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A fundamental question in medicine is how cancer and other complex diseases operate on 

the molecular level. Identifying the detailed mechanisms and interactions of how diseases 
progress and respond to drug treatments is essential for developing effective therapies. High-
throughput molecular profiling technologies have provided vast amounts of measurement data 
of these phenomena. However, making sense of these masses of data is far from straightforward 
and requires advanced computational analysis methods. 
 
Probabilistic component models have been proven an effective tool in analysing and integrating 
high-dimensional and noisy molecular profiling data sources, such as gene expression. Such 
models can identify coherent components from the data, and interpreting these components 
provides insights about the underlying biological processes, such as disease progression and 
drug responses. In this thesis, probabilistic component models are applied and extended to 
identify and analyse molecular interaction and drug response patterns. 
 
Identifying functionally coherent gene modules from high-throughput measurements is a 
central task in many biomedical applications. In this thesis, an earlier component model for 
network data is extended for capturing functional modules from combinations of gene 
expression and protein interaction data. The identified modules provide hypotheses for novel 
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High-throughput drug treatment measurements have made possible the detailed analysis of 
molecular drug responses and toxicity. In this thesis, probabilistic component models are 
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1. Introduction

1.1 Motivation

The role of computational data analysis is increasing throughout the quan-

titative research fields. In molecular biology for example, the rapid devel-

opment of measurement technologies has lead to an exponential growth

in the amount of available genomic data in public repositories [8, 90]. This

trend also extends to the society in general, as data are increasing at an

unprecedented rate from numerous sources such as web pages, personal

images and videos, government databases, and data from mobile and sen-

sory devices [93].

Data analysis refers to the process of collecting, transforming and mod-

elling data with the aim of discovering useful information, providing un-

derstanding, and supporting decision making. It is largely dependent on

computational methods, as analysing large amounts of data manually is

impossible. The rapidly growing amount of data imposes an increasing

demand for the development of effective computational methods that can

handle various demanding data analysis challenges.

Computational biology and medicine are among the most advanced fields

in adopting advanced computational data analysis methods. The increas-

ing use of high-throughput measurement technologies and computational

modelling has led to the era of systems biology, revealing new levels of

biological function and organisation [89]. Prediction of drug effects in hu-

mans will advance pharmaceutical research and clinical trials. Computa-

tional prognostics and diagnostics, combining clinical data with molecular

profiling is causing fundamental changes in the practice of medicine [97].

Large amounts genomic data available in public databases provide good

opportunities for developing computational methods that can also lead to

11



Introduction

new discoveries [96].

Clear progress has been seen in the development of both measurement

technologies and computational analysis tools for molecular medicine ap-

plications, but also many challenges remain. A fundamental requirement

is that the computational methods must be able to filter and combine mul-

tiple disparate and noisy data sources, and moreover provide proper un-

derstanding of the underlying molecular mechanisms in addition to pro-

viding reliable predictions [25].

A promising data analysis genre for tackling these challenges is ma-

chine learning, combining elements from statistics and computer science.

This thesis focuses on applying and extending Bayesian probabilistic mod-

els that offer a suitable toolbox for approaching the complex data analysis

challenges in biomedical applications. In Bayesian modelling, probabili-

ties are used to quantify uncertainties in the data and model parameters,

allowing inference even from very noisy data sources [42].

Probabilistic component models enable inference about the underlying

processes behind the noisy and high-dimensional observation data. For

example, components identified from combinations of gene expression and

protein interaction data can be interpreted as molecular pathways [103].

When applied to drug treatment measurements, component models can

provide insights into the specific chemical structures inducing molecular

drug responses [68]. Additionally, the component models can be used for

inferring similarity structure within the data and further applied to ad-

vanced information retrieval and visualisation tasks [16].

The data analysis methods used and developed in this thesis are ex-

ploratory in the sense that the idea is to discover new information and

formulate new hypotheses about the data, as opposed to confirmatory

data analysis, where predefined hypotheses are tested statistically [126].

The methods are also unsupervised, meaning that the general task is to

discover underlying patterns in the unlabelled data, in contrast to super-

vised methods, where the aim is to predict or classify the properties of the

elements in the input data based on given labels [10].

1.2 Objectives and scope

In this thesis probabilistic component models are extended and applied for

analysing noisy and high-dimensional molecular profiling data sources,

especially gene expression. The contributions are in the cross-section

12
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of methods development and applied research, where the challenges in

molecular medicine motivate model development, which in turn allows

solving novel application problems. Thus both methodological and biomed-

ical research relevant for the thesis are presented in detail.

The general objective of the thesis is to study the applicability of prob-

abilistic component models in various molecular medicine applications.

The specific objectives of this thesis are formulated as the following re-

search questions:

1. RQ1: Can component models improve the identification of functional

gene modules?

2. RQ2: Can component models capture molecular drug response patterns

that are informative of therapeutic and toxic effects?

3. RQ3: Can component models be used for visualising global structures

in graphs?

The first main contribution of the thesis is to answer RQ1 by identifying

and analysing functional gene modules from combinations of gene expres-

sion and protein interaction data. In Publication I an earlier probabilistic

model is applied and extended to integrate the data sources for improved

module detection.

The second main contribution is to answer RQ2 by applying probabilis-

tic component models for drug response and toxicity analysis. In Publi-

cation II, drug treatment gene expression measurements are associated

to the corresponding toxicological responses, providing novel insights into

toxicity-related gene expression patterns with high predictive performance.

In Publications III and IV, a novel model-based method is introduced to

drug connectivity mapping, where the aim is to match drugs to other

drugs or diseases based on their gene expression profile similarities.

The third contribution is to answer RQ3 by applying model-based re-

trieval to information visualisation applications. In Publication V, a prob-

abilistic model is used to visualise graph data in a way that reveals inter-

esting structural patterns.

Figure 1.1 gives a schematic overview of how the research questions and

publications are related.

13



Introduction

Figure 1.1. A schematic overview of the publications and research questions ad-
dressed in the thesis. Blue boxes represent data sets, yellow boxes repre-
sent probabilistic component models of the data, and purple boxes represent
specific tasks. Publications are indicated with red circles and research ques-
tions with dashed line boxes.

1.3 Organization of the thesis

The thesis is organised as follows: Chapter 2 gives biomedical background

for understanding the contributions in molecular medicine and gene ex-

pression analysis, and introduces the specific applications in more detail.

Chapter 3 gives background for the probabilistic component models used

and developed in the thesis. In Chapter 4, probabilistic models are ap-

plied to identify molecular interaction components. In Chapter 5, proba-

bilistic models are applied to toxicogenomics and drug connectivity map-

ping. Chapter 6 introduces a probabilistic model for graph visualisation.

Finally, the thesis is concluded in Chapter 7.

14



2. Molecular biology and medicine

In this chapter, the basics of molecular biology and medicine are intro-

duced, including common computational analysis methods used in the

field. Focus is especially on gene expression data analysis, which is one of

the corner stones of modern molecular biology and medicine. Additionally,

molecular interactions and drug responses are covered.

2.1 Molecular biology and gene expression

Molecular biology aims to understand how the different molecules in the

cell function and interact. The basic cellular molecule types are nucleic

acids and proteins [3]. Nucleic acids form long molecular chains called

DNA and RNA, where the sequence of the four basic nucleic acids en-

codes heritable information. Specific parts of the DNA sequence are called

genes, and they contain the information for building protein molecules [3].

The collection of all genes is called the genome, containing all heritable in-

formation in living organisms.

The so called central dogma of molecular biology [26] describes the chain

of information from DNA to messenger RNA (mRNA) through transcrip-

tion, and further from mRNA to proteins through translation, also called

protein synthesis. The functional product of a gene is thus a protein

molecule. This process where genetic information is transformed through

protein synthesis is called gene expression, and it is the fundamental

mechanism underlying cellular functions. The different cells in a complex

organism differ notably in both their structure and function. This is due

to changes in the gene expression between the cells, resulting in different

proteins being synthesised. Gene expression can in principle be regulated

in all the steps in the chain of information from DNA to proteins, but the

most important is transcriptional regulation, controlling when and how

15



Molecular biology and medicine

often a given gene is transcribed [3].

After the proteins have been synthesised, they carry out their functions

through complicated networks, where proteins interact with each other

and other molecules to mediate the cellular signals. The molecular cas-

cades carrying specific tasks in the cells are called pathways [3]. Pathways

have been identified for many important functions, such as cell signalling

and cell cycle. Studying gene expression and molecular networks and

pathways are central tasks in molecular biology.

2.1.1 Measuring gene expression

Measuring gene expression is a central part of molecular biology research,

providing detailed information about the cellular signalling networks and

molecular basis of diseases and drug mechanisms. One of the most promi-

nent gene expression measurement technologies are microarrays, which

allow parallel quantification of thousands of mRNA molecules [99]. Later,

also RNA-sequencing technology has been applied to whole genome ex-

pression analysis, promising less noisy measurements at lower costs [84,

124, 137]. This thesis focuses on gene expression data based on microar-

ray measurements.

Microarray analysis assumes that the measured intensities for each

gene represent its relative expression level [92]. Biologically relevant

patterns of expression are typically identified by comparing measured

expression levels between different states. However, before appropriate

comparisons can be made, the data must be transformed to account for

low-quality measurements and noise. Microarray measurements contain

a lot of noise from various sources [94]. Some amount of noise exists due

to purely biological reasons, including the stochastic nature of the bio-

chemical reactions, differences in internal states of the cells, and ongoing

mutations. Additionally, the measurement technologies impose variation

to the results.

2.1.2 Differential expression

A central way to analyse gene expression measurements is called differ-

ential expression, where measurements from the condition of interest are

compared against a control. Differential expression is computed as the

ratio, or fold-change, for each gene between the treatment and control

samples, describing the gene activity under the specific condition. For ex-
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ample, a typical way to analyse cancer mechanisms in gene expression is

to compare measurement samples from cancerous samples from patients

to healthy tissues.

To assess the significance of differential expression, various statistical

tests are used, such as Student’s t-test [28]. Due to the high number

of genes typically tested, the problem of multiple hypothesis testing oc-

curs. Without a proper correction, such testing is likely to produce many

false positives, that is, genes falsely identified as differentially expressed.

Standard methods for correcting for this are Bonferroni correction and

false discovery rate [33]. Instead of individual genes, one can also test

the differential expression for a set of genes. This is more robust against

noise and more likely to detect subtle changes in gene expression. An

established method is Gene Set Enrichment Analysis (GSEA) [118].

2.1.3 Gene expression clustering

Genes and proteins are typically organised into functional categories [30,

95]. Thus, a central task in molecular biology is to identify and analyse

such functionally coherent modules [59]. The most common gene module

detection approach is clustering, where the idea is to group the genes such

that similar genes are in the same groups while dissimilar genes are in

different groups. The rationale is that genes with similar expression pro-

files that end up clustered together are typically functionally similar [30].

This allows researchers to make hypotheses for the functions of unknown

genes that appear to be similar to known genes. Clustering can based on

absolute or differential expression.

A large number of methods have been developed for clustering genes,

differing in how the similarity is defined and how the similarity is used

for clustering. A commonly used similarity measure is Pearson corre-

lation [35]. Popular clustering methods include hierarchical clustering,

K-means, self-organising maps, graph-theoretic approaches, and model-

based methods [30, 66, 105]. Despite extensive efforts, no clear one-size-

fits-all solution for gene clustering has been developed [30]. Additional

gene filtering and dimensionality reduction steps have proposed to en-

hance clustering performance [29]. The goodness of clustering is typically

measured against external ground truth for the genes, such as functional

annotations. The most popular such annotation is the Gene Ontology [6].

Biclustering is an alternative to clustering methods that operates based

on the whole range of measured conditions. In biclustering, closely re-
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lated to subspace clustering [66], subsets of genes exhibiting consistent

patterns over a subset of the conditions are searched for, making the anal-

ysis local rather than global [120]. In addition to functional similarity of

genes, biclusters can be used to make hypotheses about the conditions

within the cluster that exhibit consistent gene expression. For example

drugs that act consistently on the set of genes can have shared mecha-

nisms of actions through these genes.

2.1.4 Molecular interactions

Molecular interaction data provide another view to the cellular functions,

complementing gene expression measurements. The most important mole-

cular interaction type are protein-protein interactions. Multiple high-

throughput measurement technologies have been developed for measur-

ing interactions between proteins, such as yeast two-hybrid systems and

protein complex purification [134]. Measuring interactions is challeng-

ing, because the molecular interactions last for only very short periods of

time and may be highly context-dependent. Thus the measured data sets

are also highly noisy, containing both spurious interactions and missing,

unobserved interactions [134].

Protein interaction data can be analysed to detect gene modules, with

the idea that if the proteins that the genes code are interacting in the cell,

the genes are again likely to share similar functions [49, 106] and partic-

ipate in the same pathways [80, 103]. This can also be done by combining

protein interactions with gene expression data. Such integrative anal-

yses have the potential of providing more reliable results, as both gene

expression and protein interaction data are known to be noisy [94, 134].

An often-used way to combining gene expression and interaction data

is to transform both data types into distances, resulting in a combined

network data set. The task is then transformed into network clustering,

which is a common task in multiple fields. Several network clustering

methods have been applied to the combined network clustering based on

gene expression and protein interaction data by identifying tightly con-

nected gene groups [51, 128, 130].

In this thesis, probabilistic models for combining gene expression and

protein interaction data are reviewed in Section 3.3 and novel model ex-

tensions for the task are introduced in Chapter 4.
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2.2 Molecular medicine and toxicology

Molecular medicine refers to the application of genetic or DNA-based knowl-

edge to medical applications [125]. A central factor in the advancement

of gene expression-based analysis methods for molecular medicine is that

large amounts of gene expression experiments are uploaded to public data-

bases, such as ArrayExpress [90] and Gene Expression Omnibus (GEO) [34].

Using such compendiums of gene expression, the discovery of novel gene

functions has increased rapidly [60]. Moreover, databases with measure-

ments collected from thousands of patients allow the association of genes

to specific patient phenotypes, such as diseases. Several approaches have

identified general gene expression modules as well as modules specific to

tissues, disease or drug treatments [14, 21, 32, 45, 75, 100, 119].

The Connectivity Mapping (CMap) [78] database has pioneered the use

of high-throughput drug treatment measurements for drug discovery and

development. With a large collection of drug-induced gene expression al-

terations, connections can be searched between drugs and genes. The

CMap data has been studied for details of drug-induced regulation of tar-

get proteins [64]. Furthermore, using expression profiling data from med-

ical conditions, also diseases can be connected to the genes and drugs,

creating huge potential for computational drug repositioning [63, 91].

Chemical toxicity analysis is another field that has benefited from the

joint development of measurement technologies and computational meth-

ods. Ensuring the healthiness of novel drugs, chemicals, and other en-

vironmental chemicals is an essential part of pharmacology and toxicol-

ogy. It is also costly, requiring extensive animal experimentation. There

is thus a clear need for developing more efficient and accurate computa-

tional and cell line measurements-based screening procedures for identi-

fying chemical hazards and prioritising chemicals for further testing on

live patients [24, 53].

A recent focus in molecular medicine is towards personalised medicine,

combining personal molecular profiling measurements and existing dis-

ease and drug treatment databases to find the best suitable therapies for

individual patients [25]. Machine learning methods show great promise

in providing predictive tools for personalised medicine [36]. One key chal-

lenge for advanced computational methods is thus to provide results that

generalise from model organisms to humans.
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2.2.1 Drug sensitivity analysis

Drug screening refers to evaluation of the sensitivity of different tissues

to drug chemicals, typically done in vitro, that is, on cell lines. By mea-

suring the growth of the cell lines over a range of concentrations, a dose-

response-curve for each drug treatment is obtained. The curve can then

be summarised with various drug sensitivity values, such as 50 % growth

inhibition (GI50) and 50 % lethal concentration (IC50). Drug screening is

also sometimes called pharmacological or toxicological profiling, depend-

ing on the application field.

Drug screening is often done in a high-throughput manner, measuring

simultaneously a large set of chemicals and cell lines. The US National

Cancer Institute human tumour cell line anticancer drug screen (NCI60)

for example consists of 60 human cancer cell lines and sensitivity mea-

surements for over 40 000 chemicals [111]. NCI60 offers chemical struc-

ture information for the drugs and gene expression profiles for the cell

lines, and this information can be used to predict drug sensitivity with

computational methods.

One of the most common computational drug sensitivity prediction meth-

ods is called quantitative structure-activity relationship (QSAR) assess-

ment. In QSAR, computational methods are used to predict the drug sen-

sitivity or toxicity values based on various molecular descriptors, repre-

senting the structure of the chemicals [79, 142]. QSAR has been widely

successful, but it has some serious weaknesses: It is in many cases not

able to detect the differences caused by tiny changes in the chemical

structures, and it can not be used for tissue-specific drug sensitivity pre-

diction. An alternative for tissue-specific drug sensitivity prediction is

to use gene expression measurements [74, 138]. More recently, several

large-scale drug screening efforts have profiled the genomes for hundreds

of human cancer cell lines and associated genetic mutations with tissue-

specific drug sensitivity [7, 40]. Some in vitro drug sensitivity predictions

have also been successfully validated in clinical trials [116].

2.2.2 Toxicogenomics

QSAR has traditionally been the most common approach to predictive tox-

icology, but recently also many toxicogenomic approaches have been in-

troduced. The aim in toxicogenomics is to find associations between gene

expression and toxicological data from chemical perturbations. Such as-
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sociations can then be used to understand the molecular mechanisms un-

derlying toxicological outcomes and ultimately to predict toxicity [23, 54].

One big obstacle for the wide-spread applicability of toxicogenomics is

the lack of suitable data sets with enough chemicals screened for proper

statistical evaluation of the associations. Recently, a few projects have

been initiated to tackle this problem, including ToxCast [122], DrugMa-

trix [39] and ToxBank [72].

The TG-GATEs database from the Japanese Toxicogenomics Project [127]

offers a collection of genome-wide gene expression measurements for about

150 drug chemicals for liver cells from three organisms: human and rat

in vitro, and living rats in vivo. Additionally, the database contains toxic

outcome observations, including blood level measurements and observed

liver injuries from the rats in vivo. Recently, several statistical classifi-

cation methods were used for predicting these rat in vivo liver toxicity

outcomes based on both QSAR and gene expression data. By selecting

a subset of the genes a very good toxicity classification performance was

achieved, whereas the performance using chemical descriptors alone was

notably lower, suggesting that drug treatment gene expression data are

more informative about toxicology than chemical descriptors. [82]

Another challenge for toxicogenomics is to separate the toxic effects from

intended therapeutic effects and noise. For example, many traditional

cancer drugs are in general highly toxic, killing both cancer and normal

cells [117]. Toxic responses also vary across organisms, and thus using

model organisms to predict toxicity in humans is indirect at best and re-

quires sophisticated predictive models that can find signals that gener-

alise across organisms. In this thesis, contributions to toxicogenomics are

introduced in Chapter 5.

2.2.3 Drug connectivity mapping

The process of connecting drugs to other drugs or diseases based on gene

expression profile similarity is known as connectivity mapping. The gen-

eral idea is to identify a representative signature from the genome-wide

differential expression profile that captures the essential phenotype-related

modifications. Using a novel drug as a query and searching for other

drugs with similar signatures from a large database, such as CMap, re-

searchers have then been able to make hypotheses of novel mechanisms

of actions for new drugs [62, 78]. Moreover, extracting similar signatures

from patient samples one can search for inverse correlations between spe-
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cific drugs and diseases, indicating potential novel therapies for existing

drugs [109, 114].

Connectivity mapping has also been proposed for toxicity analysis, where

the focus is on making hypotheses about the toxicity risks and toxicity-

related mechanisms of the query drug, based on other drugs [115]. Re-

cently, several efforts have applied the connectivity mapping principle to

the TG-GATEs data set with promising results [15, 144]. These applica-

tions show that connectivity mapping can provide relevant information

also when quantitative prediction of drug sensitivity, toxicity, or other

properties is not possible due to lack of data.

Formulating connectivity mapping as an information retrieval problem,

the key is how to define the relevance measure well. Current connectiv-

ity mapping approaches define the relevance by computing rank-based

similarity statistics between the gene expression profiles [62, 78]. This

approach can integrate data from multiple platforms and reduce the ef-

fect of batch effects. However, the current methods have simply aggre-

gated data over multiple experimental factors, such as cell types, doses

and time points. For personalised medicine applications, it would be im-

portant to identify also the cell type-specific drug responses. Already ex-

isting drug treatment transcriptional databases, such as the Connectivity

Map [78] and TG-GATEs [127], provide measurements for multiple cell

types, and the number will likely grow in the future. For example, the

recently established Library of integrated network-based cellular signa-

tures (LINCS, http:/ /www.lincsproject.org/), offers data for thousands of

chemicals on tens of cell lines. Proper data integration methods will thus

be needed for separating the cell line-specific effects from the general drug

responses. In this thesis, contributions to drug connectivity mapping are

introduced in Section 5.2.
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3. Probabilistic component models for
molecular biology

Many application problems in molecular biology and medicine involve

analysis of high-dimensional and noisy data from multiple sources. The

Bayesian data analysis framework provides suitable tools for tackling

such modelling challenges. In this chapter, the methodological background

of Bayesian data analysis is first covered, and the specific probabilistic

models used and developed in this thesis are then introduced in more de-

tail.

3.1 Bayesian data analysis

The aim of Bayesian data analysis is to make inferences from data using

probability models for both observed quantities and unobserved quanti-

ties of interest. The core of Bayesian methods is the explicit use of prob-

ability to quantify uncertainty in the statistical data analysis [42], which

makes Bayesian probabilistic models a convenient choice for addressing

the biomedical applications in this thesis. As discussed in Chapter 2,

gene expression and other common data sources are highly noisy, due to

the complexity of the biological phenomena and measurement techniques.

Bayesian probabilistic modelling of such data is beneficial, as it handles

the noise as uncertainties in the data in terms of an underlying proba-

bilistic model. As long as these modelling assumptions about these uncer-

tainties are correct, the results are likely to be better than with methods

that ignore the uncertainty.

The genomic data sources also typically have a large number of features

and low number of samples, commonly referred to as the ’large p, small n’

problem. This can be approached by assuming that the data has some un-

derlying lower dimensional structure, which can then be estimated with

probabilistic inference. For example, a probabilistic model can be used to
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decompose the genome-wide gene expression measurements into a set of

coherent components, interpretable as biological processes.

Probabilistic models also provide principled tools for combining data

from multiple sources. Multi-view models allow integration of multiple

data sets with shared samples. More complicated multi-source settings

can be approached with specifically tailored probabilistic models that also

allow integration of different types of data.

3.1.1 Basic concepts

In Bayesian statistical data analysis, probability is the fundamental mea-

sure of uncertainty, used to make statements about the partial knowledge

of the system [42]. In principle, everything unknown is described with a

suitable probability distribution.

The basic building block of Bayesian analysis is the joint probability

distribution p(θ, y) for the model parameters θ and the observed data y.

This can be written as the product of the prior distribution p(θ) and the

likelihood function p(y|θ): p(θ, y) = p(θ)p(y|θ). Bayes’ rule then provides

the conditional probability of θ given y, called the posterior distribution

p(θ|y) = p(θ, y)

p(y)
=

p(θ)p(y|θ)
p(y)

. (3.1)

These simple expressions encapsulate the technical core of Bayesian infer-

ence: develop the model p(θ, y) and perform the necessary computations,

known as inference, to summarise p(θ|y) in appropriate ways [42].

3.1.2 Inference

The process of finding the posterior p(θ|y) is called inference on parame-

ters [42]. The most conventional inference procedure is drawing random

samples from the posterior. In simple modelling tasks the posterior p(θ|y)
of the parameters of interest can be computed in an analytic form, al-

lowing direct draws from the distribution. In most practical applications,

however, the exact computation of the posterior is intractable and it needs

to be approximated.

Markov chain Monte Carlo (MCMC) is a commonly used Bayesian infer-

ence technique when sampling θ directly from p(θ|y) is not feasible [42].

MCMC is based on drawing values of θ from some approximate distribu-

tions, and then correcting those draws to better approximate the target

posterior distribution p(θ|y). The samples are drawn sequentially, with

distribution of the sampled draws depending on the last value drawn.
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The idea is that the approximate distributions are improved at each step

in the simulation, eventually converging to the target distribution.

Variational Bayesian (VB) methods are an alternative to sampling meth-

ods for making use of a posterior distribution that is computationally too

intensive to sample from directly [10]. In VB, the posterior distribution

p(θ|y) is approximated by a variational distribution q(θ): p(θ|y) ≈ q(θ),

where q is chosen as a simpler distribution than the original posterior. The

goal is then to make q as similar to p as possible, based on the Kullback-

Leibler divergence.

3.1.3 Generative models

A common way to define a Bayesian probabilistic model is to use the gener-

ative modelling framework [10]. A generative model describes the process

by which the observed data was generated, using probability distribu-

tions to describe the relationships between the observed and unobserved

variables. Generative models can also be expressed in terms of graphical

models, referring to diagrammatic representations of probability distribu-

tions. In a graphical model, each node represents a random variable, and

the links express dependency relationships between these variables. The

graph thus captures the generative process of the model.

An example of a graphical model is shown in figure 3.1, corresponding

to the probability model

P (Y |X,α, β) =
G∏
g

P (Xg|α) · P (Yg|Xg, β) , (3.2)

where Y are observed data, X are model parameters, and α and β are

prior parameters.

3.2 Probabilistic latent variable models

In this section some common probabilistic models for analysing noisy and

high-dimensional data, such as gene expression, are described. A central

modelling assumption is that the high-dimensional input data is gener-

ated by a set of underlying factors, or components. As these components

are not observed, they are called latent components [10]. The number of

latent components is usually much lower than the dimensionality of the

data, helping to tackle the ’large p, small n’ problem. In this thesis the

terms latent variable, component and factor are used interchangeably.
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Figure 3.1. An example of a probabilistic graphical model, with two equivalent represen-
tations: Left: full model, right: a plate diagram representation of the model.
Random variables are denoted as nodes and shading indicates an observed
variable. Edges denote dependencies between variables. The box in the plate
diagram represents replicates of random variables that are independent and
identically distributed. Figure adapted from [1].

The latent components captured by a model can be used to create hy-

potheses about the underlying mechanisms that they are assumed to rep-

resent. For example, in gene expression analysis the components can rep-

resent functional gene modules and pathways. Based on drug treatment

measurements, the components can be used as a hypothesis about the

drug mechanisms of action. However, such interpretation can be difficult

in practice, if each component is associated with a large number of condi-

tions and genes. To solve this problem, different kinds of sparsity priors

have been proposed [5, 20, 31, 140, 141]. The general idea is that sparse

priors drive the probabilistic weights towards zero, leaving only a subset

of weights active at a time. This makes the subsequent interpretation

easier, as it can be based on a lower number of variables.

3.2.1 Factor analysis

Factor analysis (FA) is a standard unsupervised data analysis method

for capturing and understanding linear relationships between variables

[123]. A set of K factors are used to model dependencies between the

features in a data matrix X ∈ R
N×D:

X = ZWT +E , (3.3)

where the columns of Z are the K latent factors, W ∈ R
D×K contains

their loadings, and E is residual noise. Different factor analysis models

can be defined by choosing specific priors and structure for Z, W and E.

A common factor analysis model is principal component analysis (PCA),

where the aim is to identify a set of K orthogonal components that maxi-
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Figure 3.2. Plate diagram for the topic model. Symbols: multinomial topic distribu-
tions θ for M documents i with Ni words; multinomial word distribution ϕ

for K topics z; parameters α and β for the Dirichlet priors for θ and ϕ. Figure
adapted from http://commons.wikimedia.org/wiki/File:Smoothed_LDA.png.

mally capture the variance in the data X. The Bayesian PCA is obtained

by setting the noise E in 3.3 to be equal over all variables [9].

3.2.2 Topic models

In many computational data analysis applications data does not originally

exist in numerical form. For example, in text analysis the data can be a

collection of text documents. The simplest way to analyse the documents

is to think of each as a bag of words, representing them as non-negative

count vectors over the set of words in the document collection. Such data

can be modelled with Latent Dirichlet allocation [12], also known as the

topic model, which assumes that each text document is a mixture of a

small number of latent topics and that each word in the document is gen-

erated by one of the document’s topics. Topic modelling can be viewed as

probabilistic PCA of discrete data, and hence the name discrete PCA is

also used [13].

A plate diagram representation of the topic model is shown in Figure 3.2,

and the generative process goes as follows: The model is first initiated

by generating for each i ∈ 1, . . . ,M document a multinomial distribution

θi over the topics Z from a K-dimensional Dirichlet distribution Dir(α).

Likewise, for each z ∈ 1, . . . ,K topics a multinomial distribution ϕz over

the words W is generated from an N -dimensional Dirichlet distribution

Dir(β). The word data j for document i is then generated by drawing a

latent component zi,j from the multinomial distribution θi, and then draw-

ing a word wi,j from ϕz. This is repeated until all words for all documents

are generated.
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3.2.3 Multi-view models

In many practical applications multiple data sources are available provid-

ing complementary information about the system under study. Examples

mentioned in Chapter 2 include combination of gene expression and pro-

tein interaction data, and drug treatment gene expression and toxicologi-

cal profiles. In such cases it would be sensible to define a joint probabilistic

model for all available data.

In the machine learning field, learning from multiple data sources with

shared samples is called multi-view learning, where a view refers to a

single data set. A classical multi-view method for studying dependencies

between two data sources is canonical correlation analysis (CCA) [52, 57].

Given two data matrices X1 ∈ R
D1×N and X2 ∈ R

D2×N with N shared

measurement samples, the task is to find linear projections U ∈ R
D1×K

and V ∈ R
D2×K so that the correlation between uT

kX1 and vT
k X2 is max-

imised for the components k. The components are additionally forced to

be uncorrelated. The solution can be found by analytically solving a set of

eigenvalue problems.

Also Bayesian versions of CCA have been introduced [69, 70, 132, 136].

One effective solution is to formulate the problem as a factor analysis

model (3.3) with a specific block structure in the factor loadings W corre-

sponding to shared and view-specific components [70, 132]. The Bayesian

CCA was recently extended to handle an arbitrary number of data views.

The resulting method, called group factor analysis (GFA) [133], is a gen-

eralisation of the factor analysis -type modelling of dependencies between

variables to dependencies between data sets. The central assumption is

that variables are active or inactive in groups, matching to the data views.

For GFA, the X in (3.3) represents a collection X1, ...,XM of M views,

with shared samples and dimensionalities D1, ..., DM . The modelling task

is to identify K factors that describe the structure and dependencies be-

tween the views Xm. The likelihood for observed data X is thus

p(X|Z,W, τ ) =

M∏
m=1

N (Xm|ZWT
m, τ−1

m I) . (3.4)

The noise E in (3.3) is now set to diagonal [τ−1
1 , ..., τ−1

M ] with each τ−1
m

repeated Dm times. A Gamma prior is used for the inverse variances τm,

and the factors z are assumed to be normally distributed with zero mean

and unit covariance:
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p(τm) ∼ G(aτ , bτ ) (3.5)

p(z) ∼ N (0, I) . (3.6)

In GFA, the weight matrix W is made group sparse with a automatic

relevance determination (ARD) prior that is specific to each pair of data

view m and component k:

p(W|α) =
K∏
k=1

M∏
m=1

Dm∏
d=1

N (wm,k(d)|0, α−1
m,k) (3.7)

p(αm,k) ∼ G(aα, bα) . (3.8)

where k indexes factors, m views and d dimensions. The inverse variance

of each wm,k is controlled by the parameter αm,k with a Gamma prior. The

hyperparameters aτ , bτ , aα and bα are set to very small values.

The ARD prior in GFA makes groups of variables, matching to the data

views, inactive for specific factors by forcing their α−1
m,k to zero. This group-

wise sparsity results in factors that are active in only a subset of the data

views. GFA thus effectively separates effects that are specific to certain

views from shared effects. This group-sparsity assumption is the key dif-

ference of GFA compared to earlier factor analysis models. Inference for

the GFA model is carried out with a variational approximation, using the

R package CCAGFA available in CRAN [133]. The detailed equations are

provided in the Appendix of Publication III.

In this thesis, GFA is used for modelling drug treatment experiments

from multiple cell types in Publications III and IV, covered in Section 5.2.

3.3 Probabilistic models for gene expression data

In this section, probabilistic models for different data analysis problems

in molecular biology are reviewed. Focus is on different types of models for

gene expression modules and models that combine multiple data sources.

Also model-based retrieval of gene expression experiments is reviewed.

3.3.1 Modelling gene clusters

Common clustering methods of gene expression data were discussed in

Section 2.1.3. Also probabilistic latent variable models have been used

extensively for gene expression data analysis, providing different kinds

of clusterings for genes [2, 43, 71, 102, 110]. A Bayesian variant of a
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standard biclustering method, called plaid model, was proposed [18] and

shown to outperform hierarchical clustering in clustering gene expression

profiles. A hierarchical version of biclustering was recently introduced

that uses a nonparametric Bayesian prior for automatically inferring the

numbers of biclusters at each level of the hierarchy [19]. One central

benefit of the probabilistic component models is that each data point can

belong to multiple components, whereas in standard clustering methods

the data points are assigned to a single cluster.

Also the probabilistic topic models have been applied to analyse large

collections of gene expression data [16]. In this application each gene ex-

pression experiment was considered as a document in the topic model ter-

minology. The differential expression profiles were processed with Gene

set enrichment analysis (GSEA) [118] to reduce the dimensionality and

bring in prior knowledge in the form of gene sets. The GSEA output

was then quantised and the resulting non-negative count vectors for each

experiment were considered as the word data for the topic model. The

method identified biologically relevant components from the ArrayExpress

database [90]. Compared to standard clustering methods, the probabilis-

tic model allows both genes and conditions to belong to multiple compo-

nents. The probabilistic topic model was used as basis for retrieval of

relevant experiments, as described in more detail in Section 3.3.3.

3.3.2 Modelling multiple data sources

Probabilistic models have been proposed for combining gene expression

with various other data types [86, 87, 98, 101, 104, 107]. As discussed

in Section 2.1.4, a highly interesting task is to combine gene expression

and protein interaction data to search for functional gene modules, and

many probabilistic models have been proposed to solve this task. A model

by Segal et al. [103] combines a mixture of Gaussians model for the gene

expression profiles with a Markov random field model for the protein in-

teractions into a joint probabilistic model, which was then used to dis-

cover coherent functional gene groups and protein complexes. Shiga et

al. [108] extended the Markov random field model into a hidden modular

random field (HMoF), seeking clusters of genes with high network mod-

ularity and similar gene expression profiles. Lahti et al. [76] proposed a

method for identifying local, connected regions in the protein interaction

network with a coherent transcriptional response in a subset of experi-

mental conditions, such as tissues. In this thesis, a novel probabilistic
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model extension for identifying functional gene modules from protein in-

teraction and gene expression data was introduced in Publication I and is

described in more detail in Chapter 4.

The probabilistic multi-view models are applicable in cases where mul-

tiple measurement types are available from the same samples. For exam-

ple, gene expression and DNA copy number from the same samples can

be modelled with CCA [77]. Huopaniemi et al. [61] used a Bayesian CCA

variant to combine metabolic profiles from two tissues. Also other CCA

variants have been applied to such settings with multiple genomic data

sources [81, 143, 145]. Combining the drug treatment gene expression

data with other data sources is a promising direction for drug discovery

and development. For example, The Connectivity Map gene expression

data has been used in combination with chemical descriptors to infer spe-

cific relations between chemical structures and molecular mechanisms,

first with non-probabilistic CCA [68] and later with GFA [133].

3.3.3 Model-based retrieval of gene expression experiments

Online databases of gene expression measurements are growing rapidly [8,

90]. It would be useful for many researchers to compare their experiments

to those made by others, but the problem is how to find the most relevant

ones from large databases. The traditional way of solving this information

retrieval task is to use manual annotations, such as disease or drug treat-

ment labels. However, such annotation-based retrieval methods depend

on the goodness of the annotations, and will miss any novel similarities.

An alternative approach is content-based retrieval, where the measure-

ment data is used directly to infer relevance in some way. This has the

benefit of not being restricted to user-generated annotations and can de-

tect novel similarities if the data supports them. For example, gene ex-

pression experiments can be searched by giving as input a list of genes

of interest, with the aim of finding other experiments where the same

genes are differentially expressed. Connectivity mapping [78], described

in Section 2.2.3, is an example of a such content-based retrieval method,

where gene signatures are used to match drug treatment gene expression

measurements to other drugs or diseases. In related work, a disease-drug

network was constructed by computing similarities between disease and

drug experiments [58].

Retrieving of relevant gene expression measurements from public data-

bases has also been approached in a model-driven fashion [16]. Using a
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probabilistic model, the relevance can be defined based on relevant effects

detected by the model. Model-based retrieval is also more commensurable

across measurements from various platforms than using raw data val-

ues. In practice, the topic model was used to capture relevant components

from a collection of gene expression measurements in the ArrayExpress

database [90]. Relevance for the retrieval was then be computed based on

the model, as

rel(q|r) = P (xq|Ψr) =
∏
x∈xq

T∑
t=1

θr,tϕt,x . (3.9)

In other words, the relevance of the query q to sample r is the probabil-

ity of r to generate the query data xq. The probability is computed using

point estimates of the topic model parameters Ψr = {θr,t, ϕt,x}, where θr,t

and ϕt,x are the multinomial distributions over the topics and words, re-

spectively.

Later, a fully Bayesian variant of the relevance measure was proposed [17],

integrating over the posterior of the latent variables Ψ:

rel(q|r) =
∫
Ψ
P (xq|Ψr)P (Ψr|X)dΨ . (3.10)

In this thesis, contributions to probabilistic model-based retrieval of rel-

evant gene expression data are presented in Section 5.2 using group factor

analysis as the model.
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4. Probabilistic components of
molecular interactions

In this chapter, contributions are presented on applying probabilistic mod-

els for functional gene module analysis. The problem is first introduced

and the specific contributions in Publication I are then described, cov-

ering the application and extension of the interaction component model

[112, 113] to the task of finding functionally coherent gene modules from

combinations of protein interaction and gene expression data.

4.1 Integrating gene expression data with protein interactions

The task of finding groups of genes with similar functions is very im-

portant in molecular biology for predicting functions for unknown genes

and for understanding molecular mechanisms of drugs and diseases. A

promising approach is to combine gene expression and protein interaction

data for finding functional modules with high gene expression similarity

and high number of interactions between the molecules. A lot of methods

have been presented for this task, as described in Sections 2.1.4 and 3.3.

In Publication I a probabilistic model for network data, called interac-

tion component model (ICM), was applied to searching for tightly intercon-

nected clusters from protein interaction networks and further extended to

incorporate gene expression data for improved module discovery. It was

compared to two alternative clustering methods that use both expression

and protein interaction data, called Matisse [128] and Hidden modular

random field (HMoF) [108].

Matisse combines gene expression and protein interaction data by first

transforming in the expression profiles into similarity values and then

seeking connected sub-networks based on both expression similarity and

protein interaction data [128]. The Matisse method was shown to outper-

form both Co-clustering [51] and CLICK [105]. The HMoF method for-
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mulates a joint probabilistic model based on a Markov random field and

network modularity [108].

Matisse is a non-probabilistic method and does not involve any kind of a

noise model for the interaction data, which makes it sensitive to noise in

the input data. However, Matisse does not need to include all genes into

the clusters if they do not seem to fit any of them, which can be benefi-

cial as not all genes participate in any functional modules. HMoF in turn

does contain a probabilistic noise model for both interactions and expres-

sion data, providing robustness against noise. Both Matisse and HMoF

assign each gene to exactly one cluster. This is a serious limitation, as

many genes and proteins are known to participate in multiple functions.

The probabilistic ICM, presented in Publication I, can cope with noisy

input data and additionally provides overlapping gene modules, better

matching the underlying biological phenomena.

4.2 Interaction component models for protein interaction and gene
expression data

The Interaction component model (ICM) was designed to capture tightly

interconnected clusters of nodes, and it has earlier been applied to find-

ing communities from large social networks [112, 113]. In Publication I,

ICM was used to search for interconnected clusters from protein inter-

action networks, the clusters being then interpretable as functional gene

modules. Additionally, two extensions to the model were introduced for in-

tegrating gene expression data into the analysis. A one-to-one matching

between genes and proteins was assumed, and the terms are thus treated

interchangeably.

ICM defines a generative probabilistic model for network data. It as-

sumes that each interaction in the network, or edge in a graph, is gen-

erated from a latent component. A component is defined as a probability

distribution over the nodes in the graph. A plate diagram of the model is

shown in Figure 4.1A. In detail, the links are generated by first drawing

the component z from the multinomial distribution θ, and then drawing

the end nodes i and j of the link from the multinomial distribution φz of

the component z. In the generative process each link belongs to exactly

one component, while nodes may belong to several and thus the model

allows for overlapping clusters.

In the first extension the gene expression data was transformed into
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Figure 4.1. Plate diagrams for interaction component models. (A) Plain ICM.
Each interaction is generated from a component z by sampling the end points
i and j from the multinomial distribution φz. (B) Extension (ICMg2) with
gene expression data (the bottom part of the plate is the same as in A).
Node data xi are generated from the same components z as the interac-
tions, by sampling each node i from φz and then its gene expression profile
from a component-specific Gaussian distribution N (μz, σ

2I). The component-
specific means μz have a Gaussian prior N (μ0, σ

2
0I). There are in total C

components, N links and M nodes. Figure adapted from Publication I.

additional similarity-based links and pooled together with the protein in-

teractions. The idea is that highly correlated genes are likely to be co-

regulated and thus involved in the same functional processes. In practice,

the Pearson correlation was computed between each pair of genes, and

a link was added between those pairs with correlation exceeding 0.85 in

the protein interaction network. This extension was denoted as ICMg1, g

referring to genes.

The second model variant extends the generative process of the ICM to

incorporate gene expression data for the nodes. The assumption is that

the components represent modules that are both strongly interconnected

and similar in terms of gene expression. The plate diagram for this ex-

tended model is shown in Figure 4.1B. In practice, for each node the com-

ponent z is first generated from the same distribution θz as the link com-

ponents, and finally the gene expression profile xk is sampled from the

component-specific Gaussian distribution. For computational simplicity

the fact that each node has exactly one gene expression profile was not

included as a constraint. This extension was denoted as ICMg2.

Model inference for ICM is carried out with collapsed Gibbs sampling,

where some of the variables are integrated out. In short, the assignments

of the data points to the latent components z are sampled one data point at

a time, holding all other assignments fixed, providing a reasonably simple

and fast sampling scheme. Details are given in Publication I.
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4.3 Results

The three ICM variants were applied to a collection of protein interac-

tion data and two gene expression data sets, resulting from osmotic shock

response and DNA damage experiments from yeast Saccharomyces cere-

visiae [128]. Two comparison methods for combining the data types were

included: HMoF [108] and Matisse [128]. All methods provided as output

a set of gene clusters, which were then compared to external ground truth

data to evaluate their biological relevance. The number of clusters for

ICM variants and HMoF was set to the median of 20 Matisse runs. The

relative weight for HMoF between the expression and network data was

fixed to ω = 0.2 as suggested in the original paper [108]. Matisse was run

with default parameters.

The ground truths used in the evaluation were Gene Ontology (GO) [6],

a hierarchical classification of known gene functions, and known protein

complexes from the Comprehensive Yeast Genome Database [46]. First,

perplexities were computed for predicting the standard gene classes de-

rived from the GO. Second, standard hypergeometric test-based GO en-

richment analysis was performed. Finally, the degree of coverage of the

identified clusters to known protein complexes was computed.

The results showed that the three interaction component models out-

performed the alternatives. Matisse performed clearly worse than the

other methods, while HMoF was in some cases equally good as the ICM

methods. From the ICM variants, the ICMg1 was in general slightly bet-

ter than the two alternatives, but the plain ICM without the gene ex-

pression data performed surprisingly well. Additionally, the ability of the

ICM methods to detect overlapping modules based on network data was

demonstrated on an artificial data set with a known ground truth.

4.4 Discussion

Publication I introduced generative probabilistic models for functional

module discovery from combinations of gene expression and protein inter-

action data. The interaction component model and its extensions outper-

formed a representative set of earlier methods for the task. The difference

was clear to the non-probabilistic method Matisse that lacks a noise model

for the interaction data, but smaller to the other probabilistic method,

HMoF, indicating that the probabilistic formulation is beneficial in coping
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with the highly noisy input data. Matisse has later been updated with

an improved probabilistic model for the subnetwork connectivity [129],

outperforming the earlier Matisse version.

Another key advantage of the ICM formulation is that the genes or pro-

teins can belong to multiple, overlapping modules, reflecting their biolog-

ical nature to participate in several functions. In Publication I this was

demonstrated with artificial data, and future work could address this in

real data, validated with a suitable ground truth. Since Publication I,

other methods capable of detecting of overlapping modules have also been

introduced, and a comparison would be interesting [83].

In its current form ICM requires the number of components to be spec-

ified beforehand, whereas some methods, such as Matisse, can estimate

the number of clusters automatically. A natural extension for the ICM

would be to use the Dirichlet Process [121], a common non-parametric

prior for multinomial distributions for estimating the number of compo-

nents from the data. Another possible improvement would be to add an

explicit model for inter-cluster links, as ICM currently only models intra-

cluster links.

In the current experiments, protein interactions seemed to be more in-

formative than gene expression data, with the addition of gene expres-

sion providing only minor improvement over the performance of the ICM

applied to the network data alone. This is consistent with earlier stud-

ies [87, 108], suggesting that functionally related proteins are more likely

to interact together than to show highly similar gene expression profiles.

Another possible reason is that the ground truth data, such as Gene On-

tology or protein complex information, are biased towards protein inter-

actions. In the current ICMg2 formulation, the interaction data gets more

weight as each link provides one count for the node, whereas its gene ex-

pression profile only acts as one count. This weighting could probably be

improved, increasing the relative importance of the gene expression data.

It is also possible that the gene expression data are so noisy and complex

that the rather simple modelling assumptions used so far are not able to

capture the relevant signals from the data. Transforming the gene expres-

sion data into links with a strict cutoff reduces the effect of the noise, but

on the other hand discards also a lot of useful information. The assump-

tion that the gene expression profiles should be similar across the whole

genome, underlying all methods discussed here, is quite strict as gene ex-

pression can vary over conditions. A more structured probabilistic model
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could be used to identify this condition-dependency, and would probably

improve the functional module discovery performance also. Such a model

was introduced by Lahti et al. [76], successfully identifying subnetworks

with context-specific transcriptional responses. Such models could also

be used to infer condition-dependency for the protein interactions, as dis-

cussed by Segal et al. [103].
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5. Probabilistic components of drug
responses and toxicity

In this chapter, contributions are presented on applying probabilistic com-

ponent models to molecular drug response and toxicity analysis. Two ap-

plication problems, toxicogenomics and drug connectivity mapping, are

addressed with introductions and contributions on each problem. In Pub-

lication II, a component model is used for associating drug treatment gene

expression measurements with corresponding toxicological outcomes, pro-

viding novel understanding of the genome-wide toxicogenomic responses

in human cancer cell lines. In Publications III and IV, a probabilistic

model-based data retrieval method is developed and applied to drug con-

nectivity mapping, providing improved search method for relevant drug

treatment experiments.

5.1 Probabilistic toxicogenomics

Toxicogenomics requires integration of multiple heterogeneous data sources

and thus provides interesting challenges for methods development. As

discussed in Section 2.2.2, the main obstacles for the development of tox-

icogenomics are lack of suitable data sets and sophisticated models that

can distinguish the toxicology-associated signals from the noisy data. In

Publication II, these problems were addressed by integrating the Connec-

tivity Map drug treatment gene expression data [78] with toxicological

profiles from the NCI60 Cancer cell line screen database [111], providing

the so far largest toxicogenomics data set. Probabilistic modelling was

then applied to identify toxicity-associated gene expression response pat-

terns. These patterns were characterised in terms of underlying biological

and toxicological mechanisms, and their predictive power was validated

with independent high-throughput cell line screening data and with exter-

nal human primary hepatocyte data from the TG-GATEs database [127].
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5.1.1 Constructing the predictive toxicogenomics space

A novel toxicogenomic resource for studying the associations between gene

expression and toxic responses was constructed by combining the drug

treatment transcriptional response data from the Connectivity Map (CMap;

[78]) with the NCI60 Cancer cell line screen data [111]. From the CMap,

3062 measurement instances, that is, chemical and cell line pairs, were

included from the microarray platform HT HG-U133A for 1217 unique

chemicals on three cell lines: MCF7 (breast), PC3 (prostate) and HL60

(leukaemia). Toxicological profiles from the NCI60 database were then ob-

tained for a subset of 492 instances for 222 unique chemicals on the same

cell lines, containing GI50 (50% growth inhibition), TGI (total growth in-

hibition), and LC50 (50% lethal concentration) values describing the toxic

outcomes from the drug treatments. The matching between the two data

sets was done based on chemical names.

Probabilistic component modelling was first applied to detect a set of ro-

bust drug treatment gene expression response components, following the

method described by Caldas et al. [16]. Briefly, Gene set enrichment anal-

ysis (GSEA; [118]) was first applied to reduce the high dimensionality of

the data and to incorporate prior knowledge, using 1321 curated gene sets

from the Molecular Signature Database [118]. The GSEA output values

for each instance and gene set-pair were then quantised, and the proba-

bilistic decomposition was performed with the Latent Dirichlet allocation

component model [12], earlier applied to topic modelling as described in

Section 3.2.

The component model assumes that each instance i has a probabilistic

assignment vector p(z|i) to the components z, and each component has

a probabilistic assignment vector p(gs|z) to the gene sets gs. Thus, each

instance and gene set can be associated with multiple components, fol-

lowing the polypharmacology assumption [56, 67]. Each component then

represents a specific chemical-induced transcriptional response pattern,

active for a subset of chemicals and cell lines. The components can be

interpreted as biological processes through the gene set activities, and

the assumption is that some of these capture the toxicity-associated re-

sponses. The number of components was set to 100 based on external

functional similarity data of the chemicals. The inference on parameters

was carried out with collapsed Gibbs sampling.

After identifying the response components from the full CMap data, the
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components were associated to the toxicological profiles available for the

subset of 492 instances. As the toxicological outcomes from the CMap

drug treatments are a result of both the chemicals intrinsic toxic po-

tential (GI50, etc.) and the dose with which the treatment was carried

out, a concentration-dependent toxicity Ti for instance i was defined as

the difference between the CMap concentration D and the GI50 values:

Ti = log10D − log10GI50. For each component z, the mean concentration-

dependent toxicity value Tz was computed as Tz =
∑

i[p(i|z) · Ti], where

the probability of the instances to belong to the component z is computed

as p(i|z) = p(z|i)/∑i′ p(z|i′).
A subset of the 100 components was then selected as the Predictive toxi-

cogenomic space (PTGS). The predictive performance was validated based

on the 492 instances with GI50 values available using a cross-validation

procedure to avoid overfitting. The 14 components, labelled A-N, with the

highest performance in concentration-dependent toxicity prediction, were

selected as the PTGS components as a tradeoff between interpretability

and predictive power. The probability of an instance to belong to the 14

PTGS components was thereafter used as a toxicity-predictive score.

To characterise the PTGS, the top instances and genes were identified

for each of the 14 PTGS components. The top genes were identified by

evaluating the differential expression of each of the genes in the top gene

sets, as given by p(gs|z). Based on the top genes, biological and toxicolog-

ical characterisation was performed using Gene Ontology [6] enrichment

analysis (R package topGo; [4]) and Ingenuity Pathway Analysis.

5.1.2 Results

The constructed novel toxicogenomics dataset revealed a strong corre-

lation between concentration-dependent chemical toxicity and transcrip-

tional variation. The identified PTGS components covered primarily the

transcriptional responses resulting from measurements at toxic doses.

The PTGS components reflected responses induced by a broad set of chem-

ical classes and mostly shared across the cell lines. The genes associated

with the PTGS components showed an expected enrichment of various bi-

ological and metabolic processes and transcription factors associated with

growth inhibition, and cellular toxicity and stress pathways. Ingenuity

Pathway Analysis revealed toxicity effects in major internal organs af-

fected by adverse drug reactions. The PTGS-associated genes included

also many novel genes and transcription factors for toxicity prediction
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The ability of the PTGS score to predict concentration-dependent toxi-

city was evaluated for a set of independent toxicological profile measure-

ments for the CMap instances. The predictive performance of the PTGS

scores was compared to partial least squares quantitative structure-activity

relationships (QSAR) -based approach. The PTGS resulted in signifi-

cantly higher predictive performance than QSAR, confirming the predic-

tive power of the PTGS. Finally, the PTGS was evaluated outside the

CMap data set, using the TG-GATEs database [127] of drug treatment

measurements hepatocyte cells on human in vitro and rat in vitro and in

vivo. In the human data set, the PTGS scores showed clear concentration-

dependent behaviour, suggesting that the PTGS score is applicable also

outside the three CMap cancer cell lines. However, for the rat data the

concentration-dependent behaviour was not visible, suggesting that the

PTGS is human-specific.

5.1.3 Discussion

In Publication II, a novel toxicogenomics dataset was constructed, reveal-

ing a strong correlation between the chemical toxicity and the chemical-

induced transcriptional variation that has not been shown in this scale

earlier. A probabilistic component model was used to identify a set of

robust toxicogenomic response components that were then further charac-

terised and shown to exhibit high concentration-dependent toxicity-predic-

tive power. This study is the first to provide a broad view to the dose-

dependent toxicogenomic responses. Remarkably, the effects are mostly

shared across cell lines and further extend to hepatocyte cells as well,

though being apparently human-specific.

Given the overlapping chemicals between CMap and NCI60, an alterna-

tive approach would have been to use some statistical method to identify

genes that are predictive of the toxicological profiles. However, such an

approach would likely provide a lot of false positives. Instead of analysing

individual genes, it was possible to analyse sets of coherently behaving

genes with the help of GSEA. The probabilistic model made then possible

to associate both drugs and gene sets with multiple response components,

reflecting the promiscuous nature of drug responses. Moreover, the prob-

abilistic model allowed the use of the full CMap data to construct more

robust gene expression response components.

The results showed clearly that the gene expression data is more infor-

mative of the toxicological outcomes than the chemical descriptors. This
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is in line with earlier results with the TG-GATEs data [82]. It would be

interesting to try combining these data sources in the future and see if

better methods could bring any additional benefits from the chemical de-

scriptors. Notably, another study using in vitro assays from the ToxCast

project did not find a significantly different predictive power as compared

to QSAR [122], suggesting that the specific assays did not cover enough

toxicity-predictive genes. The top genes associated with the PTGS provide

an effective starting point for developing more accurate toxicity-predictive

assays.

5.2 Probabilistic drug connectivity mapping

In this Section, a novel method is introduced for retrieving relevant ex-

periments from large collections of gene expression data for multiple cell

types. The first contribution is to define the relevance for retrieval based

on a probabilistic model. The second contribution is to use a multi-view

model for proper data integration in retrieval applications where data

from multiple sources are available, carrying partially relevant informa-

tion for the retrieval task.

In Publications III and IV the novel probabilistic modelling-based data

retrieval method was introduced, extending the retrieval of relevant ex-

periments principle introduced by Caldas et al. [16] and described in Sec-

tion 3.3.3. The idea is that a well-chosen probabilistic model can capture

relevant response components from the noisy input data, and retrieval is

then more accurate based on the model than the original input data.

The method was applied to the drug connectivity mapping task, intro-

duced in Section 2.2.3. Compared to earlier alternatives, the method is

better able to capture relevant activity components from the noisy input

data, and further explicitly infer which components generalise across the

cell types. In Publication III the task is to infer overall similarity for a

query with data from all three cell types. In contrast, in Publication IV

the query data is given for only one cell type, and the task is to use the in-

formation from the other cell types to improve the retrieval performance

on the query cell type.
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5.2.1 Data retrieval with group factor analysis

A general limitation in current connectivity mapping methods is that they

simply aggregate data over all experimental factors, as discussed in Sec-

tion 2.2.3. They assume that only the responses that are general across

experimental factors are relevant, while any specific responses are dis-

carded as noise. However, different cell types often respond differently

to the same drugs, at least when considering a broader variety of cell

types [7, 40]. In personalised cancer medicine the aim is to find a cure

for a specific disease, in which case the focus should be on the responses

characteristic to the corresponding cell type. On the other hand, toxic-

ity analysis aims to detect effects that generalise across model organisms

and ultimately to humans, and thus the analysis should focus on effects

shared across all cell types.

To solve the data integration problem, a probabilistic multi-view model

was used. Group factor analysis (GFA) [133], described in Section 3.2.3,

provides a suitable decomposition of multiple cell type response data to

shared and specific components, representing gene expression response

patterns for subsets of the drugs and genes. Combining information from

multiple cell types provides more robust components, as noise in the data

is by definition specific to individual cell types. Additionally, the latent

variable-based probabilistic model is able to deal with the high dimen-

sionality and low sample size, typical in gene expression data analysis.

Details of the GFA model were described in Section 3.2.3. Applied to

drug treatment gene expression measurements from multiple cell types,

GFA provides latent component activities zi for each treatment i and load-

ings wm,k for each cell type m and component k. Due to the group-wise

ARD prior, the loadings are made sparse on the cell type level, result-

ing in decomposition of the data where components are active in all or

only a subset of the cell types. This is a key novelty of the GFA-based

retrieval drug connectivity mapping method, compared to earlier alterna-

tives which consider only the general responses to be relevant. Currently

GFA uses simple Gaussian distributions to model the gene expression

data, which seems to work well based on the good retrieval performance,

but also other distributions could be used, possibly improving the perfor-

mance further.

Given the GFA model, retrieval can be performed based on the shared

or specific components, or both, depending on the application and user
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interests. A suitable relevance measure between drugs i and j is the

Pearson correlation between their latent variables zi and zj identified

by GFA. This measure focuses on the non-zero factors, representing rele-

vant activity for the query. For a new chemical-treatment sample outside

the existing database, the latent variables can be estimated easily. The

model-based retrieval method was coined in the work as probabilistic con-

nectivity mapping.

5.2.2 Probabilistic drug connectivity mapping results

In Publication III the probabilistic connectivity mapping method was ap-

plied to the Connectivity Map (CMAP) [78] gene expression data with

three cell lines. The performance of the method to retrieve functionally

and chemically similar drugs was compared to alternative, rank- and

correlation-based connectivity mapping methods [62, 78]. Additionally,

alternative probabilistic model formulations were evaluated to study the

benefits from the multi-view data integration capability of GFA, including

sparse factor analysis with feature-wise sparsity and Bayesian PCA with

a shared sparsity prior across all dimensions.

From the CMap chemicals, a subset of 718 chemicals measured with

the HT-HG_U133A platform on all three cell lines were used. Instead

of the full genome, a subset of 930 Landmark genes identified in the

LINCS project were used. Retrieval performance was measured against

two ground truth sets of functional and chemical drug similarity: shared

Anatomic Therapeutic Chemical (ATC) classification codes and Tanimoto

similarity. Two retrieval performance measures were used: partial area

under the ROC curve and top-10 mean average precision.

The results showed clearly how the probabilistic connectivity mapping

with GFA and sparse FA outperformed the other methods on both ground

truths and goodness measures. Bayesian PCA performed clearly worse

than the sparse models, confirming the benefits from the sparsity as-

sumptions for capturing relevant activity from noisy data. Additionally,

the shared GFA components were shown to be relatively more important

than the cell line-specific components from either GFA or sparse FA. This

indicates that the data integration approach that separates the shared

and specific effects is beneficial for connectivity mapping.

45



Probabilistic components of drug responses and toxicity

5.2.3 Cross-organism toxicity analysis results

A central limitation in toxicogenomics is the lack of direct chemical treat-

ment measurements from humans, as discussed in Section 2.2.2. One

solution to this problem has been to use connectivity mapping -type re-

trieval methods on gene expression data measured on various model or-

ganisms, and interpreting the results based on known drug toxicity effects

on humans [15, 144].

So far the connectivity mapping methods for toxicity analysis have al-

lowed the use of only one cell type at a time, whereas databases such as

TG-GATEs offer data on cells from multiple organisms (human in vitro,

rat in vitro and in vivo). As the goal is to predict chemical toxicity in

humans, it would make sense to integrate the responses across the cell

types and especially identify those responses that are conserved across

the organisms, as those are most likely to generalise to humans as well.

Toxicity analysis thus offered another interesting application for evalu-

ating the benefits of probabilistic connectivity mapping with group factor

analysis. This was studied in Publication IV with the TG-GATEs data. As

ground truth for evaluating the retrieval performance, the drug-induced

liver injury (DILI) label and concern classes [22] were used, represent-

ing liver-related toxicity risk information for drugs already in clinical use.

Additionally, the ATC codes were used to give more detailed information

about the drug mechanisms of action.

GFA was applied to identify shared gene expression responses across

the three model organisms. The GFA model was extended with additional

element-wise sparsity on both the factors Z and factor loadings W, assum-

ing that the identified factors represent drug response patterns specific for

a small number of drugs and genes. Details of the GFA variant are given

in Publication IV. The measurements from the human in vitro hepatocyte

cells were used for retrieval, reflecting a practical connectivity mapping

use case where the treatment effects for a novel chemical are measured

in only a single cell type. The performance of the probabilistic connec-

tivity mapping with shared components to retrieve relevant chemicals in

terms of the ground truth data was evaluated against the standard con-

nectivity mapping methods. Retrieval performance with the shared com-

ponents was indeed better than with earlier methods using only a single

data source, suggesting that learning and using the cross-organism re-

sponses is suitable for connectivity mapping-based toxicity analysis.
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5.2.4 Discussion

Publications III and IV introduced group factor analysis-based data re-

trieval method, called probabilistic connectivity mapping, with two main

contributions: First, using a suitable probabilistic model it is possible to

capture the relevant drug response components from the noisy gene ex-

pression data and use these components to define the relevance in the

connectivity mapping task. Second, using a model capable of integrating

the data from multiple available cell types, and especially learning which

responses are specific to cell types and which are shared by two or more

of them, improves the retrieval performance.

In Publication III probabilistic connectivity mapping was shown to out-

perform alternatives in finding functionally and chemically similar drugs

from measurements over multiple cell lines. In Publication IV the method

was shown to improve toxicity-related retrieval results for a single-cell

query by using shared responses identified from a database with multiple

cell types. The multi-view model-based retrieval method thus provides a

promising direction for methods development for drug repositioning and

toxicity analysis applications.

Probabilistic connectivity mapping gives the user the explicit choice of

focusing on the shared or specific responses, making it applicable in both

personalised medicine and general toxicity analysis. In both Publications

III and IV, the shared components were shown to be more informative,

but also some of the cell line-specific components contained some relevant

information. With the number of available measurements growing in the

future data collections, such as LINCS, the benefits from the multi-view

decomposition and especially the shared components are expected to be-

come even more apparent.

In the current works the model-based relevance was defined in a very

simple manner as the Pearson correlation between point estimates of the

latent variables. As discussed in Section 3.3.3, the relevance could be

formulated in a more Bayesian manner in terms of probabilities with

either point estimates as p(xq|zi), or over the full posterior p(xq|xi) =∫
p(xq|zi)p(zi|xi)dz. Both alternatives were studied also for probabilistic

connectivity mapping, but the retrieval performance turned out to be in-

ferior to the simple correlation. One possible reason for this is that the

distributional assumptions made in GFA do not fully match to the data,

and thus the probability-based relevance measures that take the partly
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misspecified uncertainty into account make things worse, which is some-

thing to consider in future extensions.
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6. Model-based graph visualisation

In this chapter, contributions are presented on applying probabilistic mod-

els for information visualisation. In particular, a novel model-based method

is introduced for graph visualisation, which is an important exploratory

tool in many biomedical and other applications. The method enables the

visualisation to focus on relevant global structures in the data, in contrast

to earlier graph visualisation methods that focus on local properties.

In Publication V a probabilistic latent variable model for graph data was

first used to capture important link distributions in the data, and then

combined with a recent information retrieval-based visualisation method

to provide a two-dimensional graph layout. The result is a novel graph

visualisation method that can reveal complex structures in large graphs,

as demonstrated with word-adjacency graphs.

6.1 Graph visualisation

In many problem domains, data can naturally be represented as a net-

work, where nodes represent objects and edges represent relationships

between the objects [44]. For example, proteins and other molecules in-

teract to form complex networks that drive cellular actions, as discussed

in Chapter 2. Also interactions between humans can be represented and

analysed as social networks.

A popular way to explore and analyse network data is visualisation,

which can often convey more information than purely numerical data.

A network or graph visualisation is defined by the layout of the nodes

and edges in two dimensions. Different visualisation methods focus on

different aspects of the layout. Traditionally, graph drawing has been

formulated as producing the layout “according to some generally accepted

aesthetic criteria” [38]. Algorithms that focus on local aesthetic criteria
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may produce visually nice graphs, while completely ignoring any global

structure underlying the graph data.

A common aesthetic criterion for a graph drawing has been to position

nodes connected by an edge close to each other, but not so close that they

would overlap. This principle is followed by the force-based graph draw-

ing algorithms [27, 38, 55]. Traditional force-based methods are very slow

for large graphs, and thus faster variants have been proposed [48, 135].

Another family of graph drawing algorithms with essentially the same

goal are spectral methods [50, 73]. They operate based on the spectral de-

composition of some matrix derived from the graph, and are much faster

than force-based methods, but tend to produce layouts where many nodes

overlap [47].

An alternative to aesthetic goal-based graph drawing is to focus on inter-

esting global structures, such as clusters of tightly interconnected nodes.

An example of a graph drawing method aiming to show graph clusters is

LinLog introduced by Noack [88]. The author shows that this task is in

conflict with the traditional aesthetic goals, and produces highly different

kinds of layouts. As discussed in Chapter 2.1.3, clusters of similar genes

are also studied a lot in molecular biology, and thus a lot of graph cluster-

ing and visualisation methods have been applied to analysis of biological

networks [37, 41].

6.2 Probabilistic model-based graph visualisation

The novel probabilistic model-based graph visualisation method intro-

duced in Publication V consists of three key steps: 1) using a suitable la-

tent variable model for capturing essential structure from graph data, 2)

computing distances between the nodes in the graph based on the model,

and 3) using a non-linear dimensionality reduction method to visualise

the data in two dimensions.

As a probabilistic generative model for graphs, the Simple social net-

work LDA (SSN-LDA) was chosen. It is a modification of the topic model

described in Section 3.2 for graph data. In SSN-LDA, the nodes are asso-

ciated with a membership distribution over latent components, and each

component is in turn associated with a distribution over the nodes in the

graph. Edges are generated by first drawing a component for the starting

node and then drawing the receiving node from the component-specific

distribution. The components thus capture specific link distribution pat-
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terns in the graph, representing nodes that link to the same set of other

nodes.

Given the learnt SSN-LDA model for the graph, a similarity matrix is

computed between the nodes based on their probability distributions over

the components. As a similarity measure between the probability distri-

butions pi and qi over the latent variables i, Hellinger distance was used:

dH(p, q) =

√√√√ n∑
i=1

(
√
pi −√

qi)2 . (6.1)

It has been shown to be useful for topic models [11]. Finally, the simi-

larity matrix is used for input for a non-linear dimensionality reduction

method to produce a two-dimensional visualisation. Here a recently in-

troduced method called neighbour retrieval visualiser (NeRV) [131] was

used. NeRV offers a principled way to control the tradeoff between pre-

cision and recall in information visualisation and has been shown to out-

perform other non-linear dimensionality reduction methods.

Compared to the earlier graph visualisation methods, the proposed met-

hod allows an explicit choice of what aspects the visualisation should focus

on, by choosing a suitable generative model. This allows the visualisation

to focus on global structures such as clusters, and by changing the model

the visualisation could be made to focus on other things. SSN-LDA was

chosen here as it can capture both tightly interconnected clusters of nodes

and also clusters with more complicated linking patterns.

6.3 Graph visualisation results

In Publication V the graph visualisation method was applied to a set of

graphs with various underlying structures that match to known ground

truth labels. The method was compared to Walshaw’s force-based met-

hod [135], Kruskal’s spectral method [73], and Noack’s LinLog [88].

The methods were first applied to a graph where nodes represented foot-

ball teams in different conferences, and edges represented games between

the teams. The teams in the same conference typically played more often

against each other than teams from other conferences. Both LinLog and

the model-based method were able to capture a cluster structure match-

ing very well to the conferences. Neither the force-based nor the spec-

tral method showed any clear clusters, but teams in the same conferences

were still mostly positioned close to each other.
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Next, word-adjacency graphs with more complex structure were studied.

In these graphs, nodes represent words and they are connected with an

edge if they occur frequently next to each other in text. Word-adjacency

graphs have been shown to exhibit disassortative structure [85]: Words

from the same word classes, such as noun, typically appear more often

next to words from different classes than words from the same class. A

small graph consisting of only adjectives and nouns was first studied. A

larger word-adjacency graph based on seven novels by Jane Austen was

also constructed, using adjectives, nouns, and verbs.

In the word-adjacency graphs the ability of the model-based method to

detect also complex linking structures, such as disassortative clusters, be-

came evident. While the three comparison methods failed to show any

meaningful structure in the graphs, the model-based method was able

to show groups of words that match well to the known classes. This is

also confirmed with quantitative validation: The model-based visualisa-

tions showed clearly superior k-nearest neighbour classification accuracy

for the word classes. In addition to grouping similar words together, the

model-based visualisations showed clear edge bundles between the word

groups, revealing the underlying linking patterns.

6.4 Discussion

In Publication V a novel graph visualisation method was introduced that

is able to capture and show relevant structure in graph data by using

a suitable probabilistic model. It was shown to find both tightly inter-

connected clusters and disassortative structure from the studied exam-

ple graphs, where earlier graph drawing methods failed. By changing

the model, the visualisation could be focused on other things. For exam-

ple, using the interaction component model used and extended in Chap-

ter 4 instead of SSN-LDA, the visualisation would focus only on intercon-

nected clusters, perhaps performing better than SSN-LDA in that partic-

ular task, but would then miss the disassortative structure in the word-

adjacency graphs.

The proposed method is analogous to the model-based retrieval method

described in Sections 3.3.3 and 5.2 in that a probabilistic model is used

to define what is important in the data and then the model output is used

to infer similarity or relevance between the data points. These are in

fact different views to the similarity structure captured by the model: Re-
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trieval focuses on the most relevant results for a given query data point,

whereas a visualisation shows the whole data set, trying to keep similar

points close to each other. The model-based visualisation method could

thus be used for example to show the overall similarity structure of the

drugs in the CMap data, and in general the introduced principles should

be widely applicable in visualising molecular interactions and other types

of biomedical network data.
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7. Conclusions

In this thesis contributions were summarised on applying probabilistic

component models for analysing molecular interactions and drug responses.

The studied applications represent timely problems in molecular biology

and medicine. Solving such problems requires advanced computational

analysis methods that can cope with multiple noisy data sources with

small sample sizes, and here probabilistic component models have been

proven highly useful. The publications in this thesis show how the com-

ponent models can be used in many practical data analysis tasks, such as

interpretation, prediction, retrieval and visualisation.

Identifying functionally coherent gene modules from combinations of

gene expression and protein interaction data is an important task for pre-

dicting functions for unknown genes and proteins and identifying molec-

ular response mechanisms activated by diseases and drug treatments. In

Publication I, a probabilistic interaction component model was applied

to this task, outperforming earlier alternatives. The joint probabilistic

model was able to effectively integrate the two noisy data sources, and

furthermore provide overlapping gene modules.

With probabilistic component models, it is also possible to model high-

throughput molecular profiling measurements from drug treatment sam-

ples and provide novel understanding and predictive models. In Publica-

tion II, a component model was used to identify and associate drug re-

sponse patterns from gene expression data with toxic responses. This

so far largest toxicogenomic study provided both detailed hypotheses for

molecular response mechanisms leading to chemical toxicity and also high

performance in toxicity prediction.

Probabilistic components identified from drug response data can also be

used for improved retrieval of functionally and chemically similar drugs

in drug connectivity mapping tasks, as was shown in Publications III and
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IV. Moreover, using a suitable probabilistic multi-view model it is possible

to separate drug responses shared across cell types and even organisms

from specific responses, which is crucial for developing connectivity map-

ping methods for personalised medicine applications. The model-based

similarities can also be used for visualisation of interesting latent struc-

tures in the data, as demonstrated in Publication V.

The research summarised in this thesis was motivated mainly by ap-

plications in molecular biology and medicine, where the development of

measurement technologies provides ever growing data sources with inter-

esting analysis challenges. Similar development can however be seen in

many other fields, and thus also the models applied and developed in the

thesis would be broadly applicable outside the biomedical domain. For ex-

ample in computational social sciences, the probabilistic component mod-

els could be used to understand underlying patterns in social systems and

predict future events.

The work presented in the thesis also opens interesting future research

directions. Several of the publications involved integration of multiple

data sources, with promising results. This could be taken a step further

by for example jointly modelling the drug treatment gene expression and

toxicological profile data from multiple cell lines. This could also include

measurements from multiple organisms and different toxicological out-

come observations, as provided in the TG-GATEs database. Here the

probabilistic multi-view methods, such as group factor analysis (GFA),

would be readily applicable. The resulting components could capture both

specific and shared toxicity-associated drug response patterns across mul-

tiple cell types. Such approach has been already demonstrated with the

Connectivity Map data [65], and a large-scale analysis for example on the

LINCS data could potentially provide a wealth of novel understanding

on specific and general pharmacological and toxicological drug response

mechanisms.

A lot of research has been conducted in predicting tissue-specific drug

sensitivity combining multiple genomic data sources over hundreds of cell

lines [7, 40]. Integrating the available drug treatment gene expression

data to such analyses could provide improved predictions. Probabilistic

multi-source models should be useful in integrating such disparate data

sources, especially as even the state-of-the-art measurement technolo-

gies provide only partially comparable data [139]. Further incorporating

chemical structure data into the analysis could provide direct links with
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the particular substructures responsible for the molecular responses.

Identifying the drug response components could also benefit from com-

bining gene expression with other high-throughput data such as protein

interactions. The multi-view models such as GFA could be extended to use

molecular network data for inferring structural relationships between the

genes, and here the interaction component models used in Publication I

would be a good starting point. Such a model could be used for interpret-

ing the toxicogenomic molecular mechanisms as in Publication II, and

also for improved connectivity mapping, as in Publications III and IV.

Moreover, the model-based information visualisation method introduced

in Publication V could be used to provide a comprehensive overview of the

structure the drug response space.

These studies and ideas also give motivation further model develop-

ment. As the high-throughput databases contain a lot of missing obser-

vations over the measured data and cell types and organisms, it would be

important for the probabilistic models to handle the missing data prop-

erly. Additionally, the data often has some known underlying structure

that should be optimally included in the model. For example, the GFA

model assumes that all dimensions in the data views are independent,

whereas the genes across cell types are known to mostly behave in a sim-

ilar manner. Thus a more restricted model could better match the bio-

logical phenomenon while also helping in model identifiability. Also the

sparsity assumptions and technical implementation could be improved

further based on prior knowledge of the biological systems.

This thesis provides scientific advances in both molecular biology and

medicine applications and probabilistic modelling, and highlights the value

of interdisciplinary research where applied research and methods devel-

opment feed each other.
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