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Abstract 
The huge appetite for mobile broadband has resulted to continuous and complementary 

improvement in both radio access technology and mobile backhaul of cellular networks, along 
with network densification. Femtocells are foreseen to complement traditional macro base 
stations (BSs) in Long Term Evolution (LTE) and future cellular networks. 

  
Deployment of femtocells, introduce new requirements for distributing phase 

synchronization and interference management in heterogeneous network. Achieving phase 
synchronization for indoor femtocells will be beneficial for time division duplexing (TDD) 
operation and inter-cell interference cancellation and management techniques, but challenging 
to achieve as global positioning system does not work indoors. In this thesis, we propose 
coordinated transmission and reception algorithms to reduce interference across BSs, and 
thereby achieve better network-wide phase synchronization over the air. We also cover the 
problem of selecting component carriers for dense small cell network, by improving the 
throughput of cell-edge user equipment's (UEs). We propose three strategies: Selfish, Altruistic 
and Symmetric for primary carrier selection and remove the outage of the macro UEs near the 
closed subscriber group (CSG) femtocells. Further, we propose dynamic frequency selection 
algorithm for component carrier selection, where decisions to select or drop a carrier are based 
on gain/loss predictions made from UE handover measurements. Thereby, we maximize the 
sum utility of the dense femtocell network, which includes mean-rate, weighted fair-rate, 
proportional fair-rate and max-min utility. 

  
Mobile backhaul dimensioning is studied to improve the handover and provide the cost-

effective backhaul opportunity for femtocells deployed in emerging markets. In a packet-
switched wireless system e.g. LTE, data packets are needed to be efficiently forwarded between 
BSs during handover over the backhaul. We improve the packet forwarding handover 
mechanism by reducing the amount of forwarded data between BSs. Another challenge lies in 
equipping the femtocells with backhaul, where copper cable, optical fiber or microwave radio 
links are expensive options for unplanned emerging market case. We consider leveraging 
macro LTE networks to backhaul High Speed Packet Access femtocells, thereby highlight the 
possibilities for cost-effective capacity upgrades of dense settlements. 
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1. Introduction

1.1 Motivation

Driven by a new generation of wireless user equipment (UE) and the

proliferation of bandwidth-intensive applications, user data traffic and

the corresponding network load are increasing in an exponential manner.

This has been possible by complementary improvements in both radio ac-

cess networks and mobile backhaul. Moreover, traditional centrally man-

aged wireless network are re-designed to be self-organized by giving more

control to the base station (BS) [1].

Most of the new data traffic is being generated indoors, which requires

increased link budget and coverage extension to provide satisfactory user

experience. As a result, current cellular networks are reaching their

breaking point, and conventional cellular architectures that are devised

to cater to large coverage areas and optimized for homogeneous traffic are

facing unprecedented challenges to meet these user demands. In this con-

text, there has been an increasing interest to deploy relays, distributed

antennas, and small cellular access points (such as picocells and femto-

cells) in residential homes, subways, and offices. These network architec-

tures, which may be either operator-deployed and/or consumer-deployed,

and are comprised of a mix of low power cells underlying the macrocell

network, are commonly referred to as heterogeneous networks (HetNets).

By deploying additional network nodes within the local-area and bringing

the network closer to end-users, HetNets can potentially improve capacity

and coverage, thus allowing future cellular systems to achieve higher data

rates, while retaining the seamless connectivity and mobility of cellular

networks. Inspired by the attractive features and potential advantages

of HetNets, their development and deployment is well researched in the
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wireless industry and research communities during the last few years. It

has also attracted the attention of standardization bodies, such as Third

Generation Partnership Project (3GPP) Long Term Evolution (LTE) and

The Institute of Electrical and Electronics Engineers (IEEE) 802.16 Wire-

less Metropolitan Area Networks. Moreover, network densification is the

dominant theme for wireless evolution into fifth generation (5G) of mo-

bile networks. However, HetNets also come with their own challenges,

and there are significant technical issues that still need to be addressed

for successful roll-out and operation of these networks. Research areas in

HetNet include spectrum allocation for macro and small cell deployment,

interference analysis, alignment, avoidance, and coordination, restricted

access versus open-access femtocells/picocells, power control mechanisms,

mobility, load balancing, carrier aggregation and selection, joint transmis-

sions, time synchronization, self-organization and backhaul dimension-

ing [2–9].

Dense HetNet deployment results to interference among BSs and con-

nected users both in downlink and uplink. BSs transmit synchroniza-

tion signals on the same channel as the actual payload transmissions.

Interference prevents the indoor BSs from achieving time synchroniza-

tion, which is trying to synchronize to the neighboring BS over the air.

Moreover, interference from the neighboring BS may adversely affect the

cell-edge UE throughput, which is connected to the distant BS. This calls

for the maintenance of radio resources among BSs to prevent interference

and achieve time synchronization and improved cell-edge UE throughput.

Network densification may result to enhancement in the data through-

put between the base stations (BSs) and mobile devices. But in order

to translate this into enhanced user experience, the BSs need to to be

connected to the core network and to one another through high-capacity,

low-latency backhaul. Mobile backhaul is a link connecting radio access

network with the core network, using microwave, copper or fiber access.

To address the new challenges operators face as they transition to LTE,

mobile backhaul is being upgraded from circuit-switched legacy backhaul

networks towards packet-based networks to deliver more capacity and

coverage into the mobile network. Research is ongoing to further evolve

the backhaul to support the 5G wireless system, based on Cloud-RAN ar-

chitecture and wireless backhaul technologies. User data is forwarded

over mobile backhaul across BSs to support user mobility during han-

dover [1,10–12]. This calls for optimization of data forwarding algorithms

12
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to efficiently utilize the backhaul links connecting the two BSs.

Self-organization and self-adaptation phenomena is well studied in fields

of network science and complex systems [13]. With the rapid growth

of mobile communications, deployment and maintenance of cellular mo-

bile networks are becoming more and more complex, time consuming,

and expensive. In order to meet the requirements of network operators,

the telecommunication industry and international standardization bodies

have recently paid intensive attention to the research and development of

self-organized network (SON). This has resulted to the re-design of the

network from centralized control to more independent and self-organized.

SON is expected to give cost savings and performance benefits during the

network deployment. Example use-cases of SON includes handover opti-

mization, physical cell-id assignment, load balancing, interference coordi-

nation, energy savings [7,14–17].

1.2 Research Questions and Scope

In this thesis we focus on three research areas concerning cellular net-

works: reducing interference, improving handover mechanism and pro-

viding backhaul for small cells. Small cells are low-power base stations

such as relays, picocells and femtocells in LTE-Advanced terminology. In

our context, we refer to small cells as femtocells, which are deployed in-

doors inside the home/enterprise building. Throughout, the thesis, we use

the terms small cells, femtocells and home BSs interchangeably. Scope of

the thesis is limited to answer the following research questions:

1. How a BS achieves phase synchronization over the air in a dense

indoor small cell network by reducing interference from the neigh-

boring BSs? Phase synchronization is well studied in the field of

wireless sensor network, but not much is known in context of achiev-

ing phase synchronization across interference-limited wireless net-

work, where interference limits the spread of timing across the net-

work. Phase synchronization for wireless network is important for

LTE which supports time division duplexing (TDD) operation, coor-

dinated multi-point transmission (COMP) and also for the future 5G

network.

2. How a BS selects component carriers out of the possible multiple

component carriers in a dense small cell network with closed sub-

13
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scriber group (CSG) femtocells and thereby reduce interference on

its cell-edge users? CSG is a limited set of users with connectivity

access to a femtocell. LTE-Advanced supports multiple component

carrier transmission along with HetNet deployment, which gener-

ates the need of selecting part of the available spectrum (i.e compo-

nent carriers), so that interference among macro BS and CSG fem-

tocell and across CSG femtocells is minimal.

3. How to reduce data forwarding across BSs during handover over

the backhaul? Efficient data forwarding plays an important role to

cater for the user’s quality of service (QOS) and Transmission Con-

trol Protocol (TCP) throughput requirements during handover and

also reduces load on the link connecting the two BSs.

4. How to provide backhaul for small cells in the emerging markets,

where the copper or fiber based backhaul does not exist? Network

densification through customer-deployed small cells is an attractive

model for emerging markets, both to operators and users. For op-

erators, customer-deployed small cells is attractive financially, as it

does not need to invest in network densification by deploying more

macro BSs. Moreover, for customers, small cells provide better ca-

pacity and coverage compared to the distant macro BS. Emerging

markets like Africa and Asia lacks the copper or fiber deployment,

which makes providing backhaul for customer-deployed small cell

challenging.

1.3 Scientific Methodology

The following steps provide a high-level overview of the scientific method-

ology used in this thesis.

• Literature review, brainstorming and problem delineation.

– Research and development of practical solutions aiming at ex-

ploiting the nature of the problem being tackled as well as ad-

dressing issues not solved by prior art.

– Analytical modeling whenever possible followed by qualitative

analysis of the expected results.

– Modeling, software implementation, testing and quantitative

14
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evaluation of the solutions/algorithms via system level simula-

tions.

• Dissemination of knowledge through conference papers or internal

deliverables.

1.4 Contributions of the Thesis

Thesis is a summary of the six publications, of which publications I, II,

III and IV are related to radio resource management to reduce interfer-

ence and publications V and VI are related to backhaul optimization. The

contributions of these publications are briefly described below:

• Publication I proposes algorithms to achieve network-wide phase

synchronization, where either UE helps in the synchronization or

transmitters coordinate their transmissions to reduce interference

from synchronous BSs. Network synchronization is significantly im-

proved with macro diversity algorithm, in which all synchronized

BSs transmit the same synchronization sequence in a synchronous

manner.

• Publication II extends Publication I by achieving network synchro-

nization in a completely self-organized manner and also proposes

algorithms to reduce interference from both synchronous and non-

synchronous BSs. Interference within dense wireless network di-

vides the network into multiple connected components. We propose

algorithms to coordinate the synchronization transmission and re-

ception strategies within connected components, so that connected

components grow by bridging interference barriers and thereby im-

prove the network connectivity. We further propose conflict resolu-

tion algorithm to cope with conflicts arising due to finite ID space.

• Publication III studies a distributed approach for Primary Compo-

nent Carrier (PCC) selection to manage interference and to improve

cell edge performance in HetNet with overlaid macro BS and densely

deployed indoor CSG femtocells. We propose that PCC selection

based on path loss between neighboring BSs will not work in Het-

Net, which is widely used for traditional homogeneous network. PCC

has to be reselected based on handover measurements performed

by UEs. We propose three strategies of PCC reselection; a Selfish,
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Altruistic and Symmetric approach. PCC reselection based on UE

measurements completely removes outage and improves cell edge

performance.

• Publication IV proposes distributed utility-based algorithm called

dynamic frequency selection (DFS) for downlink component carrier

allocation in multi-carrier system. BS adds a new component carrier,

if the expected utility gain of adding the component carrier is greater

than sum of the utility losses reported by each neighbor BSs using

the same component carrier. On the contrary, BS removes a compo-

nent carrier, if the expected utility loss of removing the component

carrier is lower than the sum of the utility gains reported by each

neighbor BS using the same component carrier. Proposed algorithm

aims to reduce interference and thereby maximize the sum utility

of the whole system. We consider four different utility functions:

mean-rate, weighted fair-rate, proportional fair-rate and max-min.

• Publication V analyses, evaluates and improves the packet forward-

ing handover mechanism by reducing the amount of forwarded data

between BSs. The Packet Data Convergence Protocol (PDCP) of the

source BS is responsible for forwarding the data packets to the tar-

get BS. The performance criteria considered for evaluating these

techniques include the PDCP buffer size at the source BS, the up-

link Radio Link Control (RLC) status load and the user object bit

rate. We found frequent UE polling by the packet network during

handover helps in considerably reducing the unacknowledged PDCP

data packets, and thereby reduces the amount of packet forwarding

data, as the source BS has upto-date information of the UE reception

state.

• Publication VI considers leveraging macro LTE networks to back-

haul High Speed Packet Access (HSPA) small cells in the dense in-

formal settlements. As a case study, we present comparative net-

work simulation study based on an example informal settlement.

The results of a study highlight the possibilities for cost-effective

capacity upgrades dense settlements for even a limited number of

unplanned end-user small deployments and self-backhauling via ex-

isting macro sites. In the study we also note possible system per-

formance improvements by enhancing the small cell backhaul link

through improved antenna design, scaling of carrier bandwidth and
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introduction of traffic steering across HSPA and LTE layers.

1.5 Structure of the Thesis

Chapters II and III are related to self-organized radio resource manage-

ment to manage interference and Chapter IV is related to backhaul opti-

mization. Chapter II discusses contributions from publications I and II,

which help in achieving phase synchronization for the dense small cell

network by reducing interference across connected components. Chapter

III discusses algorithms from publication III and IV to select the compo-

nent carriers in a multi-carrier LTE-Advanced system and thereby reduce

interference in the dense small cell environment. Chapter IV discusses

the contributions to improve handover over the backhaul and solutions to

provide backhaul for the small cells deployed in the emerging markets, as

discussed in publication V and VI respectively. The original papers are

presented after conclusions in Chapter V.
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2. Achieving Network-Wide Phase
Synchronization by Reducing
Interference

This chapter discusses the prior art and contributions in publications I-II,

which are related to techniques aiding network-wide phase synchroniza-

tion in an interference limited cellular network. In cellular network, BSs

transmit both synchronization pulses and actual payload to its own UEs

on the same channel. UE uses synchronization pulses transmitted by

BS to determines time and frequency parameters that are necessary to

demodulate downlink signals, to transmit with correct timing and to ac-

quire some critical system parameters. Moreover, BS may achieve phase

synchronization by listening to the neighboring BSs synchronization se-

quences over the air. Simultaneous transmissions by the BSs in the dense

network do cause interference in the network, resulting to a challenge

of achieving network synchronization, while a BS is trying to synchro-

nize with the neighboring BS over the air. The contributions consist of

algorithms to reduce interference among BSs having overlapping syn-

chronization pulse and payload transmissions, and thereby achieve better

time synchronization in a wireless system.

2.1 Introduction

2.1.1 Types of Network Synchronization

Network synchronization deals with the distribution of time and frequency

across a network of clocks often spread over a wide geographical area.

The goal is to align the time and frequency scales of all clocks, by using

the communication capacity of their interconnecting links. Network syn-

chronization plays a central role in digital telecommunications as it deter-

mines the quality of most services offered by the network operator. How-

ever, the importance of network synchronization is often underestimated

19
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Figure 2.1. Types of Network Synchronization [19]

and how to solve QOS degradation caused by synchronization difficulties

can become problematical to all but a synchronization engineer [18]. Dif-

ferent types of synchronization exist — frequency synchronization, time

synchronization and phase synchronization, as depicted in the Figure 2.1.

Frequency Synchronization

Two BSs are frequency synchronized when their transmissions are con-

trolled by reference timing signals with their corresponding significant

instants occurring at nominally the same rate. Frequency synchroniza-

tion is required by all mobile systems, in order to minimize disturbance

and facilitate handover between BSs. In order to fulfill regulatory re-

quirements, the radio signal must be generated in strict compliance with

frequency accuracy requirements [20].

Time Synchronization

Time synchronization in the network requires the BSs to share the same

clock reference. Recent migration of the telecom networks from time divi-

sion multiplexing (TDM) to packet based technologies (e.g. LTE) has re-

quired the industry to define new methodologies for distributing accurate

timing reference across the network towards the radio BS. Time synchro-

nization is an essential problem in networking, which has commanded

much attention in the research community [21–38].

Phase Synchronization

Phase synchronicity is a milder form of synchronicity than strict time

synchronicity— where all BSs have access to a reference timing signal

whose rising edges occur at the same instant [21, 22, 26–28, 30, 32–41].

If there is time synchronicity, phase synchronicity automatically follows,
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whereas to get time synchronicity from phase synchronicity, one needs to

agree of a global count of events.

2.1.2 Need of Phase Synchronization

Phase synchronization is required in the case of TDD wireless systems be-

cause uplink and downlink transmissions use the same frequency bands

but different time slots. In order to avoid interference between adjacent

cells, BSs need to be phase aligned. In particular, when LTE is based

on TDD, the timing between base stations must be accurate to within

3 μs (for cells of equal or less than 3 km radius) and 10 μs (for cells

of more than 3 km radius) [42–47]. For wireless networks, phase syn-

chronicity may be desirable for multiple reasons related to Medium Ac-

cess Control (MAC) or Radio Resource Management. Examples discussed

in the literature are duty-cycle and MAC optimization for sensor net-

works [24–29,31,34], interference reduction in Time-division Multiple Ac-

cess or TDD systems [22,36], or distributed sensing and other cooperative

network actions [30,33,37].

The main motivation of the research comes from future cellular net-

working, where small cell wireless networks are foreseen to complement

traditional macro cellular networks. The introduction of new LTE-Advanced

features, often related to small cell deployments, may now introduce new

requirements for distributing both time and phase synchronization to

BSs. Achieving phase synchronization will play an important role deliver-

ing the promise made by such future HetNets, where synchronization will

be beneficial for TDD operation, efficient performance of COMP, inter-cell

interference cancellation and management techniques, relaying, position-

ing and mobility operations. Enhanced intercell interference coordination

(eICIC) and coordinated scheduling requires the time/phase accuracy of 1

μs and 1.5 μs respectively [19,48]. With the upcoming 5G small cells, the

time/phase accuracy is further reduced to 510 ns [49,50].

2.1.3 Techniques to Achieve Phase Synchronization for Small
Cells

Small cells can achieve phase synchronization using following techniques [51].

1. The Global Positioning System (GPS) - If a small cell contains a GPS

receiver and can acquire the GPS synchronization signals, then GPS

provides the most accurate synchronization accuracy (on the order
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of 100 ns). However, GPS receivers do not always work in some

important scenarios (e.g. indoors.)

2. IEEE 1588 v2. - Under good backhaul conditions (e.g. operator con-

trolled fiber / Ethernet), IEEE 1588 v2 can provide sub-microsecond

level accuracy. However, such good backhaul conditions may not al-

ways be possible. In particular backhaul over cable and DSL modems

have significant jitter and delay variations. This resulting error may

be up to many milliseconds, rendering IEEE 1588v2 not well-suited

for the applications of LTE-Advanced and future cellular technolo-

gies.

3. Network Listening - is a distributed synchronization technique where

a BS is synchronized directly with another BS over-the-air, based on

BS-BS measurements. Network listening can be used in scenarios

where GPS and IEEE 1588 v2 do not work. For this reason, network

listening is an essential synchronization scheme for 5G small cells,

which does not need centralized coordination [49].

2.1.4 Interference Preventing Network Listening to Achieve
Network-Wide Phase Synchronization

There are two ways to achieve network listening based synchronization

– either using external clock or without using external clock. BSs in a

cellular network may use the external clock from e.g., GPS, IEEE 1588

v2 or synchronization to a wide area umbrella BS. In [24,25,29,31], wire-

less networks are synchronized by generating a spanning tree rooted at

a node with an external timing reference. On the contrary, BSs may syn-

chronize with the neighbor nodes by listening to each other, without ex-

ternal clocks, as addressed in [21, 22, 26–28, 32–38]. In publication I, we

assume one node per building is synchronized to an external clock and the

remaining nodes self-synchronize themselves using spanning tree based

network listening technique. On the contrary, in publication II, we con-

sider self-organized spanning tree synchronization problem, where no ex-

ternal source of timing exists, and where the network nodes synchronize

based on listening to transmissions from each other forming independent

spanning trees.

In modern cellular systems, such as LTE [52], synchronization between

infrastructure BS and UEs is based on periodic transmissions of known

synchronization sequences using the same radio resources that are used
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Figure 2.2. Network divided into three connected components which are separated by
SINR-barriers[extracted from Publication II]

for data transmissions. When synchronizing a network of BSs, it is natu-

ral to use the same, or similar synchronization channels. Thereby, reserv-

ing a specific channel just for network synchronization would be waste-

ful. As a consequence, synchronization based on listening to other nodes

would suffer from interference [51].

Both synchronous and non-synchronous BSs would disturb a non-synchronous

BS trying to synchronize with another BS. From this it follows that inter-

ference often prevents the whole network from synchronizing - the net-

work is divided into multiple connected components, as depicted in the

Figure 2.2 so that no BS in one component is able to hear any BS in

another. Within a connected component, self-organizing synchronization

would be possible, but between these components, there would be inter-

ference barriers preventing synchronization. Further we discuss the prior

art and our contributions to reduce interference across connected compo-

nents to achieve the complete network synchronization.

2.2 Related Work and State of the Art to Improve Network Listening

In Network Listening, a BS maintains synchronization only with a single

neighbor, as explained in [53]. In [54,55], algorithm is proposed to get syn-

chronization from multiple neighbors and thereby improve network lis-

tening synchronization. UE assisted synchronization was proposed in our

publication I, which was also presented latter in [56], where distributed
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clock synchronization scheme employs the clock drift ratio (CDR) infor-

mation available at UEs to achieve synchronization between the two non-

synchronized BSs.

Little is known in the literature regarding methods to spread synchro-

nization within a connected component and also across components. Con-

nected components do have barriers of interference caused by usage of

the radio resources not only for transmitting synchronization pulses by

also for transmitting the actual payload. In [30], it was suggested that

nodes should transmit with higher power with a specific pattern, which

would increase the Signal-to-Interference-plus-Noise Ratio (SINR) of syn-

chronization signals when heard by nodes on the other side of interfer-

ence barriers. This solution would be wasteful in the sense that power

amplifiers, the most expensive analog components of a radio, would have

to be dimensioned for synchronization purposes only. Moreover, such a

network would be energy inefficient consuming more energy due to high

power transmissions of the synchronization signals.

2.3 Simulation Scenario

In both publications, we assume distant dependent pathloss and each BS

continuously transmits payload data and synchronization pulses, which

causes interference to neighboring BSs.

Various femtocell network deployments exist which includes pico-cell

networks, hot spots, office networks, Home BSs, relay networks, etc. In

publication I, we have considered a modern office building with multi-

ple floors, large offices and corridors, as well as an atrium with glass

inner walls and without floors, as depicted in the Figure 2.3. The mo-

tivation for investigating an office building with an atrium is that such a

building design will cause heavier inter-BS interference, providing a more

challenging environment for the self-organizing network studies, than a

building without an atrium. UEs are also are dropped in an office build-

ing. The UEs select the serving BS based on the best SINR, and also

measure neighboring BSs. We assume that one of the randomly selected

BS is synchronized with the external clock and the remaining BSs try to

synchronize using spanning tree approach.

In publication II, we simplify the simulation scenario by dropping BSs

in a unit square. We further achieve synchronization in a distributed

manner, without any external clock reference, where each BS tries to syn-
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30 m

80 m

80 m

Figure 2.3. One floor layout of the office building in the Atrium building path loss model.
Red dots represent BSs.[extracted from Publication I]

chronize with its neighboring BSs.

2.4 UE Assisted Network Synchronization

In cellular network for e.g. dense network deployment, a BS is able to

listen and thereby synchronize with limited number of neighbor BSs, due

to lower SINR of the synchronization pulse transmissions from neighbors.

We propose UE assisted synchronization in publication I, where, in addi-

tion to direct BS-BS measurements, UEs attached to a BS, help with lis-

tening to the synchronization signals of neighboring BSs. UE assistance

in synchronization does result to significant improvement in the network

connectivity and thereby time synchronization within the network. The

UEs report differences in cell timing of the neighboring BSs to the serv-

ing BS and thereby enhance the number of connected neighbors per BS.

Neighbor cell timing measurement comes at a cost for the UE, with the

increased idle state power consumption and implementation complexity.

Network listening synchronization with UE assistance has higher num-

ber of neighbors per BS compared to network listening synchronization

without UE assistance. In other words, network listening synchronization

with UE assistance provides better network connectivity and increases

the network synchronization with the limitation of additional UE power

consumption.
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2.5 Coordinated Transmission Strategies

Part of BSs, which are synchronized among each other coordinate to trans-

mit the synchronization pulses to avoid interference. We propose three

coordinated transmission algorithms in publication I to reduce interfer-

ence and achieve network synchronization, which includes: Stratified,

Fully Orthogonal and Macro Diversity based synchronization, as depicted

in the Figure 2.4. In Stratified synchronization interference come from

only the stratum (i.e. layer in a spanning tree) transmitting the synchro-

nization signals and not from rest of the synchronized strata. In this

technique, interference is reduced using silencing periods among the syn-

chronized BSs. In Fully Orthogonal synchronization, BSs use orthogo-

nal sub-carrier signals to transmit synchronization pulses and thereby

avoid interference. Thereby, there is no interference from any of the syn-

chronized strata, which is also an additional advantage in comparison to

Stratified synchronization. Macro Diversity based synchronization is a

mechanism to increase the power of synchronization signals and thereby

reduce interference. Moreover, this technique does not suffer from the

limitation of requiring orthogonal codes. All synchronized BSs transmit

the same synchronization sequence in a synchronous manner. A non-

synchronized BS receives the signal with the signal powers added over

the air, and thus enjoys a macro diversity advantage from all synchronized

BSs transmit power. Interference comes from all other non-synchronized

BSs. The received signal power is the sum of the received signal powers

from all synchronized BSs. The proposed coordinated transmission tech-

niques reduce the interference and thereby achieve better network syn-

chronization. Of the proposed techniques, Macro diversity based synchro-

nization performs much better than Stratified and Fully Orthogonal Syn-

chronization. Macro diversity transmissions are capable of bridging the

gaps between connected components significantly better than the single-

BS transmission.

2.6 Coordinated Reception Strategies

We propose coordinated reception algorithms in publication II and also

compare them with the coordinated transmission algorithms proposed in

publication I. Moreover, we also combine the coordinated reception algo-

rithms with the coordinated transmission algorithms. Lastly, we make
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Non Synchronized BS

Non-Orthogonal Synchronization

Stratified Synchronization

Macro-Diversity based Synchronization

Fully Orthogonal Synchronization

Synchronized BS

Figure 2.4. Proposed Coordinated Transmission Algorithms to Improve Network Listen-
ing Synchronization; Different Colors Represent Orthogonal Synchronization
Channels[extracted from Publication I]
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coordinated transmission and reception self-organizing. For this, we fol-

low a common practice in distributed algorithms [57,58], by using identi-

fiers (IDs) to break symmetry, which in this case is related to the direction

of growth of colliding synchronized connected components of the network.

We provide a conflict resolution algorithm which is capable of dealing with

a finite ID space. We observed that coordinated reception bridges interfer-

ence barriers better than coordinated transmission, because coordinating

reception within a connected component removes interference from closer

sources. The simulations show that the discussed self-organizing algo-

rithm is able to significantly improve network connectivity in an inter-

ference limited situation. Combining macro diversity transmissions with

coordinated reception provides the best performance.

2.7 Open Questions

In our research we deal with the problem of achieving initial phase syn-

chronization for a dense femtocell network i.e. how the clocks within each

BSs be phase synchronized among each other by crossing the interference

barriers. We do not deal with the problem of runtime synchronization

within a network i.e. how to keep time alignment between BSs despite of

the different clock functions resulting to clock drifts. Moreover, propaga-

tion delays of the synchronization pulses due to the distance between the

BSs is also not considered. We analyzed the performance of the UE as-

sisted synchronization using static UEs. Related research topic is about

studying the impacts of mobility of the UE along with propagation de-

lays towards UE on the performance of UE assisted synchronization. The

proposed synchronization algorithms were simulated using system level

simulations. It would be worth simulating the algorithms on the software

defined radio testbed and also latter on the actual live network and test

the performance of the algorithms, considering initial phase synchroniza-

tion, runtime synchronization and propagation delays.
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3. Dynamic Carrier Selection to Reduce
Interference on Cell-Edge Users

This chapter discusses the prior art and contributions in publications III-

IV, related to managing interference in heterogeneous network with dense

small cells deployment, by distributed carrier selection, based on UE mea-

surement reports of the serving and neighboring BSs, to avoid interfer-

ence in a multi-carrier system.

3.1 Introduction

Frequency reuse is the traditional way of sharing the spectrum in cellu-

lar networks. A basic hard frequency reuse scheme assigns to each cell

a fraction 1/N of the whole spectrum, which usually differs from the as-

signment of neighboring cells. As a result, the UE experienced Signal to

Noise ratio SINR is increased, but at the cost of reduction of the available

spectrum per cell. Shannon’s formula defines the capacity of the wireless

system and is a function of both SINR and amount of spectrum used for

transmission [59] as

C = BW ∗ log2(1 + SINR), (3.1)

where C is the channel capacity in bits/sec, BW is the bandwidth of the

channel in hertz and SINR is the Signal to Noise ratio of the channel

expressed as a linear power ratio.

Frequency reuse may work well with homogeneous network, where in-

terference coupling among neighboring BSs may be symmetrical i.e. in-

terference what one macro BS cause to its neighbor may be nearly same

as the interference neighbor causing on the prior macro BS. Interference

coupling may become asymmetrical in heterogeneous network, with dense

small cells overlaid by macro BS. Interference caused by CSG small cell

on macro BS may be higher than what macro BS causes on CSG cell, in
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Figure 3.1. Multiple femto BSs causing high interference to indoor macro UEs and also
interfering among each other[extracted from Publication III]

a scenario, where macro UE is close to the CSG femto, where it is un-

able to connect. Moreover, in a dense small cell deployment, interference

among CSG femtocells is also significant. In other words, three types of

downlink interferences are possible in HetNet scenario with macro BS

and dense CSG femtocells which includes:

1. CSG femto causing interference to the nearby macro UE, which is

connected to the macro BS.

2. CSG femto causing interference to the nearby femto UE, which is

connected to the neighboring femto BS.

3. Macro BS causing interference to the femto UE.

Figure 3.1 depicts the typical case of interference, when macro UEs

are located indoors along with dense femto CSG UEs, resulting to two

major types of interferences which includes femto CSG interference to

macro BS and interference among CSG femto BS. Interference among

BSs can be reduced using Inter-cell interference coordination (ICIC) ap-

proaches namely: Time domain, Frequency domain and power control

techniques [60–76]. In our research, we focus on two major downlink

HetNet interference avoidance using frequency domain techniques, which

includes CSG femto to macro interference and interference among CSG

femto BSs.

The introduction of small cells to complement traditional macro site in-

stallations raises the question on spectral efficiency of introducing small

cells having minimal impacts on the existing macro UEs and also requires
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careful consideration of femto to femto interference. Carrier aggregation

is introduced in LTE-Advanced to support high data-rate transmissions

over wide frequency bandwidths with multiple component carriers. This

leads to the problem of component carrier selection - a BS may operate on

any subset of the component carriers. Each BS may select one component

carrier as a primary component carrier (PCC), which provides complete

cell coverage. A BS may further select secondary component carriers

(SCCs) depending on the offered traffic and interference couplings with

the surrounding cells [77,78]. In our research we focus on the problem of

selecting component carriers (i.e. PCC and SCCs) by each BSs in a dis-

tributed manner, in such a way that interference from CSG femto BS to

macro BS and among CSG femto BSs is minimum.

3.2 Related Work and State of the Art

In [79], authors propose component carrier selection algorithm for uplink.

Related packet scheduling work is done in [80, 81], where power control

is applied across carriers. [82–86] proposes carrier selection algorithms

along with power control on the component carriers (in this case sub-

bands). In [87], component carriers are further divided into sub-bands

and primary sub-bands are allocated in a centralized manner, whereas

secondary sub-bands are allocated in a distributed manner by each BSs.

[88] applies the concept of component carrier selection in the spectrum

sharing by the operator. In [89], authors propose dynamic algorithm to

protect the downlink control signals in LTE-Advanced system with dense

wireless networks.

The carrier selection problem in LTE-Advanced is studied independently

and not combined with packet schedulers in [90–95]. The studied problem

is directly related to the well studied frequency assignment problem [96–

98], where a carrier is either used or not used. In [90,91,93,96,97,99], BSs

avoid interference from neighbors by selecting carrier based on pathloss.

In other words, each BS aims to reduce interference from other BSs by

selecting a carrier, on which the closest other BS operating on this car-

rier is furthest away. Such PCC selection suffers from couple of problems.

One of the problem is the requirement for a BS to stop transmissions in

downlink, when it is measuring path loss from the neighboring BSs in a

frequency division duplexing (FDD) system. Pathloss is the path attenu-

ation or the reduction in power density of an electromagnetic wave as it
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propagates through space. In addition, BS-BS path loss does not reflect

the actual radio conditions experienced by connected UEs. Thereby, in

HetNet, PCC selection based on inter-BS path loss may result to outage

for macro UEs, located close to the CSG femto BS, due to high interference

from the CSG femto BS.

Autonomous component carrier selection (ACCS) is a distributed carrier

selection technique proposed in [90–92], where BSs exchange background

interference matrices (BIM) (i.e. worst interference couplings) with neigh-

boring BSs. The BIM entries stored in a BS per each neighbors represent

the amount of interference neighbors cause on the UEs of the serving

BS. A primary carrier is selected based on the maximum path loss to the

neighboring BS using the same carrier [90, 91, 93, 96, 97, 99], which may

result to outage of macro UEs close to the CSG femto BSs in HeNet. Sec-

ondary carriers are selected based on BIMs exchanged with neighbors,

based on the UEs measurement reports of the serving and neighboring

BSs. The performance of cell edge UEs in the serving and neighboring

cells are maintained by applying protection thresholds on PCC and SCCs

in the system.

In [95], a BS adds a carrier, calculates the corresponding capacity gain

on its served user equipments (UEs) and receives the capacity loss from

the neighbors. If the capacity gain of its served UEs is greater than sum

of the capacity losses of the neighbors, then the carrier is kept, else the

carrier is dropped. The limitation of the approach is it may result to many

unnecessary carrier re-selections in the network.

3.3 Simulation Scenario

In both publications III and IV, we consider the 3GPP dual strip dense

urban scenario with densely deployed femtocells in buildings as depicted

in the Figure 3.2, which cause high interference to the neighboring BSs.

Path loss and channel models are based on typical urban deployment as

defined in 3GPP [100]. In publication III, along with dense femtocell

deployment, we also consider overlaid macro BS to generate asymmet-

ric pathloss coupling across macro and CSG femto BSs. Macro UEs are

dropped randomly inside the building. Closed access of femto BSs cause a

challenging interference on indoor macro UEs, resulting in degraded user

experience and potentially cell outage.
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Figure 3.2. 3GPP dual strip dense urban scenario[extracted from Publication IV]

3.4 Carrier Selection Based on Handover Measurements and not
Pathloss

In publication III, we study a distributed approach for PCC selection to

manage interference and to improve cell edge performance in HetNet.

PCC selection based on path loss between base stations causes cell outage

in HetNet, when macro users are close to femto base stations, which use

a CSG configuration. To avoid cell outage caused by PCC selection based

on path loss between neighboring BSs, we argue that carrier reselection

based on handover measurements performed by UEs is necessary. Each

UEs reports the signal strength of the serving BSs and strength of the in-

terference of the neighboring BSs to the served BS. Based on the number

of such UE measurement reports, BS can identify both the cell edge UEs

and also the neighbor BSs, which cause the most interference to its own

UEs. These values are shared by the serving BS with neighboring BSs.

Once each of BSs exchange the interference values with its neighbors and

also the component carriers presently in use, each BS can independently

reselect the component carrier.

System performance is analyzed based on proposed three strategies of

PCC reselection: a Selfish, Altruistic and Symmetric approach, based on

avoiding interference caused by neighboring cells, avoiding causing in-

terference to neighbors, and avoiding both, respectively. In Selfish algo-

rithm, each BSs selects the carriers in such a way that they minimize the

incoming interference from the neighbors. In Altruistic algorithm, each

BSs selects the carriers in such a way that they attempts to minimize the

outgoing interference to the neighbors. Moreover, Symmetric algorithm

attempts to combine the advantages of both Selfish and Altruistic algo-

rithm, by minimizing the sum of the incoming and outgoing interference

in the system. The performance of the proposed strategies are compared

with existing PCC selection based on path loss between BSs, in a HetNet
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scenario, where multiple CSG femto BSs cause high interference to users

of a single macro BS. The Symmetric PCC reselection algorithm improves

cell edge performance considerably in the studied HeNet scenario. Also,

the Altruistic strategy works significantly better than the Selfish strat-

egy. All three considered strategies work equally well in a homogeneous

network. We conclude that in HetNet, PCC reselection based on UE mea-

surements reduces user outage and improves cell edge performance.

3.5 Carrier Selection by Predicting the Capacity Gain/Loss of
Adding/Removing a Component Carrier

In publication IV, we propose a dynamic frequency selection (DFS) algo-

rithm which estimates the capacity gain or capacity loss in the wireless

system, while either adding or removing a carrier, based on handover

measurements performed by UEs of the serving and neighboring BSs.

This information is used by BSs to decide whether to add or remove a

carrier in a distributed manner. We avoid carrier re-selections by predict-

ing the capacity differences resulting from potential dropping or adding

a carrier at the neighbors. These per-carrier capacity differences are re-

ported to the neighbors as estimated prices, which the neighbors may take

into account when deciding their actions. Instead of having a single inter-

ference price over the complete bandwidth as in [90–92], we have a price

(i.e. capacity gain/loss) per carrier. Component carriers used by each BS

along with capacity gain or capacity loss per carrier can be exchanged

among neighboring BSs on reselecting a carrier in the form of low-rate

control signaling over the X2 interface connecting the two BSs [101].

We consider multiple utility functions to model the degree of satisfac-

tion of the users in the system i.e maximizing the mean rate in the sys-

tem, weighted fairness, proportional fairness and lastly maximizing the

minimum rate in the system. The performance of the DFS algorithm with

different utility metrics is analyzed in terms of SINR and throughput

of the UEs, the amount of the bandwidth used by the BSs, and network

convergence of the algorithm. Performance is compared with universal

reuse (where each BSs use the complete bandwith) and autonomous com-

ponent carrier selection algorithm proposed in [90–92]. Simulation were

performed for the dense small cell deployment, but the results of the sim-

ulations are also applicable for the HetNet scenario with the overlaid

macro cell and dense small cell network deployment. Simulation results
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show that the proposed algorithm is effective in predicting the capacity

gain/loss in the system, and thereby helps in the decision of either to add

or remove a carrier in a BS. DFS enhances not only the sum data rate

of a system but also the degree of fairness in resource sharing among

users. The sum rate of the system is highest with Mean DFS, whereas

the cell edge rate of the system is highest with Max-min DFS. Max-min

DFS, Weighted fair DFS and proportional fair (PF) DFS improve fairness

in the system, by improving the cell edge performance and without im-

pacting the mean performance of the UEs in the system.

3.6 Open Questions

In our research we deal with the problem of lower cell-edge user through-

put performance in a multi-carrier LTE-Advanced heterogeneous network.

We solve the problem by selecting part of the component carriers out of

the available ones and thereby improve the performance of the cell edge

users. The problem of cell-edge users outage can also be solved in time

domain and power domain by scheduling the users in different time slots

and using different powers to transmit to each user. It would be inter-

esting to combine the proposed techniques of component carrier selection

along with time domain muting and power control. Moreover, more de-

tailed study is also required to evaluate load on the backhaul, connecting

the BSs, due to the information sharing among BSs resulting from the

proposed algorithms of component carrier selection. It would be worth

simulating the algorithms on the software defined radio testbed and also

latter on the actual live network and test the performance of the algo-

rithms to evaluate the trade-off of the cell edge user throughput gain and

the load on the backhaul links connecting the BSs.
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4. Backhaul Dimensioning in a Cellular
System

This chapter discusses the need of backhaul dimensioning, prior art and

contributions in publications V-VI, related to reducing amount of forwarded

data over the backhaul during handover and using LTE, as a wireless

backhaul solution for the HSPA small cells deployed in the emerging mar-

kets respectively.

4.1 Introduction

The rapid growth in mobile broadband in recent years is driving opera-

tors to improve and densify their Radio Access Network (RAN) and also

upgrade and optimize the mobile backhaul. With the ongoing preparation

of rolling-out LTE-Advanced, which supports aggregation of the opera-

tor’s spectrum will generate a need to also upgrade the backhaul capacity

many folds. Along with exploiting the capacity road-map that LTE and

LTE-Advanced offer at the macro-cellular layer, operators are clear that

they will need small cells to complement the macro cells, which further

worsens the looming challenge of backhaul capacity. The cost of the back-

haul network becomes a main burden of operators, and the requirement

of reducing the backhaul cost and optimizing the backhaul is raised in

both Third Generation Partnership Project (3GPP) and Next Generation

Mobile Networks Alliance (NGMN) [1,11,12,102–104].

In our research, we deal with problem of reducing the data forwarding

over the backhaul during the handover and also providing wireless back-

haul for small cells deployed in the emerging markets, where the wired

backhaul does not exist.
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4.2 Improved Handover Mechanisms to Reduce Packet Forwarding
Over Backhaul

Handover is one of the key components in cellular network mobility man-

agement and has the most stringent latency requirement on service in-

terruption time since the end-user experience is determined by it. In the

design of IMT-Advanced systems, the scalability and flexibility to sup-

port various fourth generation (4G) network deployments is also very cru-

cial while meeting the latency requirement on handover. In [105], ar-

ticle presents the state-of-the-art handover schemes considering various

deployment scenarios in IEEE 802.16m1 based next-generation WiMAX

networks and 3GPP LTE-Advanced. Also, to minimize and optimize han-

dover latency to fulfill the requirement for quality of service (QOS) during

handover, various procedural advanced handover schemes are being de-

veloped, proposed, and analyzed by IEEE 802.16m and 3GPP. Handover

schemes in IEEE 802.16m and 3GPP provide lower link layer handover la-

tency while providing the required QOS level than the existing link layer

handover schemes.

Packet-switched wireless communication system such as 3GPP LTE does

not support soft handover, on the contrary to the predecessor Wide-Band

Code Division Multiple Access (WCDMA). Handover procedure being one

of the important functionalities of a mobile system is designed according

to the distributed nature of the LTE architecture. In LTE, at each han-

dover the user context, including user plane packets and control plane

context are relocated from the source BS to the target BS. The Packet

Data Convergence Protocol (PDCP) of the source BS is responsible for for-

warding the data packets to the target BS. The forwarded data is finally

sent to the UE by the target BS on the handover completion. The mech-

anism for handling the packet forwarding is specified in the 3GPP LTE

specification [77, 101, 106], during which all the unacknowledged PDCP

Service Data Units (SDUs) are sent from the source BS to the target BS.

Message sequence during handover between UE, source BS and target BS

is depicted in the Figure 4.1.

Of these forwarded PDCP SDUs, many will be discarded by the target

BS, as the UE has already received some of these PDCP SDUs, a fact

which could be indicated in a PDCP Status report sent by UE to its target

BS. If the PDCP Status report is not sent by the UE, then PDCP SDUs

will be sent from the target BS to the UE. The UE may discard these
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Figure 4.1. Message sequence between UE and BS during Data Forwarding in
LTE[extracted from Publication V]

SDUs, if it has already received them from the source BS [107]. In our

research, we try to reduce the amount of data forwarded from PDCP of

the source BS to the target BS during handover, which improves the QOS

of the end user and also reduces the load on the X2 link, which connects

the two BSs.

4.2.1 Related Work and State of the Art

Efficient data forwarding plays an important role to cater for the user’s

QOS and transmission control protocol (TCP) throughput requirements

during handover [108,109]. In [110], the handover prediction algorithm

is proposed to improve TCP performance during the LTE handover. Data

forwarding is also important during handover across different technolo-

gies for e.g. between LTE and WiMAX [111]. In [112], delay injection al-

gorithm is proposed for reducing packet forwarding during LTE. In [113],

authors proposes an optimization of the handover mechanism between a

BS with a satellite S1 interface and a BS with a standard terrestrial S1

interface. In [114], authors analyze the impact of amount of data to be

forwarded and corresponding capacity of X2 interface (which connects the

two BSs) on the user’s QOS. In [115], authors analyze the performance

of TCP and User Datagram Protocol (UDP) during LTE handover. The

mobile users experience performance degradation due to the interference

between source and target BSs. Moreover, the impact on delay sensitive

service such as VoIP is analyzed due to interruption during handover. Au-
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thors in [116] investigate the X2 bandwidth requirement to support data

forwarding for both control-plane traffic and user-plane traffic during han-

dovers. The X2 bandwidth requirement may potentially increase signifi-

cantly when groups of UEs perform handover simultaneously across BSs.

The QOS during the handover depends on: detach time (during which the

UE is not connected to the system); the delay of the forwarded packets

and the delay difference between the direct path and the forwarded path.

In [117,118], authors propose that UE sends Radio Link Control (RLC)

status report along with measurement report. Similarly, in [119], authors

propose that UE sends PDCP status report along with measurement re-

port. Both of these status reports will enable source BS to have updated

information about what UE has received, and thereby forward just the

missing data to the target BS. The limitation of both of these techniques

is the requirement of supporting inter-layer messages (i.e. between Radio

Resource Control and RLC / PDCP), in 3GPP LTE standard, which is not

acceptable to the standardization community.

4.2.2 Simulation Scenario

LTE simulator consisting of FTP client/server, TCP/IP, PDCP, RLC and

MAC protocol layers is used to test various techniques to improve the

data forwarding mechanism. The object bit rate is calculated based on

the data rate experienced by a FTP client. The system is modeled for a

single user, who performs a FTP download of a 100 MB file, 50 times,

while being connected to the BS. Data is forwarded from the source BS to

the target BS, during the ongoing handover. We selected the FTP traffic

model instead of web browsing, as FTP gives more data to be forwarded

during handover.

4.2.3 BS Polling the UE Frequently During Ongoing Handover

In order to reduce the data forwarding during handover, in publication V,

we propose the source BS should poll the UE during handover and the

polling rate should be based on DL data rate. BS polling rate should be

high, if the UE specific downlink data rate is high and on the contrary, the

source BS should poll the UE less often, during the lower downlink data

rate. The proposed solution tries to decrease the amount of data that is

already sent over the air but not yet acknowledged by the UE. Increasing

the UE polling frequency allows the source BS to be as up-to-date to the
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UE reception state as possible, and thus reduces the data buffer at the

PDCP of the source BS. There exists a trade-off between the PDCP data

forwarding buffer size in the BS and the uplink RLC status report load.

When the source BS polls the UE more often to decrease the PDCP buffer

size, the uplink RLC status report load increases. Similarly, when the

source BS polls the UE less often, even though the uplink RLC status

report load is lower, PDCP buffer size however increases.

Based on the simulation results, the proposed technique proves to be

the most efficient in terms of lower PDCP buffer size at the source BS,

lower uplink RLC status load and higher user object bit rate. Moreover,

the technique does not need any changes in the 3GPP standards. We also

recommends the LTE network to optimize value of RLC pollByte, which

controls the BS polling rate, considering the trade-off between the PDCP

data forwarding buffer size in the BS and the uplink RLC status load.

4.3 Self-Backhauled Small Cells in Dense Informal Settlements

Mobile broadband technologies are increasingly the most common, and

in most cases, the only economically-feasible means for providing broad-

band connectivity for the masses in emerging regions, such as, Africa,

where the fixed-line penetration has remained virtually flat over the last

decade [120]. Typically, the mobile broadband network coverage is mostly

provided by 3G WCDMA and HSPA macro cellular networks. The in-

creased mobile broadband subscriptions, traffic growth and intensifying

competition has prompted most operators in the region to upgrade their

networks to evolved HSPA and increasingly LTE networks in major urban

areas [121, 122]. Network densification through rollout of new cell sites

allows operators to increase reuse of their limited spectrum and provide

needed capacity gains in urban areas, particularly in the fast expanding

dense informal settlement areas [123]. Customer deployed small cells is

one of the attractive alternative both for operators and end-users, con-

sidering operators does not need to invest in maintaining cell-sites and

end-users get higher throughput and coverage, being near to the small

cells compared to the macro cells. However, rolling out of new sites in

those settlements is complicated by lack of fixed lines for backhaul, en-

ergy scarcity, need for securing network assets at sites and limited aver-

age revenue per user (ARPU) to justify the additional investment [120].

This calls for alternative approaches for network densification and opera-
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tion models suitable for that aforementioned environment. Furthermore,

the limited and/or unreliable access to power from the grid presents chal-

lenges in operating the small cells [124].

4.3.1 Related Work and State of the Art

Existing backhaul solutions for small cells include wired and wireless op-

tions [12, 102, 125]. Wired backhaul solution uses either copper cable or

optical fiber and is an expensive technique, not existing in the emerging

markets. Wireless backhaul solutions are based on either microwave ra-

dio links or satellite wireless link, which requires network planning and is

thereby not suitable for customer deployed small cells. Alternative back-

hauling mechanism is needed for customer deployed small cells in the

emerging markets, which is the subject of our research. In [125,126], au-

thors study Wifi IEEE 802.11, WiMax IEEE 802.16 and millimeter-wave

technology to provide high-capacity backhaul for cellular networks.

4.3.2 Simulation Scenario

In publication VI to exemplify a high-density urban informal settlement

we have used Hanna Nassif ward in Dar es Salaam, Tanzania, as a simu-

lation study area. Hanna Nassif has an estimated population of 40000

people, living in a 1 km2 land area. The area includes around 3000

(mostly single story) buildings and is located on a terrain with a topo-

graphical difference of 19 m. The radio coverage estimations are based

on realistic three dimensional building vectors and topographical data

for the Hanna Nassif area and are evaluated using the dominant path

model implemented in the WinProp propagation modeling tool. The small

cells are deployed at random buildings by end-users in the service area.

We consider two possible deployment scenarios: indoor deployment and

rooftop deployment (akin to a television antenna). Indoor deployment

enables small cells to provide indoor coverage and indoor-to-outdoor cov-

erage for other UE in close proximity of the building. Rooftop deployed

small cells provide increased range for outdoor coverage, but at the ex-

pense of reduced signal strength for indoor users (outdoor-to-indoor cov-

erage) due to building penetration losses. Static system-level simulations

are performed to investigate network performance, whereby, small cells

are dropped at random building locations for each snapshot, while half of

the UEs (HSPA and LTE UEs) are dropped in clusters around small cells
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and the rest of the UEs are dropped randomly over whole area.

4.3.3 LTE based Self-Backhaul for HSPA Small Cell

In publication VI, we consider the alternative densification scenario through

small cell deployment in the informal settlements. The HSPA macro site

represents the legacy deployment with majority of UE in the settlements

assumed to HSPA-compliant. Macro LTE upgrades are then implemented

to cater for minority but gradually expanding base of LTE UEs [121,122].

The HSPA small cells are then deployed to offload traffic from highly-

loaded HSPA macro cells. Unplanned deployment of shared access small

cells by end users (households, microenterprises etc.) provides a cost-

effective network densification from operators perspective and affordable

connectivity from user perspective. Moreover, it potentially allows for

novel business models that provide incentives (e.g. revenue share) for

end users deploying and operating the small cells.

We consider self-backhauling of small cells through the use of macro

LTE and LTE-Advanced enhancements to provide low-cost and flexible

backhauling for the unplanned HSPA small cells in the informal settle-

ments, as depicted in the Figure 4.2. Extensive simulations are carried

out to verify the feasibility of the considered self-backhauling approach

and observe the overall performance impact on the HSPA and LTE users

in the network. Our study also reviews various powering options for the

small cells in informal settlements and considers deployments that enable

off-grid operation of the small cells. Key contributions of the publication

VI, include verifying the feasibility of using LTE as a self-backhauling

technique for HSPA small cell, analyzing the impact of self-backhauling

on existing LTE UE throughput and enhancement in small cell LTE back-

haul link to minimize the impact on LTE UE.

4.4 Open Questions

In our research we deal with the problem of reducing the data forwarding

data among BSs during handover. To achieve the same, we propose the

LTE network to poll the UE more frequently during the ongoing handover

scenarios to reduce the amount of packet forwarding among BS. It would

be worth analyzing trade-off between the PDCP data forwarding buffer

size in the BS and the uplink RLC status report load on the UE due to the
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Figure 4.2. Self-backhauling of HSPA small cell deployments overlaid by HSPA/LTE
macro cells[extracted from Publication VI]

polling of the LTE network during handover. We also dealt with the prob-

lem of providing backhaul access to the small cells deployed in the emerg-

ing markets. Future work is required to investigate joint radio resource

management schemes across different layers and link segments (access

and backhaul) for the deployment scenario considered in this study. Fur-

thermore, research is required on SON algorithms for optimum load bal-

ancing across different layers and energy-sustainable operation of off-grid

small cells in this context.

44



5. Conclusions

The huge appetite for mobile broadband, has resulted to continuous and

complementary improvement in both radio access technology and mobile

backhaul of cellular networks, along with network densification. The

main motivation of the research comes from future cellular networking,

where femtocells are foreseen to complement traditional macro base sta-

tions (BSs) in Long Term Evolution (LTE) and fifth generation (5G) of

cellular networks. The contributions of the thesis are two folds. One is

to propose distributed radio resource management algorithms for radio

access technology to reduce interference and thereby improve network

synchronization and cell-edge user equipment (UE) throughput for het-

erogeneous network. Second is to dimension the mobile backhaul link for

handover and provide wireless backhaul for femtocells.

Deployment of femtocells, introduce new requirements for distributing

phase synchronization and interference management in heterogeneous

network. Achieving phase synchronization for indoor femtocells will be

beneficial for time division duplexing (TDD) operation and inter-cell in-

terference cancellation and management techniques, but challenging to

achieve as global positioning system does not work indoors. In this thesis,

we propose coordinated transmission and reception algorithms to reduce

interference among BSs, and thereby spread the synchronization across

the dense femtocell network over the air. We also cover the problem of se-

lecting component carriers (out of the possible multiple component carri-

ers) to improve the performance of either macro or femto user equipments

(UEs) being interfered by the neighboring closed subscriber group (CSG)

femtocells. We propose three strategies: Selfish, Altruistic and Symmet-

ric for primary carrier selection and remove the outage of the macro UEs

near the CSG femtocells. Further, we propose dynamic frequency selec-

tion algorithm for component carrier selection, where decisions to select or
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drop a carrier are based on gain/loss predictions made from UE handover

measurements. We thereby maximize the sum utility of the whole sys-

tem, which includes mean-rate, weighted fair-rate, proportional fair-rate

and max-min utility.

Mobile backhaul dimensioning is studied to improve the handover and

provide the cost-effective backhaul opportunity for femtocells deployed

in emerging markets. In a packet-switched wireless system e.g. LTE,

data packets are forwarded between BSs during handover over the back-

haul. The problem lies in efficiently forwarding the needed data across

BSs to cater the user’s quality of service and reducing load on the links

connecting the two BSs. We analyze, evaluate and improve the packet

forwarding handover mechanism by reducing the amount of forwarded

data between BSs. Another challenge lies in equipping the femtocells

with backhaul, where copper cable, optical fiber or microwave radio links

are expensive options for unplanned emerging market case. We consider

leveraging macro LTE networks to backhaul High Speed Packet Access

(HSPA) femtocells, thereby highlight the possibilities for cost-effective ca-

pacity upgrades of dense settlements.In the study we also note possible

system performance improvements by enhancing the femtocell backhaul

link through improved antenna design, scaling of carrier bandwidth and

introduction of traffic steering across HSPA and LTE layers.
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