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1. Introduction

Recent advances in information technology and computer science have

essentially changed almost every branch of science and engineering from

data-poor to data-rich, calling for up-to-date data analysis methods to con-

duct the research. Machine learning plays an important role in developing

such methods and is becoming increasingly important. One of the most

significant current research directions in machine learning is based on

Bayesian statistics, using probability theory to construct such methods in

a unified and well principled manner.

The concept of a data generating process is central to the discipline of

machine learning. This process induces structure in the observed data.

In the history of machine learning, probabilistic generative latent vari-

able models have been developed and used to capture such structure in

the data. More recently, benefits of the Bayesian approach have been im-

plemented in practice, providing efficient learning algorithms and princi-

ples for making inferences regarding the latent variables, as well as other

unknown quantities of the model, based on the observed data.

Over the past decade, there has been increasing interest in collecting

data from multiple sources or views. For example, web images co-occur

with the surrounding text on the page, and both of these views are useful

for analyzing the web content. The motivation of this approach is that

each view is assumed to provide complementary information regarding

the underlying process generating the views. The corresponding aim is to

utilize all available views to provide a more complete understanding of the

process. In particular, in many research fields it is essential to discover

the process for understanding interactions between the views.

It is becoming increasingly important to jointly model multiple data

sources. Each view may include incomplete and potentially weak infor-

mation, as well as be corrupted by noise. Joint modeling of multiple views

9
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is able to overcome both of these challenges. On the one hand, weak in-

formation from the views can be accumulated to provide a broader under-

standing of the process under study. On the other hand, the side-effect

of noise in each view can be circumvented by emphasizing common struc-

tures shared by multiple views.

This thesis studies Bayesian latent variable models for multi-view data.

The studied models explain the data collection and capture interactions

between the views. This task is called dependency learning. The model-

ing approach is based on a probabilistic interpretation of canonical corre-

lation analysis [CCA; Hotelling, 1936, Hardoon et al., 2004] as a latent

variable model by Bach and Jordan [2005] and Browne [1979]. The CCA

model assumes a shared process between the views that captures the de-

pendencies. Although Bayesian inference for CCA has been presented by

Klami and Kaski [2007] as well as Wang [2007] and theory exists for mod-

eling dependencies [Klami and Kaski, 2006, 2008], several fundamental

research issues remain to be studied. In particular, the existing theory

and models for learning dependencies are suitable only for limited set-

tings and suffer from inefficient learning algorithms, hindering real-world

applications.

1.1 Contributions and organization of the thesis

This thesis presents several Bayesian latent variable models for learn-

ing dependencies between multiple views. These models remove some of

the limitations of previous research, detailed in the following paragraphs,

and advance the modeling theory. The models are applied to joint model-

ing of images and co-occurring text documents as well as to problems in

computational neuroscience.

Publications I and II present a novel model formulation and inference

algorithm for Bayesian CCA (BCCA) for capturing dependencies between

two views. The novel solution results in considerably more efficient in-

ference for BCCA, especially for high-dimensional data. These papers ad-

vance the state of the art by enabling real-word applications of BCCA,

which were previously not possible to solve. In addition, Publication II

provides an extensive review of BCCA and related extensions.

Publications III and IV introduce a new problem formulation referred

to as group factor analysis (GFA) and models for solving it. GFA extends

BCCA for learning dependencies between more than two views in a flex-
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ible way. A key novelty is that GFA accounts for both inter-view and

within-view dependencies. In particular, Publication IV suggests a novel

prior for GFA, enabling applications with very large number of views.

Publication V generalizes BCCA to data domains in the natural expo-

nential family distributions. Most applications of BCCA have been car-

ried out only for continuous-valued data severely restricting the scope of

research. The new model removes this constraint, thus enabling princi-

pled applications suitable for binary or integer valued data, for example.

Publication VI presents a novel model that combines BCCA-type mod-

eling for learning dependencies with topic modeling. Topic models are

generative models for discrete document data. Thus far, topic model-

ing has paid little attention to learning dependencies between multiple

views: most topic models for multi-view document data make simplifying

assumptions limiting their use in less controlled setups. The proposed

multi-view topic model learns topics that capture dependencies both be-

tween and within the views.

Chapter 2 reviews the necessary background on probabilistic machine

learning. In particular, it discusses various latent variable models for a

single view that serve as a basis for the multi-view models. Chapter 3

contains the contributions of this thesis, and presents the main ideas be-

hind the developed models, comparing them with previous related work.

Finally, Chapter 4 concludes this thesis and offers directions for future

work.

11
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2. Bayesian machine learning

Machine learning focuses on automated large-scale data analysis, where

the general goal is to extract useful information from data, such as im-

ages, text documents, gene expression or brain imaging measurements,

and annotations or labels obtained by human expertise or from previous

data analyses. Common tasks in machine learning are prediction and

summarization, corresponding to two (partly over lapping) fields of ma-

chine learning called supervised and unsupervised learning, respectively.

Given a collection of paired observations, inputs and outputs, supervised

learning is defined as learning a relationship between them, such that for

an unseen input the output can be predicted accurately. Unsupervised

learning, on the other hand, usually considers observations from a single

source and the aim is to learn a useful description for the data collection.

A considerable amount of recent machine learning research uses Bayesian

statistics. See Barber [2012], Bishop [2006], Bernardo and Smith [1994],

Gelman et al. [2003], Kollar and Friedman [2009], MacKay [2003], and

Murphy [2012] for recent textbook accounts. Bayesian machine learning

is inherently modular and may be considered to consist of three separate,

although related, stages:

i) defining a model (probabilistic description) for data,

ii) learning (or inferring) unknown quantities (that is, parameters and

latent variables) of the model based on the observed data and,

iii) evaluating, interpreting and using the inferred quantities for various

tasks.

A large and growing body of machine learning literature has investi-

gated factor analysis and related latent variable models for a wide range

of applications. This chapter focuses on Bayesian machine learning, which

forms the basis of the models developed in the thesis. In particular, the

13



Bayesian machine learning

chapter discusses latent variable models, such as factor analysis, for un-

supervised single view and multi-view learning.

2.1 Notation

A D-dimensional column vector x is denoted as x ∈ K
D, where K indicates

the domain that is usually the set of real numbers, R. A D ×K matrix A

is compactly written as A ∈ K
D×K .

For matrices and vectors, subscripts are used to indicate the individual

elements, with W:,j denoting the whole jth column of W and Wi,: de-

noting the ith row transposed to a column vector. Finally, we use 0 and

I to denote zero and identity matrices of sizes which make sense in the

context, without cluttering the notation.

In general, probability densities are written as p(x), whereas more ex-

plicit notation is alternatively used to specify the distribution in question.

For example, x ∼ N (μ,Σ) and N (x|μ,Σ) denote a random variable x

drawn from a multivariate Gaussian distribution with parameters mean

μ and covariance matrix Σ.

2.2 Bayesian inference

Bayesian models define joint probability distributions for observed (data)

variables, X, and unobserved quantities, Θ, expressing a generative pro-

cess for X that depends on Θ. The joint probability distribution may be

written as,

p(X,Θ) = p(X|Θ)p(Θ),

where the first term on the right hand side is a conditional (joint) prob-

ability distribution of X given Θ and the second term, respectively, is

a (joint) marginal distribution of Θ. The Θ may contain parameters as

well as (random) variables. The distributions of the parameters are often

referred to as prior distributions, reflecting the a priori belief on those

parameters.

The statistical inference then proceeds by calculating the conditional

distribution of the unknown quantities1 given the observations. This dis-

tribution is referred to as the posterior distribution of the unknown quan-

1Note, however, that before computations some of the parameters need to be
assigned to known values. In the following, for notational simplicity, conditioning
on the known parameters is omitted.
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tities,

p(Θ|X) =
p(X,Θ)

p(X)
. (2.1)

The p(X) is a normalization constant, alternatively referred to as evidence

or marginal likelihood of the model. It is obtained by marginalizing over

Θ:

p(X) =

∫
p(X,Θ)dΘ. (2.2)

High posterior probability for Θ indicates Θ explains the observations

well and possesses significant marginal (prior) probability. Uncertainties

concerning the particular values for Θ are represented in the posterior

distribution in a natural way.

For most models the normalization constant p(X) required for the pos-

terior distribution (2.1) cannot be computed in closed form. Consequently,

several approximate inference algorithms have been proposed to carry out

computations (see Section 2.2.1). However, accuracy and computational

load of these methods depend heavily on the model assumptions, prefer-

ring certain (usually simple) models. Thus, model construction needs to

balance between background knowledge, mathematical convenience and

computational tractability.

The posterior distribution can be used to generate new data or evaluate

the probability of unseen data under the model. For new data X∗ the

prediction is written as

p(X∗|X) =

∫
p(X∗|Θ,X)p(Θ|X)dΘ. (2.3)

The tasks of machine learning may involve summarization and/or pre-

diction. In the Bayesian setting, summarization is performed by inspect-

ing the posterior distribution (2.1) for some variables, whereas prediction

is based on equation (2.3).

Given a set of possible models for explaining X, corresponding to alter-

native modeling assumptions, model selection is the process of choosing

a single model that best represents the observations or is the most use-

ful. Bayesian model selection proposes to choose the model that has the

highest evidence (2.2), weighted by subjective model probabilities. A more

practical alternative is to choose the model that maximizes some external

performance measure for utility, such as predictive accuracy. These two

solutions may not necessarily lead to equivalent solutions.
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2.2.1 Approximate Bayesian inference

This thesis uses variational Bayes, Markov Chain Monte Carlo and em-

pirical Bayes for approximate inference. These approaches are described

in the following.

Variational Bayes

The variational Bayesian approach approximates the true posterior dis-

tribution by a simpler trial distribution q(Θ) [Bishop, 2006, Jordan et al.,

1999]. The idea is to choose q(Θ) such that the marginalization becomes

tractable. One frequently used procedure to achieve this is to assume that

Θ is factored into separate sets Θ = {Θi}Ii=1. Then, the trial distribution

is given as q(Θ) =
∏I

i=1 q(Θi). The parameters for the various distribu-

tions q(Θi) in the approximation are updated alternatingly to minimize

the Kullback-Leibler divergence DKL(q, p) between q(Θ) and p(Θ|X) to

obtain an approximation best matching the true posterior. Equivalently,

the task is to maximize

L(q) = log p(X)−DKL(q, p) =

∫
q(Θ) log

p(Θ,X)

q(Θ)
dΘ, (2.4)

lower bounding the model evidence.

Variational Bayes is used for inference in Publications I, II, III, VI and

IV.

Markov chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods construct a Markov chain

over Θ whose stationary distribution is the posterior distribution (2.1)

[Gelfand and Smith, 1990, Geman and Geman, 1984, Hastings, 1970,

Metropolis et al., 1953, Robert and Casella, 2004]. The chain proceeds

iteratively by drawing a value for Θi from a proposal distribution starting

from some initial point. Then samples are collected approximating the

posterior distribution.

Metropolis-Hastings [MH; Metropolis et al., 1953, Hastings, 1970] pro-

poses a new value for Θ∗
i from a proposal distribution p(Θ∗

i |Θi), accept-

ing the new value with probability proportional to the joint model. For

a symmetric proposal distribution, p(Θ∗
i |Θi) = p(Θi|Θ∗

i ), the acceptance

probability is

a = min
(
1,

p(X|Θ∗)
p(X|Θ)

)
.

One interesting special case of MH is Gibbs sampling [Gelfand and Smith,

1990, Geman and Geman, 1984] that draws samples for Θi from a con-
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ditional distribution p(Θi|Θ−i) given current values for the remaining

quantities.

Gibbs sampling and MH are used in Publications II and V.

Empirical Bayes

Empirical Bayes [Maritz and Lwin, 1989] seeks a point estimate for Θi

that maximizes the partial evidence p(X|Θi), (approximately) marginal-

izing over the remaining variables.

Publications IV and VI use empirical Bayes.

2.3 Latent variable models

Factor analysis and related latent variable models, which are detailed in

the following, are essential tools for data analysis that express a genera-

tive process for observations in terms of a smaller number of unobserved

(latent) variables. Such models provide a lower-dimensional representa-

tion of higher-dimensional data and can be used both for summarization

and prediction. In practice, even though the observations are high-dimen-

sional, one frequently finds that they lie close to a lower dimensional sub-

space, implying that the distribution of the observations is constrained or,

alternatively, that the data variables are strongly correlated.

These models are increasingly relevant and have been shown to perform

well for a large number of applications, such as denoising, dimensional-

ity reduction, collaborative filtering, missing value imputation, gene ex-

pression analysis, brain signal analysis, computer vision, text document

analysis, information retrieval, source separation, matrix factorization

or decomposition, data visualization, feature extraction, topic modeling,

clustering, mixed membership modeling, latent feature modeling, feature

allocation and multi-way analysis (MANOVA), to name a few.

As explained in the introduction, data may be collected from multiple

sources. That is, data are assumed from M sources, constituting multi-

view data: for the nth object there are M vectorial Dm-dimensional obser-

vations x
(m)
n ∈ R

Dm , where m = 1, . . . ,M and n = 1, . . . , N . For Dm = 1

the mth source contains a single data variable and for Dm ≥ 2 a group of

variables, respectively.

Latent variable models for multi-view data have been applied to su-

pervised dimensionality reduction, image annotation, multi-label predic-

tion, context based information retrieval, data integration or fusion, data
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translation, multi-way analysis for multiple views, and modeling relation-

ships (statistical dependencies) between the views.

In the following, various latent variable models and prior distributions,

relevant for the scope and the developed models of this thesis, are re-

viewed in necessary detail, whereas Bayesian treatment for some of these

models is discussed in the next chapter. In particular, this section first

discusses factor analysis and related linear Gaussian factor models, expo-

nential family factor models and topic models for both single and multiple

data sources. Then it examines useful prior distributions for these mod-

els.

As discussed in the previous section, exact inference is infeasible for

many interesting models including the aforementioned latent variable

models. Hence, in recent years, an increasing number of approximate

posterior inference algorithms have been used. In the following, a few

relevant works are mentioned. Variational Bayesian inference (see Sec-

tion 2.2.1) has been applied to linear Gaussian factor models by Attias

[1999, 2000], Ghahramani and Beal [2000], Wiegerinck [2000] and Xing

et al. [2003], to natural exponential family factor models by Khan et al.

[2010] and Seeger and Bouchard [2012], and to topic models by Asuncion

et al. [2009], Blei et al. [2003] and Teh et al. [2007]. MCMC approaches

(Section2.2.1) have been applied to linear Gaussian models by Salakhut-

dinov and Mnih [2008], and to exponential family models by Mohamed

et al. [2009], and to topic models by Griffiths and Steyvers [2004] and Teh

et al. [2006].

2.3.1 Models for single-view data

Principal component analysis

Principal component analysis [PCA; Pearson, 1901, Jolliffe, 2005] is a well

established technique for dimensionality reduction of single-view data. A

probabilistic interpretation for PCA by Tipping and Bishop [1999b] and

Roweis [1998] allows writing the model for the nth observation as

xn = Azn + en.

Here, on the right hand side, the first term is a latent representation for

xn and the second term denotes noise that captures the remaining un-

structured variation or measurement error, respectively. The representa-

tion is a linear combination of K (latent) factors zn ∈ R
K , weighted by

loadings A ∈ R
D×K , which are common for all observations. The factors

18



Bayesian machine learning

provide a less noisy and condensed lower-dimensional representation of

the observations. Probabilistic PCA is a classical linear Gaussian factor

model where both noise and factors are drawn from Gaussian distribu-

tions. Equivalently, the model may be written as

xn ∼ N (Azn, τ
−1I),

zn ∼ N (0, I).

Here, the factors are drawn from a Gaussian distribution with zero mean

and identity covariance matrix, and τ is a precision (inverse variance)

parameter to explain additive unstructured residual to the combination.

For notational clarity zero-mean data is assumed, hence a separate mean

parameter is not included.

Factor analysis [FA; Spearman, 1904] is a closely related model to prob-

abilistic PCA that includes a more flexible noise model. The model for FA

is

xn ∼ N (Azn,Λ),

zn ∼ N (0, I),

where Λ is a diagonal matrix with a separate element for each data vari-

able. FA is commonly applied to capturing dependencies between the

individual univariate data variables. Since the Λ explains independent

variation for each variable, the factors focus on capturing dependencies

(correlations) between them.

Collecting N observations xn and factors zn into a D×N matrix X and a

K×N matrix Z, respectively, probabilistic PCA and FA can be interpreted

as a matrix decomposition. Variation is decomposed into factors and noise

as

X = WZ+E, (2.5)

where columns of E follow the Gaussian noise distribution.

A canonical example application for linear Gaussian factor models is

biological pathway analysis for microarray gene expression data, where

it is assumed that the factors represent biologically relevant information

[Carvalho et al., 2008]. Another successful application is missing value

imputation, illustrating that the factors learn predictive structure from

data [Ilin and Raiko, 2010, Lim and Teh, 2007, Salakhutdinov and Mnih,

2008].
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Exponential family principal component analysis

Exponential family principal component analysis and closely related mod-

els [EPCA; Collins et al., 2002, Moustaki and Knott, 2000, Tipping, 1999,

Wedel and Kamakura, 2001] generalize the Gaussian noise assumption of

probabilistic PCA to any distribution in the exponential family for taking

the data domain into account in a well principled way. EPCA assumes ob-

servations xn ∈ K
D, where K is a suitable subset of the real-space K ⊆ R,

drawn from a natural exponential family distribution (see Bernardo and

Smith [1994]),

xn ∼ E(ωn) = h(xn) exp(x
T
nωn + g(θ)).

Here, ωn ∈ K
D denotes the natural parameters of the distribution for the

nth observation, g(·) is a log-cumulant function specifying the distribu-

tion in question and h(·) is a function of data. The ωn is decomposed into

a linear combination of K factors zn and factor loadings A, as ωn = Azn.

The formulation covers a variety of different data domains such as binary

or integer data, corresponding to Bernoulli and Poisson distributions, re-

spectively. The expectation of xn is given by transforming the natural

parameters through a link function written as

E[xn] = g′(ωn),

where g′(·) is the link function, derivative of g(·).

Latent Dirichlet allocation

Latent Dirichlet allocation [LDA; Blei et al., 2003, Buntine, 2002] provides

a generative model for document data. Observations correspond to docu-

ments, counts of discrete words, from a certain vocabulary over D words.

Such a representation is called bag-of-words data. The model assumes K

topics ηk, where k = 1, . . . ,K, and the corresponding topic proportions θ.

Both θ and ηk are constrained to be probability distributions: ηk is a dis-

tribution over the vocabulary and θ is a distribution over the topics. The

generative model for an observation begins by drawing a topic proportion

θ from a Dirichlet distribution

θ ∼ D(γ1),

where γ is a concentration parameter. Then, for the ith word wi a topic

indicator zi is drawn first and then wi is drawn from a multinomial distri-
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bution corresponding to that topic,

zi ∼ M(θ, 1), (2.6)

wi ∼ M(ηzi , 1).

The process (2.6) may be repeated for drawing multiple words for each

document. The observations can be conveniently represented as D-di-

mensional vectors xn, whose elements correspond to word counts.

Even though the topic model was originally proposed for modeling text,

it has also been applied to model images in computer vision applications

[Sivic et al., 2005, Sivic and Zisserman, 2003]. LDA is commonly used

for organizing a large collection of observations, facilitating information

retrieval.

2.3.2 Models for multi-view data

Canonical correlation analysis

Canonical correlation analysis [CCA; Hotelling, 1936, Hardoon et al., 2004]

is a well established method for dimensionality reduction of multi-view

data and more importantly for capturing dependencies between two sets

of variables, that is, views. A probabilistic interpretation of CCA [Bach

and Jordan, 2005, Browne, 1979, de Bie and de Moor, 2003] assumes a

latent representation that captures common variation (statistical depen-

dencies) between the views. The model for the nth observation in the mth

view is

x(m)
n = A(m)zn + e(m)

n . (2.7)

Here, the factors zn are shared between the views accounting for common

variation, A(m) is the corresponding loadings and e
(m)
n represents noise

for the mth view accounting for any non-shared variation. In other words,

the model assumes x
(m)
n depends on two sources of variation. The first

source is shared between the views, whereas the second is independent of

the other view. Accordingly, the model decomposes the variation in data

to common variation between the views and view-specific variation.

Generative CCA is closely related to FA and probabilistic PCA. The cru-

cial difference worth pointing out is the definition of the noise. Instead

of assuming independent noise over the data variables, the model allows

for arbitrary correlations between them. One technique to achieve this

parameterizes the noise through a covariance matrix. As a result, the
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observation model for x
(m)
n is

x(m)
n ∼ N (A(m)zn,Σ

(m)), (2.8)

zn ∼ N (0, I).

where the Σ(m) is an unconstrained noise covariance matrix for the mth

view.

CCA is a ideal candidate for supervised dimensionality reduction and

it has also been applied to multi-label prediction [Breiman and Fried-

man, 1997, Glahn, 1968, Ji et al., 2008, Kim and Pavlovic, 2009, Rai and

Daumé III, 2009, Sun et al., 2011, Waugh, 1942]. Here, the two views

consist of inputs and outputs as in supervised learning. CCA can extract

a shared latent representation that captures the dependencies (contain-

ing relevant information for prediction), while i) discarding view-specific

irrelevant variation, which is not useful for prediction, and ii) exploiting

output (or within-view) correlations.

In addition CCA is frequently used in a symmetric setting, where one

view is not considered more important than the other. The goals are then

to evaluate the amount of dependency between the views or to find which

of the variables show the dependency.

Inter-battery factor analysis

The CCA model is closely related to a probabilistic interpretation of inter-

battery factor analysis [IBFA; Tucker, 1958] by Browne [1979]. In recent

years, the IBFA model has been re-invented by multiple authors [Archam-

beau and Bach, 2008, Ek et al., 2008, Klami and Kaski, 2006, 2008, Leen,

2008] using different terminology, denoting the model as extended CCA

or shared-private decomposition. However, all these models correspond to

the one given by Browne [1979]. While the CCA model (2.8) parameterizes

the correlated noise via the unconstrained covariance matrix Σ(m), IBFA

assumes a low-rank decomposition for the Σ(m). The model becomes

x(m)
n ∼ N (A(m)zn +B(m)z(m)

n , τ−1
m I), (2.9)

zn, z
(m)
n ∼ N (0, I),

where the factors z(m) ∈ R
Km with loadings B(m) ∈ R

Dm×Km affect only

the mth view. The residual variation is explained by the precision τm.

The connection between the IBFA and CCA models is illustrated by
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marginalizing z(m),∫
N (x(m)|A(m)z+B(m)z(m), τ−1

m I)N (z(m)|0, I)dz(m) =

N (x(m)|A(m)z,B(m)B(m)T + τ−1
m I) = N (x(m)|A(m)z,Σ(m)),

re-parameterizing the noise covariance matrix using a low-rank decompo-

sition,

Σ(m) = B(m)B(m)T + τ−1
m I,

without loss of generality. When the rank of the decomposition Km, in

essence, the number of specific factors for the mth view, equals the dimen-

sionality of x(m)
n , the IBFA model is equivalent to probabilistic CCA.

Multiple battery factor analysis

Multiple battery factor analysis [MBFA; Browne, 1980, McDonald, 1970]

generalizes IBFA/CCA to more than two views. Recently, many models

equivalent to MBFA have been presented [Archambeau and Bach, 2008,

Deun et al., 2011, Lock et al., 2013, Qu and Chen, 2011, Ray et al., 2013,

Salzmann et al., 2010]. These models include both factors that are shared

across all views and specific factors (or a flexible noise model) for each

view.

Also, several straightforward generalizations of (E)PCA for multi-view

data have been proposed [Guo, 2008, Ma et al., 2008, Rish et al., 2008,

Shen et al., 2009, Singh and Gordon, 2008, Yu and Tresp, 2004, Yu et al.,

2006, West, 2003]. These models assume a single set of factors to account

for all variation, corresponding to more simple single view models for con-

catenated data.

Multi-view topic models

Web data sources, such as Facebook, Flickr and Instagram, provide rich

sources of images accompanied with textual captions, words that describe

the visual content of the images. Further, newspaper and Wikipedia ar-

ticles contain pictures related to the content appearing in the document

text. When both text and image observations are represented by bag-of-

word descriptions, multi-modal LDA [Blei and Jordan, 2003] can be used

to explain such data jointly. The model is frequently applied to text-based

image retrieval and image annotation [Barnard et al., 2003, Blei and Jor-

dan, 2003, Yakhnenko and Honavar, 2009]. The task of image annotation

is to predict the text description for an unseen image, whereas the goal

of text-based image retrieval is to retrieve well matching images to a text

query.
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Multi-modal LDA [Blei and Jordan, 2003] extends LDA by including

separate topics η
(m)
k for the M views, while the topic proportion θ for a

document is shared across all views. Then, the ith word w
(m)
i for an obser-

vation in the mth view is generated as:

z
(m)
i ∼ M(θ, 1),

w
(m)
i ∼ M(η

(m)

z
(m)
i

, 1).

2.3.3 Prior distributions

Priors for the covariance matrix of the Gaussian distribution

For a diagonal noise covariance matrix, the inverse variances (precision)

τd, where d = 1, . . . , D, may be drawn from a gamma distribution G(τd|α, β)
with common shape and rate parameters α and β, respectively. The un-

constrained noise covariance matrix Σ may be drawn from an inverse-

Wishart distribution

Σ ∼ W−1(S, κ), (2.10)

where S denotes the scale matrix and κ the degrees of freedom for the

distribution. When no prior knowledge exists for τ or Σ, one can sim-

ply specify a relatively non-informative prior by assigning α and β or κ

to low values, respectively. Note, however, that κ ≥ D is required to

guarantee a valid covariance matrix. Publications I-V use gamma and

inverse-Wishart distributions for the covariance matrix of the Gaussian

distribution.

Automatic relevance determination

Automatic relevance determination [ARD; Neal, 1996, Tipping, 2001] prior

distribution may be used for the elements of a continuous-valued loading

matrix. The prior controls model complexity by pushing irrelevant ele-

ments close to zero, inducing sparsity. ARD is widely adopted due to its

simplicity and effectiveness [Archambeau and Bach, 2008, Ghahramani

and Beal, 2000, Fevotte and Godsill, 2006, Fokoue, 2004, Guan and Dy,

2009, Ilin and Raiko, 2010, Li and Tao, 2013, Nakajima et al., 2013, Tan

et al., 2009, Tipping and Bishop, 1999a]. Publications I-IV present exten-

sions of ARD, detailed in the next chapter.

Bishop [1999] showed that ARD can be used to determine the number of

factors K for probabilistic PCA. In particular, the model can be initialized

with a suitably large K. Then during inference some of these factors may
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be pruned out from the model. The prior is

A:,k ∼ N (0, α−1
k I), (2.11)

αk ∼ G(α, β),

where αk is the precision for the kth column of A and the parameters of

the gamma distribution are assigned to low values. When the αk is large

(that is, low variance) all the elements in the A:,k will be close to zero,

effectively switching off the kth factor. For an intuitive explanation how

ARD induces sparsity, see Tipping [2001].

Hierarchical Dirichlet process

Teh et al. [2006] introduced a hierarchical Dirichlet process (HDP) based

topic model for inferring the number of topics based on the observed data.

The model is based on the clustering property of the Dirichlet Process,

providing a nonparametric prior distribution for the number of topics.

Publication VI builds on this work (see Section 3.4).

The HDP is based on a Dirichlet process [DP; Ferguson, 1973] that is

briefly introduced in the following. Blackwell and MacQueen [1973] and

Sethuraman [1994] define a draw G from a DP as

G =
∞∑
k=1

pkδηk , (2.12)

where the set of values ηk, k = 1, . . . ,∞, are drawn from a base probabil-

ity distribution G0, the δηk abbreviates an indicator function defined on

this set, and the pk are non-negative and sum to one. The pk are defined

through a stick-breaking process

pk = Vk

k−1∏
j=1

(1− Vj),

where the Vk are drawn from the beta distribution Vk ∼ B(1, α). A draw

from the DP is denoted as G ∼ DP (α,G0).

HDP couples multiple DPs, (G1, . . . , GN ). The hierarchical structure en-

sures that each Gn is defined for the same set of variables ηk given in G.

A two-level construction is given as

G ∼ DP (α,G0),

Gn ∼ DP (β,G),

where G is called the top-level DP and Gn the second-level DP with a

concentration parameter β.
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This paragraph explains a certain construction for a HDP-based topic

model which is later referred to in Section 3.4. For this model, the top-

level DP G0 corresponds to D(ν1), the ηk correspond to the topics ηk over

the vocabulary and the probabilities pk are defined as in (2.12). Corre-

spondingly, the second-level DP Gn is defined for the nth document and is

based on a normalized gamma process [Ferguson, 1973],

Gn =
∞∑
k=1

Zn,k∑∞
j=1 Zn,j

δηk
, (2.13)

Zn,k ∼ G(βpk, 1),

where the auxiliary variables Zn,k are drawn from a gamma distribu-

tion. Finally, the topic proportion for the nth document is given as θn,k =
Zn,k∑∞
j=1 Zn,j

and the process for drawing the words is similar to (2.6). Even

though the construction is defined for an infinite number of topics, in prac-

tice only a finite set is actually used: a finite data collection is explained

by a finite number of topics.
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3. Models for learning dependencies
between multiple data sources

The structure of this chapter follows roughly the contributions of the pub-

lications. The description is presented for each method, discussing the

concept and related previous work.

3.1 Bayesian canonical correlation analysis via group sparsity

This section examines Bayesian models and inference methods for canon-

ical correlation analysis (CCA; see Section 2.3.2).

Publications I and II present a novel Bayesian model for CCA. The pro-

posed model is

x(m) ∼ N (W(m)y, τ−1
m I),

y ∼ N (0, I),

W
(m)
:,k ∼ N (0, α−1

m,kI), (3.1)

αm,k ∼ G(α0, β0),

τm ∼ G(ατ
0 , β

τ
0 ).

A key novelty of the model is that it uses a group-wise ARD prior to push

unnecessary loadings (columns of W(m)) to zero for each of the views sep-

arately. When the loadings for the kth factor W
(m)
:,k become non-zero for

both views, that factor captures dependencies between the views. Other-

wise, when the W
(m)
:,k become non-zero only for one view and zero for the

other, the factor describes view-specific structure. Finally, the prior still

infers the effective number of factors by pushing irrelevant loadings to

zero for both views. See Figure 3.1 for demonstration.

Publications I and II use variational Bayes for inference for the model

in (3.1), marginalizing over the unknown quantities collected in

Θ = {Wd,:, zn, αm,k, τm}d,n,m,k,
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Initial W =

⎛
⎝W(1)

W(2)

⎞
⎠ Inferred W Re-ordered W

Figure 3.1. Illustration of group-wise sparsity. The developed model (3.1) assumes a
group-wise sparse prior distribution for the factor loadings. Here the groups
correspond to a partition of variables according to the two views. The prior
results in the model converging to a solution that decomposes the variation in
data into shared and specific factors. For each factor the loadings correspond-
ing to one view are pushed jointly to zero or all are allowed to be non-zero.

and factored respectively. Open-source implementation of the model, writ-

ten in the R language, is available in CRAN: http://cran.r-project.

org/package=CCAGFA.

The developed model (3.1) differs from the existing Bayesian treatments

for CCA [Klami and Kaski, 2007, Wang, 2007]. The proposed solution

uses uncorrelated diagonal noise covariance matrices, instead Klami and

Kaski [2007] and Wang [2007] complemented the CCA model in (2.8)

by applying non-informative inverse-Wishart (2.10) priors for the uncon-

strained noise covariance matrices Σ(m). Even though Wang [2007] pro-

vided a variational Bayesian algorithm and Klami and Kaski [2007] de-

rived Gibbs sampling formulas, inferring the Σ(m) becomes very difficult

for high-dimensional data, severely limiting practical applications. In par-

ticular, Publications I and II demonstrate that the corresponding model

becomes computationally inefficient for high-dimensional data and, more

importantly, fails to infer the dependencies accurately.

While a low-rank decomposition for the Σ(m), leading to the IBFA model

(2.9), solves the problem of high-dimensional covariance estimation, it

results in an arduous model selection problem [Archambeau and Bach,

2008]. Hence, this approach has not been shown to work well in real-

world applications. Since the model (2.9) comes with three separate sets

of factors with factor numbers K, K1 and K2, it becomes very difficult to

correctly assign variation for each factor. Essentially, the proposed solu-

tion (3.1), as shown empirically in Publications I and II, solves this model

complexity problem.

In summary, Publications I and II present a novel Bayesian solution

28



Models for learning dependencies between multiple data sources

for the CCA/IBFA model that can be used efficiently for real-world ap-

plications with large dimensionalities and/or low amount of observations.

The solution extracts the dependencies between the views, additionally

decomposing the variation in data into shared and specific factors. The

novel solution imposes group-wise sparsity to infer the posterior of the

Bayesian CCA/IBFA model.

Publication I demonstrates applicability of the model for analyzing neu-

ral responses to natural stimulation. Conventional experimental settings

and computational methods in neuroscience use block-type stimuli; the

experimental setting consists of repeated blocks of the same stimuli and

rest. However, such artificial setups provide limited connections to the

natural environments our brains usually work in. Being able to study the

brain functions in less artificial setups opens up opportunities for under-

standing the complex functioning of human brains [Malinen et al., 2007].

Publication I uses neural measurements (fMRI) recorded under natural

musical stimulation. Given those measurements and a description of the

stimuli, the variation shared by the brain activity and the stimulus can

be assumed to correspond to stimulus-related activation, while variation

only seen in brain activity corresponds to the back-ground processes. Sim-

ilarly, variation only seen in the stimulus is not being processed by the

brain.

3.2 Bayesian group factor analysis

This section presents a novel problem formulation called group factor

analysis (GFA) for learning dependencies between more than two views

and approaches for solving it, following Publications III and IV.

For a multi-view data collection with M ≥ 3 views and N Dm-dimensional

observations x
(m)
n , where n = 1, . . . , N and m = 1, . . . ,M , the task of GFA

is to find K <
∑M

m=1Dm factors that describe the collection and in partic-

ular dependencies between the views. The GFA model is

x(m)
n ∼ N (W(m)yn, τ

−1
m I),

yn ∼ N (0, I),

where x
(m)
n is generated as a linear combination of K factors yn and the

corresponding loadings W(m) for the mth view. The loadings for all the
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Figure 3.2. Left: An illustrated graphical plate diagram of group factor analysis for three
views. The variation in the views, denoted as gray nodes, are divided into var-
ious factors (the remaining nodes). Right: The corresponding factor loadings
W are group-wise sparse. Thus each factor may be active in any subset of the
views. In particular, the factors capture either dependencies between subsets
of the views (red nodes are active in all the views and green nodes are active
for two views) or explain independent variation or structured noise for one
view (blue nodes are active in one view).

factors and views are denoted by

W =

⎛
⎜⎜⎜⎝

W(1)

...

W(M)

⎞
⎟⎟⎟⎠ .

The key novelty of GFA is an assumption of group-wise sparse factors.

Some factors capture dependencies between any subset of the views, whereas

the remaining factors explain independent variation or structured noise

for each view. In particular, the kth factor describes dependencies be-

tween a subset of the views if the W
(m)
:,k are non-zero only for those views

and zero for the others. Furthermore, the factors that are non-zero only

for a single view explain non-shared variation for one view. Figure 3.2

illustrates the potential factor loadings W for three views.

The key in solving the GFA problem is in correctly inferring the sparsity

structure. Publications III and IV present group-wise sparse prior distri-

butions for solving the GFA task. Then the factors in the GFA model

(loadings W) become group-wise sparse, pushing the unnecessary ele-

ments corresponding to some subsets of the views to zero separately for

each factor. Publication III generalizes the group-wise ARD prior (3.1) for

more than two views. Instead, Publication IV presents a more advanced

sparsity prior to better account for inter-view dependencies.
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The advanced prior is

W
(m)
:,k ∼ N (0, α̃−1

m,kI),

α̃m,k = exp(uT
mvk + μu

m + μv
k ), (3.2)

um,vk ∼ N (0, λ−1I),

μu
m, μv

k ∼ N (0, λ−1
μ ).

Here um ∈ R
R and vk ∈ R

R are location variables for the mth view and

for the kth factor, respectively. In addition, the vectors μu ∈ R
M and

μv ∈ R
K model the mean profiles. The locations induce correlated sparsity

between the views. For example, proximity for two views in the location

space implies high probability for sharing the same factors. Publication

IV demonstrates that the prior (3.2) is especially useful for large number

(hundreds) of views.

Publications III and IV use variational Bayes for inference, whereas

Publication IV uses empirical Bayes for the location variables. Corre-

sponding implementations in R language are provided in CRAN: http:

//cran.r-project.org/package=CCAGFA.

Figure 3.3. Illustrated graphical plate diagrams of the linear Gaussian factor models
(see Section 2.3.2) for three views. Left: Probabilistic PCA and FA assume a
single set of common factors for all views (red nodes) to explain the variation
in data (gray nodes). Right: MBFA as well as probabilistic CCA and IBFA
assume in addition to the common factors another set of factors (or a flexible
noise model) for each view to account for view-specific variation (blue nodes).

The linear Gaussian factor models for multi-view data, discussed in Sec-

tion 2.3.2 and illustrated in Figure 3.3, are not able to solve the GFA

problem correctly. In particular, these models fail to capture dependen-

cies between subsets of views, falsely identifying such dependencies either

view-specific or shared between all views.

In summary, a novel problem formulation referred to as GFA is pro-

posed for inferring factors that describe dependencies between any subset

of views. For solving the GFA problem, group-wise sparse prior distribu-

tions are developed.

In essence, GFA is a basic data analysis tool for unsupervised integra-

tion of multi-view data. Importantly, the formulation enables addressing
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new data analysis problems and designing novel experimental settings.

Publication III demonstrates a novel kind of an analysis setup for compu-

tational neuroscience where the same subject has been exposed to several

variations of the same musical piece. The brain activity measurements

(fMRI) recorded under these separate variations are considered as views

and the task is to reveal brain activity patterns shared by a subset of the

views.

Recently, multiple authors have considered closely related problem for-

mulations to GFA. Gupta et al. [2010] extended Bayesian probabilistic

matrix factorization [BPMF; Salakhutdinov and Mnih, 2008] to multiple

data matrices with co-occurring observations (views). Their model explic-

itly includes sets of factors for all possible combinations of views. Since

the amount of unique combinations grows exponentially, their approach

is not practical for increasing M . In addition, they failed to address the

model selection problem. Independently, Gupta et al. [2012] extended a

beta process factor analysis model [Paisley and Carin, 2011] building on

the hierarchical beta process [HBP; Thibaux and Jordan, 2007] for solv-

ing the task similar to GFA. The HBP formulation infers the factors, as

well as the number of them using MCMC. Damianou et al. [2012] ex-

tended Bayesian Gaussian process latent variable model by Titsias and

Lawrence [2010] to multiple views, corresponding to a non-linear formu-

lation of GFA. Even though non-linearity increases modeling flexibility,

interpreting the factors may be very difficult. Moreover, non-Bayesian ap-

proaches have been proposed to solve related formulations to GFA. They

are based on multi-view matrix factorizations using point estimates and

structured sparsity inducing regularizers or norms [Bengio et al., 2009,

Garrigues and Olshausen, 2010, Jenatton et al., 2010, Jia et al., 2010,

Deun et al., 2011]. See Bach et al. [2011, 2012] for further introduction

to these approaches. Welling et al. [2008] relates these approaches to the

Bayesian approach in the context of latent variable modeling, showing the

perils of using point estimates.

3.3 Bayesian exponential family canonical correlation analysis

This section presents a generalization of BCCA that removes the assump-

tion of Gaussian noise, following Publication V. In particular, the noise

distribution is generalized to any distribution in the natural exponen-

tial family, similarly to how EPCA generalizes probabilistic PCA (Section
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2.3.1).

Bayesian exponential family CCA (BECCA) assumes observations drawn

from an exponential family distribution,

x(m)
n ∼ E(ω(m)

n ) = h(x(m)
n ) exp(x(m)T

n ω(m)
n − g(ω(m)

n )).

Here, g(·) specifies the distribution for each variable1, and ω
(m)
n denotes

the natural parameters corresponding to the observation x
(m)
n . The ω

(m)
n

is decomposed as

ω(m)
n = A(m)zn + e(m)

n ,

zn ∼ N (0, I),

where the latent variables zn capture shared variation between the views

and e
(m)
n explains view-specific variation, following the notation and the

decomposition idea of probabilistic CCA/IBFA.

Publication V provides a relatively efficient and general solution com-

bining Gibbs and Metropolis-Hastings sampling (Section 2.2.1). In partic-

ular, a simple two-level alternating sampling strategy proposed by Hoff

[2005, 2007] is adopted. The sampler utilizes Gibbs sampler derived for

the fully Gaussian model that is coupled with standard Metropolis-Hast-

ings sampling for providing a generalization to various distributions. If

the domain of ω is constrained, proposals outside this domain are rejected.

Due to the difficult model selection problem of IBFA (see Section 3.1), the

model parameterizes the view-specific noise as e
(m)
n ∼ N (0,Σ(m)), follow-

ing Klami and Kaski [2007] and Wang [2007].

However, this solution does not scale well for high-dimensional data.

A potentially more efficient approach to solve BECCA would utilize the

group-wise sparsity assumption by sampling the natural parameters for

the two-level sampler from the model in (3.1). Consequently, the group-

wise sparse prior could reduce the computational load in addition to solv-

ing the difficult model selection problem.

Since the exponential family factor models for multi-view data, discussed

in Section 2.3.2, assume a single set of factors to account for all variation,

they are incapable of solving the task of CCA.

In summary, the proposed model generalizes BCCA to the data domains

in the exponential family. The solution utilizes a relatively efficient MCMC

schema that could be improved further by incorporating group-wise spar-

sity assumption. In addition, such a formulation would generalize GFA to
1The distribution may vary for the variables. Common g(·) is used in order not
to clutter the notation.
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the exponential family distributions. The model may be useful in various

neuroscientific settings, where the stimulus description contains binary

or integer valued data.

Further research should be done to investigate variational Bayes for

inference, following Khan et al. [2010], Klami et al. [2013] and Seeger and

Bouchard [2012]. In particular, the recent model by Klami et al. [2013]

could be modified to solve exponential family GFA.

3.4 Factorized multi-modal topic model

This section introduces a novel multi-view topic model that generates the

document counts similarly to how CCA/IBFA generates continuous-val-

ued data, following Publication VI. Given multiple bag-of-words descrip-

tions, the proposed model learns topics that are either shared between the

views or specific to each view. The presentation of the model in this intro-

ductory part differs from the original publication to better illustrate the

non-parametric nature of the model. In particular, the model description

provided here relies on the construction of the HDP based topic model in

Section 2.3.3.

The model assumes both separate topics and topic proportions for the

views, but importantly it captures correspondences between the topics

both within as well as between the views and infers the number of top-

ics for each view separately using a HDP formulation. Then the non-zero

(active) topics with high correspondence (that is, correlation) across views

capture dependencies, whereas the remaining active topics with low cor-

respondence, respectively, capture view-specific variation.

The topics for each view are drawn from the distinct top-level DPs. Each

topic is assigned a location variable �
(m)
k ∈ R

C to induce correlations be-

tween any two topics either within or across views. For example, two top-

ics that are close to each other in the topic location space tend to co-occur.
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The process is written as

G(m) =
∞∑
k=1

p
(m)
k δ

(η
(m)
k ,�

(m)
k )

,

p
(m)
k = V

(m)
k

k−1∏
j=1

(1− V
(m)
j )

V
(m)
k ∼ B(1, α(m)),

η
(m)
k ∼ D(ν(m)1),

�
(m)
k ∼ N (0, cI),

where c is a non-negative constant. When the view-specific stick-breaking

parameter is (close to) zero, that is, p(m)
k ≈ 0, the kth topic in the mth is

effectively switched off.

The document-level DPs are defined via a weighted normalized gamma

process,

G
(m)
d =

∞∑
k=1

Z
(m)
d,k∑∞

j=1 Z
(m)
d,j

δ
(η

(m)
k ,�

(m)
k )

,

Z
(m)
d,k ∼ G(β(m)p

(m)
k , exp(−hT

d �
(m)
k )), (3.3)

hd ∼ N (0, I).

Even though the process appears similar to (2.13), the crucial difference

is the second parameter of the gamma distribution. The hd is a location

variable for the dth document shared between all the views. This vari-

able linearly combines the topic locations, inducing dependency between

the topic proportions, θ(m)
d,k =

Z
(m)
d,k

∑∞
j=1 Z

(m)
d,j

. The expected value of the θ
(m)
d,k is

proportional to E[Z
(m)
d,k ] = β(m)p

(m)
k exp(hT

d �
(m)
k ).

Finally, the ith word w
(m)
d,i for the dth document in the mth view is drawn

as follows

w
(m)
n,i ∼ M(η

(m)

z
(m)
n,i

, 1),

z
(m)
n,i ∼ M(θ

(m)
d , 1)

This process may be repeated to draw more words.

Publication VI re-parameterizes the model and uses truncated varia-

tional Bayesian approximation for inference. The truncation is equivalent

to assigning V
(m)
T = 1 for a pre-determined truncation number T . The re-

parameterization replaces the hT
d �

(m)
k in (3.3) by a variable ξ

(m)
d,k drawn

from a joint Gaussian distribution over the topics and views ξd ∼ N (μ,Σ)

with unconstrained covariance matrix Σ and mean μ. Essentially, each
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element of the Σ can be interpreted as a function of the location variables.

Further details regarding the posterior inference algorithm can be found

in Publication VI and Paisley et al. [2011].

When M = 1, the model reduces to the one presented by Paisley et al.

[2011] that is similar to the correlated topic model [CTM; Blei and Laf-

ferty, 2007]. When M ≥ 2, the model is similar to the multi-field CTM

[Salomatin et al., 2009]. However, the developed approach uses nonpara-

metric prior distribution for inferring the number of topics based on the

observed data.

Multi-modal LDA (see Section 2.3.2) and its non-parametric version by

Yakhnenko and Honavar [2009] assume all views to share the same topic

proportions for the documents. For this reason, such models fail to capture

dependencies between the views in an interpretable way when modeling

multi-view data with strong view-specific variation.

In summary, the proposed model combines the modeling principle of

CCA/IBFA for learning dependencies with topic modeling. The developed

model is able to learn topics that are shared between the views as well

as topics specific to one view, using a HDP formulation for learning the

number of topics based on the observed data.

In Publication VI, the model is demonstrated on a relatively large collec-

tion of web images from Wikipedia pages paired with surrounding text on

the page. In particular, both image and text representations may contain

strong view-specific variation. By learning dependencies between the vi-

sual and textual views, the analysis focuses towards the shared content,

isolating aspects that are view-specific.
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4. Conclusions

This thesis presents Bayesian latent variable models for multi-view data

targeting one important task: learning dependencies between multiple

views. Prior studies that have noted the importance of modeling depen-

dencies suffer from inefficient posterior inference algorithms or are lim-

ited to constrained settings, hindering real-world applications. This thesis

set out with the aim of developing new solutions, removing some of these

limitations and advancing the modeling theory for the task.

The developed models of this thesis advance the state of the art for

learning dependencies following two principles: decomposition of latent

variables and advanced prior distributions. A unifying modeling princi-

ple for learning the dependencies decomposes the latent variables into

shared and specific. The underlying motivation is that the shared latent

variables capture systematic joint variation (statistical dependencies) be-

tween the views, while specific latent variables explain remaining non-

shared variation. While this approach results in more complicated latent

variable models including separate sets of various types of latent vari-

ables, the decomposition may be inferred efficiently from the observed

data by using group-wise sparse prior distributions and Bayesian infer-

ence.

Having obtained an efficient inference solution, this thesis provides many

practical data analysis tools for multi-view data that comprise a number

of important implications for future practice. A more efficient and accu-

rate method to solve Bayesian CCA (BCCA) is presented, enabling novel

applications for high-dimensional data. Such application scenarios were

not amenable to address with the existing methods. A novel problem for-

mulation, group factor analysis (GFA), and models for solving it are also

presented, for learning dependencies between more than two views, ex-

tending BCCA. The new formulation enables massively multi-view set-
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tings with tens or hundreds of views. Novel exponential family general-

izations of BCCA and GFA can be computed for various data domains,

increasing modeling flexibility and scope of research. A novel multi-view

topic model is introduced for multi-view document data collections, com-

bining the modeling approach of BCCA/GFA with topic modeling.

The models developed in this thesis serve as a basis for future studies. A

Bayesian approach to machine learning, as discussed in this thesis, con-

sists of three stages. These stages involve making model assumptions,

inferring unknown quantities (that is, latent variables and parameters)

of the model based on observed data and interpreting, evaluating or us-

ing the inferred quantities. Future work can be continued in all of these

three directions by extending the model structures to better suit partic-

ular data, developing and using more efficient posterior inference algo-

rithms and applying the models to various application scenarios in several

research fields.
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