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1. Introduction

With the rapid adaptation of high-throughput technology huge databases

of biological measurements have become freely available. A crucial prob-

lem in current biological research is how to utilize the diverse sources

of existing knowledge and heterogeneous measurement data to make ac-

curate inferences about new data [1, 2]. Classical gene expression mea-

surements hold great potential and continue to constitute a major part of

the available databases. Figure 1.1 shows the number of microarray ex-

periments in one of the biggest public databases (ArrayExpress; [3]) has

doubled every two years since 2008.

As ArrayExpress and other repositories of genome-wide experiments

are reaching a mature size, it is becoming more meaningful to utilize the

diverse sources of existing knowledge and heterogeneous measurement

data and search for related experiments given a new study. Existing solu-

tions to retrieve relevant experiments either utilize the meta-data, such

as annotations and descriptions of arrays and genes [4], or use the sam-

ple features directly without modeling shared biological patterns from the

experiments [5]. The former considerably restricts the performance espe-

cially if the query sample has measurement data, while the latter fails to

facilitate biological interpretation of the retrieval results.

Probabilistic modeling provides a flexible approach that uses the math-

ematics of probability theory to express noise in the data and uncertainty

in the model parameters [6, 7]. The proposed models in this thesis com-

plement task-dependent bioinformatics methods, which are naturally re-

quired in all biological and medical research problems as well, with meth-

ods that can efficiently integrate existing data and search for relevant

studies given measurement data of user interest.
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Figure 1.1. ArrayExpress database growth - number of microarray datasets deposited
per year. Statistics taken from ArrayExpress

1.1 Contributions of the thesis

Given query data of user interest the thesis adapts existing and proposes

new model-driven approaches to retrieve a ranked list of most relevant

data from a background repository of earlier data measurements. The re-

trieval results are interpretable as they are based on the hidden high-level

features (biological processes) modeled by the proposed methods. The con-

tributions of the thesis can be grouped into three different scenarios for

the background data repository: A) collection of single-view data samples,

where each data sample is represented by a single data type, B) collection

of multi-modal (or multi-view) samples, where each data sample is rep-

resented by multiple data types and C) collection of datasets, where each

dataset is itself a collection of samples. The three scenarios and corre-

sponding key contributions are summarized below:

The first set of contributions is a model-based measure of relevance

between a query and a background sample (Publications I and III) and

evaluation of different data-driven models (Publications II and III) for a

background collection of single-view data samples. For the former, Publi-

cation I adapts a classical probabilistic latent variable model that yields

the model-based relevance measure between gene expression profiles un-

der a modeling assumption that the expression patterns in an individual

sample are generated from multiple underlying processes. Publication III

14
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compares the performance of the model-based retrieval on a larger data

collection and also extends the underlying probabilistic model for a back-

ground data repository. While the models in Publications I and III are

useful to quantify relevance at a global genomic scale, an alternative chal-

lenge is when there exist a few genes of interest and a user would like to 1.

infer regulatory interactions among the genes (data features) and 2. focus

the search on earlier samples that exhibit similar regulatory interactions

for the genes of interest. Publication II addresses the former by compar-

ing various models that can reconstruct the interaction network among a

given set of data features. Specifically, the study uses both simulated and

real world data to provide a rigorous evaluation of four commonly used

reverse engineering methods. The second related task, that is, modeling

relevance between samples given a set of potentially interesting features

and a modeled regulatory network, has been investigated in an earlier

study [8], briefly discussed in Section 4.3.3; the study utilizes one of the

better performing reconstruction models, as evaluated in Publication II,

and performs the search task using a predictive likelihood based rele-

vance measure that is sensitive to the relationships (interaction strength

and direction) among features.

The second contribution of the thesis is adaptation of a multi-view

model to utilize a background collection of multi-modal samples to re-

trieve the most relevant earlier data samples (Publication IV) and search

for chromosomal regions that are predictive of patient survival (Publica-

tion V). In this case a multi-modal (also referred to as multi-view) sample

is represented by more than one data type. For example, a bi-modal rep-

resentation of a tumor tissue can be its gene expression profile and copy

number changes measured from the tumor tissue. Specifically Publica-

tion IV presents a data-driven approach to perform retrieval of relevant

samples with the assumption that there exist multiple hidden linear com-

binations of features (represented as latent space) in the first data type

that are maximally correlated with the hidden combinations of features in

the second data type. Relevance between samples is computed using their

projections to the latent spaces. The study presents different case stud-

ies on drug chemical and biological responses and finds the added benefit

of another data type improving the retrieval performance in the multi-

view setting as compared to a single-view setting. Another common case

for multi-view repositories is when the multiple data types have feature

spaces that can be mapped using a one-to-one correspondence of features

15
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across data types. For example, a common case in cancer genomics is mea-

surement of copy number amplifications and methylation changes; two

chromosomally continuous data types where chromosomal regions can be

mapped to individual genes in gene expression. Publication V adapts

an existing multi-view model with the aim to extract relevant survival-

associated multi-view features (potential biomarkers) that are predictive

of patient survival. The problem is relevant for targeted repositories that

contain multiple experiments, all measuring the same disease. Using a

constrained version of the multi-view model used in Publication IV, Pub-

lication V first identifies chromosomal regions that are highly dependent

across multiple data types and then performs a survival association anal-

ysis to further filter out those dependent regions that can effectively strat-

ify patients into high and low survival groups.

Two novel and general-purpose approaches to model and relate a col-

lection of datasets in Publication VI and Publication VII form the third

set of contributions for the thesis. A typical dataset in transcriptomics

corresponds to a microarray experiment that contains multiple microar-

ray samples. The work in Publication VI considers the question under

the assumption that the dataset-of-interest (query dataset, also called

the task of interest) has a limited number of samples. Since each sam-

ple corresponds to a specific dataset, from a modeling point of view it

builds a structured model for each dataset; in particular, a novel Bayesian

generative transfer learning model is proposed that represents similarity

across datasets by sparse sharing of latent components controlled by a

non-parametric prior. The use of a non-parametric prior does not require

one to pre-specify the number of latent components unlike in Publication I

and Publication III. The method outperforms competing models on both

simulated and real data with small numbers of samples. While tradi-

tional multi-task learning and the work in Publication VI take the ap-

proach of building a single unified model of all the data, as the number

of datasets keeps increasing and the amount of quantitative biological

knowledge keeps accumulating, the complexity of the task of building an

accurate unified global model becomes increasingly prohibitive [9]. Publi-

cation VII introduces a novel general purpose and scalable method to re-

late a collection of datasets. Assuming that in the future researchers will

increasingly develop their hypothesis in terms of (probabilistic) models

of their own data which would allow them to take properly into account

both the uncertainty in the data and the existing biological knowledge,
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the study proposes a mixture model of existing models that decomposes a

given query dataset into contributions from relevant background models.

The parameters of the mixture model specify the amount of variation in

the query dataset that is explained by a background model learned from a

background dataset. These mixture weights are directly used as a proxy

for relevance between two datasets. The data-driven decomposition iden-

tified a network of interrelated datasets from a large collection of human

gene expression microarray experiments where tissue and disease were

found to be the major factor in determining relevant datasets. Further,

the findings from the case study were able to correctly identify inconsis-

tencies in the public repositories.

From a machine learning perspective, the key contributions of the

thesis are:

1. A retrieval model for transcriptomics where a topic model family is

adapted to compute a probabilistic model-driven measure of relevance

(Publication I).

2. A comparative evaluation of various network reconstruction approaches

that can infer relationships among different features or genes (Publica-

tion II).

3. Adaptations of an existing canonical correlation model family where

the latent components are used to a) performmulti-modal retrieval (Pub-

lication IV)and b) used to validate identified chromosomal regions based

on their power to predict patient survival (Publication V).

4. A novel multi-task Bayesian topic model that is able to relate datasets

and performs better than state-of-the-art non-parametric multi-task topic

models. (Publication VI)

5. A novel mixture model of data models that is able to decompose a given

query dataset into earlier datasets and is both scalable and rapidly com-

putable. (Publication VII)

Table 1.1 summarizes the relationships between the publications and con-

tribution areas.
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Table 1.1. Publications and the main contribution areas.

Publications

I II III IV V VI VII

Model-based retrieval for data samples X X X

Multi-view retrieval with biological samples as queries X X

Multi-task learning and retrieval of datasets X X

1.2 Organization of the thesis

In the thesis an overview of the computational methods is provided and

the main contributions are highlighted. Chapter 2 presents an overview of

basic molecular biology, functional genomics and genomic data resources

that are used in the subsequent studies. Chapter 3 builds a methodologi-

cal background by starting from basic probability theory, followed by den-

sity estimation and finally motivates probabilistic latent variable models

and Bayesian inference techniques. Chapters 4-6 describe the key contri-

butions of the thesis on information retrieval, in three different scenarios

for the background data collection, that is, single-view collection of mul-

tiple samples, a multi-modal or multi-view collection of multiple samples,

and a collection of multiple datasets, respectively. Lastly, Chapter 7 pres-

ents conclusions and discusses potential future directions.
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2. Molecular Biology

This chapter provides an introduction to the basic concepts of molecular

biology primarily used in the thesis - cells, molecules, genes and functional

genomics. The brief introduction is written with emphasis on genomics.

It is intended for those who do not have a strong biological background.

For futher background in molecular biology see [10–12].

2.1 Organization of genetic information

Cells are the basic building blocks of living organisms. All organisms

consist of small cells that are typically too small to be seen by a naked

eye. There are various different cell types in the human body including

skin cells, muscle cells, red blood cells and brain cells (neurons) etc. Each

cell carries a copy of the heritable genetic code, the genome. The human

genome is the complete set of the 23 pairs of chromosomes where every

chromosome contains coiled-up deoxyribonucleic acid (DNA) molecules

[10]. DNA is the main information carrier molecule in a cell and in eu-

karyotic organisms (e.g., humans and plants) most DNA is stored in an

enclosed cellular compartment known as the nucleus.

The genetic information in the DNA is encoded as a sequence con-

taining four organic bases: adenine (A), thymine (T), guanine (G) and

cytosine (C). These nucleotide bases are attached to a sugar-phosphate

backbone containing two strands of complementary nucleotide sequences

where in the opposing strands only A-T and G-C pairs can hybridize with

each other. This leads to the well-known double-helix structure of the

DNA and forms the basis for transmission of genetic information. The

central dogma of molecular biology [13] explains the flow of information

from DNA as an irreversible process of protein synthesis where the DNA

acts as the template for its own replication and encodes the information
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for the construction of a protein. This is a simplified framework for un-

derstanding the transfer of information at the cellular level in living or-

ganisms.

2.1.1 Protein synthesis

Scattered along the DNA molecule are particularly important sequences

of bases known as genes. Genes are the basic functional units of genetic

information that contain a particular set of instructions, usually coding

for a particular protein or a particular function [10]. Variation and regu-

lation in the gene activity therefore have major phenotypic consequences.

Proteins are the fundamental entities in the cell that perform key func-

tions within living organisms, such as response to stimuli, transport of

molecules from one location to another, DNA replication, and acting as

catalysts for metabolic reactions. The key steps in the process of protein

synthesis are transcription, pre-mRNA splicing and translation (shown in

Figure 2.1). In transcription a gene is first copied into complementary pre-

messenger ribonucleic acid (pre-mRNA) which then undergo pre-mRNA

splicing. The pre-mRNA contains both coding (exons) and non-coding re-

gions (introns). In pre-mRNA splicing the non-coding regions are removed

and the resulting mature messenger RNA (mRNA) is then transported out

of the nucleus of the cell into the cytoplasm of the cell. The cytoplasm con-

tains essentially everything else in the cell apart from the nucleus. Here

the mRNA molecule is read and translated into a protein which is a se-

quence of amino acids. The first nucleotide triplet of the mRNA encodes

the first amino acid of the protein, the next triplet the second amino acid

and so on. The rules by which the base sequence of the mRNA molecule

is translated into the primary amino acid sequence of a protein are called

the genetic code. The genetic code is universal and common for all living

organisms. As a final step of protein synthesis the primary amino acid

sequence of a protein is folded into a three-dimensional structure that

determines the functional role of the protein [10].

An expressed gene is a gene that is transcribed into RNA. A cell in

human body contains tens of thousands of potentially viable genes but all

genes cannot be active at once, so cells must decide which genes to turn

on and which to turn off. For instance, a bone cell turns on the genes

that make it a bone cell, while a skin cell would leave those turned off.

Neither of these cells need the genes that would allow cell differentiation

into a neuron so these genes would be left turned off or unexpressed. The
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Figure 2.1. Three stages of protein synthesis: DNA is first transcribed into pre-mRNA.
Next, the pre-mRNA is spliced to produce mature mRNA. The mature mRNA
is finally translated into a protein using the genetic code that maps the
nucleic acid triplets to amino acids. Copyright 2010 by Nature Education.
Reprinted with permission.

cell types in a multicellular organism become different from one another

because they synthesize and accumulate different sets of RNA and protein

molecules. They generally do this without altering the sequence of their

DNA. Most of the specialized cells are capable of altering their patterns of

gene activation in response to extracellular cues [11]. The knowledge of

which genes are expressed in a medical condition is also useful in many

potential therapeutic applications. For instance, knowing which genes are

expressed in cancer makes it theoretically possible to turn those genes off

so that they cannot be active in the body. In this thesis the term gene

expression is used as a synonym for transcription andmost discussed work

utilizes expression data samples collected from subjects under different

biological conditions. The study of transcriptomics, also referred to as

expression profiling, examines the expression levels of mRNAs in a given

cell population, often using high-throughput techniques based on DNA

microarray technology.

2.1.2 Layers of regulation

Most eukaryotic organisms, for example human beings, contain billions of

individual cells. Almost all of these cells contain, within each nucleus, the

entire genome for that organism. This genome contains the organism’s

complete hereditary information in the form of DNA, which encodes a
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complete blueprint for all activities and structures within the organism.

The process by which a cell determines when and which genes it will

activate is called gene regulation. It essentially allows the cell to control

its function and adapt to environmental changes such as introduction of

antibiotics into the environment of the cell. The gene activity is regulated

at all levels of protein synthesis starting from pre-transcriptional control,

to transcriptional control, to RNA processing and all the way till protein

activity control [14].

To regulate genes, gene regulatory proteins need to gain access to

the DNA which, with the help of packaging proteins called histones, is

tightly packed into protein-DNA structures called chromatin. Chromatin

occludes many DNA regulatory regions, not allowing them to regulate

gene expression. At the pre-transcriptional control, chemical and struc-

tural modifications of the chromatin such as methylation, acetylation, and

other histone-binding molecules affect the packing of the DNA molecule

and may switch a gene on and off [15]. Certain of these modifications

that regulate gene expression are believed to be heritable and constitute

a major source of variation at individual and population level [16].

For most genes, transcriptional controls, controlling when and how of-

ten a given gene’s DNA is transferred to mRNA, are paramount [14]. This

is sensible because, of all the possible control points illustrated in Fig-

ure 2.1, only the transcriptional control ensures that no superfluous inter-

mediates are synthesized. In transcriptional regulation, signals from the

environment or from other cells activate proteins called transcriptional

factors. These proteins bind to regulatory regions of a gene and increase

or decrease the level of transcription.

At the post-transcriptional stage small nucleotide sequences called

micro-RNAs can repress their target mRNA preventing protein transla-

tion [17]. Finally post-translational modifications, protein degradation

and other mechanisms play a crucial role in generating heterogeneity in

proteins and also help in utilizing identical proteins for different cellular

functions in different cell types.

While many proteins perform their functions independently, the vast

majority of proteins interact with others for proper biological activity in

a cell, including cell growth, proliferation, inter-cellular communication

and apoptosis. A critical test of requirement for a protein in a biological

process is to inhibit its production by disrupting the corresponding coding

genes [11]. The phenotypic changes are a result of coordinated activation
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of multiple genes that regulate the life of an organism.

2.2 Gene expression measurement and comparison

Gene expression measurements provide an indirect view to the cellular

process by recording the mRNA transcript levels in a cell population at

a specific time and condition. Such global patterns of gene expression

clearly show, for example, that liver cells transcribe a quite different set

of genes than do white blood cells or skin cells [10]. Changes in gene

expression can also be monitored during a disease process, in response

to drugs or other external signals, and during development. Classical

gene expression analyses compare one gene at a time by measuring how

much mRNA is produced in the control treatment (e.g. a healthy subject)

and how much mRNA is produced in the experimental treatment (e.g. a

diseased subject). While powerful, these traditional approaches do not

give a comprehensive view of the structure and activity of an organism’s

genome, its entire set of genes. With recent high-throughput techniques,

scientists can measure activity of numerous genes at one time. This can

yield a better understanding of how organisms are affected by changes in

the gene expression.

2.2.1 Microarray measurement technology

There are several ways to measure the expression level of a gene within a

cell and one powerful analytical tool is the microarray [12, 18]. DNA mi-

croarray technology is based on base pairing property of nucleic acid se-

quences where a DNA or RNA sample binds to complementary nucleotide

sequence on the array. This allows to detect mRNA transcripts in the cell,

thereby indicating which genes are being transcribed.

A microarray consists of DNA sequences called probes that are at-

tached or synthesized in fixed positions on a solid surface (microscope

slide or silicon chip). Probes are designed to uniquely match with par-

ticular mRNA sequences. To start a microarray experiment RNA is ex-

tracted from individual samples, reverse transcribed into a complemen-

tary DNA (cDNA) and labeled with a fluorescent dye. The resulting la-

beled transcripts are called targets. The labeled targets bind (hybridize)

to the probes on the microarray with which they share sufficient sequence

complementarity. The amount of the sample hybridized is used to esti-
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mate the target mRNA concentration, and it is determined by measuring

the intensity of light emitted by the labeled molecules with a laser scan-

ner [10].

There are two types of microarrays that are most widely used today:

single-channel microarrays and dual-channel microarrays [12]. Single-

channel microarrays are hybridized with only one sample and therefore

measure absolute expression levels of the mRNA sequences. In contrast,

dual-channel microarrays are typically hybridized with transcripts from

two samples (e.g. diseased tissue versus healthy tissue), where each sam-

ple is labeled with a fluorescent dye having a different emission wave-

length. The two samples are mixed and hybridized on a single microarray

that is then scanned to visualize fluorescence after excitation with a laser

beam of a particular wavelength. Relative intensities may then be used in

a ratio-based analysis to identify up-regulated and down-regulated genes

between the two samples. Short oligonucleotide arrays [19] are the main

sources of mRNA data in this thesis. These arrays consist of small frag-

ments so that a transcript is not represented by one probe but by a set of

them, typically 10−20. Use of several probes for each target leads to more

robust estimates of transcript activity [20].

Data preprocessing in microarray technology is a crucial initial step

before data analysis is performed. The preprocessing involves a series of

steps aimed at quality control (detecting irregularities in the arrays, re-

jection of erroneous spots), background correction (removal of signal emit-

ted by other things than sample hybridized to probe) and normalization

of the data (to correct for systematic biases due to causes such as differ-

ent dye absorption, spatial heterogeneity in the chip, or others) [12]. For

single-channel arrays a further step is necessary where different signals

obtained from all probes representing one gene are summarized. The out-

put of this initial process is the gene expression matrix with rows (1000-

50000) representing genes and columns representing individual samples

(typically from two to several hundreds). In statistical terms, the rows

represent data variables (p) and columns represent individual observa-

tions (n). Manipulating such high-throughput data poses computational

challenges for statistical learning that stem from the “large p small n”

problem of having much fewer observations n than variables p.
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2.2.2 Differential expression

Microarrays are, foremost, a tool of discovery [21]. Microarray gene ex-

pression data can be used in several different types of investigations.

When several tissue samples of a certain type are hybridized in an experi-

ment, it is natural to ask whether the samples can be grouped in homoge-

neous subtypes. Unsupervised clustering and classification methods are

commonly used to group samples with similar expression patterns across

genes or to cluster genes that follow the same expression patterns across a

set of samples [22]. Computational modeling to detect survival-associated

gene-expression-based biomarkers [23, 24], and modeling to detect and

connect diseases to drug responses at the transcriptional level [25] are

also an active area of research with implications to personalized medicine

[26–28].

Often one of the first tasks in analysis of microarray data is to iden-

tify the genes that are differentially expressed i.e. whose expression levels

change between two phenotypes. For instance, to understand the effect

of a drug we may ask which genes are up-regulated (increased in expres-

sion) or down-regulated (decreased in expression) between treatment and

control groups. A conventional statistical analysis method for differential

expression is to examine one gene at a time, determine a p-value that the

gene is differentially expressed in different phenotypes (e.g. by comparing

means across two groups using student’s t-tests, or with the linear mod-

els for microarrays [29]), and then to apply a correction (penalty) to the

p-value for having tested multiple genes [12]. These methods work best

when individual genes have large effects and there is a very consistent ef-

fect for subjects within each single phenotype. However, when a biological

pathway is up-regulated or down-regulated, individual genes in the path-

way may not show consistent, statistically significant effects in different

samples. More subtle, coordinated changes in members of a set may be

more easily detected overall across the set than detecting the change in a

single member [30–32].

Gene set tests are designed to address these limitations of single gene

analyses and to bring in biological knowledge in the form of pre-defined

gene sets [33]. These are statistical methods which are often used to de-

termine if predefined sets of genes are differentially expressed in differ-

ent phenotypes. The tests are based on the notion that genes within the

gene sets are funtionally related and, hence, will have similar expression
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patterns. These expression patterns might be modest, yet by borrowing

strength across gene set, there is potential for increased statistical power

[34]. In addition, in comparing results on the same disease from differ-

ent laboratories, one might get more reproducible results [33, 35]. The

gene sets are defined based on prior biological knowledge, such as set

of co-expressed genes in a previous experiment, genes in a known path-

way, for instance from the KEGG pathway database [36], or from publicly

available descriptions of biological processes, such as a Gene Ontology

category [37].

The gene set methods can be broadly divided into two categories: com-

petitive and self-contained tests [30, 38]. Competitive gene set tests com-

pare genes in a test set relative to all other genes. These tests focus more

on distinguishing the most important biological process from those that

are less important. Self-contained tests, on the other hand, examines a

set of genes against the null hypothesis that no genes are differentially

expressed. The test evaluates the relevance of an individual biological

process to the experiment under consideration. The self-contained null

hypothesis may not always be biologically interesting in data sets where

there are many differentially expressed genes, for example when compar-

ing cancer versus normal. This is due to the self-contained null hypothesis

where a gene set is considered to be differentially expressed even if only

one of its genes is effectively differentially expressed.

Publications I, IV, III and VII make use of the Gene Set Enrichment

Analysis (GSEA; [33, 34]), a competitive gene set test. Details of the

GSEA method are discussed in Section 4.2.1.

2.3 Genomic data resources

Gene expression measurements are one of the most widely available uni-

que data resources. These measurement collections are maintained by

several public repositories, including ArrayExpress [3] and Gene Expres-

sion Omnibus (GEO) [39]. There also exist carefully controlled integrative

datasets that contain thousands of genome-wide measurements of tran-

scriptional activity across diverse conditions in a directly comparable for-

mat, such as [25, 40]. These aforementioned repositories have been used

in Publications I, IV, III and VII.

In addition to gene expression, microarray-based techniques can also

be used to study other functional aspects of the genome, including micro-
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RNA regulation [41], alternative splicing [42], transcription factor bind-

ing [43], and different structural variations in the genome [44]. Struc-

tural variations in the genome play a crucial role in genetic diseases, such

as cancer development and progression [45]. They are variations in the

structure of a chromosome and typically each such variation affects the se-

quence over a length of about one kilobase to several megabases. A large

category of structural variation is copy number variations (CNVs). The

CNVs can be detected from the genome using, for example, microarray-

based techniques such as array-comparative genomic hybridization (aCGH)

[46]. A CNV corresponds to large regions of the genome that have been

deleted or duplicated on certain chromosomes. Each deleted or dupli-

cated region can be limited to a single gene or include a contiguous set

of genes. The variations can result in having either too many or too few

of the dosage-sensitive genes, which may be responsible for a substantial

amount of human phenotypic variability, complex behavioral traits, and

disease susceptibility [47, 48]. The Cancer Genome Atlas (TCGA; [49])

consortium provides a semi-public repository that contains copy number

measurements paired with gene expression and other data types across

several different cancer types. A subset of the repository is utilized in

Publication V, where DNA copy number changes are integrated with tran-

scriptional profiling data to discover potential survival-associated biomark-

ers for an aggressive brain tumor.
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3. Probabilistic Modeling

Modern computer science allows processing of very large amounts of noisy

data. A typical example of such data are medical genomic samples that

are measured from subjects under diverse biological conditions and stored

in different public repositories. Most publicly available biological data col-

lections do not contain complete information about patient history, how

the different pathways were active and what was the eventual diagnosis.

However, it is believed that there is a hidden generative process that ex-

plains the observed data. For example, a subject with cancer will not show

differential expression for random genes, instead the measured data are

likely to reveal accumulated alterations of multiple genes having similar

functions and belonging to pathways critical to cancer, such as cell growth

pathways [50] and normal cell behavior pathways [51]. The processes un-

derlying the observed data may not be completely identifiable but it is

possible to construct a good and useful approximation for them and detect

certain patterns and regularities. This is the field of machine learning

and probabilistic data modeling [52, 53]. By probabilistic modeling of the

data one can specify a set of assumptions or prior knowledge about the

nature of relationships in a data collection [7]. Then by computing how

the data fits the model it is possible to assess the model performance ([54])

and devise rigorous measures of relevance among different data samples

[55].

This chapter discusses key principles of probabilistic modeling and

provides the methodological background for subsequent chapters; Sec-

tion 3.1 introduces basic concepts in probability theory, Section 3.2 pres-

ents some useful models for density estimation, while Section 3.3 dis-

cusses associated learning and inference techniques. For other broad

reviews of statistical machine learning and probabilistic modeling, see

[7, 52–54, 56].
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3.1 Basic probability theory

Observations of complex real-world phenomena contain large amount of

uncontrolled variation called noise. The sources of noise in biological data

include experimental, measurement, reporting, annotation and data pro-

cessing errors [57]. The noise and the finite size of observed datasets

give rise to uncertainty about the phenomena underlying the observa-

tions. The calculus of uncertainty is called Probability theory [56].

A fundamental concept in probability theory is a random variable

whose value is subject to variation by chance [6]. As opposed to other

mathematical variables, a random variable conceptually does not have a

single, fixed value; rather, in observations the variable can take on a set

of possible different values, each with an associated probability. Random

variables can be classified as either discrete (that is, taking any of a speci-

fied list of exact values) or as continuous (taking any numerical value in a

possibly infinite interval or collection of intervals). For example, consider

a discrete random variable X that represents a result of a coin toss; in

this case the probabilities of the possible values are P (X = tail) = 0.5

and P (X = head) = 0.5. Notice that the probabilities for the differ-

ent values k of a random variable satisfy
∑

k P (X = k) = 1. Although

the expression P (X = k) helps to avoid ambiguity, it leads to a rather

cumbersome notation. Instead, in the thesis P (X) is used to denote a

distribution over the values of random variable X, and P (k) is used to

represent the distribution evaluated at a particular value k. For continu-

ous random variables the probability over events, corresponding to inter-

vals of values, is defined as integrals of a probability density, for example

p(X ∈ (a, b)) =
∫ b
a p(X)dX. With this compact notation let X be an event

that a hypothetical oncogene (a gene implicated in cancer) is expressed at

high levels in a person and let Y represent the event that the person has

cancer. Then p(X,Y ) is the joint probability that the person has tumor

and has the indicator gene over-expressed, while p(X) and p(Y ) are the

marginal probabilities of showing an over-expressed gene or developing

cancer, respectively. The conditional probabilities are defined as follows:

p(X|Y ) =
p(X,Y )

p(Y )
, (3.1)

p(Y |X) =
p(X,Y )

p(X)
, (3.2)

where the first conditional probability, p(X|Y ), is the probability of the

gene being over-expressed given that the person has cancer. It is easy to
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estimate by simply taking the fraction of cancer subjects that have the

indicator gene over-expressed, and estimating the conditional probabil-

ity with that fraction (relative frequency); such approximation can work

well for large numbers of subjects because of the “law of large numbers”

(see e.g., [58]). The two random variables X and Y are independent if

p(X|Y ) = p(X) and p(Y |X) = p(Y ). In Equation (3.2) the second condi-

tional probability, p(Y |X), is the probability that a person carries cancer

given that his or her indicator gene is over-expressed. The probability,

though more important from a diagnosis perspective, may be difficult to

estimate directly as a fraction of subjects. However, it can be expressed

in terms of the earlier complementary conditional probability by substi-

tuting the joint probability from Equation (3.1) in Equation (3.2), that is,

p(Y |X) =
p(X|Y )p(Y )

p(X)
. (3.3)

Equation (3.3) is commonly known as the Bayes’ theorem and it expresses

an unknown conditional probability in terms of another complementary

and easy-to-compute conditional probability [54]. In the example p(Y |X)

is relatively easier to estimate since the conditional probability p(X|Y )

and the two marginal probabilities p(X) and p(Y ) are easily available

from global statistics. Consequently, the conditional probability p(Y |X)

can be determined without directly estimating it.

3.2 Probabilistic modeling

A dataset D usually contains a set of independent observations or sam-

ples, D = {xi}Ni=1. A common approach to model the data is to assume

that it is drawn from an unknown probability distribution P (D). This ap-

proach is usually referred to as density estimation and it can be used to

summarize the data and cater for uncertainty in the observations [53].

A simple and standard method to density estimation involves choosing

a specific form for the density and specifying it in terms of a parametric

model P (D|θ). When the data are observed, the probability of observa-

tions given a set of parameter values θ can be expressed as the likelihood

function L(θ;D). When each observation is assumed to be independently

drawn and identically distributed (IID) the likelihood function becomes

L(θ;D) =

N∏
i=1

P (xi|θ).
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As an example consider a textual document D = {wi}Ni=1 that contains

N words, and we would like to model the document by setting probabili-

ties for how many times a unique word w′ appears in the document. The

density of the observations can be modeled via a multinomial distribution

over the counts: L(θ;D) =
∏N

i=1 P (wi|θ) =
∏V

w′=1 θ
cw′
w , where cw′ is the

count of unique word w′ in the data D.

The parameters that best allow the model to represent and summa-

rize the data can be obtained by inference [56]. Inference refers to es-

timating the unknown probabilities θ from a set of training data D. A

well-known method of estimating the model parameters is the Maximum

Likelihood estimation (ML) which sets the parameters such that the like-

lihood function is maximized,

θ̂ML = argmax
θ

L(θ;D) = argmax
θ

N∏
i=1

P (xi|θ). (3.4)

The ML estimate θML can be obtained by setting the derivative of the

likelihood to zero ∂L
∂θw

= 0, ∀ θw ∈ θ and solving for the values of θw.

In probability theory a measure of difference between two probabil-

ity distributions is the Kullback-Leibler divergence, often abbreviated as

KL-divergence [59]. The KL-divergence of distributions q(x) from p(x) is

defined as dKL(p||q) =
∑

x p(x) log
p(x)
q(x) , which can be interpreted as the

average inefficiency (measured in bits) of assuming that the distribution

is q(x) when the true distribution is p(x) [60]. In Equation (3.4) the like-

lihood function is chosen for optimization or fitting the model. This is in-

tuitively appealing since if the chosen model P (D|θ) differs from the true

distribution, maximization of the likelihood corresponds to minimization

of the KL divergence between the empirical distribution and the model

[53]. Effectively, this results in a trained model that approximates the em-

pirical distribution subject to the constraints of the model family. Other

ways of learning a model are discussed in Section 3.3.

3.2.1 Mixture models

Classical probability distributions provide a well-justified approach to mo-

del the observed data, but in many practical situations the useful regular-

ities in the data cannot be described with a single standard distribution.

In such scenarios a superposition of multiple distributions can provide the

ability to represent arbitrarily complex distributions over the data, and

the overall probability density of the data can be modeled as a weighted
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mixture of k components,

P (x) =

K∑
k=1

πkPk(x|θk). (3.5)

Such models, termed mixture models, can contain different distributions

for each component and each component distribution Pk(x|θk) has its own

parameters θk (e.g. mean and variance for a component with normal dis-

tribution) [53]. The parameters πk are called the mixing coefficients or

weights; they are non-negative and sum to one (
∑K

k=1 πk = 1) in order

to be valid probabilities. In practice, the mixing coefficients are often

unknown and can be estimated from the observed data by considering

them as standard model parameters fitted with a ML estimate. Publica-

tion VII utilizes the mixture model formulation to propose a mixture of

background models (detailed in Section 6.3).

3.2.2 Latent variable models

A way to describe more complex probability spaces and model hidden vari-

ables that generate the observed data is to introduce latent variables

z = {z1, z2, ...}, where each variable zk describes a simple distribution

[53, 56]. The latent variables are not directly observed and provide a flex-

ible way to express dynamic dependencies between other variables.

A latent variable model is defined by specifying the joint distribu-

tion over the latent variables z ∈ R
K and the observations x ∈ R

D.

Considering again the mixture model from Equation (3.5), we can for-

mulate the same model by introducing a K-dimensional latent variable,

z = {z1, z2, ...zK}, where zk = 1 if the observation belongs to the kth mix-

ture and all other element of z are equal to 0. The marginal distribution

over z is specified using a multinomial distribution from k categories with

prior probabilities πk, such that P (zk = 1) = πk. Then the prior distribu-

tion over the latent variables z can be specified as

P (z) =
K∏
k=1

πzk
i .

The joint distribution is decomposed as P (x, z) = P (z)P (x|z)where P (x|z)
is a conditional distribution which expresses the uncertainty in the obser-

vations given the mixture component that generated it:

P (x|z) =
K∏
k=1

P (x|θk)zk .
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Depending on the nature of the observed data θk would correspond to pa-

rameters of a specific distribution, e.g., for continuous variables it would

represent mean and variance of a Gaussian distribution (as used in Pub-

lication V to model shared effects between gene expression and copy num-

ber variations) or for multivariate count data it could represent probabil-

ities of observing a particular count value in a multinomial distribution

(as used to model latent components in Publication I, III, and VI).

The joint distribution is given by P (z)P (x|z) and the marginal distri-

bution of the observation is obtained by summing out the joint distribution

over all possible values of the other variable, that is,

P (x) =
∑
z

P (z)P (x|z) =
K∑
k=1

P (zk = 1)P (x|zk = 1).

Here z is marginalized out. The marginal distribution is equivalent to

the earlier formulation in Equation (3.5). The original data x can now be

expressed in terms of a smaller number of latent variables z that can be

obtained by using the Bayes rule:

P (zk|x) = P (x|zk = 1)P (zk = 1)∑K
k=1 P (zk = 1)P (x|zk = 1)

.

If there are several observations {x1,x2, ...xN}, then for each observed

data point xi there is a corresponding latent variable zi. Let X ∈ R
N×D

represent the entire data containing N observations and D features and

let Z ∈ R
N×D denote the corresponding latent variables with columns zk,

then the log-likelihood function of the entire data is given by

P (X|θ) = log
∑
Z

P (X,Z|θ).

An important observation is that the summation over latent variables

appears inside the logarithm and therefore even if the joint distribution

P (X,Z|θ) has an analytical solution, the marginal distribution typically

does not.

3.2.3 Bayesian modeling

In Bayesian data analysis the uncertainty in the unknown parameter val-

ues (or different models) is quantified before making inferences from the

data. The uncertainty is described in terms of probability distributions

[54]. This is in contrast to the traditional point estimation approach

where a particular parameter value is learned instead of a distribution

for the parameter. In Bayesian framework one defines a prior probability
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distribution for possible values of the unknown parameters. These prior

probabilities can be based on earlier observations, knowledge given by

an expert of application domain or can be so-called uninformative priors

that try to make the least amount of assumptions about which parame-

ter values are likely before seeing the data. After specifying the priors,

one constructs a posterior distribution of the unknown parameter values

θ conditioned on observed data X

P (θ|X) =
P (X|θ)P (θ)

P (X)
.

The prior can be seen as a penalty term and it favors solutions that

match with the prior assumptions; in particular, many priors give more

probability to simpler models. Such regularization properties are useful

when the data are scarce and there is high uncertainty in the parame-

ter estimates. The prior predictive density P (X) is a normalization con-

stant which is independent of the parameters θ and can often be ignored

during model fitting. In Bayesian modeling one is typically interested in

deriving an estimate for the posterior distribution over different models

rather than one fixed model, as is the case of point-estimates. If a point-

estimate is needed, however, it can be taken by seeking the maximum

value of the posterior distribution P (θ|X), which is usually referred to as

the Maximum-a-posteriori estimate (MAP):

θ̂MAP = argmax
θ

P (X|θ)P (θ)∑
θ P (X|θ)P (θ)

= argmax
θ

N∏
i=1

P (xi|θ)P (θ). (3.6)

Unlike in ML estimation, in MAP inference of a single parameter, the

prior can act as a regularization. The regularization ensures that events

that have not occurred in the data so far do not necessarily have zero prob-

abilities but a value depending on the prior. This property of the prior can

help prevent over-fitting of learned models. Nevertheless, the posterior

distribution can have many peaks and estimating just the highest peak

might be misleading. The Bayesian viewpoint is to use all possible mod-

els to draw inferences (or to evaluate the predictions in a prediction task)

and weight them by their respective posterior probabilities. This means

inferences will be affected by regions of the posterior distribution where

the probability mass is large rather than only the highest value of the

probability density. Since the evaluation of the posterior distribution typ-

ically involves integration of complicated functions, it is rare that a closed

form or analytical solution is available. Therefore, the usual way to learn

and evaluate the Bayesian models is either by Markov Chain Monte Carlo
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(MCMC) sampling or approximation of the posterior distribution by varia-

tional inference [53, 54, 56]. The methods in Publications I, II, III, VI and

the background models in Publication VII are based on Bayesian latent

variable models.

3.2.4 Nonparametric modeling

The finite mixture models or classical latent variable models require a

pre-specified model structure where the number and distributional shape

of generative processes is known before any data analysis. This is prob-

lematic in many practical tasks: for instance, in mixture modeling the

number of mixture components and in network reconstruction the struc-

ture of the network are not known before the analysis. In such scenarios,

a typical solution is the model selection over a finite set of candidate mod-

els [54]. In model selection each model is evaluated using validation data

based on an evaluation criterion. Modern nonparametric Bayesian mod-

els provide an alternative and principled approaches to learn the model

structure from data [61]. These models are based on nonparametric priors

(discussed in Section 6.2.2) that allow the number of mixture components

to grow in order to accommodate the complexity of data. Publication VI

introduces a new nonparametric Bayesian hierarchical model which is

suitable to relate sets of datasets.

3.3 Learning and inference

Learning a model is the process of updating probabilities of outcomes

based upon the relationships in the model and the evidence collected from

the observed data. It focuses on learning the model parameters θ. In

statistical machine learning inference refers to estimating the posterior

distribution of the latent variables. Various optimization schemes are

available to learn statistical models; however, there are several poten-

tial challenges including, a) the danger of finding only poor local optima,

b) computational complexity due to limited resources, c) un-identifiability

arising from a complex model structure, and d) ultimately the uncertainty

remaining after the inference stemming from lack of sufficient data. This

section focuses on learning procedures that are central to the thesis: Ex-

pectation Maximization (EM; [62]) and approximate inference [54, 56].
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3.3.1 Expectation Maximization

EM is an algorithm for maximizing a likelihood function for probabilistic

latent variable models. In these models there is no simple analytical form

for ML estimates of parameters because the likelihood function p(X|θ) has
a complicated expression due to marginalization over the latent variables

Z in the complete-data likelihood p(X,Z|θ), that is,

p(X|θ) =
∫
Z
p(X,Z|θ)dZ.

Effectively, there is a chicken-and-egg problem: to solve for the model pa-

rameters in an analytical fashion one needs to know the distribution of

the latent variables, but the distribution of the latent variables p(Z|X, θ)

is a function of model parameters. EM tries to get around this by iterat-

ing between estimation of the posterior of the latent variables and opti-

mization of the model parameters. If the current estimate of the model

parameters is denoted by θold, then a pair of successive expectation (E)

and maximization (M) steps give rise to a revised estimate θnew. In the

E-step the algorithm evaluates the expectation of the complete-data log-

likelihood over the posterior density of the latent variables, p(Z|X, θold),

keeping θold fixed,

Q(θ, θold) =
∫
Z
p(Z|X, θold) log p(X,Z|θ)dZ.

In the subsequent M-step this posterior distribution is used to find a re-

vised point estimate for the model parameters θnew by maximizing the

function Q so that

θnew = argmax
θ

Q(θ, θold).

The E and M steps are repeated until convergence of either the parame-

ter values or the log-likelihood. The EM algorithm can be understood as

optimizing a lower bound on the log-likelihood [53].

The EM algorithm is particularly useful when it is possible to derive

closed-form updates for both the E and M-steps. The algorithm can be

used to find MAP solutions for the models by incorporating prior informa-

tion about the parameters p(θ). In this case the E step remains the same

as in the maximum likelihood case, whereas in the M step the expression

to be maximized is given by Q(θ, θold) + log p(θ). This essentially avoids

singularities (for some parameter values, which can yield zero probabil-

ities for some future data) and over-fitting by focusing the modeling on

particular features in the data, as in the mixture of unigrams model in
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Publication VII, and the regularized dependency modeling framework of

Publication V, respectively.

3.3.2 Approximate inference and Gibbs sampling

A central challenge in Bayesian modeling is to evaluate the posterior dis-

tribution over the model parameters θ and the latent variables z. The

dimensionality of the latent space is often too high to work with the pos-

terior distribution directly. In addition, the distribution may have highly

complex forms for which expectations are not analytically tractable. For

discrete variables, the marginalization needed to evaluate posterior prob-

abilities involves summing over all exponentially many possible configu-

rations of the latent variables, which is a prohibitively expensive opera-

tion, while for the case of continuous variables, the necessary integration

may not have a closed-form analytical solution, and the dimensionality

of the space may prohibit numerical integration [53]. In such situations,

approximate inference makes it possible to learn a model. Approximate in-

ference approaches fall into two broad classes; deterministic or stochastic

approximations. Deterministic schemes are based on analytical approx-

imations to the posterior distribution, for example by assuming that the

posterior distribution factorizes in a particular way [63]. As such they are

less likely to generate the exact result, but some of these schemes scale

well to large applications. Stochastic techniques have the property that

given infinite computational resources, they can generate exact results,

and the approximation arises from the use of finite computational time

[54]. Here Gibbs sampling is described, which has enabled wide-spread

use of Bayesian methods across several domains [64].

Gibbs sampling works by successively simulating observations that

are approximated from a joint posterior distribution p(z|X, θ) without re-

quiring to directly sample from the joint distribution. By simulating suf-

ficiently many (independent) samples z1, z2, ....zT the mean, variance or

any other characteristics of a function f(z) can be evaluated to the de-

sired degree of accuracy [65]. The simulated samples follow the true pos-

terior distributions and can be used to compute the population quantities;

for example those samples can be used to evaluate expectation of some

function f(z) as

Ep(z|X,θ) [f(z)] =

∫
f(z)p(z|X, θ)dz = lim

T→∞
1

T

M∑
t=1

f(z(t)).

A Gibbs sampler has been found useful in many multidimensional
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problems. Suppose z is divided into d components or sub-vectors z =

(z1, z2, ...zd). To sample from the posterior p(z|X, θ), a Gibbs sampler is

defined in terms of components of z. At each iteration the sampler cycles

through the components and draws each component from its conditional

posterior distribution given all other components at their current values:

ztj ∼ p(zj |zt−1
−j ,X, θ),

where zt−1
−j = (zt1, ..., z

t
j−1, z

t−1
j+1, ..., z

t−1
d ). There are thus d steps in iteration

t. In each iteration, an ordering of the d components is chosen and, in turn,

each ztj is sampled. The samples z(t) are drawn sequentially with the dis-

tribution of the sampled draws depending on the last value drawn; hence

the draws form a Markov chain, where the approximate distributions at

each step are improved in the simulation, in the sense of converging to the

target distribution [54]. In practice, successive samples from the Gibbs

sampler are strongly dependent and in order to obtain independent sam-

ples from the desired posterior distribution p(z|X, θ) one must discard the

initial samples as part of the burn in period before the sampler reaches

its stationary distribution and use thinning to obtain lagged samples. The

particular appeal of Gibbs sampler stems from the most common scenar-

ios where even though the joint posterior density of all variables is ana-

lytically intractable to compute, it is possible to easily sample from most

or all conditional posterior distributions of the parameters.

An extension of Gibbs sampler used in conjugate models is the col-

lapsed Gibbs sampler, which marginalizes out any nuisance model vari-

ables ψ that are not of direct interest, so that p(z|X, θ) =
∫
p(z, ψ|X, θ)dψ

[54]. These variables ψ can be later estimated using the obtained Gibbs

samples. The reason for marginalization of model parameters is that

when we do not need to sample extra parameters, effectively only a sub-

space is sampled where information is updated sooner and so the Markov

chain converges faster to the stationary distribution. Collapsed Gibbs

sampling was used in all publications except Publications IV and V.
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4. Model-based retrieval for data
samples

The availability of thousands of expression studies in public reposito-

ries makes it increasingly challenging to notice good results among non-

relevant results. At the same time, these repositories give us the opportu-

nity to develop retrieval and exploration methods that use the gene ex-

pression data from the collection to deliver biologically meaningful re-

sults. This chapter introduces model-based solutions for the scenario

where a researcher has a new sample or a set of potentially interesting

genes and would like to find earlier data samples that are most relevant

for the new sample. The chapter starts with the classical approach to the

retrieval problem and the related motivation of the data-driven search.

The next two sections describe specific contributions towards two model-

based data-driven retrieval solutions; the first solution is useful when a

researcher has a sample of interest and would like to search for earlier

samples that are most relevant to the sample of interest (Publications I,

III), the second solution is suitable for the case when the researcher, in-

stead, has a few genes or gene sets of interest and would like to infer in-

teractions among them, and utilize them to find the most relevant earlier

data samples (Publication II).

4.1 Motivation and Related work

Most traditional search engines provide the user with a non-data-driven

search facility [3, 4], where the user issues a query as text either directly

by typing one or more keywords or by selecting an ontology term of inter-

est from a pre-defined ontology. The basic content-based search engines

work by computing a distance function for the input query text against the

textual descriptions of background data. This approach not only requires

carefully written descriptions with controlled vocabularies and standard-
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ized practices [1] but also limits the potential findings to existing knowl-

edge. Usually the researcher who is interested in searching the public

databases is looking for data that could complement his/her existing mea-

surements or to investigate with the aim of discovering something new.

Data-driven approaches, that let the measured data speak for themselves,

provide potentially better methods where the inferred relevant data corre-

sponds to statistical similarity in the actual measurement data. The next

two sections summarize contributions of the thesis to the model-based

data-driven retrieval methods where a researcher can position her own

measurement data into the context of earlier biology.

4.2 Retrieval of relevant samples given a query sample

Given a query gene expression profile, Publications I and III provide prob-

abilistic models that inherently yield model-based similarity measures

between gene expression profiles. These models have been designed to

retrieve data relevant to the user query in the sense that the retrieved

profiles exhibit similar patterns of expression levels with the aim that

the retrieval results are interpretable. Both existing approaches and the

two proposed ones can be seen as instances of a general purpose retrieval

framework that can be divided into four components. In the first compo-

nent, each gene expression study is decomposed into meaningful compar-

isons between biological conditions and each comparison is represented

in terms of differential expression for genes or gene sets. In the second

component, biologically meaningful patterns of expression are extracted

using appropriate probabilistic modeling methods. In the third compo-

nent, a relevance measure quantifies similarity between any two profiles

and can be used to retrieve a ranked list of most relevant results given

the input query. In the fourth component, a model selection procedure is

used to select an appropriate model among a set of candidate models. In

the following subsections each of the four main parts are described.

4.2.1 Study decomposition and representation

A background database contains microarray datasets or studies submit-

ted by researchers. Each study is based on an experimental design and

can contain multiple samples. In the first step of the proposed methods

the experimental design is decomposed into a set of comparisons between
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pairs of conditions, such that it minimizes the effect of confounding fac-

tors and increases the interpretability of results. In the ArrayExpress

database [3] an experimental design of a study is translated into differ-

ent experimental factors e.g. “disease state”, “compound” or “tissue”. A

given sample in a study has been measured in a condition having a spe-

cific value for each experimental factor. For instance, a sample may have

the annotation “disease state = normal” and “tissue = heart”. For every

study a list of comparisons is derived such that within each comparison

all experimental factors share the same value, except for a single factor

which has either of the two possible values. For example, a given set of

samples may share the annotation “tissue = heart” and “gender = male”

but may have the two possible annotations for “disease state = muscular

dystrophy” or “disease state = normal”. This results in a comparison be-

tween muscular dystrophy and normal samples in the context of “gender =

male”, tissue = “heart” and compound = “none”. Alternative methods that

compare a sample against the average of all samples within a study, e.g.

the Module Maps method [32], yield comparisons that depend on the con-

ditions used to compute the average and therefore contain an additional

layer of study-specific bias.

After decomposing each experiment into a set of comparisons between

biological conditions, the differential expression patterns for each com-

parison can be represented as differential expression profile across genes

or a set of pathways. Concretely, GSEA is used to extract the differen-

tial expression of a set of manually curated pathways obtained from the

MSigDB collection [33]. For each comparison, genes are sorted with re-

spect to their differential expression levels and a running sum is com-

puted over the sorted list; this running sum, known as the enrichment

score (ES), increases when a gene belongs to the gene set and decreases

otherwise; the final statistic is the maximum of this sum. For each sample

the ES is normalized by dividing it by the mean of random ES’s computed

by permuting the phenotype labels of the samples. The top scoring gene

sets are selected according to this normalized score. Finally, to represent

the comparison, each gene set is associated with an integer value that

corresponds to the number of genes in the gene set that are found before

the running score reached its maximum (called the Leading edge subset).

This effectively yields a bag-of-words representation for each sample in

a dataset. The use of gene set level tests rather than gene level tests is

not only due to the fact that procedures used to test for differential ex-
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pression of gene sets are observed to be more robust across studies [33],

but also because gene sets allow re-using existing biological knowledge of

pathways.

4.2.2 Probabilistic Topic models

To model the background collection of comparisons, each represented by

the GSEA output, the proposed pipeline uses probabilistic latent variable

mixture models. The models are used to infer biologically meaningful

co-activations between patterns of differential expression and their gen-

erative nature provides a basis for a sensible relevance measure between

a given query and each background comparison. In Publications I and

III, the latent variable mixture models come from the topic model fam-

ily. In topic models the latent variables represent multiple components or

topics in a comparison and each comparison can have a mixture of com-

ponents. Topic models have been successfully used in textual information

retrieval [66, 67]. They are unsupervised probabilistic models that pro-

vide useful descriptive statistics for analyzing and understanding the la-

tent structure from count data. In count data, each object is represented

as a vector whose elements contain counts of how many times a particular

event occurred in the object, such as text from documents assumed to be

in a bag-of-words representation, where for each document the numbers

of occurrences of each word are counted. The latent structure is captured

by a fixed number of latent mixture components and a distribution over

the components, for each document, that is most likely to have generated

the observed data of a document (details below). Publication I utilizes

one of the most simple topic models, namely, the Latent Dirichlet allo-

cation (LDA; [66]) where components aim to capture co-occurrence pat-

terns among gene sets. In Publication III an extended model is presented

that captures co-occurrence among gene sets coupled with co-occurrence

among genes. The intuition behind both models is to infer components

that are groups of gene sets expressed together in a similar fashion across

different comparisons. Since the models infer a latent structure (i.e. per

comparison distribution over the inferred components and per component

distribution over gene sets) it is possible to interpret two potentially rele-

vant profiles by examining their respective latent structures.

In Publication I, the classical LDA method is used to model the back-

ground collection of comparisonsX = [x1,x2, ..,xD]. The LDAmodels each

comparison xd as a mixture over K components. A component k is the
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central concept in this type of modeling and each component is built as

a multinomial distribution over the gene sets that are often co-activated

together across the comparisons. For each gene set, the level of activity

of the gene set in a sample is represented as a count of activations. Each

comparison is generated as a set of activations of the various gene sets.

Within each comparison, each activation i of a gene set is generated by

first picking a component index zd,i using the comparison-to-component

distribution θd, that is, zd,i ∼ Multinomial(θd). Given the component in-

dex, the index xd,i of the gene set to be activated is generated using the

component-to-gene-set distribution ψk, that is, xd,i ∼ Multinomial(ψk).

Lastly, the count of activations of the chosen gene set is increased by one.

This procedure is repeated to generate more activations within the com-

parison, until the desired total number of activations has been reached.

The probability of generating gene sets activations xd = {xd,i}Nd
i=1 for a

single comparison, given ψ and θd, is

p(xd|ψ, θd) =
Nd∏
i=1

K∑
zd,i=1

p(zd,i|θd)p(xd,i|zd,i, ψ) (4.1)

where zd,i is marginalized out. Conjugate Dirichlet priors are placed over

both the distribution over components θd ∼ Dirichlet(α) and the distri-

bution over gene sets ψk ∼ Dirichlet(β). A plate diagram is presented in

Figure 4.1. The complete-data likelihood for a single comparison d can be

specified as:

p(xd, zd, ψ, θd|α, β) =
Nd∏
i=1

p(xd,i|ψzd,i)p(zd,i|θd)p(θd|α)p(ψ|β). (4.2)

Inferring the latent parameters of the generating distributions in the mo-

del from a set of observations is not possible in closed form and therefore

approximate inference using a collapsed Gibbs sampler is used to infer

the latent parameters.

In Publication III the classical LDA is extended to 1. model the ac-

tivity of gene sets as well as specific genes within gene sets and 2. model

correlation between components via so called modules. To accomplish the

first extension, an alternative representation is used where each compar-

ison contains two pieces of information for every gene set: binary activa-

tion of the gene set and for each gene set a binary vector specifying if a

gene belongs to the leading edge subset of the gene set. To accomplish the

second extension, a hierarchical component structure is developed where

each comparison i has a distribution over so-called modules θi and each
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D: Documents

Nd: Words
K: Topics

xd,i θd αzd,i

ψ β

Figure 4.1. Plate diagram of Latent Dirichlet allocation model. Rectangles indicate sets
of variables, with cardinality of the set marked in the bottom left corner. Gray
nodes correspond to observed data.

module in turn has a distribution over components (or submodules) ηm.

A module represents a combination of components and aims at capturing

high-level biological phenomenon. A gene set s is generated by first pick-

ing a module index ui,g = m and a component index vu,g = k (from the

corresponding module’s distribution ηm), then the gene set is activated

with probability φs,k given the selected component and finally each gene g

within the leading edge subset of the gene set is activated with probabil-

ity ψk,g. Conjugate priors are used to integrate out the model parameters,

and a collapsed Gibbs sampler is used to perform inference for latent vari-

ables u and v.

4.2.3 Probabilistic measure of relevance

To address the problem of retrieving the most meaningful and relevant

samples, one needs to specify a similarity measure between a given query

comparison and each comparison from the background collection. While

classical correlation measures, such as Spearman and Pearson correla-

tion, can be used to measure similarity between gene (or gene set) activity

in two comparisons, a natural measure is to utilize the model structure

and calculate how probable it is to generate a query comparison given

the model parameter fitted for a background comparison [55]. Using the

model structure has the intuition that if two comparisons have similar

expression patterns then the model fitted on one should be able to gen-

erate the other with high probability. Formally, this corresponds to the

following expression:

rel(q, d) = P (q|d, collection) (4.3)

=

∫
Θ
P (xq|Θq = θd)P (Θ|X)dΘ
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where P (Θ|X) is the posterior distribution of model parameters fitted on

the background collection X, xq is the data of the query comparison, and

P (xq|Θq = θd) is the predictive likelihood of the query comparison given

the parameters fitted on the background comparison. When Gibbs sam-

pling is used to infer the posterior distribution of model parameters, the

integral in the relevance measure is approximated by a mean over sam-

ples. In the classical LDA of Publication I, θd corresponds to the distri-

bution of mixture components in the earlier comparison while in Publica-

tion III, it corresponds to the distribution of mixture modules in a back-

ground comparison. As the similarity measure in Equation (4.3) is not

specific to a model family, it can be used to compute relevance based on

any Bayesian latent variable model.

4.2.4 Model selection and evaluation

Model selection in topic models refers to estimating the optimal number

of components. It becomes an important step especially in an exploratory

analysis where a countless number of candidate models (with different

number of components) could have produced the observed data. A com-

mon model selection approach is to have some measure of model perfor-

mance that is used to compare the candidate models learned on different

numbers of unknown latent components. Two model selection methods

are used in Publication III. The first method compares the retrieval per-

formance of the model under a varying numbers of total components. The

second method estimates and compares the average predictive likelihood

of unseen held-out data samples given some training data [66]. The next

paragraph discusses two methods that are used to estimate the likelihood.

In classical LDA the predictive likelihood can be expressed as

P (Xtest|Xtrain) =
∫

dψdαP (Xtest|ψ, α)P (ψ, α|Xtrain), (4.4)

where ψ is the component-to-gene-set distribution and α is the prior for

comparison-to-component distribution. The predictive likelihood is com-

putationally feasible if one is willing to approximate the integral with a

point estimate for ψ and α. In the study an MCMC sampler is used to

marginalize out the component assignments associated to training data

and to infer the point estimates (ψ̂ and α̂). Considering each held-out

comparison xd independent, the first term in Equation 4.4 factorizes as

follows:

P (Xtest|ψ̂, α̂) =
∏
d

P (xd|ψ̂, α̂). (4.5)
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This term can be interpreted as a normalization constant relating the

posterior distribution of a component assignment to its joint distribution

with the data by the Bayes rule:

P (z|x, ψ̂, α̂) = P (z,x|ψ̂, α̂)
P (x|ψ̂, α̂)

, (4.6)

where the current held-out comparison is represented as x and its latent

components as z. The subscript d is omitted because each held-out com-

parison can be evaluated separately, since the component assignments for

one held-out comparison are independent of the component assignments

for all other held-out comparisons. Several methods can be used to evalu-

ate the normalization constant [68]. Publication III uses two alternative

strategies; in the first an importance sampler is designed by setting the

proposal distribution over the posterior of z in a way that yields a Har-

monic mean estimator (HM [69]):

P (x|ψ̂, α̂) ≈ 1
1
S

∑
s

1

P (x|zs, ̂ψ)
, (4.7)

where z(s) ∼ P (z|x, ψ̂, α̂) and {zs}Ss=1 are S samples taken from a Gibbs

sampler after a burn-in period. The HM estimator is widely used due to

its ease of implementation and relatively low computational costs. How-

ever, it has been criticized for its misleadingly low empirical variance [70].

An alternative better approach to estimate the normalization constant is

via the Annealed importance sampler [68, 70]. It is a variant of simple

importance sampling defined on a higher-dimensional state space where

auxiliary variables are introduced in order to make the proposal distribu-

tion closer to the target distribution, so that

Ps(z) ∝ P (x|z, ψ)τsP (z|α). (4.8)

The proposal distribution is built over an extended space Z = {z(s)}Ss=1 by

first sampling from the tractable prior P0(z) and then, through a series

of auxiliary variables, 0 < τ1, τ2, ..., τS = 1 moving the sample through in-

termediate distributions towards the posterior PS(z). In the analysis no

major difference in the result was found between the model selection us-

ing the Annealed importance sampler and the Harmonic mean estimator.

4.2.5 Results

Both models are applied on data collected from the ArrayExpress repos-

itory. In Publication I around 800 comparisons are collected that corre-
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spond to 288 different studies, while in Publication III an extended col-

lection of 6925 comparisons is derived from 1082 different studies corre-

sponding to three different species. The methods are evaluated based

on their retrieval performance, qualitative assessment of modeled com-

ponents and selected retrieval case studies. The retrieval performance

evaluation is restricted to case vs control comparisons as they are easier

to systematically assess.

In Publication I average precision is used to compare the model per-

formance against a random base-line. The retrieval results show that in

20 out of 27 cancer vs normal comparisons the LDA model performed sig-

nificantly better that the random base-line.

In Publication III the evaluation method uses a controlled vocabulary

known as the Experimental Factor Ontology (EFO; [71]). EFO systemati-

cally characterizes the existing factor values and represents relationships

between their values to describe biological conditions investigated in the

ArrayExpress studies. A mapping for the non-control conditions to ontol-

ogy terms is obtained for 219 interpretable comparisons, where the ground

truth between two comparisons is based on the shared path between the

corresponding terms in the EFO. Since this method yields a non-binary

relevance a graded relevance measure, namely Normalized Discounted

Cumulative Grain (NDCG) is used to measure the ranking quality. The

NDCG measure quantifies how much the user gains for a query when a

background comparison with a particular relevance is found at a particu-

lar rank in the ranked list of retrieval results. The retrieval results reveal

comparable performance of the proposed method compared to the classical

LDA and other existing methods.

Both studies evaluate the inferred components by interpreting the

respective top gene sets. The inferred components model functionally co-

herent differential expression patterns and explain a wide range of bi-

ological processes, such as cell cycle, apoptosis, glycolysis, DNA replica-

tion and respiration etc. Several retrieval case studies also show that

both models found meaningful existing and potentially new connections

between different comparisons. In Publication III, the model suggested

a previously unknown connection between Malignant Pleural Mesothe-

lioma (MPM), which was a query comparison and Single-minded homolog

2, short isoform (SIM2s) transcription factor, which was the third most

relevant result. This connection was followed up with a RT-PCR exper-

iment on an independent set of mesothelioma samples. The experiment
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validated the computationally predicted connection between MPM and

SIM2, which leads to a hypothesis that SIM2s may have a role in MPM

via the estrogen signaling network.

4.3 Retrieval of relevant samples given a set of genes

While Publications I and III compare expression profiles on a global scale,

an important feature is to focus the search of earlier samples based on

relevant regulatory relationships among user-defined genes-of-interest.

There are three main steps needed to achieve this; first, a suitable mo-

del for reverse engineering a regulatory network among the genes must

be constructed, second, since there exist several potentially useful re-

verse engineering models, a quantitative evaluation and understanding

of the relative merits and shortcomings of the different models must be

achieved, and third, a rigorous measure of relevance between a query

sample and a background sample that utilizes the regulatory relation-

ships among the user-defined genes must be created. In the following

subsections the three main parts are described; the first two correspond to

relevant contributions from Publication II while the third briefly summa-

rizes a rigorous model-based similarity measure published in an earlier

study [8].

4.3.1 Network reconstruction approaches

The challenge of identifying regulation networks from functional genomics

data has resulted in development of a number of statistical and machine

learning methods. In particular, Publication II compared four statistical

methods for the recovery of network structure; 1. Graphical Gaussian

Models (GGMs), 2. Linear regression with Least Absolute Shrinkage and

Selection Operator (LASSO), 3. Sparse Bayesian Regression (SBR) and

4. Bayesian Networks (BN). In a regulatory or interaction network each

node represents a variable of interest (e.g., gene) and edges among nodes

represent strength of interaction.

Graphical Gaussian methods

Gaussian graphical models (GGMs) are undirected graphical networks

that are used to infer conditional independences among a set of variables

(or nodes of the network) under the assumption of a multivariate Gaus-

sian distribution of the data. A GGM can be constructed by estimating
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partial correlation coefficients among the set of variables. A partial cor-

relation describes the correlation between two nodes conditional on all

the other nodes in the network. From the theory of normal distribution

it is related to the inverse of the covariance matrix [72], and therefore

an important step in learning the model is the estimation of the covari-

ance matrix and its inverse. In many cases of network reconstruction

applications and specially in molecular biology, the number of observa-

tions is smaller than the number of variables and therefore the covariance

matrix becomes singular. Publication II employs an existing shrinkage-

based regularization approach that was found superior to other alterna-

tives in [73]. The shrinkage approach replaces the empirical estimate of

the covariance matrix by a weighted mixture of an empirical covariance

estimate and a non-singular regularization matrix. The regularization

matrix shrinks the off-diagonal entries to zero and leaves diagonal en-

tries (variances) intact. The weight parameter is estimated analytically

by minimizing the expected deviation of the inferred covariance matrix

from the true covariance matrix (see [73] for details).

Linear regression

While partial correlation is one sensible approach to predict interactions,

another alternative paradigm is the linear regression model. Classic lin-

ear regression takes as input multiple observations for both response

yq = {y1, y2, ..., yN} and the predictor variables X = {x1,x2, ...,xR}, and
predicts the value of a response variable with a weighted sum of predictor

variables so that

ŷq =

R∑
r=1

wqrxr, (4.9)

where ŷq is the predicted value of the response variable yq, and the regres-

sion parameters wqr represent the strength of interaction between a pre-

dictor and the response variable1. The goal is to produce a weight vector

wq ∈ RR where the element r corresponds to the influence of a predictor

variable. To obtain the weight vector typically the squared error between

the the predictor and observed value of the response is minimized:

ŵq = argmin
wq

‖ŷq − yq‖2. (4.10)

1Typically in non-regularized regression (Equation 4.9) a bias term (wq0) is in-
troduced by simply augmenting the data with a constant for the bias term, that
is, X = {1,x1,x2, ...}. In the regularized version, instead of the bias term, the
data (xr and yq) is standardized.
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Minimizing the squared loss function corresponds to maximum likelihood

estimation under a Gaussian model for the observations drawn indepen-

dently from a normally distributed isotropic noise distribution [53] where

the likelihood function becomes

p(yq | wq,X) =
N∏

n=1

N (yn | wT
q xn, σ

2). (4.11)

In practice this approach is usually susceptible to over-fitting, which calls

for suitable regularization. The standard method of ridge regression pe-

nalizes the L2-norm of the weights, where the error function of Equa-

tion (4.10) is replaced by

ŵq = argmin
wq

(
‖ŷq − yq‖2 + λ

∑
r

w2
qr

)
. (4.12)

This can be interpreted as Bayesian MAP estimate under a zero-mean

Gaussian prior on the weights with an isotropic covariance matrix. An

alternative to L2 is the L1-norm that contains a stronger regularization

term and yields more sparse results. It is commonly referred to as the

Least absolute shrinkage and selection operator (LASSO; [74]). The LASSO

cost function is

ŵq = argmin
wq

(
‖ŷq − yq‖2 + λ

∑
r

|wqr|
)

(4.13)

which can be interpreted as a Bayesian MAP estimate under a Laplacian

prior on wq [75].

Sparse Bayesian regression

The Sparse Bayesian regression model (SBR; [76]) is simply a Bayesian

MAP estimation of Equation (4.10) under an Automatic Relevance Deter-

mination prior (ARD; [77]) on the interaction weights so that

p(wq | λ) =
∏
r

N (
wqr | 0, λ−1

r

)
. (4.14)

In this prior the hyperparameters λ are optimized by maximizing the

marginal likelihood. The reason for sparsity of the SBR approach is due

to the hierarchical nature of the prior; each hyperparameter λr has an

uninformative Gamma prior with shape and inverse scale parameters set

to zero, which effectively leads to an improper prior. Integrating the hy-

perparameter out leads to a prior that is clearly sparse: p(wgr) ∝ 1/wgr.

Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model that indicates

how different random variables of interest interact. Each random variable
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xr is represented by a node r in the network. The model is defined by a di-

rected acyclic graphical structure H where edges among the nodes are as-

sociated with conditional probabilities with parameters q. If pa[r] defines

parents of a node r and {x}pa[r] represents the set of random variables as-

sociated with pa[r], then due to the acyclicity, the joint distribution of all

the random variables can be factorized into a product of lower-complexity

conditional probabilities defined by the graphical structure:

p(x1, ...xR) =

R∏
r=1

p
(
xr | {x}pa[r]

)
. (4.15)

The objective of Bayesian networks is to find a model structure H that

best explains the data D, that is, to sample structures from the posterior

p(D | H). The posterior involves the marginal likelihood p(D | H) which

averages the probability of data over all possible parameter assignments

q,

p(D | H) =

∫
p(D|q,H)p(q|H)dq. (4.16)

As the species data in the Publication II (discussed later) has been dis-

cretized, the marginal likelihood was computed under the assumption of

a multinomial distribution with a Dirichlet prior, which results in a closed

form solution for the likelihood [78]. Direct sampling from the posterior

is analytically intractable and is therefore approximated by MCMC sam-

pling [6, 79]. A structure MCMC method, proposed in [80], was used in

the study; the method constructs a chain of network structures by starting

with an initial graph and at each step either creates, deletes or inverts an

edge. To constrain the search space for network structures a restriction of

at most three parents was imposed. This method, commonly adapted in

other studies [81], incorporates the prior knowledge that interaction net-

works are usually sparse. For detailed description of BNs see for instance

[6, 78].

4.3.2 Evaluation of network reconstruction approaches

A crucial requirement to evaluate the different reconstruction meth-

ods is to test the ability of the models to recover the true network struc-

ture. The study uses simulated and real-world ecological datasets. The

models are first evaluated on simulated food-webs where the true net-

work structure is known precisely. The best performing methods from the

simulated data evaluation are further tested to infer interactions among

53



Model-based retrieval for data samples

39 bird species of European warblers. Since the true real-world network

is not known for these species, the edges inferred from the methods are

compared against those reported or expected from literature.

In order to simulate test datasets, first a set of 10 different network

structures are simulated from a niche model that takes as input the num-

ber of species and the network density, then the abundance of the species

is generated from a population model which takes as input the growth

rate, species-specific demographic and environmental effect and effect of

competition for common resources. The model generated 10 datasets. The

input parameters are picked empirically so that they are close to the ac-

tual values in real food-webs and lead to stable simulation where popula-

tion levels reach a steady state after a short burn-in phase.

Each network reconstruction method compared in the study leads to

a matrix of scores associated with edges in a network. These scores are

different in nature: partial correlation coefficients for GGMs, regression

coefficients for LASSO and SBR, and marginal posterior probabilities for

BNs. All three scores define a ranking of the edges. This ranking is used

to define a receiver operator characteristic (ROC) curve by varying the

threshold on the scores. The ROC curve is summarized as area under the

curve (AUC), with a larger score indicating overall better performance,

and as True-positive rate at 5% false-positive rate (TPFP5), which high-

lights performance at a low false-positive rate. The TPFP5 and AUC

scores for simulated data indicated superior performance for the BN and

the LASSO models. For the real-world data the performance of BN and

LASSO was comparable.

4.3.3 Model-based similarity measure

To address the problem of querying an existing database of microarray

measurements with a list of genes and to identify what experiments might

be relevant based on differential activity of particular cellular processes,

a predictive likelihood based Fisher similarity measure is adapted for re-

trieval in [8].

The study uses the LASSO regression model to learn a regulatory

network among the genes in the query list. The interactions of each gene

j in the list of target genes T are modeled as xj = X−jwj + ε, where

ε ∼ N (0, σ2) is the noise term independent of any relevant biological con-

dition, xj = {x(1)j , x
(2)
j , ..., x

(n)
j } represents the observations for the inter-

esting gene, X−j contains the data for remaining genes, and wj are the
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corresponding regression coefficients. The model for the entire set of in-

teresting genes is approximated by the so-called pseudo-likelihood [82];

the pseudo-likelihood regarding a data sample x(i) is given by

p(x
(i)
T | x(i)

−T ,w) =
∏
j∈T

p(x
(i)
j | x(i)

−j ,wj) (4.17)

where p(x
(i)
j | x(i)

−j ,wj) = N
(
x
(i)
j | wT

j x
(i)
−j , σ

2
)
.

Using the approximated model the study computes the Fisher score

for each data point sŵ(x(i)). The Fisher scores are defined by concatenat-

ing the partial derivatives of the log-likelihood with respect to the model

parameters for a data sample [83]. The score indicates the direction in

which to update the parameter estimates ŵ in order to maximize the log-

likelihood of the sample starting from ŵ. The inner product of the Fisher

scores Kŵ(x
(iq),x(ik)), also known as the simple Fisher kernel, is then

used to compute the relevance of each background sample x(ik) given an

input query x(iq).

If D is the dataset from which the model is learned, then adding two

new data points produces D+x(iq) and D+x(ik). The inner product in the

Fisher kernel can be seen as updated parameters ŵnew x(iq) and ŵnew x(ik)

that can be derived as a parameter update for the extended datasets by

gradient ascent [8]. The score indicates the strength and sign of gene

relationship. The study shows better retrieval performance of the simple

Fisher kernel measure compared to other alternatives based on Euclidean

and Pearson correlation.

4.4 Discussion

Publications I, II and III demonstrate that, given a query sample, even

simple model-based probabilistic methods are able to retrieve biologically

meaningful samples with a reasonably high accuracy. The proposed meth-

ods point out relationships between samples in the form of retrieval re-

sults and allow interpretation of retrieval results by modeling underly-

ing biological processes. A careful study of the processes revealed many

known results in Publications I and III and led to a novel biological find-

ing for a Mesothelioma cancer in Publication III.

The proposed methods can be extended in several directions. For in-

stance, an interesting direction is to consider nonparametric extensions of

topic models that do not require to pre-specify the number of components.

Additionally, it is important to adapt the search engine to other commonly
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available background data repositories such as collections of background

datasets where each dataset contains a set of samples and multiple collec-

tions of repositories where each repository contains measurements that

are paired with the corresponding samples in the other repository. The

next chapters describe solutions suitable for such scenarios.

56



5. Multi-view retrieval with biological
samples as queries

Methods discussed in Chapter 4 were suitable for a single-view reposi-

tory. This chapter presents the contributions to multi-view retrieval of

gene expression data paired with another data type. It starts with a brief

motivation, followed by a description of specific contributions, namely re-

trieval of relevant biological samples from paired genomic measurements

(Publication IV) and retrieval of survival-associated genomic regions that

are dependent among multiple sources of genomic measurements (Publi-

cation V).

5.1 Motivation and Related work

Cancers are complex diseases where cellular responses to a disease type or

drug treatment are characterized by multivariate genome-wide changes

at several layers of regulation [84, 85]. Therefore in cancer studies, it

is becoming increasingly common to profile measurements from multiple

genomic views where each view provides a complementary source of infor-

mation to the underlying responses or mechanisms. For instance, to better

characterize cellular responses to different cancers, the Cancer Genome

Atlas (TCGA repository; [49]) provides not only gene expression measure-

ments but also corresponding copy number variations, methylation data

and micro-RNA measurements as multiple views of cellular responses to

different cancer types. The rapid growth of such multi-view repositories

requires new tools that are able to retrieve key variables and samples and

increase our understanding of the underlying cellular processes.

Most related solutions are designed for single-view repositories, for in-

stance, the genome-wide association analysis searches the genome for fea-

tures with small variations that occur more frequently in people with a

particular disease than in people without the disease [86]. Similarly, most
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methods to search for relevant samples, including the ones discussed in

Chapter 4, are specifically tailored for single-view repositories. The data

integration approach adapted in Publication IV and V seek maximal de-

pendence between two data sources. Other related integrative approaches

that have been recently applied in functional genomics are kernel meth-

ods [87] that operate on similarity matrices and can model nonlinear fea-

ture spaces, asymmetric integration of one data source to support the

analysis of another (primary) data source, and simultaneous non-negative

matrix factorization [88].

5.2 Retrieval of relevant samples using paired measurements

The study in Publication IV investigates the following research question:

Given paired background data samples from a large repository, would it be

possible to exploit their shared patterns to enhance the accuracy of retrieval

of background samples that are most relevant to a given query? The data

repository contains biological and chemical effects of several drugs. The

biological effects of the drugs are measured by gene expression measure-

ments (referred to as the biological space) while the chemical properties

are obtained as binary descriptors for each chemical (referred to as the

chemical space). The following subsections summarize 1) the data repre-

sentation for the paired measurements, 2) the computational model which

captures the shared information between the biological and the chemical

space, 3) the retrieval of relevant results based on a relevance measure

that uses the shared information, and 4) evaluation of the results that

allow system-level understanding of drug actions.

5.2.1 Representation of paired measurements

Biological responses of drugs are obtained from the Connectivity Map

study [25]. For each drug, the study contains microarray measurements

before and after drug treatment on three different cancer cell lines. A clas-

sical case-control design is used and differential expression is computed

for each drug molecule. Since not each drug is used in every cell line, the

cell line with the strongest effect is selected for each drug. The resulting

data consisted of gene expression profiles of 1159 different drugs. Like

in earlier studies, to bring in prior knowledge of biological processes and

to reduce the dimensionality of the data, GSEA is performed for the cu-
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rated 1321 gene sets from the C2 collection of MSigDB [33]. The chemical

space is defined by Volsurf descriptors [89]. These descriptors are based

on 3-D molecular fields and capture both structural similarities, such as

shape, as well as general chemical features, such as hydrophobicity and

lipophilicity properties. In total 76 different chemical descriptors were

collected for each of the 1159 different drugs.

5.2.2 Data fusion using CCA model

The paired measurements for the drugs can be viewed as two background

databases containing datasets X = [x1,x2, ...,xN ] and Y = [y1,y2, ...,yN ],

where each pair (xn ∈ RD1 ,yn ∈ RD2) contains a two-view profile for

a drug n. A regularized version of Canonical correlation analysis (CCA;

[90]) is used to analyze the data. The CCA model decomposes the varia-

tion in each data source1 into source-specific and shared components. It

is an unsupervised latent variable model where the within-source varia-

tion is assumed irrelevant, sometimes called “noise”, and only the shared

effects are considered relevant. This is a sensible assumption in case of

drug action mechanisms because the biological or chemical space consid-

ered alone consists of noisy measurements of drug functional similarity

and the characteristics of the “noise” are not known.

While ordinary correlation characterizes the association strength be-

tween two paired scalar observations, CCA assumes paired vectorial val-

ues, and generalizes correlation to multidimensional sources (views). To

capture the shared information between the two sets of sources, CCA

searches for linear combination weights, here called basis vectors, for the

two sources (ws and vs; for the gene set activation values and for chemical

descriptors, respectively) in a way that maximizes the correlation between

the linear projections of the views onto these basis vectors, cor(Xws,Yvs).

The variance of the projections is normalized which makes the magnitude

of the canonical correlation τs bounded between [−1, 1]. The linear pro-

jections onto the basis vectors (Xws and Yvs) are also called canonical

variates or CCA components. Using the Pearson correlation as an estima-

tor, the function to be maximized becomes:

τs = argmax
ws,vs

cor(Xws,Yvs)

= argmax
ws,vs

wT
s Cxyvs√

wT
s Cxxws

√
vT
s Cyyvs

, (5.1)

1Here sources mean the biological and chemical views.
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whereCxx andCyy are the within-sources covariance matrices ofX and Y

respectively and Cxy is the between-sources covariance matrix. Multiple

pairs of basis vectors can be obtained iteratively. The first pair (w1,v1)

is optimized such that it has the largest canonical correlation (τ1), the

next pair (w2,v2) is optimized to have the largest correlation with the

constraint that it is uncorrelated with the previously found linear combi-

nation. Taking partial derivatives of Equation (5.1) with respect to basis

vectors and normalizing them, the CCA optimization reduces to a gener-

alized eigenvalue problem [91], where the analytical solution for the basis

vectors is given by solving the eigenvalue equations

C−1
xxCxyC

−1
yyCyxŵs = τ2s ŵs,

C−1
yyCyxC

−1
xxCxyv̂s = τ2s v̂s. (5.2)

The CCA solution has two useful properties: the result is invariant to

linear transformations of the data, and the solution for any fixed number

of components maximizes mutual information between the projections for

Gaussian data [92].

Classical CCA cannot be applied directly to high-dimensional data

settings due to unreliable inverses of the sample covariance matrices.

This happens when the individual variables are highly correlated and

the covariance matrices are ill-conditioned. The situation is commonly

encountered with biological data. Two commonly used approaches to deal

with both problems are 1) regularization [93] and 2) Bayesian modeling

[94]. In the study a regularized approach is used, where the empirical

covariance matrices Cxx and Cyy are replaced by regularized estimators

defined by Cxx + λ1I and Cyy + λ2I, respectively. The regularization pa-

rameters λ1 and λ2 are estimated in a cross validation fashion by maxi-

mizing the average retrieval performance.

5.2.3 Retrieval using CCA latent space

To test the performance of the CCA components in extracting functionally

similar drugs and in combining potentially relevant statistical dependen-

cies between the two views, the CCA-based retrieval performance is evalu-

ated against the baseline retrieval using each single-view separately. The

projection of the original data onto the CCA components is used to pro-

vide a low-dimensional vector representation for each drug molecule in

each view. The projected views are concatenated for each drug and a sim-

ple pairwise Pearson’s correlation is used to rank the different drugs given

60



Multi-view retrieval with biological samples as queries

a query drug.

5.2.4 Results

For quantifying the retrieval performance, each drug chemical is taken

as a query and the average precision of retrieval results of most simi-

lar drugs is computed. The retrieval performance is compared against a

gold standard that represents functional similarity of different chemicals

based on their known protein targets and Anatomical Therapeutic Chem-

ical (ATC) codes. As baseline comparison methods, results for single-view

retrieval are evaluated for three different representations of the drugs: 1.

gene expression, 2. expression of gene sets and 3. chemical descriptors.

The retrieval results show that the combined space formed by the CCA

components performed significantly better than any of the three spaces

considered separately. Within single-view retrieval, the chemical descrip-

tor space clearly performed better than retrieval based on the biological

space (activities of genes or gene sets), indicating that the chemical space

is more informative than this particular selection of genes for evaluating

the functional similarity of the drug molecules. The retrieval performance

using genes versus using gene sets was similar which indicates that the

information loss in using gene sets, due to the smaller amount of fea-

tures, is compensated by prior knowledge of which genes form biologically

meaningful sets.

Next the CCA components are used to analyze complex relationships

between chemical structure of drug molecules and their genome-wide re-

sponses in the cells. A detailed interpretation for the top ten most corre-

lated components led to several sensible and potentially useful hypotheses

of drug response mechanisms. For instance, three subcomponents shared

the same or similar chemotherapeutic and DNA damaging drugs, while

their top chemical and biological characteristics revealed two different

DNA damage response mechanisms, namely mitotic arrest response due

to hydrophobic and size related features and a reparative response driven

by hydrogen bonding and hydrophilic features (details in the study sec-

tion “Components 2B & 10A - functionally similar but gene-wise different

responses” and section “Components 3/3A - A cell stress component”, re-

spectively).
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5.3 Survival analysis for multi-view components

In recent decades cancer genomics has focused on the discovery of genetic

mutations and chromosomal changes associated to a cancer phenotype.

Though a single mutation may relate to a particular phenotype, it is the

combination of many different molecular mechanisms that disrupt cellu-

lar pathways and characterize cancer [85]. Given multi-view samples,

Publication V presents an effective pipeline that addresses the problem

of retrieving multi-view regions of the genome that effectively stratify

data samples (patients) into low and high survival groups. The following

sections summarize key steps of the pipeline: first relevant clinical and

patient specific covariates are collected from a multi-view repository (Sec-

tion 5.3.1); next, a Bayesian variant is used to model multi-view regions

in order to be able to incorporate suitable priors for constraining depen-

dencies between multi-view sources and avoid the over-fitting problem of

the classical CCA (Section 5.3.2), after this the regions are used to stratify

patients into groups and a survival association analysis is performed to

identify potentially interesting regions (Section 5.3.3), and lastly the in-

teresting regions are evaluated against existing literature (Section 5.3.3).

5.3.1 Representation of paired data samples

As a multi-view dataset three data types; namely, gene expression, DNA

copy number changes, andmethylation pre-treatment measurements were

collected for the available 250 Glioblastoma Multiforme (GBM) subjects

from the TCGA repository in Publication V. GBM is one of the most ag-

gressive malignant brain tumors where affected patients have a uniformly

poor prognosis with a median survival time of only 15 months over the

past 25 years [95]. These tumors are now well characterized at genome

and transcriptome levels and several studies have demonstrated that the

combination of these two molecular levels may be advantageous to char-

acterize robust signatures that are clinically relevant for GBM [96, 97].

In Publication V a chromosomal continuous data source (either copy

number changes or methylation) is considered as one view and gene ex-

pression is taken as the second. This results in two studies: a) search for

dependencies between copy number and gene expression, and b) search

for dependencies between methylation and gene expression. The probes

for each dataset were matched resulting in 3480 genes for the gene expres-

sion copy number pair and 2530 genes for the gene expression methyla-
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tion pair. In addition to the molecular profiles, subject-specific clinical in-

formation such as age, gender and race was also collected from the TCGA

database.

5.3.2 Data fusion using similarity-constrained CCA

Prior biological knowledge can help in modeling potential dependencies

between chromosomal gains or losses and gene expression of the associ-

ated genes. Copy number or methylation changes in a particular chromo-

somal region are captured by multiple probes, and this is also visible in

the expression of the corresponding genes in the affected region. The copy

number gain and loss are likely to be positively correlated with the ex-

pression levels of the affected genes, and the gain of methylation is likely

to be negatively correlated to gene expression.

A recently developed constrained version of Bayesian CCA [98] is

adapted in the study to encode this prior knowledge by enforcing con-

straints on the projection vectors ws and vs. The constrained Bayesian

CCA model couples the projection vectors with a transformation matrix

T: vs = Tws. The Bayesian CCA provides a flexible approach to incorpo-

rate suitable constraints on the projection matrices and deal with the un-

certainty in the data and model parameters. In the Bayesian formulation,

the two data sources are assumed to be generated by a shared Gaussian

latent variable z and a normally distributed dataset-specific noise with

zero mean and covariance Ψ. The model is formally defined as

xn ∼ N (Wzn,Ψx)

yn ∼ N (Vzn,Ψy), (5.3)

where the individual samples xn and yn are assumed to stem from a

shared latent variable zn ∈ RR×1 and view-specific effects. The mani-

festation of zn in each data source can be different and is parameterized

by the projection matricesW ∈ RD1×R andV ∈ RD2×R. Assuming a stan-

dard Gaussian model for the latent variable, zn ∼ N (0, I), the correlation

maximization projections of the classical CCA can be retrieved from the

ML solution of the model [99, 100]. The model likelihood is given by

p(X,Y,V,W,Ψ) =

∫
p(X,Y|V,W,Ψ)p(V|W)p(W)p(Ψ), (5.4)

where Ψ is a block diagonal matrix consisting of Ψx and Ψy as the blocks.

The conditional probability p(V | W) encodes the relationship between
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the transformation matrices for the shared latent variable. It is reparam-

eterized with a transformation matrix T such that V = TW; assuming

WTW is invertible T = V(WTW)−1WT .

Publication V uses the truncated normal distribution p(T) = N+(‖(T−
I)‖ | 0, σ2I) as a prior on T. The prior is used to make the model focus

on searching for dependencies which combine the signal across adjacent

genes within a particular chromosomal region. It can be plugged into

p(V|W). There are two extremes for the prior; in the unconstrained form

σ → ∞, the model reduces to the traditional CCA, while setting σ → 0

yields identical shared components derived from both data sources. The

variance parameter can be used to tune the trade-off between the two ex-

tremes. The prior favors positive correlations between two data sources

which is sensible for paired samples of gene expression and copy number

changes [98, 101]. For the case of the gene expression and methylation

pair, the relationship is inverse because down-regulation of a gene can

be due to hyper-methylation and similarly up-regulation of a gene can be

due to hypo-methylation. In Publication V the inverse relationship is en-

coded via the prior p(T) = N+(‖(T+I)‖ | 0, σ2I). Uninformative priors are

assumed for the model parameters W and Ψ, and these were estimated

using an EM algorithm.

Following [98], to find dependent regions a chromosomal region is de-

fined via a window that is centered at a gene and spans across ten neigh-

boring genes within the chromosomal arm. The window is slid across all

chromosomal arms and a dependency score and each sample’s contribu-

tion towards the score for each region is calculated. The dependency score

is computed as a ratio of the strength of the shared signal versus the

marginal effects, computed as Tr(WWT )/Tr(Ψ), where Tr denotes ma-

trix trace. A high score reveals a correlating expression and corresponding

chromosomal change; high-scoring regions with q-value < 0.05 are selected

for further analysis. Only one-dimensional latent variables are consid-

ered in the study. For each significantly dependent region, sample-wise

contribution scores, as manifested in the latent variable zn, are ordered

and three groups are formed based on the 10th percentile, the 90th per-

centile and the rest. The same analysis is repeated for the pair of the gene

expression and methylation datasets using the inverse prior.
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5.3.3 Survival association analysis

In order to quantify the survival association of the significantly dependent

regions, two patient groups are formed for each region, based on extreme

values of the dependency score, and their survival curves are compared to

check for any significant difference.

The TCGA survival time data are right-censored which implies that

the survival age of subjects is partially known. This can happen if some

subjects are alive and others withdraw or their information is lost during

monitoring before the final outcome is observed. In this context the final

outcome variable is when the patient expires. In the study the survival

functions of different groups are compared by basic survival association

analysis techniques [102]. The survival association methods estimate the

outcome variable of interest, namely the time until an event occurs. The

analysis captures the probability that a system will survive beyond a spec-

ified time. A system in this context is the group of subjects that contribute

most to a significantly dependent region. There are two main components

in a survival analysis: estimation of the survival function given censored

data and comparison of the functions for multiple groups. The survival

function S(t) is the probability that an individual survives longer than

time t. In the study the classical Kaplan-Meier (KM; [102, 103]) estima-

tor for the survival function is used:

Ŝ(tj−1) = Ŝ(tj)p(T > tj |T ≥ tj), (5.5)

where T is a random variable denoting time of death. Equation 5.5 eval-

uates the probability of surviving past the previous event time t(j − 1),

multiplied by the conditional probability of surviving past the current

time t(j), given survival to at least time t(j). The estimator allows to

draw KM survival curves for each group. A standard log-rank test is used

to compute significance for the differences [102].

As the KM analysis does not model the effect of covariates, the sig-

nificance levels can be biased due to any external confounder. In order

to check for the bias a Fisher contingency table analysis is performed

where one of the groupings is induced by a quantile clustering on the

sample-wise contribution scores from the model and the second grouping

is formed from any of the three external clinical factors considered sepa-

rately. Two clinical factors, race and gender, are transformed into binary

variables while the third variable, age, is discretized to four values.
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5.3.4 Results - survival associated dependent regions

The dependency analysis of Publication V resulted in 281 significantly

dependent regions between the gene expression and copy number datasets

and 313 regions between the gene expression and methylation datasets.

The histograms for the patient contribution scores to the dependent re-

gions followed a bell shape centered at zero, with a few patients that con-

tribute most to the dependency score. These scores are used to stratify

the patients into groups and to compare the corresponding KM survival

curves. Using a strict cut-off (q < 0.05) on the survival test score, the

gene expression and copy number datasets identified three chromosomal

regions in the chromosome 10 that is known to be closely related to the

GBM [104, 105]. Similarly, the methylation and gene expression dataset

revealed a single region that is recognized to have both tumor suppressive

and promoting properties depending on different tumor types [106, 107].

Overall the pipeline found biologically sensible regions from a multi-view

repository that were predictive of patient survival.

5.4 Discussion

In this chapter both studies used variants of canonical correlation anal-

ysis, a subspace learning algorithm where the input views are assumed

to have been generated from a shared latent subspace. Additionally, the

views may contain an independent but unknown type of noise. The first

study (Publication IV) investigated the potential of exploiting latent com-

ponents modeled by a simple multi-view model in improving the perfor-

mance of correctly identifying relevant samples given a query sample,

while the second (Publication V) utilized a constrained version of the

method that helps analyze and extract survival-associated relevant multi-

view features by searching for biologically sensible dependencies between

the features of the data.

The two studies identify relevant data by modeling hidden relation-

ships among data features with a flexible multi-view model. The results

from Publication IV indicate that integrated analysis of both the chemi-

cal and biological dataset is more informative than either dataset consid-

ered alone in predicting drug similarities as measured by comparison to

ground-truth. The qualitative results allow system-level understanding of

drug actions, which is of extreme importance given their complexity. The
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complexity stems not only because the treatment drugs can often bind to

and interact with multiple targets, but also from the fact that the diver-

sity of biological responses to diseases at the cellular level is immense.

The case study on GBM, in Publication V, reveals that the constrained

version of the CCA model indeed finds multi-view regions that are known

to be predictive of patient survival.

The proposed multi-view method searches for dependencies between

different functional layers at the transcriptome and genome levels, which

makes it possible to discover mechanisms and interactions that are not

seen in the individual measurement sources. The assumption of CCA,

that shared variation is interesting, is also useful in other multi-platform

measurements that are rapidly becoming common in cancer studies. The

results highlight the need for advanced algorithms to identify genomic

regions or transcript profiles that play a key role in cancer progression

and drug resistance.
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6. Multi-task learning and retrieval of
datasets

The methods discussed in the earlier chapters were suitable for modeling

and retrieval of relevant samples. This chapter presents the contributions

to two new models that extend the approaches described in the earlier

chapters to model and relate a collection of datasets. A summarized re-

view of existing work and related motivation is presented in Section 6.1.

The first proposed model is a nonparametric multi-task method discussed

in Section 6.2 while the second approach is a scalable and rapidly com-

putable model-based dataset retrieval engine discussed in Section 6.3.

The two models correspond to Publications VI and VII, respectively.

6.1 Motivation and Related work

A typical setting in molecular biology is to assay several variables (p) with

small sample sizes (n). For instance, high-throughput technologies mea-

sure many genes for a single sample, rather than many samples for a sin-

gle variable. Therefore, a key challenge in current studies is how to make

trustworthy models based on few samples when the number of studied

variables is large [108, 109].

A commonly used solution to the “large p small n” problem is to com-

bine statistical evidence across related datasets [110, 111]. Multi-task

learning provides a suitable class of approaches for such solutions [112].

In multi-task learning several estimation tasks (or datasets) are pursued

together assuming properties which can be shared across datasets. The

objective of multi-task learning is to boost performance of a new task by

transferring domain knowledge from previously observed tasks or to im-

prove learning performance of each individual task. A related method

is meta-analysis, where several related studies are combined to enhance

statistical power in order to obtain more accurate inference on target vari-
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ables [113]. The meta-analysis methods are not simple, as the user who

wants to find datasets that are combinable with her own data must resort

to searches in free text or in controlled vocabularies that require much

downstream data curation [1].

Other works that try to relate datasets typically utilize pairwise sim-

ilarities between datasets, where the simplest method are based on cor-

relation between vectors that represent datasets. For example, a recent

work [114] uses within-dataset gene-gene pairwise correlation. This rep-

resentation is not ideal for relating datasets as it requires a large number

of samples to sensibly estimate gene correlation matrices and furthermore

makes the dataset representation bulkier than the original data. Other

existing alternatives require specific case-control designs [115], expert cu-

rated training data [116] or carefully chosen keywords [4].

The next two sections summarize a multi-task model and a more

rapidly computable “combination model” to relate a new dataset to back-

ground datasets from earlier studies.

6.2 Multi-task topic model for transfer learning

Learning a model for a single dataset can be called a task. To gain more in-

formation about a dataset of user-interest (also called the task-of-interest),

transfer learning methods transfer knowledge from earlier tasks to a new

one, and multi-task learning methods learn several tasks together from

their respective datasets utilizing their shared relationships. For exam-

ple, the data of these related tasks may be genomic datasets from mi-

croarray repositories, or textual articles from other tracks in a conference.

The work in Publication VI proposes a new multi-task model that implic-

itly represents similarity across datasets by sparse sharing of latent top-

ics. The model improves performance on modeling topics underlying the

dataset-of-interest by transferring domain knowledge from previously ob-

served datasets. It extends the single-task LDA topic model of Publica-

tion I in three ways:

1. It builds a hierarchical model which is able to model a collection of

datasets.

2. The model does not require one to pre-specify the number of available

topics.
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3. Unlike other multi-task topic models, it decouples topic sharing from

topic strength, which makes sharing of low-strength topics easier.

These extensions are described in the following subsections.

6.2.1 Hierarchical Multi-task topic model

Probabilistic topic models are suitable for inferring latent components

from count data, such as texts in a bag-of-words representation where

individual topics represent co-occurrences of words [66, 67] or gene set

activation counts from microarray samples where topics represent biolog-

ically meaningful co-activations between patterns of differential expres-

sion (as described in Section 4.2.2).

To model sharing of information among multiple tasks, the topics are

allowed to be shared across the tasks by extending the hierarchical struc-

ture of the classical single-task LDAmodel. The generative process for the

counts (of words within documents, or gene sets within microarray sam-

ples) is similar to LDA except for the generation of the document-level

topic distribution. In the multi-task model this distribution is made spe-

cific to each dataset by adding an additional layer of task-level parameters

that allow the model to sample the document-level topic distribution from

the task-level parameters. The task-level parameters specify the task-

level distribution over topics. To model sharing of topics across different

tasks these task-level parameters are further sampled from a shared set

of hyperparameters that control the overall strength and prevalence of

topics across the entire set of datasets. A plate diagram of an existing

multi-task LDA model is shown in Figure 6.1 and briefly discussed in the

following section. Standard statistical techniques can be used to infer the

set of topics that are responsible for generating a collection of documents.

6.2.2 Nonparametric priors

Nonparametric Bayesian variants of the LDA model are appealing since

they allow easy inference of how many topics are active in a collection,

instead of specifying a prior upper-limit. In earlier work, Teh et al., (2006)

have proposed a Hierarchical Dirichlet allocation (HDPLDA; [117]) model

where a Dirichlet process prior is used for topics. In the same study the

authors further extend the single-task HDPLDAmodel to multiple groups

of documents which is here denoted as MT-HDPLDA.
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C: Tasks

D: Documents

Nd: Words

∞: Topics
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Figure 6.1. Plate diagram for multi-task LDA model; a nonparametric topic model for
datasets (MT-HDPLDA). Rectangles indicate sets of variables, with cardinal-
ity of the set marked in the bottom left corner. Gray nodes correspond to
observed data, count of a unique word in a document. In each dataset (task)
the overall topic distribution is controlled by a dataset-specific Dirichlet pro-
cess with task-level parameters πc and αc (see text for description of other
variables). Figure adapted from Publication VI.

In the MT-HDPLDA model (Figure 4.3), topics for a document (zc,d,n)

are drawn from a Dirichlet process (DP with parameters πc,d and αc),

which in turn is drawn from a dataset-level DP (with parameters πc and

α0), which can in turn be drawn from an overall DP across datasets (with

parameters π and base measure H). The topmost DP in the hierarchy de-

termines which topics are active overall and their strengths; lower-level

DPs choose among their parent-level active topics, varying their strengths

by a stick-breaking construction to yield differing topic distributions at

each branch of the hierarchy. When inferring topics from data, the top-

most DP can activate new topics as well as change their strength; the

Hierarchical DP can thus infer the number of topics from data. Since

sharing is done by the topic strength hierarchy, with the stick-breaking

construction the strongest topics (which generate many words overall)

are most likely to survive in several branches of the hierarchy and thus

be shared across datasets; this can make the model a bad fit for multi-

task problems with low-strength shared topics (topics discussed in many

document collections but not at great length).

Nonparametric prior for low-strength shared topics

Unlike MT-HDPLDA model, the proposed multi-task model in Publica-

tion VI uses an Indian Buffet Process (IBP; [118]) based spike-and-slab

prior that controls the sharing of topics across and within data collec-

tions. The IBP is a nonparametric prior over binary matrices that allows
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potentially infinite number of active topics or featuresK. The distribution

of IBP is sampled from a stick-breaking construction; [119]. Metaphori-

cally the stick-breaking construction can be understood as follows: start

off with a stick of length 1, then at each iteration k = 1, 2, ... break off a

piece at a point v(k) relative to the current length of the stick π(k−1), then

record the length π(k) of the stick that was just broken off and recursively

repeat the process on the broken-off piece. The construction produces a

decreasing sequence of latent probabilities π(k) that can be used as a prior

over unbounded binary matrices having a finite number of rows and an

infinite number of columns, with a finite number of 1-valued elements in

each row.

In the proposed model, the IBP controls presence of topics across the

different tasks where rows of the IBPmatrix represent different tasks and

columns represent topics. To draw a topic for a new task, the IBP chooses

one of the existing topics according to how many tasks they are already

present in, or activates a new topic, hence the number of active topics

is inferred from data. The IBP by itself did not provide enough sparsity

as its parameters are learned from few observations (one row per task

of a binary matrix); the proposed model therefore contains an additional

sparsity masking step that turns off some components in each task. The

strengths of the remaining active topics are drawn from a Gamma distri-

bution within each task; from this task-specific topic prior, the remaining

generation proceeds as in the classical LDA, drawing document-specific

topic distributions and then the words for each document. The combina-

tion of the Gamma-distributed topic strengths and the IBP can be seen as

an infinite spike-and-slab prior, where the IBP and the additional mask-

ing generates the spikes (probability of non-active topics) and the Gamma

distribution acts as a slab (strength for active topics). The use of the inde-

pendent topic strength variable avoids the restriction imposed by the DP

construction which makes it easier to model weak shared topics in a data

collection.

To infer the model from observations it is possible to directly integrate

out the nuisance model parameters, the posterior for the rest of the vari-

ables is then sampled using a combination of collapsed Gibbs sampling

and the Metropolis-Hastings algorithm.
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6.2.3 Comparative performance evaluation

The model performance is compared on simulated and real world tex-

tual count data that is a standard type of data in topic modeling research.

In this setting each dataset in a collection represents a learning task and

contains a group of documents, each document contains a collection of

word occurrences that are assumed to arise from the underlying differ-

ent topics discussed in the document. Documents that belong to the same

dataset tend to share topics more than documents that belong to other

datasets. The model’s ability to perform transfer learning is compared

against the state-of-the-art MT-HDPLDA model. For this the standard

predictive log-likelihood on held-out test documents from the interest-

ing task (dataset) is used as a measure to benchmark the model’s per-

formance.

Two related simulated experiments are designed. The first experi-

ment considers a continuum of problem domains where each represents

a different multi-task learning problem; intermediate continuum points

contain weak shared topics where the proposed model performs better

while the extreme points on the continuum contains strong shared topics

where the alternative MT-HDPLDA is superior. The second set of ex-

periments evaluates the model performance under a varying number of

total tasks by considering the different domains in the continuum. The

proposed model performs better at continuum points where weak shared

topics are likely to exist, and there are not very many tasks to learn the

models from. Both models increase their performance as more tasks be-

come available and this behavior is consistent even in the domain where

all topics are relatively strongly present in their respective tasks.

To illustrate the topic model that the proposed method learns, a col-

lection of NIPS conference articles is considered; in total the collection

contains more than a thousand documents that are grouped into five dif-

ferent groups; e.g. Neuroscience, Algorithms, Learning theory etc. Top

words from the strongest two topics for each task represent the topics

that are expected to be discussed in the corresponding documents of the

group. A comparative performance evaluation based on predictive like-

lihood for NIPS collection and another 20-Newsgroup data collection re-

veals that the proposed model is superior when the number of available

documents for the task-of-interest is low; a case where transfer learning
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is most wanted.

6.2.4 Discussion

The Bayesian multi-task models provide principled approaches to model

datasets. The proposed nonparametric multi-task method models the top-

ics in a dataset-of-interest by transferring knowledge from previously ob-

served topic modeling tasks from earlier datasets. The method extends

the classical LDA with a nonparametric prior that inherently performs

model selection to explore different numbers of topics. The benefit of

the multi-task method is that the modeled latent components are shared

across datasets. These latent components can be analyzed (e.g. along the

lines of Publication III or IV) to interpret relevance between two datasets.

Evaluation on a well-annotated collection of microarray experiments pro-

vides a natural extension of the study.

6.3 Efficient combination of models

Multi-task learning is a form of global analysis that builds a single uni-

fied model of all the data. As the number of datasets keep increasing

and the amount of quantitative biological knowledge keeps accumulating,

the complexity of the task of building an accurate unified model becomes

increasingly prohibitive [120]. However, since the “large p small n” prob-

lem anyway requires taking properly into account both the uncertainty in

the data and the existing biological knowledge, it makes sense to assume

that in the future researchers will increasingly develop their hypotheses

in terms of (probabilistic) models of their own data. Publication VII pres-

ents a feasibility study for the future scenario where a large number of

experiments are modeled beforehand and the models are stored in public

repositories analogously to how their data are currently stored in public

repositories. The following subsections describe 1. the proposed combina-

tion model that is used as a dataset retrieval engine, 2. representation

of the background datasets in terms of their respective base models and

lastly 3. a quantitative and qualitative evaluation of the model using an

annotated collection of experiments as a case study.
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6.3.1 Combination model

The model proposed in Publication VII is a probabilistic mixture of models

that assumes that the biological activity in the query dataset can be ap-

proximately explained by a model of potential active biological effects rep-

resented as a combination of background models of the earlier datasets.

Each earlier dataset sj is represented by a background model M sj (also

referred to as a base model) that can be any model selected by the au-

thor of the earlier dataset as long as it allows to compute the predictive

likelihood of the query dataset, denoted as P (X|M sj ).

The combination model is defined for the samples xq
i in the query

dataset as a simple mixture of base distributions P (xq
i |M sj ), where each

distribution (for each dataset sj) is associated with a mixture proportion

or weight θj . The resulting predictive likelihood, given by the whole com-

bination model to a query dataset, becomes

P ({xq
i }Nq

i=1;Θ
q) =

Nq∏
i=1

[( NS∑
j=1

θqjP (xq
i |M sj )

)
+ θqNS+1P (xq

i |Ψ)
]

(6.1)

where Nq is the total number of samples in the query dataset and Ψ is

a noise model. The mixture weights are constrained to be non-negative

and sum to one, that is,
∑NS+1

j=1 θqj = 1. Base models that explain a large

proportion of the query (i.e., ones with large θj) are ranked higher in the

retrieval results and the mixture weight values are directly used as a

proxy for similarity of background datasets to the query.

The estimation of combination weights turns out to be a constrained

concave optimization problem for which both projected gradient optimiza-

tion and the Frank-Wolfe algorithm [121] can be used. Constraints in the

former can be imposed after each gradient update where the resulting

weight vector are projected onto the canonical simplex C using an effi-

cient algorithm that minimizes the squared Euclidean distance between

the new point Θq and the original point Θq
0 [122]. Since the resulting cost

function is strictly concave and globally smooth the optimization enjoys

fast convergence and the computation time remains linear in the number

of background datasets.

6.3.2 Dataset representation as a base model

The base models are assumed to be probabilistic generative models that

are able to capture both prior and data-driven knowledge deemed nec-

essary by the author of the data. In particular, the study considers two
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model types (topic models and mixtures of unigrams) that have been used

in earlier studies to model gene expression data [123–125]. Both model

variants use counts obtained from the gene set enrichment analysis.

The unsupervised LDA [66, 67] or mixture of unigrams [126] is con-

sidered as a base model (which-ever models the data better) and is trained

for every dataset. Effectively, each dataset is represented by a probability

distribution over components (also called topics) which are shared across

all samples but with a different degree of activation in each. In LDA each

sample may be produced by multiple topics while in mixture of unigrams

each sample is assumed to stem from a single component. Standard in-

ference techniques, Gibbs sampling for LDA [66, 127] and EM for mixture

of unigrams [126] are used to estimate the model parameters (per sam-

ple distribution over topics and per topic distribution over gene sets) and

hyperparameters that control the prior probability of each topic. Given

a new query sample the predictive likelihood is computed using the base

model which was learned on the background dataset using the empirical

likelihood based scheme [128].

6.3.3 Model performance and the inferred network

Quantitative Performance

The combination model in Publication VII is evaluated on a large anno-

tated collection of microarray experiments that is a subset of the Array-

Express repository [40]. The collection contains 206 datasets that in total

have 5372 microarray samples which are consistently annotated with a

tissue type and disease name. All datasets are modeled by either the La-

tent Dirichlet allocation or the mixture of unigrams model. The retrieval

performance of the combination model is compared against the retrieval

based on the keywords, by evaluating the retrieval results for each query

dataset in the collection. The quality of retrieved results is measured by

the standard precision-recall curve which reveals good and consistently

better performance of the proposed model compared to the keyword-based

search.

Relationships among datasets

In the combination model, each query dataset is represented as a com-

bination of earlier datasets, encoded as a weight vector whose dimen-
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sionality equals the number of datasets in the repository. A single non-

zero weight value represents an edge between a query and a background

dataset and is used as a proxy for relevance of the background dataset to

the query. In order to interpret and visualize these relationships, a non-

linear projection scheme is used that preserves the inter-point distance

between any two datasets in the original space. In particular, Markov

clustering [129] is used over the matrix of combination weights between

all query datasets and their respective earlier background datasets, fol-

lowed by non-linear projection with a variant of weightedMulti-Dimensional

Scaling [130].

The clustering is mainly explained by tissue types, where three main

clusters dominate: 1. solid normal and neoplastic tissue, 2. cell lines

and 3. hematopoietic tissue (the clusters are visualized in Figure 2 of the

study). Fine grained structures within clusters are biologically sensible;

the solid normal tissue cluster forms a subnetwork of closely connected

skeletal and heart muscle datasets, the hematopoietic cluster contains

a small sub-cluster of Myeloma and Leukemia that is separated from the

Mononuclear cells, and the cell line cluster mostly contains non-cancerous

cell lines while cancer cell lines are placed as outliers mostly connected

with the disease that they profile.

Comparison to citation information

The data-driven network produced by the combination model is compared

with citation data. For that, several statistics about each dataset’s re-

spective publication are extracted from Pubmed and Web of Science, such

as direct and indirect citations, impact factor of publication venue, total

number of citations, and h-index of the last author. Interestingly, two of

the datasets found to have high data-driven citations (i.e. having high

out-degrees as found by the combination model) were associated to incon-

sistent publication entries in the public repositories; a scatter plot of the

number of citations against normalized weighted out-degrees revealed an

extreme off-diagonal position for these datasets, which upon inspection

led to the inconsistent publication entry. The corrected publication infor-

mation increases the correlation between the citation counts and the data-

driven out-degree measure. A systematic enrichment test over extreme

values of the weighted out-degrees and the corresponding citations indi-

cates a significant bias for citations towards high impact factor publica-

tion venues and h-index of the last author. Systematic analysis of densely
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connected datasets (cliques of experiments) reveals a breast cancer and a

leukocyte clique that are shared between the data-driven network and the

citation network. There are also cliques that are only visible in the data-

driven network; these sets reveal biologically meaningful relationships,

some of which are not easily visible from annotations, for instance, strong

connections among cells in a T-cell related clique that capture different

developmental stages such as Thymocytes and T-cells.

6.3.4 Discussion

The proposed combination model in Publication VII is a novel general-

purpose model that is both scalable and rapidly computable. It is able

to decompose a given query set into effects explained by earlier datasets.

The method can model both multi-view and single-view data collections

as long as suitable models exist for the background datasets. Evaluation

on a larger data collection and a corresponding comparison of the cita-

tion patterns and the data-driven network provide an interesting future

direction of the study.
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7. Summary and conclusions

In this thesis new methods are proposed that utilize existing knowledge

in the form of measurement data taken from earlier studies. This form

of prior knowledge is quite complex, partly relevant, heterogeneous and

noisy given that laboratories around the globe have different procedures

to take patient samples. Specifically, the research problems can be ab-

stracted as what can be done with the available large repositories towards

cumulatively building knowledge from data in molecular biology. The the-

sis arrives at an answer: a modeling-driven data retrieval engine, which

researchers can use to position their measurement data into the context of

earlier biology. It is argued that using the available background informa-

tion from hundreds of different situations or conditions, it is potentially

feasible to both complement the existing scarce data and to focus the anal-

ysis on relevant variables.

The thesis considers three different scenarios for the background bio-

logical measurements and proposes novel retrieval engines for each:

1. a collection of earlier samples, where each sample is a microarray mea-

surement (Chapter 4).

2. a collection of paired samples, where each sample is represented by

more than one data type, for instance, a paired profile of copy number

changes and an associated gene expression measurement (Chapter 5).

3. a collection of datasets, where each dataset contains multiple samples

and corresponds to an experiment (Chapter 6).

The thesis considers two cases for each; for scenario 1 it considers re-

trieval of relevant results at both the global genomic scale and at a local
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scale focused on relationships among a set of user specified genes; for

scenario 2 it considers retrieval of relevant samples and retrieval of key

survival-associated regions from multi-view profiles by modeling hidden

relationships among data features; and for scenario 3 it considers a non-

parametric method for relating datasets that have weak hidden processes

and a more scalable and rapidly computable retrieval model for datasets

when earlier datasets are already modeled with a probabilistic generative

model that allows computing predictive likelihoods.

The main findings from Chapter 4 are a) the model-based retrieval of

transcriptomic samples at a global scale that is able to find biologically

meaningful relevant samples given a query sample and b) an evaluation

of several potential underlying network reconstruction models that can be

used to focus the search of earlier samples based on relevant regulatory

relationships among user-defined genes-of-interest. The latter compar-

ative evaluation of the reconstruction approaches finds superior perfor-

mance for the LASSO regression and the Bayesian network models on

both simulated and real-world data collections.

The results from Chapter 5 indicate that the added benefit of mod-

eling shared patterns from a paired data source increases the retrieval

performance of identifying relevant drug profiles. In particular, the under-

lying canonical correlation analysis was able to extend our understanding

of drug action mechanisms by modeling biologically meaningful shared

patterns between gene expression responses and corresponding chemical

descriptors for a large collection of annotated drug molecules. The second

study in the chapter presents an effective pipeline to search for survival

associated multi-view chromosomal regions that are dependent among

paired data sources, such as gene expression paired with copy number

or methylation patterns.

While the studies in Chapter 4 and Chapter 5 present models suit-

able for a collection of data sample, Chapter 6 presents two schemes

to relate collection of datasets. The first proposed scheme is a unified

Bayesian nonparametric multi-task model where the number of latent

components are inferred automatically and the components are allowed

to be shared across datasets. Evaluation on simulated and real-world tex-

tual data collections reveal superior performance of the proposed model

over the state-of-the-art method when the number of available samples

within the dataset-of-interest is low; a case where relating datasets is

most needed. The second proposed scheme is a mixture of models, which
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is both rapidly computable and scalable. Results on an annotated gene

expression database indicate that the modeled data-driven relationships

between datasets match well with citations between the corresponding

research articles, and even found mistakes in the database annotations.

The recent growth in the development of genomic sequencing capabil-

ity has led to an exponential growth in the amount of publicly available

sequence data [120]. This poses a fundamental challenge of scalability

for computational modeling. There are at least two complementary ap-

proaches to address the scalability challenge; first efficient pre-processing

schemes are required to compress the large raw data, and second the

methods need to be parallelized where the computation would need to

move to the data rather than moving the data to the computation. In

addition to adapting the proposed algorithms in the thesis, intelligent

preprocessing that helps filter out unwanted background data, for exam-

ple by utilizing the standardized downstream ontologies or by restricting

background data with suitable hashing functions, provides a promising

direction for the future.
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