
and from P = 6.4x10° to 0.0022, respectively.

Association analysis of these eight SNPs in the UK-ROI and FinnDiane revealed
no significant associations in either cohort (P>0.05). Furthermore, the extended
analysis 20 kb up- and downstream of the eight SNPs showed no association in the
two cohorts separately or in their meta-analysis after adjustment for multiple testing
(P>4.3x104 before Bonferroni correction). In the combined meta-analysis of
FinnDiane, UK-ROI and US GoKinD, two SNPs downstream of FRMD3 remained
associated with DN after adjusting for experiment-wide multiple testing (rs1888747
P=1.5%104, 1513288659 P=9.7x105).

7.1.4 Variants associated with DN in a literature based meta-analysis
Finally, we examined all the available SNPs cited by Mooyaart et al. in the most
comprehensive literature based meta-analysis of candidate genetic variants for DN
in T1D and T2D published to date. Mooyaart et al. identified 24 genetic variants
repeatedly associated with DN [Mooyaart 2011]. Two of these SNPs were nominally
associated with DN in the FinnDiane GWAS (rs13293564 at UNCi3B: P=0.01;
rs179975 at ACE: P=0.03) and one SNP in the UK-ROI GWAS (rs39075 at
CPVL/CHN2: P=0.05). The ACE SNP rs179975 was nominally significant also in the
meta-analysis of the two cohorts, P=0.04. The only signal remaining significant after
Bonferroni correction was the FRMD3 signal at rs1888747, with P = 1.5x104 when
the results from the US GoKinD were included in the meta-analysis. However, the
association originates from the US GoKinD GWAS, and thus, this cannot be
considered as replication of the signal.

7.1.5 Summary of the association testing of previously reported
susceptibility loci
The main results of the Publication I are summarized in Table 8. In our examination
of two large studies of DN in TiD, FinnDiane and UK-ROI, we observed some
nominally significant associations (P<0.05) with DN for the putative susceptibility
variants previously published in candidate gene studies, but none of the associations
remained significant after correction for multiple testing. Furthermore, our findings
in the FinnDiane and UK-ROI studies do not support the previously reported GWAS
results for DN in T1D in the US GoKinD study either. Nevertheless, the association
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Table 8: Summary of the association testing results in Publication I

Reported
association/ FinnDiane
studied FinnDiane US + UK-ROI
Original study region FinnDiane UK-ROI + UK-ROI GoKinD + US GoKinD
EPO: rs1617640, NS NS FinnDiane +
candidate P=2.8x10" (P>0.05) (P>0.05) UK-ROI +
gene study on original
DNin T1iD 2 studies
P=2x10"9
GWAS on DN ELMO1 NS NS NS NS
in T2D b rs741301, (P>0.05) (P>0.05) (P>0.05) (P>0.05)¢
P=8x10"°
ELMOz1: 20 kb up- or NS NS NS 8 SNPs NS
candidate =~ downstream P=0.002—
gene study © rs741301 0.05 ¢
GWAS on DN 8 loci with NS NS NS 2SNPsin rs1888747
in T1iD P<105 (P>0.05) (P>0.05) (P>0.05) FRMD3 (FRMD3)
(GoKinD US) P<105 P=1.5x10
d after re-
analysis
Meta-analysis 30 loci rs13293564 rs39075 IS179975 rs1888747
of DN in T1D (UNC13B) (cprvL/ (ACE) (FRMD3)
and T2D ¢ P=0.01; CHN) P=0.04 P=1.5x10+
rs179975  P=0.05
(ACE)
P=0.03

Summary of the tested candidate gene associations. US GoKinD study was part of all the four
original publications. Thus, results for GoKinD US are reported only when appropriate. NS:
non-significant. Study-wise P-value cut-off for statistical significance after multiple testing
was 4.4x104. This cut-off is applied unless otherwise stated.

a[Tong 2008]; "[Shimazaki 2005]; ¢[Pezzolesi 2009b]; 9[Pezzolesi 2009a]; ¢[Mooyaart 2011]

between the EPO promoter polymorphism and the combined phenotype of ESRD
and proliferative diabetic retinopathy remained genome-wide significant (P=1x10"9)
after meta-analysis of the original and our data (Box 1).

The negative results were unexpected, since the combined set of UK-ROI and
FinnDiane studies is substantially larger than most of the previous studies, and has
high statistical power to detect the reported effect sizes. Thus, it is unlikely that our
results are false-negative findings (type II error). These negative findings suggest
that many of the previously reported associations with DN may instead be false-
positive findings (type I error). We were also surprised to see the dramatic loss of
significance for the CPVL/CHN2 and CARS loci in the re-analyzed GoKinD US

study, suggesting a spurious signal.

Box 1: What is known about the implicated genes?
EPO EPO encodes erythropoietin, a plasma protein that regulates red cell

production by promoting erythroid differentiation and initiating
hemoglobin synthesis. Erythropoietin is produced in kidneys among other
tissues [Tong 2008].
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Our failure to replicate these associations underscores the need to apply stringent
statistical thresholds of significance, maximize power through meta-analysis of all
available data, and seek replication in independent samples, as has been previously
proposed [NCI-NHGRI Working Group on Replication in Association Studies 2007,
McCarthy 2008]. It remains unclear whether the genetic risk factors for DN are
shared between T1D and T2D.

7.2 GWAS of diabetic nephropathy

In order to systematically search for susceptibility loci for diabetic kidney
complications in T1D, in Publication II, we performed a meta-analysis of three large
GWASs: the FinnDiane, UK-ROI and GoKinD US studies, with a total of 6,691 T1D
patients in the analysis. To validate the main findings, we further analyzed the most
significant SNPs in 5,156 additional T1D patients from nine studies of T1D. In order
to gain supporting evidence and biological understanding of the observed
associations, we performed additional in silico and in vitro analyses that are

summarized in Figure 15.

Meta-analysis
of discovery
stage GWASs

Stage 2
analysisin 9
T1D studies

Pathway
analysis

Combined
meta-analysis

ESRD: rs7483877 (AFF3; P=1.2x10°%)
ESRD: rs12437854 (chr 15¢26; P=2x10"9)
DN: rs7588550 (ERBB4; P=2x107)

Association
with
intermediate

In vitro
functional
analyses

Gene
expressionin
diabetic
kidney

association,
survival
models

eQTL: gene
expression
by genotype

Figure 15: Flow chart of the key analyses that were performed in Publication II.

7.2.1 Discovery stage meta-analyses
Our primary phenotype of interest was DN, defined by the presence of persistent
macroalbuminuria or ESRD. In addition, we analyzed a more extreme ESRD
phenotype where cases with ESRD were compared to the rest of the T1D patients.
Meta-analysis of the three discovery stage GWASs (FinnDiane, UK-ROI and GoKinD
US) resulted in five independent signals with a suggestive P<10% for the DN
phenotype. In the meta-analysis of ESRD, rs7583877 on chromosome 2q11.2-q12 in
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the AFF3 gene reached genome-wide significance (P=4.8x1079). In addition, six
other independent loci achieved a suggestive P < 1075 for association with ESRD
(Figure 16).

Discovery GWAS
Meta-analysis | GWAS on DN | ‘ GWAS on ESRD ‘

N=6,691 ' '
v v

Phase 2 analysis
in9TiDcohorts | Ssignals | | 7signals |
N=5,873

Combined meta-analysis of
Discovery and Phase 2
N=12,563

Figure 16: Two stage study design in Publication II.

7.2.2 Phase two analysis in nine additional T1D studies

All loci with P < 105 were selected for the second stage analysis comprising of nine
additional studies including 5,873 patients with T1D. The two-stage study design is
illustrated in Figure 16. For the DN phenotype, an intronic SNP rs7588550 in the
ERBB4 gene had consistent protective effects in the stage two samples (OR 0.67,
95% CI 0.49 — 0.92, P=0.01) and the statistical significance was improved when the
results from the discovery and the second stage were combined (OR 0.66, 95% CI
0.56-0.77, P=2.1x107, Table 9).

For the analysis of ESRD, the association between the rs7583877 in AFF3 and
ESRD was not significant in the second phase studies alone, but retained genome-
wide significance in the meta-analysis of the discovery studies and the second phase
cohorts (OR=1.29, 95% CI 1.18-1.40, P=1.2x108, Table 9). On chromosome 15926
between the RGMA and MCTP2 genes, rs12437854 reached genome-wide
significance for association with ESRD in the combined meta-analysis (OR 1.80,
95% CI 1.48-2.17, P=2.0x109, Table 9).

Table 9: Results from discovery, second stage and combined meta-analysis for supported
markers. Modified from Publication II.

Discovery Stage 2 Combined
SNP OR P-value OR P-value OR P-value
(Gene) Fr(EA) (95% CI) (95% CI) (95% CI)
ESRD
rs12437854 0.04 1.72 7.6x10° 1.95 5.4%1075 1.80 2.0x1079
(RGMA-MCTP2) (1.36-2.18) (1.41-2.7) (1.48-2.17)
rs7583877 0.29 1.34 4.8x1079 1.11 0.25 1.29 1.2x10°8
(AFF3) (1.22-1.48) (0.93-1.34) (1.18-1.40)
DN
rs7588550 0.05 0.65 5.3%10°° 0.67 0.01 0.66 2.1x107
(ERBB4) (0.55-0.79) (0.49-0.92) (0.56-0.77)

Fr(EA): The effect allele frequency.
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7.2.3 Refined analysis of the affected phenotypes

Somewhat surprisingly, the strongest associations (in terms of the smallest P-values)
were obtained for the ESRD phenotype, despite the smaller number of cases in the
analysis compared with the DN phenotype. According to the liability model, the
subjects with an extreme phenotype — ESRD in this case — are likely to carry more
genetic risk factors [Gibson 2012]. In line with that idea, DN has traditionally been
viewed as a continuous trait commencing with microalbuminuria, progressing to
macroalbuminuria, and in an extreme case, culminating in ESRD. Recently, this
paradigm has been called into question, with a suggestion that the syndrome may
perhaps be composed of varying phenotypes [Kramer 2003, Perkins 2005]. In order
to assess which sub-phenotype is the most affected by the identified genetic
markers, we compared the effect sizes for the three associated loci using various case
— control definitions for different stages of kidney disease as shown in Table 10. The
signals in AFF3 and on chromosome 15q26 showed the strongest effects for the
ESRD case definition and were non-significant for macroalbuminuria, whereas the
signal in ERBB4 had similar effect size for both macroalbuminuria and ESRD.

Table 10: Association results for various case-control phenotypes for the three top signals.
Results are for the meta-analysis of the three discovery cohorts. Non-significant associations
are indicated with gray font. All odds ratios are given considering the minor allele as the effect
allele. P-values are not directly comparable, as the number of samples and thus, the statistical
power of the test varies between the comparisons.

57583877 (AFF3) 512437854 (15q26) 57588550 (ERBB4)
Analysis OR (95%CI) P OR (95%CI) P OR (95%CI) P
Normal AER vs.
Macro 1.00 0.95 1.14 0.35 0.64 2.2x10
(0.90 —1.11) (0.86 —1.50) (0.51-0.81)
ESRD 1.33 4.9x1077 1.82 1.6%x105 0.67 7.5%107
(1.19 — 1.48) (1.39 — 2.39) (0.53 —0.84)
Macro or 1.14 0.0023 1.43 0.0016 0.65 5.3x107°
ESRD (1.05 —1.25) (1.14 — 1.78) (0.55 — 0.79)
Non-ESRD vs.
ESRD 1.34 4.8x10™ 1.72 7.7%x1076 0.78 0.026
(1.22 — 1.48) (1.36 — 2.18) (0.63 — 0.97)

We then further tested the two loci associated with ESRD (rs7583877 in AFF3,
rs12437854 on chromosome 15q26) for their association with relevant kidney
endpoints using longitudinal time-to-event data for participants in the FinnDiane
discovery collection. Consistent with our case-control analyses, the strongest
association for rs7583877 was obtained for the time from TiD diagnosis to
development of ESRD (hazard ratio (HR) 1.33, 95% CI 1.18-1.49), but also the time
from T1D diagnosis to development of macroalbuminuria and the time from macro-
albuminuria to ESRD reached nominal significance (Table 11). rs12437854 on
chromosome 15q26 was associated with time from T1D diagnosis to development of
macroalbuminuria (HR 1.31, 95% CI 1.03-1.67) and ESRD (HR 1.35, 95% CI 1.02-

1.77).
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An alternative explanation for an observed statistical association with ESRD might
be an underlying association with survival. The mortality rates are extremely high in
patients with kidney disease, with at least 25% of the patients with
macroalbuminuria dying before they reach ESRD [Forsblom 2011]. Mortality in
ESRD is 18-fold compared with T1iD patients without albuminuria [Groop 2009].
Thus, the selection of patients with ESRD may be biased towards the patients who
have stayed alive despite severe kidney disease. To assess the possibility of survival
bias, we used the time until death as the final end point in the longitudinal analysis.
Neither of the two studied ESRD loci was associated with mortality, suggesting that
these loci are associated with ESRD per se rather than with survival (Table 11).

Table 11: Longitudinal analyses in the FinnDiane discovery cohort for rs7583877 (AFF3) and
rs12437854 (15926). P-values are not comparable between the analyses, as the sample
numbers differ. The minor allele is the effect allele. HR = hazard ratio, 95% CI = 95%
confidence interval. aSubjects that developed DN were censored out at the onset of DN.
Modified from [Sandholm 2012].

rs7583877 rs124 37854
Time-to-Event Analysis HR (95% CI) P HR (95 % CI) P
Time from T1D onset to micro 1.07 (0.97-1.18)  0.17 1.18 (0.92 - 1.51) 0.20

Time from T1D onset to macro 1.15 (1.04 - 1.27) 0.0065  1.31(1.03 - 1.67) 0.030

Time from T1D onset to ESRD 1.33 (1.18 -1.49) 1.9x10° 1.35(1.02-1.77) 0.034
Time from macro to ESRD 1.16 (1.01-1.33) 0.040 1.16 (0.83 - 1.61) 0.38

Time from T1D onset to death? 0.97(0.7-1.36)  0.88 0.39 (0.1-1.52) 0.17
Time from macro to death  1.05(0.87-1.26) 0.60 1.03 (0.66 - 1.62) 0.88
Time from ESRD to death 1.09 (0.91-1.29) 0.35 0.86 (0.56-1.31) 0.48

7.2.4 Association with intermediate phenotypes

To explore whether the three SNPs contribute to DN/ESRD via related intermediate
phenotypes, such as blood glucose, obesity, fasting lipid levels, or blood pressure, we
explored the association results in publicly available GWAS datasets (Figure
17)[Willer 2008, Dupuis 2010, Heid 2010, International Consortium for Blood

Pressure Genome-Wide Association Studies 2011].

R Intermediate |~~~
phenotype
Figure 17: SNPs may affect the risk of kidney disease through intermediate
phenotypes such as obesity, blood pressure, or blood lipid levels.

We found nominal, directionally consistent associations of rs12437854 with fasting
glucose (P=0.03) [Dupuis 2010] and of rs7583877 with waist-hip ratio (P=0.04)
[Heid 2010]. We also investigated if previously published genetic risk factors for T1D
and for CKD were associated with DN or ESRD in our GWAS meta-analyses. Eight
out of the 80 SNPs associated with T1D [Burren 2011] showed nominal significance
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with DN or ESRD (including three at AFF3 that are in weak LD (12 0.030 — 0.046 in
CEU) with the SNPs described here), while no CKD SNPs were associated with DN
or ESRD in our data [Kottgen 2009, Kottgen 2010, Chambers 2010]. The lack of
association between the CKD SNPs and DN or ESRD in diabetes suggests that the
genetic risk factors for DN differ from the genetic risk factors for CKD in the non-

diabetic population.

7.2.5 Pathway analysis of GWAS results on DN and ESRD

To generate further biological hypotheses based on our GWAS results, we performed
gene set enrichment analysis of Gene Ontology terms, KEGG and Ingenuity
pathways and PANTHER database entries using the MAGENTA software [Segre
2010]. For the DN phenotype, genes related to “sugar binding” (P=0.0006), “double
stranded DNA binding” (P=0.001) and “nucleic acid binding” (P=0.004) were
enriched in the GWAS results. In the analysis of ESRD, the terms “sequence-specific
DNA binding” (P=0.003), “positive regulation of transcription” (P=0.003), and
“homeobox transcription factor” (P=0.004) were enriched for significant

associations.

7.2.6 Exploration of the biological mechanisms

None of the three SNPs identified in the two-stage GWAS analysis are known to
directly change the amino acid sequence of a known protein. Nevertheless, other
SNPs in LD with these SNPs may directly affect the protein structure or regulate the
gene expression of a nearby (or even distant) gene.

The ERBB4 gene was found to be downregulated in tubulointerstitial enriched
kidney biopsy tissue of patients with DN, compared with healthy kidney donors. In
addition, the SPAG16 gene near rs7588550 was upregulated in DN. AFF3 was not
differentially expressed in the kidney biopsies of DN vs. healthy subjects. Instead,
near rs7583877 (intronic in AFF3) the expressions of the LIPT1 and TXNDC9 genes
were upregulated, while TSGA10 and NPAS2 gene expressions were downregulated
in tubulointerstitial and/or glomerular enriched kidney biopsies of patients with
DN. No expression data were available for the two closest flanking genes for
112437854 on chromosome 15026, RGMA and MCTP2 [Berthier 2009].

7.2.7 Discussion of the GWAS and meta-analysis on DN and ESRD

The GWAS meta-analysis performed in Publication II is the largest effort to date to
define the genetic risk factors for DN in individuals with T1D. The main findings
were the two genome-wide significant associations between ESRD and variants in
AFF3 and on the RGMA — MCTP2 region, and a suggestive signal in the ERBB4 gene
with functional evidence (Box 2). Variants in and upstream AFF3 have previously
been associated with autoimmune diseases, including a suggestive association
reported for T1D. Since the association between ESRD and rs7583877 in AFF3 was
not statistically significant in the follow-up cohorts, it is possible that the association
is a false positive finding. However, this association was strong in both the

FinnDiane and UK-ROI studies, and reached a genome-wide statistical significance
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Box 2: What is known about the implicated genes?

AFF3 AFF3 encodes a nuclear transcriptional activator that can bind to DNA
and ribonucleic acid (RNA) [Melko 2011]. Variants upstream and in the 5’
end of the AFF3 gene have been suggestively associated with
autoimmune diseases, including juvenile idiopathic arthritis [Hinks
2010], rheumatoid arthritis [Barton 2009], Graves' disease [Todd 2007]
and T1D [Todd 2007]. Our meta-analysis suggested two association peaks
for ESRD in the AFF3 gene — the primary signal in the middle of the gene
and a secondary signal in the 5 end of AFF3, close to the autoimmune
disease signal. In vitro functional analyses on AFF3 expression levels
suggested that AFF3 may play a role in the TGF-Bi-induced fibrotic
responses of renal epithelial cells [Sandholm 2012].

ERBB4 ERBB4 encodes a member of the epidermal growth factor receptor
subfamily. ERBB4 has been implicated in the development of cardiac,
mammary gland and neural tissues [Gassmann 1995, Tidcombe 2003].
Mutations in ERBB4 have been reported in cancer [Prickett 2009].
Research on kidney cell models and conditional ERBB4 over-expression
and knock-out mice suggest that ERBB4 is important for the
development of the kidneys [Zeng 2007, Veikkolainen 2012]. The gene
expression studies in Publication III indicated co-expression with
collagen related genes, suggesting that ERBB4 may play a role in renal
fibrosis.

RGMA RGMA encodes a repulsive guidance molecule a (RGMa), an axon
guidance protein on the retina [Monnier 2002]. Repulsive guidance
molecules are also co-receptors in the bone morphogenetic protein
signaling pathway that affects the tissue architecture across the body
[Halbrooks 2007].

MCTP2 MCTP2 gene encodes a transmembrane protein that binds Ca2* and is

involved in intercellular signal transduction [Shin 2005].

with P = 4.8x109. Of note, only a few studies on DN in T1D exist in the world with a
substantial number of patients with ESRD, making the replication a challenging
task. Among the 5,873 patients in the second phase studies, only 363 were included
in the ESRD analysis case definition, resulting in a low statistical power to replicate
the original finding. Despite the low number of cases, the meta-analysis of the stage
two studies trended in the same direction with an OR of 1.11, and the meta-analysis
including all the studies remained genome wide significant with P = 1.2x1078.
Longitudinal analyses in FinnDiane supported the role of rs7583877 especially in
ESRD, whereas no association was observed for mortality given the stage of DN.
Therefore, the signal is unlikely to originate due to survival bias.

The association on chromosome 15q26 was strongly associated with ESRD in the

stage two analyses. Refined analyses on various phenotypes supported the
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association with ESRD, but some evidence was also obtained for the combined DN
phenotype and time from the diabetes onset until macroalbuminuria. The
mechanism of this association might be through the glucose metabolism, as
association was seen with fasting glucose levels [Dupuis 2010]. The rs12437854 is
located on an intergenic chromosomal region, and none of the nearby genes have
previously been linked to DN or related phenotypes. Therefore, the functional
mechanism behind the association remains unclear.

Despite the larger number of cases in the analysis of DN, no association reached
genome-wide significance (P<5x1078) for DN in the discovery stage. This might be
an indication of heterogeneity in patients with macroalbuminuria; defects in distinct
biological processes may lead to onset of DN. In addition, the clinical definition of
DN is based on a somewhat arbitrary cut-off of albuminuria. Nevertheless,
rs7588550 in ERBB4 was replicated in the second stage analyses with an OR of 0.67
highly similar to that found at the discovery stage (OR=0.65). The subsequent
analyses supported the original hypothesis that the variant is associated with both
macroalbuminuria and ESRD. Among the main findings, the ERBB4 locus has the
most biological support, as knock-out and over-expression mouse models have
shown that the gene is important for the development of kidneys. Interestingly,
ErbB4 has been suggested as a therapeutic target molecule for cancer and
psychiatric and cardiovascular disorders, and ErbB4 binding ligands have already
been patented for enhancing the ErbB4 signaling (Box 2) [Paatero and Elenius
2008].

7.3 GWAS on ESRD in women

In Publication III, we performed gender specific GWASs on ESRD in order to assess
if gender specific genetic risk factors for ESRD exist in patients with TiD. The
discovery GWAS analysis was performed in the FinnDiane study with 387 men and
258 women with ESRD.

7.3.1  GWAS identifies a susceptibility locus for ESRD in women with
TiD
The GWAS on ESRD revealed two correlated SNPs (r2=1) on chromosome 2q31.1
that were associated with ESRD in women with T1D with genome-wide significance
and high odds ratios: rs4972593 with an OR of 2.39 (95% CI 1.75 — 3.25,
P=3.0x108) and rs530673 with an OR of 2.38 (95% CI 1.75 — 3.23, P=3.5x10%9).
Despite the 99% statistical power to detect the same association at rs4972593 in
men with an a=0.05 significance level, no association was observed (P=0.78, OR
0.97 (95% CI 0.78 — 1.21)), suggesting that the effect of the SNP is specific to

women. No other loci reached P < 5x108 in men or women.
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Figure 18: Observed associations in women and men between rs4972593, ESRD, and
these clinical covariates that were associated with rs4972593. Inverse associations
are marked with a minus sign.

7.3.2 Adjustment for covariates

We then asked if the gender specificity of the association between rs4972593 and
ESRD could be due to gender differences in the intermediate phenotypes that may
affect the risk of ESRD. Association testing with possible confounding factors
revealed that rs4972593 was nominally associated with BMI and HbA,c in women
and with BMI in men. The observed associations between rs4972593, ESRD, and
potential confounders are illustrated in Figure 18. Adjusting the model for BMI
enhanced the association, and the observed association was only slightly attenuated
when adjusted for both BMI and HbA,c (Table 12). Importantly, the HbA,c levels did
not differ between men and women. Thus, it is unlikely that the gender specificity of
the association between the SNP and ESRD would be driven by a gender related

confounder.

Table 12: Association with rs4972593 and ESRD in women after adjustment for different
covariates.

Adjustment model OR 95% CI P N
Basic 2.39 1.76 -3.23 1.8x108 1,193
Basic + BMI 2.64 1.92-3.63 2.7x107° 1,123
Basic + HbAic 2.07 1.49-2.86 1.1x105 1,144
Basic + BMI + HbA,¢ 2.31 1.65-3.24 1.3x10° 1,110

Basic covariates: T1D duration, age, and the ten first principal components. To facilitate
comparison, the results are not adjusted for the genome-wide inflation factor (A=1.034).

7.3.3 Replication of the genetic association

To validate the finding, we tested the association at rs4972593 in three additional
T1D cohorts with a substantial number of T1iD women with ESRD (UK-ROI N=113;
GoKinD US N=252; Italy N=68). Meta-analysis of the three replication studies
resulted in a combined P-value of 0.02 for the replication in women (OR 1.41, 95%
CI 1.05 — 1.90; Figure 19). The association effect was in the same direction in all
replication studies, and the OR of 2.07 in the GoKinD US was similar to that in the
FinnDiane discovery cohort. The association remained genome-wide significant
after combined meta-analysis of the FinnDiane and replication cohorts (P=3.9x10°8,
OR 1.81, 95% CI 1.47 — 2.24). No association was observed between rs4972593 and
ESRD in men in the replication cohorts either (P=0.90) and the results remained

58



Results and Discussion

non-significant after combining the FinnDiane and the replication cohorts (P=0.78,
OR=0.97,95% CI 0.78 — 1.21).

7.3.4 Meta-analysis of three GWAS on ESRD

We further explored if other loci were associated with ESRD in a gender specific
manner in a genome-wide meta-analysis of the FinnDiane, UK-ROI and GoKinD US
GWAS data. However, the association between rs4972593 and ESRD in women

remained the only signal with genome-wide significance (i.e. P<5x108).

7.3.5 Association with ESRD in women with T2D

We investigated if the association at rs4972594 could also be seen in women with
T2D in the FIND study, including 570 African American, 165 European American,
and 413 Mexican American diabetic women with ESRD. However, no association
was observed between ESRD and rs4972593 or its proxies in any of the studied
populations despite a good statistical power in European and Mexican Americans.

Thus the reported association seems specific to women with T1D.

7.3.6 In silico analysis of the biological role of rs4972593

The associated SNPs rs4972593 and rs530673 are located in an intergenic region on
chromosome 2q31.1 between the SP3 and the CDCA7 genes. In silico evaluation of
the putative transcription factor binding sites at rs4972593 with the Genomatix
software sute (Genomatix Software, GmbH, Munich, Germany) suggested that
several transcription factor binding sites, e.g. for E-box and hypoxia inducible
factors, are lost when a person carries the minor A allele of rs4972593. The rs530673
indicated potential regulatory activity in the RegulomeDB database as it was located
in a DNase hypersensitivity peak and showed suggestive evidence of GATA2 and
SMAD4 binding [Boyle 2012]. However, the genotypes of rs4972593, or of any other
SNP in high LD with rs4972593, were not associated with gene expression levels of
any gene within a 1 Mb region up- or down-stream of rs4972593 in the human
HapMap3 lymphoblastoid cell line [Stranger 2012].

We further investigated if the gene-expression of the flanking genes SP3 and
CDCAy differs by gender and/or the DN status using publicly available gene
expression databases. CDCA7 was not significantly expressed in the renal tissue in
studies of DN [Schmid 2006, Woroniecka 2011], but interestingly, SP3 showed
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GoKinD-US  0.0055 2.07 — = GoKinD-US 0.89 1.04
Italy 0.63 1.2 — Italy 04 0.78
Metarepl  0.021 1.41 S = Metarepl 0.9 0.98
Metaall  3.8x10-8 1.81 <& Metaall 078 0.96
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Figure 19: Forest plot of association between rs4972593 and ESRD in A) women and
B) men.
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higher level of gene expression in the glomeruli of women compared with men (P-
value 0.004, fold change -1.45) [Woroniecka 2011].

7.3.7 Discussion of the findings

We identified SNPs on chromosome 2q31.1 between the SP3 and CDCA7 genes
associated with ESRD in women with T1D, whereas no association was observed in
men. In silico functional analyses suggested that the locus may affect transcription
factor binding, but the target gene, possibly further away than the SP3 and CDCAy
genes, remains unknown. Based on the literature search, the SP3 gene seems a
plausible culprit as Sp3 is known to regulate expression of CD2AP that is important
for the glomeruli, and can form a receptor complex with the estrogen receptor (Box
3).

Motivation for this sex-specific analysis arose from the notion that diabetic men
are at higher risk of developing ESRD (inversely, women seem protected from ESRD
compared with men), and that the main risk factors of ESRD have different effect
size in men and women. On the other hand, the gender difference in the risk of
ESRD is smaller in diabetic than in the non-diabetic population, and in some cases
the female protection entirely disappears: the women who developed diabetes before
10 years of age, have as high risk of ESRD as the diabetic men [Harjutsalo 2011].
Regrettably, the sample sizes were too small to allow analysis stratified by sex and

age at diabetes onset.

Box 3: What is known about the implicated genes?

SP3 SP3 encodes the bi-functional Sp3 transcription factor that may either
stimulate or repress the transcription of the target gene. One of the
interesting Sp3 target genes is the CD2AP gene that encodes a protein
that interacts with two important glomerular slit diaphragm proteins —
nephrin and podocin — and is essential for the glomerular filtration
barrier [Shih 2001, Schwarz 2001]. The gender specificity of the observed
association might be explained by the finding that Sp3 directly interacts
with the estrogen receptor a (ERa), forming a receptor complex for
estradiol. This Sp3/ERa receptor complex binds to GC-rich promoter
regions, either activating or suppressing the expression of the target gene
when estradiol is bound to the receptor. The Sp3/ERa complex targets
for example the vascular endothelial growth factor A (VEGFA) gene
[Stoner 2000, Stoner 2004], which has been proposed as a common
pathogenic factor behind diabetic retinopathy and nephropathy
[Tremolada 2007], and associated with glomerular filtration rate in non-
diabetic individuals [Kottgen 2010].

CDCA7 CDCA7 has been suggested to affect the c-Myc mediated cell
transformation. In special, the CDCAy overexpression enhances the
transformation of lymphoblastoid cells. CDCA7 is often overexpressed in
human cancers [Osthus 2005].
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This association between the SP3 and CDCAy genes was not observed in the
previous Publication II because the non-stratified analysis including women and
men — even when adjusted for sex — only resulted in a moderate P-value of 7x10°.
This finding highlights the importance of analyzing more homogenous groups of
patients separately, despite the loss of statistical power when fewer samples are
included in the analysis. In future, larger study sets may reveal even more gender-
specific genetic risk factors for ESRD. This is also a step towards the idea of
personalized medicine, where the treatment is based on the characteristics of the
patient.

7.4 GWAS on albuminuria

Albuminuria is often the first clinically detectable manifestation of diabetic
nephropathy. The strongest results in Publications II and III were found for the
ESRD phenotype, but so far there are no large scale genetic association studies for
the albumin excretion phenotype in T1D. Furthermore, heritability of AER has been
evaluated in individuals without diabetes or in patients with T2D, but not in patients
with T1D. In Publication IV we therefore performed a GWAS and estimated the
heritability of AER in T1D.

7.4.1 Heritability of AER

We first estimated the narrow-sense heritability of AER, defined as the proportion of
variability of AER that can be explained by the additive effects of the SNPs on the
employed genotyping platform. Correlating the relatedness of the subjects based on
the GWAS data, and the similarity of their AER values, we estimated that the directly
genotyped GWAS SNPs explain 27% of the total AER variability. This estimate is in
accordance with the earlier, family based estimates of AER heritability in non-
diabetic subjects or patients with T2D. When AER was adjusted for the main known
risk factors — age at diabetes onset, duration of diabetes, sex and use of AHT

medication — the genetic factors explained 38% of the remaining AER variability.

7.4.2 GWAS on AER

The relation between AHT medication and AER is bidirectional and complex: AHT
mediation is prescribed in response to elevated AER with the objective to reduce or
at least slow down the increase of the AER. However, the effect of AHT medication
depends on many factors and varies between individuals, and no general estimates
exist for how much the AHT medication lowers AER. To reduce the bias due to AHT
medication, we stratified the GWAS on AER by the use of AHT medication, and the
results from the two strata were combined together with meta-analysis. This meta-
analysis of 1,925 FinnDiane patients revealed five SNPs in the GLRA3 gene on
chromosome 4q34.1 with a genome-wide significant P-value (P<1.5x109 for
rs10011025). A total of 62 distinct genetic loci reached a P-value < 1x104.
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7.4.3 Replication of the putative susceptibility loci for AER
A total of 64 SNPs at 62 loci with P-value less than 104 were selected for replication
in seven studies with 3,750 patients with T1iD and data on AER on ACR. The
strongest replication was seen for rs2410601 on chromosome 8p22 between the
PSD3 and SH2D4A genes (P=0.026). Meta-analysis of the FinnDiane and
replication studies improved the discovery stage P-value from 2.5x105t0 3.9x107°.
In the GLRA3 gene, the rs1564939 with P = 8.4x10%9 in the discovery stage
reached a nominally significant P-value of 0.04 in the replication studies. However,
the association was in the opposite direction compared with the discovery cohort.
Interestingly, in the Finnish replication cohort the effect was in the same direction
as the discovery study, with the minor C allele associated with higher AER (P=NS). A
subsequent meta-analysis of the non-Finnish subjects had the P-value 0.03, with the

minor C allele associated with lower AER.

7.4.4 LD structure and targeted sequencing of the GLRA3 susceptibility
locus

We first assessed if regional differences in the linkage disequilibrium (LD) structure
i.e. the correlation of the SNPs could explain the opposite effect directions.
Comparison of the LD structure of the common SNPs around the associated region
showed no differences between the FinnDiane discovery samples and individuals of
European origin (HapMap II, CEU population). We then hypothesized that
population specific rare variants may constitute a synthetic association observed at
rs1564939: if one or more rare variants are by chance more often inherited in the
same haplotype with a common SNP, the common SNP will show evidence of
association (Figure 20)[Dickson 2010]. The rare variants would not be observed on
the LD plot of common variants. Moreover, synthetic associations may show
inconsistent effects between populations if the causal rare variants are population
specific. Importantly, the Finnish population has undergone population bottlenecks
and been genetically isolated, leading to different rare variants in Finland than in the
rest of Europe [Norio 2003a, Norio 2003b].
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Figure 20: Illustration of a synthetic association arising from population specific
rare variants. Lines represent DNA sequences that are ordered according to the AER
value of the subject. Comumon variants are depicted with circles, whereas stars
illustrate rare variants. Modified from [Anderson 2011].
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In order to study the rare variants near the association signal in the GLRA3 gene, we
sequenced an 11 kb region around rs1564939 and rs10011025 in 48 FinnDiane and
48 UK subjects. Within the sequenced region, 43 SNPs were observed in the Finnish
population, of which two were novel SNPs (ss647894785, ss647894811), whereas 38
SNPs were found in the UK population. However, these identified SNPs do not

directly change the amino acid sequence of the GLRA3 protein structure.

7.4.5 Putative susceptibility locus in patients without AHT medication

We also performed a sub-analysis including only subjects with no AHT medication,
with the aim to avoid bias caused by differences in the AHT medication. In this
analysis, rs2097443 located between the PARVG and LDOCI1L genes was associated
with albuminuria with a combined P-value of 0.02 in the replication cohorts. Of
note, the association was significant in two out of three replication studies with SNP
data for rs2097443 (P-values 0.028 and 0.04 for the NFS-ORPS and UK-ROI
studies, respectively) and the third replication study showed an effect in the same

direction as well.

7.4.6 Comparison with results for non-diabetic subjects and patients
with T2D

A previous GWAS on albuminuria identified a non-synonymous SNP rs1801239 (i.e.
the SNP changes the resulting protein structure) in the CUBN gene associated with
ACR in non-diabetic subjects [Boger 2011]. However, in our GWAS, no association
was seen in patients with TiD with either AER or ACR (P=0.61 and P=0.72,
respectively). We also tested if the 64 SNPs selected for replication in our GWAS
showed evidence of association in the 63,153 non-diabetic individuals examined by
Boger et al., but none of the loci were significant after adjustment for multiple
testing. Moreover, none of the 64 SNPs are located in the linkage peaks reported for
ACR in T2D [Krolewski 2006]. The lack of overlap with the loci for T2D may be due
to differences in the linkage and association study settings, but the lack of overlap
with non-diabetic population supports the assumption that the genetic background
of albuminuria is different in diabetes than in non-diabetic subjects.

7.4.7 Pathway analysis of the GWAS on AER

The gene set enrichment analysis performed with the MAGENTA software suggested
enrichment of signals in genes related to natural killer cell mediated immunity
(P=8x10, false discovery rate (FDR) = 0.003). The gene set overrepresentation
analysis of the PANTHER pathways in the GWAS data highlighted the role of the
metabotrobic glutamate receptor group 1 pathway (P=6.7x105, P=0.012 after
correction for multiple testing). Both metabotrobic glutamate receptor (mGluR)
group 1 members, mGluR1 and mGluR35, are expressed in mouse podocytes and their
activation was shown to protect against albuminuria and podocyte apoptosis [Gu
2012].
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7.4.8 Discussion

Publication IV reports the first GWAS on albuminuria in T1D, with variants in the
GLRA3 showing strong evidence of association. However, in the replication cohorts
the association was observed in the opposite direction. The discrepancy in the effect
direction may be due to false positive finding in the discovery cohort (type I error),
and many of the 64 SNPs with P < 104 selected for replication are likely to be false
positive findings. However, the original association in GLRA3 had strong statistical
evidence in both directly genotyped and imputed SNPs (smallest P-value = 2x10%9).
The replication indicated only nominal statistical significance for association
(P=0.04), not sufficient for significance after correction for multiple testing. The
difficulty to reach significant P-values in replication may be due to the variability of
the albuminuria phenotype, employment of different measures of albuminuria, or
differences related to the age and disease severity between the replication studies. To
reduce the methodological variability, we validated the high correlation between
AER and ACR in our data and showed the robustness of the GWAS results for both
phenotypes. In addition, we employed the mean of multiple albuminuria
measurements when available.

A third explanation for the opposite effect direction is the synthetic association
theory stating that common variants may reflect the effects of multiple rare variants
that happen to be disproportionally distributed between the alleles of the common
SNP [Dickson 2010]. If the rare variants are population specific, the association
observed at the common SNP may be inconsistent across populations. Our
sequencing effort identified more variants in the Finnish than in the UK subjects
supporting the possibility of synthetic association, but none of them directly affect
the protein structure. With the 96 individuals sequenced in the Finnish and the
British populations, we had > 99% statistical power to detect variants with MAF >
0.05. However, with 48 individuals sequenced in each group, we only had moderate
statistical power of 62% to detect population specific rare variants with MAF = 0.01,
suggesting that we may have missed many population-specific non-common
variants. Moreover, synthetic associations may be constituted of SNPs much more
distant than the sequenced 11 kb region, and consequently, Dickson et al. suggest
that largescale sequencing efforts are required to detect the rare variants behind the
synthetic associations [Dickson 2010].

Finally, this GWAS suggested other loci that are of interest for future studies: The
strongest replication was obtained for rs2410601 on chromosome 8p22 between the
PSD3 and SH2D4A genes. Interestingly, Sh2d4a encoded by the SH2D4A is
localized in the podocyte slit diaphragm, making it a strong biological candidate for
albuminuria in diabetes [Patrakka 2007]. When only subjects without AHT
medication were considered, the strongest replication was found for rs2097443
between the PARVG and LDOC1L genes. The overrepresentation analysis of the
PANTHER pathways in the GWAS results highlights the mGluR group 1 proteins
mGluR1 and mGluR5, which are expressed in the podocytes as well. The genes
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encoding for these proteins had only moderate P-values in the GWAS and were thus

not selected for replication. Putative association signals in the genes encoding for

these mGluRs and other molecules in the pathway are of interest for further studies

(Box 4).

Box 4: What is known about the implicated genes?

GLRA3

GLRA3 encodes the a3 subunit of the glycine receptor (GlyR), best
known for its function in the nervous system, but also found elsewhere
in the body. In the pancreatic a-cells, activation of the GlyR by glycine
results in release of glucagon from the o-cells; glucagon is a hormone
with an opposite effect of insulin (Figure 21) [Li 2013]. Glycine has been
shown to protect kidneys in ischemia, but it is not known if the effect is
mediated through the GlyR in the kidneys [Yin 2002, den Eynden
2009] .

SH2D4A

SH2D4A is expressed in the glomerular podocytes in the slit
diaphragms and co-localizes with nephrin, an essential protein in the
podocytes [Patrakka 2007].

GRM1
and
GRM5

Metabotrobic glutamate receptor (mGluR) group 1 includes two
proteins, mGluR1 and mGluR5, encoded by GRMi and GRMs5.
Glutamate is a neurotransmitter, but it is an extracellular signaling
mediator in the non-nervous tissue as well. Both mGluR1 and mGluR5
are expressed in the podocytes. Activation of the two proteins by a
mGluR1/5 selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG)
attenuated proteinuria and protected from podocyte apoptosis in

proteinuric mice [Gu 2012] .
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Figure 21: Glycine receptor (GlyR) is active in the pancreatic a-cells, where it
regulates the glucagon release in response to circulating glycine. Modified from [Li
2013]. B) Glucagon counterbalances the effect of insulin.
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7.5 Data mining of the GWAS data

In Publication V we applied a novel data mining method, BoNB [Sambo 2012], on
the FinnDiane GWAS data to detect additional loci associated with various DN and
ESRD phenotype definitions. The BoNB is a supervised classification algorithm,
based on learning an ensemble of Naive Bayesian Classifiers that divide subject into
cases and controls according to SNPs. The GWAS data are sampled repeatedly with
Bootstrap sampling to obtain multiple slightly different data sets to ensure
robustness of the results.

7.5.1 Loci identified with the BoNB algorithm

The BoNB algorithm reported eight SNPs that were repeatedly selected to the Naive
Bayes classifiers and improved the classification in the independent out-of-bag test
sets. In the genotype permutation of these eight SNPs, five SNPs had significant
marginal utility across the tested classifiers: rs2838302 intronic in the SIK1 gene
and rs12917114 between the SEMA6D and SLC24A5 genes were predictors for ESRD
when compared with all the other patients; rs12137135 between the WNT4 and
ZBTB40 genes, rs1670754 upstream the MAPRE1P2 pseudogene, and rs17709344
between the RGMA and MCTP2 genes were predictors for ESRD when compared
with patients with normal AER.

The five identified loci were then evaluated with more conventional association
testing. All loci had a P-value < 104 in the genotypic association models (i.e.
allowing that the effect of the three genotypes aa, Aa, and AA are independent of
each other; Table 13). We further defined for each SNP the association model with
the best statistical significance, considering the binary models of recessive,
dominant, or additive association. The dominant model was the most significant
model for rs17709344 between the RGMA and MCTP2 genes, whereas the best P-
value was obtained using the recessive model for the four other SNPs. The ORs for

these models were remarkably high and varied from 2.5 to 5.2 (Table 13).

Table 13: Statistical testing of the loci selected with BONB
SNP Genes Pperm P genotypic Best model (P, OR)
rs12137135 & WNT4 — ZBTB40 0.031 5.2%x1075 Rec (1.3%105, 3.1)
Is17709344 2 RGMA — MCTP2 0.031 2.6x1075 Dom (2.4x1075, 2.5)

rs1670754 2 MAPRE1P2 0.031 3.5%10°5 Rec (7.7x107°, 3.4)
rs12917114>  SEMAG6D — SLC24A5  0.024 1.4X10°5 Rec (4.8x106, 3.2)
rs2838302 P SIK1 0.031 5.4x1075 Rec (2.0%104, 5.2)

P perm: P-value for marginal utility > 0 using genotype permutation. P genotypic: P value of
association using genotypic model. Best model: association model with the best P-value, Rec =
Recessive, Dom = Dominant.

2ESRD vs. normal AER; P ESRD vs. no ESRD phenotype.

7.5.2 Replication in independent studies
The five selected loci were further tested for association in three additional studies:
the Steno, UK-ROI and GoKinD US studies. Using the genotypic association model,
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significant associations (P<0.05) were obtained for rs12137135 (WNT4 — ZBTB40)
in Steno (P=0.009) and rs12917114 (SEMA6D — SLC24A5) in UK-ROI (P=0.04).
Combining the P-values of the replication cohorts, irrespective of the effect
direction, resulted in significant P-values for rs17709344 (RGMA — MCTP2; P=0.01)
and rs12917114 (SEMA6D — SLC24A5; P=0.005).

67 rs12137135 67 rs17709344 67 rs12917114
51 5 5
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Figure 22: Odds ratios by genotype in the FinnDiane and replication studies for
rs12137135 (WNT4 — ZBTB40), rsi7709344 (RGMA — MCTP2) and rsi12917114
(SEMA6D — SLC24A5). The major homozygous genotype is the reference genotype
with OR = 1. Error bars indicate the 95% CI for the OR, and are truncated at 6.

Of note, the number of the rare genotype carriers of these three SNPs varied from o
to 28 in cases and/ or controls. Consequently, the rare genotype effects varied
greatly across the studies, and the 95% CIs were wide (Figure 22). Nevertheless, the
recessive association model for rs12137135 (WNT4 — ZBTB40), defined as the best
fitting model for the SNP in the FinnDiane study, was significantly replicated in
Steno (P=0.008). Furthermore, the meta-analysis of the replication cohorts was
significant for dominant association between ESRD and rs17709344 genotypes
(RGMA — MCTP2; P=0.008).

7.5.3 Association with intermediate phenotypes

We tested in the FinnDiane and the Steno studies if the five selected SNPs were
associated with intermediate phenotypes including HbA,c, blood pressure, blood
lipid measurements, and obesity related phenotypes. The rs17709344 (RGMA —
MCTP2) was associated with serum LDL cholesterol in both studies, suggesting that
the mechanism behind the observed association may be related to the lipid

metabolism.

7.5.4 Discussion of the findings

The aim of the Publication V was to explore novel susceptibility loci for DN using
advanced data mining methods to complement the findings of the conventional
methods. We identified five susceptibility loci for ESRD, of which the locus between
the RGMA and MCTP2 genes was identified in Publication II in the meta-analysis of
> 12,000 patients with T1D. This overlapping finding supports the idea of finding
more signals with less samples if advanced data mining methods are used; In
Publication II, the same SNP rs17709344 had a moderate P-value of 0.0006 in
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FinnDiane alone, and thus, would not had been selected as a main signal without the
large meta-analysis.

On the other hand, the earlier association with ESRD at AFF3 (Publication II,
P<5x108 in FinnDiane) was not observed in this study due to the imbalance
between the number of analyzed cases and controls, leading to no predictive value
for common SNPs of moderate effect size. Therefore, the applied method is
complementary to the conventional GWAS methods, rather than replacing the
existing methodology.

Similar to Publications II and III, the main findings originated from the ESRD
phenotype. ESRD is a more clearly defined phenotype than macroalbuminuria,
where the diagnosis is based on a somewhat arbitrary cut-off. It may also be that
more or stronger genetic risk factors exist for the transition from macroalbuminuria
to ESRD. A third possibility is that according to the liability model the patients with
ESRD carry more risk factors as they represent the extreme end of the disease
continuum, and thus, provide the most genetic findings.

Some evidence of replication was found for rs12137135 (WNT4 — ZBTB40),
117709344 (RGMA — MCTP2) and rs12917114 (SEMA6D — SLC24A5) using the
genotypic model of association. Replication was also attempted on the best fitting
models. However, for four out of the five selected SNPs the model with the smallest
P-value in the FinnDiane was a recessive model, and the number of rare
homozygous genotypes was extremely low in cases and controls, ranging from o to
54. Thus, the statistical power of replication was low and the 95% confidence
intervals were too wide for the interpretation of the results. However, the BoNB
algorithm was designed to reduce the necessity of replication; the robustness of the
findings is increased with the bootstrap sampling of the data so that signals were
considered only if they were suggested at least by 5 out of 100 Naive Bayes
Classifiers. To be supported by a classifier, addition of the SNP has to improve the
prediction performance of the independent out-of-bag test set, which can be
considered as an internal replication cohort. To further validate the findings, the
SNPs need to prove useful in the genotype permutation procedure. Therefore, all the
five selected SNPs show high level of evidence and warrant future studies, even
though not consistently replicated in independent cohorts. Of special interest is the
WNT4 gene 200 kb away from rs12137135, as the WNT signaling pathway has been
implicated in DN (Box 5)[Zhou 2012].
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Box 5: What is known about the implicated genes?

WNT4

WNT4 is a member of the WNT gene family that encodes secreted
signalling proteins. Wnt-4 is required for the development of renal
tubules, and thus plays a critical role in renal morphogenesis [Stark
1994, Kispert 1998]. Wnt-4 is expressed in kidneys also during
recovery after kidney injury [Surendran 2002] or acute renal failure
[Terada 2003]. Wnt/beta-catenin signalling has been shown to affect
survival of high glucose-stressed mesangial cells [Lin 2006], relating

the kidney findings to diabetic setting as well.

SEMA6D

Semaphorins are best known for their involvement in the axon
guidance, but SEMAG6D is also involved in regulation of the late phase
of T cell primary immune responses [O'Connor 2008].

RGMA

See Box 2, page 56.

MCTP2

See Box 2, page 56.
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In this thesis we have applied a wide range of computational methods on a large
scale, genome-wide genotyping data on subjects with type 1 diabetes (T1D) with the
aim to define the genetic risk factors behind diabetic kidney complications. As the
most concrete results of this thesis, we identified four novel genetic loci affecting the
risk of diabetic kidney disease in T1D: AFF3 and RGMA — MCTP2 associated with
end-stage renal disease (ESRD), CDCA7 — SP3 associated with ESRD in women with
T1D, and GLRA3 associated with albuminuria. These findings represent the first
robust associations with genome-wide statistical significance for different stages of
DN. In addition, we evaluated the previously reported suggestive susceptibility loci
for diabetic nephropathy (DN), but found little evidence of association. The only
exception was the EPO locus that remained genome-wide significantly associated
with the combined ESRD and retinopathy phenotype after combination with our
data. Furthermore, we identified putative susceptibility loci that warrant further
evaluation: variants in the ERBB4 gene were strongly although not genome-wide
significantly associated with DN, and the WNT4 — ZBTB40 and SEMA6D —
SLC24A5 loci were associated with ESRD using advanced data mining methods.
Pathway analyses, on the other hand, suggested that the metabotrobic glutamate
receptors GRM1 and GRMj5 could be interesting candidate genes for albuminuria.
Identification of the loci is the first step of genetic discovery, but still far away
from the ultimate aim of discovering new therapeutic target molecules or
biomarkers for DN, let alone personalized medicine or prediction of disease risk
based on the individuals’ genetic profile. For convenience, the genetic loci are
annotated in this thesis according to the gene/genes closest to the association signal.
However, the current understanding of genetics suggests that the closest gene is not
necessarily the causal one, even when the association signal is located within a gene
[Smemo 2014]. The strongest support for the causality of a gene is found for the
association signal intronic in the ERBB4 gene. ERBB4 gene expression is lower in
the kidneys of patients with DN compared with healthy controls, and ERBB4 knock-
out and overexpression mice have demonstrated that the gene is important for the
development of the kidneys. The continuously improving in silico analyses and
annotation tools and biological databases can be useful in the search for the culprit
gene of the other association signals. Furthermore, improvements in the genotype
imputation reference panel, especially from the 1000 Genomes project, can refine
the localization of the association signals, thus, helping the interpretation of the
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functional mechanism behind the associations. Nevertheless, in vivo and/or in vitro
studies are important for the evaluation of the mechanisms and validation of the
functional hypotheses resulting from the in silico methods.

Future directions

For many other common diseases, the key factor for additional genetic findings has
been the increase in the number of studied subjects. For example, the largest GWAS
meta-analysis on TiD was based on over 7,500 cases and 9,000 controls and
resulted in 41 susceptibility loci for T1D [Barrett 2009b]; for T2D, the largest GWAS
meta-analysis of 8,000 cases and 40,000 controls brought the number of T2D
susceptibility loci to 38 [Voight 2010], and even more loci have been identified with
genome-wide-scale candidate gene approach. However, it is challenging to obtain
such a number of patients for the analysis of DN, as DN is a “disease within a
disease” both cases and controls should have diabetes. Therefore, the largest
theoretical number of subjects for the analysis of DN in T1iD will always remain
smaller than for TiD. The largest GWAS meta-analysis on DN in TiD to date,
presented in Publication II, included 7,300 patients in the discovery stage.

Larger GWAS meta-analyses on DN are underway, but the brute force of large
numbers is not the only way forward. Publication III, identifying a susceptibility
locus for ESRD in women with T1D, was a good example that novel signals can be
found by dividing the patients to plausible sub-groups of more homogenous
subjects, despite reducing the number of samples. Improving the phenotypic data
and searching the susceptibility loci from different angles as in this thesis may help
to identify additional genetic risk factors for DN and common diseases in general.

Complex diseases, such as DN, are affected by complex biological processes. It is
likely that multiple genetic factors increase the propensity for such a disease and
also interact with each other. Ideally, all the genetic factors should be evaluated
jointly to fully capture the interaction effects. Multimarker data mining methods
exist, but the vast majority of the published GWASs are restricted to the
conventional single-marker analysis. Due to the limited number of available patients
in the GWASs on DN, advanced data mining methods are particularly interesting for
suggesting novel genetic risk factors for DN. In Publication V, we were able to detect
an association on the RGMA-MCTP2 region in the FinnDiane GWAS of 3,450
patients, whereas in Publication II, the signal became evident only after the meta-
analysis of more than 10,000 patients. Apart from the RGMA — MCTP2 locus, we
suggest four other susceptibility loci for DN identified with the BoNB algorithm.
Despite the lack of genome-wide statistical significance, we believe that these are of
potential interest to the scientific community and propose new research avenues to
evaluate and validate the role of these variants in DN.

A major challenge for the genetic discovery in DN is the availability of replication
cohorts. Ideally, the replication step should contain at least the same amount of

samples as the discovery step, and preferably twice the number. However, studies on
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DN are often rather small, including some hundreds of subjects in total. This may, in
part, explain why only a few candidate gene associations have been robustly
replicated: small replication studies with low statistical power may result in false
negative findings i.e. lack of replication. Especially the number of patients with the
most severe form of DN, ESRD, is rarely over one hundred in a study. This is in
contrast with our notion that the ESRD phenotype has provided the most
susceptibility loci for DN in T1D. The study design for more advanced DN related
phenotypes should take into account the limited replication possibilities and
consider other alternatives such as permutation or cross-validation for the
validation of the signals.

The four identified susceptibility loci for ESRD and albuminuria are unlikely to be
the only genetic risk factors for DN. Despite the large number of genetic risk factors
catalogued for many other common diseases such as T1iD and T2D, the identified
loci still explain only a small proportion of the estimated heritability. One suggested
source of the “missing heritability” of the common diseases are multiple rare
variants, potentially even located in the same genes that harbor common risk factors
identified with the GWASs; there may be multiple ways to break a protein, but the
most severe defects will remain rare as there would be negative selection against
them in the evolution. Extending on this idea, the synthetic association theory
suggests that some of the common variants identified in GWASs may actually reflect
the combined effects of multiple rare variants that are by change inherited together
with the common SNP allele. We hypothesize that the association signal for
albuminuria in the GLRA3 gene in Publication IV is an example of such synthetic
association, explaining the inconsistent direction of effect between the Finnish and
non-Finnish subjects.

While some of the rare variants may be indirectly detected with the GWAS
approach, the GWAS platforms were originally designed to detect common variants,
whereas direct sequencing provides a better study setting to detect the rare
variation. Next generation sequencing approaches, and the whole exome sequencing
studies in special, are now emerging to detect the rare causal variants behind the
common diseases. Protein coding exon sequences constitute only approximately 1-
2% of the human genome, but mutations on those regions may directly alter or
truncate the protein structure. Therefore they are a plausible place to search for rare
variants with large effect size.

In addition to the four novel identified susceptibility loci for ESRD and
albuminuria, this thesis discusses many novel concepts and hot topics in the genetics
of common disease, ranging from the gender specific risk factors — and risk factors
for more homogenous patient groups in general — to the theory of rare variants
contributing to the synthetic associations and to the use of advanced data mining

methods for the detection of additional genetic risk factors.
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11 List of abbreviations

AER
ACE
ACR
ARB
AHT
BF
BMI
BoNB

CEU

CHB
CI
CKD
D
DCCT
d.f.
DN
DNA
EDIC
eGFR
eQTL
ERa
ESRD
FDR
FIMM
FIND
FinnDiane
G
GFR
GlyR
GoKinD US
GWAS

Adenine

Albumin excretion rate

Angiotensin converting enzyme
Albumin-to-creatinine ratio

Angiotensin II receptor blocker
Anti-hypertensive (treatment)

Bayes Factor

Body mass index

Bag of Naive Bayes

Cytosine

Caucasian individuals from Utah, USA, from the Centre d’Etude du
Polymorphisme Humain collection

Han Chinese individuals in Beijing, China
Confidence interval

Chronic kidney disease

“D prime”, a measure of linkage disequilibrium
Diabetes Control and Complications Trial
Degree of freedom

Diabetic nephropathy

Deoxyribose nucleic acid

The Epidemiology of Diabetes Interventions and Complications
Estimated glomerular filtration rate
Expression quantitative trait loci

Estrogen receptor a

End stage renal disease

False discovery rate

The Institute of Molecular Medicine Finland
Family Investigation of Nephropathy and Diabetes Study
The Finnish Diabetic Nephropathy Study
Guanine

Glomerular filtration rate

Glycine receptor

Genetics of Kidneys in Diabetes US Study
Genome-wide association study
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List of abbreviations

HbA,c
HILMO
HMM

HR

HWE

JPT

kb

KEGG
LADA

LD

LOD

MAC

MAF
MAGENTA
Mb

MCC
mGluR
MLS
mRNA
NFS-ORPS

NS
0OOB
OR

PC

PCA
PPA
PPnA
QC
QQ-plot

r2

SDR
SE
SNP

TiD
T2D
THL
UK-ROI
YRI

88

Proportion of glycosylated hemoglobin

The Finnish hospital discharge registry

Hidden Markov models

Hazard ratio

Hardy-Weinberg equilibrium

Individuals from Tokyo, Japan

kilobase, 1,000 bases

Kyoto Encyclopedia of Ggenes and Genomes
latent autoimmune diabetes of adults

Linkage disequilibrium

Logarithm of odds

Minor allele count

Minor allele frequency

Meta-Analysis Gene-set Enrichment of variaNT Associations
Megabase, 1,000,000 bases

Matthews correlation coefficient

Metabotrobic glutamate receptor

Maximum likelihood score

Messenger ribonucleic acid

UK Nephropathy Family Study and Oxford Regional Prospective
Study

Non-significant

Out-of-bag

Odds ratio

Principal component

Principal component analysis

Posterior probability of association

Posterior probability of no association

Quality control

Quantile-quantile plots

Squared correlation coefficient, a measure of LD
Ribonucleic acid

Scania Diabetes Registry

Standard error

Single nucleotide polymorphism

Thymine

Type 1 diabetes

Type 2 diabetes

Finnish National Institute of Health and Welfare
All Ireland Warren 3, Genetics of Kidneys in Diabetes UK Study

Individuals from Yoruba in Ibadan, Nigeria





